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Abstract

Outdoor air pollution is responsible for a substantial amount of premature deaths and severe illnesses.
Just in 2019, according to the GBD, it caused 124.21 million (95% CI 98.89-147.63) DALYs and 4.505
million (95% CI 3.625-5.364) deaths. Several air pollution co-benefits derive directly from the climate
change mitigation policies, that have recently included a new carbon budget design: the net-zero pathway.
However, a lot of factors add uncertainty to the estimation of health impacts.

We aim to study the main drivers of uncertainty in mortality, as well as their interaction, with a special
focus on the relative risk impact functions in the role of the decarbonization path. To do so, the climate
mitigation scenarios from the ENGAGE database are considered, as well as a source-receptor model to
estimate concentrations and several relative risk impact functions to compute premature deaths. The
study further identifies that net-zero climate policies rise the health co-benefits and reduce the risk of
extreme mortality outcomes. Moreover, this is of especial importance for stringent climate targets aiming
to limit the temperature increase well below 2◦C, with particular relevance in Asia and Africa.

Keywords

Impact assessment under uncertainty, sensitivity analysis, air pollution, health impacts, net-zero emission
pathways
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1. Introduction

Outdoor air pollution is known to be a major contributor to mortality, morbidity, and productivity loss [45].
In 2019, according to the HIME database [33], 4.5 million deaths worldwide were caused by fine particulate
matter (PM2.5) and ozone (O3) air pollution. Of those deaths, 5.7% were due to O3, and the rest to
PM2.5 [33]. Moreover, more than 80% of the world’s population is exposed to pollutant concentrations
exceeding the World Health Organization (WHO) recommended levels [6, 68]. Besides, air pollution does
not only impact on human health, it also constitutes an economical problem, endangers the planetary
health, destroys ecosystems, and is linked to global climate change [23, 38, 72].

Precisely, O3 and PM2.5 are the two main health-harmful air pollutants [7], originated mainly from
fossil fuel combustion and greenhouse gas (GHG) emissions [12, 34, 44, 69]. This means that air pollution
and climate change are closely linked since GHG emissions are responsible for the Earth’s temperature
increase, which in turn leads to the widely known climate change problem [62]. In this context, several
climate policies have been designed aiming to meet a global average temperature increase by the end of the
century (i.e. 2100), as assessed in the last IPCC AR6 [70]. These long-term global scenarios are generally
produced by integrated assessment models (IAMs), which project economic growth, population, energy
consumption, land use and agriculture along with associated GHG and pollutant emissions [42]. To that
extent, it is important to consider the air pollution health dimension in the design of policies [56].

Generally, the climate policies aim to cut down the use of highly pollutant fuels and to switch away
from inefficient technologies to mitigate the GHG damages [53]. Indubitably, the effects on the mitigation
depend directly on the policy stringency and strategy [54, 57]. Historically, global climate mitigation policies
allow overshooting of emissions and temperature, that is, a period of time in which warming is increasing
past some “dangerous” threshold and then cooling back down. In this traditional climate policy design,
the majority of climate models predict a period of climate overshoot, with years if not decades of higher
global temperatures before stabilizing at the temperature increase target, for instance, 1.5◦C or 2◦C as set
by the Paris Agreement [70]. Then, to meet the emissions goal, the models predict a period of net-negative
emissions, that is, removing directly the pollutant from the atmosphere.

Recently, the use of net-zero carbon budget policies has been analysed through a multi-model studio [23,
70]. This kind of policy constrains the world to never have net-negative emissions. Consequently, they
impose earlier climate mitigation strategies to reduce the overshoot. Our goal is to analyse the air pollution
mortality impact of non-overshooting climate policies.

1.1 State of the art and contributions

A substantial amount of work has been done to estimate the numbers of current and future premature
deaths due to PM2.5 and O3 concentration levels [2, 11, 34, 68]. Typically, the air pollution co-benefits
literature often considers only the uncertainty associated with the model input, that is the uncertainty
associated with emissions, commonly derived by a range of IAMs [67]. However, there are other sources of
uncertainty such as method uncertainty. The calculation of concentration from emissions also entails large
uncertainties, as even complex chemical transport models often provide different values for concentration
depending on their assumptions and parameterizations [4, 63]. Finally, the extent to which a change in
concentration entails a change in mortality is also subject of uncertainty [35]. As a result, our aim is to
study these sources of uncertainty as well as their interactions.

This study contributes to the air pollution co-benefits literature by providing the first assessment of
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air pollution outcomes from non-overshooting climate policies. To the best of my knowledge, a sensitivity
analysis on net-zero carbon budget policies has never been undertaken. Previous studies have looked at the
IAMs uncertainty of net-zero carbon scenarios [23, 59] with the focus on climate mitigation. Other studies
have performed uncertainty analysis along some impact functions, the methods used to estimate mortality,
although without considering different scenarios [10, 11] and especially not considering the most recent
IPCC AR6 climate scenario design. This study combines the novelty of the newly designed net-zero carbon
budget policies and the sensitivity and uncertainty analyses, providing robust findings of the impacts of the
climate policy design on air pollution mortality.

The goal of this thesis is: to provide robust insight on the co-benefits of net-zero carbon budget policies
for air pollution mortality; and to identify and quantify the sources of uncertainty related to air pollution
mortality estimates. Furthermore, we aim to answer the following questions: do net-zero scenarios have
significantly more co-benefits for air pollution? What contributes more to the uncertainty in air pollution
mortality: emissions uncertainty or impact function uncertainty? And does net-zero climate policy lower
the probability of nasty mortality outcomes?

1.2 Organization of the thesis

This Master’s Degree Thesis is structured into the following chapters:

� Preliminaries: where an overview of the considered pollutants and their health impacts is given, as
well as an explanation of the scenarios and policies, and a detailed mathematical description of the
impact functions.

� Methodology: where the data sources are detailed, as well as the pre-processing data methodology.
Moreover, an overview of TM5-FASST(R) is provided, along with a description of the implemented
impact functions.

� Uncertainty and sensitivity analyses: where the mathematical background of the uncertainty and
sensitivity analyses is given.

� Results: where all methods and procedures are applied and the results detailed.

� Conclusion: where we summarize the achievements of this thesis and lay out future work that may
stem from here.
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2. Preliminaries

2.1 Chemical overview

Outdoor air pollution is a major contributor to the burden of disease worldwide [61]. Most of the global
population currently resides in places where air pollution levels, because of emissions from major sources
such as industry, power generation, transportation, and domestic burning, considerably exceed the World
Health Organization (WHO) health-based air-quality guidelines [6, 68].

It has been widely proved that some ambient pollutants have a direct impact on our health, depending
on their concentration level. Some of the most relevant ones are particulate matter PM2.5 and PM10,
ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO) [49].

In this study, we will focus on PM2.5 and O3. PM2.5 refers to fine particulate matter, which are particles
with an aerodynamic diameter equal to or less than 2.5 µm [49]. The chemical composition of PM2.5 differs
spatially and temporally. Its most commonly found chemical compounds are ammonium (NH+

4 ), sulfate
(SO−2

4 ), nitrate (NO−3 ), black carbon (BC), organic carbon (OC), sodium (Na), silicon (Si) and other
metals [22]. Particularly, the main PM2.5 precursor pollutants are SO2, NOx , BC, OC, and NH3 [21].

Particulate matter pollution is often divided into two types: ambient (outdoor) particulate matter
pollution and household (indoor) air pollution from the use of solid fuels for cooking, including coal,
charcoal, wood, agricultural residue, and animal dung [33], as well as tobacco smoke, biomass, and fossil
fuel combustion [68]. Here we tackle the health impacts of ambient air pollution.

Furthermore, PM2.5 is composed both of primary and secondary PM2.5. The former refers to the
pollution that is directly emitted and remains in the atmosphere, without reacting, in the form of fine
particulate matter (e.g. BC and OC). Secondary pollution, on the other hand, refers to particulate matter
that is not directly emitted but is formed in the atmosphere through chemical reactions (e.g. ammonium
sulphates and nitrates). As a remark, primary PM2.5 may include natural PM2.5, like sea salt and desert
dust; in fact, it is in the deserts where PM2.5 concentrations may be the highest [49].

Long-term exposure to PM2.5 increases morbidity and mortality [9]. More precisely, total exposure to
PM2.5 caused 6.45 million (5.72–7.24) deaths and 210 million (95% CI 186–235) disability-adjusted life years
(DALYs) in 2019 according to the Global Burden of Disease (GBD) database [33]. Elevated risks in several
countries for PM2.5-adult-related deaths from ischemic heart disease (IHD), chronic obstructive pulmonary
disease (COPD), lung cancer (LC), and stroke, called also cerebrovascular disease, that comprehends
ischaemic stroke and haemorrhagic stroke, were illustrated in a large amount of studies [3, 9, 39]. As
well as elevated risks for PM2.5-children-related deaths from acute lower respiratory illness (ALRI) [3, 39].
PM2.5 is a set of particles of particular health concern because it contains numerous toxic compounds (e.g.,
acids and heavy metals), and can penetrate deeper into the lung than the larger PM generated by natural
processes, such as most windblown soil particle mass [68].

The GBD defined the level of risk exposure that minimises risk in the population, usually referred to
as counterfactual or theoretical minimum risk exposure level (TMREL). Since 2015, the counterfactual
exposure for PM2.5 is established as a uniform distribution between 2.4 and 5.9 µg m−3 [55]. This means
that below the lower bound no increased risk of mortality is assumed to exist, and above the upper bound
there is expected no additional risk of mortality either.

On the other hand, O3 is a pollutant that is not directly emitted by primary sources. Rather, it is formed
through a series of complex reactions driven mainly by volatile organic compounds (VOCs), nitrogen oxides
(NOx), and methane (CH4) [49, 68]. Precisely, the GBD defines the ambient ozone pollution as the
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highest seasonal (six-month) average of eight-hour daily maximum ozone concentrations and in 2019 set
the counterfactual exposure to a uniform distribution between 29.1 and 35.7 parts per billion (ppb) [33].

In 2019, O3 pollution accounted for 11.1% (95% CI 5.3–17.0) of COPD deaths globally, for a to-
tal of 365.000 deaths (175.000–564.000), and 6.21 million (2.99 to 9.63) disability-adjusted life years
(DALYs) [33]. Moreover, field experiments have demonstrated that atmospheric O3 can damage crops,
leading to yield reduction and deteriorating crop quality, resulting in economic losses and threat to food
security [72].

To sum up, in 2019, PM2.5 was considered the 4th-leading deaths risk factor of Level 3 and the 2nd
one regarding DALYs, while O3 was placed in the 31th position concerning deaths and in the 43rd one with
respect to DALYs [33].

Both constitute an important environmental health risk that contributes to human premature mortality
and crop loss that calls for better mitigation policies.

2.2 Scenarios overview

One of the main objectives of the Paris Agreement is to limit warming well below 2◦C and pursue limiting
it to 1.5◦C. The pathways through which such global temperature outcomes can be achieved have been
explored widely by the Intergovernmental Panel on Climate Change (IPCC), for example, in its Sixth
Assessment Report (AR6; [70]).

To meet different temperature targets, various carbon budgets have been considered. These values
indicate the cumulative CO2 emissions over the period 2018-2100 and they directly imply different tem-
perature outcomes by the the end of the century [59]:

Table 1: Temperature increase and carbon budget relation.

Temperature increase Carbon budgets (GtCO2)

Range around 1.5◦C 200, 300, 400, 500, 600, 700, 800, 900
Range around 1.5-2◦C 1000, 1200, 1400, 1600, 1800, 2000

Higher budgets 2500, 3000

This long-term temperature target is consistent with two different carbon budget scenario designs, that
from now on we will refer to as climate policy designs. The end-of-century (EoC) climate policy design
implements the remaining carbon budget without restriction, while the net-zero (NZ) climate policy design
implements the remaining carbon budget until CO2 emissions reach net-zero emissions. After that point,
net CO2 emissions are kept at zero. In this way, the temperature peaks and stabilizes.

Traditionally, the models used the EoC climate policy design, which mainly employs overshooting, i.e.,
there exists a time period in which warming is increasing past the 1.5◦C mark and then cooling back down.
This suggests that net-negative emissions techniques will be used later in the century to ensure that the
carbon budget targets are met. They have been widely criticised and new pioneer studies have analysed
the so-called NZ scenarios, where overshooting is limited through global net-zero emission goals, as just
introduced [59, 66].

As a recap, while both EoC and NZ climate policies achieve the same carbon budget, their paths to
the target imply different GHG emissions over time, and therefore, different technology pathways. This
will also have implications for air pollution emissions. Bear in mind that to compute the future emissions
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according to each policy and scenario assumption, the IAMs are essential. They are a very useful tool to
provide guidance in policy design and estimate climate and economic impacts.

Figure 1: Sketch of overshooting (left) vs non-overshooting emissions (right). Notice that the area above the
threshold and below the X-axis is the same, as well as the two areas comprehend between the X-axis and the
threshold of the two figures.

Besides the long-term assumption (climate policy and carbon budget), short-term policies play also an
important role. Following the ENGAGE project database [60], we can distinguish between [73]:

� National Policy (NPi): scenario that includes the currently implemented reference policy. Thus,
models should follow the current national policy implementation to 2020.

� Nationally Determined Contribution (NDC): scenario that assumes the implementation of the Nation-
ally Determined Contributions (NDCs) by 2030, but no further intensification of emission reduction
commitments beyond the NDCs after 2030.

� No Policy: scenario that does not include any policy.

All in all, each scenario deals with the following information:

� The long-term assumption (climate policy): net-zero or end-of-century.

� The short-term assumption (policy): NPi, NDC, or no-policy.

� The long-term assumption (carbon budget): ranging form 200 GtCO2 to 3000 GtCO2.

For further details on the scenario design and description, please see [59].

2.3 Impact functions overview

Taking as input the concentration of each pollutant per region and year, it is possible to estimate several
health metrics. For instance, the premature deaths or the avoided deaths, the years of life lived with
disability, the years of life lost, or the disability-adjusted life years, among others [33]. All of them need
the Population Attributable Fraction (PAF) value, that links the concentrations with the health risks.
Subsequently, the impact made by it is the same on each health metric, and hence, it is only necessary to
study one of them. In this project, the focus is on premature deaths.

To compute the premature deaths due to air pollution we consider the following formula:

∆Mort = y0 · PAF · pop (1)
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provided by several references such as [2] and widely used in worldwide studies. The variable y0 refers to the
baseline mortality, whereas pop accounts for the exposed population. PAF is the acronym for Population
Attributable Fraction. Consequently, ∆Mort is the proportional reduction in population disease or mortality
that would occur if exposure to a risk factor were reduced to an alternative ideal exposure scenario [48].

As previously explained, PM2.5 is responsible for IHD, STROKE, LC, COPD, and ALRI. On the other
hand, O3 has a direct impact on COPD. Except for ALRI, which affects children (< 5 years old), the other
causes of death are studied among the adult population (≥ 25 or ≥ 30 years old depending on the study).
Therefore, the exposed population value will be different for ALRI than for the rest of the illnesses.

