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Abstract 
 
Firms and supply chains (SC) increasingly are forced to customise products and optimise 

processes since today’s markets are, on average, more demanding in terms of both 

costs and customer satisfaction. Generally, when product variety (PV) increases not only 

improves sales performance, since products offered better fit customers’ expectations, 

but also increases the complexity in SC processes management, rising operational 

costs. For that reason, accurate management of product diversity is a fundamental point 

for the brands' success, which is why it is going to be investigated in that project. 

Moreover, firms’ managers apply strategies to mitigate or accommodate this complexity, 

avoiding the customer satisfaction and cost trade-off to remain competitive and survive. 

However, we were wondering if it is enough. Artificial Intelligence (AI) has emerged to 

stay. Digitalisation era, data availability, and the improvement in computing power have 

boomed AI’s potential in improving systems, controlling processes, and tackling 

complexity. These strengths are suitable to help managers not only to tackle the 

complexity arising from PV but also to boost the supply chain performance (SCP). 
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1. Introduction 

In the nowadays market context, global competition has led to a need for increased 

product diversification to satisfy more sophisticated customer demands and 

expectations, thus, creating complexity in the supply chain (SC) management. The more 

products a company has to manage, the more items it has to plan, the more data it has 

to collect and analyse. Thus, it appears the need to balance priorities among different 

SKUs to respond to greater product availability and SC emergencies is generated. At the 

same time, it implies managing a wide range of supplier relationships, a more complex 

inventory system, and more floating production plans. Therefore, the higher the number 

of SKUs of different product items a company has, the higher its complexity. For that 

reason, accurate management of product diversity is a fundamental point for the brands' 

success, which is why it is going to be investigated in that project. 

Although variety management has become a researched topic in the industry for the past 

decade, and Artificial Intelligence (AI) applications into SC management are becoming 

more and more investigated, potential AI benefits in supporting PV complexity 

management have never been analysed before. Besides, even though there are 

strategies studied for years to improve and reduce the complexity of the SC, it has not 

been studied before which are the ones that help mitigate the variety of products. 

Moreover, since papers were more focused on defining a few relations and impacts 

rather than having a global vision of PV impact on all the SC, in this study, we will 

synthesise the SC impacts, divided into four main areas, to obtain an almost complete 

vision of PV impact on the overall SC. 

To accomplish this goal, firstly, it is essential to understand how product variety (PV) 

influences supply chain performance (SCP) to succeed in managing the before-

mentioned complexity. We will examine the impact on sales, transportation, 

manufacturing, and purchasing areas, analysing the effect on drivers impacting each 

area's performance. Secondly, we will explore the most common practices traditionally 

used by firms supporting the mitigation or accommodation of the complexity arising from 

product range proliferation by recognising the successful strategies in handling 

complexity. Some of the studied approaches may not have been analysed from this point 

of view before, since some are just used for the more efficient management of the SC, 

even though they may be related to the variety management. Finally, an attempt was 

made to investigate how AI can support the PV-induced complexity. In this part of the 

work, thanks to the previously studied advantages that AI brings to the different SC 

areas, we have discussed its consequent effect on PV management.  
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2. Research questions and contribution 

Traditional trends towards rising product variety to satisfy increasingly sophisticated 

customer needs raise questions concerning the impact derived from this decision on 

companies' performance. Therefore, we seek to present research evidence on the 

traditionally examined effects of PV on supply chain complexity (SCC) and, 

subsequently, how it affects supply chain performance (SCP) by identifying how an 

increase of PV impacts sales, transportation, manufacturing, and procurement. 

Furthermore, we have examined those efficient approaches that companies have been 

applying to mitigate or accommodate the PV subsequent complexity since complexity 

derived from the PV increase could be managed efficiently by standardisation practices. 

Thus, the core research question specifically addresses which are the direct and indirect 

impacts of product proliferation in the different affected areas of a SC, as well as which 

are the traditionally used approaches proved to be effective. 

Moreover, to add quality value to the research and go a step further, we additionally seek 

to provide the current and updated vision of PV impact, which is strongly influenced by 

the digitalisation era. Therefore, secondary research questions specifically discuss 

aspects related to the possible shift of the traditionally analysed effects of PV once the 

new technologies come into play. In our case, we will be focused on artificial intelligence 

(AI) technology, considered the king information technology of this decade. AI is a mature 

and consolidated technology in advanced processing information, whose main strengths 

are its versatility when tackling a wide breadth of challenges and its capacity to enhance 

value generation in core processes. For that reason, we have considered AI as the 

appropriate technology to be discussed concerning the PV management topic. Further 

explanation about the reasons that motivate us to focus on AI is explained in section 8. 

Research questions investigated in this study are shown below:  

Research question 1 (R1): Which are the traditional implications of an increase in PV 

on companies’ performance derived from an increase of complexity in the SC? 

Research question 2 (R2): Which are the most effective practices that have been used 

traditionally by firms to accommodate or mitigate the negative impact of PV on SCC? 

Research question 3 (R3): What is the role of Artificial Intelligence (AI) technology in 

changing the impact of increased PV in each of the affected areas? Can it even change 

the traditional positive or negative relationship?  
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3. Methodology for data collection 
 
A systematic literature review has been conducted to ensure replicability and 

completeness while reducing possible bias in the approach. Moreover, literature review 

has followed steps recommended by (vom Brocke, 2009). The main objective of this 

literature is to contextualise the thesis scope, by mapping and integrating articles 

outcomes and subsequently identifying methods and practises as well as shifts and 

trends.  As well as (Gosling & Naim, 2009), we conducted the literature review in three 

distinctive steps:  

 

Figure 1. Research methodology. Source: Prepared by authors. 

Note that the aforementioned systematic literature review was conducted for each of the 

main research topics. Firstly, complexity caused by product variety and strategies to 

mitigate them were studied and researched. Secondly, AI was analysed and afterwards 

contextualised to the PV topic in section 8.  

3.1. Data collection 

Data was collected through the Scopus database, whose reputation is indisputably 

established as one of the greater, more complete, more accurate, and more 

comprehensive databases (Youssra , Tarik , & Angappa , 2021). Besides, their content 

is recognised as high academic quality. However, secondary sources were examined in 

the snowball effect (forward search) if needed. 

Firstly, a structured keyword searching was developed by identifying keywords strongly 

correlated with our research scope, also considering possible keywords synonyms to 

fulfil completeness in our review (view Table 1). The keywords selection process was 

Data 
collection

•We have setted the research approach in data collection by defining
the data sources, the exclution criteria and the keywords pool (section
3.1).

Results 
description

•A descriptive analysis of the articles collected is performed by
providing its temporal distribution and defining a paper categorisation
(section 3.2).

Thematic 
analysis

•Articles outcomes, methods and practices were integrated in a
thematical analysis and afterward critical discusision is conducted.
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performed by an initial brainstorming and a “postmodum” discussion whereby an 

additional keywords categorisation was conducted to better structure the study areas. 

Afterwards, a keyphrase density analysis (section 3.2.1) was conducted to corroborate 

the keywords selection. Secondly, a critical keywords combination analysis was 

accomplished to avoid missing necessary or relevant articles for our study scope. The 

resulting keywords pool is showed below. 

Table 1. Keyword’s pool categorised by analysed area 

Finally, the search results were limited by following the exclusion criteria to limit the 

number of papers selected. Exclusion criteria: 

1. Papers must be written in English language. 

2. Duplicated articles obtained in previous searches were excluded. 

3. Document type is restricted to journal articles (conference papers, short 

surveys, reviews, and notes were excluded). 

4. Articles must be “Open access” (payments are not necessary to download it). 

5. Non-aligned papers were excluded by title and abstract screening. 

Context Keywords’ pool 

SCC 

Supply chain; Complexity; Complexity drivers; Complexity indexes; 

Complexity metrics; Complexity measure; Complexity evaluation; 

Complexity management; Uncertainty; Volatility; 

PV 
Variety; Product variety; Product diversity; Variety management; 

Performance; Operational performance; 

Strategies  

Standardisation; Diversification; Commonality; Postponement; 

Customisation; Modularity; Portfolio; Differentiation; Strategy; 

Segmentation; Rationalization; SC integration; Information 

Technologies. 

AI 
Artificial Intelligence; Machine Learning; Natural Language Processing; 

Deep learning; Artificial Neural Networks;  
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Figure 2. Literature review methodology diagram. Source: Prepared by authors. 

It should be noted that it was not feasible to cover the complete wide range of papers 

available in the Scopus database. Probably, we may have missed some papers while 

conducting the literature research according to keyword choice, for example. However, 

the methodology followed tried to minimise misremembered as much as possible. 

3.2. Descriptive analysis 

In this section, firstly, we are going to identify research trends in the PV topic by 

downloading data from the Scopus database and analysing this data through the SciVal 

tool. Secondly, we will conduct a descriptive analysis of the papers previously selected 

in section 3.1, looking for interrelationships and alignments with general trends observed 

in section 3.2.1 while extracting outcomes from the papers’ temporal distribution. 

3.2.1. Topic trend analysis – SciVal 

Firstly, we have conducted a preliminary analysis to verify the density of documents 

about “product variety” and “supply chain” generated through the SciVal software to 

evaluate if our selected keywords were adequate. SciVal is a web-based analytics 

solution that allows the research activities evaluation from several perspectives and 

publications records within the Scopus database, helping to develop, execute, and 

evaluate strategies based on reliable evidence. 

1. Keywords pool 
brainstorming

2. Fixing 
keywords 

combination

3. Applying 
criteria filtering

4. Articles 
selected

5. Snowball effect 
- secondary 

search
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Figure 3. Keyphrase density of PV topic. Source: SciVal tool. 

On the one hand, traditional strategies to mitigate PV, identified also in keywords pool, 

are clearly reflected in the keyphrase density figure. Furthermore, we can observe that 

some of them are losing importance, such as postponement or component commonality 

while product modularity or SC integration are gaining weight. On the other hand, noted 

that keywords such as traceability, SC flexibility or customer integration are also shown 

in Figure 3, and denotes this tendence in tackling PV by SC more flexibles, with higher 

visibility and more customer oriented. 

3.2.2. Research papers description 

The existing literature can be divided between PV and AI topic. The first one involves 

how complexity induced by PV impacts the SC processes and which strategies are 

traditionally used by firms to mitigate it. On the other hand, the second topic answers 

how AI can impact SC processes, which are its strengths and weaknesses, and how AI 

can support SC and firms to tackle PV. Therefore, we have mainly summarised those 

papers division in the following table: 

Authors Source Topic 

(Alfaro & Corbett, 2003) Production and Operations Management PV 

(Alptekinoğlu & Ramachandran, 2019) Wiley Online Library PV 

(Balakrishnan, Chui, Hall, & Henke, 2020) McKinsey Global Institute AI 
(Belhadi, Mani, Kamble, Rehman Khan, & 
Verma, 2021) 

Annals of Operations Research 
AI 

(BENJAAFAR & KIM, 2004) Annals of Operations Research PV 

(Bode & Wagner, 2015) Journal of Operations Management PV 

(Bozarth, Warsing, Flynn, & Flynn, 2009) Journal of Operations Management PV 

(Bughin, Chui, Henke, & Trench, 2017) McKinsey Global Institute AI 

(Castka, 2020) Sustainability PV 
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Authors Source Topic 

(Caux, David, & Pierreval, 2007) International Journal of Production Research PV 

(Chan & Arikan, 2020) International Journal of Production Research PV 

(Chand, Thakkar, & Ghosh, 2018) Resource Policy PV 

(Chen, 2005) Computers in Industry PV 

(Chopra, 2003) 
Transportation Research Part E: Logistics 
and Transportation Review 

PV 

(Daaboul, Da Cunha, Bernard, & Laroche, 
2011) 

CIRP Annals 
PV 

(Dawes, LarsMeyer-Waardenb, & 
Driesener, 2014) 

Journal of Business Research 
PV 

(de Groote & Yücesan, 2011) Proceedings - Winter Simulation Conference PV 

(de Vos & Meijers, 2019) Journal of Economic and Human Geography PV 
(Dubey, Rameshwar; Gunasekaran, 
Angappa; Childe, Stephen J.; Bryde, David 
J.; Giannakis, Mihalis; Foropon, Cyril; 
Roubaud, David; Hazen, Benjamin T., 
2020) 

International Journal of Production 
Economics 

AI 

(Dwivedi, 2021) 
International Journal of Information 
Management 

AI 

(Enz, Lambert, & Schwieterman, 2019) 
International Journal of Logistics 
Management 

PV 

(Flynn, Huo, & Zhao, 2010) Journal of Operations Management PV 

(Forza & Salvador, 2002) 
International Journal of Production 
Economics 

PV 

(Gosling & Naim, 2009) 
International Journal of Production 
Economics 

PV 

(Granero, 2019) Economics Letters PV 

(Hendriks, Singhal, & Stratman, 2006) Journal of operations management PV 

(Howard & Squire, 2007) 
International Journal of Operations & 
Production Management 

PV 

(Islam, Mahmud, & Pritom, 2019) Neural Computing and Applications PV 

(Kar, Dwivedi, & Grover, 2020) Annals of Operations Research AI 

(Kevilal, Prasanna Venkatesan, & Sanket, 
2017) 

Journal of Manufacturing Technology 
Management 

PV 

(Li, 2019) International Journal of Production Research PV 

(Lyons, Um, & Sharifia, 2020) 
International Journal of Production 
Economics 

PV 

(Malinowski, Karwan, & Sun, 2021) 
International Journal of Production 
Economics 

PV 

(Mani, Kamble, Belhadi, Rehman Khan, & 
Verma, 2021) 

Annals of Operations Research 
AI 

(Murphy, 2020) 
 

PV 

(Narasimhan & Talluri, 2009) Journal of Operations Management PV 

(Olhager, 2010) Computers in Industry PV 

(Pankaj & Jayaram, 2014) Journal of Operations Management PV 

(Perona & Miragliotta, 2002) 
International Journal of Production 
Economics 

PV 

(Piya, Shamsuzzoha, & Khadem, 2020) International Journal of Logistics Research PV 

(Praveen, Farnaz, & Hatim, 2019) Procedia Manufacturing AI 

(Priore, Ponte, & Rosillo, 2018) International Journal of Production Research AI 

(Ren, Meng, Wang, Lu, & Yang, 2020) 
Transactions on Neural Networks and 
Learning Systems 

AI 

(Riahi, Saikouk, Gunasekaran, & Badraoui, 
2021) 

Expert Systems with Applications 
AI 

(Rizky Huddiniah & Mahendrawathi, 2019) Operations and Supply Chain Management PV 

(Sanders & Wan, 2017) 
International Journal of Production 
Economics 

PV 

(Sanders, Boone, Ganeshan, & Wood, 
2019) 

Journal of Business Logistics 
AI 
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Authors Source Topic 

(Santos, Sempaio, & Alliprandini, 2020) 
Journal of Manufacturing Technology 
Management 

PV 

(Schulze-Horn, Hueren, Scheffler, & 
Schiele, 2020) 

Applied Artificial Intelligence 
AI 

(Scuch & Rudolf, 2015) 
International Conference on Industrial 
Technology 

PV 

(Serdarasan, 2013) Computers & Industrial Engineering PV 

(Shou, Lee, Park, & Kang, 2016) 
International Journal of Physical Distribution 
& Logistics Management 

PV 

(Siddhartha S.Syam, 2015) Journal of Retailing and Consumer Services PV 

(Singh, Goyal, & Bedi, 2020) 
Third International Conference on Intelligent 
Sustainable Systems 

AI 

(Stavrulaki & Davis, 2010) 
International Journal of Logistics 
Management 

PV 

(Su, Lin, & Lee, 2010) Journal of Intelligent Manufacturing PV 

(Thonemann & Bradley, 2002) European Journal of Operational Research PV 

(Toorajipour, Sohrabpour, Nazarpour, 
Oghazi, & Fischl, 2021) 

Journal of Business Research 
AI 

(Trattner, Hvan, Forza, & Lee Herbert-
Hansen, 2019) 

CIRP Journal of Manufacturing Science and 
Technology 

PV 

(Turner, Aitken, & Bozarth , 2018) 
International Journal of Operations & 
Production Management 

PV 

(Um, Han, Grubic, & Ghalib, 2018) 
International Journal of Productivity and 
Performance Management 

PV 

(Um J. , Lyons, Lam, & Dominguez-Pery, 
2017) 

International Journal of Production 
Economics 

PV 

(Vahid, Pejvak, Reza, & Ali, 2021) 
Technological Forecasting and Social 
Change 

AI 

(van Hoek, Vos, & Commandeur, 1999) Long Range Planning PV 

(Verstraete, Aghezzaf, & Desmet, 2020) Computers & Industrial Engineering AI 

(vom Brocke, 2009) 
European Conference on Information 
Systems 

 

(Wan, Evers, & Dresner, 2012) Journal of Operations Management PV 

(Wang & Huang, 2020) 
International Conference on New Energy 
Technology and Industrial Development 

AI 

(Wang Z. , 2016) 
Cooperative Design, Visualization, and 
Engineering 

PV 

(Weng, Liu, & Xiao, 2019) Industrial Management & Data Systems AI 

(Williams & Mahmoodi, 2019) 
 

PV 

(Wilson, Paschen, & Pitt, 2021) Management of Environmental Quality AI 

(Youssra , Tarik , & Angappa , 2021) Expert Systems with Applications AI 

(Zhoua, Awasthi, & Stal-Le Cardinal, 2021) Computers in Industry AI 

Table 2. Summary of used papers pool divided into PV topic and AI topic.  

