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Event-based Line SLAM in Real-time
William Chamorro, Joan Solà and Juan Andrade-Cetto

Abstract—Event-based cameras generate asynchronous
streams of events, triggered proportionally to the logarithmic
change of brightness in the scene. These cameras have very low
latency and high dynamic range suitable to address challenging
motion scenarios in robotics. In this work, we explore a new
event-based line-SLAM approach following a parallel tracking
and mapping philosophy. Our fast tracking algorithm, produces
accurate camera pose estimates at a high rate by minimizing
the event-line reprojection error with an error-state Kalman
filter formulated entirely with Lie theory. The mapping thread
leverages the natural edge highlighting strength of events to
recover and optimize straight lines in human-made scenarios.
The proper manipulation of matrix sparsity as well as the
information sharing between tracking and mapping nodes allow
us to achieve real-time performance on a standard multi-core
CPU. This system was tested on several scenarios rich in straight
edge objects, and compared against, ground truth and frame
and event based state-of-the-art approaches.

Index Terms—SLAM,Localization,Mapping

I. INTRODUCTION

EVENT-based cameras are bio-inspired sensors that pro-
duce an asynchronous response in the presence of bright-

ness changes in the scene. Their constructive advantages like
low latency (about 12 µs) and high dynamic range (e.g.,
120 dB for the DAVIS240 model compared to the 60 dB
of standard cameras [1]) make them suitable for scenarios
with challenging lighting conditions and very fast motion. In
such conditions, classic computer vision techniques fail due to
the low sensing latency and consequent image blurring. Due
to the asynchronous nature of events, the direct application
of most standard computer vision algorithms is not possible,
which rely on full synchronous frames with image intensity
values. In this sense, most of the literature related to event-
based simultaneous localization and mapping (SLAM) propose
solutions based on template alignment (tracking) and semi-
dense reconstruction (mapping) [2], [3], without direct feature
extraction from the image plane. Despite their outstanding
results, the output dynamics is limited to rates in the range
of hundreds of Hz to maintain a real-time response. Higher
dynamic responses and denser maps have been achieved
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using Bayesian estimators, but recovering image intensity from
events, resulting in high computational cost that becomes
intractable for common robotic platforms [4].

As event cameras respond to changes in brightness, events
naturally highlight edges as those found in geometrical shapes
in human-made environments. Following such natural re-
sponse of event cameras, we are interested in the problem of
6-DOF parallel tracking and mapping PTAM using events and
a set of scattered 3D line segments extracted from edges in
human-made scenarios. Our goal is to achieve a fast response
without losing the fast asynchronous characteristic of the
events or recovering image intensity. To this end, we designed
a system that uses only event data. It estimates the ego-motion
of the event camera at a kHz rate because of the use of
small event windows (∼300µs) during the estimation process.
Simultaneously we create a 3D lines map at a lower rate (in
the order of Hz) by projecting the events into a spatial grid.
This approach follows the PTAM philosophy of [5] in which
the tracking and mapping modules run in parallel. A non-
linear optimization thread links both modules because each
component has independent states.

The main contributions of our approach are: (i) A line-
based PTAM system that estimates structure and motion, and
retrieves camera positions at a high rate (∼3.3kHz) with
observed dynamics exceeding those of the integrated DAVIS
IMU. (ii) An adaptation over [6] to deal with 3D lines
detection and extraction. (iii) A collection of bootstrapping
algorithms that use event data and 2D features.

II. RELATED WORK

The event-based SLAM problem has been a topic of interest
since the development of the Dynamic Vision Sensor [7]. The
literature presents a number of event-based solutions concern-
ing ego-motion estimation, feature detection and optical flow,
and in lesser proportion mapping and 3D reconstruction [8].
Regarding studies addressing simultaneous tracking and map-
ping, one of the first approaches [9] proposes a 3D SLAM
system that combines an event camera and an RGB-D sensor
to recover spatial information.

The PTAM solution presented in [4] uses interleaved
Bayesian filters to estimate the camera pose, create semi-dense
3D maps, and recover image intensity in natural scenarios.
Fast-motion tracking and 3D reconstructions in real-time was
achieved using a GPU.

