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Abstract—The lack of sufficient hardware support for
functional safety precludes the full adoption of many Commercial
Off-the-Shelf (COTS) MPSoCs in safety-related systems, such as
those in the aerospace industry. Some recent MPSoCs come along
with programmable logic (PL), primarily intended to offload
some specific complex functions that can be much more efficiently
implemented in hardware than in software, hence being such PL
a kind-of-sandbox fully mastered by ASIC cores outside the PL.

This paper proposes using PL in those COTS MPSoCs
to deploy the support needed to implement safety measures
efficiently to enable the use of those MPSoCs for systems needing
high assurance levels. Hence, the goal is not mastering PL from
the cores solely, but also allowing PL to provide monitoring (e.g.
contention, diversity, watchdogs) and control (e.g. configuring
QoS features) capabilities to enable the realization of a safety
concept atop. The early work presented in this paper already
provides specific monitoring, diversity, and controlling strategies
to allow PL take over safety-related functionalities.

Index Terms—safety, observability, controllability, MPSoC,
programmable logic

I. INTRODUCTION

Increased automation and autonomy in safety-related
systems requires higher performance platforms able to execute
those safety-critical tasks within tight time bounds. This
can be achieved by using high-performance heterogeneous
MultiProcessor Systems-on-Chip (MPSoCs) that include some
form of accelerator (e.g. GPU, DSP, vector accelerator, and the
like). For instance, platforms such as the NVIDIA Drive PX2
in the automotive domain [1], and the Xilinx Zynq UltraScale+
in the avionics domain [18] emerge as candidates to meet the
corresponding performance goals.

Unfortunately, while those platforms provide the raw
performance required, they challenge certification against
safety standards due to their limited support to implement
safety measures atop [10]. In particular, safety-related
MPSoCs are generally expected to come along with
native hardware support for independent watchdogs, diverse
redundancy, error detection, etc. This is, for instance, the case
for the Infineon AURIX processor family often used in the
automotive domain [8], which on the other hand provides
limited performance. Overall, end users face a conundrum
between using platforms with appropriate hardware support
to implement the safety measures needed at system level [9],
[11], but insufficient performance, or using high-performance
platforms lacking sufficient native hardware support to deliver
mandatory safety measures.

As part of our recent work, we have devised and deployed
a number of hardware components highly convenient to
implement safety measures on top, as well as to improve
testability, such as a multicore interference-aware statistics
unit (SafeSU) [5], a module to enforce diversity across cores
executing tasks redundantly (SafeDE) [2], and a programmable

on-chip traffic injector to test timing and functional behavior
during MPSoC validation and during operation (SafeTI) [12].
Those components are undergoing the final steps of their
integration [7], [13] in commercial NOEL-V based MPSoCs
for the space domain by Cobham Gaisler [6], and are offered
as open source components [4]. However, those components
rely on being integrated in MPSoCs during the design phases,
hence with the ability to introduce some — yet limited —
modifications related to the observability of some signals and
control of some features.

Some MPSoCs, such as the Zynq UltraScale+ family,
include some Programmable Logic (PL) as part of the
SoC, typically intended to implement efficiently some
functionalities, where the ASIC cores act as masters, and the
PL as slave (e.g. working as an accelerator where cores offload
some computation). In this context, the PL can be seen as a
sandbox just responding to requests from the cores, where the
latter truly exercise control over the MPSoC.

This paper contends that, enabling the use of high-
performance MPSoCs for safety-related applications can be
achieved by leveraging PL as a means to deploy hardware
support to implement safety measures in COTS MPSoCs.
In particular, we note that, if privileges (e.g. user mode,
supervisor mode, etc.) are managed properly, functionalities
in the PL can span beyond the sandbox by monitoring
autonomously parts of the SoC and taking actions to control
a subset of the MPSoC features. To illustrate this approach,
in this work, and focusing on the Xilinx Zynq UltraScale+
MPSoC as a research vehicle, we show how safety-related
hardware components can be deployed in the Zynq’s PL
to implement a number of safety measures such as (1)
multicore interference monitoring building on the SafeSU [5],
(2) support for diverse redundancy building on the SafeDE [2],
and (3) support for device diagnostics building on the
SafeTI [12], among other features.

