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A B S T R A C T

In this work we focus on reducing the wall clock time required to compute statistical estimators of highly
chaotic incompressible flows on high performance computing systems. Our approach consists of replacing a
single long-term simulation by an ensemble of multiple independent realizations, which are run in parallel.
A failure probability convergence criteria must be satisfied by the statistical estimator of interest to assess
convergence. The error analysis leads to the identification of two error contributions: the initialization bias
and the statistical error. We propose an approach to systematically detect the burn-in time needed in order to
minimize the initialization bias, as well as techniques to choose the effective time needed to keep the statistical
error under control. This is accompanied by strategies to reduce simulation cost. The proposed method is
assessed in application to the prediction of the drag force over high rise buildings and specifically in application
to the CAARC building, a relevant benchmark for the wind engineering community.
1. Introduction

The simulation of highly turbulent flows represents a well-establi-
shed challenge in computational fluid dynamics (CFD), with predictions
becoming more difficult as the Reynolds number (Re) increases. This
situation is explained by Kolmogorov’s theory which establishes that
turbulent flows are characterized by multiple temporal and spatial
scales, with an energy transfer cascade from larger eddies to smaller
ones (Pope, 2000). According to the theory, the ratio between the
largest and smallest length scales is proportional to Re3∕4, while the
ratio between the timescales is proportional to Re1∕2. This phenomenon
has practical implications on the flow around large objects, for example
at the building scale in wind engineering. Such simulations require
dealing with Re ≈ 108, thus implying that the smallest eddies in the flow
will be around 106 times smaller than the largest ones with dynamics
occurring at time scales around 105 times shorter. Such estimates

Abbreviations: CAARC, Commonwealth Advisory Aeronautical Council; CFD, computational fluid dynamics; CFL, Courant–Friedrichs–Lewy; CPU, central
processing unit; FE, finite element; HPC, high performance computing; ILES, implicit large eddy simulation; Kratos, Kratos Multiphysics; LES, large eddy
simulation; MC, Monte Carlo; NS, Navier–Stokes; OSS, orthogonal subgrid scales; QoI, quantity of interest; Re, Reynolds number; SC, spatially correlated; SE,
statistical error; VMS, variational multiscale
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providing a solution for the latter problem. Unfortunately, their application does not seem to be viable in chaotic problems (Wang et al., 2013).

effectively rule out the possibility of performing direct numerical sim-
ulations and show how even large eddy simulation (LES) approaches
(either based on filtering or on numerics, see e.g. implicit large eddy
simulations (ILESs) Grinstein et al., 2007) are challenging (Cochran
and Derickson, 2011).

From a practical point of view, one has to estimate statistics of
the flow, e.g. mean or variance quantities. Such estimations typically
require very long simulations which include the initial transient dy-
namics, required for the flow to develop, followed by the effective
dynamics, required for the estimator to converge. Unfortunately, de-
spite decades of hardware improvements, such simulations require
prohibitive runtimes. While the use of high performance computing
(HPC) systems may reduce these runtimes, practical limits exist on the
achievable speedup for a given problem size. The most important fea-
ture controlling the runtime is that time evolution in a single simulation
is intrinsically sequential (Makarashvili et al., 2017).1
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Acknowledging such limitations, we aim at exploring an alternative
strategy based on estimating statistics by averaging over numerous
independent simulations, i.e. statistical ensembles. The upshot of this
strategy is that each of the simulations within the ensemble can be
launched independently and run in parallel, thus providing an obvious
opportunity for acceleration when abundant computational resources
are available. This technique has been investigated in the literature
in two different settings. In the first (Krasnopolsky, 2018), the focus
is on reducing the wall clock time on constant hardware resources.
Approaches to this problem typically consist of solving linear systems
with multiple right-hand sides (Jiang and Layton, 2014). In the second,
which our work considers, the focus is on exploiting the concurrency
capabilities of HPC systems (Makarashvili et al., 2017).

As we shall show the use of ensemble averaging is always benefi-
cial in speeding up calculations. Nevertheless the ‘‘optimal’’ strategy
appears to be different when a constant inlet is considered (deter-
ministic or uncertain) and when turbulent fluctuations are considered.
In the first two cases the best approach to accelerate the solution
seems to consist in generating multiple random initial conditions for
each realization of inlet conditions. The use of ensemble averaging
between the simulations obtained for a same inlet but different initial
conditions allows to effectively employ much shorter time windows
while achieving a high level of parallelism. A similar effect can be
achieved when including random fluctuations in the inlet description
by directly taking ensembles over ‘‘short’’ realization with randomly
generated inlet conditions and fluctuations.

Even though ensemble averaging has been investigated previously,
the application we target (wind engineering) as well as the numeri-
cal method we employ (ILES) is significantly different from previous
investigations, thus leaving the applicability of ensemble averaging
unclear. The goal of our work is therefore to develop a technique to
assess the efficacy of ensemble averaging when applied to any given
turbulent flow problem. To this end, one of our main contributions is
a statistical analysis of the approach. Complementarily, the practical
question we address in this work is: How efficient is the ensemble
approach in the context of under-resolved LES methods, in particular,
in wind engineering applications? Although we have targeted a specific
class of engineering problems, our strategies are general and can be
applied to assess the ensemble average approach for other, unrelated,
problems.

In order to control bias associated to the initial conditions, the es-
timation of statistics of a turbulent flow entails collecting data starting
only at some point in time after the flow has developed (Krasnopolsky
et al., 2018), i.e. once the solution has been drawn to the attrac-
tor (Sagaut, 2006). We refer to the discarded initial time interval as
the burn-in time and the remainder as the effective time. When a single
long simulation is performed, the burn-in time is small compared to
the remaining simulation time, which contains the effective dynamics.
Unfortunately, this is not the case when the same amount of simulation
time is distributed across an ensemble. Indeed, the same burn-in time
will be paid by all realizations in the ensemble and, as a consequence,
the total effective time will be reduced. The reduction of the burn-
in time is therefore key to making ensemble averaging feasible. Our
statistical model provides the tools to analyze the bias associated with
the initial conditions, thus allowing us to faithfully select a practical
burn-in time.

One of the additional research questions we address is what to as-
sign as a distribution for the initial conditions in the cases in which they
play a crucial role (inlet profile constant in time, without fluctuations).
The aim here is again to control the burn-in time. To this end we
consider spatially-correlated solenoidal fields. Another approach to cost
reduction which we explore is to use a less accurate but less expensive
time integration procedure during the burn-in phase, e.g. by increasing
the time step size.

The final question we seek to address is how long each realization
2

should be. Increasing the number of realizations improves concurrency
but also increases the aggregated burn-in time, so there is a trade-off
that needs to be considered. The present study evaluates this trade-off
in the case of flows around bodies. In this work, we demonstrate that
very short simulations are sufficient, thus making the approach highly
efficient for the class of problems we have targeted. Moreover we verify
that the analytical estimates correlate well with the measured data, thus
confirming the validity of the predictions.

Our approach is validated with multiple numerical examples, which
are available online (Tosi et al., 2021b). For solving the physical
problems considered in this work, we use Kratos Multiphysics (Kratos)
(Dadvand et al., 2010, 2013) as finite element (FE) solver software,
XMC (Ayoul-Guilmard et al., 2020) as hierarchical Monte Carlo (MC)
library and PyCOMPSs (Badia et al., 2015; Lordan et al., 2014; Tejedor
et al., 2017) as programming model for distributed computing. The
wind model described in Section 2 is based on Keith et al. (2021a,b).
A reference implementation is available within Mataix et al. (2021).

The remainder of the article is structured as follows. In Section 2
we describe the wind model, the system we aim at solving and the
ILES method we use. In Section 3, we describe our statistical approach.
Different numerical experiments evaluating the performance of the
methods we propose are presented in Section 4. Concluding remarks
close the work in Section 5.

2. Wind modeling

In this work, we are interested in solving problems of wind flows
around high-rise buildings, whose design is of great concern for re-
searchers and engineers to ensure correct performance in terms of
serviceability and habitability (Zheng et al., 2018). Such buildings
reside entirely within the atmospheric boundary layer; a layer of Earth’s
atmosphere, extending vertically from its surface, which is character-
ized by constant shear stress in the vertical direction (Kaimal and
Finnigan, 1994). This region is generally recognized to be neutrally sta-
ble at high wind speeds. That is, the buoyancy forces due to temperature
gradients are negligible in comparison to surface-driven friction forces.

As is typical in the wind engineering community, we model the
natural wind effects in the atmospheric boundary layer by decomposing
the incoming velocity field, 𝒖 = 𝒖 + 𝒖′, into its stationary mean profile
𝒖 and unsteady turbulent fluctuations 𝒖′. The mean wind profile is a
contribution to the velocity field which only changes gradually over
the span of several hours or days. It is generally considered constant
with respect to the scale of most numerical simulations. On the other
hand, the turbulent fluctuations introduce short term wind gusts with a
time span of seconds or minutes. This term induces temporary states of
maximum overall wind loading and can induce resonant effects in large
structures if their structural eigenfrequencies coincide with frequencies
in the gust-induced wind load pattern.

Let 𝐷 denote a section of the atmospheric boundary layer lying
above a flat section of Earth’s surface, parameterized by the Cartesian
coordinates (𝑥, 𝑦, 𝑧). Let 𝒆 ∈ R3 be a unit normal vector which denotes
the mean wind direction, 𝒖 ∥ 𝒆. Under the assumptions of neutral
stability, homogeneous roughness, the mean velocity 𝒖 is function of
the vertical coordinate (𝒖 = 𝑓 (𝑧), with 𝑓 (⋅) being a generic function
seful to highlight dependencies) and is often modeled by the following
ogarithmic profile (Tamura and Kareem, 2013) when 𝑧 > 𝑧0:

𝒖 =
𝑢∗
𝜅

ln
( 𝑧
𝑧0

)

𝒆, (1)

where 𝜅 ≈ 0.41 is the von Karmán constant and 𝑧0 > 0 the roughness
eight parameter.

Depending on the local terrain, the variety of obstacles affecting
ground friction can change vastly. For instance, consider that different
friction forces will arise from flow across grass, forests, open water, or
urban canopies. In our studies, we consider cases in which the local
terrain type can be characterized by a fixed or a varying roughness
height parameter 𝑧 . Intervals of validity for this parameter, for various
0
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Fig. 2.1. CAARC problem domain. 𝐻 = 180m, 𝑊 = 45m and 𝐿 = 30m. Wind gusts are omitted for the sake of simplicity, and only the mean wind profile is represented.
terrain categories, can be found in numerous engineering code books;
e.g., Joint committee on structural safety. In addition, one must specify
the friction velocity 𝑢∗, related to the shear stress on the ground 𝜏0
by 𝜏0 = 𝜌𝑢2∗. This is done by specifying a reference velocity 𝒖̄𝐻 at a
reference height 𝐻 (see Section 2.1) which are inserted into Eq. (1) to
obtain 𝑢∗.