Despite non-temporal limitations were fixed during the data collection phase, the 

temporal range on literature review comprises 19 years from 2002 to 2021, mainly 

weighed to the contemporary period, with a cumulative total percentage of 70% selected 

articles from 2015. The AI tendence showed in Figure 4 is strongly aligned with Figure 

17, observing an increasing interest in AI from 2018 to now. Moreover, PV papers 

selected are constant until 2018 that sharply increase. Therefore, we can conclude that 

possible outcomes extract from PV and AI are strongly based on an updated content, 

enabling hypotheses relying on current SC contextualisation. 

https://www.emerald.com/insight/publication/issn/1477-7835
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Figure 4. Temporal article publications distribution by scope of study. Source: Prepared by 

authors. Data from SciVal tool. 

Furthermore, the distribution of published journals of the selected papers is presented in 

Figure 4. It shows that the literature review has been based on papers published in a 

wide variety of journals (31 in total) which are distributed almost equally, although two 

journals are standing out as being the most recurrent: International Journal of Production 

Economics and Journal of Operations Management (7 papers each). 

 

Figure 5. Journals distribution of selected papers sources. Source: Prepared by authors. 
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3.3. Literature review 

The thematic analysis based on the selected articles' outcomes, methods, and practices, 

regarding the study pillars, is presented below with a subsequent discussion. The results 

structure is the following. 

Firstly, an introduction into SC complexity is presented to contextualise the PV topic and 

examine the SC affected areas. Secondly, product variety complexity (PVC) implications 

are explored more in-depth, defining direct and indirect relationships between PV 

changes and subsequent SC processes performance. Thirdly, strategies traditionally 

used by firms to mitigate or accommodate PVC are studied. Finally, the potential support 

of AI technology in managing complexity induced by PV is investigated, and then the 

possible related impacts on the SC performance are discussed. 
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4. Supply chain complexity  

A supply chain is a complex system where different entities, processes, and resources 

interact with each other. Current trends as product customisation, global supply base, 

and sustainability increased the SCC and, by extension, its uncertainties, and 

disruptions.  

Therefore, when issues concerning complexity management arise, a fundamental 

question comes up: what is SCC? There is no simple answer since many researchers 

give distinct answers to this question. Some say that complexity measures the stability 

of connectivity between different suppliers (Kevilal, Prasanna Venkatesan, & Sanket, 

2017). Others define SCC as a multi-faceted, multi-dimensional phenomenon that is 

driven by several sources (Piya, Shamsuzzoha, & Khadem, 2020). Nevertheless, 

complexity is not merely about managing high levels of information and materials flows, 

which requires a vast amount of labour and time-consuming resources, but also tackling 

self-emerging unpredictable and chaotic behaviours (Perona & Miragliotta, 2002) that 

arise from the non-linear interconnections between all activities, processes, and actors 

involved in the SC.  

To stand out in today’s competitive markets, where SCC increases with current business 

trends such as outsourcing or globalisation, organisational managers not only should 

monitor their supply network activities but also address complexities that come up at 

different levels of the SC. In general, with complexity comes uncertainty, and uncertainty 

leads to a negative impact on SC performance while complicates the decision-making 

processes. Thus, the ability to measure and control them will result in improving 

efficiency and effectiveness along with the SC. However, the success in managing the 

complexity of a system is not only given by the degree of its complexity, but also by the 

degree of control we have over the system, as shown in the figure below (Figure 6). Thus, 

systems with a high degree of control and a low level of complexity (quadrant 4) may 

have higher probability of success in tackling the complexities than systems with a lower 

degree of control and the same degree of complexity (quadrant 3). The strategies and 

actions applied at one complexity driver may have a positive or negative impact on 

another due to the SC non-linear behaviour. In practice, managers can apply this concept 

by tackling complexity drivers (CD) with a high degree of control to shift complexity 

instead of managing or mitigating those with a low control level. 
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Figure 6. Probability of success with tackling complexities depending on level of complexity 

and degree of control dimensions. Source: Prepared by authors. 

4.1. Complexity categorisation 

SC inherent complexities can be categorised by multiple dimensions depending on the 

scope of the studies and researchers. Some authors were interested in SCC as a whole, 

whereas others were focused on specific segments or parts of the SC and its 

subsystems. In order to have a clear idea of how drivers can be structured, some of the 

categorisation approaches used in the articles reviewed are summarised and explained 

below: 

A. Complexity categorisation based on its nature. Proposed by (Serdarasan, 2013), try 

to address CD at all levels of the SC while group them based on its stability:  

• Structural complexities (static complexity) refer to the structure of systems and 

subsystems involved in the SC. In other words, it concerns the quantity and 

variety of products, processes, and components defining the SC.  

• Operational complexities (dynamic complexity) refer to the interaction 

(operational behaviour) between the elements of a system and its environment 

(Bode & Wagner, 2015). It highlights the uncertainties of the processes in the SC 

and concern topics as time and randomness.  

B. (Serdarasan, 2013) also proposed another approach of categorisation, adding a 

second dimension in the analysis, which CD are categorised based on their origin: 

• Internal CD is generated by characteristics, decisions, and components within 

the organisation such as product design. Those drivers are easily managed since 

are under the manager’s scope of control. 
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• Supply or demand interface drivers are related to the existing interaction and 

cooperation with supply or demand base such as material and information flows 

between the focal company and its providers or customers. Interface drivers are 

somehow controllable due to the influence that the company could exert over the 

chain. 

• External or environmental drivers are nearly out of the scope of the company and 

difficult to predict, such as governmental regulations, environmental factors, 

market trends, or technological disruptions. 

C. Similar to the previous categorisation, (Chand, Thakkar, & Ghosh, 2018) also 

proposed classifying CD based on its location or origin, in that case, the drivers’ 

cluster proposed is the following: 

• Upstream complexities refer to an unexpected triggering event that occurs in the 

supply network, inbound logistics, or sourcing environment which threatens the 

business operations of the focal firm. (Bode & Wagner, 2015) subdivide the 

supply base complexity into 3 main levels of this stage: vertical, horizontal, and 

spatial complexity. 

• Mid-stream refers to the internal complexities of the focal firm. 

• Downstream concerns to complexities that are related to the customer base, as 

could be number of customers, and PoS location. 

D. (Scuch & Rudolf, 2015) adopted a point of view when evaluating the complexity in 

new projects development. CD categorisation was conducted by structuring the CD 

along factual coherences, such in this case:  

• Organisation is subdivided into company environment, company organisation, 

and project organisation. 

• Resources is subdivided into human resources, material resources, and financial 

resources. 

• Product is subdivided into product requirement, product program, and product 

architecture. 

• Technologies is subdivided into maturity of technologies, and diversity of 

technologies. 

In this approach, (Scuch & Rudolf, 2015) also defined a second dimension, by 

adding what they called “drivers characteristics”. In this dimension is made a 

distinction between “endogenous vs exogenous”, but also defines the level and 

time of influenceability. 

Nevertheless, it is necessary to make an explicit distinction between which complexity is 

necessary and unnecessary (Serdarasan, 2013). On the one hand, necessary 

complexity provides a competitive advantage by increasing the market’s willingness to 

pay while is required to cope with the business strategy, so it must be included by the 

supply chain activities (i.e., higher levels of customisation, global supply base). Thus, it 
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is also known as strategic complexity (Turner, Aitken, & Bozarth , 2018). On the other 

hand, unnecessary complexity brings no benefits to the SC, however, involves additional 

costs, preventing the SC to obtain higher levels of performance (i.e., unreliable suppliers, 

excessive cycle times, or lead times). It is also known as dysfunctional complexities. In 

other words, complexities are considered necessary until marginal costs overcome 

marginal revenues.  

Moreover, managers may face both strategic and dysfunctional complexities with 

different practices. Unnecessary complexities tend to be eliminated, reduced, or 

absorbed, whereas necessary complexity is usually managed or accommodated. 
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5. Complexity derived from product variety  

The last-century mass production paradigm has shifted to more customer-order-driven 

production, based on the mass customisation paradigm due to the increasingly 

demanding customer expectations, defining product variety (PV) as a company’s 

strategic complexity. Therefore, companies are focused on meeting customer 

preferences to improve their performance, looking for new customers while making them 

loyal. In this context, companies are pursuing diversification strategies by increasing PV 

in terms of design, colours, packaging, and accessories.  

But how could PV be defined? (Fisher et al. (2002)) defined PV as the breadth of 

products that a firm offers at a given time. In the same vein, (Brun and Pero, 2012) 

determined that “PV is the number of different products a company offers to the 

consumer”. However, too much product diversity may have contra-productive behaviours 

in business performance, as it is said “too much of a good thing”. The increasing number 

of products affects the number of components and the interaction between its 

components to obtain a finished good, rising its management complexity, and 

consequently firm’s internal complexity (Rizky Huddiniah & Mahendrawathi, 2019). 

Moreover, when customers face an overload of information, they tend to decide in a 

simple heuristic way that usually will not be optimal, and it will be translated into losing 

sales. (Daaboul, Da Cunha, Bernard, & Laroche, 2011) stated that PV should be 

minimised but not at the expense of customer satisfaction. For that reason, the impacts 

of the PV increase concerning the SC complexity generated, both positive and negative, 

will be specifically analysed below. 

The PV is related to product complexity (PC). On this matter, (Bode & Wagner, 2015) 

defines product complexity as the number of components or raw materials required to 

make finished goods and the interrelationship between each component in the 

production process. (Trattner, Hvan, Forza, & Lee Herbert-Hansen, 2019) exposed that 

PC is considered as a multi-dimensional phenomenon which includes the number of 

components, the number of modules, the number of finished good variants in a portfolio, 

the number of interrelations between components, the commonality of products in an 

assortment, and the diversity of relations between components. Therefore, it is important 

to have the right balance between product variety to fulfil demand while maintaining the 

alignment of the SC. 

Product variety management (PVM) aims to offer customised products while being cost-

efficient behaviours. (Um J. , Lyons, Lam, & Dominguez-Pery, 2017) suggest the high 

levels of PV induce better customer satisfaction, firm performance, market share, and 

perceived brand image. However, too much PV negatively influences sales performance. 

On the one hand, the internal PV is related to the variance linked to product creation 

within a firm or SC, which can be classified according to three dimensions (Um, Han, 

Grubic, & Ghalib, 2018): fundamental, intermediate, and peripheral. Firstly, the 
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"fundamental" PV is related to the different product designs or models at the fabrication 

and design stage. The "intermediate" PV is related to several technical options 

dependent on core design at the assembly stage. Finally, the "peripheral" PV is 

associated with particular options and accessories independent of core design at the 

distribution and sales stage. On the other hand, external PV is associated with the 

availability of different distinguishable products offered by manufacturers in the 

marketplace. 

The impact of variety management in each of the affected areas and drivers within the 

SC is qualitatively analysed below since the aim of the project presented is to qualify the 

impact of the complexity generated by the variety of products in the companies' 

performance. Note that, we have divided and categorised SC drivers into four main areas 

to simplify the analysis of the complexity induced by PV and its impact on the SCP (view 

Figure 7). Moreover, hypotheses are going to be extracted from each of the analysed 

areas to synthesise the impact of PV on different processes and the subsequent 

consequence on sales, manufacturing, transportation, and procurement performance. 

 

Figure 7. Categorisation tree of SCP drivers. Source: Prepared by authors. 
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An increase in PV scenario will be analysed since, to remain competitive, companies 

need to satisfy their customer needs by introducing new product varieties (Piya, 

Shamsuzzoha, & Khadem, 2020). With changing needs of the customers, firms may 

introduce more PV by improving the existing product portfolio or introducing a completely 

new product. Moreover, to achieve a competitive advantage over competitors, firms 

should closely follow competitor's actions to act accordingly. Thus, when competitors 

pretend to introduce new product varieties, firms should react by introducing new 

varieties to counter the negative effect of competitors' actions in the market. 

• Hypothesis 0A (H0A): To satisfy increased customer needs, companies should 

increase their PV by improving the existing product portfolio or introducing a 

completely new product. 

• Hypothesis 0B (H0B): To achieve a competitive advantage over competitors, 

companies should introduce new PV to counter the effect of competitor’s 

movement in the market. 

5.1. Sales performance 

At this first PV implication’s part, we are going to analyse how PV affects sales 

performance while understanding qualitatively the interrelation of each drivers affecting 

the sales performance, which are summarised in the figure below (Figure 8).  

The arrows indicate influence relationship direction, and relationship shape information 

is shown between square brackets: (+) means a positive relationship (an increase of 

variable ‘a’ derives in an increase of variable ‘b’), whereas (-) means a negative one (an 

increase of variable ‘a’ derives in a decrease of variable ‘b’); () means inverted U-shape 

influence whereas () means U-shape influence. The previous description of arrows 

meaning will be also extrapolated and adopted in the following sections. 

In short, if PV increases, the average fill rate decreases at a diminishing marginal rate 

as a result mainly of a decrease in demand forecasting accuracy. Hence, sales 

performance decrease when fill rate decline. Meanwhile, sales performance increases 

due to the positive influence of an increase in PV on customer satisfaction. Moreover, 

more PV leads to increased purchasing opportunities, which can move customers' 

purchases to other brands or variants, thus declining brand loyalty (Dawes, LarsMeyer-

Waardenb, & Driesener, 2014). Therefore, the connection between PV level and the 

subsequent impact on sales performance is not trivial since more products do not always 

lead to increased sales when customer choices are more unpredictable (Alptekinoğlu & 

Ramachandran, 2019).   

The more representatives affected drivers, which are summarised in the Figure 8, are 

going to be in-depth detailed in the following sections. 
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Figure 8. Influences diagram between drivers affecting sales performance. Source: 
Prepared by authors. 

5.1.1. Customer satisfaction 

Firstly, regarding customer satisfaction, (Santos, Sempaio, & Alliprandini, 2020) points 

out that PV can be used as an important lever for sales performance because of the 

greater possibility of the consumers finding a variant that matches their preferences. 

(Siddhartha S.Syam, 2015) points out that increasing the PV reduces the distance 

between what the consumer expects and what finds in the market, thus, boosting sales 

performance. However, over-diversity buying options could lead to customer confusion 

and abort the purchasing. Therefore, the overall customer satisfaction increases directly 

with increased PV at a diminishing marginal rate (H1-Figure 8). 

• Hypothesis 1 (H1): Customer satisfaction increases with an increased PV at 

a diminishing marginal rate.  

5.1.2. Brand image 

(Um J. , Lyons, Lam, & Dominguez, 2017) points out that higher levels of PV induce a 

better-perceived brand image since offered products fit better customer expectations 

hence increase customer satisfaction. However, (Pankaj & Jayaram, 2014) rightly stated 

that too much product diversity should be perceived as a legitimacy deterioration by 

stakeholders and consequently, brand image will be negatively affected due to 

stakeholders could question the firm’s ability to manage the border set of products 

efficiently.   
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• Hypothesis 2A (H2A): Brand image increases with an increased PV following 

an inverted U-shape.  

• Hypothesis 2B (H2B): Increased customer satisfaction leads to a better 

perceived brand. 

5.1.3. Forecasting error 

High levels of PV make forecasting demand accurately and maintain a continuous supply 

more difficult, generating mismatches between product supply and demand, leading to 

product stockouts or inventories backlog (Wan, Evers, & Dresner, 2012). Moreover, 

biases induced due to managerial adjustments to statistical forecasting demand analysis 

are emphasised when tackling highly disaggregated SKUs. A large number of forecasts 

increase complexity and confusion and, by definition, non-optimal behaviours arise 

affected by those biases. Therefore, improper forecasting methods and distorted 

information flow at different points in the SC network can lead to wider fluctuations in the 

production, order delivery process and results in operational complexity (Piya, 

Shamsuzzoha, & Khadem, 2020). (Sanders & Wan, 2017) pointed out that PV increases 

forecast bias not only by SKU proliferation but also through added complexity of product 

interactions such as product substitution and cannibalisation on the demand side. 

Contrarily, as PV increase also improves new product forecast accuracy due to more 

similarities with existing products could be found, as demand information from closely 

related existing products is relevant to the new forecast. Therefore, (Wan, Evers, & 

Dresner, 2012) concluded that negative effect from forecast inaccuracy to fill rate will be 

mitigated when PV increases. 

• Hypothesis 3A (H3A): If PV increase, forecasting error increases at a 

diminishing marginal rate. 

• Hypothesis 3B (H3B): Forecasting error negatively affects fill rate. 

5.1.4. Fill rate  

The fraction of customer demand which can be satisfied through immediate stock 

availability, without backorders or lost sales, is known as fill rate. It is impacted directly 

by changes in the product mix as it is stated by (Santos, Sempaio, & Alliprandini, 2020). 