The PAF can be obtained as

PAF =

(
RR − 1

RR

)
(2)

as described in [53], where RR refers to Relative Risk, which is the ratio of the probability of an outcome
in an exposed group to the probability of an outcome in an unexposed group. This value is different
for each disease and concentration’s exposure and can be computed in multiple ways. The selected
parameters to compute them and the methods chosen for the analysis are gathered in Table 3 and along
the Methodology section 3.3 respectively.

Since the first impact function to compute the relative risk appeared, new impact functions aiming to
improve the existing ones have been developed through the years.

LL [51, 16]
&

Rational [14]

IER [12] SCHIF [46] GEMM [11]

Figure 2: PM2.5 impact functions timeline.

One of the simplest and ancient methods to compute the relative risk is the Log-Linear (LL) model,
developed approximately one decade ago [40]:

LL(X ) = exp{β(X − X0)}, (3)

where β is the parameter that characterises its shape, X is the concentrations exposure, and X0 is the
counterfactual value. This formulation has some difficulties when dealing with high levels of outdoor PM2.5

since it is usually assumed no additional risk beyond 30 µg m−3 [11].

As it can be appreciated, this function only depends on the difference in concentrations, X − X0, not
on their individual magnitudes. This fact is also present in other relative risk functions.

The Integrated Exposure-Response (IER) model, developed by the GBD, has become the state-of-
the-art exposure-response model for estimating the PM2.5 mortality relative risk since its introduction in
2013 [11, 12, 26]. It has the following formulation,

IER(X ) = 1− ν(1− exp{−ωzδ}), z = max (0, X − X0), (4)

where the parameters (ν,ω, δ) are estimated using non-linear regression methods. This formulation allows
to deal with arbitrary high PM2.5 expositions, while considering other sources of PM2.5, particularly, sec-
ondhand and active smoking [11]. However, it assumes equal toxicity per unit dose across these nonoutdoor
sources, as well as presumes a counterfactual value, which adds uncertainty to the model [10].
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To relax these assumptions, the Shape Constrained Health Impact Function (SCHIF) was developed,
aiming to model the mortality due to PM2.5 using data within any specific cohort [46].

logSCHIF (z) = θf (z)l(z), z = X −min (X ), (5)

where l(z) = (1 + exp{−(z − µ)/τ r})−1 is a logistic function in concentration, and f (z) can take two
forms. Either linear, f (z) = z , or logarithmic, f (z) = log(z + 1). Note, logSCHIF (0) = 0. The parameters
(θ,µ, τ) are estimated from data [11] and notice that this formulation endogenizes the counterfactual value,
considering it simply as the minimum concentration of PM2.5 in the study set.

An improvement of this impact function arrived with a well-known relative risk model: the Global
Exposure Mortality Model (GEMM) [11].

logGEMM(z) = θ
log( z

α+1 )

1 + exp{− z−µ
τ r }

, z = X −min (X ).

The parameter α was added to make the SCHIF more flexible. In particular, α controls the amount of
curvature, with less curvature for larger values of α. In this way, the formulation of the previous SCHIF
equation 5 can be simplified transforming the two forms of f (z) by log

(
1+z
α

)
. Consequently, the predictions

of relative risk beyond the observed exposure range have a logarithmic form with diminishing changes in
relative risk as exposure increases [11].

In this function, the parameters are constrained such that the change in relative risk for higher concentra-
tions declined as concentrations increased. Moreover, as in the SCHIF equation 5, it has the counterfactual
value endogenized. Remark that this model is usually used without the logarithmic form:

GEMM(z) = exp

 θ log
(

z
α+1

)
1 + exp{− z−µ

ν }

 , z = X −min (X ). (6)

Besides, there are other functions to compute the relative risk due to some specific diseases, such as the
one suggested by Ostro et al. [14]. It is a rational function used for lung cancer as well as cardiopulmonary
diseases (CP), which are the sum of chronic obstructive pulmonary disease, acute respiratory illness, ischemic
heart disease, and stroke. It has the following formulation,

RR(X ) =

(
X + 1

X0 + 1

)β
, (7)

where the coefficient β is chosen according to the disease, the region, the educational level, and the
economic status among others [14].

To compute the relative risk for O3 there is a large consensus to use the Long-Linear function [15].
Since the GBD used it in 2010, it was reported by many authors [34, 40].

LL(X ) = exp{β(X − X0)}, (8)
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3. Methodology

Uncertainty analysis requires large amounts of data. Therefore, data should be gathered and handled before
proceeding with the final goal. This procedure is composed of three main steps: first, the pre-processing
of the emissions’ data given by the ENGAGE project database 3.1.1. Secondly, the computation of PM2.5

and O3 concentrations through TM5-FASST(R) 3.2. Finally, the computation of premature deaths using
different impact functions 3.3. Recall that only the first and the third step might produce uncertainty
since different ways of computing the emissions and the mortality are respectively considered; however,
after computing the concentrations, a detail analysis will be performed to see the relation between all the
components.

Figure 3: Schematic representation of the methodology framework. In red the uncertainty sources, in purple the
regional assessment, and in green the uncertainty and sensitivity analyses.

3.1 Data

Different data is required in different parts of the workflow. For instance, data regarding the emissions,
data on the baseline mortalities, or data about the population exposure. Each one is obtained through
different sources that are detailed below.

3.1.1 Emissions data

The emissions data, as already mentioned above, is obtained through the ENGAGE project database [60],
which includes 36 scenarios and 9 global integrated assessment models (IAMs). However, we only consider
6 of the models (AIM/CGE [28, 29], IMAGE [65], MESSAGEix-GLOBIOM [32], POLES-JRC ENGAGE [20],
REMIND-MAgPIE [37, 43], and WITCH [5, 25]) since the other three (COFFEE [50], GEM-E3 [13, 24], and
TIAM-ECN [71]) only report SO2 and CH4, which are not enough to estimate O3 and PM2.5. We use the
harmonized regional air pollution emissions (R10) and include world emissions such as aircraft and shipping.
This means, that we divide the overall countries into 10 regions (R10AFRICA, R10CHINA+, R10EUROPE,
R10INDIA+, R10LATIN-AM, R10MIDDLE-EAST, R10NORTH-AM, R10PAC-OCED, R10REF-ECON, and
R10REST-ASIA, see figure 4) and also consider an extra one devoted to aircraft and shipping.
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On the other hand, emissions from eight pollutants that contribute to the formation of O3 and PM2.5

are taken into account: BC, OC, NOx, SO2, CO, CH4, NH3 and VOC.

Figure 4: R10 World division.

The ENGAGE scenarios are the results of a multi-model exercise that includes several levels of climate
stringency, through different carbon budgets allowed. As detailed in 2.2, it includes different levels of short-
term policies, such as NPi, NDC, and no-policy. Remark that this last one will be considered as a reference
(REF) scenario in this project, as well as the already considered reference scenarios in the ENGAGE project
database. Importantly the ENGAGE project database distinguishes from the more conventionally used EoC
climate policy and the NZ one [59]. While the former relies solely on the resulting budget in 2100, the latter
constrains world emissions to stay at net-zero not allowing the world to go net negative at any moment,
as described in 2.2.

The ENGAGE database is regionalized, that is, the emissions are given by region and not by country.
Since TM5-FASST(R) requires the annual pollutant emission data aggregated at the regional level, we
could directly run it with the original data, without down-scaling it.

3.1.2 Impact functions data

As mentioned above, the formula to compute premature deaths is 1:

∆Mort = y0 · PAF · pop,

where y0 and pop are data. Both values are taken directly from VanDingenen et al [21]. Remark that the
baseline mortality is different for each disease, as well as the exposure population value, which changes
for age group and pollutant. In particular, for PM2.5 it is the annual average daily exposure, while for
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O3 it is the seasonal hourly maximum concentration. According to the literature, some authors used the
sixth-month hourly maximum concentration, whereas some others used the three-months one.

3.2 TM5-FASST(R)

To estimate the concentrations of PM2.5 and O3 from emissions provided by the ENGAGE scenario database
we used an R version of the TM5-FASST Scenario Screening Tool (TM5-FASST(R)), from now on sim-
ply denoted by FASST [21]. It is a global reduced-form air quality source–receptor model from the TM5
chemical transport model. As an idea, it is constructed from pre-computed emission-concentration transfer
matrices between pollutant source regions and receptor regions. These matrices emulate underlying me-
teorological and chemical atmospheric processes for a predefined set of meteorological and emission data
and have the advantage that concentration responses to emission changes are obtained by a simple matrix
multiplication, avoiding expensive numerical computations. The method has been widely used [57].

Since FASST was needed to be run for each model-scenario pair, that is, 278 times, and each run
required approximately 20 minutes, Zeus [64], the supercomputer of the Euro-Mediterranean Center on
Climate Change (CMCC) was used to run all the model-scenario combinations in parallel.

3.3 Impact functions

As already mentioned, to estimate the premature deaths we use equation 1. On the one hand, the PAF
value is computed through different impact functions. This study considers impact functions starting from
2000. On the other hand, the baseline mortality value y0 and the population exposure value pop are
obtained from literature, as detailed in 3.1.2.

As it can be seen in Table 3, five different sources for PM2.5’s parameter values and two for O3 are
considered. Nevertheless, some papers provided more than one set of parameters, which enabled us to
finally collect eight relative risk parameter sets for PM2.5 and two ones for O3. Regarding the variety of
methods, four different ones are used for PM2.5 and only one is used for O3.

To really comprehend each set of parameters, let us look carefully one by one to see how the values
were obtained and, in the case of considering different parameter sets from the same paper, under which
rules have been derived.

A recent study of Burnett et al. [10] followed the GEMM model 6 to compute the relative risk value
of PM2.5. Among the causes of death that they considered, four match with our aim of study: LC,
IHD, STROKE, and COPD. The counterfactual value was set to the lowest one of the GBD PM2.5-
TMREL distribution, 2.4 µg m−3. To perform the study, they considered 15 research groups globally that,
independently, conducted analyses to characterize the shapes of PM2.5–mortality associations in their
respective cohorts. Among these 15 cohorts was a study of Chinese men with long-term outdoor PM2.5

exposures up to 84 µg m−3, thus greatly extending the range of exposures observed in cohort studies
conducted in high-income countries in Europe and North America. Therefore, they did the study both
including and not including them, and consequently, in this project, two separate sets are considered. The
adult population considered in the study was people older than 25 years old.

It is worth mentioning that these same parameter values were used in subsequent studies, for instance,
in [11].

In 2016, the GBD together with the WHO [52] re-calibrated the IER model’s parameters 4 from the
2013 ones. They focused on five illnesses, but only four coincided with the diseases tackled in this study:
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LC, IHD, STROKE, and COPD. Once again, the study was done for PM2.5 and considered the adult
population as people older than 25 years old. The provided data was especially extensive since they used
a spatial resolution (1◦×1◦) globally to estimate the exposures of PM2.5. Therefore, 1000 values were
present for each cause of death and age group.

To deal with them, we determine to split the data using the counterfactual exposure. In particular,
three groups are created according to the GBD PM2.5-TMREL distribution:

LOW = (2.4, 3.56), MEDIUM = (3.57, 4.73), HIGH = (4.74, 5.9).

Then, by illness, the median of each parameter was considered, as well as the counterfactual value.

Based on previous studies of Pope et al. [51], Ostro et al. [14] did a study for PM2.5 and PM10 to
assess their environmental burden of disease at national and local levels. The function used was the rational
one 7 for two illnesses: LC and CP. The suggested values for β were taken directly from [51] and for the
counterfactual values, they suggested two different ways of choosing them: either using the background
concentration of PM2.5 in the region or the lowest observed concentration in the original study. Therefore,
a sensitivity analysis among the uniform distribution suggested by the GBD will be performed.

Two impact functions were already implemented in FASST [21]. For PM2.5, they follow the IER model 4
with the parameter values from Burnett et al. 2014 [12], while for O3 they used the ones described in
Jerret et al. 2009 [34] following the LL method 8. Other studies used also these values, such as [2].

The IER parameters are computed for COPD, LC, ALRI, STROKE, and IHD. They were driven from [15],
which used a Bayesian framework through the STAN fitting algorithm. Importantly, the counterfactual value
was set different for each disease.

Besides, for O3 the study was done for COPD, with a flexible counterfactual value. Hence, we will
do sensitivity analysis on it through the uniform distribution of O3 that was set by the GBD in that year:
U(33.3–41.9) ppb. In the published paper [34], only the PAF value was available. Thus, since we need the
value of the parameter β for our study, we use the following approach to compute the relative risk value:

RR =
1

1− PAF
, (9)

β =
log (RR)

10
. (10)

As mentioned before and detailed in the reference paper [21], the exposure of O3 used was the six-monthly
hourly maximum concentration.

Ananberg et al. [2] and Jerret et al. [34] also used the LL method 3 to compute the relative risk of
PM2.5 for LC, IHD, and CP. Precisely, they used the relative risk values of Krewski et al. [36]. However,
to do our analysis we require from the value of the parameter β, thus we obtain it using equation 10.
Once again, the counterfactual value was not clearly fixed, hence, we will do sensitivity analysis considering
values of the uniform distribution for PM2.5 set by the GBD, that is U(2.4–5.9) µg m−3.

Finally, in 2015 the GBD used the LL model 8 for O3. The study was done for COPD, with a flexible
counterfactual value. In the published paper, only the PAF was available. Thus, since we need the value
of the parameter β for our study, we use the equations 9 and 10 to obtain it. As mentioned before and
detailed in the reference paper [55], the exposure of O3 used was the three-monthly hourly maximum
concentration. In this case, the counterfactual value was again not distinctly fixed; thus, a sensitivity analy-
sis will be performed with the GBD distribution values of that year, which are once again U(33.3–41.9) ppb.
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Remark that some studies consider adult population people older than 25 years old, while some others
people older than 30 years old. In this assessment, the exposure value of the adult population is homogenized
for the sake of simplicity and to avoid another source of variation, accounting for people older than 30
years old.

Regarding the counterfactual concentration value, we use the ones specified in each paper where the
parameters’ values were taken or, in the case of no explicit value, the GBD counterfactual value of that
year, when possible. For PM2.5, they use to match with the ones posted in the GBD 2019 report (U(2.4–
5.9) µg m−3; [17]); thus, this uniform distribution was taken for all functions; whereas for O3, all both
coincide with the previous counterfactual values defined by the GBD in 2017 (U(33.3–41.9) ppb; [61]); and
consequently, these are the values considered.
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4. Uncertainty and sensitivity analysis

When dealing with the future, it is often impossible to predict with certainty outcomes or events. Therefore,
models are used to foresee tendencies and quantify the outcomes of policies. However, some assumptions
must be made while imposing a policy or scenario, and our aim is to quantify the impact of normative
choices, such as the choice of a given parameter, method or dataset. To do so, both sensitivity and
uncertainty analyses are performed.