More recently EVO [10] also splits the problem into track-
ing and mapping. Its core is EMVS [6] -a space sweep
approach- that creates a 3D semi-dense reconstruction from
a given camera position. EVO initializes with a planar scene
assumption, and on failure, it resorts to grayscale images using
SVO [11] to aid in bootstrapping.
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Another PTAM [3] uses a stereo rig of event cameras.
Similar to EVO, its tracking module is based on image-to-
model alignment initially presented in [11]. This alignment
minimizes the photometric error between the projected semi-
dense map and a window of events. The estimation output rate
is in the order of hundreds of Hz, but it is slow compared to
the dynamics that event cameras can cope with. Our approach
is a monocular PTAM system which tracking module uses fast
event-line data associations to estimate the camera pose in a
small event window. Our implementation runs in real-time on
a standard CPU.

Other event-based visual [12] and visual-inertial [2], [13],
[14] odometry systems cluster events to create synthetic im-
ages to detect corner-like features. These event integration
and optimization processes lead to a bottleneck that limits
the event camera capabilities. Nevertheless, these approaches
outperform classic methods with standard cameras in absence
of light or in fast-motion. In our work, the tracking module
uses only event data and does not create an event image or
extracts features directly from each window. The mapping
module recovers 3D lines also using events and the estimated
camera pose.

More related to our line-features approach, IDOL [15] -
a visual-inertial system- tracks event clusters associated with
line segments. It works in human-made scenarios with a rea-
sonable number of lines. However, in densely populated line
environments or high event rates, the computational burden
becomes an issue to reach real-time performance. As discussed
in [15], line extraction from event clusters is a time expensive
strategy.

III. SYSTEM OVERVIEW

Our method follows the PTAM philosophy of [5] and is
aimed at human-made scenarios where straight geometrical
shapes are prominent. It has two modules running in parallel at
significantly different speeds and sharing information through
the ROS environment. The tracking module (Fig.1a) produces
6-DOF camera pose and velocity estimates at a high rate
as it uses small event windows. We do not extract lines
directly from the event stream to avoid large event-integration
bottlenecks or time-consuming line clustering as discussed
in [15]. The mapping module (Fig.1b) uses the estimated
camera pose to recover 3D lines from the scene. This is a
slow and asynchronous process that updates the lines-map
each time the camera moves a significant distance. A bundle
adjustment prevents the system from diverging by linking both
modules and correcting the pose and line estimations based
on both modules’ outputs. The system uses a bootstrap that
provides initial camera poses and 3D lines by observing a
scene with at least 6 non-parallel lines at a moderate speed
and low accelerations. Three known-scale launching options
using a predefined marker are also described. These modules
are detailed in the following subsections.

A. Event-based Tracking

The core of the tracking module is built upon our
tracker [16]. It aims to minimize the event-line reprojection

error to estimate the 3D camera pose. The state is updated at a
high rate as we operate over a small window of events typically
of size of 300 µs. We rely on [17] to create an undistortion
lookup table for all pixel coordinates and to correct the lens
radial distortion. This procedure is at least five times faster
than using the ROS-OpenCV Pinhole Camera library and it
is done once before starting the tracking process. Afterwards,
the table accessing is asynchronous at the cost of locating
the precomputed equivalent pixel coordinates of the incoming
events.

1) State prediction: The 6-DoF camera pose is estimated
using a Lie-formulated error-state Kalman filter. The state
transition at time k has the form xk = f(xk−1,nk), where nk

is the Gaussian perturbation. State transition is modeled with
constant velocity:

xk =


rk = rk−1 + vk−1∆t ∈ R3

Rk = Rk−1 ⊕ ωk−1∆t ∈ SO(3)
vk = vk−1 + vn ∈ R3

ωk = ωk−1 + ωn ∈ so(3)

, (1)

where r is the position, R the orientation, v the linear velocity,
ω the angular velocity, vn the Gaussian perturbation in the
linear velocity, and ωn the perturbation in the angular velocity.
Since the orientation R belongs to the SO(3) Lie group, the
operator ⊕ does the right plus operation described in Eq.
(132) in [18]. Several filter variants were tested experimentally
in [16] showing that the constant velocity model has the best
results concerning accuracy and computational performance.

The error state δx = [δrT , δθT , δvT , δωT ]T is represented
as Gaussian variables with mean δx and covariance P. The co-
variance propagation error is Pk = FPk−1F

T +Q ∈ R12×12

with state Jacobian F and noise covariance Q given by:

F =


I 0 I∆t 0
0 JR

R 0 JR
ω

0 0 I 0
0 0 0 I

 ,Q =


0

0
σ2
vI

σ2
ωI

∆t,

(2)
where we follow a Jacobian notation Ja

b ≜ ∂a/∂b. The
Jacobians with respect the orientation JR

R and the angular
velocity JR

ω are detailed in [16] but can be easily derived
applying the properties for the Lie group SO(3) in [18].