The rest of the paper is organized as follows. Section II
briefly introduces the Xilinx Zynq UltraScale+ MPSoC, as
well as SafeSU, SafeDE and SafeTI. Section III presents the
strategies being studied to allow the successful integration of
the latter components (and some others to be developed) in
the MPSoC. Finally, Section IV concludes this paper with a
discussion on the forthcoming developments and opportunities
emanating from this work.

II. BACKGROUND

In this work, we analyze how to deploy safety-related
hardware components in the PL of a MPSoC. Without loss
of generality, we focus on a Xilinx Zynq UltraScale+ (ZUS
for short) MPSoC. Hence, this section introduces the ZUS, as
well as the already available safety-related components.
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Fig. 1. Safety-related components as deployed in a NOEL-V MPSoC for the
space domain.

A. Xilinx Zynq UltraScale+ MPSoC

The ZUS is a powerful MPSoC including a high-
performance computing application cluster, referred to as
APU, which includes 4 Arm Cortex A53 cores and a shared L2
cache. It also includes a real-time computing cluster, referred
to as RPU, which includes 2 Arm Cortex R5 cores. Other
computing elements such a GPU and PL are also present in the
ZUS. Multiple memories and memory controllers are included
in the ZUS, such as a DDR controller, an On-Chip Memory
(OCM), and controllers to access flash memories. Multiple
peripherals such as PCle and Ethernet ports are also included.
All those components are connected by means of a distributed
network, so that traffic across different components can be
fully segregated. For instance, independent routes exist from
the APU to the DDR controller, from the PL to the OCM, and
from the GPU to the DDR controller.

ZUS’ interconnect builds on Arm components such as
the CoreLink CCI-400 Cache Coherent Interconnect, and
the CoreLink NIC-400 Network Interconnect, which include
further Arm components, all of them implementing multiple
and flexible QoS features, as shown in [14].

B. Hardware Components Supporting Safety Features

The work in this paper focuses initially in three already
existing components supporting safety features, although
we plan to develop and deploy additional ones. Those
components, whose existing deployment in a commercial
MPSoC is illustrated in Figure 1, are as follows:

SafeSU. The SafeSU statistics unit [5] includes observability
and controllability channels to master multicore interference
in MPSoCs. In particular, it collects statistics about how
many cycles each master is delayed by each other master
in an AMBA Advanced High-performance Bus (AHB)
interface. Such information is particularly useful to diagnose
timing overruns during operation and to optimize application
deployment so that multicore interference is kept low.

The SafeSU also includes a multicore interference quota
mechanism so that, if the observed interference caused by
one master on another exceeds a user-programmed quota, an
interrupt is raised. This allows limiting interference during
operation.

Finally, the SafeSU includes specific logic to measure the
highest latency experienced by a request in the AHB interface.
Such information is collected per request type (e.g., read/write,
burst/no-burst, etc.) and allows collecting maximum latencies
used for Worst-Case Execution Time estimation, and also
allows monitoring during operation whether latencies exceed
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Fig. 2. Safety-related components deployed as proposed in this work in a
Zynq UltraScale+ MPSoC.

a user-programmed threshold, which could be used as a form
of watchdog.

SafeDE. The SafeDE is a module intended to enforce the
staggered execution of a given task running redundantly in
two cores. This feature is particularly useful to achieve some
form of lockstepping (i.e. efficient diverse redundancy) in
processors lacking it natively or, at least, lacking it for its
highest performance cores. SafeDE collects the number of
instructions executed by the cores running the redundant task,
and whenever the advantage of the head core falls below a
given threshold w.r.t. the trail core, SafeDE stalls the trail core
for a while until the staggering is large enough.

SafeTI. The SafeTI is a sophisticated and programmable
traffic injector able to inject specific traffic patterns whose
elements are read and write operations, with parameterizable
data transmitted, with user programmable source/destination,
with a burst/no-burst parameter, with independent and
programmable stalls between transactions, and with capability
to store multiple independent or overlapping traffic patterns
that may be used under different circumstances. As explained
before, SafeTI is particularly adequate to test the platform
during validation, as well as to test functionality and timing
during operation.

While the ZUS MPSoC also includes its Xilinx AXI Traffic
Generator (ATG) [17] in the PL, such IP is less flexible than
SafeTI, and comes along a restrictive license, hence precluding
its use in other platforms. Instead, SafeTT is provided under a
highly-permissive open source license [12].