On the one hand, sensitivity analysis procedures explore and quantify the impact of each model input
on the uncertainty of the predicted model output. Simple sensitivity analysis procedures can be used to
illustrate either graphically or numerically the consequences of alternative assumptions about the future.
On the other hand, uncertainty analysis is a mathematical approach that employs probabilistic descriptions
of model inputs deriving probability distributions of model outputs [41].

Recall the two sources of uncertainty in our study: i) input uncertainty, as for the same climate policy
design each IAM estimates different emission pathways; ii) impact functions uncertainty, since they are
employed to compute the premature deaths. To study the uncertainty and sensitivity of all of them, as well
as their interaction, some tests and graphs are considered.

Bear in mind that our final goal is to assess the difference between climate policies: NZ and EoC.
However, other elements play an important role, such as the region, the carbon budget or the year, among
others. Hence, the wide majority of tests and figures are done separately by different factors. Given the
large number of carbon budgets present in the scenarios, three groups have been configured following the
expected temperature rise in Table 1:

Table 2: Carbon budget groups.

Name Carbon budget interval (GtCO2) Description

low carbon budgets < 1000 accounts for temperature increase around 1.5◦C
medium carbon budgets [1000, 2000] accounts for temperature increase around 1.5–2◦C

high carbon budgets > 2000 accounts for higher temperature increase

Besides, considering the different nature and values’ ranges of the pollutants’ emissions, they are used to
be analysed separately.

Although graphical analyses give powerful information, we would like to complement it by quantifying
the differences between either scenarios and climate policies or input parameters. Consequently, some
statistical tests are run, such as the Kolmogorov-Smirnov test or the Binomial test. In this way, the
differences between probability distributions and the probability of having longer tails are assessed, as done
in previous studies such as [23]. This information will help us to quantify the impact of the NZ and EoC
climate policy among pollutants and regions. Other tests could have been helpful, namely ANOVA or
MANOVA, but the normality assumptions were not satisfied.

Each test considers a statistical hypothesis, i.e., a conjecture or affirmation about the distribution of one
or more random variables. A hypothesis test is simply a procedure to decide if the hypothesis is accepted
or rejected.

Definition 4.1. [19] Consider a statistical problem where the value of a parameter θ ∈ Ω is unknown.
Suppose that

Ω = Ω0 ∪ Ω1, such that Ω0 ∩ Ω1 = ∅.
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Our aim is to decide whether θ ∈ Ω0 or θ ∈ Ω1.
Denote by {

H0 : θ ∈ Ω0

H1 : θ ∈ Ω1.

Since θ ∈ Ω, where Ω = Ω0 ∪Ω1 and Ω0 ∩Ω1 = ∅, one of the two hypotheses must be true. This kind of
problem is called hypothesis test problem.

Recall two important definitions:

Definition 4.2. [19] On the above assumptions, H0 is the null hypothesis and H1 is the alternative
hypothesis.

Remark 4.3. We will denote by Π(θ) the probability of rejecting the null hypothesis. When doing such a
decision we could make a mistake (if H0 was true), generally called type I error. To ensure that the test
performs well, usually a level α̂ is fixed such that the probability of making a type I error is lower than this
threshold.

Definition 4.4. [19] The size of a test α̂ is defined as

α̂ = sup
θ∈Ω0

Π(θ),

which is the maximum probability, among all the values θ that satisfy H0, of making an incorrect decision.
Consequently, the significance level of a test α is

sup
θ∈Ω0

Π(θ) ≤ α.

Finally, recall the Fundamental Theorem of the Mathematical Statistics:

Theorem 4.5. [Glivenko-Cantelli] [31] Let {Xn}n≥1 be a succession of independent random variables
identically distributed in a probabilistic space (Ω,A, P), with a common distribution function FX . Denote
by Sn the empirical distribution function obtained from the n first random variables X1, · · · , Xn. Then,
Sn(x) converges uniformly to FX (x) with probability 1, that is,

P[ lim
n→∞

sup
−∞<x<∞

|Sn(x)− FX (x)| = 0] = 1.

Once this short definitions reminder is done, let us describe in detail the figures and tests applied to
the three data sets.

4.1 Probability distribution and cumulative frequency graphs

For emissions, concentrations, and mortality, the probability distribution and cumulative frequency graphs
are considered. The first one shows the likelihood of obtaining possible values that a variable can take.
In our case, the estimated emissions, the pollutants’ concentrations, or the premature deaths estimation.
Considering different probability distributions per climate policy, we can see which one predicts higher
values of our variables. Moreover, by plotting the median we can detect if although the distributions are
different, the output trends coincide.
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Besides, the cumulative frequency graph represents the total number of values up to the current point.
In this way, we can appreciate how the tendencies of each variable are, and more importantly, see the
differences between climate policies: if both cumulative frequency lines are overlapped, no discrepancy
between them is expected, whereas if the lines are somehow different, we can study if one climate policy
estimates more emissions, concentrations, or premature deaths, or either if the dominant climate policy
changes among factors.

Both graphs are complementary and give powerful and visual information. However, we feel the necessity
of quantifying the differences between climate policies.

4.2 Kolmogorov-Smirnov two-sample test

This non-parametric test is an adaptation of the Kolmogorov-Smirnov (K-S) one-sample test. It compares
the empirical distribution functions of two samples. Intuitively, the test answers the question “What
is the probability that these two sets of samples were drawn from the same (but unknown) probability
distribution?”

Consider two data samples of size m and n from continuous populations FX and FY denoted by

X1, X2, · · · , Xm, and Y1, Y2, · · · , Yn.

Their respective empirical continuous distribution functions, denoted by Sm(x) and Sn(x), are defined as

Si (x) =


0 if x < X1
k
i if Xk ≤ x < Xk+1, k = 1, 2, · · · , i − 1,
1 if x ≥ Xi ,

where i = m, n.

The hypothesis of the test is the following:{
H0 : FX (x) = FY (x) ∀x ,
H1 : FX (x) 6= FY (x) for some x ,

which means that if the null hypothesis is true, both population distributions are identical and the samples
are from the same population. Thanks to Glivenko-Cantelli theorem 4.5, we know that as m (analogously
n) increases, the step function Sm(x), approaches the true distribution function FX (x). Therefore, for large
samples’ size, the deviations between the true function and its statistical image, |Sm(x) − FX (x)|, should
be small for all values of x . This result suggests that the statistic

Dm,n = max
x
|Sm(x)− Sn(x)|

is, for any m and n, a reasonable measure of the accuracy of our estimate, and the rejection region is in
the upper tail, defined by

Dm,n ≥ cα, where P(Dm,n ≥ cα|H0) ≤ α.

Once again, as a consequence of Glivenko-Cantelli theorem 4.5, the test is consistent and the p-value is

p = P(Dm,n ≥ D0|H0),

where D0 is the observed value of the two-sample K-S statistic [31].
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For our purpose, the significance level is set to 0.05, and the two data samples considered are the values
of emissions, concentrations, and premature deaths estimated by the NZ and EoC climate policies. Remark
each test is run by groups of region, pollutant, carbon budget interval, and year. In the case of premature
deaths, also by impact function as well as by counterfactual and parameters percentile level.

Precisely, our hypothesis is:{
H0 : NZ and EoC climate policies have the same distribution function,
H1 : NZ and EoC climate policies have different distribution functions,

and we look for statistical evidence to reject the H0.

Thus, for high p-values no difference due to the climate policy is expected, while for low p-values we
can state that the climate policy plays some role. Remark that if a p-value is lower than the significance
level we can state, with a 95% of assurance, that the climate policy is decisive, whereas if it’s higher than
0.95, we can say that it has no influence on the data.

Linking the results of this test with the previous graphs in Section 4.1, observe that for low p-values we
will observe a difference between the climate policies in the probability distribution plots, as well as among
the cumulative plots. In particular, as higher the differences between both graphs, the lower the p-value
will be.

4.3 Tail heaviness analysis

In the case of premature mortalities computation, we are also interested in studying the tail heaviness of
the NZ and EoC distributions and whether there is a significant difference between them.

There is no unique definition of a heavy-tailed distribution. Indeed, this notion only makes sense in the
context of each considered model. What we usually expect when we talk about heavy-tailed phenomena
is some kind of different qualitative behaviour of the underlying model, i.e., some deviation from the
“normal behaviour” which is caused by the extremes of the sample [8]. Precisely because of that, heavy-
tailed distributions tend to have many outliers with very high values. The heavier the tail, the larger the
probability to have one or more disproportionate values in a sample; and in our case, larger probability of
nasty mortality outcomes.

Although it does not exist a universal definition, there is a general consensus and acceptance of the
following one:

Definition 4.6. [27] A probability distribution F (x) is heavy-tailed if and only if∫
R

eλxF (x)dx =∞, ∀λ > 0.

Analogously, a probability distribution F (x) is light-tailed if and only if∫
R

eλxF (x)dx <∞, for some λ > 0.

Intuitively, a probability distribution is called heavy-tailed if it has a tail that’s heavier than an expo-
nential distribution [8]. In other words, a distribution that is heavy-tailed goes to zero slower than one
with exponential tails. On the contrary, if a function is light-tailed, it goes to zero quicker than one with
exponential tails.
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Figure 5: Sketch of a heavy-tailed (green) and a light-tailed (blue) function with respect to the exponential function
(red).

One way of measuring the tail heaviness is computing the tail index [18]. However, for a given impact
function, year, region, and pollutant we do not have enough data to obtain reliable estimates. Thus,
we proceed as in [23] exploiting a finite sample argument relative to the binomial random behaviour of
threshold exceedances.

Specifically, for a given region and pollutant we focus on the sequence of premature deaths, represented
by the random variable Xt , where t = 2020, ... , 2050 is the time index. Then, we consider a “high” threshold
h given by the 90th percentile obtained from all premature deaths values by region and pollutant available
with the NZ data. This threshold value has been chosen since it represents the mortality extremeness.
Now, we consider the exceeding probability

p = P(Xr > h), t = 2020, ... , 2050.

In this way, for each year we have n premature death values, obtained through different carbon budgets
and impact functions. For simplicity, it can be assumed that these values are observations generated from

the independent random variables X
(i)
t , i = 1, 2, · · · , n. Since 1(Xt > h) is a Bernoulli random variable,

then
n∑

i=1

1

(
X

(i)
t > h

)
∼ Bin(n, p),

i.e., the number of exceedances on n trials follows a binomial distribution with success probability p. This
probability provides an indication of the heaviness of the tail distribution. In particular, as p increases,
fatter is the distribution’s tail. Although with this procedure we can not obtain a precise indication of the
tail heaviness, we do identify the distribution with the heavier tail, which fits exactly our analysis aim.

All in all, we estimate the exceeding probability p by each sample group. Furthermore, applying the
exact Pearson-Klopper method we can also estimate the 95% confidence interval for p. This method allows
to obtain the binomial confidence interval as follows:

p ∈ (pL, pU), where

pL =
{

p | P[Bin(n; p) ≤ x ] >
α

2

}
and pU =

{
p | P[Bin(n; p) ≥ x ] >

α

2

}
,

where α is the significance level and 0 ≤ x ≤ n is the number of successes observed in the sample [1].

As will be commented soon, the estimated exceeding probability p is often higher with the EoC data
than with the NZ one. Therefore, we consider the binomial test with the following hypothesis:{

H0 : p(EoC) ≤ p(NZ),

H1 : p(EoC) > p(NZ),
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where p(EoC) is the exceeding probability of the EoC distribution and p(NZ) is the exceeding probability of
the NZ distribution. Once again, we look for empirical evidence to reject the null hypothesis H0.

The binomial test follows the same idea than the K-S test. However, now the p-value is simply computed
with the binomial probability function:

p =
k∑

i=0

P(X ≤ i) =
k∑

i=0

(
n

i

)
πi0(1− π0)n−i ,

where k is the number of successes in the sample of size n, corresponding to p(EoC) in our specific case,
and π0 is the threshold value of the hypothesis, p(NZ) in our procedure [47].

Finally, for the test to be coherent, we need the same amount of NZ and EoC data samples. However,
not all models from the ENGAGE database are run with both climate policies for each carbon budget.
Therefore, it is necessary to select only the ones that run both climate policies types before computing the
test.

4.4 Sensitivity analysis of the impact functions

For the premature death data, we also study the sensitivity of the impact functions parameters and the
counterfactual value percentile level, both independently and related.

For this purpose, we consider a graphical visualization of the medians and the confidence interval of
each parameter by impact function, carbon budget interval, year, and region. In this way, we can see the
uncertainty produced by each factor, as well as their interaction.

4.5 IAMs and impact functions uncertainty

Finally, to assess if either the IAMs or the impact functions produce more uncertainty to the final mortality
outcome, probability distributions of the estimated deaths with all impact functions for each IAM and
probability distributions of the estimated deaths with all IAMs for each impact functions will be compared.

4.6 Code availability

The reproducible source code used for the data analysis and the figures can be found at https://github.
com/klau506/SensitivityAirPollution.git.
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5. Results

First of all, we will analyse the overall estimated premature deaths. Due to the different sources of
uncertainty, we do not expect to have a unique mortality value for each region and scenario. Therefore,
after analysing the global mortality results, we will focus on the sources of uncertainty assessing which one
contributes the most to the final output.

Since the vast majority of graphs and test visualizations are done by region, among other factors, we
generally obtain ten figures per plot (one for region). They can be all found in appendices C, D, E, and F,
but in this section, to facilitate a dynamic discourse, only the whole globe graphs and comparison figures
are displayed. Nevertheless, the results are discussed considering them all.

Recall that climate policy refers to the choice of NZ or EoC long-term policy scenario.

All in all, to commence the analysis of the results, consider figure 6 (and appendix E.3), where the
medians of the avoided deaths among all impact functions are displayed by year, carbon budget and climate
policy, as well as the 95% CI. To compute them, the premature deaths estimated by the each climate policy
are subtracted to the ones estimated by the REF.

Figure 6: Overall (PM2.5+ O3) avoided deaths by region, carbon budget, and climate policy in 2030 and 2050
using the premature deaths median among the projections done by all impact functions. The colors correspond to
the median value, and there is also displayed the 95% CI. To compute the avoided deaths, the premature deaths
estimated by the each climate policy are subtracted to the ones estimated by the REF.

In general terms, the NZ data determines fewer premature deaths than the EoC data, which in turn
estimates fewer fatalities than the REF one. Furthermore, the number of estimated deaths increases directly
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with the carbon budget, while the number of avoided deaths has the inverse behavior: is higher for low
carbon budgets and lower for high carbon budgets. If the reader wants to directly compare the mortality
values, please look at E.3.

At the same time, it can be detected that R10CHINA+ is the region where more premature deaths can
be avoided, followed closely by R10INDIA+ and, with a whole order of magnitude behind, by R10REST-
ASIA. Recall that these three regions involve some of the most populated countries where millions of people
are exposed to very high pollution levels. These regions are also the home to many mid to low-income
countries.