According to (Santos, Sempaio, & Alliprandini, 2020), a distribution centre’s overall fill 

rate decreases with increased PV at a diminishing marginal rate (H4A-Figure 8). (Wan, 

Evers, & Dresner, 2012) justified this hypothesis (H4A-Figure 8) by pointing that the 

negative relationship mainly derives from the greater difficulties in forecasting demand, 

as PV increases. This relationship has a diminishing marginal rate due to more products 

implies more similarities, hence less effort in new product development forecasting. 

• Hypothesis 4A (H4A): Overall fill rate decreases at a diminishing marginal rate 

when PV increases. 
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The consequence of variations on fill rate impacts sales performance since an increase 

in distributors' fill rate implies the achievement of retailer's demand, which is directly 

affecting positively at sales performance (H4B-Figure 8) (Santos, Sempaio, & 

Alliprandini, 2020). Therefore, a high fill rate indicates low levels of unmet demand, and 

consequently, an increase in sales due to the reduction of the product replacement 

possibilities. 

• Hypothesis 4B (H4B): Increasing fill rate has a positive effect on sales 

performance. 

5.1.5. Inventory level 

To maintain fill rate level and sales performance in front of an uncertain market scope 

due to diversification strategy, companies need to increase their finished goods stocks. 

Therefore, increasing the number of products in a company portfolio leads to an increase 

in the number of different inventoried items (BENJAAFAR & KIM, 2004). 

• Hypothesis 5A (H5A): Higher PV implies higher inventory level in retailers’ 

point of view. 

• Hypothesis 5B (H5B): Higher forecast inaccuracy implies higher inventory 

levels. 

Inventory level in a distribution centre point of view implies a higher level of product 

available which can potentially increase sales performance in front of an unexpected 

increased demand scenario  (Santos, Sempaio, & Alliprandini, 2020). 

• Hypothesis 5C (H5C): Higher inventory level in retailers’ point of view means 

higher sales in unexpected demand scenario increase. 

5.2. Transportation performance 

The role of transportation may reveal substantial support to manage the SC (Piya, 

Shamsuzzoha, & Khadem, 2020). Thus, inadequate and inefficient management of 

transportation leads to increased complexity that affects the productivity of the entire SC. 

An increased product diversification has an economic direct impact on transportation 

costs since low demand and consequently lower quantities for each particular 

component are needed, preventing companies to achieve economies of scale in 

transportation. Therefore, transportation costs increase due to the need to ship less-

than-full truck loads, precluding the use of quantity discounts (Lyons, Um, & Sharifia, 

2020).  

• Hypothesis 6 (H6): Higher PV results in more SC partners and associated 

total transportation costs. 
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5.3. Manufacturing performance 

The expectation when PV increase is that internal operations performances decrease, 

as a result of higher direct labour costs and materials cost (due to loss of bargaining 

power on suppliers and lower purchasing volumes), manufacturing overhead costs (such 

as materials handling, quality control, information systems, and facility utilisation), 

delivery times, and inventory levels (Lyons, Um, & Sharifia, 2020). Therefore, the more 

representatives affected drivers, which are summarised in the Figure 9, are going to be 

in-depth detailed in the following sections. 

 

Figure 9. Influences diagram between drivers affecting manufacturing performance. 
Source: Prepared by authors. 
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As it is shown in Figure 9, planning and scheduling performance has a proportional 

relationship with manufacturing performance since improvements in operational 

processes synchronisation leads to more efficient performance. Moreover, increased 

quality implies better manufacturing performance since the process’s effectiveness is 

improved. In contrast, overall inventory levels, product development, and information 

sharing disruptions have a negative effect on manufacturing performance. Firstly, higher 

inventory levels increase manufacturing costs due to increased storage costs, 

obsolescence, depreciation, and higher managerial complexity. Secondly, higher 

product development costs imply higher total operational costs, reducing manufacturing 

performance. Thirdly, increased information sharing disruptions lead to inefficient 

manufacturing performance since duplicate tasks, reworks, and delays are experienced. 

In short, (Pankaj & Jayaram, 2014) determined that PV relationship with operational 

performance is mainly affected by the rise of operational costs while accommodating 

changes to engineering design, schedules, and bill of materials. 

5.3.1. Quality 

PV complicates the product quality control mainly due to the complexity derived from 

monitoring and controlling a higher number of components and the losing in the learning 

curve. Higher PV impacts on quality performance since heterogeneous operational 

routines require greater monitoring and control, and subsequently there is an increased 

likelihood of rejects (Pankaj & Jayaram, 2014). When product modularity is present, a 

fewer number of components needs to be monitored and controlled, leading to a lower 

likelihood of rejects. 

• Hypothesis 7 (H7): More product diversity leads to higher likelihood of rejects. 

(Granero, 2019) suggests that the average level of quality that is provided to consumers 

declines when there is an introduction of additional product varieties. Although the 

introduction of new brands can affect price competition inducing an excessive level of 

quality, on the other hand, when business stealing becomes dominant, firms end up 

choosing an insufficient level of quality. 

5.3.2. Inventory level 

PV not only has an impact focused on finished products inventories but also affects 

overall SC inventories such as raw materials inventory, or intermediate product buffers 

(WIP inventories). (Santos, Sempaio, & Alliprandini, 2020) concluded that the impact of 

PV on inventories is considered as non-proportional, since the distribution centres (DC) 

overall inventory level increase with increased PV at a diminishing marginal rate. In other 

words, more complexity implies more inventories in upstream and downstream 

management not only to face uncertainty but also due to variability management. (de 

Groote & Yücesan, 2011) has found that keeping total demand constant, the expected 

cost of inventories and backorders increase linearly with the number of products due to 
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a loss of polling economies. Furthermore, intermediate and raw materials inventory 

levels can also increase due to the greater complexity generated by PV architectures. 

Finally, it was proved that total inventory cost increases linearly with the variety of 

products (Lyons, Um, & Sharifia, 2020). 

• Hypothesis 8A (H8A): DC overall inventory level increase with increased PV 

at a diminishing marginal rate. 

• Hypothesis 8B (H8B): Raw materials inventories increase with increased PV. 

• Hypothesis 8C (H8C): WIP inventories increase with increased PV. 

• Hypothesis 8 (H8): Total inventory carrying costs increase with increased PV. 

5.3.3. Average manufacturing lead time 

Average manufacturing lead time (AMLT) is considered as the time required from an 

order invoice, also considering its inherent time to manage flow invoice information, to 

serve the order. (Thonemann & Bradley, 2002) divided the lead time into three 

components: the time that the order waits in the batch buffer until the order arrived, the 

time the batch of orders waits in the process queue for the server to become available, 

and the service time for a batch of orders. 

(Thonemann & Bradley, 2002) stated that expected AMLT is concave increasing in PV 

and increase at a rate that is asymptotically linear as it shown in Figure 10. Simplifying, 

more PV implies higher lead times. Moreover, higher lead times requires retailers to hold 

higher levels of inventories due to inventory models. 

• Hypothesis 9A (H9A): AMLT increases at a diminishing marginal rate in PV. 

• Hypothesis 9B (H9B): Overall inventory level increase with increased lead 

time due to inventory policies. 

 
Figure 10. Average lead time and product variety by product line. Source: (Thonemann 

& Bradley, 2002) 
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Furthermore, (Thonemann & Bradley, 2002) stated that the effect of the batch size on 

the expected lead time is significant, particularly when PV is large. When capacity is not 

a constraint (utilisation rate < 1), the lead time linearly increases with the batch size. 

• Hypothesis 9C (H9C): AMLT linearly increases with the batch size. 

 

Figure 11: Expected lead time as a function of batch size. Source: (Thonemann & 
Bradley, 2002) 

5.3.4. Set-up times 

If PV increases, holding batch size constant, the waiting time in the batch buffer (to 

achieve the optimal batch level) increases because the order arrival rate to the 

production facility is reduced (Thonemann & Bradley, 2002). Therefore, managers may 

reduce the batch size to subsequently reduce the above-mentioned waiting time. 

However, if the batch size is reduced, the number of setups will be increased, thus 

increasing the utilisation rate. 

• Hypothesis 10 (H10A): Smaller production batches increase the total setup 

time. 

In this context of small-batch orders due to the high breadth of PV, setup times are crucial 

and have a significant effect on the overall manufacturing lead time (Thonemann & 

Bradley, 2002). There is a no-directly affectation in individual setup time. However, 

considering an absolute setup time of production, more product diversity induces smaller 

production batches and derives in more product changeovers and ultimately higher 

global setup time.  

• Hypothesis 10B (H10B): Higher PV induces smaller production batches. 

• Hypothesis 10C (H10C): Higher PV implies higher total setup time. 

Furthermore, (Thonemann & Bradley, 2002) demonstrated that exists a positive linear 

influence between setup times and AMLT since a reduction in lead time due to a 
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reduction in setup time depends only on the magnitude of the setup time reduction, 

independent of the current setup time, as it is showed in the Figure 12.  

• Hypothesis 10D (H10D): AMLT increase linearly with increased setup time. 

 

Figure 12. Expected lead time and cost at a retailer as a function of setup time. Source: 
(Thonemann & Bradley, 2002) 

5.3.5. Manufacturing planning and scheduling 

At the manufacturing planning level, increasing the number of products and parts, due 

to the higher finish good customisation, leads to an increase of the size and scope of the 

plant’s manufacturing assignments hence deriving an increment of planning costs while 

making more challenging the decision-making associated (Lyons, Um, & Sharifia, 2020). 

Moreover, firms facing an unstable and uncertain master production schedule (MPS) 

leads to non-feasible production schedules due to the difficulty in effectively balancing 

the real demand necessities and production capacity (Bozarth, Warsing, Flynn, & Flynn, 

2009). Additionally, inefficient planning and work scheduling leads to operational 

complexity, delivery delays, and increased production costs (Piya, Shamsuzzoha, & 

Khadem, 2020). 

• Hypothesis 11A (H11A): Increasing PV implies an increase in complexity and 

costs of planning and scheduling. 

• Hypothesis 11B (H11B): Setup time increase linearly with increased 

manufacturing planning and schedule inefficiencies.  

5.3.6. Product development  

Likewise the positive influence of PV in new product demand forecasting, product 

development takes advantage of similarities and synergies between new products and 

existing products. Moreover, higher PV scenarios require close cooperation between 



How AI supports the management of complexity induced by PV Page 33 

  

manufacturers, especially at early development stages  (Shou, Lee, Park, & Kang, 2016). 

However, the combination of the growth in customised products with the budget 

constrains in terms of time and costs, makes more challenging for product developers to 

fulfil product launch schedules, leading to non-optimal solutions and biases’ introduction. 

• Hypothesis 12 (H12): A PV rise leads to a project development costs increase 

at a diminishing marginal rate. 

5.3.7. Internal communication and information sharing  

It can be intuitive that a high level of product variants gives rise to a wide scope of product 

and production information flows (Lyons, Um, & Sharifia, 2020). Therefore, one problem 

of companies that face a wide range of product attributes is the handling efficiency when 

managing a large amount of information due to all product variants offered or ordered. 

In simple words, more variety increases the probability of information disruptions as 

incorrect, incompatible, or lost data (Forza & Salvador, 2002). 

• Hypothesis 13 (H13): Increasing PV derives in increasing the probability in 

information disruptions. 

5.4. Procurement performance 

In terms of procurement performance, PV influences drivers unequally and non-

proportionally, being challenging to predict in advance the overall effect of PV on 

procurement. However, some conclusions and linkages are extrapolated thanks to the 

drivers’ analysis provided in the following sections.  

When increasing PV, purchased parts variety subsequently increase manly due to more 

PV leads to more parts required to customise final products. Consequently, affecting 

both bargaining power and synchronisation of the SC processes. Moreover, number of 

suppliers will increase due to the need to source more specialised parts and the 

emergence to reduce SC disruption risks. Finally, organisational standards increase 

since higher PV leads to the necessity to implement standards in products and processes 

to remain competitive. 

In short, bargaining power is reduced since purchasing quantities are limited when 

purchasing an increased variety of parts. Subsequently, companies’ profitability will 

decrease since raw material costs have a direct effect on finished goods margin. 

Synchronisation problems may also arise when tackling a vast number of suppliers due 

to the possibility to face information systems incompatibilities, consequently increasing 

the transaction and coordination costs. Besides, it can also arise when purchased part 

variety increase since it induces higher system complexity due to a rise in the number of 

information and materials flow to be managed. When global sourcing comes up to face 

PV impacts, firms should consider possible countereffects in the adoption of this sourcing 

strategy, such as reliability of suppliers, which may derive in manufacturing schedules 
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adjustments leading to non-efficient processes and increasing buffering strategies to 

mitigate this risk. 

 
Figure 13. Influence diagram between drivers affecting procurement performance 

Source: Prepared by authors. 

5.4.1. Number of suppliers 

An increase in the variety of products subsequently increases the number of parts 

needed, often increasing the number of suppliers. Therefore, increased PV leads to an 

increased number of suppliers, increasing difficulty for the company to have proper 

synchronisation of processes with all the partners (Piya, Shamsuzzoha, & Khadem, 

2020). Additionally, the increased number of suppliers could lead to a higher possibility 

of having incompatible SC networks due to a mismatch of competencies or an 

incompatible Information Technology that could negatively affect the process 

synchronisation among partners. 

To cope with network complexity associated with an increase in PV, higher levels of 

coordination and close and collaborative relationships are needed to achieve efficiency 

in the SC and reduce the increased transaction and coordination costs in exchanges 

between producers and their suppliers (Shou, Lee, Park, & Kang, 2016). 

• Hypothesis 14A (H14A): Higher product diversity leads to more suppliers, 

increasing the level of complexity in terms of SC coordination and 

synchronisation. 
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Furthermore, when dealing with increased PV, higher SC disruption risks associated with 

the different technical specifications or lead times, increased complex schedules, and 

possible delays in deliveries are experienced. Consequently, usually dual or even 

multiple sourcing strategies, apart from buffering policy, are applied, increasing the SC 

complexity as a whole.  

• Hypothesis 14B (H14B): Higher product diversity leads to higher SC disruption 

risks, applying multi-sourcing strategies to mitigate it. 

5.4.2. Supplier lead time and reliability 

Moreover, when firms face higher product diversity, increasing the total number of 

suppliers as aforementioned, it also increases the probability of globally managing 

suppliers, inducing longer physical SCs rather than domestic ones. Therefore, if firms 

are not cautious in selecting foreign suppliers, it can result in higher costs and difficulties 

in production schedule alignment (Piya, Shamsuzzoha, & Khadem, 2020).  

• Hypothesis 15A (H15A): More PV leads to longer physical SC. 

Increased distance between supplier locations from the parent company creates difficulty 

in monitoring and controlling suppliers, leading to longer and more uncertain lead times 

(LT). Besides, the global linkages potentially expose manufacturers to a wide range of 

complications such as import and export laws, fluctuations in currency, and cultural 

differences which may impact supplier’s reliability. 

• Hypothesis 15B (H15B): Global SCs induces longer and more uncertain LT. 

Regardless of the source location, supplier’s uncertain LT, will affect safety stocks 

(increase inventory level) and production planning horizons will increase (Bozarth, 

Warsing, Flynn, & Flynn, 2009). Besides, long or unreliable supplier lead times can force 

manufacturers to adopt planning and material management processes characterised by 

longer plan horizons and level of detail. 

5.4.3. Purchased part variety 

When companies follow customisation strategies, becomes challenging to offer more 

customised product without losing economies of scale. Therefore, concerning upstream 

impacts at the procurement level, more product and subsequently more part variety will 

induce a higher system complexity since a higher number of information and materials 

flows will be managed by firms (Bozarth, Warsing, Flynn, & Flynn, 2009). It is translated 

into higher costs in managing the upstream flows.  

• Hypothesis 16A (H16A): Increased PV leads to an increase in purchased parts 

variety and higher system complexity. 
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Furthermore, the higher diversity of purchased parts is perceived as a decrease in the 

bargaining power due to reduced buying quantities, affecting direct raw materials costs. 

Additionally, reducing purchasing quantities could shift the supplier-firm relationship, 

leading to a supplier responsiveness loss while making it difficult to manage them 

efficiently (Piya, Shamsuzzoha, & Khadem, 2020). 

• Hypothesis 16B (H16B): Increased parts variety induces a reduction in 

bargaining power and economies of scale. 

5.4.4. Organisational standards  

PV also generates complexities related to organisational standards (OS). It generates 

complexity due to the need to follow product standards based on the geographical 

regulations in the region in which they operate. To be competitive, company strives to 

achieve standards such as ISO, ASME for their products (Piya, Shamsuzzoha, & 

Khadem, 2020). Increased PV results in managing more logistics needs to maintain 

standards for all product varieties. However, it often generates a challenge since it is 

insufficient to acquire standards only by the parent organisation, but it is necessary to 

acquire them by the whole SC. 

• Hypothesis 17A (H17A): More PV creates the necessity to implement 

standards for the products to remain competitive. 

Moreover, it provokes complexity due to the different engineering standards followed by 

each of the multiple suppliers with whom the company is working. Different suppliers 

follow different standards which are based on the country or region of their operation, 

and it creates more complexity as the number of suppliers increase (Chand, Thakkar, & 

Ghosh, 2018). 

• Hypothesis 17B (H17B): More suppliers induce higher complexity to align 

standards. 