In this work, we also assume that 𝒆 = (1, 0, 0), that corresponds to
an equal probability that the incoming wind will arrive from a fixed
horizontal direction. In some environments, this is a poor assumption
because geographic features may make the incoming wind arriving
from any horizontal direction. In addition, we assume that the three
mean profile parameters 𝑢∗, 𝑧0, and 𝒆 are independent. In specific
application scenarios, this may also be a poor modeling assumption.

Modeling turbulent fluctuations with physical wind gust statistics
is significantly more challenging than modeling the mean profile. Nu-
merous techniques have been proposed in the engineering literature
to tackle this issue, see, e.g., Huang et al. (2010), Guichard (2019),
Ji et al. (2022) and Yang et al. (2020) for a numerical comparison.
In this study, we choose to model the velocity fluctuations using
the stochastic atmospheric boundary layer turbulence model proposed
in Mann (1994, 1998); hereafter referred to as the Mann model. This
model requires the parameters 𝛤 = 3.9, 𝐿 = 0.59𝐻 and 𝛼𝜀2∕3 =
3.2𝑢∗∕𝐻2∕3. The first controls the anisotropy due to shear, the second
is a characteristic length scale defined in terms of the characteristic
height of the problem 𝐻 and the third is required for the definition
of the energy spectrum. The fluctuations are generated in the Fourier
space with a prescribed spectrum (that depends on 𝛤 ) and they have
a correlation proportional to 𝐿 and a variance proportional to 𝑢2∗. The
proportionality coefficients depend on 𝛤 (see figure 4 in Mann, 1994)
and their values are around 4.7 and 3.1 for 𝛤 = 3.9. Once translated
into the physical space, the Taylor’s hypothesis is invoked to obtain the
time dependent inlet field by evaluating at 𝑥 = 𝒖̄𝐻 𝑡, see Mann (1998).
Therefore, the temporal autocorrelation scale is proportional to 𝐿∕𝒖̄𝐻 .

2.1. High-rise building problem

Let us introduce the high-rise Commonwealth Advisory Aeronauti-
cal Council (CAARC) building that we consider in this work, which has
been widely used in literature in wind engineering benchmarks (Braun
and Awruch, 2009; Huang et al., 2007; Holmes and Tse, 2014; Obasaju,
1992; Chen and Letchford, 2004; Li et al., 2020; Thordal et al., 2020a,b;
Alminhana et al., 2018). The problem domain is presented in Fig. 2.1.
The CAARC is a parallelepiped building with width 45m, length 30m
3

Table 1
Physical parameters problem. The velocity 𝒖̄𝐻 is expressed in ms−1, the height 𝐻 in
m, the roughness height 𝑧0 in m, the density 𝜌 in kgm−3, the density 𝜇 in kgm−1 s−1

and the Re number is dimensionless.
𝒖̄𝐻 𝐻 𝑧0 𝜌 𝜇 Re

40 180 2 or 0.1 – 0.7 1.225 1.846e−5 119447453

and height 180m. The domain is 1800m long, 864m large and 576m
high. We report in Table 1 the physical properties of the problem,
where we remark that the reference mean wind velocity 𝒖̄𝐻 is de-
fined at reference height 𝐻 and that the roughness height is problem
dependent. The roughness height can be fixed or can be a uniformly
distributed random variable  (0.1, 0.7), where 0.1 and 0.7 are the mini-
mum and maximum values, respectively. The Re is 119 millions, where
a characteristic length of 45m is considered. Under such conditions, it
is clear that the problem is badly under-resolved.

The fluid flow is modeled with the incompressible Navier–Stokes
(NS) equations, and the system reads
𝜕𝒖
𝜕𝑡

+ 𝒖 ⋅ ∇𝒖 − 𝜈𝛥𝒖 + ∇𝑝 = 𝒇 in [0, 𝑇 ] ×𝐷

∇ ⋅ 𝒖 = 0 in [0, 𝑇 ] ×𝐷

𝒖 = 𝒖0(𝒙) in 𝑡 = 0 ×𝐷

𝒖 = 𝑓 (𝑧, 𝑧0) on [0, 𝑇 ] × 𝛤in,

(2)

where 𝛤in refers to the inlet boundary of the domain 𝐷, [0, 𝑇 ] is the time
window and 𝑓 (⋅) is a generic function useful to express dependencies.
Slip boundary conditions are applied on the walls and the ceiling,
no-slip boundary conditions on the building and on the floor.

Three different boundary conditions of the problem are considered
and therefore different configurations of the system are solved.

• The first scenario considers a constant in time fixed mean wind
profile as boundary condition. The problem is solved with the
standard time averaging method and the ensemble averaging
method.

• The second scenario considers a constant in time stochastic mean
wind profile as boundary condition. The problem is solved with
the ensemble-based MC method.

• The third scenario considers turbulent fluctuations around a
stochastic mean wind profile as boundary condition. The problem
is solved with the ensemble-based MC method.
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In next section, we present the statistical framework that we develop
for solving the high-rise building problem, under the three scenarios
described above.

2.2. Implicit large eddy simulation

In this section we briefly describe the ILES model we use for
the simulation of turbulent flows around obstacles. Traditional LES
methods are based on a filtering of the NS equations, which results in
an extra term that requires modeling. Many different types of models
are available (Sagaut, 2006) but the problem is considered from the
continuous point of view, the discretization is performed after physical
approximations have been made. However, the influence of the numer-
ical scheme is very important, as described in Sagaut (2006, Chapter 7).
Numerical experiments suggest that numerical errors are larger than
the contribution of extra terms introduced by physical models when
second order methods are used. The solution to this problem is to
increase the accuracy of the numerical scheme or to use ‘‘pre-filtering’’
which consists of keeping the filter size constant while reducing the
mesh size.

An alternative approach is the ILES method, pioneered in Boris et al.
(1992). The idea is to consider the development of LES methods as
discretization problems, taking into account the effect of missing scales
through purely numerical artifacts. This line was further developed
in Grinstein et al. (2007) but it became very popular after the introduc-
tion of the variational multiscale (VMS) method in Hughes et al. (1998).
The VMS method was originally introduced as a framework to develop
stable and accurate numerical methods of some class of problems
as a generalization of older techniques like upwinding and artificial
viscosities. However, scale separation is at the heart of VMS and it was
soon recognized that it could be used to perform LES (Hughes et al.,
2000). A distinctive feature of this approach is that scale separation is
obtained by a projection operator. The solution space 𝑉 is decomposed
as 𝑉 = 𝑉ℎ ⊕𝑉 , into a discrete space 𝑉ℎ, e.g. a FE space built on top of
ℎ of the domain, and a space of subgrid or unsolved scales 𝑉 whose

ffect is modeled to obtain a closed stable and accurate problem in 𝑉ℎ.
n this way, applying the VMS decomposition to the NS equations, the
elocity 𝒖 ∈ 𝑉 is decomposed as 𝒖 = 𝒖ℎ + 𝒖̃; a similar decomposition
or the pressure can be introduced although it is not essential to have
tability.

There are many VMS methods and a complete review of them is
ut of the scope of this article, see e.g. Codina et al. (2017). Some
f these models have been successfully used for the LES of turbulent
lows (Bazilevs et al., 2007; Nogueira et al., 2010; Colomés et al., 2015).

In all cases an algebraic approximation of the differential operator
s required, e.g.

⋅ ∇𝒖̃ − 𝜈∇2𝒖 ≈ 𝜏−1𝒖̃, (3)

here 𝜏 is a piecewise constant function, computed within each ele-
ent 𝐾 ∈ ℎ as

−1
𝐾 =

𝑐1𝜈
ℎ2𝐾

+
𝑐2‖𝒖ℎ + 𝒖̃‖𝐾

ℎ𝐾
. (4)

Here, ℎ𝐾 is a characteristic length of 𝐾, 𝑐1 and 𝑐2 are algorithmic
constants that depend only on the degree of the finite element approx-
imation being used, and ‖ ⋅ ‖𝐾 is some norm defined on each element,
e.g. the 𝐿2(𝐾)-norm.

Some further modeling choices lead to different VMS models. These
choices include:

• Static/Dynamic subscales: from the VMS decomposition it follows
that 𝜕𝑡𝒖 = 𝜕𝑡𝒖ℎ + 𝜕𝑡𝒖̃. Considering dynamic subscales, introduced
in Codina et al. (2007), has some advantages like a correct
behavior of time integration schemes and better accuracy. In
particular, stability and convergence for the Stokes problem can
be proved without any restriction on the time step size and the
4

𝒖

stabilization parameters on which the formulation depends. The
typical approach, however, is the use of quasistatic subscales to
neglect 𝜕𝑡𝒖̃.

• Linear/Nonlinear subscales: applying the VMS decomposition to
the nonlinear convective term, four different contributions are
obtained on each equation (fine and coarse), that is, 𝒖 ⋅ ∇𝒖 =
(𝒖ℎ+ 𝒖̃) ⋅∇(𝒖ℎ+ 𝒖̃). After the approximation in Eq. (3) it is possible
to keep all the contributions, as proposed in Codina et al. (2007).
A simpler alternative is to perform the approximation 𝒖 ⋅ ∇𝒖 ≈
𝒖ℎ ⋅∇𝒖+ 𝒖̃ (thus neglecting 𝒖̃ in Eq. (4) and the quadratic term in
𝒖̃ in Eq. (3)) which is enough to have numerical stability.

• The space of subscales: the choice of a space for the approximation
of the subscales defines a projector  to be used in the fine scale
equation. One option is to choose 𝑉 as the space of the residual,
that is to simply take  = I (the identity). We refer to this space
of subscales as the algebraic subscales. Another possibility is to
consider the space of the subscales orthogonal to the FE space,
that is, to take  ∶= 𝛱⊥

ℎ = 𝐈 − 𝛱ℎ, where 𝛱ℎ is the projection
onto the FE space (Codina et al., 2007).

A complete assessment of these modeling choices for the LES of
urbulent flows can be found in Colomés et al. (2015). In this work
e use static, linear, orthogonal subscales. Using nonlinear and/or
ynamic subscales requires tracking them along the iterative and time
ntegration loops, with the consequent increase in memory demands
nd computational cost (the simplest option is to store the subscales at
he integration points). Although using dynamic, nonlinear orthogonal
ubscales provides a better accuracy, these subscales also imply a
igher computational cost. The evaluation of this problem-dependent
rade-off is outside the scope of this article.