These trends continue through time, even though slightly fewer avoided deaths are estimated in mid-
century, when in fact fewer premature deaths are forested since the policies should have had more effect
and the emissions should have been reduced in both climate policies due to the deployment of air pollution
controls.

Regarding the CI, there is a pretty huge range of values. In particular, in some cases, the 95th percentile
can even double the median deaths, such as in R10NORTH-AM in 2050 for low carbon budgets. In fact,
R10NORTH-AM, R10LATIN-AM, and R10EUROPE are the regions where the upper percentile presents
more variability. On the other hand, the 5th percentile is more stable and, at most, decreases a 66% of
the median mortality values, such as in R10LATIN-AM in 2050 for low and medium carbon budgets. The
regions more affected by the 5th percentile variability are R10LATIN-AM and R10REF-ECON.

With these results in mind, we can start the uncertainty analysis to find out the most important
variability sources. It will begin with the emissions’ uncertainty assessment. Then, the uncertainty on
concentrations will be discussed; and the study will finish with the mortality sensitivity and uncertainty
analyses.

5.1 Uncertainty and sensitivity of emissions

In order to study the contribution of the climate policy on the emissions’ uncertainty, we start by considering
the probability distribution and cumulative frequency graphs. They are done for five pollutants, although
for BC and OC the emissions are summed, aiming to understand the general behaviour of carbon emissions
since they are both precursors of primary PM2.5. In the same line, NOx and SO2 are chosen, because they
account for secondary PM2.5. Finally, also VOC emissions are shown, given that together with NOx are
two of the most important originators of O3.

The impact of the NZ relative to EoC climate policy is more explicit for low carbon budgets (< 1000),
i.e. more stringent climate policies (see figure 7 and appendix C.1). It can be seen that, in this case,
the distribution functions have some differences when considering each climate policy. In general, there
are lower emissions values in the NZ data than in the EoC data. This behaviour is supported by the
cumulative graphs, where the NZ line is almost always the dominant, i.e., it is above or overlapped with
the EoC cumulative function, indicating that less the NZ climate policy, lower the emissions of the main air
pollutants. This happens because in more stringent climate policies, i.e. with lower carbon budgets, there
is less flexibility in the choice of the emitting technologies. In these cases, the IAMs are constrained to make
faster technology shifts towards less carbon-intensive technologies, which in turn are also less polluting.
With the carbon budget increment, both climate policies become similar and the differences become less
visually perceived. Particularly, for medium carbon budgets ([1000, 2000]) we can still distinguish some
contrast in NOx and to some extent in SO2, whereas for very high carbon budgets (> 2000) the probability
distributions and the cumulative frequencies between both climate policies are indistinguishable. This
suggests that for high carbon budgets the climate policy has no importance.
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Figure 7: Probability density distribution (left) and cumulative frequency (right) of World’s emissions of BC and OC,
SO2, NOx , and VOC. Includes median line by climate policy.
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Analysing through time, all pollutants perform equally: the differences between climate policies tend to
reduce in 2050 for low carbon budgets and to increase for medium carbon budgets. This could be explained
by the fact that in low carbon budgets, the strategies of the NZ policies tend to anticipate action towards
less polluting fuels and technologies. Therefore, their differences are more appreciable in the early years. On
the other hand, for medium carbon budgets, since the climate policies are milder, the mitigation strategies
could be taken some years later. As a result, the strategies between the NZ and EoC climate policies start
to differ some years later, and so, the difference between them is more appreciable in the middle of the
century.

In addition, NOx and SO2 show in general more contrast between NZ and EoC than the other pollutants.
Recall that they are both precursors of the secondary PM2.5 and NOx is one of the main precursors of
secondary O3. Since O3 is only formed by secondary pollution, this last pollutant is expected to be more
responsive to the climate policy.

Looking close at the shapes of the probability distribution functions, we can detect some similarities
between regions. For instance, R10EUROPE 21 and R10NORTH-AM 25 present similar distributions, that
are also close to the ones of R10PAC-OECD 26 and R10LATIN-AM 23. We can distinguish as well, another
regions-group, established by R10INDIA+ 22, R10REST-ASIA 28, and R10REF-ECON 27.

Finally, observe that for Shipping and aviation 29 the cumulative frequency shows a pronounced step
at the 75% of the accumulated frequency. Along the regions, we can find also this cumulative frequency
behaviour only for BC and OC, but in a softer way and at higher levels. The other cumulative frequency
shapes are more or less linear.

To quantify the differences between NZ and EoC climate policy, the K-S two-samples test is applied
(see figure 8). Corroborating the analysis of the probability distribution and cumulative graphs, we see the
importance of the climate policy for low carbon budgets in both years and for all regions, while for high
carbon budgets all p-values are exactly 1, meaning that with 95% of assurance, the climate policy design
does not play any role. This statement is logical, since for low carbon budgets the final amount of CO2

is highly restricted, which means that global CO2 emissions must decrease sharply, leading to higher and
faster deployment of cleaner technology. However, for high carbon budgets, the restrictions are mild and
both climate policies can perform similarly, reducing slowly the amount of CO2 through the years.

Notice also the differences between pollutants. As expected by the cumulative and distribution graphs,
BC and OC together with VOC have higher p-values than NOx and SO2. Particularly, only for this last
pollutant, the null hypothesis can be rejected in some cases with a 95% of certainty. Specifically, for low
carbon budgets in 2030 in R10INDIA+, R10CHINA+, and R10PAC-OECD. This could be explained by the
fact that SO2 emissions are often related to coal use in mid to low-income countries; and when a climate
policy is applied, the first fuel that is often phased out, with a high agreement between models, is coal.
Moreover, the emissions of BC and OC seem to be much lower in the R10INDIA+ and R10CHINA+, the
most reducing regions, than everywhere else.

Furthermore, a tendency between regions throughout the years and the carbon budgets can be seen.
For instance, R10INDIA+ and R10CHINA+ have usually the lowest p-value, suggesting that they are the
most sensitive regions to the climate policy choice. This may be justified by the fact that air pollution
emissions in these regions are very high due to generally poor end-of-pipe (also called control measures)
technology deployment. Since the cost of IAMs expects reduction to occur where the marginal abatement
cost is lower, these regions often see high emissions reduction in optimal cost-effective models, leading to
lower emissions also in air pollution.

Finally, as mentioned before, for medium carbon budgets the climate policy has a higher effect in
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mid-century than in 2030, but only in NOx and SO2 emissions.

Figure 8: Climate policy dependence by region, year, and carbon budget. On the Y-axis there is the p-value of the
K-S two-samples test done separately by pollutant, region, year, and carbon budget. The dashed red line indicates
the significance level threshold.

5.2 Uncertainty and sensitivity of concentrations

After running FASST we obtain the PM2.5 and O3 concentrations. As done in the previous section, we start
by looking at the probability distribution and cumulative frequency graphs (see figure 9 and appendix D.1).

Once again, as seen in the previous section and found in previous studies [23, 59], more differences can
be seen for low carbon budgets, while for high carbon budgets the climate policies are indistinguishable. For
both pollutants and low carbon budgets, the NZ climate policy estimates always fewer concentrations, since
the distribution plots are more to the left than the EoC ones. It can be also seen through the cumulative
frequency graph, where the NZ climate policy line ends sooner.

It seems that for low carbon budgets the climate policies are more distinguishable in 2030, while for
medium carbon budgets it happens in 2050, in line with what has been found for emissions. Importantly,
the climate policy choice affects differently to both pollutants: although they perform equally along all
carbon budgets, the median of the distribution by climate policy is significantly more different regarding
O3; especially for low carbon budgets. As an example, see R10LATIN-AM 34 and R10INDIA+ 33 figures.

Finally, notice the range in the concentrations’ values. There are some regions, such as R10PAC-
OECD 37 or R10EUROPE 32, where the concentrations’ amount is almost constant; especially concerning
PM2.5. This is due to the fact that these plots account for the regional concentrations’ average for each
model, scenario, and climate policy. Therefore, the whole data is shrunk and, due to the presence of outliers
in some regions, the average is driven by producing similar concentration’s values for any given model and
scenario. Howbeit, more differences are expected to be seen in the mortality plots, since the premature
deaths are computed using the entire concentrations data and account for the population’s factor. In this
way, if a lot of people live in a certain place on the Earth, the concentration in that point will be considered,
whereas if no one lives in a singular place on the planet, the concentration there will not be used to estimate
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Figure 9: Probability density distribution (left) and cumulative frequency (right) of World’s concentrations of PM2.5

and O3 İncludes median line by climate policy. Data has been averaged by model and scenario.

premature deaths since no one is exposed to that pollution level.

Nevertheless, to really see the uncertainty produced by the models on the concentrations, the
probability distribution and the cumulative frequency graphs have been done, as well, using the complete
concentration’s data, that is, using each point of the whole globe grid, without computing the average. As
appreciated in the figures, (see appendix D.2) the concentration’s values use to vary between 0–50µg m−3

in the case of PM2.5, and between 20–60µg m−3 in the case of O3. Notice that some regions such
as R10EUROPE 42, R10PAC-OECD 47, and R10LATIN-AM 44 present out-of-range values, coinciding
with the regions in which its PM2.5 concentration’s values were almost constant in the previous plots.
Moreover, the World figure 50 does not almost change, since in both methods, to depict the whole globe
plots, the average values among all the regions are accounted.

As before, we use the K-S two-samples test to quantify the differences between NZ and EoC climate
policy on concentrations of both pollutants (see figure 10). Without surprise, we detect that the climate
policy choice is far more decisive for low carbon budgets than for high carbon budgets. That is, for stringent
carbon policies, a NZ emission pathway will generate more air pollution co-benefits. We also appreciate
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that the p-value is exactly 1 for all regions in the highest carbon budget interval. It can also be seen a
difference between years: while for low carbon budgets the differences between climate policies decrease
with time, for medium carbon budgets increases. However, this decrease is light compared with the increase
in low carbon budgets.

On the other hand, for low carbon budgets, the p-value is quite different between pollutants: the
climate policy has more impact on O3 than on PM2.5 concentrations. This result was expected since we
have already seen that NOx emissions are very sensitive to the climate policy factor and they are the main
precursors of O3. Hence, they drive the O3 concentrations to have the same behavior.

Moreover, the p-value among all regions has a shorter range for O3 than for PM2.5. In fact, all regions
except R10INDIA+ (whose value is almost at the threshold edge) are below the significance level threshold
for O3 in 2030, which means that with a 95% of confidence, we can assert that the climate policy really
makes a difference for this pollutant for low carbon budgets in 2030. Besides, PM2.5 concentrations are
slightly more dispersed among regions, but it is still clear that the impact of the climate policy is higher in
lower years.

As an exception, R10REF-ECON has the PM2.5 p-value lower than 0.05 in 2030 for low carbon budgets.
Since this region has also the O3 p-value below the significance level for the same carbon budget interval and
year, we can conclude that it is the most sensitive region to the climate policy choice in these circumstances
regarding the pollutant concentration.

Figure 10: Climate policy dependence by region, year, and carbon budget. On the Y-axis there is the p-value of the
K-S two-samples test done separately by pollutant, region, year, and carbon budget. The dashed red line indicates
the significance level threshold.

The uncertainty produced by the climate policy is the same one for emissions than for concentrations
(see figure 119 in appendix F): for low carbon budgets the NZ and EoC data are always more different.
However, for high carbon budgets both climate policies are equivalent. For medium carbon budgets the
differences between climate policies increase with the time, while for low carbon budgets they behave
inversely. Importantly, the p-value of PM2.5 and O3 precursors behaves similarly.
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5.3 Uncertainty and sensitivity of impact functions

Following the same structure as the previous sections and to see precisely the impact of the climate policy
per impact function, the probability distribution and cumulative frequency graphs are considered. Now,
however, we display also the 95% confidence interval of the impact functions’ parameters (see figures 11, 12
and appendix E.1). Remark that these figures are done considering the median of the counterfactual
exposure when there could be uncertainty on it. Once again, we can appreciate more the climate policy
impact on low carbon budgets for both pollutants. As already occurred in the emissions and concentrations
case, for these carbon budgets the influence of the climate policy diminishes with the years, while for medium
carbon budgets increases. For high carbon budgets, both climate policies are indistinguishable. In general,
both pollutants show the same premature mortality tendencies per climate policy. However, notice that
the number of fatalities due to O3 is approximately three times the one owing to PM2.5.

First of all, notice BURNETT2018 exhibits the same probability distribution and cumulative frequency
functions’ shape for both groups, and as expected, the group with the Chinese men cohort estimates more
mortalities than the group without them. This is due to the fact that this cohort accounts with extreme
PM2.5 exposure values, and consequently, more deaths are estimated. In the same line, GBD2016 has the
same behaviour among its three groups, whose premature death estimated values have the inverse order of
their names: LOW, MEDIUM, and HIGH. This is because GBD2016-LOW has the lowest counterfactual
value, meaning that health impacts start to be felt by humans at lower concentrations; therefore, more
people will suffer from exposure to PM2.5 than in GBD2016-HIGH, where the counterfactual value is higher.
All values are detailed in Table 3.

Depending on the region, we can find different trends. Nevertheless, the OSTRO2004 impact func-
tion estimates always the highest or the second-highest number of premature deaths. For instance, in
R10AFRICA 51 and R10EUROPE 53. In some cases, it is KREWSKI2009, such as in R10INDIA+ 54
and R10MIDDLE-EAST 56, while in R10NORTH-AM 57, R10LATIN-AM 55, and R10REF-ECON 59 is
BURNETT2018-WITH that shows the largest numbers.

The probability distribution shape depends also on the region. On the one hand, some regions show the
same trend throughout both years, all impact functions, and all carbon budgets; but some others present
similar distributions in 2030 which then flatters in 2050, notably for medium and high carbon budgets.
As an example, see the graphs of R10AFRICA 51 and R10LATIN-AM 55 for the first behaviour, and
R10EUROPE 53 and R10INDIA+ 54 for the second one. However, each region has particularities.

Notice that the behavior of mortalities per region is different from the one previously observed in
emissions and concentrations, suggesting that the impact functions play a very important role.

In the case of O3, all regions except for R10CHINA+ 62, R10INDIA+ 64 and R10REST-ASIA 70
present the same distribution probability trend: a pronounced peak for both impact functions for all years
and carbon budgets, that is clearly flattered for low carbon budgets in 2030. Whereas in the case of the
three mentioned regions, the distribution is slightly more homogeneous along with the estimated premature
deaths. This could be due to the very non-linear behaviour of O3 which is a secondary photochemical
pollutant.

It might seem that the differences between impact functions are larger in O3 than in PM2.5. However,
the scales of both graphs are different, and in fact, among all the PM2.5 impact functions, the maximum
difference between the medians of premature deaths per climate policy is approximately 1× 106.