As a consequence of the increased complexity generated when increasing PV, which 

difficult the knowledge transfer across organisational boundaries, common 

organisational standards may arise. That refers to a set of rules, principles, and 

procedures that can enhance the transfer, merging, and creation of knowledge from 

multiple companies when interacting together. Therefore, the manufacturing company 

can achieve a level of integration that can reduce the negative impact of PV. 

5.5. PV impacts summary 

The outcomes of the PV impact on sales, transportation, manufacturing, and logistics 

performance, summarised in the hypothesis, are presented in Table 3. Moreover, the 

academic papers obtained from the literature review are classified in each area and sub-

area analysed and presented in Table 3.  
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Area Driver Hypothesis related Sources 

S
a
le

s
 

Customer 

satisfaction 

H1: Customer satisfaction increases 
with an increased PV at a diminishing 
marginal rate. 

(Santos, 
Sempaio, & 
Alliprandini, 
2020) 
(Siddhartha 
S.Syam, 2015) 
(Dawes, 
LarsMeyer-
Waardenb, & 
Driesener, 2014). 
(Alptekinoğlu & 
Ramachandran, 
2019) 

Brand image  

H2A: Brand image increases with an 
increased PV following an inverted U-
shape.  

H2B: Increased customer satisfaction 
leads to a better perceived brand. 

(Um J. , Lyons, 
Lam, & 
Dominguez, 
2017) 
(Pankaj & 
Jayaram, 2014)  
 

Forecasting 

error 

H3A: If PV increase, forecasting error 
increases at a diminishing marginal 
rate. 

H3B: Forecasting error negatively 
affects fill rate. 

(Wan, Evers, & 
Dresner, 2012) 
(Sanders & Wan, 
2017) (Piya, 
Shamsuzzoha, & 
Khadem, 2020) 

Fill rate 

H4A: Overall fill rate decreases at a 
diminishing marginal rate when PV 
increases. 

H4B: Increasing fill rate has a positive 
effect on sales performance. 

(Santos, 
Sempaio, & 
Alliprandini, 
2020) 
(Wan, Evers, & 
Dresner, 2012) 

Inventory 

level 

H5A: Higher PV implies higher 
inventory level in retailers’ point of 
view. 

H5B: Higher forecast inaccuracy 
implies higher inventory level.  

H5C: Higher inventory level in 
retailers’ point of view means higher 
sales in unexpected demand scenario 
increase. 

(BENJAAFAR & 
KIM, 2004) 
(Santos, 
Sempaio, & 
Alliprandini, 
2020) 

Transportation 
H6: Higher PV results in more SC 
partners and associated total 

transportation costs. 

(Piya, 
Shamsuzzoha, & 
Khadem, 2020) 
(Lyons, Um, & 
Sharifia, 2020) 
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Area Driver Hypothesis related Sources 

M
a
n

u
fa

c
tu

ri
n

g
 

Quality 
H7: More product diversity leads to 
higher likelihood of rejects. 

(Pankaj & 
Jayaram, 2014) 
(Granero, 2019) 

Inventory 

level 

H8A: DC overall inventory level 
increase with increased PV at a 
diminishing marginal rate. 

H8B: Raw materials inventories 
increase with increased PV. 

H8C: WIP inventories increase with 
increased PV. 

H8: Total inventory carrying costs 
increase with increased PV. 

(Santos, 
Sempaio, & 
Alliprandini, 
2020) 
(de Groote & 
Yücesan, 2011) 
(Lyons, Um, & 
Sharifia, 2020) 

Average 

manufacturing 

lead time 

H9A: AMLT increases at a 
diminishing marginal rate in PV. 

H9B: Overall inventory level increase 
with increased lead time due to 
inventory policies. 

H9C: AMLT linearly increases with the 
batch size. 

(Thonemann & 
Bradley, 2002) 
 

Setup times 

H10A: Smaller production batches 
increase the total setup time. 

H10B: Higher PV induces smaller 
production batches. 

H10C: Higher PV implies higher total 
setup time. 

H10D: AMLT increase linearly with 
increased set-up time. 

(Thonemann & 
Bradley, 2002) 

Manufacturing 

planning and 

scheduling 

H11A: Increasing PV implies an 
increase in complexity and costs of 
planning and scheduling.  

H11B: Setup time increase linearly 
with increased manufacturing 
planning and schedule inefficiencies. 

(Lyons, Um, & 
Sharifia, 2020) 
(Bozarth, Warsing, 
Flynn, & Flynn, 
2009) 
(Piya, 
Shamsuzzoha, & 
Khadem, 2020) 

Product 

development 

H12: A PV rise leads to a project 
development costs increase at a 
diminishing marginal rate. 

(Shou, Lee, Park, 
& Kang, 2016) 

Internal 

communication 

& information 

sharing 

H13: Increasing PV derives in 
increasing the probability in 
information disruptions. 

(Lyons, Um, & 
Sharifia, 2020) 
(Forza & 
Salvador, 2002) 
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Area Driver Hypothesis related Sources 

P
ro

c
u

re
m

e
n

t 
p

e
rf

o
rm

a
n

c
e

 

Number of 

suppliers 

H14A: Higher product diversity leads 
to more suppliers, increasing the level 
of complexity in terms of SC 
coordination and synchronisation. 

H14B: Higher product diversity leads 
to higher SC disruption risks, applying 
multi-sourcing strategies to mitigate it. 

(Shou, Lee, Park, 
& Kang, 2016)  
(Piya, 
Shamsuzzoha, & 
Khadem, 2020) 

Supplier lead 

time and 

reliability 

H15A: More PV leads to longer 
physical SCs. 

H15B: Global SC induces longer and 
more uncertain LT. 

(Bozarth, 
Warsing, Flynn, & 
Flynn, 2009) 
(Piya, 
Shamsuzzoha, & 
Khadem, 2020) 

Purchased 

part variety 

H16A: Increased PV leads to an 
increase in purchased parts variety 
and higher system complexity. 

H16B: Increased parts variety induces 
a reduction in bargaining power and 
economies of scale. 

(Bozarth, 
Warsing, Flynn, & 
Flynn, 2009) 
(Piya, 
Shamsuzzoha, & 
Khadem, 2020) 

Organisational 

standards 

H17A: More PV creates the necessity 
to implement standards for the 
products to remain competitive. 

H17B: More suppliers induce higher 
complexity to align standards. 

(Piya, 
Shamsuzzoha, & 
Khadem, 2020) 
(Chand, Thakkar, 
& Ghosh, 2018) 

Table 3. Summary of areas impacted by PV with hypothesis and references. 

To satisfy increased customer needs, many companies are moving towards product 

customisation by increasing their PV (H0), introducing new products that require lower 

development costs (H12). Increasing PV affects the sales performance positively, 

despite the average fill rate will be decreased (H2) as a result mainly of a decrease in 

demand forecasting accuracy (H4), sales performance increases since products fit better 

with the customer expectations (H1), increasing brand image (H3). It also affects the 

manufacturing process, increasing the average manufacturing lead time (H9) and total 

setup time (H10). Additionally, it will increase both internal communication and 

information sharing (H13) and the likelihood of rejects (H7). Moreover, an increase in the 

variety of products increases the number of components required (H16), leading to a 

global rise in the inventory levels (H8) and an increase in the number of SC partners 

(H14). An increase in the number of suppliers will increase the possibility of having 

incompatible SC networks due to a mismatch of competencies. Such incompatibility will 

have an effect on process synchronisation among SC partners, causing an increased 

forecasting error (H4) which will affect all the activities at the shop-floor level, such as 

production planning and scheduling (H11), increased finished goods inventories (H5), or 

logistics and transportation (H6). Besides, increased PV will lead to an increase of 

organisational standards (H17) to meet global requirements, as well as it will induce 

higher supplier’s lead time and reliability (H15).   
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6. Aligning supply chain strategy with product variety 

Once analysed the impact of PV in the different areas within the SC, it is fundamental to 

understand if there is a connection between the strategies a company can pursue to 

obtain a successful SC performance. Therefore, the following section will analyse the 

alignment of SC strategies with the PV choice. First of all, it is presented a general 

framework of the strategies that an SC can adopt through the analysis of the SC gurus’ 

contributions. Subsequently, we will develop a more in-depth analysis to connect the PV 

choice with the SC approach that fits better, inducing higher performances. 

6.1. Hau-Lee model & uncertainty framework 

SC management has emerged due to the shift of competition between company-vs-

company to SC-vs-SC, where current trends are pushing firms to offer more product 

diversification while being cost-efficient to stay competitive in currents markets. 

Therefore, the added value is generated thanks to the strategies’ alignment amongst 

tiers of a chain and not by the excellent performances of an individual.  

In any case, focal firms’ strategies may differ according to the market and supply network 

they are operating in since the statement one-size-fits-all loses weight in the current 

competitive marketplace due to the higher level of customisation required to satisfy an 

evolving demand.  

The uncertainty framework proposed by Hau-Lee is both a simple and a formidable 

method to define the right SC strategy when characterising a product. This model joined 

the Fisher demand segmentation and the stability characteristics at the supplier level. 

Thus, the model segments strategies by differing between functional and innovative 

products and stable and evolving supply characteristics. According to Fisher the 

performance of an SC can be attributed to a match or mismatch between the type of 

product (i.e., innovative or functional) and the design of the SC. Thus, SC strategies can 

be divided into four groups which are Lean, Responsive, Risk-Heading, and Agile. 

  Demand uncertainty 

  
Low  

(Functional products) 

High  

(Innovative products) 

S
u

p
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Supply Chain 
Responsive Supply Chain 
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(Evolving Process) 

Risk hedging Supply 

Chain 

Agile  

Supply Chain 

Figure 14. Demand uncertainty vs Supply uncertainty SC classification. Source: 
Prepared by authors. 
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In the "Lean" Supply Chain the focus is on maximising efficiency in terms of total logistic 

costs by eliminating the non-value-adding activities, achieving economies of scale, 

controlling stocks and centralising management, maximising distribution and production 

capacity through optimisation, and automatising information sharing between clients and 

suppliers. 

In the “Risk Hedging” Supply Chain the focus is oriented on risk management, both 

structural and abnormal (resilience), by applying backup strategies (stocks and backup 

suppliers), sharing resources inside the SC to share the risk of supply disruption, and 

using Information and Communication Technologies (ICT) as success enabler which 

allows owning real-time information on stocks and demand and the subsequent dynamic 

allocation of stocks and demand between partners who share the same warehouse 

stocks. 

In the "Responsive" Supply Chain the focus is on reactivity and flexibility to cope with 

customers’ needs variety and variability by build-to-order and mass customisation 

approaches to satisfy the market-specific demand in which time-to-market has relevance 

importance. 

Finally, in the "Agile" Supply Chain the focus is on satisfying flexibly market needs 

combining “risk hedging” strategies since stock and other capacity resources are shared 

between partners to face stockout and capacity interruption. Thus, "Agile" supply chains 

can face variable demand (outbound), minimising at the same time the risk of supply 

interruption (inbound). 

6.2. Product variety strategic approach 

Strategic approaches can be classified based on PV. On the one hand, SCs providing 

higher PV typically meet more unpredictable demand, shorter life cycles, closer customer 

relationships, and higher margins (Stavrulaki & Davis, 2010). On the other hand, SCs 

providing lower PV face more predictable demand, closer supplier relationship, and 

mass production (economies of scale). In the first case, the focus should be on SC agility, 

differentiation, and customer service. In the second case, it should be on cost efficiency 

and cost leadership. Thus, SC strategies are aligned with PV decisions, impacting 

business performance appropriately (Um, Han, Grubic, & Ghalib, 2018). According to 

(Um, Han, Grubic, & Ghalib, 2018), cost leadership strategy implies low price and low 

manufacturing unit cost while differentiation implies customer service, technology, and 

marketing differentiation. 
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Figure 15. Strategic alignment model with variety in SC. Source: (Um, Han, Grubic, & 
Ghalib, 2018) 
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7. Strategies to minimise or accommodate product 

variety complexity 

Current SCs are facing higher complexity arising from the increase of PV that, no doubt, 

somehow negatively affects SC processes performance. Therefore, applying the 

appropriate strategies is crucial if firms and SCs want to obtain the beneficial effects of 

product diversification. However, some authors claim that it is possible to increase 

variety without affecting the global SC performance. Therefore, the following section will 

analyse the trends that firms are following to manage the large breadth of product 

diversity more efficiently. Furthermore, companies managing a wide range of product 

portfolios require high flexibility levels to successfully satisfy customer demands. For that 

reason, agility is a fundamental characteristic for a company desiring to perform well. 

SCC management aims to move away from the timeless trade-off between cost-efficient 

strategies and segmented marketplace due to product customisation (customer 

effectiveness) by improving both of them simultaneously thanks to smart-management 

of products and operations. 

Efficiently managing variety implies making fundamental decisions to evaluate trade-offs, 

thus balancing the benefits and drawbacks of standardisation. For that reason, is crucial 

to align the corporate strategy and the level of standardisation of the product. Some of 

the most used approaches to efficiently manage the variety of products and the 

complexity of their SCs are shown below. 

7.1. Postponement or delayed product differentiation 

Customers' increased requirements in terms of diversity, quality, quick and reliable 

delivery, and competitive pricing dare to restructuration of SCs, which consider an 

appealing choice to delay the product differentiation point. The concept of postponement 

refers to the decision not to perform some activities in the SC until customer orders are 

received. That allows companies to defer the process in which products are transformed 

according to unique customer specifications, maintaining the products in an 

undifferentiated state as long as possible along the manufacturing process, which is 

called delayed product differentiation (van Hoek, Vos, & Commandeur, 1999). 

Consequently, it contributes to a company's competitiveness by simultaneously reducing 

cost levels while enhancing customer service. This approach permits firms to be more 

responsive because keeping products undifferentiated for as long as possible increases 

company flexibility in responding to customer demand variability. 

The ability to design and produce customised parts with efficiency and speeds similar to 

mass production is called mass customisation. Under mass customisation, customised 

modules are chosen according to customer needs, each one produced by suppliers with 

customisation capabilities (Wang Z. , 2016). Besides, under postponement 
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manufacturing, customised modules are divided into the standard production processes 

and customisation production processes by the differentiation point, called customer 

order decoupling point (COPD). To succeed, it is required to analyse which 

postponement strategies the customisation product family should possess to fulfil the 

diversified demands of customers. 

Different postponement strategies are required depending on the internal organisational 

structure and the product specificity external demands. Therefore, postponement 

decisions should be aligned with the corporate strategy for a successful implementation 

of postponement, establishing the proper mix of customisation and standardisation along 

the SC.  

Companies should assess the value of postponement integrating product design 

decisions and SC decisions. The different delayed differentiation approaches, which can 

be followed to implement a specific postponement strategy, are presented below.  

7.1.1. Process restructuring 

Process restructuring is a fundamental condition for delayed differentiation consisting of 

changing the current operation process sequence to modify it, delaying the time where 

the product is customised. Using the diversity of components and knowing the assembly 

line design, companies can redesign their production systems to postpone the moment 

of product differentiation. Moreover, process restructuring may also arise on a larger 

scale, not only in the manufacturing process but also in the entire SC. 

According to (Gosling & Naim, 2009), six different SC structures can be defined to 

describe the range of possible operations: engineer-to-order (ETO), buy-to-order (BTO), 

make-to-order (MTO), assemble-to-order (ATO), make-to-stock (MTS), and ship-to-

stock (STS). Thus, the difference between them relies on the location of the decoupling 

point, which can be placed at the design stage (ETO), before the manufacturing stage 

(MTO), before the assembly stage (ATO), after the assemble stage (MTS) (Olhager, 

2010). Therefore, companies can redesign their processes by changing the structure of 

their SC to others with a decoupling point placed more closely to the customers. 

7.1.2. Component commonality  

Using standardised components until the products need to be differentiated and use 

them for different product models is one of the keys that enable delayed differentiation.  

It is an approach in which two or more diverse components used for unique finished 

products, are replaced by standardised parts that can perform the functions of those it 

replaces (Caux, David, & Pierreval, 2007).  

Component commonality generally refers to a SC decision involving supplier selection 

and inventory policy, which has to be made considering conditions including different 
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demand variabilities, component costs, inventory tracking cost, and inventory ordering 

costs.  

Moreover, there are economic benefits associated with common components usage 

derived from the total cost of product proliferation reduction. The use of common 

components requires higher quantities of common parts, which can be utilised in several 

final products, thus reducing manufacturing costs due to economies of scale. Besides, 

with risk pooling, the usage of a common component reduces the inventory holding and 

shortage costs. On the contrary, lower quantities of distinctive parts are needed when a 

specific final product requires them (Su, Lin, & Lee, 2010). For example, make-to-order 

companies such as Dell hold inventories as common components and postpone product 

customisation, thus lowering the level of inventories carried (Chopra, 2003). 

Major advantages of component commonality are risk-pooling and lead-time uncertainty 

reduction. By keeping undifferentiated inventories, the level of safety stock required to 

meet the service level is reduced, thus improving SC cost-effectiveness. Moreover, it 

reduces administrative and R&D costs, reducing the number of components to manage, 

and speeding up the new products market introduction, respectively. 