However, even if it is simpler to consider algebraic subscales,
rthogonal subgrid scales (OSS) enjoy a number of important properties
hat are worth having, such as stability without restrictions on the time
tep size (Codina et al., 2007), a clear scale separation in the energy
ransfers and the possibility of predicting backscatter with a stable
umerical method (Principe et al., 2010). It is worth mentioning that,
fter the introduction of OSS a number of projection-based method
ppeared in which only some terms involving fine scales are kept in
he resolved scale equation, see section 4.1 in Codina et al. (2017).
he method we use in this article belongs to this class. It retains only
he advective and pressure terms and projects them separately, so it is
sually referred to as term-by-term OSS.

. Statistical analysis

In this section, we introduce our statistical framework. In Sec-
ion 3.1 we define the statistical operators and the convergence proba-
ility criterion. Different sources of error are identified and analyzed in
ection 3.2. We discuss the generation of initial velocity fields, which
rovides independent ensemble realizations in Section 3.3. Finally,
onsiderations on how to determine the length of the burn-in time are
rovided in Section 3.4.

.1. Problem outline

We start introducing some preliminary notation. Given a random
ariable 𝑋, the expected value, variance, standard deviation and co-
ariance (with respect to another random variable 𝑌 ) of 𝑋 are denoted
ith E[𝑋], V[𝑋], 𝜎[𝑋] =

√

V[𝑋] and coV[𝑋, 𝑌 ], respectively. Given
𝐽 realizations of 𝑋, such statistical estimators can be approximated
by sample average E𝐽 [𝑋], sample variance V𝐽 [𝑋], sample standard
eviation 𝜎𝐽 [𝑋] and sample covariance, respectively.

Let us consider the NS problem of Eq. (2). We have 𝒖0(𝒙, 𝑤1) that is
random field, but also 𝑧0(𝑤2) is a random variable.

emark 3.1. If 𝒖′ ≠ 0, wind gusts dominate over initial conditions
(𝒙, 𝑤 ) and we can therefore consider 𝒖′(𝑤 ) as random variable.
0 1 1
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We describe this situation with 𝛺 = 𝛺1 × 𝛺2, where 𝑤1 ∈ 𝛺1 and
2 ∈ 𝛺2 are independent uncertainties and 𝛺1 and 𝛺2 are their sample

spaces (Ross, 2010, chapter 6). Then, P = P1 × P2 and the expected
alue of a generic joint random variable 𝑋(𝑤1, 𝑤2) is

E[𝑋] = ∫𝛺1×𝛺2

𝑋(𝑤1, 𝑤2) d𝛺1 ×𝛺2(𝑤1, 𝑤2)

= ∫𝛺1
∫𝛺2

𝑋(𝑤1, 𝑤2) d𝛺2(𝑤2) d𝛺1(𝑤1), (5)

where d𝛺𝑖(𝑤𝑖) ∶= 𝜚𝑖 d𝑤𝑖 and 𝜚𝑖 is the probability density function of
𝑤𝑖, with 𝑖 = {1, 2}. We can introduce the operators E1 and E2 as

E𝑖[𝑋] = ∫𝛺𝑖

𝑋(𝑤1, 𝑤2) d𝛺𝑖(𝑤𝑖), (6)

where 𝑖 = {1, 2}. We remark that E𝑖 is a random variable in 𝛺𝑗 , where
𝑖 ≠ 𝑗. Moreover,

E[𝑋] = E1[E2[𝑋]] = E2[E1[𝑋]] = E1◦E2[𝑋]. (7)

Let 𝑢(𝑡,𝒙, 𝑤1, 𝑤2) ∶= (𝒖(𝑡,𝒙, 𝑤1, 𝑤2), 𝑝(𝑡,𝒙, 𝑤1, 𝑤2)) denote the so-
lution of the NS problem. From the solution field we compute the
quantity of interest (QoI), that is a process, and reads Q(𝑡, 𝑤1, 𝑤2) ∶=
Q(𝑢(𝑡,𝒙, 𝑤1, 𝑤2)). The estimator we aim at computing is the long-term
expected value of Q(𝑡, 𝑤1, 𝑤2), which reads

Q = lim
𝑡→∞

E[Q](𝑡). (8)

Let us now consider to have ergodicity in 𝛺1 and not in 𝛺2. If we think,
for example, about 𝑧0(𝑤2), it is easy to see that different realizations
will not converge to the same value, no matter how long the simulation
is.

Now E1 can be approximated in two ways, since

E1[Q] = ⟨Q(𝑡, 𝑤1, 𝑤2)⟩ = lim
𝑇→∞

1
𝑇 ∫

𝑇

0
Q(𝑡, 𝑤1, 𝑤2) d𝑡. (9)

e can take a finite time interval

1[Q] ≈ ⟨Q(𝑡, 𝑤1, 𝑤2)⟩𝑇0 ,𝑇 = 1
𝑇 − 𝑇0 ∫

𝑇

𝑇0
Q(𝑡, 𝑤1, 𝑤2) d𝑡 (10)

or an ensemble of them

E1[Q] ≈
𝑀
∑

𝑚=1
⟨Q𝑚⟩𝑇0 ,𝑇 = 1

𝑀

𝑀
∑

𝑚=1

1
𝑇 − 𝑇0 ∫

𝑇

𝑇0
Q𝑚 d𝑡, (11)

where Q𝑚 ∶= Q(𝑡, 𝑤(𝑚)
1 , 𝑤2) are different realizations in 𝑤1 and 𝑇0 is the

urn-in time.
Now, the expected value operator without ergodicity can be approx-

mated as

2[Q] ≈
1
𝑁

𝑁
∑

𝑛=1
Q𝑛, (12)

where Q𝑛 are different realizations in 𝑤2, i.e. Q𝑛 ∶= Q
(

𝑡, 𝑤1, 𝑤
(𝑛)
2

)

.
Finally, the long term expected value can be estimated as

Q ≈ E𝑁,𝑀 [⟨Q𝑛,𝑚⟩𝑇0 ,𝑇 ] =
1

𝑁𝑀

𝑁
∑

𝑛=1

𝑀
∑

𝑚=1
⟨Q𝑛,𝑚⟩𝑇0 ,𝑇 , (13)

where Q𝑛,𝑚 ∶= Q
(

𝑡, 𝑤(𝑚)
1 , 𝑤(𝑛)

2

)

.

emark 3.2. The estimation provided by Eq. (13) comes from con-
idering 𝒖0(𝒙, 𝑤1) (or 𝒖′(𝑤1)) and 𝑧0(𝑤2), but it is not limited to such

random variables. It can be generalized to any random variable satisfy-
ing ergodicity in 𝛺1 and any random variable not satisfying ergodicity
in 𝛺2.

Using this notation, the statistical problem we face is to find the
optimal values of 𝑁,𝑀, 𝑇 , 𝑇 (those that minimize the computational
5

0 ∫
cost and/or the time to solution) while satisfying the probability con-
vergence criterion

P

[

|

|

|

|

|

|

1
𝑁𝑀

𝑁
∑

𝑛=1

𝑀
∑

𝑚=1
⟨Q𝑛,𝑚⟩𝑇0 ,𝑇 − Q

|

|

|

|

|

|

> 𝜀

]

≤ 𝜙 , 𝜀 > 0 , 𝜙 ≪ 1 , (14)

where 𝜀 denotes the absolute tolerance and 1 − 𝜙 is the confidence on
the final estimation. Such a condition requires that the probability of
the error exceeding 𝜀 should not be greater than 𝜙.

3.2. Error analysis

There are two sources of error in Eq. (13). First, the choice of the
random initial condition may not be compatible with the long-term
statistically stationary, thus triggering a transient perturbation with a
nonvanishing contribution to the mean, sometimes called initialization
bias (Banks et al., 2004). The use of a finite number of samples of finite
duration is a second source of error. Increasing the number of samples,
as well as the length of their effective time intervals, will also reduce
the influence of the initialization bias.

3.2.1. Bias of initial conditions
We analyze now the error in approximating Eq. (13). We assume

each realization Q𝑛,𝑚 can be described as the sum of a transient per-
turbation 𝐴𝑛,𝑚 and of a statistical steady-state process 𝑆𝑛,𝑚. Then,

Q𝑛,𝑚 = 𝐴𝑛,𝑚 + 𝑆𝑛,𝑚 . (15)

Assuming Eq. (15) implies that E1[𝐴𝑛,𝑚](𝑡) ←←←←←←←←←←←←←←←←←←←→𝑡→∞
0, from which it follows

that

E1[Q𝑛,𝑚](𝑡) ←←←←←←←←←←←←←←←←←←←→𝑡→∞
E1[𝑆𝑛,𝑚] . (16)

y applying the E2 operator to the above equation, from Eq. (7) we
btain

[Q𝑛,𝑚](𝑡) ←←←←←←←←←←←←←←←←←←←→𝑡→∞
E[𝑆𝑛,𝑚] = Q . (17)

We remark that E[𝐴𝑛,𝑚](𝑡) and E[Q𝑛,𝑚](𝑡) are the expected values of the
ransient perturbation 𝐴𝑛,𝑚 and of the QoI Q𝑛,𝑚 at time 𝑡.

In this setting,
[

1
𝑁𝑀

𝑁
∑

𝑛=1

𝑀
∑

𝑚=1
⟨Q𝑛,𝑚⟩𝑇0 ,𝑇

]

= 1
𝑁𝑀

𝑁
∑

𝑛=1

𝑀
∑

𝑚=1
E
[

⟨Q𝑛,𝑚⟩𝑇0 ,𝑇

]

= 1
𝑁𝑀

𝑁
∑

𝑛=1

𝑀
∑

𝑚=1

(

E
[

⟨𝐴𝑛,𝑚⟩𝑇0 ,𝑇

]

+ E
[

⟨𝑆𝑛,𝑚⟩𝑇0 ,𝑇

])

.

(18)

ince 𝑆𝑛,𝑚 is statistically steady-state, then

[⟨𝑆𝑛,𝑚⟩𝑇0 ,𝑇 ] = E
⎡

⎢

⎢

⎣

∫ 𝑇
𝑇0

𝑆𝑛,𝑚(𝑡) d𝑡

𝑇 − 𝑇0

⎤

⎥

⎥

⎦

= 1
𝑇 − 𝑇0 ∫

𝑇

𝑇0
E[𝑆𝑛,𝑚] d𝑡 = E[𝑆𝑛,𝑚] = Q .