Regarding the cumulative plot of PM2.5, we can appreciate that in some regions such as R10CHINA+ 52
and R10REST-ASIA 60, the cumulative frequency function increases linearly with the accumulated pre-
mature deaths. On the other hand, regions such as R10NORTH-AM 57 and R10EUROPE 53 present a
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Figure 11: Probability density distribution (left) and cumulative frequency (right) of the whole globe for premature
deaths due to PM2.5. Includes line of the median by climate policy as well as 95% confidence interval of the impact
function’s parameter percentile. Impact functions ordered by publication’s year.
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noticeable step on the 50-60% of the accumulated frequencies, while R10LATIN-AM 55 and R10MIDDLE-
EAST 56 do it on the 75%.

Figure 12: Probability density distribution (left) and cumulative frequency (right) of the whole globe for premature
deaths due to O3. Includes line of the median by climate policy as well as 95% confidence interval. Impact functions
ordered by publication’s year.

On the other hand, the cumulative frequency plots concerning O3 are always linear. Notice that the
5th percentile line is almost straight in all regions, while the 95th percentile cumulative frequency function
has a softer slope, indicating that for the former percentile less mortality uncertainty is expected than for
the last one.

Studying the uncertainty given by the parameters of the impact functions, we can observe that, in
the case of PM2.5, OSTRO2004 has a wider range in all regions. However, in some of them, such as
R10INDIA+ 54, R10LATIN-AM 55, and R10REST-ASIA 60, is homogeneous and in some others, for in-
stance in R10EUROPE 53 and R10PAC-OECD 58, is especially pronounced for the 95th percentile, which
can even increase 45% the value of the premature death. On the other hand, GBD2016 has the lowest uncer-
tainty, with usually a difference of 10% on the expected mortality. Notice, that BURNETT2018-WITHOUT
has a larger uncertainty than BURNETT2018-WITH. In fact, either BURNETT2018-WITHOUT or
KREWSKI2009 present the second larger uncertainty for PM2.5 impact functions.

In the case of O3, GBD2015 has clearly the highest uncertainty, with approximately a difference of
60% with respect to the median. Besides, notice that for both pollutants, we can detect fewer differences
among the climate policy in the cumulative frequency graphs when using the 5th percentile of the impact
functions parameters’ values.

Now is the moment to quantify the climate policy differences through the K-S two-samples test (see
figure 13). The first point that should be seen is the similarities of p-values for each impact function among
all regions. This fact indicates that, although the number of estimated premature deaths differs from one
impact function to another one, the impact of the climate policy remains. Particularly, it is more significant
for low carbon budgets and it has no effect for high carbon budgets, with a 95% of assurance. As already
seen in figures 8 and 10, the climate policy role diminishes with time for low carbon budgets and increases
for medium carbon budgets.

Notice the difference between both pollutants. On the one hand, O3 is far more sensitive to the climate
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policy choice since its p-values are lower than the PM2.5 ones. Especially, in 2030 we can assert that the
climate policy choice is crucial on the mortalities due to O3. Also in this case, observe that all regions
behave equally. On the other hand, in 2050 the impact of the climate policy on O3 premature deaths
presents more differences between the regions, although R10MIDDLE-EAST is still the region where it
does affect less.

In the case of PM2.5, we can appreciate that the p-values range is larger, and so, each region will be
affected differently by the climate policy design. For instance, R10INDIA+ is the most responsive in 2030,
while in 2050 is R10AFRICA.

It is worth mentioning that all these trends have already been seen in the concentrations figure 10,
where O3 had lower p-values. However, now we can precise that R10CHINA+, R10INDIA+, R10MIDDLE-
EAST, R10AFRICA, and R10EUROPE are the regions more sensitive to the climate policy choice; meaning
that, in these regions, more deaths can be avoided using the NZ climate policy design instead of the EoC one.

Figure 13: Climate policy dependence by region, year, and carbon budget. On the Y-axis there is the p-value of the
K-S two-samples test done separately by pollutant, region, year, and carbon budget. The dashed red line indicates
the significance level threshold.

To comprehend better the sensitivity of each impact function and the differences along with their
confidence intervals, we consider another figure, where the counterfactual level is still fixed to its median
value when uncertainty on it exists (see fig. 14 and appendix E.4). Undeniably, the climate policy is far
more distinguishable for low carbon budgets, especially in 2030. Notice, as well, that for medium carbon
budgets the median per climate policy is slightly more different in 2050 than in the previous years.

Regarding the differences between pollutants, notice that O3 has almost no uncertainty range related
to the parameter percentile, while for PM2.5 there is. Remark that there is more uncertainty between the
percentile for high carbon budgets and less uncertainty for low carbon budgets. This means that as higher
the stringency of the carbon policy is, lower the risk of outliers in terms of air pollution mortality will be.

We can also distinguish that OSTRO2004 presents the higher uncertainty in all regions, but in
R10CHINA+ 84, R10INDIA+ 86, R10MIDDLE-EAST 88, and R10REST-ASIA 92 the impact function
KREWSKI2009 presents a higher uncertainty range within each percentile, that is, once the percentile is
fixed, the error bar is the largest. Moreover, for these four regions, the uncertainty range within each per-
centile in PM2.5 is much lower than in the other regions. On the contrary, they present a larger uncertainty
range per percentile regarding O3.
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Exactly these four regions behave equally with respect to GBD2016, presenting a slightly more un-
certainty range for each percentile than the other regions. Furthermore, this impact function shows the
smallest uncertainty to the parameter percentile, which was expected owing to the steady behavior already
seen in the cumulative frequency and probability distribution graphs.

Studying more in deep the role of the climate policy linked to the parameter percentile effect, we can
detect that the general trend of the climate policy influence remains equal through years and carbon budget
intervals, estimating less mortality in the NZ case. However, the climate policy’s importance increases when
dealing with the 95th parameter percentile, and on the contrary, its effect decreases when considering the
5th parameter percentile. Moreover, the uncertainty once the percentile is fixed, is clearly lower when
dealing with the 5th percentile. Therefore, the combination of NZ climate policy together with the 5th
impact function’s parameter percentile reduce extreme mortality outcomes and this is robust across most
impact functions.

Finally, we can distinguish two different ways of uncertainty with respect to each impact function’s
parameter percentile. On the one hand, there are some regions where the effect is almost homogeneous,
meaning that for each percentile the median drifts the same amount and the uncertainty range within
each percentile remains almost equal. On the other hand, in some other regions, the variations in the
mortality outcomes are unequal and depend on the impact function’s parameters percentile. In particular,
they present larger drifts for the median in the 95th percentile, as well as more uncertainty range
within the percentile in this case. Precisely, this happens in R10EUROPE 85, R10NORTH-AM 89, and
R10PAC-OECD 90. Notice that these are the regions accounting with more high-income countries and
lower pollutants concentrations. All in all, it should be mentioned that the uncertainty range for percentile
increases somehow with the percentile itself.

Recall that two impact functions have as counterfactual value the minimum plausible exposure. How-
ever, for the other impact functions, the counterfactual is an exogenous parameter. Consequently, a
sensitivity analysis has been performed to detect the influence of this choice and to analyse if there is any
change in the climate policy influence on it. To do so, the confidence interval of the parameters of the
impact functions is set to the median.

In both O3 impact functions it has been considered 33.3 ppb as the 5th counterfactual percentile, 37.6
ppb as the median, that since we are accounting with a uniform distribution it coincides with the mean, and
41.9 ppb for the 95th percentile. In the case of PM2.5 impact functions, except for GBD2016, the considered
values are 2.4 µg m−3 for the 5th percentile, 4.15 µg m−3 for the median (that again coincides with the
mean), and 5.9 µg m−3 for the 95th percentile. In the particular case of GBD2016, which accounts for three
groups divided precisely by counterfactual value, we took directly the values of each group: 3.00 µg m−3

CI 95%(2.92,3.05) for the LOW, 4.18 µg m−3 CI 95% (4.17,4.21) for the MEDIUM, and 5.29 µg m−3 CI
95%(5.27,5.31) for the HIGH group.

Analysing the graph (see figure 15 and appendix E.5), it is very clear that for GBD2016 the counter-
factual percentile has no effect. This was an expected result since each counterfactual interval is so tiny
that can not divert the results. Once again, OSTRO2004 is the most responsive impact function to the
parameters’ choice, followed by KREWSKI2009 which has sometimes the largest uncertainty range within
each percentile. Precisely, this occurs in the same regions that already happened for the impact functions’
parameter percentile uncertainty. In the case of PM2.5 (excluding GBD2016 impact function), for the high-
income regions mentioned before, notice the difference in the uncertainty range: for the 5th percentile,
we have more premature deaths uncertainty than for the 95th percentile. Moreover, for these regions the
climate policy has more impact when considering the 5th percentile, that is, the effects of the climate
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Figure 14: Influence of the impact function percentile on the estimation of premature deaths, regarding impact
function, carbon budget, year, and climate policy in the whole globe. Each error bars report the uncertainty range
(5-95%) across parameters’ sets. The middle points represent the median of the impact function RR median. Colours
represent the impact functions’ parameter percentile. Impact functions are ranked according to their publication date.
Parameters of the impact functions are reported in Table 3.
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policy are more significant when the health impacts start to be felt by humans at lower concentrations,
therefore more people are suffering from exposure. In the other regions, the climate policy is not affected
by the uncertainty on the counterfactual level.

Besides, in the O3 case, there are no differences in the climate policy on the counterfactual levels’
percentile; but, it can be seen the reduction of the uncertainty range per percentile while increasing the
carbon budget interval.

For the rest of the regions, we can see that the medians shift the same amount for both counterfactual
percentiles, in conjunction with the maintenance of the uncertainty range within percentiles. In fact, the
overall changes produced by the counterfactual uncertainty are far more uniform across both percentiles in
all regions than the differences owing to the impact function’s parameter percentiles. R10NORTH-AM 99
is the region which still presents more differences.

In this case, any impact function has a null uncertainty range for any percentile, i.e., once the coun-
terfactual percentile is fixed, the 95% CI of mortalities is never negligible. However, R10CHINA+ 94,
R10INDIA+ 96, R10MIDDLE-EAST 98, and R10REST-ASIA 102 show smaller uncertainty range per per-
centile in GBD2016 and higher uncertainty range for both O3 impact functions than the other regions.
Notice that they coincide with the four regions that presented no uncertainty range within percentiles in
GBD2016 on the impact function’s parameter percentile analysis.

As already observed, for high carbon budgets the climate policy does not play any role. In 2030, the
climate policy is still more significant for low carbon budgets, and for middle carbon budgets, it is more
important in 2050. Notice also that in the 5th percentile, the climate policy impact is slightly higher than
in the 95th percentile.

To conclude the sensitivity analysis, we analyse the effect of both the impact function’s parameter
percentile and the counterfactual percentile altogether (see 16 and appendix E.6). It is worth mentioning
the inverse behaviour of both uncertainties. On the one hand, when the counterfactual percentile increases,
fewer premature deaths are estimated. On the other hand, when the parameter percentile increases, more
fatalities are foreseen.

As an example, consider the GBD2016 impact function. We have already seen the uncertainty produced
by the counterfactual value, which is almost null, and the uncertainty produced by the impact function’s
parameters, which is low but distinguishable. In this new summarizing figure 16 we can appreciate exactly
this performance: there exists no difference in the mortality values if the impact function’s parameter
percentile is fixed, but it does exist when the counterfactual percentile is fixed.

In general, the counterfactual percentile has less effect on the 5th parameter percentile than on the
95th parameter percentile. For all regions is OSTRO2004 the impact function that commonly has a
larger uncertainty among both percentiles, followed closely by KREWSKI2009, which can even have more
uncertainty range within percentiles.

Analysing the relation between both uncertainties, we can determine that there are two different trends
throughout the regions. On the one hand, in R10EUROPE, R10NORTH-AM, and R10PAC-OECD (the
already identified as regions with the vast majority of high-income countries) together with R10LATIN-AM
and R10REF-ECON, the parameter percentile produces a larger uncertainty than the counterfactual value
percentile. In the other regions, the behaviour is the inverse.

At this point, it is the moment to study the tail heaviness between both NZ and EoC climate policy. To
do so, we fix the impact function’s parameters and counterfactual percentile to the median. Importantly
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Figure 15: Influence of the counterfactual percentile on the estimation of premature deaths, regarding impact function,
carbon budget, year, and climate policy in the whole globe. Each error bars report the uncertainty range (5-95%)
across parameters’ sets. The middle points represent the median of the impact function RR median. Colours
represent the impact functions’ parameter percentile. Impact functions are ranked according to their publication
date. Parameters of the impact functions are reported in Table 3.
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Figure 16: Influence of the relation between the impact function percentile and the counterfactual percentile on the
estimation of premature deaths, regarding impact function, carbon budget, year, and climate policy in the whole
globe. Each error bars report the uncertainty range (5-95%) across parameters’ sets. The middle points represent
the median of the impact function RR median. Colours represent the impact functions’ parameter percentile. Impact
functions are ranked according to their publication date. Parameters of the impact functions are reported in Table 3.
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(see figure 17 and appendix E.2), in 2050 the heavy tail probability along all regions and impact functions
is lower than in the previous years. Notice also the increasing tendency of the exceeding probability along
with the carbon budgets.

Regarding the difference between NZ and EoC climate policy, it can be seen that it is small. Both
exceeding probabilities are almost equal in all cases, and when not, the EoC climate policy is slightly higher
nearly everywhere. This suggests that the impact of the tail is higher in the EoC climate policy; which is
in accordance with the recently commented effect of the NZ climate policy behavior, which reduces the
probability of long tails.

Analysing in-depth the differences between impact functions, notice that some of them do not present
heavy tails probability in any region or carbon budget. These are GBD2016-HIGH, GBD2016-MEDIUM,
and BURNETT2014 for PM2.5, and JERRET2009 for O3. In all these cases, the confidence interval is
below the 25%, but it coincides between climate policies. Therefore, it can be stated that these impact
functions are robust for both NZ and EoC climate policies.

Besides, BURNETT2018-WITH tends to have a longer tail than BURNETT2018-WITHOUT, which is
in accordance with their used data. Recall that BURNETT2018-WITH accounts with an extreme Chinese
men cohort; thus, the quantity of outliers is expected to be higher. It is interesting to see that along all
regions, BURNETT2018-WITH exhibits the longer tail, sometimes tied with other impact functions, but
in R10AFRICA 71 it has no heavy tail at all.

On the other hand, R10EUROPE 73, R10NORTH-AM 77, and R10PAC-OCED 78, again the three
regions home to the major part of high-income regions, have shorter tails. Especially low are the probabilities
of exceedance in OSTRO2004, KREWSKI2009, and GBD2016-LOW. For the other regions, OSTRO2004
and KREWSKI2009 tend to perform equally, sometimes having one longer tail than the other, but no
pattern can be distinguished.

Finally, the long tail in GBD2015 clearly increases with the carbon budget group and is almost identical
throughout all regions.