2) State correction: The events for the state correction are
clustered into a small temporal window W of size ∆t, in
which an efficient data association can be performed. This
association method enhances the performance since the tracker
makes only one prediction per window at the central time.
In this work we use 3D lines parametrized with an origin
point A = p1 ∈ R3 and a unit direction vector B = (p2 −
p1).normalized() ∈ R3, that have endpoints p1 and p2. Any
point in the 3D line follows the equation A + λB ∀ λ ∈ R.
After the state prediction, all visible 3D-lines are projected
onto the image plane as:

l = KR⊤(A− r)×B = [a, b, c]T , (3)

where K contains the intrinsic camera parameters expressed in
canonical form as in Eq. (31) in [19]. Each undistorted event
e = [u, v, 1]T is matched with a single projected line and used
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to compute the measurement innovation z, described by the
Euclidean event-to-line signed distance

z =
eT l√
a2 + b2

, (4)

and with a measurement noise σz . It is worth noting that we
consider a line as visible when its total or partial reprojection
falls in front of the image plane. So far, occlusions are not
taken into account but will be considered in future work.

The event-line data association process is summarized in
Fig. 2. It aims at rapidly rejecting outliers and at ignoring
ambiguous events. This process operates over W (Fig. 2a)
where the closest events to a specific line are mapped into
cells using image tessellation (Fig. 2b). Then, a positive match
is determined when an event has distance thresholds d1 < α,
d2 > β and the orthogonal projection lies between the two
projected endpoints (Fig. 2c).

Ti
Ti

Trv

Trv

Trv

Z0

Z1

Zi

x  , y  , z 

x1,y1,z1

x0,y0,z0
ez0

Gz0

Gzi

e

ezi

i i i

w

h

U

V

ρ

Fig. 3. Space sweep algorithm.

An EKF correction is applied for each valid event-line
association. The innovation covariance is a scalar computed
by Z = HPH⊤ + σ2

z ; its Jacobian H is derived applying the
chain rule:

H = Jz
l

[
Jl
r Jl

R 0 0
]
∈ R1×12, (5)

having Jz
l = e⊤/

√
a2 + b2, Jl

r = KR⊤[B]×, Jl
R =

K[R⊤(A − r) ×B]×, and [·]× as a skew-symmetric matrix.
These are Jacobians of the rotation action computed in the Lie-
theoretic sense [18]. The state is corrected by computing the
Kalman gain k = PH⊤Z−1 and the observed error δx = kz.
Finally, the state is updated as x← x⊕δx and its covariance
P← P− kZk⊤.

B. Event-based Mapping

Event cameras naturally respond to the edges in the scene;
thus, in man-made environments, the regions highlighted by
the events will be rich in straight 3D lines. On this basis,
we create a semi-dense 3D spatial grid following the space
sweep algorithm proposed in [6]. Different works like [10],
[20], [21] among others, have used the space sweep algorithm
to create 3D reconstructions achieving accurate results and
low-performance times. Departing from the mentioned spatial
discretization, we detect, extract, and optimize a sparse set of
3D lines from straight edges of objects present in the scene.

1) Space sweep algorithm: The sweep algorithm is a pro-
cess for spatial discretization using events; in the following
paragraphs, we summarize the methodology originally stated
in [6] and adapt its implementation to this work.

We use a grid of size w×h×N , where w and h match the
image size -dimensions aimed for this work-. N is the number
of depth planes that can be arranged linearly or proportionally
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Fig. 4. Rays and recovered line in a grid in: (a) Linear, (b) Inverse depth.

to the inverse depth (Fig.3). This grid is located at a reference
view point rv whose pose with respect to the world frame is
Trv = (Rrv | rrv). Their voxels are filled with votes from
back-projection rays that pass through. These rays are infinite
lines projecting each event into the 3D space using the camera
model. They come from nearby positions Ti = (Ri | ri)
which represent the position of each event window W given
by the tracking node. Since the camera pose does not change
significantly during the micro-second lapse between events, we
assume Ti invariant for all the events inside W . To estimate
the ray intersection with a depth plane in the grid, [6] proposes
two steps. First, mapping the events from Ti to the first depth
plane Z0 of Trv via planar homography as:

HZ0
=rvRi +

rvrin
⊤

Z0
∈ R3×3

GZ0
= K HZ0

K−1 ∈ R3×3, (6)

where the transformation from i to rv, noted as rvTi =
Trv

−1Ti, provides the rotation rvRi and translation rvri to
compute (6). n = [0, 0, 1]⊤ is a unit plane normal and K is
the intrinsic camera matrix as in Eq. (2) in [19]. Therefore,
any event e at i is mapped onto the plane Z0 of rv as
eZ0

= GZ0 e.
Second, transferring the events to any other depth plane Zi

in terms of Z0 using the homography HZi

−1 HZ0
that leads

to:

GZi
=

Zi−cz
Zi

0 (Z0−Zi

Z0 Zi
)cx

0 Zi−cz
Zi

(Z0−Zi

Z0 Zi
)cy

0 0 Z0−cz
Z0

 , (7)

with K rvri = [cx, cy, cz]⊤. The mapping of an event
onto a plane Zi is given by eZi

= GZi eZ0
. Since (7)

is computed only once per depth plane, the projection onto
all the depth planes can be parallelized. A voxel located at
[eZi

(1), eZi
(2), Zi] receives one vote. Note that since the

estimated voxel coordinates are not integer numbers, the vote
should be split proportionally to its closest neighbours to
overcome rounding errors.

2) 3D Line Extraction: The shape of the back-projection
rays that populate the grid depends on the disposition of the
depth planes. Due to the non-linearity of the back-projection
process, a ray in a grid with depth planes arranged linearly
shows a curved shape as in Fig. 4(a), contrary to the almost
straight ones in inverse depth in Fig. 4(b), as discussed in [6].
Therefore, we used an inverse depth arrangement to recover
3D inliers clustered in a quasi-straight path that are fitted into
a 3D line.
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Fig. 5. Line extraction process.

The line extraction process is explained in Fig. 5(a-b), and
follows the same steps described in EMVS [6] Sec. 5. The
process is summarized in the following paragraphs.

The grid is condensed into two spatial images of size w ×
h, whose pixels belong to the local maxima along the depth
planes and have a high probability of containing a 3D edge.
The pixels in these images encode the number of votes (frame
a.1) and the depth value (frame a.2).

An adaptive Gaussian thresholding highlights the edges and
removes noise in empty spaces from the vote spatial image.
Its result is a binary edge representation (frame b.1) that is
later used as a mask for the depth spatial image. The depth
map passes through a median filter that regularizes the depth
value of the pixels in the given mask (frame b.2). The color
gradient represents depth from far (dark) to near (light). Both
operations were performed with OpenCV.

Fig. 5 frames c-d shows our 3D line searching and recovery
process that complements EMVS. Pixels that belong to a
line are rapidly clustered using the Hough transform. Due
to sparsity in the mask, the detected lines are redundant and
drawn with different colors in frame c. Similar line segments
are grouped and merged into larger lines when the difference
in their distance to the image origin is ∆Γ < c1, the difference
in their angle is ∆θ < c2, and the space that separates them
is ∆s < c3/ρ̄. This last threshold is inversely proportional to
the mean scene depth ρ̄ to avoid merging non-related lines
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observed from a distant point of view (frame d.1). Note that
other segment detectors like [22] could be used in this process,
but they are affected by the events sparsity.

To compute the parameters of each 3D line L, all merged
inlier points are used (all points for each segments in frame
d). These N points have coordinates xn = ρn[un, vn, 1]

⊤ ∈
R3,∀n ∈ [0...N ]; where (un, vn) is the pixel position that falls
in between the 2D-line endpoints, and ρn is the corresponding
depth from the spatial depth image (b.2). The parameters of
the 3D line are obtained by computing the principal direction
of such cluster of 3D points via singular value decomposition.
More specifically, from the inliers covariance C = c c⊤/N ∈
R3×3 (where c = [(x0 − x̄) · · · (xn − x̄)] ∈ R3×N is a
matrix of differences between each inlier and its mean x̄),
we compute its singular value decomposition C = UDV⊤.
The parameters of L are obtained as a translation vector
A = x̄ and a director vector B = U(:, 3) (singular vector
corresponding to the largest singular value), and transformed
from the reference view frame to the the world:

wA = RrvK
−1A+ rrv

wB = RrvK
−1B. (8)

After the frame transformation, wB is normalized. The line
fitting is complemented with a RANSAC process to remove
noisy inliers. All recovered 3D lines compose a local map
that will be integrated into a large global map after a bundle
adjustment optimization process.