(19)

Therefore,

E

[

1
𝑁𝑀

𝑁
∑

𝑛=1

𝑀
∑

𝑚=1
⟨Q𝑛,𝑚⟩𝑇0 ,𝑇

]

= B + Q , (20)

where

B =
|

|

|

|

|

|

1
𝑁𝑀

𝑁
∑

𝑛=1

𝑀
∑

𝑚=1
E
[

⟨𝐴𝑛,𝑚⟩𝑇0 ,𝑇

]

|

|

|

|

|

|

(21)

s the bias of the initial condition, which can be mitigated if E[⟨𝐴𝑛,𝑚⟩𝑇0 ,𝑇 ]
ecays sufficiently fast. If
∞
|

|

E[𝐴𝑛,𝑚](𝑡)|| d𝑡 < ∞, (22)

0
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then we have that

|

|

|

E[⟨𝐴𝑛,𝑚⟩𝑇0 ,𝑇 ]
|

|

|

= 1
𝑇 − 𝑇0

|

|

|

|

|

∫

𝑇

𝑇0
E[𝐴𝑛,𝑚](𝑡) d𝑡

|

|

|

|

|

≤ 1
𝑇 − 𝑇0 ∫

𝑇

𝑇0

|

|

E[𝐴𝑛,𝑚](𝑡)|| d𝑡

≤ 1
𝑇 − 𝑇0 ∫

∞

0
|

|

E[𝐴𝑛,𝑚](𝑡)|| d𝑡 ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑇−𝑇0→∞
0.

(23)

In other words, if Eq. (22) holds, then increasing 𝑇 − 𝑇0 eventually
decreases |B|.

An estimation of the decay rate can be made under stronger as-
sumptions on the transient perturbation. For illustration purposes we
consider a fast decay of the form

𝐴𝑓
𝑛,𝑚(𝑡) = 𝐴𝑓

0,𝑛,𝑚e
− 𝑡

𝜏 , (24)

which is an example of exponentially ergodic processes. For a wide
class of stochastic processes satisfying a dissipativity condition, it can
be proved that the transient perturbation decays exponentially (Meyn
and Tweedie, 1993, theorem 6.1), i.e. it satisfies

|E[𝐴𝑓 ]| = |E[𝐴𝑓
0 ]|e

− 𝑡
𝜏 , (25)

as in Fang and Giles (2019, equation (3)).
If we now consider its time average we get

E[⟨𝐴𝑓
𝑛,𝑚⟩𝑇0 ,𝑇 ] = E[𝐴𝑓

0,𝑛,𝑚]⟨e
− 𝑡

𝜏
⟩𝑇0 ,𝑇 = 𝜏E[𝐴𝑓

0,𝑛,𝑚]
(

e−𝑇0∕𝜏 − e−𝑇 ∕𝜏
𝑇 − 𝑇0

)

, (26)

rom where we see a decay of the form

[⟨𝐴𝑓
𝑛,𝑚⟩𝑇0 ,𝑇 ] = ((𝑇 − 𝑇0)−1). (27)

herefore, E[⟨𝐴𝑓
𝑛,𝑚⟩𝑇0 ,𝑇 ] is a decreasing function of 𝑇 − 𝑇0. However,

s it can be seen in Eq. (26), it is also decreasing when 𝑇 − 𝑇0 is kept
onstant while 𝑇 and 𝑇0 separately increase. In practice, 𝑇 is fixed so
ncreasing 𝑇0 decreases 𝑇 − 𝑇0; this is the trade-off we analyze in the
xamples of Section 4.

.2.2. Statistical error
The previous analysis makes it clear that the bias can be reduced by

ncreasing 𝑇 −𝑇0 and, for specific transient perturbations, increasing 𝑇0.
owever, to assess statistical accuracy, Eq. (14) needs to be evaluated.
iven a bound
E
[

1
𝑁𝑀

∑𝑁
𝑛=1

∑𝑀
𝑚=1⟨Q𝑛,𝑚⟩𝑇0 ,𝑇

]

− 1
𝑁𝑀

∑𝑁
𝑛=1

∑𝑀
𝑚=1⟨Q𝑛,𝑚⟩𝑇0 ,𝑇

|

|

|

|

≤ 𝜀, the

asymptotic normality of the estimator 1
𝑁𝑀

∑𝑁
𝑛=1

∑𝑀
𝑚=1⟨Q𝑛,𝑚⟩𝑇0 ,𝑇 , in the

imit 𝑁,𝑀 → ∞, implies that (Durrett, 2019, chapter 3)
|

|

|

|

|

|

E

[

1
𝑁𝑀

𝑁
∑

𝑛=1

𝑀
∑

𝑚=1
⟨Q𝑛,𝑚⟩𝑇0 ,𝑇

]

− 1
𝑁𝑀

𝑁
∑

𝑛=1

𝑀
∑

𝑚=1
⟨Q𝑛,𝑚⟩𝑇0 ,𝑇

|

|

|

|

|

|

≤ 𝜙

√

√

√

√V

[

1
𝑁𝑀

𝑁
∑

𝑛=1

𝑀
∑

𝑚=1
⟨Q𝑛,𝑚⟩𝑇0 ,𝑇

]

≤ 𝜀, (28)

with probability 1 − 𝜙 as the tolerance 𝜀 → 0. 𝜙 is the confidence
oefficient defined as 𝜙 = 𝛷−1(1 − 𝜙

2 ), where 𝛷 is the cumulative
distribution function of a standard normal distribution. The total error
in Eq. (14) can then be bounded with confidence 1 − 𝜙, as follows,
|

|

|

|

|

|

1
𝑁𝑀

𝑁
∑

𝑛=1

𝑀
∑

𝑚=1
⟨Q𝑛,𝑚⟩𝑇0 ,𝑇 − Q

|

|

|

|

|

|

≤
|

|

|

|

|

|

E

[

1
𝑁𝑀

𝑁
∑

𝑛=1

𝑀
∑

𝑚=1
⟨Q𝑛,𝑚⟩𝑇0 ,𝑇

]

− Q
|

|

|

|

|

|

+
|

|

|

|

|

|

E

[

1
𝑁𝑀

𝑁
∑

𝑛=1

𝑀
∑

𝑚=1
⟨Q𝑛,𝑚⟩𝑇0 ,𝑇

]

− 1
𝑁𝑀

𝑁
∑

𝑛=1

𝑀
∑

𝑚=1
⟨Q𝑛,𝑚⟩𝑇0 ,𝑇

|

|

|

|

|

|

≤ B + 𝜙

√

√

√

√V

[

1
𝑁𝑀

𝑁
∑

𝑀
∑

⟨Q𝑛,𝑚⟩𝑇0 ,𝑇

]

.

(29)
6

𝑛=1 𝑚=1
We define the statistical error (SE) to be

SE ∶=

√

√

√

√V

[

1
𝑁𝑀

𝑁
∑

𝑛=1

𝑀
∑

𝑚=1
⟨Q𝑛,𝑚⟩𝑇0 ,𝑇

]

. (30)

hus, using Eq. (20), we get

1
𝑁𝑀

𝑁
∑

𝑛=1

𝑀
∑

𝑚=1
⟨Q𝑛,𝑚⟩𝑇0 ,𝑇 − Q

|

|

|

|

|

|

≤ |B| + 𝜙SE, (31)

where B is the initialization bias defined in Eq. (21). For a given
confidence 1 − 𝜙, the probability convergence criterion then reads

B| + 𝜙SE ≤ 𝜀 . (32)

The bias error |B| was analyzed above, let us now focus on the SE
erm. We can write
[

1
𝑁𝑀

𝑁
∑

𝑛=1

𝑀
∑

𝑚=1
⟨Q𝑛,𝑚⟩𝑇0 ,𝑇

]

= 1
𝑁2

𝑁
∑

𝑛=1
V

[
∑𝑀

𝑚=1⟨𝐴𝑛,𝑚⟩𝑇0 ,𝑇

𝑀

]

+ 1
𝑁2

𝑁
∑

𝑛=1
V

[
∑𝑀

𝑚=1⟨𝑆𝑛,𝑚⟩𝑇0 ,𝑇

𝑀

]

+ 1
𝑁2

𝑁
∑

𝑛,𝑘=1
𝑛≠𝑘

coV
[
∑𝑀

𝑚=1⟨Q𝑛,𝑚⟩𝑇0 ,𝑇

𝑀
,
∑𝑀

𝑚=1⟨Q𝑘,𝑚⟩𝑇0 ,𝑇

𝑀

]

,

(33)

where we assume 𝐴𝑛,𝑚 and 𝑆𝑛,𝑚 to be independent. The second term of
the right hand side of Eq. (33) can be written as

V

[
∑𝑀

𝑚=1⟨𝑆𝑛,𝑚⟩𝑇0 ,𝑇

𝑀

]

= 1
𝑀2

𝑀
∑

𝑚=1
V
[

⟨𝑆𝑛,𝑚⟩𝑇0 ,𝑇

]

+ 1
𝑀2

𝑀
∑

𝑚,𝑘=1
𝑚≠𝑘

coV
[

⟨𝑆𝑛,𝑚⟩𝑇0 ,𝑇 , ⟨𝑆𝑛,𝑘⟩𝑇0 ,𝑇

]

=
V
[

𝑆𝑛,𝑚
]

𝑀(𝑇 − 𝑇0)2 ∫

𝑇

𝑇0
∫

𝑇

𝑇0
𝜌(𝑠 − 𝑡) d𝑠 d𝑡

+ 1
𝑀2

𝑀
∑

𝑚,𝑘=1
𝑚≠𝑘

coV
[

⟨𝑆𝑛,𝑚⟩𝑇0 ,𝑇 , ⟨𝑆𝑛,𝑘⟩𝑇0 ,𝑇

]

,

(34)

here 𝜌 is the autocorrelation function, see Pope (2000, section 3.6).
s demonstrated in Pope (2000, problem 3.37), the long-time limit of

he first term of the right hand side of Eq. (34) is 2 V[𝑆𝑛,𝑚]𝜏
𝑀(𝑇−𝑇0)

, where 𝜏 is
the integral timescale of the process (Pope, 2000, section 3.6), which
is a correlation constant associated to the QoI.

The last term in Eq. (34) depends on the correlation between
realizations with the same 𝑤(𝑛)

2 . An example of the effects of the corre-
lation between realizations of turbulent flow in a channel is presented
in Makarashvili et al. (2017). If these realizations are independent, the
final term in Eq. (34) is negligible. To this end, we discuss an initial
condition strategy which helps to provide independent realizations in
Section 3.3.

The first term on the right-hand side of Eq. (33) cannot be estimated
without making assumptions on the behavior of the transient perturba-
tion 𝐴. If we consider the same fast decay of the previous subsection,
Eq. (24), a straightforward computation shows that V[⟨𝐴𝑓

𝑛,𝑚⟩𝑇0 ,𝑇 ] =
((𝑇 − 𝑇0)−2).