7.1.3. Product design and product modularity 

Product design is another path necessary to employ the postponement strategy. While 

postponement searches efficiency from a process design point of view, modularisation 

addresses it from a product point of view, and both main function is offering 

customisation while minimising the costs, delays and internal complexity (Daaboul, Da 

Cunha, Bernard, & Laroche, 2011). Product modularity is strictly linked with the usage 

of standard components and the redesign of the production system. By using modularity 

and commonality as design principles, simultaneously with functionality and 

performance, it is possible to manufacture products that have been designed from the 

very beginning to be as standardised as possible. Thus, changing product architecture 

can result in minimising complexity and associated costs in SC functions (Howard & 

Squire, 2007). 

Subsequently, customisation is achieved by combining standard modules or joining 

together modular components formulating multiple product variants. Therefore, 

standardisation in product design includes both integrations of common components and 

optimisation of the manufacturing process design. However, the risk of excessive 

modularity and commonality, which is reported as cannibalisation, may damage 

customers' valuation of the product due to a lack of differentiation. 

7.2. Process variety 

(Lyons, Um, & Sharifia, 2020) exposed that process variety increases when PV 

increases mainly because the diverse breadth of products offered to customers may lead 
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to increased variation in the production systems from machines, specialised labour, 

tools, and etcetera. (Lyons, Um, & Sharifia, 2020) defined process variety as “the 

diversity and complexity in the processes due to process alternatives for each product 

variant”. 

How process variety affects SC areas was stated by (Daaboul, Da Cunha, Bernard, & 

Laroche, 2011) which determined that an increase of process variety also implies an 

increase of both customisation options and economies of scope and scale, while 

contrarily total order delay time decrease, as well as inventory level and set-up time.  

7.3. Supply Chain segmentation  

Segmentation in SC management emanates from heterogeneity in operational, tactical, 

and strategic requirements for serving heterogeneous products and customers (Chan & 

Arikan, 2020). The aim is to reasonably differentiate SCs through several segments and 

to implement targeted market strategies and product differentiation based on groups of 

customers that show similar buying behaviour. Thus, classifying SCs and acting 

differently on a group basis allows an increased level of standardisation and subsequent 

avoidance of managerial complexity incurred in fully customised SCs. 

Segmentation is fundamental for firms dealing with a wide range of product portfolios 

since the similarity of different products can be used to segment them into groups. Thus, 

obtaining results sufficiently close to those obtained if they had been treated individually. 

However, it is fundamental to understand how to form the groups on which to base the 

decisions. On the one hand, segment the product portfolio on a small number of groups 

entails creating higher standardisation while reducing managerial complexity and 

benefits from potential cost synergy. On the other hand, segment the product portfolio 

on smaller group sizes occasions higher differentiation (Castka, 2020).  

To tackle the aforementioned fundamental trade-off and obtain the maximum benefits 

from segmentation, results obtained having a smaller number of groups should balance 

against results obtained from the smaller group sizes. That is, the trade-off between cost 

synergy from pooling and gain from differentiation should be balanced. 

To develop a satisfactory segmentation of SCs through network design, entities not only 

have to decide between product differentiation and customisation but also have to 

consider complex interactions among different parts of processes and options. 

Moreover, an in-depth understanding of business structure is needed since trade-offs 

stand out when companies plan to segment their SCs. Demand characteristics and 

geographic differences impact the decision of grouping products, determining whether 

to centralise manufacturing processes in one facility to obtain pooling benefits or to 

decentralise them, becoming more adaptative (Li, 2019). 
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7.4. SC rationalisation 

One of the most widely used approaches to manage SC complexity is the so-called 

rationalisation which can be carried out, on the one hand, by the optimisation of the 

supplier portfolio and, on the other hand, by the optimisation of the number of SKUs in 

the company. However, the rationalisation process is a continuous process that has to 

be refined and optimised every certain period for even better performance in the future. 

7.4.1. Supplier rationalisation 

Traditionally, supplier rationalisation has been focused on choosing the right number of 

suppliers, with the right kind of performance, price, and reliability, to support an efficient 

sourcing strategy (Murphy, 2020). Therefore, the focus was on the supply base 

maximum reduction through an accurate evaluation which encouraged competition 

between suppliers. Subsequently, supplier competition imposed with this evaluation 

method forced suppliers to serve the company with better services, despite being fewer 

participants in the exchange. However, reducing the supplier portfolio to the maximum, 

difficulties in managing possible interruptions in the SC could arise, limiting the 

company's resilience and agility. 

The main objectives of this process could be summarised in the maximisation of supplier 

performance and compliance while minimising risk exposure, the building of both 

resiliency and agility into the SC to protect business continuity and competitive 

performance, and, finally, the identification and take of advantage of savings 

opportunities as well as opportunities to collaborate, among others (Murphy, 2020). 

7.4.2. SKU rationalisation 

The higher the number of stock-keeping units (SKU) of different product items you have, 

the higher the SC complexity, thus affecting the service level for customers. Moreover, 

SKU proliferation may increase operating costs and lead to situations in which only a 

reduced percentage of products contribute to profitability (Enz, Lambert, & 

Schwieterman, 2019) 

Therefore, a strategy for mitigating the negatives impact of managing such a wide variety 

of products is SKU rationalisation, consisting of finding the right balance between too 

many and too few. SKU rationalisation is the branch of research serving to optimise a 

business' portfolio of product supply or SKUs while analysing the subsequent effects of 

providing fewer or more supply (Malinowski, Karwan, & Sun, 2021). 

Benefits associated with SKU rationalisation are broad, including the reduction in 

manufacturing, logistics, and inventory costs due to simplifications in each of the 

processes. However, reducing in excess the product portfolio has clear negative 

implications on the business' incoming demand, and therefore on sales. On the contrary, 
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a higher number of SKUs means more customers, a wider market capture, a deeper 

market penetration, and increased competitive position, a tighter customer engagement, 

and a higher level of customer relevancy (Williams & Mahmoodi, 2019). 

The decision lies in understanding which is the amount of variety that enhances revenues 

while counterbalancing operational inefficiencies. In other words, to find the equilibrium 

point in which the added value due to increased PV starts to be marginally negative. As 

aforementioned, PV is assumed to increase sales, enhancing market share, and leading 

customers to perceive the brand as being of higher quality. Contrarily, service levels fall 

due to increased complexity, and higher costs had to be assumed due to reduced 

economies of scale (Enz, Lambert, & Schwieterman, 2019). Additionally, some authors 

mention that reducing SKUs may be more cost effective than inventory optimisation, 

highlighting the villainous role of product proliferation on inventory levels (Alfaro & 

Corbett, 2003). 

The digitalisation era opens a new horizon for the study and optimisation of the supplier 

portfolio, which not only includes financial savings but also other data that can be 

analysed thanks to the power of digital transformation. In the end, the priority remains 

on the result, but the current rationalisation prioritises both value creation and savings 

opportunities. It is an ongoing analytical process where vendor monitoring and 

governance implementation are necessary to maintain a rationalised portfolio. 

7.5. SC integration 

SC integration is another approach considered to be helpful in mitigating PV induced 

complexity along the SC (Shou, Lee, Park, & Kang, 2016).  Increased PV complexity can 

be mitigated by integrating different actors along with the SC with efficient information 

sharing, adequate coordination, and key collaborations. Therefore, it can be anticipated 

and eliminated the subsequent uncertainty and SC risks derived from PV induced 

complexity (Narasimhan & Talluri, 2009). 

Moreover, when integration with customers is achieved, manufacturers can enrich their 

customer demand information and market trends, thus enhancing product specifications 

details, as quality and quantity requirements (Flynn, Huo, & Zhao, 2010). Consequently, 

manufacturers' customer information knowledge is transmitted upstream to relevant 

suppliers improving SC transparency and visibility. Through supplier integration, the 

company ensure that their suppliers deliver raw materials in a timely and accurate 

manner, or otherwise, it enables the firm to react in front of a supply non-fulfilment 

scenario. Furthermore, it can acquire access to new technology or knowledge about 

components or materials for certain types of products which cannot be achieved in 

traditional market relationships, improving firm's innovation capabilities. 

On the other hand, although it can previously seem evident to integrate actors in the SC, 

there are companies not pursuing this mindset. Therefore, applying collaborative 
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approaches as the sharing of benefits and risks can be a way to increase the willingness 

of SC partners to exchange both relevant information and knowledge, thus coping with 

the adverse repercussions of PV complexity. 

7.6. Information technologies (IT) 

IT, to some extent, is closely related to SC integration and information sharing. In this 

context, IT leads firms to real-time information access and information sharing, which 

are needed to run and consolidate all business processes while helps companies’ 

decision-making. Therefore, IT enables efficient and effective information exchange 

between SC partners, which drives SC to better performance by improving the 

information quality and consolidating collaboration and coordination. However, produce 

more PV may result to incompatible information technology between different firms’ IT 

applications and SC partners due to the different IT solutions available in the market 

(Piya, Shamsuzzoha, & Khadem, 2020). Some case examples linked to how SCM 

adopts IT are listed below. 

7.6.1. Radio frequency identification (RFID) 

RFID is a technology concerning automatic object identification that consists of 

information transference between a smart-device, which can be passive or active, and a 

remote reader. Introduced for the first time by Wal-Mart in 2005, this technology enables 

intra- and inter-organisational communication regarding product identification, such as 

inventory management regarding intra-organisational processes, or adopted for inter-

organisational processes when tracing & tracking an item status (Chen, 2005).  

RFID tech not only has saved time and labour costs by, for example, reducing the time 

spent in PoS daily inventorying proved by Decathlon but also mitigates the complexity of 

managing products along with the SC. 

7.6.2. Enterprise resource planning (ERP) 

ERP software is an enterprise system used by companies to integrate and manage all 

processes required to run the business, such as planning, purchasing inventory, finance, 

marketing, or human resources. In other words, information integration is the key benefit 

(Hendriks, Singhal, & Stratman, 2006). On the one hand, ERP replaces complex manual 

interfaces between different companies’ systems with standardised, cross-functional 

transaction automation, leading to lower order cycle time and cash-to-cash cycle time. 

On the other hand, ERP leads to data consistency along with the enterprise due to the 

information is centralised and updated in real-time. The combination of both 

standardised cross-functional transactions and centralised enterprise data enables 

managers to clearly view the performance of various enterprise parts, leading to more 

manageable firms’ governance and resulting in better performance. 
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7.7. Strategies impacts summary 

The outcomes of the strategies used to minimise or accommodate PV induced 

complexity, and the outcomes related, are presented in Table 4. Moreover, the academic 

papers obtained from the literature review are classified in each strategy analysed, and 

presented in Table 4. 

Strategy Outcome related Sources 

Postponement 
or delayed 
product 
differentiation 
(DPD) 

Increase company’s flexibility in 
responding to customer 
demand variability by: 

• Changing the current 
operations process 
sequence. 

• Using standardised 
components until the 
product differentiation point. 

• Using commonality and 
modularity as design 
product principles. 

(van Hoek, Vos, & 

Commandeur, 1999) 

(Wang Z. , 2016) 

(Gosling & Naim, 2009) 

(Olhager, 2010) 

(Pankaj & Jayaram, 2014) 

(Chopra, 2003) 

(Caux, David, & Pierreval, 2007) 

(Su, Lin, & Lee, 2010) 

(Daaboul, Da Cunha, Bernard, 

& Laroche, 2011) 

(Howard & Squire, 2007) 

Process 
variety 

Increase both customisation 
options and economies of 
scope and scale. 

(Lyons, Um, & Sharifia, 2020) 

(Daaboul, Da Cunha, Bernard, 

& Laroche, 2011) 

SC 
segmentation 

Increase the level of 
standardisation by segmenting 
the product portfolio into groups 
and subsequently avoid 
managerial complexity incurred 
in fully customised SC. 

(Chan & Arikan, 2020) 

(Castka, 2020) 

SC 
rationalisation 

Reduce managerial complexity 
by finding the right balance 
between too many and too few. 
Firms can rationalise: 

• Supplier base. 
• SKU portfolio. 

(Murphy, 2020) 

(Enz, Lambert, & Schwieterman, 

2019) 

(Malinowski, Karwan, & Sun, 

2021) 

(Williams & Mahmoodi, 2019) 

(Alfaro & Corbett, 2003) 

SC integration 

Anticipate and eliminate the 
subsequent uncertainty and SC 
risks derived from PV with 
efficient information sharing, 
adequate coordination, and key 
collaborations. 

(Shou, Lee, Park, & Kang, 

2016) 

(Narasimhan & Talluri, 2009) 

(Flynn, Huo, & Zhao, 2010) 

Information 
technologies 
(IT) 

Enables efficient and effective 
information exchange between 
SC partners while consolidating 
it with all business processes. 

(Chen, 2005) 

(Hendriks, Singhal, & Stratman, 

2006) 

(Priore, Ponte, & Rosillo, 2018) 

Table 4. Summary of strategies able to minimise or accommodate PV induced complexity.  
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8. Artificial Intelligence introduction 

In the digitalisation era, the ability to manage a vast amount of information is vital to 

compete and stand out in some markets. However, the AI's real potential when 

generating value in the chain resides in squeezing all the profits out of the data analysis. 

Therefore, AI solutions are widely adopted, by mostly high-tech and telecom companies, 

as an advanced technique to process information and leverage data available not only 

in firms but also along with the SC, by recognising a multitude of challenges that arise in 

SC operations and becoming an established versatile technology. Moreover, AI's 

capabilities have dramatically scaled up due to better and larger data sets availability, 

improved algorithms, and more powerful graphics processing units (GPUs), which leads 

to the achieving of new levels of mathematical computer power. This increase in speed 

and data availability has enabled fasters training and more reliable AI algorithms. In other 

words, more data while more computing power has boomed AI, triggering the AI era for 

business. 

A recent McKinsey discussion paper showed that organisations seeing more EBIT 

contribution from AI experience better yearly growth than do other organisations 

(Balakrishnan, Chui, Hall, & Henke, 2020). Moreover, Michael Chui, McKinsey senior 

partner, highlights that the AI investment is still being appetitive for companies despite 

losing AI's hype phase in market speculations (Balakrishnan, Chui, Hall, & Henke, 2020). 

This fact highlights companies' tendency to use AI technology to enhance their product 

offering by focusing on revenue drivers rather than improving their capital efficiency by 

targeting labour costs savings. More in-depth on the topic, (Bughin, Chui, Henke, & 

Trench, 2017)  showed a strong relationship between AI adopters with proactive 

strategies and significantly higher profits margins (Figure 16). In this vein, those 

companies who adopt proactively AI stand to gain significant competitive advantages not 

only benefits from economies of learning but also more productive SC practices, 

generating value to customers. We have already seen some examples where new 

entrants beat incumbents and take the lead thanks to AI adoption, as Uber has done in 

the taxi industry.  

In short, AI is considered a mature and consolidated technology in advance processing 

information due to its versatility when tackling a wide breadth of challenges and 

enhancing value generation in core processes. For that reason, despite AI's impact to 

date is relatively small in many industries, its potential for disrupting and expand amongst 

other sectors that, for instance, were hesitant in the past is high. 
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Figure 16. Profits margins depending on firms’ level of AI adoption. Source: (Bughin, 

Chui, Henke, & Trench, 2017) 

As reported below, we have developed a descriptive study about AI’s scholarly interest 

trends by downloading and analysing data from SciVal. SciVal is a web-based analytics 

solution that permits researchers to evaluate research activities from a variety of 

perspectives and publications records within the Scopus database, thus helping 

researchers to develop, execute, and evaluate strategies based on reliable evidence. In 

our case, we have conducted a scholarly publications analysis based on keywords (1st 

tier: “supply chain” AND 2nd tier: “artificial intelligence”).  

As shown in Figure 17, the results obtained are aligned with the documents outcomes 

about AI, which conclude that the new advances in power computing and data availability 

have boomed the adoption of AI and interest of studies and papers from recent years. 

 

Figure 17. Documents related to AI and SC published per year. Source: Prepared by 

authors. Data from SciVal tool. 
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The outcomes and conclusions aforementioned convinced us to finally focus our thesis 

on how AI boosts complexity arising from PV management. Therefore, in this section, 

we will describe AI technology and its functionalities to figure out how it could support 

product variety-induced complexity and boost traditional strategies to mitigate them. 

8.1. AI technology in SCM 

AI technology enables systems to make resourceful decisions and execute tasks 

automatically without human intervention using computational abilities that mimic human 

intelligence, even amplifying it (Riahi, Saikouk, Gunasekaran, & Badraoui, 2021). (Kar, 

Dwivedi, & Grover, 2020) define AI as a pathbreaking analytic tool that enhances the SC 

performance (SCP) sphere since it facilitates presenting diverse solutions, providing 

prescriptive inputs in the decision-making process in the face of a complicated solution.  

Besides, AI allows companies to implement predictive approaches to rapidly assess and 

more effectively minimise the risks of disruptive events that could occur throughout the 

SC since it also lets users recognise patterns in the SC. Therefore, companies exploit AI 

to gain insights into their intern business areas since AI can clearly and quickly identify 

relevant SC data to develop models that enable managers to understand better how 

each process works. AI’s emergence in the SC context has caused a radical change in 

the organisation of work processes since any sector can benefit from the right integration 

of AI in its processes and become a more proactive, predictive, automated, and 

personalised sector (Riahi, Saikouk, Gunasekaran, & Badraoui, 2021). In short, AI lets 

companies constantly learn about areas that require improvement, identify factors that 

affect performance, and predict performance. 