3) Bundle Adjustment: To minimize the error accumula-
tion from the space sweep process, we implement a bundle
adjustment using the recovered lines and the events. For
efficiency, the optimization process, uses information from
the tracker like event-line association, windows of events, and
pose estimation.

Let us call a keyframe to each reference view where we
create a projective grid composed of a large number of
event windows. As the camera moves, a new keyframe is
selected when the camera traveled distance exceeds a threshold
proportional to the mean scene depth. The optimization is
computed using a cluster with the last J keyframes, where
from each keyframe we uniformly select I event windows to

be part of the optimization state. The next optimization cluster
has an overlap of k keyframes with the previous one.

The tracking node provides the camera pose for all event
windows i ∈ [0 · · · I] in each keyframe j ∈ [0 · · · J ] noted
as Tij . The mapping node provides the global map from
which we select M lines that appear in at least 60% of all
the event windows and have a minimum number of associated
events. Thus, the state composed by camera poses and lines
is arranged as X = (T00 · · ·TI0 · · ·TIJ L0 L1 · · ·LM ).

We rely on Ceres [23] to solve this non-linear optimization
problem. In Ceres, the pose Tij has a SE(3) parametrization,
and the lines have a local six-term parametrization. The latter
corresponds to the origin point and the unit direction vector
(the same parametrization followed until now). The optimal
state X∗ = argminX C(X) is estimated using Levenberg-
Marquardt non-linear optimization with the cost function:

C(X) =
∑
i,j,m


∥∥∥∥∥∥ lijm e⊤i√

lijm(1)
2
+ lijm(2)

2

∥∥∥∥∥∥
2
 , (9)

which minimizes the distance from the events to the back-
projected lines of the 3D-line m, in the window i of the
keyframe j noted as lijm. This back-projection is computed
using Eq. (3) which relates the camera pose and line param-
eters. The optimization improves not only the camera poses,
but also the parameters of the observed 3D lines, which are
shared with the tracking node for further operations.

C. System bootstrapping

Our approach can launch through several methods, all
described below. The performance of all these methods is
displayed in the multimedia material. The first method (E+BA)
organizes the events in windows of 3ms. The first window
is taken as an image and applied the Hough transform to
detect 2D lines, see Fig. 7(a). These are then tracked over
time using the methods described in Sec. III-A2, but taking
the 2D segments from the previous windows instead of the 3D
projected lines. Each n=50 windows we declare a keyframe.
Once N=10 keyframes are declared, a bundle adjustment
(Sec. III-B3) is arranged over the keyframes and all the tracked
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Fig. 7. Bootstrap example: (a) 2D line tracking across event windows, (b)
Bundle adjustment result with several views

lines. The resulting lines are estimated up to scale and used
as the initial map for the EKF tracker. The pose and velocity
of the tracker are initialized by extrapolating the last states
of the BA to the precise timestamp of the currently incoming
events. A moderate motion (∼10cm/s), 6 or more non-parallel
lines, and enough baseline are needed to avoid noisy 2D-line
detections and guarantee the solver’s convergence. Initially, all
cameras are at the origin, and the lines have a random depth.
This solution is sensitive to the event sparsity and subject to the
conditions above. We are working on improving its robustness
to launch our system in more complex scenarios.

Three other marker-based bootstrapping methods provide
a scale factor. In these options, we detect Hough lines
(E+Hough) or FAST corners (E+Fast) on an integrated-events
image, where pixels values are the sum of event polarities.
From the 2D - 3D matches of points or lines, we use a PnP [24]
or a PnPL [25] algorithm to recover the initial camera pose.
A gray-scale image (I+Fast) can be used if available instead
of events in E+Fast.

These bootstrapping methods are robust low-cost solutions
but limited to scenarios having this marker.