If the decay of the transient perturbation is slower than Eq. (24),
the decay of the statistical error will be dominated by the first and
third terms in Eq. (33). On the other hand, if the decay of the transient
perturbation is fast (Eq. (24) holds2), the overall error is dominated by

2 Or any other scenario such that E[⟨𝐴𝑛,𝑚⟩𝑇0 ,𝑇 ] = ((𝑇 − 𝑇0)−𝑝) and
V[⟨𝐴 ⟩ ] = ((𝑇 − 𝑇 )−𝑞), 𝑝, 𝑞 > 1.
𝑛,𝑚 𝑇0 ,𝑇 0
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the second and third terms in Eq. (33), and such an equation becomes

V

[

1
𝑁𝑀

𝑁
∑

𝑛=1

𝑀
∑

𝑚=1
⟨Q𝑛,𝑚⟩𝑇0 ,𝑇

]

= 1
𝑁2

𝑁
∑

𝑛=1
2

V[𝑆𝑛,𝑚]𝜏
𝑀(𝑇 − 𝑇0)

+ 1
𝑁2

𝑁
∑

𝑛,𝑘=1
𝑛≠𝑘

coV
[[ 𝑀

∑

𝑚=1

⟨Q𝑛,𝑚⟩𝑇0 ,𝑇

𝑀

]

,

[ 𝑀
∑

𝑚=1

⟨Q𝑘,𝑚⟩𝑇0 ,𝑇

𝑀

]]

.

(35)

The first term of the right hand side of Eq. (35) decays as
𝑐20

𝑁𝑀(𝑇−𝑇0)
,

or some constant 𝑐0. The covariance term of the right hand side
f Eq. (35) behaves as 𝑐2

𝑁 , for some constant 𝑐. The SE therefore decays

s
√

𝑐20
𝑁𝑀(𝑇−𝑇0)

+ 𝑐2
𝑁 , that is bounded by

𝑐0
𝑀0.5(𝑇−𝑇0)0.5

+ 𝑐

𝑁0.5
. (36)

Such a result suggests that we cannot exactly estimate Q by only
ncreasing 𝑀 or 𝑇 − 𝑇0, but we need 𝑁 → ∞ to have null SE. This
s intuitively true, since we cannot describe all possible scenarios by
nly increasing 𝑀 or 𝑇 − 𝑇0 (that is related with 𝛺1), but we need to
xplore different stochastic (and non-ergodic) scenarios by sampling on
2, that is increasing 𝑁 .

The dominant term in Eq. (32) depends on the decay rate of the
ransient perturbations 𝐴𝑛,𝑚. If the transient perturbation decays fast
nough, Eq. (32) simplifies to

𝜙SE ≤ 𝜀 , (37)

hich can be estimated as

𝜙

√

√

√

√V𝐾

[

1
𝑁𝑀

𝑁
∑

𝑛=1

𝑀
∑

𝑚=1
⟨Q𝑛,𝑚⟩𝑇0 ,𝑇

]

≤ 𝜀 , (38)

ith 𝐾 sufficiently large.3 On the other hand, if the decay of the tran-
ient perturbation is slower than Eq. (24), the left-hand side of Eq. (32)
ill decay like (𝑇 − 𝑇0)−𝑞 for some 𝑞 < 1.

In the numerical experiments of Section 4, we verify that the
initialization bias decays fast enough with respect to the burn-in time 𝑇0
we set, and therefore that Eqs. (36) and (37) hold. Insights for choosing
𝑇0 are given in Section 3.4.

We consider now the simplified situation in which there are not non-
ergodic uncertainties, that is 𝛺2 ≡ ∅. It follows that the covariance term
of the right hand side of Eq. (35) is null. If the decay of the transient
perturbation is slower than Eq. (24), the left-hand side of Eq. (32)
decays like (𝑇 − 𝑇0)−𝑞 for some 𝑞 < 1. If the decay of the transient
perturbation is fast (Eq. (24) holds), the SE decays like 𝑀−0.5 and
(𝑇 − 𝑇0)−0.5 and can be estimated as

𝜙

√

√

√

√V𝐾

[

1
𝑀

𝑀
∑

𝑚=1
⟨Q𝑚⟩𝑇0 ,𝑇

]

≤ 𝜀 , (39)

where we omit the dependencies on the non-ergodic random variable.

3.3. On the generation of initial fields

Ensemble averaging benefits from independent initial conditions
to generate uncorrelated flow evolutions. It is known that different
turbulent flows will diverge with a rate determined by the Lyapunov
exponent (Nikitin, 2009; Nastac et al., 2017), and that this is the case
of our target problems. We decide then to generate perturbed initial

3 Notice that 𝐾 is independent of 𝑁 and 𝑀 . Each repetition 𝐾 requires a
otal of 𝑁𝑀 samples.
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conditions, and to let the system evolve for a defined burn-in time 𝑇0
to arrive at uncorrelated solutions.

Our approach consists of adding nonlocal spatially-correlated and
divergence-free solenoidal noise to the averaged velocity field 𝒖̄; we refer
o this as the spatially correlated (SC) approach. Exploiting solenoidal
luctuations in the initial conditions is not new; we refer for ex-
mple to Krasnopolsky (2018), where the author used uncorrelated
ivergence-free initial conditions to ensure independence of different
ealizations. Our novelty is that we propose to generate spatially-
orrelated fluctuations 𝒘(𝒙), which arise from a well-established syn-
hetic turbulence model.

Our approach is inspired by the work of Hunt in Hunt (1973) (see
lso Keith et al., 2021a). The underlying assumption is that the inho-
ogeneous contributions to fully developed turbulence fluctuations in

he inviscid source layer above a solid body have negligible vorticity.
rom this assumption, one arrives at the following inhomogeneous
urbulent fluctuation model: 𝒘(𝒙) = 𝒘(H)(𝒙) − ∇𝜙(𝒙), where 𝒘(H)(𝒙) is
homogeneous turbulent velocity field and 𝜙(𝒙) satisfies

𝜙 = ∇ ⋅𝒘(H) in 𝐷, (∇𝜙 −𝒘(H)) ⋅ 𝒏 = 0 on 𝜕𝐷. (40)

n this work, we adopt the classical von Kárman model (Von Kármán,
948) for the homogeneous random field 𝒘(H)(𝒙).

Realizations of this type of nonlocal spatially-correlated field can
e generated using a Fourier transform on a Cartesian grid containing
; see, e.g., Mann (1998). Once a realization 𝒘(H)(𝒙) is generated, we
ay interpolate the boundary conditions so that the solution to Eq. (40)

an be solved with the same finite element spaces used to solve the
S problem. After interpolating the sum 𝒘(H)(𝒙) − ∇𝜙, we arrive at

he nonlocal spatially-correlated perturbation 𝒘(𝒙). We finally scale the
erturbation to ensure that its norm is 1% of the norm of the mean
elocity, which is taken as the average velocity obtained in preliminary
imulations. Then, the SC initial condition used is 𝒖0(𝒙) = 𝒖̄(𝒙) +𝒘(𝒙).

In Tosi et al. (2021c), both SC and spatially-uncorrelated initial
onditions are developed and considered. It is demonstrated that the
wo strategies give very close results. In this work, we prefer to use SC
nitial conditions because they are more physically meaningful.

.4. On the optimal choice of the burn-in time

Given the full time interval [0, 𝑇 ], we split it into a burn-in time
nterval [0, 𝑇0] and an effective time interval [𝑇0, 𝑇 ]. In this subsection,
e focus on how to optimally choose 𝑇0.

First, a single simulation is executed for a time long enough to reach
statistically stationary turbulent state, which is saved. Thereafter, 𝑁

ealizations are run with SC (or other strategies) initial conditions to
nsure independent flow evolution. Once the required transient time
0 is passed, statistical data are collected and updated on the fly, until
he end of the effective time window.

We propose a systematic manner to minimize 𝑇0, which makes use
f the SE defined above. Given 𝑁 realizations and a quantity of interest
, our idea is to analyze how the statistical estimates of the QoI change

or different burn-in times. We can observe this plotting the mean
𝑁 [⟨Q⟩𝑇0 ,𝑇 ] as function of 𝑇0, together with its confidence intervals. The
ime interval 𝑇 − 𝑇0 is kept constant, while varying 𝑇0. The confidence
ntervals are computed as 𝜙SE, with confidence 1 − 𝜙. By looking at
he plot, we can detect a starting point after which the statistical result
s effectively insensitive to 𝑇0 variations. In addition to the statistical
hecks, we decide to apply a physical constraint, which in our case is
he time the flow needs to go from the inlet to the obstacle. Therefore,
0 will be the maximum of these two time values. In order to further
educe the computational cost of the transient phase, we also explore
he possibility of using larger time steps in [0, 𝑇0].

Another way to estimate 𝑇0 is analyzed in Beyhaghi et al. (2018),
here the authors choose a burn-in time which minimizes the estimated
ariance of the sample average estimator of the time average for a given
ignal. To do so, we average at each time step over all realizations, for
ifferent numbers of realizations 𝑁 , and apply the procedure to the
esultant time signal. As we will see in Section 4, both procedures give
imilar results.
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4. Numerical experiments

We consider the problem of wind flowing around the three-dimen-
sional CAARC building, introduced in Section 2.1. As commented
above, three different situations are considered and are summarized
next.

• The first scenario considers a constant in time fixed mean wind
profile as boundary condition. The problem is solved with the
standard time averaging method and the ensemble averaging
method. The case is presented in Section 4.1.

• The second scenario considers a constant in time stochastic mean
wind profile as boundary condition. The problem is solved with
the ensemble-based MC method. The case is presented in Sec-
tion 4.2.

• The third scenario considers turbulent fluctuations around a
stochastic mean wind profile as boundary condition. The prob-
lem is solved with the ensemble-based MC method. The case is
presented in Section 4.3.

In all cases, a comparison against literature is made, to verify the
mplementation. The quantities of interest are the drag force 𝐹𝑑 on the
ody, the base moment 𝑀𝑏 on the body and the pressure field 𝑝(𝑥) on all
odes of the body surface. The quantity of interest we choose to analyze
s the drag force. Therefore we set Q ≡ 𝐹𝑑 . We omit the subscript 𝑇0, 𝑇

if there is no risk of misunderstanding. We remark that international
units are used to measure physical quantities.

We shall remark that the mesh remains relatively coarse with re-
spect to the resolution that would be needed to resolve the flow at
the Reynolds number of interest. This situation is often encountered in
the field of wind engineering (Tamura, 2008). The VMS stabilization,
which is used as basis of our solver, represents an alternative to classical
LES approaches and provides a simple yet effective turbulence model
for the applications of interest, as explained in Section 2.2.

The computational efficiency of the joint use of XMC, Kratos and
PyCOMPSs has already been demonstrated, and optimal strong scal-
ability was ensured up to 128 nodes (6144 central processing units
(CPUs)) (Tosi et al., 2021a).

4.1. CAARC system with constant in time deterministic boundary conditions

The analyses of this subsection are run on MareNostrum 4. This
supercomputer has 11.15 Petaflops of peak performance, which consists
of 3456 compute nodes equipped with two Intel R Xeon Platinum 8160
(24 cores at 2.1 GHz each) processors.

4.1.1. Problem formulation
The problem is the wind flow around the CAARC building, intro-

duced and modeled in Section 2.1. In this subsection we use constant
in time fixed mean wind field boundary conditions. Therefore, there are
not non-ergodic random variables and for simplicity we write E𝑀 [Q] ≡
E𝑁,𝑀 [Q]. In Table 1 we present the physical properties of the problem,
and we set 𝑧0 = 2m for this system. We point out that such a value is
typical of centers of large cities (Joint committee on structural safety).