Last but not least, we are ready to assert if either the impact functions or the IAMs produce more
uncertainty. With this goal in mind, the distribution probabilities accounting for all impact functions
for each IAM are compared with the distribution probabilities of all IAMs for each impact function (see
figure 18, and appendix E.7). Since we already know that almost no difference is expected for medium and
high carbon budgets, only the low carbon budgets are displayed in the figure.

It can be seen that the probability distributions for each IAM have a prominent peak, meaning that for
any impact function used, the premature deaths are highly expected in a short range of values. Notice that
the peak is higher in mid-century, implying that the most probable range of mortality values shrinks for later
years. However, notice that the mortality values themselves slightly decrease across years, in accordance
with figure 6.

This same trend can be appreciated when considering the probability distribution among all the IAMs
considering all impact functions. Therefore, the accuracy of the method to estimate the concentrations
improves for further years.

Besides, the probability distribution for the different impact functions is generally more uniform and
flatter than for the IAMs, resulting in more uncertainty on the mortality in the former case. Moreover,
whereas the peak of the probability distribution by each IAMs lays almost on the same value for all of them,
the most probable mortality values by the different impact functions change considerably between them.

All in all, the impact functions produce more mortality uncertainty than the IAMs. Moreover, this
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Figure 17: Exceedance probability for NZ and EoC climate policy in the whole globe with 95% CI..
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is not only true for the final premature death values, but it also holds for the uncertainty linked to the
climate policy, which is higher for impact functions than for IAMs. As a consequence, to have better
health co-benefits estimations, regardless of the scenario and climate policy, the impact functions should
be improved further.

As a note, observe that these last figures verify that OSTRO2004 is the PM2.5 impact function with
more uncertainty associated, with extreme cases such as R10AFRICA 113; whereas GBD2015 is the O3

impact function with more uncertainty related, especially in R10LATIN-AM 115b.

Figure 18: PM2.5 probability distribution functions split by IAMs (left) and impact function (right), by year, carbon
budget, and climate policy of the whole globe.
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6. Conclusion

After this detailed analysis, it is possible to extract some general results regarding the NZ and EoC climate
policy importance on different pollutants, carbon budgets, years, and regions; as well as about the uncer-
tainty given by the impact functions parameters and counterfactual value, linked as well to the climate
policy choice. Recall that while NZ solely relies on the resulting budget in 2100, the EoC climate policy
constrains world emissions to stay at net-zero not allowing the world to go net negative at any moment.

On the one hand, we can conclude that the climate policy choice have more impact in low carbon
budgets, than in medium carbon budgets, and almost no impact in high carbon budgets. This means that,
when the aim is to limit the temperature increase to 1.5◦C, the strategies followed by both climate policies
are definitely independent, while when accounting for more than 2◦C increase, both climate policies perform
equally. Therefore, the more stringent the scenario is, the more sensitive the health impacts to the climate
policy are. Moreover, it has been noticed that for higher carbon budgets more mortality is expected. We
find that it is the combination of both NZ climate policy and stringent scenario that leads to the maximum
air pollution health co-benefits.

It has been seen that the impact of the climate policy is larger for O3. Therefore, when applying the
NZ climate policy, the levels of PM2.5 are not expected to reduce as drastically as the concentrations of O3.
This is due to the fact that the precursors of secondary pollution are the most affected by the climate policy
compared with the emissions of primary pollution. Because O3 is only constituted by secondary pollution,
whereas PM2.5 is composed both of a primary and a secondary part, the former is more affected. Besides,
the climate policy choice is more important in early years for low carbon budgets, and in mid-century
for medium carbon budgets. As already mentioned, this is plausible since with low carbon budgets the
strategies of the NZ policies are prone to apply early measures to move towards less polluting fuels and
technologies. Consequently, the differences between NZ and EoC are more appreciable in the early years.
On the other hand, for medium carbon budgets, the strategies between the climate policies start to differ
some years later, and so, the difference between them is more appreciable in the middle of the century.

Nevertheless, the impact of the climate policy does not only influence the emissions data and the
estimated concentrations, as already mentioned, but it also affects the health of the population. But in
this last point, the impact functions are required and they certainly add uncertainty to the measurements.
All impact functions are based on parameters, that are estimated differently throughout the literature and
the different kinds of impact functions. Moreover, some of them have also an exogenous counterfactual
value. It has been detected that the climate policy has rather more impact when using the 95th percentile
of the impact function’s parameters. Therefore, under these circumstances, the premature deaths estimated
with NZ and EoC data differ more.

Not all impact functions have the same uncertainties. In fact, the oldest impact functions for PM2.5

have wider uncertainty ranges (OSTRO2004 and KREWSKI2009), as well as the impact functions whose
parameters have been estimated using more heterogeneous cohorts (BURNETT2018-WITH). On the other
hand, for O3, JERRET2009 has less uncertainty than GBD2015.

Precisely the impact functions with more related uncertainty are the ones with larger tails; thus, with
more probability of nasty mortality outcomes. The probability of having outliers is slightly higher in the
EoC data, but the difference is almost negligible. However, the tails increase with the carbon budget
interval, which suggests that there is more variability in high carbon budgets. This is reasonable, since
when the temperature rise is less constrained, the ways of achieving the targets enhance and the efforts
required diminish. Consequently, both climate policies apply mild mitigation measures in tardy years and
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less premature deaths can be avoided.

Two groups can be established by analysing the uncertainty of the impact functions throughout the ten
regions. For R10EUROPE, R10NORTH-AM, R10PAC-OECD, R10LATIN-AM, and R10MIDDLE-EAST the
parameters of the impact functions add more uncertainty than the counterfactual value. On the other hand,
for the other regions (R10CHINA+, R10INDIA+, R10AFRICA, R10REST-ASIA, and R10REF-ECON), it
is the counterfactual value that introduces more uncertainty to the premature deaths. Notice the difference
of income per capita on both groups: while the former is composed mainly of mid to high-income countries,
the latter accounts generally for mid to low-income countries.

According to the willingness to improve the health predictions, it can be stated that more efforts should
be made on the refinement of the impact functions rather than in the IAMs, given that the first ones are
responsible of the largest uncertainty.

On the whole, the NZ climate policy always estimates less than or the same amount of premature
deaths than the EoC climate policy, meaning that it has significantly more co-benefits for air pollution.
The climate policy choice is decisive when cutting the temperature rise to 1.5◦C, while it has no effect
when the temperature rise is higher than 2◦C, implying that the more stringent the policy is, more crucial
is the choice between climate policies. Moreover, the NZ climate policy diminishes the probability of
extreme mortality outcomes, resulting in more robust predictions. For O3, the climate policy has more
impact than for PM2.5, and the uncertainty of the impact functions for this pollutant barely changes the
climate policy significance. Besides, the counterfactual value uncertainty is higher in Asia and Africa,
while the impact function’s parameter uncertainty is more notorious in Europe, America and Oceania,
suggesting that R10CHINA+, R10INDIA+, R10AFRICA, R10REST-ASIA, and R10REF-ECON are the
regions more at risk and that would benefit the most of the NZ climate policy.

Some further work could assess also the uncertainty given by the method used to estimate concentra-
tions. For instance, using a source-receptor model, as FASST [21], as well as an empirical based model,
such as CLAQC-elastic net and the CLAQC-xgboost [58]. In this way, the overall uncertainty between the
NZ and EoC climate policies could be analysed.

Furthermore, this study could be extended to welfare damages, estimating the economical implications
of each climate policy and the related uncertainty.
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grador, Gavin Shaddick, H Ross Anderson, Theo
Vos, Mohammad H Forouzanfar, Richard T Bur-
nett, and Aaron Cohen. Ambient air pollution
exposure estimation for the global burden of dis-
ease 2013. Environmental science and technol-
ogy, 50:79–88, 01 2016.

8. M. Bryson. Heavy Tailed Distributions: Proper-
ties and Tests, volume 16(1). 02 1974.

43



9. Xiang Bu, Zhonglei Xie, Jing Liu, Linyan Wei,
Xiqiang Wang, Mingwei Chen, and Hui Ren.
Global pm2.5-attributable health burden from
1990 to 2017: Estimates from the global burden
of disease study 2017. Environmental Research,
197:111123, 2021.

10. Richard Burnett, Hong Chen, Mieczys law
Szyszkowicz, Neal Fann, Bryan Hubbell,
C. Pope, Joshua Apte, Michael Brauer, Aaron
Cohen, Scott Weichenthal, Jay Coggins, Qian
Di, Bert Brunekreef, Joseph Frostad, Stephen
Lim, Haidong Kan, Katherine Walker, George
Thurston, Richard Hayes, and Joseph Spadaro.
Global estimates of mortality associated with
long-term exposure to outdoor fine particulate
matter. Proceedings of the National Academy
of Sciences, 115:201803222, 09 2018.

11. Richard Burnett and Aaron Cohen. Relative
risk functions for estimating excess mortality at-
tributable to outdoor pm2.5 air pollution: Evo-
lution and state-of-the-art. Atmosphere, 11:589,
06 2020.

12. Richard Burnett, C. Pope, Majid Ezzati, Casey
Olives, Stephen Lim, Sumi Mehta, Hwashin
Shin, Gitanjali Singh, Bryan Hubbell, Michael
Brauer, H Anderson, Kirk Smith, John Balmes,
Nigel Bruce, Haidong Kan, Francine Laden, An-
nette Prüss-Ustün, Michelle Turner, Susan Gap-
stur, and Aaron Cohen. An integrated risk func-
tion for estimating the global burden of disease
attributable to ambient fine particulate matter
exposure. Environmental health perspectives,
122, 02 2014.

13. Pantelis Capros, Leonidas Paroussos, Panagi-
otis Fragkos, Stella Tsani, Baptiste Boitier,
Fabian Wagner, Sebastian Busch, Gustav Resch,
Markus Blesl, and Johannes Bollen. Description
of models and scenarios used to assess european
decarbonisation pathways. Energy Strategy Re-
views, 2, 02 2014.

14. Aaron Cohen, H Anderson, Bart Ostro, Ki-
ran Pandey, Michal Krzyzanowski, Nino Künzli,
Kersten Gutschmidt, C. Pope, Isabelle Romieu,

Jonathan Samet, and Kirk Smith. The global
burden of disease due to outdoor air pollution.
Journal of toxicology and environmental health.
Part A, 68:1301–7, 07 2005.

15. Aaron Cohen, Michael Brauer, Richard Bur-
nett, H Anderson, Joseph Frostad, Kara Es-
tep, Kalpana Balakrishnan, Bert Brunekreef,
Lalit Dandona, Rakhi Dandona, Valery Feigin,
Greg Freedman, Bryan Hubbell, Amelia Jobling,
Haidong Kan, Luke Knibbs, Yang Liu, Ran-
dall Martin, Lidia Morawska, and Mohammad
Forouzanfar. Estimates and 25-year trends of the
global burden of disease attributable to ambient
air pollution: An analysis of data from the global
burden of diseases study 2015. The Lancet, 389,
04 2017.

16. Aaron J Cohen, H Ross Anderson, Bart Os-
tro, K Dev Pandey, Michal Krzyzanowski, Nino
Künzli, Kersten Gutschmidt, C Arden Pope III,
Isabelle Romieu, Jonathan M Samet, et al. Ur-
ban air pollution. Comparative quantification of
health risks: global and regional burden of dis-
ease attributable to selected major risk factors,
2:1353–1433, 2004.

17. GBD 2019 Risk Factors Collaborators. Global
burden of 87 risk factors in 204 countries and
territories, 1990-2019: a systematic analysis for
the global burden of disease study 2019. Lancet,
396(10258)(17):1223–1249, Oct 2020.

18. Laurens de Haan and Ana Ferreira. Extreme
Value Theory: An Introduction. Springer series
in Operations reasarch and Financial Engineer-
ing. New York, EEUU, 2006.

19. Pedro Delicado, Guadalupe Gómez, and Jan
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Bodirsky, Jérôme Hilaire, David Klein, Ioanna
Mouratiadou, Isabelle Weindl, Christoph
Bertram, Jan-Philipp Dietrich, Gunnar Luderer,
Michaja Pehl, Robert Pietzcker, Franziska Pio-
ntek, Hermann Lotze-Campen, Anne Biewald,
Markus Bonsch, Anastasis Giannousakis, Ulrich
Kreidenweis, Christoph Müller, Susanne Rolin-
ski, Anselm Schultes, Jana Schwanitz, Miodrag
Stevanovic, Katherine Calvin, Johannes Em-
merling, Shinichiro Fujimori, and Ottmar
Edenhofer. Fossil-fueled development (ssp5):
An energy and resource intensive scenario for
the 21st century. Global Environmental Change,
42:297–315, 2017.

38. Philip J Landrigan, Richard Fuller, Nereus J R
Acosta, Olusoji Adeyi, Robert Arnold, Ni-
ladri (Nil) Basu, Abdoulaye Bibi Baldé, Roberto
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Ünlü, Bas van Ruijven, Detlef van Vuuren,
Behnam Zakeri, Valentina Bosetti, Anique-
Marie Cabardos, Andre Deppermann, Harmen-
Sytze de Boer, Johannes Emmerling, Stefan
Frank, Shinichiro Fujimori, Mathijs Harmsen,
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A. Relative Risk parameters

Table 3: Relative Risk parameters with 95% CI

Ref.
Publication’s

year

Pollutant Method Levels TMREL Parmeter ALRI LC IHD STROKE COPD CP

BURNETT2018

[10]

2018 PM2.5

GEMM

6

WITH 2.40 µg m−3

θ
0.2942

(0.23273,0.35567)

0.2969

(0.27903,0.31477)

0.2720

(0.19503,0.34897)

0.2510

(0.18338,0.31862)

α 6.2 1.9 6.2 6.5

µ 9.3 12.0 16.7 2.5

ν 29.8 40.2 23.7 32.0

WITHOUT 2.40 µg m−3

θ
0.2626

(0.18411,0.34109)

0.2543

(0.20841,0.30019)

0.1873

(0.10299,0.27161)

0.2095

(0.14225,0.27675)

α 6.7 4.9 6.2 7.2

µ 11.0 -21.1 14.5 2.0

ν 16.5 17.7 14.4 14.7

α
73.1

(65.5,80.3)

6.40

(6.04,6.72)

2.73

(2.62,2.84)

16.3

(14.6,18.0)

HIGH
5.29 µg m−3

(5.27,5.31)

β
0.000195

(0.000174,0.000215)

0.0123

(0.0117,0.0131)

0.0141

(0.0135,0.0147)

0.0023

(0.00204,0.00264)

δ
0.773

(0.766,0.779)

0.334

(0.331,0.337)

0.432

(0.427,0.437)

0.579

(0.564,0.589)

α
71.5

(64.7,76.1)

6.16

(5.91,6.50)

2..72

(2.61,2.83)

15.4

(14.0,18.1)

GBD2016

[30]

2016 PM2.5

IER

4

MEDIUM
4.18 µg m−3

(4.17,4.21)

β
0.000213

(0.000196 0.000239)