IV. EXPERIMENTS AND RESULTS

We evaluate our approach in human-made environment
datasets acquired using the DAVIS 240C and 346 camera
models. These datasets - named Office large, Office L shape,
and Office far - have different depths, camera speeds, and
medium-textured surfaces. A synthetic world made of three
orthogonal planes with strong line patterns (Trihedron dataset)
was used also. Most sequences have challenging lighting
conditions and fast motion. Additionally, our approach was
tested in Dynamic 6DOF sequence [26], the most representa-
tive human-made scenario. Only Dynamic 6DOF sequence is
aided with the first ground-truth readings during initialization
due to E+BA limitations on small weak lines and noisy events.
In our sequences we use E+BA to launch our PTAM system,
since the conditions are ideal for E+BA producing reliable
initial estimations. Axis were rotated for ease of visualization.
Fig. 6 and Fig. 8 show the 3D reconstructions and tracking

snapshots for the aforementioned scenarios. The ground truth
was obtained with an Optitrack motion capture system. For all
experiments, the events window was 300 µs, the thresholding
parameters are α = 2.5 pix, β = 1.5α, and the noise
parameters σv = 3 m/s3/2, σω = 7 rad/s3/2 and σz = 3.5 pix
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Fig. 8. Reconstructed human-made scenarios.

(see Sec. III-A1 and Sec. III-A2). The grid depth was adjusted
according to the scenario in a 0.5-3.5m range. The merging
thresholding parameters were c1 = 10 pix, c2 = 10 deg, and
c3 = 5 pix/m (see Sec. III-B). We rely on manif [27] for
Lie group computations in C++. Our PTAM system runs in a
standard computer with an Intel Core i7-8700K CPU, Ubuntu
18.04.5 and ROS Melodic.

A. Accuracy evaluation

Fig. 6 shows how for a large office sequence, the edges in
the scene are gradually recovered, included in a global map,
and optimized as the camera moves. This sequence contains
regular motion, challenging lighting conditions - by turning
on and off the lights from the laboratory- and aggressive
camera shaking (see the grayscale and event output of the
DAVIS camera in the right frames in the figure). Here, the
mapped lines are reprojected using the estimated camera pose
and plotted in green over the events window. Notice also
how poor illumination and fast motion affects the grayscale
image, while the events still provide reliable information. The
performance of our approach was compared against EVO [10]

TABLE I
RMSE IN CHALLENGING LIGHTING CONDITIONS AND FAST MOTION

Dataset Ours EVO
HDR Fast HDR Fast

Office large
challenging

[m] 0.08 0.12 0.19 0.25
[deg] 7.17 9.74 8.19 13.52

Trihedron
challenging

[m] 0.03 0.05 0.05 0.13
[deg] 2.55 3.16 3.36 4.18
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Fig. 9. Estimated trajectory in Office large sequence: The grey zones at 100 s and 125 s mark lights off. Zoomed zones represent fast motion.

and the frame-based systems ORBSlam3 [28] and SVO [11]
without loop-closing. EVO was bootstrapped with SVO in
our sequences. We achieve low estimation error compared to
the ground truth during regular motion. The other evaluated
state-of-the-art approaches have similar performance, as shown
in Fig. 9, with the exception of SVO, whose accuracy is
being affected by the lack of texture in the scene, resulting in
large drifts in translation. In poor illumination conditions, the
frame-based approaches ORBSlam3 and SVO stop working
immediately whilst EVO and our method remain unaffected.
The grayed out zones in the figure highlight the time when
lights were switched off. Fast-motion refers to aggressive
camera shake (strong handshaking of about 6 Hz, ≈2.5 m/s
and 12 rad/s). In such conditions, ORBSlam3 and SVO also
produce inaccurate estimates and stop working as they cannot
detect features. Our method, on the other hand, is still able
to compute an accurate estimate of the camera pose. EVO,
the other event-based method tested in these extreme motion
conditions fails to compute accurate estimates, despite its
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TABLE II
RMSE FOR REGULAR MOTION AND REAL-TIME FACTORS

Dataset Ours EVO ORB3 SVO
Office
large

[m] 0.07 0.08 0.11 0.37
[deg] 6.49 7.23 9.47 8.75

Trihedron [m] 0.03 0.05 0.08 0.12
[deg] 1.74 2.03 4.62 4.23

Office
L shape

[m] 0.03 0.04 0.03 0.05
[deg] 1.97 2.48 0.84 2.77

Office far [m] 0.04 0.06 0.05 0.04
[deg] 2.21 2.83 3.36 2.79

Dynamic
6dof

[m] 0.05 0.04 0.06 0.12
[deg] 2.6 2.9 2.79 3.51

RTF 3.571, 0.312 2.561, 0.372 1.313 1.453

Rate [1e6 ev/s] 0.9 - 1.95 0.95 - 1.7 - -
1Tracking only, 2Mapping only, 3Tracking and mapping

configuration thresholds were set as suggested by its authors.
In summary, compared to the ground truth, we achieve lower

root mean squared errors (RMSE) in all sequences with high
dynamic range (lights on and off) and fast motion, as shown
in Tab. I. In these challenging conditions, the frame-based
methods cannot be assessed. For regular motion scenarios
with proper illumination, the RMSE errors are in Tab. II. The
detection of small noisy lines from textured scenarios may
lead to mistaken data associations and hence inaccurate pose
estimates.