The selected tolerance and confidence for solving the stochastic
problem in Section 4.1.5 are 𝜀 = 50000 and 1 − 𝜙 = 99%. The relative
value of the tolerance, with respect to the drag force mean value, is
0.55%.

The mesh considered to solve the problem has approximately 312000
nodes, and a minimal size, close to the body, of 0.2m. The Courant–
Friedrichs–Lewy (CFL) number, is 100. The considered mesh is adaptive
with respect to a metric built on top of velocity and pressure fields.
We refer for example to Alauzet and Loseille (2016), Dapogny et al.
(2014), Tosi et al. (2021c) for details about metric-based adaptive mesh
refinement.
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Table 2
Normalized force and moment coefficients mean values of current problem, compared
with literature. Time averages of our simulation are estimated for an effective time
window 𝑇 − 𝑇0 = 600 s. The coefficients are dimensionless quantities.

References ⟨𝐶𝐹𝑋
⟩ ⟨𝐶𝐹𝑌

⟩ ⟨𝐶𝑀𝑋
⟩ ⟨𝐶𝑀𝑌

⟩

Problem 4.1 1.563 0.004 −0.002 0.607
(Braun and Awruch, 2009) 1.660 0.008 0.004 0.570

4.1.2. Validation
To ensure correctness of the solver and of the mesh, we compute

the following normalized coefficients (Braun and Awruch, 2009)

𝐶𝐹𝑋 = 𝐹𝑋
1∕2𝜌𝑊 ∫ 𝐻

0 𝒖̄2 d𝑍
𝐶𝐹𝑌 = 𝐹𝑌

1∕2𝜌𝑊 ∫ 𝐻
0 𝒖̄2 d𝑍

𝐶𝑀𝑋
= 𝑀𝑋

1∕2𝜌 𝒖̄2𝐻𝑊𝐻2 𝐶𝑀𝑌
= 𝑀𝑌

1∕2𝜌𝒖̄2𝐻𝑊𝐻2 ,
(41)

where 𝜌 is the density of the fluid, 𝒖̄ the velocity of the mean profile,
𝒖̄𝐻 the velocity at height 𝐻 = 180m, 𝑊 the building width and 𝐹𝑋 , 𝐹𝑌 ,
𝑀𝑋 and 𝑀𝑌 the forces and moments computed on directions 𝑋 and 𝑌 ,
respectively. 𝑋 is the direction parallel to the ground and orthogonal
to the inlet, while 𝑌 is parallel to both the ground and the inlet.
Fig. 4.1 shows the normalized coefficients for the drag force and base
moment for a 600 s simulation of the CAARC building with a steady
inlet. The signals are compared against the results from Braun and
Awruch (2009). Also, a comparison of the time-averaged normalized
coefficients is shown in Table 2. This quantitative comparison of the
mean of the normalized coefficients show a good agreement between
the current problem and literature.

4.1.3. Comparison ensemble average and time average
We know from Tosi et al. (2021c) that perturbing initial conditions

with spatially uncorrelated or SC noise is equivalent, from both com-
putational and statistical points of view. For this reason, we prefer to
use the latter, since more consistent from a physical point of view.

First, we analyze in Fig. 4.2 which are the dominant terms of Eq. (32)
by plotting

(

V𝐾 [E𝑀 [⟨Q⟩𝑇0 ,𝑇 ]]
)−1

as function of 𝑇 −𝑇0. We consider dif-
ferent 𝐾 and 𝑀 and Q = 𝐹𝑑 . A linear decay of the variance with respect
to both 𝑀 and (𝑇 − 𝑇0) can be observed. In fact,

(

V𝐾 [E𝑀 [⟨Q⟩𝑇0 ,𝑇 ]]
)−1

grows linearly as 𝑀 or (𝑇 − 𝑇0) increase. If we compare the left
and the right plots of Fig. 4.2, we see that

(

V𝐾 [E𝑀 [⟨Q⟩𝑇0 ,𝑇 ]]
)−1

grows by a factor 𝑀 , for the same 𝑇 − 𝑇0 value. The linear decay
of the variance with respect to the effective time can be observed
on each plot independently from the other. The linear decay of the
variance estimation with respect to 𝑀 and (𝑇 − 𝑇0) suggests that the
dominant term of the total error is 𝜙

√

V𝐾 [E𝑀 [⟨Q⟩𝑇0 ,𝑇 ]], which implies

implifying Eq. (32) to 𝜙SE ≈ 𝜙
√

V𝐾 [E𝑀 [⟨Q⟩𝑇0 ,𝑇 ]] ≤ 𝜀.
The statistical error SE as a function of the size of the ensemble (for

a constant effective time) is shown in Table 3. On the contrary, Table 4
gives the evolution of the SE as a function of the effective time. As
expected, the SE decreases as more realizations or larger time windows
are considered. We can observe that the ensemble average approach
drastically reduces the time to solution, for the same statistical error
(provided that more computational resources are available). For exam-
ple, the case 𝑀 = 4, 𝑇 − 𝑇0 = 210 s of the ensemble average approach,
compared to 𝑀 = 1, 𝑇 − 𝑇0 = 840 s of standard time average, reduces
the time to solution by almost a factor 4, while guaranteeing a similar
SE (consistent between the two approaches).

4.1.4. On the reduction of burn-in time computational cost
We analyze now if it is statistically consistent to reduce the burn-

in time. As before, we consider 128 realizations and we keep constant
𝑇 − 𝑇0 = 110 s. Fig. 4.3 shows that, above a minimal threshold of the
order of 30 s, the expected value estimation is largely independent of



Journal of Wind Engineering & Industrial Aerodynamics 228 (2022) 105105R. Tosi et al.

a

T

Fig. 4.1. Drag (𝐶𝐹 ) and moment (𝐶𝑀 ) coefficients comparison between our work and Braun and Awruch (2009). The plot is done using the web based tool https://github.com/
nkitrohatgi/WebPlotDigitizer to extract numerical data from plot images. The coefficients are dimensionless quantities.
Fig. 4.2. Computation of V𝐾 [E𝑀 [⟨Q⟩𝑇0 ,𝑇 ]] as function of the effective time 𝑇 −𝑇0 for Q = 𝐹𝑑 . The left plot presents (𝐾,𝑀, 𝑇0) = (128, 1, 30 s) and the right plot (𝐾,𝑀, 𝑇0) = (32, 4, 30 s).
ime is measured in seconds and the drag force in Newtons.
Table 3
The table reports the mean estimation and its associated SE of ensemble averaging for
the estimation of the drag force mean (measured in Newtons). 𝑀 and 𝑇 − 𝑇0 refer to
the number of realizations and the effective time window of the simulation (measured
in seconds), respectively. C is the computational cost and is expressed in CPU hours,
while time to solution is expressed in hours.
E𝑀 [⟨𝐹𝑑 ⟩] SE 𝑀 𝑇 − 𝑇0 C Time to

solution

8982493 84767 4 210 1666 17.36
8932223 59939 8 210 3333 17.36
8973444 42383 16 210 6666 17.36
8986913 29969 32 210 13332 17.36
8927955 21191 64 210 26664 17.36
8930547 14984 128 210 53329 17.36

Table 4
The table reports the mean estimation and its associated SE of standard time averaging
for the estimation of the drag force mean (measured in Newtons). 𝑀 and 𝑇 −𝑇0 refer to
the number of realizations and the effective time window of the simulation (measured
in seconds), respectively. C is the computational cost and is expressed in CPU hours,
while time to solution is expressed in hours.
E𝑀 [⟨𝐹𝑑 ⟩] SE 𝑀 𝑇 − 𝑇0 C Time to

solution

8658884 324256 1 52.5 215.58 8.98
8879404 229284 1 105 300.19 12.50
9109719 162128 1 210 468.56 19.52
9003445 114642 1 420 853.28 35.55
8950303 93604 1 630 1189.42 49.55
8956216 81064 1 840 1524.88 63.53
9

Fig. 4.3. Expected value estimation and associated SE for a confidence of 99% as a
function of the burn-in time. The burn-in time is measured in seconds and the drag
force in Newtons. The plot is computed with 𝑀 = 128, 𝑇 − 𝑇0 = 110 s.

the burn-in time. Fig. 4.4 suggests that a similar result holds when the
ensemble average approach is employed. The autocorrelation of the
computed drag force is of the order of 20 s.

To ensure robustness of our strategy, we also consider the more
restrictive ‘‘heuristic’’ constraint that 𝑇0 should be larger than the time
needed to travel from the inlet to the body. Since for an average
velocity of 40m s−1 such time is 11.625 s, it is statistically consistent to
use 𝑇 = 30 s.
0

https://github.com/ankitrohatgi/WebPlotDigitizer
https://github.com/ankitrohatgi/WebPlotDigitizer
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Fig. 4.4. Ratio between drag force variance (𝐹𝑑 measured in Newtons) and effective
ime window, for different realizations and 𝑇 − 𝑇0 = 110 s. The burn-in time 𝑇0 is
easured in seconds.

Table 5
Expected value and associated SE with 99% confidence for different time
steps during burn-in time. 𝐹𝑑 is measured in Newtons, 𝑇 − 𝑇0 in seconds
and 𝛥𝑡0

𝛥𝑡
is a dimensionless quantity.

E𝑀 [⟨𝐹𝑑 ⟩𝑇0 ,𝑇 ] 𝜙SE 𝑇 − 𝑇0
𝛥𝑡0
𝛥𝑡

8922399 39013 170 1.0
8907406 39534 170 2.5

Table 6
The table reports the expected value and the statistical error values of the time-averaged
drag force ⟨𝐹𝑑 ⟩𝑇0 ,𝑇 (measured in Newtons), with a 99% confidence. 𝑀 , 𝑇 and 𝑇0 refer
o the number of ensemble realizations, the time window [0, 𝑇 ] upper bound of the
imulation and the burn-in time, respectively. These last two are measured in seconds.
𝛥𝑡0
𝛥𝑡

is the ratio between the time steps of 𝑇0 and of the effective time window 𝑇 − 𝑇0.
is the computational cost, expressed in CPUhours, and time to solution is the real

ime we need to wait for the solution and is expressed in hours.

E𝑀 [⟨𝐹𝑑 ⟩𝑇0 ,𝑇 ]
𝜙SE

E𝑀 [⟨𝐹𝑑 ⟩]
𝑀 𝑇 − 𝑇0 𝑇0

𝛥𝑡0
𝛥𝑡

C Time to
solution

8972727 0.545% 142 110 30 2.5 35749 10.34
8946768 0.511% 100 170 30 2.5 38041 15.54
8943515 0.455% 76 230 30 2.5 38566 20.60

Finally we explore the possibility of employing larger time steps
uring the burn-in time, in order to reduce its computational cost.
able 5 shows that running with a larger time step during 𝑇0 is

statistically equivalent to employing a constant time step, where 𝜙 is
omputed for a 99% confidence. This proves that such an approach is
onvenient whenever possible.