III. DEPLOYING SAFETY MEASURES IN THE PL OF THE
ZUS

Deploying hardware support to implement safety measures
in a full-custom design, either deployed as an ASIC or as an
FPGA product, provides flexibility to find the most efficient
solutions. For instance, in the case of SafeDE, cores can be
made to export some signals to let SafeDE easily monitor their
progress and stall the trail core whenever needed. Analogously,
SafeSU and SafeTI can be attached to any interconnect
directly, hence achieving full observability of the on-chip
traffic. However, if those components are deployed in the PL of
a COTS MPSoC, observability and controllability channels are
limited and cannot be changed. Hence, the challenge tackled
in this work consists on how to deploy such hardware support
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Fig. 3. Schematic of the ZUS MPSoC (baseline picture taken from [18]).

effectively in the PL, as illustrated in Figure 2 for the ZUS
MPSoC.

A. Monitoring and Controlling Multicore Interference with
SafeSU

Interference monitoring. The first relevant characteristic of
the deployment of the SafeSU in the ZUS is that the ZUS
has a distributed interconnect (see Figure 3), hence meaning
that traffic is distributed rather than centralized in a single
interconnect. This fact differs from previous deployments of
the SafeSU, which built upon centralized interconnects (e.g.
a bus) [15]. The second relevant characteristic is that the
SafeSU cannot directly manage the AMBA AXI signals of the
NoC, as it did with the AMBA AHB signals in its previous
deployments. Overall, the SafeSU needs to collect NoC traffic
information from remote locations and without direct access
to protocol signals.

In order to properly integrate the SafeSU in the PL
of the ZUS, we note that ZUS interconnects include AXI
performance monitors (APM) [16], which gather transaction
metrics such as the following:

« Read and write transaction counts.

« Read and write byte counts.

e Read and write latencies.

o Number of idle cycles caused by masters and slaves.

o Counts on some additional AXI-related protocol signals.

Moreover, APMs exist in different locations of the MPSoC,
such as the interfaces near the DDR, the OCM, and the main
switches connecting the APU and RPU computing units. They
are shown as yellow squares in the ZUS schematic in Figure 3.
They have been further indicated with thick dark red arrows
and numbered. APM-1 monitors the OCM (aka as scratchpad
memory). APM-2 monitors the traffic arriving from the Low

Power Domain (LPD), where real-time cores are located, to
the Full Power Domain (FPD). APM-3 monitors the traffic
from the FPD, including APU cores, some of the PL ports
and the GPU among others, to the LPD. APMs 4 to 9 monitor
DRAM traffic for each of its different ports connected to the
LPD, APU cores, PL, etc. In Figure 3, we have also included
the SafeSU, SafeTI, and SafeDE in the PL for clarity. Hence,
our current work focuses on interfacing APMs, as well as
core-related memory access counters, to use their information
to infer, either deterministically or statistically, how much
interference each computing component has caused on each
other. Moreover, the SafeSU needs to be extended to further
break down interference across main locations to further ease
diagnostics in case of deadline overruns.

Interference control. The SafeSU includes interference quota
monitoring capabilities, and, upon a quota violation, it raises
an interrupt. We note that the ZUS includes a wide variety of
QoS knobs in its NoC interfaces, hence allowing to prioritize
traffic based on its type and/or source. While not originally
developed as part of the SafeSU, part of our work focuses
on how to interface those QoS knobs so that the SafeSU can
control them to limit specific interference channels whenever
needed. This naturally needs being done in close collaboration
with the Real-Time Operating System (RTOS), which should
instruct the SafeSU on what knobs to set and how under
quota violation scenarios, and must grant the SafeSU with
appropriate privileges to change such configuration settings.
Alternatively, the SafeSU can raise interrupts and be the RTOS
the one in charge of configuring the QoS knobs as needed.

B. Enforcing Diverse Redundancy with SafeDE

Originally, the SafeDE has direct access to the instruction
counts of the cores executing a task redundantly, so that it



can determine the staggering among them. SafeDE has also
access to the stall signal of one of the pipeline stages of the
trail core so that it can stop it almost immediately whenever
the staggering is too low (e.g. below few cycles) [2].