8.2. Success factors for AI adoption 

It is well-known that AI can go beyond changing business processes to change the entire 

business models. Thus, entities that are hesitant in implementing AI take the risk of fell 

behind. For that reason, firms that decide to act must be accurate in the adoption process 

of AI, aligning AI transformation with the corporate strategy while designing reliable and 

precise AI outputs. The main factors that firms may consider when adopting AI are 

summarised in Figure 18. 
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Figure 18. Main factors in successful AI transformations. Source: Prepared by authors. 

Identify the value source 

The first step firms should consider when are adopting AI is to identify a business case 

and connect it to firms’ strategy and its core process and value chain. For that purpose, 

it is vital to have a deep AI know-how, acknowledging its strengths and limitations 

compared to conventional technological approaches, to identify the AI’s capabilities in a 

real-world context. However, to ensure a focus on the most valuable use cases, AI 

initiatives may be assessed by both business and technical roles.  

Build the data ecosystem 

Availability of data is crucial for any AI project or initiative since AI algorithms require 

large data sets, especially at their training phase. In other words, without data, the AI 

engine cannot start. Therefore, firms need to know the data they have access to and 

what is relevant to business purposes.  

Moreover, algorithms are susceptible to bias induced by data sets. For that reason, it is 

crucial to avoid them by training algorithms with comprehensive data sets. 

Know what you need 

To capture the AI potential, firms need to adapt and build internal capabilities finding the 

tools that fit with the purpose. Companies can acquire the know-how by setting a “build, 

operate and transfer” partnership with AI start-ups and leaders or, otherwise, implement 

existing solutions aligned to company-specific needs.  
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(Bughin, Chui, Henke, & Trench, 2017) mentioned that the “test and learn” approach 

helps to agile and rapidly validate business cases when implementing AI and afterwards 

scale those that succeed. 

Integrate to squeeze AI potential 

Companies’ capabilities must be integrated with AI’s insights to capture the benefits 

obtained in the business case. Thus, AI implementation also transforms what people do 

within the organisation, changing their workflows and roles. Therefore, firms should 

carefully consider how processes will be redesigned to incorporate AI into the firms’ 

workflows, determining what AI automates and how humans would interact. 

Adopt an open-culture and reskill the workforce 

To adopt long-term AI initiatives, it is essential to implement an open organisational 

culture where trust between humans and machine is preconceived. Typically, adapting 

people in the use of AI is more complicated than the technical implementation phase. 

Therefore, it may require investments to accommodate workers' capabilities to 

understand how to use and exploit data-driven AI outcomes as the basis of decision-

making. 

Roger Burkhardt in the article (Balakrishnan, Chui, Hall, & Henke, 2020), exposed that 

algorithm explainability is a key enabler to pursue workers to trust AI predictions and 

avoid the lack of AI adoption. 

8.3. AI techniques 

AI has several fundamental components, as shown in Figure 19, but the most relevant 

ones are Machine Learning (ML) and the ability to process unstructured data as Natural 

Language Processing (NLP) (Wilson, Paschen, & Pitt, 2021).  

ML includes computational procedures that enable AI to learn by itself, allowing AI to 

improve its performance without being explicitly programmed to do so. Therefore, it can 

analyse a higher amount of information and obtain structured results, increasing the cost-

effectiveness of the whole process while unlocking knowledge that was unobtainable 

using earlier technologies (Riahi, Saikouk, Gunasekaran, & Badraoui, 2021).  

Although many ML techniques can be used for SC management, some are used more 

than others (Toorajipour, Sohrabpour, Nazarpour, Oghazi, & Fischl, 2021). The most 

prevalent and influential is Artificial Neural Networks (ANNs), an information-processing 

technique that can be used to find patterns, knowledge, or models from a non-structured 

and extensive amount of data. In SCM, applications of the ANN technology range from 

sales forecasting, pricing, and customer segmentation to production forecasting, supplier 

selection, demand management, and consumption forecasting. Furthermore, the 

outcomes of (Riahi, Saikouk, Gunasekaran, & Badraoui, 2021) research shows that the 
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AI technique for inventory management is easily identifiable, which is the ANN since it 

enhances the logistics workflow responsiveness. However, it remarks that almost every 

paper used a new AI technique, such as decision trees, intelligent agents, bio-inspired 

algorithms, and particle swarm intelligence. 

The second key component of AI is its ability to process unstructured data, such as 

natural language or images. While one of the main applications of NLP is to extract topics 

that people are discussing from large amounts of text (Zhoua, Awasthi, & Stal-Le 

Cardinal, 2021), processing images, which is also called computer vision, enables 

computers to recognise patterns and extract meaning from pixels. 

 
 

Figure 19. Artificial intelligence classification. Source: (Riahi, Saikouk, Gunasekaran, & 
Badraoui, 2021). 
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9. AI applicated into PV discussion 

AI has shown strong abilities in tackling multi-dimensional problems due to its high 

computing capacities while supporting decision-making activities to predict best-of 

scenarios accurately and reliably based on data learning. Furthermore, when Big Data 

comes up enhancing its potential in last years, AI has convinced firms to adopt AI 

technologies not only to automate processes, reducing the labour costs, and improving 

information exchange, but also enhancing core processes, giving firms a competitive 

advantage to stand out in such competitive markets of today. Therefore, we will link AI 

to the PV topic, investigating how it can support the management of complexity induced 

by PV in the previously analysed areas. 

9.1. Sales performance 

In general, AI provides Sales Managers with dynamic performance evaluations through 

AI-driven dashboards identifying upselling and cross-selling opportunities for the 

customers (Dwivedi, 2021). Based on customer attributes as demographics, location, or 

browsing history, products, offers, and prices can be personalised and “pushed” to the 

customer (Sanders, Boone, Ganeshan, & Wood, 2019). AI can go beyond what is 

expected, enhancing customer experience to new levels. It can personalise tips and 

suggestions, offer immediate assistance and automated customer service with virtual 

agents, and tailor products according to customer preferences. 

Furthermore, AI predictive and forecasting capabilities, and the use of Big Data, can 

retain and develop new customer leads. Additionally, AI algorithms can contribute to 

productivity and provide sales process enhancement by eliminating non-productive 

activities.  

Therefore, different areas affecting sales performance are going to be analysed more in-

depth in the following sections. 

9.1.1. Customer satisfaction 

In the digitalisation era, it is possible to obtain data regarding the set of decisions a 

customer has experienced when buying a product or service, considering that individual 

customer buying behaviour is tracked (Sanders, Boone, Ganeshan, & Wood, 2019). With 

all this information AI can enhance campaign creation, planning, targeting, and 

evaluation since segmentation and targeting become easy through the data available. 

Hence, the past purchases, interests, and browsing behaviours can be used to create 

automated campaigns that can enhance the customers’ purchase intention. 

Furthermore, AI can recognise the consumer’s pattern about lifestyle decisions as music, 

favourite celebrity, and location to create unique content. 

Therefore, AI helps brands that need to understand their customers and communicate 

with them on a personal and emotional level, boosting customer satisfaction (Dwivedi, 

forecast demand although PV 
increase, even considering 
product interrelationships that 
human cannot percieve 

• AI is able to forecast demand for 
new products without historical 
register 

inventory level when increasing 
PV 

• AI allow firms trace a greater 
quantity of PV more agile and 
precise 
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2021). Once firms understand their customers more accurately, AI can go further and 

deliver content in an optimised way, selecting the best times and days of the week to 

send an email campaign or post on social media, with the recommended frequency of 

the marketing messages, and the title they are more likely to engage with. Additionally, 

AI can select the content that fits better each user type to achieve an improved customer 

brand perception, avoiding the trade-offs between different customer personalities. 

DISCUSSION 1: PV vs Customer satisfaction 

Regarding the customer satisfaction, AI can support the product variety-

induced complexity in three main ways, which will be analysed below.  

Firstly, AI allows companies to segment the customers more accurately and 

precisely, leading to a definition of the different population targets according to 

the previously obtained segmentation. Thus, the PV level achieved balances 

the trade-offs between too much and too few, reaching an optimum solution 

that allows maximum customer satisfaction. Therefore, the PV quantity 

introduced is in equilibrium with the different customer expectations, enhancing 

the customer satisfaction and, consequently, brand loyalty. To this end, 

Support Vector Machines (SVM), also called Kernels machines, are the 

suitable data mining technique since it can cluster, classify, rank, or find 

correlations in a dataset. 

• Discussion 1A (D1A): AI supports to define the optimal level of PV 

according to customer expectations. 

Secondly, when firms decide to increase PV, consumers can see it unavoidably 

negative when they are only interested in certain portfolio products. Moreover, 

provide customers with a wide range of products can lead to customer 

confusion and abort the purchasing. Therefore, AI allows companies to provide 

customers with just the products they are interested in, mitigating the possible 

adverse effect of introducing too much PV. Thus, firms can provide the desired 

advertising content to the target, the so-called “natural fit”, and smartly 

automate aid actions based on best practises using ML algorithms. 

Consequently, customers perception of the brand is not damaged by 

introducing new products that may not interest them. 

• Discussion 1B (D1B): AI mitigates the hidden risk of customer 

confusion providing them with just the products they are 

interested in. 

Thirdly, AI allows firms to comprehend more accurately customer needs, 

adapting the PV level to the changing desires of the target segments, thanks 

to its potential to process and analyse real-time data. Besides, it permits firms 
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to use feedbacks not only to recognise what customers currently desire but 

also to continuously understand the evolving trends, discovering new 

customers that they did not even know existed. Therefore, it becomes easier 

to identify whether to merge products or introduce more customised ones. 

• Discussion 1C (D1C): AI allows companies to adapt the PV level 

to the changing desires of the target segments. 

9.1.2. Brand image 

Brand image is strongly linked with customer satisfaction since improvements in the 

alignment between customer expectations and what they find in the market magnifies 

the perceived brand value. Therefore, improved customer satisfaction due to AI adoption 

leads to higher perceived brand image, enhancing sales performance. It is useless to 

investigate the AI impacts on brand image considering that it is not directly affected by 

its potential benefits, but an indirect impact comes from the customer satisfaction 

improvement. 

9.1.3. Forecasting error 

The application of AI in demand forecasting is one of the most promising applications for 

optimising SC performance since it implies improved supplies, which lead to fewer 

product shortages, fewer overstocks, and less waste (Riahi, Saikouk, Gunasekaran, & 

Badraoui, 2021). Moreover, it can also improve planning, making it possible to optimise 

storage capacities or even reception and dispatch. Besides, AI can be used to 

understand opportunities as customer needs, attitudes, and preferences, considering 

their specific and increasingly real-time context (Dwivedi, 2021). The importance of 

improving sales forecast resides in its influence on several organisational levels, as it 

has previously mentioned. An inaccurate or lack of forecasting can lead to inadequate 

inventory and material flow management, loss of sales or excess of products, and 

customer dissatisfaction (Vahid, Pejvak, Reza, & Ali, 2021).  

(Verstraete, Aghezzaf, & Desmet, 2020) argue that traditional statistical forecasting 

methods extrapolate historical trends and seasonal fluctuations to predict the future, 

being incapable of predicting environmental macroeconomic changes in the business 

that usually influence demand significantly. Consequently, firms either manually adjusted 

their statistical forecasts or relied on experts’ judgmental forecasts. However, these 

approaches are biased, since humans are generally inefficient in making such 

adjustments, and the process is time-consuming. Therefore, (Vahid, Pejvak, Reza, & Ali, 

2021) emphasises that even though historical sales forecasting techniques prevail in 

research, causal methods (AI-based) are proven to be more accurate and precise, 

especially when sales behaviour changes in an unstable pattern and there are 

unpredictable fluctuations in its trend. (Sanders, Boone, Ganeshan, & Wood, 2019) 
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argues that near real-time tracking of inventory and customer buying patterns has made 

it possible to project sales (or estimate demand) more accurately than before, minimising 

wastes and anticipating sales trends so firms can offer more soon-to-be-popular items. 

In short, the importance of embracing AI in SC demand forecasting demonstrated, on 

the one hand, the impact of improvements in that specific area and, on the other hand, 

the intrinsic benefits of the technology adoption. AI can autonomously select the optimal 

forecast algorithm whenever added new data to demand register; it continuously 

analyses and updates forecast planning criteria to improve forecast accuracy, ensuring 

an optimal SC performance; it can automatically detect erroneous demand history data 

points and substitutes a corrected value;  it uses ML pattern recognition and NLP to 

recognise complex patterns and provide data insights; and finally, it uses ML to 

understand the forecast variability very rapidly. 

DISCUSSION 2: PV vs Forecasting error 

Regarding the forecasting error, AI can support the product variety-induced 

complexity in three principal ways, which will be analysed below. 

Firstly, thanks to AI, the amount of PV does not affect the demand forecasting 

precision, and forecast accuracy remains high when introducing more products 

since it is a tool capable to evaluate hidden interactions and patterns that 

humans cannot perceive. Besides, AI helps reduce the time spent in 

forecasting demand, which increases when having more PV. More PV for AI 

technology does not imply extra time, so that more forecasts can be covered 

than before, reducing personnel costs since fewer workers are required to 

cover more SKUs because of AI's support. 

• Discussion 2A (D2A): Demand forecast accuracy remains high 

when increasing PV if AI technology is adopted. 

Secondly, AI helps to forecast demand by considering factors that humans 

cannot contemplate. As the PV increases, the complexity induced also 

increases due to the need to predict the demand for many products that can 

interact with each other and with competitors' ones. It is difficult for humans to 

accurately understand the interactions appearing between products on the 

demand side (substitutions, cannibalisations). Therefore, AI can recognise 

patterns of demand fluctuation by not only analysing the company portfolio 

evolution but also those of the market (interactions with competitors).  

• Discussion 2B (D2B): AI’s technology enables forecasts 

considering products interrelationship arising when PV 

increases.  
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Thirdly, AI allows the forecasting of new products without historical data since 

forecasts are based traditionally on historical data and then adjusted by 

experts. When increasing the PV and consequently increases the degree of 

customisation, there is no historical data to base the forecast. Thus, demand 

for new products is often difficult to forecast. Therefore, AI helps make more 

accurate forecasts when products, with shorter product life cycles and a higher 

level of customisation for a specific target, do not have a historical register to 

base the predictions through AI-powered attribute-based modelling 

techniques. AI can better predict future product demands, creating new 

demand profiles by looking for similar products and finding synergies better 

than experts can do, and learning from previous product introductions to base 

the profile pattern and volumes. 

• Discussion 2C (D2C): when increasing PV, AI supports managers 

to predict forecast without historical register. 

 

9.1.4. Fill rate  

Fill rate is strongly linked with the forecasting accuracy since product availability depends 

heavily on the inventory level based on demand forecasting. Therefore, improved 

forecasting error due to AI adoption leads to higher fill rates and lower lost sales. It is 

useless to investigate the AI impacts on fill rate considering that it is not directly affected 

by its potential benefits, but an indirect impact comes from the forecast and inventory 

improvement. 

9.1.5. Inventory 

When increasing PV, one of the most noticeable impacts is the effect on increased 

finished goods inventories, a primary source of cost which is necessary to meet demands 

by ensuring product availability and readiness at the right time (Riahi, Saikouk, 

Gunasekaran, & Badraoui, 2021). High levels of inventories are one of the biggest 

wastes present in SC, caused by errors in demand forecasting if compared with the 

actual demand, resulting in costs that could have been avoided (Praveen, Farnaz, & 

Hatim, 2019). Therefore, AI technology is one of the most effective ways for managing 

inventory since it can automatise the process.  

On the one hand, an AI system can automatically track sales, storing the data that can 

monitor the inventory in real-time, avoiding overstocking or understocking. Moreover, AI 

algorithms can even generate reports automatically informing of a demand change 

avoiding the time spent estimating the stock. 
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On the other hand, the use of ML can assist with the rapid changes in customer demand 

(Praveen, Farnaz, & Hatim, 2019), minimising the supply vs. demand mismatch and the 

subsequent costs, thus increasing profit margins. 

Artificial Neural Networks (ANN) modelling is the most adopted technique in inventory 

management thanks to its capability of handling data with high volatility more accurately, 

overcoming the weaknesses of traditional forecasting models (Riahi, Saikouk, 

Gunasekaran, & Badraoui, 2021). ANN Models can be applied to non-linear and complex 

problems and can make predictions by inferencing invisible relationships. The models 

are also a good predictor when high variability and non-constant-variance are present in 

the data sets. (Praveen, Farnaz, & Hatim, 2019) shows that by implementing an AI 

system that uses the ANN algorithm, the average accuracy increases by two to three 

percent, improving the overall performance and efficiency of the SC network. This model 

also enhances the forecasting analysis and gives a better prediction of future sales. For 

instance, the overall improved efficiency of the SC networks also results in various other 

benefits as the reduction in overall operational costs. 

DISCUSSION 3: PV vs Inventory 

Regarding the retailers’ inventory, AI can support the product variety-induced 

complexity in two principal ways, which will be analysed below. 