.1.5. Results
Finally, we run the problem exploiting ensemble average, larger

ime step 𝛥𝑡0 and smaller burn-in time 𝑇0 = 30 s. Convergence is
hecked with Eq. (32), which is simplified to 𝜙SE ≤ 𝜀. The chosen
onfidence is 99%, and the relative tolerance with respect to the
ime-averaged drag force mean estimator is around 0.5%. We run
he problem for different configurations, keeping the overall cost con-
tant, that is maintaining approximately constant the product between
ime window and the number of realizations 𝑇𝑀 . Results are shown
n Table 6.

We report in Fig. 4.5 the instantaneous velocity field at 𝑡 = 200 s for
ne realization. We refer to Tosi et al. (2021c, figure 8.11) to observe
he pressure field for the same problem.

.1.6. Other observables
We select the case with minimal statistical error of Table 6 to show
10

he statistical results for other quantities of interest. Table 7 shows the
Table 7
Statistical analysis of drag force (measured in Newtons) and base moment (measured
in Newton meters).
Q E𝑀 [⟨Q⟩𝑇0 ,𝑇 ] 𝜎𝑀 [⟨Q⟩𝑇0𝑇 ] 𝜎𝑀 [Q]

𝐹𝑑 8943515 152726 662129
𝑀𝑏 −14943 436540 7332992

expected value and the standard deviation estimators of the drag force
and the base moment. Fig. 4.6 shows the estimation of the expected
value and the standard deviation of the pressure field. We refer to Tosi
et al. (2021c, figure 8.12) to observe the estimation of the expected
value and the standard deviation of the time-averaged pressure field.
Moreover, we refer to Tosi et al. (2021c, table 8.13) to observe the
conditional value at risk results for the time-averaged drag force and
the drag force of the case with minimal statistical error of Table 6.

4.1.7. Best configuration
The objective of this section is to find the configuration which

minimizes the wall clock time to solve the fluid flow past the CAARC
building problem with constant in time deterministic boundary con-
ditions. By analyzing Tables 3 and 4 we observe that exploiting an
ensemble of multiple independent realizations is more convenient than
a single long-term time averaging. In Table 6 we see that we should
increase as much as possible the number of ensemble realizations 𝑀 , so
that we can reduce the effective time of the simulation 𝑇 − 𝑇0. Table 5
shows that using a larger time step during the burn-in time reduces
the computational cost of the simulation (since the time integration is
cheaper) and does not alter the outcome of the problem. Therefore, the
best method to solve the fluid flow past the CAARC building problem
with constant in time deterministic boundary conditions is ensemble
averaging, together with the described strategies which reduce the
burn-in phase computational cost.

4.2. CAARC system with constant in time stochastic boundary conditions

The analyses of this subsection are run on Salomon. This cluster
presents 2 Petaflops of peak performance and is made by 1008 compute
odes. Each node is equipped with an x86-64 24 cores CPU (two
.5GHz twelve-core Intel Xeon processors) and 128GB RAM.

4.2.1. Problem formulation
We solve the wind flow past the CAARC building, that is introduced

and modeled in Section 2.1. In this subsection we use constant in
time stochastic mean wind field boundary conditions, which means we
consider null fluctuations 𝒖′ ≡ 0 and a stochastic roughness height,
modeled as 𝑧0 ∼  (0.1, 0.7). This scenario is typical of sparsely built-up
urban areas, suburbs and wooded areas (Joint committee on structural
safety). Apart from the roughness height, other physical properties are
reported in Table 1.

As above, the QoI for which we assess the failure probability cri-
terion of Eq. (14) is the drag force 𝐹𝑑 . The selected tolerance and
confidence for solving the stochastic problem are 𝜀 = 110000 and
1 − 𝜙 = 99%. The relative value of the tolerance, with respect to the
drag force mean value, is 1.15%.

The mesh we use is adaptive with respect to a metric built on top
of velocity and pressure fields and has approximately 312000 nodes.
We refer for example to Alauzet and Loseille (2016), Dapogny et al.
(2014), Tosi et al. (2021c) for details about metric-based adaptive mesh
refinement. The minimal size, close to the body, is 0.2m and the CFL
number is 100. Since in this subsection we consider a constant in time

wind inflow, we refer to Section 4.1.2 for the validation.
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Fig. 4.5. Velocity field snapshot at 𝑡 = 200 s, post-processed using the https://www.gidsimulation.com/ software.
Fig. 4.6. Statistical result of the pressure field 𝑝(𝒙). From left to right, E𝑀 [⟨𝑝(𝒙)⟩𝑇0 ,𝑇 ] − 𝜎𝑀 [𝑝(𝒙)], E𝑀 [⟨𝑝(𝒙)⟩𝑇0 ,𝑇 ] and E𝑀 [⟨𝑝(𝒙)⟩𝑇0 ,𝑇 ] + 𝜎𝑀 [𝑝(𝒙)].
4.2.2. Results
First, we verify that for 𝑇0 = 30 s the initialization bias is neg-

ligible, where 𝑇0 = 30 s is the optimal burn-in time we obtain in
Section 4.1. Figs. 4.7–4.9 show the decay of the statistical error in
terms of the wind realizations 𝑁 , the effective time of the simulation
𝑇 − 𝑇0, and the number of ensemble realizations 𝑀 , respectively. The
agreement with the fitted curve indicates that Eq. (36) holds, which
allows simplifying Eq. (32) to Eq. (37).

Then, we solve the problem for a fixed total time 𝑁𝑀𝑇 and we
report results in Table 8. We remark that the product 𝑀(𝑇 − 𝑇0) is
approximately equal to 600 s for each wind scenario. Looking at the
results, we observe that exploiting multiple ensembles (𝑀 > 1) reduces
the wall clock time, at the price of a slightly larger SE, for the same
computational cost. Slightly larger SE values appear due to the fact that
the effective time is smaller as 𝑀 grows.
11
We present as well results where only the product 𝑁𝑀𝑇 is kept
constant and the constraint 𝑀(𝑇 − 𝑇0) ≈ 600 s is relaxed in Table 9.

We report in Fig. 4.10 the instantaneous velocity field at 𝑡 = 200 s
for one realization. We refer to Tosi et al. (2021c, figure 9.9) to observe
the pressure field of the current problem. We point out that the main
difference with respect to Fig. 4.5 is the roughness height, that here is
equal to 0.3m.

4.2.3. Other observables
We select the case with 𝑁 = 20, 𝑀 = 1, 𝑇 − 𝑇0 = 600 s to compute

drag force, base moment (computed around the center of the bottom of
the building) and pressure field around the building statistical estima-
tors. Table 10 shows expected value and standard deviation estimations
of the drag force and of the base moment. Fig. 4.11 shows the expected
value and the standard deviation estimations of the pressure field. We

https://www.gidsimulation.com/
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Fig. 4.7. Computation of SE as function of 𝑁 for the drag force Q ≡ 𝐹𝑑 (measured in Newtons). 𝑀 = 1 and 𝑇 − 𝑇0 = 48.75 s. The fitted curve is Eq. (36).
Fig. 4.8. Computation of SE as function of 𝑇 −𝑇0 (measured in seconds) for the drag force Q ≡ 𝐹𝑑 (measured in Newtons). 𝐾 = 20, 𝑁 = 1 and 𝑀 = 1. The fitted curve is Eq. (36).
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efer to Tosi et al. (2021c, figure 9.10) to observe the estimation of
he expected value and the standard deviation of the time-averaged
ressure field. Moreover, we refer to Tosi et al. (2021c, table 9.8) to
bserve the conditional value at risk results for the time-averaged drag
orce and the drag force of the current problem.

.2.4. Best configuration
The objective of this section is to find the configuration which

inimizes the wall clock time to solve the fluid flow past the CAARC
12

p

uilding problem with constant in time stochastic boundary conditions.
y analyzing Table 8 we observe that the best method is using an
nsemble of realizations 𝑀 for each event 𝑁 since we reach a wall
lock time reduction up to a factor 10.

.3. CAARC system with general boundary conditions

The analyses of this subsection are run on Salomon. This cluster
resents 2 Petaflops of peak performance and is made by 1008 compute
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Fig. 4.9. Computation of SE as function of 𝑀 for the drag force Q ≡ 𝐹𝑑 (measured in Newtons). 𝐾 = 40, 𝑁 = 1 and 𝑇 − 𝑇0 = 75 s. The fitted curve is Eq. (36).
Fig. 4.10. Velocity field snapshot at 𝑡 = 200 s.
Table 8
The table reports the drag force 𝐹𝑑 expected value estimation (measured in Newtons)
and its associated SE, with a 99% confidence. 𝑁 , 𝑀 , 𝑇 −𝑇0 and 𝑇0 refer to the number
of wind realizations, the number of ensembles per wind scenario, the effective time
window and the burn-in time, respectively. Times are expressed in seconds. C is the
computational cost, expressed in CPUhours. Time to solution is the real time we need
to wait for solving the problem, and it is expressed in hours. Results are sorted for
decreasing time to solution.

E𝑁,𝑀 [⟨𝐹𝑑 ⟩]
𝜙SE

E𝑁,𝑀 [⟨𝐹𝑑 ⟩]
𝑁 𝑀 𝑇 − 𝑇0 𝑇0 C Time to

solution

9632478 0.97% 20 1 600 30 10468 20.77
9748082 1.26% 20 2 285 30 10087 10.25
9652424 1.00% 20 4 127.5 30 10263 5.27
9598793 1.12% 20 8 48.75 30 10364 2.68

nodes. Each node is a powerful x86-64 computer equipped with 24
13

cores (two 2.5GHz twelve-core Intel Xeon processors) and 128GB RAM.
Table 9
The table reports the drag force 𝐹𝑑 expected value estimation (measured in Newtons)
and its associated SE, with a 99% confidence. 𝑁 , 𝑀 , 𝑇 −𝑇0 and 𝑇0 refer to the number
of wind realizations, the number of ensembles per wind scenario, the effective time
window and the burn-in time, respectively. Times are expressed in seconds. C is the
computational cost, expressed in CPUhours. Time to solution is the real time we need
to wait for solving the problem, and it is expressed in hours. Results are sorted for
decreasing time to solution.