0.0131

(0.0124,0.0138)

0.0141

(0.0137,0.0147)

0.00228

(0.00206,0.00250)

δ
0.773

(0.766,0.782)

0.332

(0.329,0.335)

0.429

(0.425,0.435)

0.579

(0.568,0.589)

α
70.4

(63.4,75.6)

6.61

(6.31,6.97)

2.86

(2.75,2.99)

14.8

(13.6,16.1)

LOW
3.00 µg m−3

(2.92,3.05)

β
0.000205

(0.000185,0.000225)

0.0123

(0.0116,0.0129)

0.0142

(0.0136,0.0147)

0.00229

(0.00210,0.00254)

δ
0.777

(0.767,0.786)

0.333

(0.330,0.335)

0.425

(0.419,0.430)

0.575

(0.560 0.591)

ALRI: 5.553867502

(3.175877368,10.65856447)

LC: 5.312838615

(5.263402167,5.625401066,

IHD: 5.89785796

(4.9,6.917645688)

STROKE: 7.261807718

(6.53033859,8.921692107)

COPD: 5.787549667

(4.999997811,6.759656531)

α
1.97378648

(1.436904185,2..935465288)

15.67636977

(12.30776596,47.47159043)

1.190330928

(0.947050981,1.228481327)

1.16632796

(1.410432389,1.780359822)

14.10220781

(7.440843463,14.99199458)

BURNETT2014

[12]

2014 PM2.5

IER

4

β
0.002847675

(0.001440037,1.373370217)

0.001073919

(0.000864294,0.000131904)

0.0750978

(0.025256397,0.05795739)

0.011865371

(0.016309476,0.018028539)

0.001206578

(0.002112071,0.000493862)

δ
1.209294599

(0.879980508,1.373370217)

0.765861621

(0.659865243,1.020917868)

0.374809182

(0.4164409,0.934215573)

1.202946339

(0.477576651,1.210566232)

0.680348423

(0.648260937,0.851276683)

KREWSKI2009

[36]

2009 PM2.5

LL

3

U(2.4,5.9) µg m−3 β
0.0104360

(0.00392207 0.0165514)

0.010436
0.0139762

(0.01043600 0.0182322)

0.0086178

(0.00582689 0.0113329)

OSTRO2004

[14]

2004 PM2.5

Rational

7

U(2.4,5.9) µg m−3 β
0.23218

(0.08563,0.37873)

0.15515

(0.0562,0.2541)

GBD2015

[55]

2015 O3

LL

8

U(33.3,41.9) ppb β
0.0083382

(0.0030459,0.013926)

JERRET2009

[34]

2009 O3

LL

8

U(33.3,41.9) ppb β
0.0039221

(0.00099503,0.0064851)
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B. Abbreviations

List of abbreviations used in the project:

� ALRI: Acute Lower Respiratory Illness

� CEV: Cerebrovascular Disease

� CI: Confidence Interval

� COPD: Chronic Obstructive Pulmonary Disease

� CP: Cardiopulmonary Disease

� DALY: Disability-Adjusted Life Years

� EoC: End-Of-Century

� GBD: Global Burden of Disease

� GEMM: Global Exposure Mortality Model

� GHG: Greenhouse Gas

� IAM: Integrated Assessment Model

� IER: Integrated Exposure-Response Model

� IHD: Ischemic Heart Disease

� INDC: Intended Nationally Determined Contribution

� IPCC: Intergovernmental Panel on Climate Change

� LC: Lung Cancer

� LL: Log-Linear Model

� NDC: Nationally Determined Contribution

� NPi: National Policy

� NZ: Net-Zero

� PAF: Population Attributable Fraction

� PM: Particulate Matter

� ppb: parts per billion

� RESP: Respiratory Illness

� RR: Relative Risk

� TMREL: Theoretical Minimum Relative Exposure Level
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� SCHIF: Shape Constrained Health Impact Function Model

� WHO: World Health Organization
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C. Emissions sensitivity and uncertainty

C.1 Probability distribution and cumulative frequency emissions graphs

Figure 19: Probability density distribution (left) and cumulative frequency (right) for R10AFRICA for BC and OC,
SO2, NOx , and VOC emissions. Includes median line by climate policy.
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Figure 20: Probability density distribution (left) and cumulative frequency (right) for R10CHINA+ for BC and OC,
SO2, NOx , and VOC emissions. Includes median line by climate policy.
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Figure 21: Probability density distribution (left) and cumulative frequency (right) for R10EUROPE for BC and OC,
SO2, NOx , and VOC emissions. Includes median line by climate policy.
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Figure 22: Probability density distribution (left) and cumulative frequency (right) for R10INDIA+ for BC and OC,
SO2, NOx , and VOC emissions. Includes median line by climate policy.
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Figure 23: Probability density distribution (left) and cumulative frequency (right) for R10LATIN-AM for BC and OC,
SO2, NOx , and VOC emissions. Includes median line by climate policy.
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Figure 24: Probability density distribution (left) and cumulative frequency (right) for R10MIDDLE-EAST for BC and
OC, SO2, NOx , and VOC emissions. Includes median line by climate policy.
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Figure 25: Probability density distribution (left) and cumulative frequency (right) for R10NORTH-AM for BC and
OC, SO2, NOx , and VOC emissions. Includes median line by climate policy.
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Figure 26: Probability density distribution (left) and cumulative frequency (right) for R10PAC-OECD for BC and
OC, SO2, NOx , and VOC emissions. Includes median line by climate policy.
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Figure 27: Probability density distribution (left) and cumulative frequency (right) for R10REF-ECON for BC and
OC, SO2, NOx , and VOC emissions. Includes median line by climate policy.
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Figure 28: Probability density distribution (left) and cumulative frequency (right) for R10REST-ASIA for BC and
OC, SO2, NOx , and VOC emissions. Includes median line by climate policy.
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Figure 29: Probability density distribution (left) and cumulative frequency (right) for Shipping and aviation for BC
and OC, SO2, NOx , and VOC emissions. Includes median line by climate policy.
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D. Concentrations sensitivity and uncertainty

D.1 Probability distribution and cumulative frequency average concentra-
tions graphs

Figure 30: Probability density distribution (left) and cumulative frequency (right) for R10AFRICA for PM2.5 and O3

concentrations. Includes median line by climate policy. Data has been averaged by model and scenario.
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Figure 31: Probability density distribution (left) and cumulative frequency (right) for R10CHINA+ for PM2.5 and O3

concentrations. Includes median line by climate policy. Data has been averaged by model and scenario.
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Figure 32: Probability density distribution (left) and cumulative frequency (right) for R10EUROPE for PM2.5 and
O3 concentrations. Includes median line by climate policy. Data has been averaged by model and scenario.
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Figure 33: Probability density distribution (left) and cumulative frequency (right) for R10INDIA+ for PM2.5 and O3

concentrations. Includes median line by climate policy. Data has been averaged by model and scenario.
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Figure 34: Probability density distribution (left) and cumulative frequency (right) for R10LATIN-AM for PM2.5 and
O3 concentrations. Includes median line by climate policy. Data has been averaged by model and scenario.
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Figure 35: Probability density distribution (left) and cumulative frequency (right) for R10MIDDLE-EAST for PM2.5

and O3 concentrations. Includes median line by climate policy. Data has been averaged by model and scenario.
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Figure 36: Probability density distribution (left) and cumulative frequency (right) for R10NORTH-AM for PM2.5 and
O3 concentrations. Includes median line by climate policy. Data has been averaged by model and scenario.
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Figure 37: Probability density distribution (left) and cumulative frequency (right) for R10PAC-OECD for PM2.5 and
O3 concentrations. Includes median line by climate policy. Data has been averaged by model and scenario.
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Figure 38: Probability density distribution (left) and cumulative frequency (right) for R10REF-ECON for PM2.5 and
O3 concentrations. Includes median line by climate policy. Data has been averaged by model and scenario.
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Figure 39: Probability density distribution (left) and cumulative frequency (right) for R10REST-ASIA for PM2.5 and
O3 concentrations. Includes median line by climate policy. Data has been averaged by model and scenario.
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D.2 Probability distribution and cumulative frequency whole grid concen-
trations graphs

Figure 40: Probability density distribution (left) and cumulative frequency (right) for R10AFRICA for PM2.5 and O3

concentrations. Includes median line by climate policy. Data has not been averaged in any case except of World.
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Figure 41: Probability density distribution (left) and cumulative frequency (right) for R10CHINA+ for PM2.5 and O3

concentrations. Includes median line by climate policy. Data has not been averaged in any case except of World.
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Figure 42: Probability density distribution (left) and cumulative frequency (right) for R10EUROPE for PM2.5 and
O3 concentrations. Includes median line by climate policy. Data has not been averaged in any case except of World.
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Figure 43: Probability density distribution (left) and cumulative frequency (right) for R10INDIA+ for PM2.5 and O3

concentrations. Includes median line by climate policy. Data has not been averaged in any case except of World.
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Figure 44: Probability density distribution (left) and cumulative frequency (right) for R10LATIN-AM for PM2.5 and
O3 concentrations. Includes median line by climate policy. Data has not been averaged in any case except of World.
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Figure 45: Probability density distribution (left) and cumulative frequency (right) for R10MIDDLE-EAST for PM2.5

and O3 concentrations. Includes median line by climate policy. Data has not been averaged in any case except of
World.
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Figure 46: Probability density distribution (left) and cumulative frequency (right) for R10NORTH-AM for PM2.5 and
O3 concentrations. Includes median line by climate policy. Data has not been averaged in any case except of World.
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Figure 47: Probability density distribution (left) and cumulative frequency (right) for R10PAC-OECD for PM2.5 and
O3 concentrations. Includes median line by climate policy. Data has not been averaged in any case except of World.
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Figure 48: Probability density distribution (left) and cumulative frequency (right) for R10REF-ECON for PM2.5 and
O3 concentrations. Includes median line by climate policy. Data has not been averaged in any case except of World.
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Figure 49: Probability density distribution (left) and cumulative frequency (right) for R10REST-ASIA for PM2.5 and
O3 concentrations. Includes median line by climate policy. Data has not been averaged in any case except of World.
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Figure 50: Probability density distribution (left) and cumulative frequency (right) for the whole globe for PM2.5 and
O3 concentrations. Includes median line by climate policy. Data has not been averaged in any case except of World.

85



E. Premature deaths sensitivity and uncertainty

E.1 Probability distribution and cumulative frequency mortality graphs

Figure 51: Probability density distribution (left) and cumulative frequency (right) for R10AFRICA for PM2.5. Includes
median line by climate policy.
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Figure 52: Probability density distribution (left) and cumulative frequency (right) for R10CHINA+ for PM2.5. Includes
median line by climate policy.
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Figure 53: Probability density distribution (left) and cumulative frequency (right) for R10EUROPE for PM2.5. Includes
median line by climate policy.
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Figure 54: Probability density distribution (left) and cumulative frequency (right) for R10INDIA+ for PM2.5. Includes
median line by climate policy.
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Figure 55: Probability density distribution (left) and cumulative frequency (right) for R10LATIN-AM for PM2.5.
Includes median line by climate policy.
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Figure 56: Probability density distribution (left) and cumulative frequency (right) for R10MIDDLE-EAST for PM2.5.
Includes median line by climate policy.
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Figure 57: Probability density distribution (left) and cumulative frequency (right) for R10NORTH-AM for PM2.5.
Includes median line by climate policy.

92



Figure 58: Probability density distribution (left) and cumulative frequency (right) for R10PAC-OECD for PM2.5.
Includes median line by climate policy.
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Figure 59: Probability density distribution (left) and cumulative frequency (right) for R10REF-ECON for PM2.5.
Includes median line by climate policy.
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Figure 60: Probability density distribution (left) and cumulative frequency (right) for R10REST-ASIA for PM2.5.
Includes median line by climate policy.
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Figure 61: Probability density distribution (left) and cumulative frequency (right) for R10AFRICA for O3. Includes
median line by climate policy.

Figure 62: Probability density distribution (left) and cumulative frequency (right) for R10CHINA+ for O3. Includes
median line by climate policy.
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Figure 63: Probability density distribution (left) and cumulative frequency (right) for R10EUROPE for O3. Includes
median line by climate policy.

Figure 64: Probability density distribution (left) and cumulative frequency (right) for R10INDIA+ for O3. Includes
median line by climate policy.
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Figure 65: Probability density distribution (left) and cumulative frequency (right) for R10LATIN-AM for O3. Includes
median line by climate policy.

Figure 66: Probability density distribution (left) and cumulative frequency (right) for R10MIDDLE-EAST for O3.
Includes median line by climate policy.
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Figure 67: Probability density distribution (left) and cumulative frequency (right) for R10NORTH-AM for O3. Includes
median line by climate policy.

Figure 68: Probability density distribution (left) and cumulative frequency (right) for R10PAC-OECD for O3. Includes
median line by climate policy.

99



Figure 69: Probability density distribution (left) and cumulative frequency (right) for R10REF-ECON for O3. Includes
median line by climate policy.