In the context of the ZUS, the SafeDE can neither snoop
instruction count registers nor control pipeline stall signals
of the cores. Hence, alternatives are under consideration.
Regarding instruction counts, we aim at, in cooperation with
the RTOS, having means to read instruction counts from the
virtually lockstepped cores as software would do. Note that
paths to reach the cores in the RPU and APU from the PL
exist in the platform. They have been indicated with dashed
thick dark red lines in Figure 3. Hence, if the performance
monitoring counters of interest are mapped into readable
address spaces from the outside, and the RTOS programs
privileges properly, SafeDE could read those counters from
the PL and take an action whenever needed to preserve the
staggering. Regarding stalling the trail core whenever needed,
multiple alternatives are being considered such as:

o Modifying QoS knobs in the interconnect to favor the
head core at the expense of slowing down the trail one.
However, this is only effective if the task being run misses
in local caches and accesses those interconnects.

o Issuing specific interrupts to the trail core so that, by
programming them properly, the RTOS takes over for a
short period intended to be enough to recover sufficient
staggering between head and trail cores.

C. Diagnostics and Latency Measurements with SafeTI

The least impacted component due to being deployed in the
PL of the ZUS is the SafeTI traffic injector since it issues
transactions as programmed by the end user, regardless of
whether the component is directly attached to the AMBA
interface, or whether the interconnect is a bus or a NoC.
Hence, integration of the SafeTIl to generate traffic during
operation for diagnostics purposes is not expected to bring
major concerns.

We note, however, that the SafeSU may have difficulties
to measure latencies of different request types by itself due
to the lack of access to the AMBA interfaces, and due to
the distributed nature of the ZUS’ NoC. In this case, we
plan to leverage the SafeTI to compensate that limitation
since it can be programmed to produce specific traffic patterns
triggering latencies that should allow building iteratively the
latency to reach additional switches and components. Hence,
by operating cooperatively, the SafeSU and the SafeTI will
be able to measure the highest latencies experienced in most
parts of the NoC.

D. Beyond Existing Components

Part of our ongoing work also includes the development of
diversity monitors to complement SafeDE. A first version of
those diversity monitors, referred to as SafeDM, has already
been released [3]. Those monitors aim at measuring diversity
across cores running redundant tasks, but not performing
any control of their staggering. Such diversity is measured
accessing pipeline information. However, it is still unclear how
to measure diversity when pipelines are not visible. This is
ongoing work for the ZUS which we expect to solve with as
much precision as possible due to the limited observability of
the cores.

Other components we intend to deploy in the PL of the
ZUS relate to aliveness monitoring of different computing

components with some form of watchdogs. Those will likely
build on the instruction counts of the cores, and their NoC
activity as primary sources of information related to aliveness.

Overall, the strategy is exploiting the (many) observability
and controllability features of the COTS MPSoCs in general,
and the ZUS in particular, with specific modules deployed in
the PL to provide support for safety measures implementation.

E. Safety Considerations

By deploying safety measures in the PL of a COTS
MPSoC, the set of assurance (integrity) levels that can be
targeted are limited by the native safety support of the
MPSoC itself. Hence, if the development process of the
MPSoC does not adhere to the requirements of some assurance
levels (e.g. DAL-A or DAL-B for avionics), then it is very
unlikely that applications with safety requirements at those
levels can be deployed on the MPSoC regardless the safety
measures deployed in the PL. A sufficient assurance level
must be attained at least for those parts of the MPSoC
controlling the monitoring capabilities for fail-safe systems,
and for those parts providing computing capabilities and
monitoring capabilities for fail-operational systems. Else,
external solutions may be required, such as the use of multiple
MPSoCs with a sufficient degree of redundancy to meet the
requirements of the highest assurance levels.

IV. CONCLUSIONS AND FUTURE WORK

High-performance COTS MPSoCs needed for future
aerospace systems lack sufficient native hardware support
to implement efficiently many of the usual safety measures
needed in those systems. We note, however, that some of those
MPSoCs include a PL region which, despite generally intended
to operate as a sandbox, can be used to deploy hardware
components supporting safety features.

In this work, we review some existing such components
and analyze how they could be deployed in the Xilinx Zynq
UltraScale+ (ZUS) MPSoC, as representative example of
high-performance COTS MPSoC, despite the gap existing
between their original implementations and the observability
and controllability channels available in the PL of the ZUS.
In particular, we review the alternatives offered by the ZUS to
monitor and control multicore interference with the SafeSU, to
enforce diverse redundancy with the SafeDE, and to provide
diagnostics with the SafeTl.

Our future work includes performing the integration of those
hardware components in the ZUS to enable multiple safety
measures in COTS MPSoCs, investigating additional hardware
components that could be incorporated, and looking beyond
the ZUS to consider even more powerful MPSoCs such as, for
instance, the Xilinx VERSAL platform.
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