E𝑁,𝑀 [⟨𝐹𝑑 ⟩]
𝜙SE

E𝑁,𝑀 [⟨𝐹𝑑 ⟩]
𝑁 𝑀 𝑇 − 𝑇0 𝑇0 C Time to

solution

9632478 0.97% 20 1 600 30 10468 20.77
9576676 0.82% 160 1 48.75 30 10319 2.67

4.3.1. Problem formulation
We solve the wind flow past the CAARC building, that is introduced

and modeled in Section 2.1. In this subsection we use turbulent fluctu-
ations around a stochastic mean wind field boundary conditions, which
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Fig. 4.11. Statistical analysis of the pressure field 𝑝(𝑥). From left to right, E𝑁 [⟨𝑝(𝑥)⟩𝑇0 ,𝑇 ] − 𝜎𝑁 [𝑝(𝑥)], E𝑁 [⟨𝑝(𝑥)⟩𝑇0 ,𝑇 ] and E𝑁 [⟨𝑝(𝑥)⟩𝑇0 ,𝑇 ] + 𝜎𝑁 [𝑝(𝑥)].
Table 10
Statistical analysis of the drag force 𝐹𝑑 (measured in Newtons) and of
the base moment 𝑀𝑏 (measured in Newton meters), computed around
the center of the CAARC building base.
Q E𝑁 [⟨Q⟩𝑇0 ,𝑇 ] 𝜎𝑁 [⟨Q⟩𝑇0 ,𝑇 ] 𝜎𝑁 [Q]

𝐹𝑑 9632478 180333 783596
𝑀𝑏 −3603 293732 7990526

means that 𝒖′ is not null and such fluctuations are modeled by the
Mann model. Moreover, the roughness height is a uniformly distributed
random variable 𝑧0 ∼  (0.1, 0.7); a scenario typical of sparsely built-up
urban areas, suburbs and wooded areas (Joint committee on structural
safety). Other physical quantities are reported in Table 1.

The QoI for which we assess the failure probability criterion is
the drag force 𝐹𝑑 . The tolerance and confidence of the convergence
criterion are 𝜀 = 110000 and 1 − 𝜙 = 99%, respectively. The relative
value of the tolerance, with respect to the drag force mean value, is
around 1.10%.

The mesh we use is adaptively refined with respect to pressure and
velocity fields. We refer for example to Alauzet and Loseille (2016),
Dapogny et al. (2014), Tosi et al. (2021c) for details about metric-based
adaptive mesh refinement. The mesh presents around 283 thousands
nodes and a minimal size of 0.2m close to the building. The chosen time
step is 0.2375 s, which gives a CFL number of 100. Such a configuration
is validated next in Section 4.3.2.

4.3.2. Validation
To ensure correctness of the solver and of the mesh, we compute

the normalized coefficients of Eq. (41). We compare the time-averaged
normalized coefficients with Obasaju (1992), Huang et al. (2007),
Braun and Awruch (2009) in Table 11.

4.3.3. Results
We estimate the burn-in time following the approach presented in

Section 3.4, which estimates 𝑇0 on top of statistical and physical con-
straints. Fig. 4.12 shows that statistical results of the QoI are insensitive
14
Table 11
Normalized force and moment coefficients mean values of current problem, compared
with literature. Time averages of our simulation are estimated for an effective time
window 𝑇 − 𝑇0 = 600 s. The coefficients are dimensionless quantities.

References ⟨𝐶𝐹𝑋
⟩ ⟨𝐶𝐹𝑌

⟩ ⟨𝐶𝑀𝑋
⟩ ⟨𝐶𝑀𝑌

⟩

Problem 4.3 1.818 0.001 −0.001 0.694
(Obasaju, 1992) 1.490 −0.039 0.000 0.640
(Huang et al., 2007) 1.830 0.006 – –
(Braun and Awruch, 2009) 1.660 0.008 0.004 0.570

for 𝑇0 > 30 s, that is larger than the time required by the wind to go
from the inlet to the building.

Similarly to Section 4.2.2, we show in Figs. 4.13–4.15 the decay of
the statistical error in terms of the wind realizations 𝑁 , the effective
time of the simulation 𝑇 − 𝑇0, and the number of ensemble realiza-
tions 𝑀 , respectively. The agreement between the SE and the fitted
curve indicates that Eq. (36) holds, which allows simplifying Eq. (32)
to Eq. (37).

Results for a constant total time 𝑁𝑀𝑇 and 𝑀 ≈ (𝑇 − 𝑇0) ≈ 600 s
are presented in Table 12. We observe that the last case of the table
drastically reduces the time to solution, at the price of a slightly larger
SE, for the same computational cost. Therefore, 𝑀 > 1 is the most
promising configuration.

We consider also the scenario where the constraint 𝑀(𝑇−𝑇0) ≈ 600 s
is relaxed and only 𝑁𝑀𝑇 is kept constant. Results are reported in
Table 13. We observe that both SE and time to solution are drastically
reduced by increasing 𝑁 and reducing 𝑀 and 𝑇 − 𝑇0.

We report in Fig. 4.16 the instantaneous velocity field at 𝑡 = 200 s
for one realization and we refer to Tosi et al. (2021c, figure 9.17) to
observe the instantaneous pressure field of this problem.

4.3.4. Other observables
We select the case with 𝑁 = 40, 𝑀 = 1, 𝑇 − 𝑇0 = 600 s to

show statistical results of the physical quantities we compute, that are
the drag force, the base moment (computed around the base of the
building) and the pressure field around the building. Table 14 shows
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Fig. 4.12. Expected value estimation and associated SE with 99% confidence plotted as function of the burn-in time, with 𝑀 = 128. The effective time 𝑇 −𝑇0 = 60 s is fixed among
ll realizations and all burn-in times. The drag force 𝐹𝑑 is measured in Newtons and the burn-in time 𝑇0 in seconds.
Fig. 4.13. Computation of SE as function of 𝑁 for the drag force Q ≡ 𝐹𝑑 (measured in Newtons). 𝑀 = 1 and 𝑇 − 𝑇0 = 75 s. The fitted curve is Eq. (36).
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xpected value and standard deviation estimations of the drag force
nd the base moment. Fig. 4.17 shows the estimation of the expected
alue and the standard deviation of the pressure field. We refer to Tosi
t al. (2021c, figure 9.18) to observe the estimation of the expected
alue and the standard deviation of the time-averaged pressure field.
oreover, we refer to Tosi et al. (2021c, table 9.12) to observe the
15

m

onditional value at risk results for the time-averaged drag force and
he drag force.

.3.5. Best configuration
The objective of this section is to find the configuration which

inimizes the wall clock time to solve the fluid flow past the CAARC
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Fig. 4.14. Computation of SE as function of 𝑇 −𝑇0 (measured in seconds) for the drag force Q ≡ 𝐹𝑑 (measured in Newtons). 𝐾 = 40, 𝑁 = 1 and 𝑀 = 1. The fitted curve is Eq. (36).
Fig. 4.15. Computation of SE as function of 𝑀 for the drag force Q ≡ 𝐹𝑑 (measured in Newtons). 𝐾 = 40, 𝑁 = 1 and 𝑇 − 𝑇0 = 75 s. The fitted curve is Eq. (36).
building problem with general boundary conditions. By analyzing Ta-
ble 12 we observe that the best method is using an ensemble of
realizations 𝑀 for each event 𝑁 , since we reach a wall clock time
reduction up to a factor 7.5.

5. Conclusions

As shown in the work, the statistical analysis of the use of ensemble
averaging in the estimation of the expected value leads to the iden-
tification of two error components: an initialization bias, related to
the transient perturbation of the flow, and a statistical error, related
16
to finite sampling. Convergence rates of both error contributions are
analyzed and discussed.

Decay rates are estimated for the target test cases to verify that
the initialization bias is effectively negligible. The cost of the burn-in
phase is minimized by following a statistical-based approach combined
with the use of a less expensive time integration procedure. Multiple
observables (drag force, base moment and pressure field) are computed.

We show that ensemble averaging can be successfully applied to
highly chaotic incompressible flows and we propose strategies to min-
imize the total error and the computational cost of the simulation.
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Fig. 4.16. Velocity field snapshot at 𝑡 = 200 s.
Fig. 4.17. Statistical analysis of the pressure field 𝑝(𝑥). From left to right, E𝑁 [⟨𝑝(𝑥)⟩𝑇0 ,𝑇 ] − 𝜎𝑁 [𝑝(𝑥)], E𝑁 [⟨𝑝(𝑥)⟩𝑇0 ,𝑇 ] and E𝑁 [⟨𝑝(𝑥)⟩𝑇0 ,𝑇 ] + 𝜎𝑁 [𝑝(𝑥)].
Table 12
The table reports the drag force 𝐹𝑑 expected value estimation (measured in Newtons)
and its associated SE, with a 99% confidence. 𝑁 , 𝑀 , 𝑇 −𝑇0 and 𝑇0 refer to the number
of wind realizations, the number of ensembles per wind scenario, the effective time
window and the burn-in time, respectively. Times are expressed in seconds. C is the
computational cost, expressed in CPUhours. Time to solution is the wall clock time we
need to wait for solving the problem, and it is expressed in hours. Results are sorted
for decreasing time to solution.

E𝑁,𝑀 [⟨𝐹𝑑 ⟩]
𝜙SE

E𝑁,𝑀 [⟨𝐹𝑑 ⟩]
𝑁 𝑀 𝑇 − 𝑇0 𝑇0 C Time to

solution

10219325 0.80% 40 1 600 30 19114 37.27
9987287 0.81% 40 2 285 30 18607 18.91
10266800 0.75% 40 4 127.5 30 18625 9.58
10115719 1.07% 40 8 48.75 30 18743 4.85
17
Table 13
The table reports the drag force 𝐹𝑑 expected value estimation (measured in Newtons)
and its associated SE, with a 99% confidence. 𝑁 , 𝑀 , 𝑇 −𝑇0 and 𝑇0 refer to the number
of wind realizations, the number of ensembles per wind scenario, the effective time
window and the burn-in time, respectively. Times are expressed in seconds. C is the
computational cost, expressed in CPUhours. Time to solution is the wall clock time we
need to wait for solving the problem, and it is expressed in hours. Results are sorted
for decreasing time to solution.

E𝑁,𝑀 [⟨𝐹𝑑 ⟩]
𝜙SE

E𝑁,𝑀 [⟨𝐹𝑑 ⟩]
𝑁 𝑀 𝑇 − 𝑇0 𝑇0 C Time to

solution

10219325 0.80% 40 1 600 30 19114 37.27
10131701 0.45% 320 1 48.75 30 19133 4.95
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Table 14
Statistical analysis of the drag force 𝐹𝑑 (measured in Newtons) and of
the base moment 𝑀𝑏 (measured in Newton meters).
Q E𝑁 [⟨Q⟩𝑇0 ,𝑇 ] 𝜎𝑁 [⟨Q⟩𝑇0 ,𝑇 ] 𝜎𝑁 [Q]

𝐹𝑑 10219325 222721 1742534
𝑀𝑏 41210 321223 9397070

The proposed strategies are shown to be effective in taking advan-
age of HPC systems.
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