Figure 70: Probability density distribution (left) and cumulative frequency (right) for R10REST-ASIA for O3. Includes
median line by climate policy.
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E.2 Exceedance probability graphs

Figure 71: Exceedance probability for NZ and EoC climate policy for R10AFRICA with 95% CI. Impact functions are
ranked according to their publication date.
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Figure 72: Exceedance probability for NZ and EoC climate policy for R10CHINA+ with 95% CI. Impact functions
are ranked according to their publication date.
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Figure 73: Exceedance probability for NZ and EoC climate policy for R10EUROPE with 95% CI. Impact functions
are ranked according to their publication date.
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Figure 74: Exceedance probability for NZ and EoC climate policy for R10INDIA+ with 95% CI. Impact functions are
ranked according to their publication date.
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Figure 75: Exceedance probability for NZ and EoC climate policy for R10LATIN-AM with 95% CI. Impact functions
are ranked according to their publication date.
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Figure 76: Exceedance probability for NZ and EoC climate policy for R10MIDDLE-EAST with 95% CI. Impact
functions are ranked according to their publication date.
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Figure 77: Exceedance probability for NZ and EoC climate policy for R10NORTH-AM with 95% CI. Impact functions
are ranked according to their publication date.
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Figure 78: Exceedance probability for NZ and EoC climate policy for R10PAC-OECD with 95% CI. Impact functions
are ranked according to their publication date.
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Figure 79: Exceedance probability for NZ and EoC climate policy for R10REF-ECON with 95% CI. Impact functions
are ranked according to their publication date.
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Figure 80: Exceedance probability for NZ and EoC climate policy for R10REST-ASIA with 95% CI. with 95% CI.
Impact functions are ranked according to their publication date.
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E.3 Premature deaths and avoided deaths

Figure 81: Overall (PM2.5+ O3) premature deaths by region and carbon budget in 2030 and 2050 using the premature
deaths mean among the projections done by all impact functions. The colors correspond to the median value, and
there is also displayed the 95% CI.
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Figure 82: Overall (PM2.5+ O3) avoided deaths by region, carbon budget, and climate policy in 2030 and 2050
using the premature deaths median among the projections done by all impact functions. The colors correspond to
the median value, and there is also displayed the 95% CI. To compute the avoided deaths, the premature deaths
estimated by the each climate policy are subtracted to the ones estimated by the REF.
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E.4 Impact function’s parameters values sensitivity graphs

Figure 83: Influence of the impact function percentile on the estimation of premature deaths, regarding impact
function, regarding impact function, carbon budget, year, and scenario for R10AFRICA. Each error bars report the
uncertainty range (5-95%) across parameters’ sets. The middle points represent the median of the impact function
RR median. Colours represent the impact functions’ parameter percentile. Impact functions are ranked according to
their publication date. Parameters of the impact functions are reported in Table 3.
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Figure 84: Influence of the impact function percentile on the estimation of premature deaths, regarding impact
function, carbon budget, year, and scenario for R10CHINA+. Each error bars report the uncertainty range (5-
95%) across parameters’ sets. The middle points represent the median of the impact function RR median. Colours
represent the impact functions’ parameter percentile. Impact functions are ranked according to their publication date.
Parameters of the impact functions are reported in Table 3.
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Figure 85: Influence of the impact function percentile on the estimation of premature deaths, regarding impact
function, carbon budget, year, and scenario for R10EUROPE. Each error bars report the uncertainty range (5-95%)
across parameters’ sets. The middle points represent the median of the impact function RR median. Colours
represent the impact functions’ parameter percentile. Impact functions are ranked according to their publication
date. Parameters of the impact functions are reported in Table 3.
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Figure 86: Influence of the impact function percentile on the estimation of premature deaths, regarding impact
function, carbon budget, year, and scenario for R10INDIA+. Each error bars report the uncertainty range (5-95%)
across parameters’ sets. The middle points represent the median of the impact function RR median. Colours
represent the impact functions’ parameter percentile. Impact functions are ranked according to their publication
date. Parameters of the impact functions are reported in Table 3.
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Figure 87: Influence of the impact function percentile on the estimation of premature deaths, regarding impact
function, carbon budget, year, and scenario for R10LATIN-AM. Each error bars report the uncertainty range (5-
95%) across parameters’ sets. The middle points represent the median of the impact function RR median. Colours
represent the impact functions’ parameter percentile. Impact functions are ranked according to their publication date.
Parameters of the impact functions are reported in Table 3.
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Figure 88: Influence of the impact function percentile on the estimation of premature deaths, regarding impact
function, carbon budget, year, and scenario for R10MIDDLE-EAST. Each error bars report the uncertainty range (5-
95%) across parameters’ sets. The middle points represent the median of the impact function RR median. Colours
represent the impact functions’ parameter percentile. Impact functions are ranked according to their publication date.
Parameters of the impact functions are reported in Table 3.
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Figure 89: Influence of the impact function percentile on the estimation of premature deaths, regarding impact
function, carbon budget, year, and scenario for R10NORTH-AM. Each error bars report the uncertainty range (5-
95%) across parameters’ sets. The middle points represent the median of the impact function RR median. Colours
represent the impact functions’ parameter percentile. Impact functions are ranked according to their publication date.
Parameters of the impact functions are reported in Table 3.
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Figure 90: Influence of the impact function percentile on the estimation of premature deaths, regarding impact
function, carbon budget, year, and scenario for R10PAC-OECD. Each error bars report the uncertainty range (5-
95%) across parameters’ sets. The middle points represent the median of the impact function RR median. Colours
represent the impact functions’ parameter percentile. Impact functions are ranked according to their publication date.
Parameters of the impact functions are reported in Table 3.
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Figure 91: Influence of the impact function percentile on the estimation of premature deaths, regarding impact
function, carbon budget, year, and scenario for R10REF-ECON. Each error bars report the uncertainty range (5-
95%) across parameters’ sets. The middle points represent the median of the impact function RR median. Colours
represent the impact functions’ parameter percentile. Impact functions are ranked according to their publication date.
Parameters of the impact functions are reported in Table 3.
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Figure 92: Influence of the impact function percentile on the estimation of premature deaths, regarding impact
function, carbon budget, year, and scenario for R10REST-ASIA. Each error bars report the uncertainty range (5-
95%) across parameters’ sets. The middle points represent the median of the impact function RR median. Colours
represent the impact functions’ parameter percentile. Impact functions are ranked according to their publication date.
Parameters of the impact functions are reported in Table 3.
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E.5 Impact function’s counterfactual values sensitivity graphs

Figure 93: Influence of the impact function percentile on the estimation of premature deaths, regarding impact
function, carbon budget, year, and scenario for R10AFRICA. Each error bars report the uncertainty range (5-95%)
across parameters’ sets. The middle points represent the median of the impact function RR median. Colours
represent the impact functions’ parameter percentile. Impact functions are ranked according to their publication
date. Parameters of the impact functions are reported in Table 3.
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Figure 94: Influence of the impact function percentile on the estimation of premature deaths, regarding impact
function, carbon budget, year, and scenario for R10CHINA+. Each error bars report the uncertainty range (5-
95%) across parameters’ sets. The middle points represent the median of the impact function RR median. Colours
represent the impact functions’ parameter percentile. Impact functions are ranked according to their publication date.
Parameters of the impact functions are reported in Table 3.
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Figure 95: Influence of the impact function percentile on the estimation of premature deaths, regarding impact
function, carbon budget, year, and scenario for R10EUROPE. Each error bars report the uncertainty range (5-95%)
across parameters’ sets. The middle points represent the median of the impact function RR median. Colours
represent the impact functions’ parameter percentile. Impact functions are ranked according to their publication
date. Parameters of the impact functions are reported in Table 3.
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Figure 96: Influence of the impact function percentile on the estimation of premature deaths, regarding impact
function, carbon budget, year, and scenario for R10INDIA+. Each error bars report the uncertainty range (5-95%)
across parameters’ sets. The middle points represent the median of the impact function RR median. Colours
represent the impact functions’ parameter percentile. Impact functions are ranked according to their publication
date. Parameters of the impact functions are reported in Table 3.
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Figure 97: Influence of the impact function percentile on the estimation of premature deaths, regarding impact
function, carbon budget, year, and scenario for R10LATIN-AM. Each error bars report the uncertainty range (5-
95%) across parameters’ sets. The middle points represent the median of the impact function RR median. Colours
represent the impact functions’ parameter percentile. Impact functions are ranked according to their publication date.
Parameters of the impact functions are reported in Table 3.
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Figure 98: Influence of the impact function percentile on the estimation of premature deaths, regarding impact
function, carbon budget, year, and scenario for R10MIDDLE-EAST. Each error bars report the uncertainty range (5-
95%) across parameters’ sets. The middle points represent the median of the impact function RR median. Colours
represent the impact functions’ parameter percentile. Impact functions are ranked according to their publication date.
Parameters of the impact functions are reported in Table 3.
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Figure 99: Influence of the impact function percentile on the estimation of premature deaths, regarding impact
function, carbon budget, year, and scenario for R10NORTH-AM. Each error bars report the uncertainty range (5-
95%) across parameters’ sets. The middle points represent the median of the impact function RR median. Colours
represent the impact functions’ parameter percentile. Impact functions are ranked according to their publication date.
Parameters of the impact functions are reported in Table 3.
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Figure 100: Influence of the impact function percentile on the estimation of premature deaths, regarding impact
function, carbon budget, year, and scenario for R10PAC-OECD. Each error bars report the uncertainty range (5-
95%) across parameters’ sets. The middle points represent the median of the impact function RR median. Colours
represent the impact functions’ parameter percentile. Impact functions are ranked according to their publication date.
Parameters of the impact functions are reported in Table 3.
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Figure 101: Influence of the impact function percentile on the estimation of premature deaths, regarding impact
function, carbon budget, year, and scenario for R10REF-ECON. Each error bars report the uncertainty range (5-
95%) across parameters’ sets. The middle points represent the median of the impact function RR median. Colours
represent the impact functions’ parameter percentile. Impact functions are ranked according to their publication date.
Parameters of the impact functions are reported in Table 3.
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Figure 102: Influence of the impact function percentile on the estimation of premature deaths, regarding impact
function, carbon budget, year, and scenario for R10REST-ASIA. Each error bars report the uncertainty range (5-
95%) across parameters’ sets. The middle points represent the median of the impact function RR median. Colours
represent the impact functions’ parameter percentile. Impact functions are ranked according to their publication date.
Parameters of the impact functions are reported in Table 3.
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E.6 Impact function’s parameters and counterfactual sensitivity graphs

Figure 103: Influence of the relation between the impact function percentile and the counterfactual percentile on the
estimation of premature deaths, regarding impact function, carbon budget, year, and scenario for R10AFRICA. Each
error bars report the uncertainty range (5-95%) across parameters’ sets. The middle points represent the median of
the impact function RR median. Colours represent the impact functions’ parameter percentile. Impact functions are
ranked according to their publication date. Parameters of the impact functions are reported in Table 3.
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Figure 104: Influence of the relation between the impact function percentile and the counterfactual percentile on the
estimation of premature deaths, regarding impact function, carbon budget, year, and scenario for R10CHINA+. Each
error bars report the uncertainty range (5-95%) across parameters’ sets. The middle points represent the median of
the impact function RR median. Colours represent the impact functions’ parameter percentile. Impact functions are
ranked according to their publication date. Parameters of the impact functions are reported in Table 3.
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Figure 105: Influence of the relation between the impact function percentile and the counterfactual percentile on the
estimation of premature deaths, regarding impact function, carbon budget, year, and scenario for R10EUROPE. Each
error bars report the uncertainty range (5-95%) across parameters’ sets. The middle points represent the median of
the impact function RR median. Colours represent the impact functions’ parameter percentile. Impact functions are
ranked according to their publication date. Parameters of the impact functions are reported in Table 3.
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Figure 106: Influence of the relation between the impact function percentile and the counterfactual percentile on the
estimation of premature deaths, regarding impact function, carbon budget, year, and scenario for R10INDIA+. Each
error bars report the uncertainty range (5-95%) across parameters’ sets. The middle points represent the median of
the impact function RR median. Colours represent the impact functions’ parameter percentile. Impact functions are
ranked according to their publication date. Parameters of the impact functions are reported in Table 3.
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Figure 107: Influence of the relation between the impact function percentile and the counterfactual percentile on the
estimation of premature deaths, regarding impact function, carbon budget, year, and scenario for R10LATIN-AM.
Each error bars report the uncertainty range (5-95%) across parameters’ sets. The middle points represent the median
of the impact function RR median. Colours represent the impact functions’ parameter percentile. Impact functions
are ranked according to their publication date. Parameters of the impact functions are reported in Table 3.
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Figure 108: Influence of the relation between the impact function percentile and the counterfactual percentile on
the estimation of premature deaths, regarding impact function, carbon budget, year, and scenario for R10MIDDLE-
EAST. Each error bars report the uncertainty range (5-95%) across parameters’ sets. The middle points represent
the median of the impact function RR median. Colours represent the impact functions’ parameter percentile. Impact
functions are ranked according to their publication date. Parameters of the impact functions are reported in Table 3.
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Figure 109: Influence of the relation between the impact function percentile and the counterfactual percentile on the
estimation of premature deaths, regarding impact function, carbon budget, year, and scenario for R10NORTH-AM.
Each error bars report the uncertainty range (5-95%) across parameters’ sets. The middle points represent the median
of the impact function RR median. Colours represent the impact functions’ parameter percentile. Impact functions
are ranked according to their publication date. Parameters of the impact functions are reported in Table 3.
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Figure 110: Influence of the relation between the impact function percentile and the counterfactual percentile on the
estimation of premature deaths, regarding impact function, carbon budget, year, and scenario for R10PAC-OECD.
Each error bars report the uncertainty range (5-95%) across parameters’ sets. The middle points represent the median
of the impact function RR median. Colours represent the impact functions’ parameter percentile. Impact functions
are ranked according to their publication date. Parameters of the impact functions are reported in Table 3.
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Figure 111: Influence of the relation between the impact function percentile and the counterfactual percentile on the
estimation of premature deaths, regarding impact function, carbon budget, year, and scenario for R10REF-ECON.
Each error bars report the uncertainty range (5-95%) across parameters’ sets. The middle points represent the median
of the impact function RR median. Colours represent the impact functions’ parameter percentile. Impact functions
are ranked according to their publication date. Parameters of the impact functions are reported in Table 3.
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Figure 112: Influence of the relation between the impact function percentile and the counterfactual percentile on the
estimation of premature deaths, regarding impact function, carbon budget, year, and scenario for R10REST-ASIA.
Each error bars report the uncertainty range (5-95%) across parameters’ sets. The middle points represent the median
of the impact function RR median. Colours represent the impact functions’ parameter percentile. Impact functions
are ranked according to their publication date. Parameters of the impact functions are reported in Table 3.

142



E.7 IAMs and impact functions uncertainty graphs

Figure 113(): Probability density distribution (left) and cumulative frequency (right) for R10AFRICA. Includes median
line by climate policy. Impact functions are ranked according to their publication date.
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Figure 114(a): Probability density distribution (left) and cumulative frequency (right) for R10CHINA+. Includes
median line by climate policy. Impact functions are ranked according to their publication date.

Figure 114(b): Probability density distribution (left) and cumulative frequency (right) for R10EUROPE. Includes
median line by climate policy. Impact functions are ranked according to their publication date.
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Figure 115(a): Probability density distribution (left) and cumulative frequency (right) for R10INDIA+. Includes
median line by climate policy. Impact functions are ranked according to their publication date.

Figure 115(b): Probability density distribution (left) and cumulative frequency (right) for R10LATIN-AM. Includes
median line by climate policy. Impact functions are ranked according to their publication date.
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Figure 116(a): Probability density distribution (left) and cumulative frequency (right) for R10MIDDLE-EAST.
Includes median line by climate policy. Impact functions are ranked according to their publication date.

Figure 116(b): Probability density distribution (left) and cumulative frequency (right) for R10NORTH-AM. Includes
median line by climate policy. Impact functions are ranked according to their publication date.
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Figure 117(a): Probability density distribution (left) and cumulative frequency (right) for R10PAC-OECD. Includes
median line by climate policy. Impact functions are ranked according to their publication date.

Figure 117(b): Probability density distribution (left) and cumulative frequency (right) for R10REF-ECON. Includes
median line by climate policy. Impact functions are ranked according to their publication date.
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Figure 118(): Probability density distribution (left) and cumulative frequency (right) for R10REST-ASIA. Includes
median line by climate policy. Impact functions are ranked according to their publication date.
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F. Emission and concentration sensitivity compari-
son

Figure 119: Climate policy dependence by region, year, and carbon budget. On the Y-axis there is the p-value of the
K-S two-samples test done separately by pollutant, region, year, and carbon budget. The dashed red line indicates
the significance level threshold.
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