Experimentally we observe that the error in position and
orientation increases as we reduce the number of lines in the
scene (see Fig. 10). Having at least 6 lines in the image plane
is key for achieving low errors. For more than 6 lines the error
is (almost) constant, and it depends on such line’s quality. This
analysis was performed by manually removing lines from the
map and forcing the system to operate with a constant number
of lines in a small sequence. The tracking performance on
different speeds was also assessed in our previous work [16].

To assess the computational performance of our approach,
we define a dimensionless real-time factor (RTF) as the sam-
pling time of the DAVIS camera (30ms) divided by the time
required to process the incoming information for that same
time period. For EVO and our approach, the computational
performance is evaluated separately for the tracking and the
mapping threads as they run at different frequencies. Our
tracking module achieves a mean RTF of 3.57 in regular
motion, meaning it requires one-third of the event stream time
(∼ 8.5ms) to produce more than 100 estimations and process
all incoming events. The mapping node does not run on every
stream of 30ms but processes several of them simultaneously
(usually > 5). Hence, RTF factors up to 0.2 in mapping allow
the whole system to reach real-time performance. On average
our implementation is able to handle from 0.9 to 1.95 millions
events/s in sequences with regular and fast motion respectively
to maintain real time. These values are reported in Table II

B. Bootsrapping analysis

A small scenario with a Dell screen 47 × 29.4cm aspect
ratio 1.6, was reconstructed to assess the impact of these
bootstrapping methods. This screen was mapped after ini-
tializing the system with a known marker (Fig, 11(a)) or by
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Fig. 11. Screen reconstruction: (a) marker launch, (b) E+BA launch

TABLE III
BOOTSTRAPPING IMPACT COMPARISON

a[m] b[m] AR SF Time[ms] ∆r[mm]
I+Fast 0.466 0.304 1.54 1.02 0.26 -
E+Fast 0.462 0.296 1.56 0.99 0.32 0.34
E+Hough 0.473 0.307 1.55 1.03 0.52 0.41
E+BA 0.582 0.378 1.55 1.24 41 0.44
G. truth 0.470 0.293 1.6 1 - -

tracking the screen edges when using E+BA (Fig, 11(b)). The
reconstructed screen aspect ratio (AR=a/b) is nearly constant
for all bootstraps (∼ 1.54). E+BA reconstruction has a scale
factor of 1.24, and marker-based approaches reach values close
to 1. The estimation differences in position (∆r), taking as ref-
erence I+Fast, are minimal and are produced by noisy events
and non-perfect initial edge detections The comparison values
are reported in Table III. As expected, the computational cost
of E+BA is higher than solving PnP or PnPL. It requires 41ms
to compute the initial lines and poses, though it is a one-time
process. Additionally, E+BA has different axis orientation than
marker-based bootstraps (see figure 11) requiring an additional
rotation for ease of visualization.

V. CONCLUSIONS

The real-time PTAM approach presented recovers and opti-
mizes 3D lines successfully from human-made environments
while producing an accurate camera pose estimation. Our
tracking implementation is able to handle high dynamic
motions exceeding linear velocities of 2.5m/s and deficient
lighting conditions. Our motivation has been to exploit the
event rate fully, potentially achieving a throughput of estimates
in the MHz range. However, we found that a trade-off between
the size of windowed events and robustness against outliers
was necessary, lowering this rate to 3.3kHz. Our approach
improves the throughput by a factor of 10-15 compared to
EVO and reaches similar accuracy in normal conditions. In
higher dynamics our performance is better. The accuracy is
also comparable to that of modern frame-based systems ORB-
SLAM3 and SVO in normal conditions. We exceed these sys-
tems in terms of dynamics and challenging illumination thanks
the event camera design and our algorithmic implementation.
Future work will be devoted to improve performances in less
structured scenarios with challenging short or weak lines.
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