AI allows having less uncertainty on the demand side, giving rise to better 

forecasts even by increasing PV. Without AI, final product stocks increase with 

increasing PV since the uncertainty of future demand also increases. However, 

by adopting AI, more accuracy in demand predictions is achieved, which 

causes a reduction in safety stocks despite increasing the number of products, 

compared with those we had before adopting AI technology. It should be noted 

that even using AI, the stocks of the final product will increase with increasing 

PV, but to a lesser extent than without using AI. 

• Discussion 3A (D3A): AI allows firms to reduce the final goods 

stock when increasing PV, in comparison with the non-AI-

adoption. 

Thanks to AI technology capabilities to process large quantities and complex 

information, sales forecasts are very close to reality. Therefore, by definition, it 

impacts all manufacturing activities since all planning can be improved and 

updated in the face of changes. When adopting AI technology, it is possible to 

monitor final product stock levels, as well as to have traceability of a greater 

quantity of PV in a more agile and precise way without misinformation 

problems. Thus, the greater visibility of stocks in real-time, as well as the most 
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efficient and accurate flow of information, allows greater agility in the face of 

changes, thus reducing the levels of stock of the final product. 

• Discussion 3B (D3B): AI allows firms to trace a greater quantity 

of PV more agile and precise, reducing the levels of stock of the 

final product. 

 

9.2. Transportation performance 

According to (Riahi, Saikouk, Gunasekaran, & Badraoui, 2021), AI-based solutions can 

reduce transportation costs and increase the ability to efficiently meeting customer's 

demands. Firstly, on-time deliveries can be ensured with near-optimal solutions to 

routing problems (RP) since AI helps to solve complex RP faster. Secondly, it is improved 

the management of warehouse activities performed by robots, automated storage 

solutions, or operators can be assisted by handling equipment. Finally, AI can use real-

time traffic data, robotics, computer vision, and autonomous vehicles, all of which can 

help build specific models to improve transportations. Therefore, transportation 

scheduling of vehicle and transportation nodes is an important factor to create a stable 

chained network by ensuring the highest amount of product distribution and lowest 

logistics cost (Islam, Mahmud, & Pritom, 2019). 

Furthermore, AI can also allow firms to use reverse logistics systems efficiently, adding 

value during the collection, warehousing, and processing activities (Wilson, Paschen, & 

Pitt, 2021).  

DISCUSSION 4: PV vs Transportation performance 

Regarding the transportation performance, AI can support the product variety-

induced complexity in two principal ways, which will be analysed below. 

On the one hand, AI helps automate internal warehouse transportation since 

AI combined with the robot and automated warehouse solutions, with a certain 

degree of intelligence through AI-based software, enables firms to flexibly 

adapt warehouses to new environmental conditions and requirements even 

though PV increases. 

• Discussion 4A (D4A): AI enables firms to flexibly adapt 

warehouse internal transportation even though PV increase. 

On the other hand, AI systems allow the entire PV portfolio to be combined 

when generating routes that optimise transport, both in cost and time, by using 

Genetic Algorithm as a Heuristics AI tool. Thus, AI can find synergies that allow 

generating trucks with more than one product avoiding less-than-full 

truckloads, leading to use its full capacity. Besides, AI not only provides the 
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optimal route but also reacts to unexpected real-time problems due to 

environmental conditions, adapting the initially proposed solution to a new one 

that minimises damage in delivery times.  

• Discussion 4B (D4B): AI systems allow firms to include the overall 

product portfolio when generating routes, optimising the 

transportation capacity when increasing PV. 

 

 

9.3. Manufacturing performance 

AI can assist organisations in developing both operational and strategic situation 

consciousness to link that experience into actions increasingly quickly, efficiently, and 

effectively (Dwivedi, 2021). Therefore, using the data coming from operations, partners, 

and the SC, can help organisations understand the current status, predict and manage 

incidents and failures, and improve efficiency and reliability. 

Sensors and connected applications can generate significant amounts of data about 

processes near real-time, allowing companies to design better methods and monitor and 

react to any changes quicker to increase quality and productivity (Sanders, Boone, 

Ganeshan, & Wood, 2019). AI allows companies to run their operations with higher 

productivity, lower cost, and better efficiency since it can improve and automate 

processes, reduce errors, limit product rework, and reduce material delivery time. 

Moreover, it can optimise preventive maintenance, improve production performance, 

reduce energy waste, and support training. 

Therefore, different areas affecting manufacturing performance are going to be analysed 

more in-depth in the following sections. 

9.3.1. Quality 

Product quality analysis is an essential duty for industrial processes and an emerging 

issue of industrial intelligence. Historically, traditional inspections were mainly based on 

sampling inspection, conducted by offline physical measurement, leading to several 

additional economic costs and unexpected damages. Moreover, quality controls were 

often conducted by shop-floor operators, sometimes leading to controversial paradigms 

between productivity and quality indicators. Therefore, manufacturers are using smart 

cameras and the related AI-based software to support quality inspection not only to 

improve its speeds, latency, and costs but also to go beyond traditional human 

inspectors. Moreover, automated quality forecast implementation based on statistical 

analysis has been introduced to extract the hidden valuable information from the 

industrial data. Thus, manufacturing processes can be adjusted to enhance products' 

quality based on the data evaluation in real-time. 
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For this purpose, AI can provide companies with mechanisms to accurately predict the 

quality and provide warnings of defective products in industrial processes (Ren, Meng, 

Wang, Lu, & Yang, 2020), including several variables generated from the SC and time-

variant machining processes. For example, a data-driven method based on a wide-deep-

sequence (WDS) model is proposed by (Ren, Meng, Wang, Lu, & Yang, 2020) to present 

a reliable quality forecast for industrial processes with varying manufacturing data. 

DISCUSSION 5: PV vs Quality 

Quality inspection is one of the industrial activities that is evolving along with 

technological capabilities. Therefore, the emergence of AI empowers tested 

technologies such as machine vision to go a step further. Continuing with 

machine vision example, combining it with AI-based technologies, such as 

deep-learning or ANN, enables to continuously learn which product aspects or 

parameters are relevant to identify product quality, without the necessity to rely 

on rules designed by experts. This aspect gains importance when firms are 

tackling high PV levels, considering that the quality inspection requires a lot of 

different parameters, shifting and changing depending on the product 

analysed. Therefore, adopting a tool that can learn on its own, creating rules 

that set the combination of characteristics that define the product quality is a 

competitive advantage in a PV context. 

• Discussion 5 (D5): AI-based technology enables faster, less 

costly, and less complex quality inspections, when tackling high 

levels of PV. 

9.3.2. Inventory level 

In today’s competitive marketplace, determining the appropriate inventory policy is a key 

enable to success, because inventories mismatches induce unnecessary costs derived 

from stock-outs, holding too many inventories and unreliable production schedules. 

However, an inventory policy that fits in a time range could shift and become non-optimal 

due to volatile SC environments. In this context, AI technologies enables decision-

makers to tackle inventory policy choice over the time, capturing the valuable variables 

that impact in company’s performance and proposing the best policy option in a given 

time (Priore, Ponte, & Rosillo, 2018).  

On the other hand, AI not only can support managers by presenting recommendations 

based on data-driven analysis but also act independently without human supervision. 

The AI capacity to act on its predictions in routines tasks enables managers to focus on 

more strategic decision-making. Therefore, in the inventory management context, AI can 

automatically order the number of raw materials required to fulfil production planning by 
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analysing datasets while using the optimal inventory policy. It is translated in cost savings 

and wastes reductions. 

Moreover, AI enables companies to exploit real-time data to control the different 

manufacturing critical inventories (Riahi, Saikouk, Gunasekaran, & Badraoui, 2021), thus 

anticipating parts requirements and reducing material delivery time. It is translated into 

costs saving (Priore, Ponte, & Rosillo, 2018) by the optimisation and reduction of raw 

materials and WIP inventories. 

DISCUSSION 6: PV vs Inventory level 

Regarding the Inventory level, AI can support the product variety-induced 

complexity directly or indirectly improving other drivers, which will be analysed 

below. 

PV induces uncertainty and complexity between processes synchronisation. In 

that case, WIP inventories will increase due to the inefficiencies arising from 

the improper processes synchronisation and buffering strategies to mitigate 

this uncertainty and complexity. As AI allows knowing all the manufacturing 

processes in real-time, it is possible to have only the necessary stock level in 

each intermediate process since synchronisation between different production 

stages is much more efficient, with more optimised sequences. In this vein, AI 

technologies support decision-makers generating data-driven 

recommendations to improve processes synchronisation and coordination, 

subsequently reducing WIP inventories aligned with the Just-in-Time (JIT) 

manufacturing strategy. Therefore, AI impacts indirectly on the manufacturers 

inventory level by improving the manufacturing planning and scheduling.  

• Discussion 6A (D6A): AI enables to reduce WIP inventories by 

improving synchronisation and coordination between production 

processes when the PV increases. 

On the other part, keeping stock parts at the right level, avoiding stock-outs 

that leads to production stops, becomes more difficult when companies are 

managing thousands of stock parts coming from hundreds of suppliers around 

the world. However, companies tend to be more digitalised, and AI 

technologies disruption provides real-time supplier data, improving 

transparency on the supplier side, leading to better inventory management and 

production synchronisation with suppliers’ capabilities. Moreover, if PV 

increases then replenishment complexity rise, and subsequently raw material 

inventories increased to mitigate the risk to stockout. In this vein, AI-based 

technologies can automate and optimise the raw material replenishment 

routine tasks by not only assisting materials and production managers with 
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recommending what materials to order and when, leading to waste reductions, 

but also enabling managers to focus on more strategic decision-making. 

• Discussion 6B (D6B): AI automate and optimise the raw material 

replenishment tasks when tackling high levels of PV. 

9.3.3. Average manufacturing lead time 

In the current context of mass customisation and short delivery times is challenging to 

maintain decreasing lead times. For that reason, it is becoming the visible KPI at the 

corporate level at most companies.  

AI enables manufacturers to optimise processes in real-time due to leveraging the 

growth in data collection since existing fault detection and classification tools can be 

inaccurate and cause expensive delays on the assembly line. Therefore, AI technologies 

not only identify processes inefficiencies but also prevent unnecessary production 

interruptions (Bughin, Chui, Henke, & Trench, 2017).  

In this vein, machine learning could help operators in maintenance routines by 

implementing a predictive maintenance schedule analysing failure indicators in real-time, 

and predicting the failure and fixing a punctual maintenance intervention, which will 

afterwards minimise the impact of maintenance intervention in production capacity. 

Hence, lead times can be reduced by optimising maintenance interventions while 

avoiding non-predicted failures, subsequently increasing the utilisation rate of plants 

capacity. Moreover, Virtual Agents could deliver instructions and information on 

interactive personal-communications devices to reduce production errors at the shop-

floor level and smooth the learning curve for new operators (George, Blackwell, & Rajan, 

2019). 

DISCUSSION 7: PV vs Average manufacturing lead time 

Regarding the AMLT, AI can support the product variety-induced complexity 

directly or indirectly improving other drivers, which will be analysed below. 

The average manufacturing lead time is affected mainly thanks to 

improvements that AI introduces in the reduction of the total changeover time, 

due to the better sequencing of production orders, and in the optimisation of 

production planning, due to computational improvements at the planning level. 

For this reason, the highest impact on the AMLT comes directly from the 

previously mentioned improvements, which indirectly impact the AMLT. These 

will be analysed below in the following sections, also investigating the existing 

relationship with PV. 
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• Discussion 7A (D7A): AMLT is indirectly affected by AI 

improvements in setup times and planning and schedule when 

increasing PV.  

On the other hand, increasing PV inevitably generates complexity to manage 

the different manufacturing orders efficiently. One of the areas in which AI can 

support real-time management of breakdowns and even in the forecast of 

possible stops, thanks to the machine learning potential. Therefore, AI can give 

warnings so that interventions are managed more efficiently, considering the 

complexity of the production planning induced by increasing the PV so that 

AMLT can be reduced despite the complexity. 

• Discussion 7B (D7B): AI supports the management of 

interventions, reducing total AMLT even when increasing PV. 

9.3.4. Setup times 

Define the optimal job sequence is often challenging for managers operating in large 

factories that manage a vast amount of WIP inventories. Therefore, defining an optimal 

sequence solution, minimising total setup time sequence while fulfilling customer delivery 

times requirements, is clearly beyond human capabilities that are limited to process and 

consider a few scenarios and possibilities. Therefore, AI helps the manager in decision-

making in terms of jobs’ sequencing, reducing setup times and maintaining delivery times 

at extraordinary fulfilment levels (George, Blackwell, & Rajan, 2019). 

DISCUSSION 10: PV vs Setup times 

Firms tackling high levels of PV may experiment an increase in total setup time, 

mainly because higher PV reduces the batch sizes, increases differences 

between batch parameters and subsequently increases the number of setups 

and its total time. Therefore, AI-based technologies not only can optimise the 

job sequence in a pull group, considering also more variables such as delivery 

time fulfilment, but also react in real-time to invoices and unexpected events, 

such as corrective maintenance or capacity losses. Optimal sequencing 

enables to minimise the total setup times, and especially when tackling high 

PV. 

Discussion 8 (D8): AI can minimise total setup time by optimising the 

sequence of a pull group characterised by high levels of PV. 

9.3.5. Manufacturing planning and scheduling 

Most production planning and scheduling methods rely on lead times, and hence the 

efficiency of these methods is crucially affected by the accuracy of its prediction. 
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Furthermore, predict the lead time is often difficult to achieve due to customised products 

have several features influencing the manufacturing parameters. Predictions faults may 

lead to direct planning and scheduling unbalances, shifting capacities, and optimal 

sequences.  

(Gyulai, Pfeiffer, & Gabor, 2018) concluded that AI-based prediction models can 

outperform traditional analytical ones, such as Linear Regression, in terms of reliability 

and accuracy. Consequently, AI becomes a suitable technology to enhance prediction 

reliability, boosting lead-time prediction, which is a key factor of successful planning and 

scheduling. Firms figure out this challenge through machine learning (ML), based on the 

products and processes data obtained from the manufacturing execution system (MES). 

Moreover, the production planning process can be automated thanks to AI's analytical 

capacity and its ability to correlate large volumes of data extremely quickly. 

DISCUSSION 9: PV vs Manufacturing planning and scheduling 

Regarding the Manufacturing planning and scheduling, AI can support the 

product variety-induced complexity in 3 principal ways, which will be analysed 

below. Moreover, improvements in planning and schedule directly affect the 

AMLT and setup time. 

Production planning suffers when the quantity of products increases, 

increasing the complexity to determine most of the machines' capacity. 

However, AI allows the creation of production sequences that fully exploit the 

processes' utilisation rate while considering other indicators such as the order 

delivery time so that the planning process can be automated and optimised. 

Without AI, when increasing the number of products, it is complicated to 

manually make an optimal order assignment, which causes the loss of 

utilisation rate. 

• Discussion 9A (D9A): AI allows companies to really exploit the 

maximum utilisation rate of machines when increasing PV. 

Secondly, AI allows production orders to be planned in real-time considering 

the current machines' capacities, the real-status of the different WIPs, the 

status of raw materials, the planned preventive maintenance, the availability of 

complementary materials, among others. Therefore, planning acquires a 

greater capacity to adapt to changes such as corrective maintenance, 

breakdowns, lack of a component, problems in the stages correlated with each 

other. Thus, modifications can be made in the planning in a more agile way 

updating optimal process sequence in real-time, dynamically rescheduling 

production operations as new orders arrive and problems arise on the 

production floor. When PV increases, it is almost impossible to react to each 

entering new invoice or each arisen difficulty affecting the current schedule, 
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becoming more complicated to plan and schedule the PV. In this vein, AI can 

make the difference, transforming the planning and schedule task into an agile 

and easy job that can be continuously optimised according to changes in the 

environment. 

• Discussion 9B (D9B): AI allows companies to react to each 

entering new invoice or each unexpected event in real-time, which 

are higher as PV increase. 

By increasing the complexity of processes derived from the rise in PV, the lead 

time increase induced by smaller production batches, increasing changeover 

times, subsequently increasing the time spend from the order invoice to the 

order delivery. As previously mentioned, AI allows improved synchronisation of 

processes since it can analyse real-time data, adapting the sequences in the 

face of changes, reducing the probability of increasing the lead time when 

unexpected events arise. Therefore, by reacting very quickly to unforeseen 

events, despite having a great variety of products, it is possible to minimise the 

AMLT due to better synchronisation and increased adaptability between 

processes. 

• Discussion 9C (D9C): AI adoption leads to a reduction in AMLT as 

PV increase, due to more complicated schedules.  

9.3.6. Product development  

Engineers face innovation difficulties with the growth in customised products in 

fragmented markets while budget constraints limit the engineering teams’ development 

time disposal and the number of iterations available to develop a product. Traditionally, 

product development was based on trial-and-error approach, sometimes involving 

customers at early stages and becoming high time and cost consuming. Moreover, 

product developers worked on companies’ information legacy and marketing 

benchmarking of demand necessities and requirements. Developers often seeks 

reliability rather than best-of solutions, which are time consuming. Therefore, AI 

technologies can help engineers and developers to improve the agility of product 

development by eliminating the waste in the design process and possible biases, leading 

to more effective design processes by focusing only on added-value product capabilities 

while reducing the time required to solve design problems (Bughin, Chui, Henke, & 

Trench, 2017). 

In short, AI is used by manufacturers not only to enhance the product design process to 

be manufactured but also making faster and better decision-making when tackling 

design trade-offs. This acceleration in innovation capacities stands to enable SC firms 



How AI supports the management of complexity induced by PV Page 71 

  

to create new profit streams faster and decrease costs in the process, thereby enhancing 

SC efficiency (Mani, Kamble, Belhadi, Rehman Khan, & Verma, 2021). 

DISCUSSION 10: PV vs Product development 

AI potential is based on optimising the product production process while 

offering more suitable products to customers’ needs. In other words, AI can 

detect demand tendency and identify soon-to-be-popular products, more 

accurately and reliably than experts can do, while optimising the product 

production process. It will be translated into faster product development and 

better customer perception, leading to achieve levels of PV defined by firms, 

with no-time and cost limitations.  

In short, this will result in higher speed to hit the market, lower product 

development costs (less trial-and-error iterations) and added value to final 

products, enhancing customers’ expectations. 

• Discussion 10 (D10): AI will enable faster, cheaper, and more 

added value product development, fostering product 

proliferation. 

9.4. Procurement performance 

Regarding the impacts in the different purchasing areas, no benefits have been found at 

this point in the AI adoption since AI can help manage the supply base but cannot 

improve the previously selected drivers. When PV increases, even with AI adoption, the 

drivers will not change their behaviour, increasing the number of suppliers, raising the 

supplier lead time and reliability, and extending the organisational standards. Note that 

supplier lead time could decrease if the selected supplier adopts AI, but not if the focal 

company implements it. Therefore, AI can improve procurement performance supporting 

selection and contract negotiation processes. 

AI can assist companies' supplier selection process by training machines by decision-

makers or using historical data to make predictions and recommendations. Therefore, 

the supplier evaluation and selection process, which constitutes a critical and complex 

multi-criteria decision-making procedure, can be more efficient. Thus, AI-based models, 

as ANN, have been broadly used since they can solve supplier selection problems with 

multiple constraints (quality, delivery, performance, service, price, warranties, reliability, 

and financial position) (Riahi, Saikouk, Gunasekaran, & Badraoui, 2021). They can 

predict outcomes based on past trends and can process information at high speed. 

Moreover, AI technology can leverage data to present an integrated picture of the 

spending, enabling firms to optimise and automatise contracts, achieving a smart 

sourcing (Sanders, Boone, Ganeshan, & Wood, 2019). As a result, administrative costs 

can be reduced due to faster and more reliable managers decision-making when 
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selecting suppliers, and due to more automated selection process, delaying human 

intervention until core and strategic decisions (Bughin, Chui, Henke, & Trench, 2017). 

In addition, SCs are becoming more transparent, and it is becoming easier to track the 

environmental, social, and economic performance of suppliers, improving risk 

management (Sanders, Boone, Ganeshan, & Wood, 2019). Therefore, AI makes it 

possible to process and correlate several data facilitating understanding and anticipating 

the impacts of external events since its resilient strategies commonly rely on fast 

decision-making based on potentially large and multidimensional data sources (Riahi, 

Saikouk, Gunasekaran, & Badraoui, 2021). Hence, the advanced AI-powered capability 

to recognise SC variability can be used to develop a range of possible supply responses 

when running simulations within the expected range of supply possibilities. Besides, it 

helps organisations to improve their response to changes in the environment by, for 

example, re-learning business rules, making firms more adaptive (Dwivedi, 2021).  

Finally, AI can help firms managing negotiations with suppliers, which is a complex task 

that requires deep knowledge of economics and consists of several interdependent 

phases combining various negotiation elements (auctions, exclusive offers, ...) (Schulze-

Horn, Hueren, Scheffler, & Schiele, 2020). Moreover, individuals’ rational decision-

making is limited by their cognitive abilities, available information to solve decision 

problems, and the finite amount of time to reach decisions, making it difficult especially 

when purchasers are usually not specialised in this field. Therefore, individuals lead to 

achieving satisficing instead of optimising outcomes, whereas AI can predict suppliers’ 

bidding strategies and support them in determining appropriate bid prices. AI might also 

support the execution of game-theoretic negotiation approaches. 

DISCUSSION 11: PV vs Procurement performance 

Regarding the Supply base management, AI can support the product variety-

induced complexity in two principal ways, which will be analysed below. 

On the one hand, AI can support an automatise the supplier search and 

selection process. When a company increases its PV, the product life cycles 

are shorter due to the constant adaptation to changing customer expectations. 

AI allows companies to automate and streamline the supplier search and 

selection process, adapting it to the specific requirements of new products 

when PV increases. It also allows companies to eliminate subjective criteria 

when selecting suppliers, avoiding possible decisions not based on data but 

personal perceptions and historical behaviours. Additionally, AI can identify 

new criteria analysing the performance of the current supply base to apply them 

to the search of new ones. Therefore, AI not only allows companies to manage 

the supplier selection process more agile, but it can also define new criteria 

and rules based on finding patterns and relationships between performance 
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parameters of current suppliers. The concept where an expert establishes a 

series of bases to support the search criteria, such as delivery times or quality 

of delivery, disappears since AI, from learning with a lot of information, 

concludes its bases to define the provider that best fits the requirements. 

• Discussion 11A (D11A): AI can support the supply search and 

selection process, which is more frequent as PV increases. 

On the other hand, AI can support contract negotiation, which becomes more 

complex as PV increases. When the PV increases, the product specifications 

also increase, becoming more concrete and specific. Therefore, purchasers 

will not be informed enough to make a good negotiation considering 

parameters that are also changing. Hence, AI will support negotiations finding 

the optimal results for the company, considering multiple criteria in a very 

efficient way. 

• Discussion 11B (D11B): AI can support the contract negotiation 

process whose complexity increases induced by PV. 

 

9.5. AI impacts summary 

The outcomes of the AI application helping to manage PV induced complexity, 

summarised in the hypothesis, are presented in Table 5. Moreover, the academic papers 

obtained from the literature review are classified in each area and sub-area analysed, 

and presented in Table 5.  
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Area Sub-area Hypothesis related Sources 

S
a
le

s
 

Sales 

(Dwivedi, 2021) 

(Sanders, Boone, 
Ganeshan, & Wood, 
2019) 

Customer 

satisfaction  

D1A: AI supports to define the 
optimal level of PV according to 
customer expectations. 

D1B: AI mitigates the hidden risk of 
customer confusion providing them 
with just the products they are 
interested in. 

D1C: AI allows companies to adapt 
the PV level to the changing desires 
of the target segments. 

(Sanders, Boone, 
Ganeshan, & Wood, 
2019) 

(Dwivedi, 2021) 

Forecasting 

error 

D2A: demand accuracy remains high 
when increasing PV if AI technology 
is adopted. 

D2B: AI’s technology enables 
forecasts considering products 
interrelationship arising when PV 
increases.  

D2C: when increasing PV, AI 
supports managers to predict 
forecast without historical register. 

(Riahi, Saikouk, 
Gunasekaran, & 
Badraoui, 2021) 

(Dwivedi, 2021) 

(Vahid, Pejvak, 
Reza, & Ali, 2021) 

(Verstraete, 
Aghezzaf, & 
Desmet, 2020) 

(Sanders, Boone, 
Ganeshan, & Wood, 
2019) 

Inventory 

level 

D3A: AI allows firms to reduce the 
final goods stock when increasing PV, 
in comparison with the non-AI-
adoption. 

D3B: AI allows firms to trace a greater 
quantity of PV more agile and precise, 
reducing the levels of stock of the final 
product. 

(Riahi, Saikouk, 
Gunasekaran, & 
Badraoui, 2021) 

(Praveen, Farnaz, & 
Hatim, 2019) 

Transportation 

D4A: AI enables firms to flexibly 
adapt warehouse internal 
transportation even though PV 
increase. 

D4B: AI systems allow firms to 
include the overall product portfolio 
when generating routes, optimising 
the transportation capacity when 
increasing PV. 

(Riahi, Saikouk, 
Gunasekaran, & 
Badraoui, 2021) 

(Islam, Mahmud, & 
Pritom, 2019) 

(Wilson, Paschen, & 
Pitt, 2021) 



How AI supports the management of complexity induced by PV Page 75 

  

Area Sub-area Hypothesis related Sources 

M
a
n

u
fa

c
tu

ri
n

g
 

Manufacturing 

(Dwivedi, 2021) 

(Sanders, Boone, 
Ganeshan, & Wood, 
2019) 

Quality 

D5: AI-based technology enables 
faster, less costly and less complex 
quality inspections, when tackling 
high levels of PV. 

(Ren, Meng, Wang, 
Lu, & Yang, 2020) 

Inventory level 

D6A: AI enables to reduce WIP 
inventories by improving 
synchronisation and coordination 
between production processes, when 
the PV increases. 

D6B: AI automate and optimise the 
raw material replenishment tasks 
when tackling high levels of PV. 

(Riahi, Saikouk, 
Gunasekaran, & 
Badraoui, 2021) 

(Priore, Ponte, & 
Rosillo, 2018) 

Average 

manufacturing 

lead time 

D7A: AMLT is indirectly affected by 
AI improvements in setup times and 
planning and schedule when 
increasing PV. 

D7B: AI supports the management of 
interventions, reducing total AMLT 
even when increasing PV. 

(Bughin, Chui, 
Henke, & Trench, 
2017) 

Setup times 

D8: AI can minimise total setup time 
by optimising the sequence of a pull 
group characterised by high levels of 
PV. 

(George, Blackwell, 
& Rajan, 2019) 

Manufacturing 

planning and 

scheduling 

D9A: AI allows companies to really 
exploit the maximum utilisation rate of 
machines when increasing PV. 

D9B: AI allows companies to react to 
each entering new invoice or each 
unexpected event in real-time, which 
are higher as PV increase. 

D9C: AI adoption leads to a reduction 
in AMLT as PV increase, due to more 
complicated schedules. 

(Gyulai, Pfeiffer, & 
Gabor, 2018) 

Product 

development 

D10: AI will enable faster, cheaper 
and more added value product 
development, fostering product 
proliferation. 

(Bughin, Chui, 
Henke, & Trench, 
2017) 

(Mani, Kamble, 
Belhadi, Rehman 
Khan, & Verma, 
2021) 
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Area Hypothesis related Sources 

Procurement 

D11A: AI can support the supply 

search and selection process, which 

is more frequent as PV increases. 

D11B: AI can support the contract 

negotiation process whose 

complexity increases induced by PV. 

(Riahi, Saikouk, 
Gunasekaran, & 
Badraoui, 2021) 

(Sanders, Boone, 
Ganeshan, & Wood, 
2019) 

(Bughin, Chui, 
Henke, & Trench, 
2017) 

(Dwivedi, 2021) 

(Schulze-Horn, 
Hueren, Scheffler, & 
Schiele, 2020) 

Table 5. Summary of areas impacted by PV and consequences of AI adoption with 

discussion outcomes and references. 

Once we investigated and understood how AI affects and influences the different areas 

and processes in the SC and analysed how it can help manage the complexity generated 

by PV, we have realised the potential of AI technology. AI not only improves results, 

reduces costs, or minimises waste but also transforms the entire SC, making it more 

agile, adaptable, flexible, and resilient against possible disruption risks since all 

processes in the SC can benefit from its potential. It has been possible to present the 

main ways in which AI supports the SC processes. Firstly, AI extracts value from the 

analysis of large databases that would be cost and time consuming without its adoption. 

Specifically, in the sales area, AI allows firms to understand in-depth customers' 

behaviours so that the products offered fit better their expectations. On the other hand, 

AI's demand forecasting capabilities go beyond human breadth comprehension, 

detecting patterns and finding insights by analysing large datasets and extracting deep 

and complete knowledge from the SC operations. Secondly, AI can solve complex 

optimisation problems, such as routing problems, process sequencing with multi-criteria 

restrictions, among others. Therefore, it can be achieved a near-optimal solution. Thirdly, 

AI allows companies to control SC processes due to real-time information usage 

supporting the decision-making. Specifically, it is used for inventory management as well 

as for the management of quality inspection processes. Finally, one of the most 

advanced advantages of AI is its capability to learn from data and adapt criteria based 

on environmental changes. Therefore, it is possible to not only automate processes but 

also delegate the decision-making reasoning, mainly due to the data-driven analysis and 

its self-learning capacity. Thus, AI constitutes an efficient means of imitating adaptivity 

through learning from the external environment, thereby making complex systems more 

organised, highly reconfigurable, and adaptive. For that reason, AI is highly extended in 

demand forecasting or manufacturing planning and scheduling, regarding that capability. 
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10. Limitations and future research questions 

Although the framework was conducted following a methodological and scientific 

approach, it is unavoidable to induce biases, arising limitations during the different thesis 

stages that might be considered by scholars and practitioners evaluating the outcomes 

of this study. 

Firstly, since our framework was based on a literature review, outcomes and findings 

may be limited and strongly linked to the keyword choice and combination. Thus, some 

conclusions may be overlooked because some papers have might be missed since it 

was not feasible to cover the complete range of databases. Moreover, to simplify the 

evaluation of the different SC performance drivers, we have divided the SC into four main 

areas that were studied independently. Therefore, relationships between drivers 

belonging to different areas were neglected, diminishing not only the analysis complexity 

but also the quality of results obtained. Consequently, AI techniques used to mitigate the 

PV-induced complexity were also limited to the researched areas, leaving space for 

others not mentioned in this study that can affect PV. 

Future research question 1 (FRQ1): Are there other areas or drivers within the SC that 

can be affected by PV? Are there other AI techniques that affect PV?  

Secondly, even though our outcomes were based on qualitative and quantitative papers, 

only qualitative outcomes were proposed by this study. Therefore, we may point out that 

a quantitative analysis of the qualitative results should be done, not only to corroborate 

the qualitative outcomes but also to enhance the value of those findings. Thus, future 

research is recommended to explore and design quantitative methods to get deeper 

insights into the hypothesised and discussed outcomes. For example, testing outcomes 

into real-industry cases analysing the influence grade of the study’s relationships 

outcomes, or designing a survey oriented to the cross-functional industry experts to test 

and compare the conclusions with current experts’ opinion.  

Future research question 2 (FRQ2):  Which techniques and methodologies can be 

applied to test the qualitative results? Which are their results? Are they aligned with the 

qualitative conclusions? 

Thirdly, findings were based on a snapshot in range time, and unexpected events, such 

as COVID-19, can completely change the business model and business paradigms that 

might be neglected. For this reason, future research might consider COVID-19 impact 

on PV and AI. 

Future research question 3 (FRQ3): How COVID-19 affected PV by changing mass 

customisation trend? Did it enhance PV, or otherwise soften PV? 
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11. Conclusions  

The literature review has highlighted the growing importance of SC variety management 

in an evolving market context in which competition is on the basis. Thus, firms' SCC is 

increasing due to increased product range proliferation. The purpose of this study was 

to investigate the effect of AI on SCC induced by PV. To this end, we have designed a 

framework based on a systematic literature review structured in three main steps; collect, 

describe, and analyse. We performed this review using 72 research articles from the 

Scopus database published between 2002 and 2021. Previous literature has typically 

examined the correlation between PV and SCC, and AI applications in SCM. However, 

potential AI benefits in managing PV complexity have never been analysed before.  

The first proposition drawn from the literature review is the relation between PV and 

SCC, a popular topic in past research. We conclude that more PV induces higher 

complexity in managing processes, decreasing the four areas performance, except for 

sales, which apart from also experimenting more difficulties in the management, has a 

positive effect by fitting better customers’ requirements, hence improving the sales. 

When PV increases, for example, higher materials are required to produce the different 

product variants. Or also, for example, higher complexity in sequencing batch orders, 

when managers are planning and scheduling the production, leads to higher total setup 

time, lower production capacity, higher lead time, and at the end, higher production costs.  

A second proposition is that there are proved strategies to mitigate or accommodate the 

complexity arising from PV, enabling to increase PV to satisfy the increasing customer 

expectations without strongly affecting SC processes performance. Moreover, the 

“traditional” strategies adoption has become a must for firms attempting to remain 

competitive because they are forced to adopt more product customisation in response 

to today’s market expectations. Therefore, selecting the proper PV mitigation strategies 

is a fundamental enabler to success and a condition required for a company that seeks 

to remain on the market. 

AI is a pathbreaking analytic toolset that enhances the SCP due to its outstanding 

capabilities for analysing, optimising, controlling, and learning from data. Moreover, the 

increase in data availability and computer computation capacity have boomed the 

potential of AI, leading industries that hesitate in the past to adopt these technologies. 

For that reason, we have concluded that AI is the suitable technology to not only tackle 

the complexity induced by PV but also enhance SC processes performance, giving early 

AI adopters a competitive advantage. AI has demonstrated a formidable capacity to 

manage the adverse consequences of increased PV on companies' performance, not 

only mitigating it but also eliminating it. Therefore, companies adopting strategies to 

manage PV-induced complexity can remain competitive in markets, whereas companies 

adopting AI technology absolutely shine for their competitive advantage.  
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