

MASTER THESIS

TITLE: Crowd counting using Density Maps

MASTER DEGREE: Master's degree in Applied Telecommunications and
Engineering Management (MASTEAM)

AUTHOR: Juan Manuel Trujillo Gómez

ADVISOR: Cristina Barrado

DATE: June 26th, 2022

Title: Crowd Counting using Density Maps

Author: Juan Manuel Trujillo Gómez

Advisor: Cristina Barrado

Date: June 26th, 2022

Abstract

Law enforcement agents have to care about the number of people in public
areas to ensure security. The problem they have is that they do not have tools
to measure the number of people in a fast and precise way. This need has
been especially important since 2020 COVID pandemic arrived to our society
and the control of people is relevant to avoid spread of COVID.

This Master Thesis is complementing other previous Master Thesis presented
in 2021 where via an Android app connected to a drone the system was able to
count people from the images captured in real time. This solution was only able
to count individual people, as crowds of people are complex to measure
following standard object detection algorithms as YOLO technology.

In our Master Thesis we are adding a new functionality by being able not only
to count individuals but also counting crowds of people. With this new
functionality the app could provide to the police a more accurate tool to be able
to count people in different scenarios as prides, sports events, demonstrations,
concerts… where crowd is a normal situation.

As main technology driver we are working with CNN (Convolutional Neural
Networks). First, we have been implementing a CNN density map using the
CSRNet technology that is able to count people by measuring the
concentration of people. Therefore, an important part of this Master Thesis is to
create a process to split the input images in 2 (segmentation process), one for
YOLO (individual persons) and other for CSRNET (crowds of people). This
process has been implemented using a second CNN called Region-based
CNN (R-CNN), that we found it was the most suitable tool to train a model to
detect a crowd.

The solution has been developed in Google Colab platform and using Python
as programming language.

We have been working with images taken from drones from Castelldefels
Police and UPC but also public datasets.

The final solution has been able to detect crowds and calculate the number of
people in that crowd with a maximum error of 20% considering Mean Average
Percentage Error (MAPE) and 89 considering Mean Absolute Error (MAE).

ACKNOWLEDGMENT

First of all, I would like to thank the ICARUS research group of the EETAC
school of the UPC and especially Professor Cristina Barrado for giving me the
opportunity to work on a real research project with the police. Thank you very
much Cristina for being accessible, flexible and constant during all this period.
Also, I would like to thank Ender Çetin for his technical support in the first weeks
until I became more autonomous with the technical part.

Also thank the Castelldefels Police for giving us the opportunity to work with
them. First, by providing real drone images with crowd. Secondly, by being able
to stay with them in some events, which allowed us to have first-hand
information regarding their needs, constraints and opportunities in their daily job
working with drones.

On the other hand, I want to acknowledge my colleagues Valeria Ferrer,
Fozhong Chen and Javier Palomares for their support during the Master,
especially at the beginning, and who were vital, in encouragement and
knowledge, to get to the point where I am today. Working as a team was
wonderful with them and I learned a lot from them. Also thank the support and
guidance of the director of the Master David Rincón, who always had a solution
to the doubts raised.

Finally to my dear wife Eva and my adorable children Martí and Clàudia to
whom I dedicate this Master Thesis. Without Eva it would have been impossible
to study and I am very grateful for her dedication to our family so that I could
focus to work and study. I hope I can compensate in the coming months and
recover some of the time for the family. And to my two little kids that I hope you
feel very proud of the effort and investment that your father has made and that I
hope in some way I have been an example for you. And remember, in the end
every effort has its reward.

ACRONYMS

MAPE Mean Average Percentage Error
MAE Mean Absolute Error
CNN Convolutional Neural Networks
DNN Deep Neural Networks
RoI Region of Interest
R-CNN Region-based CNN
RPN Region Proposal Network
FCN Fully Convolutional Network
FPN Feature Pyramid Network
ML Machine Learning
AI Artificial Intelligence
NLP Natural Language Processing
IoU Intersection over Union

CONTENTS

ACKNOWLEDGMENT ... 4

ACRONYMS .. 5

INTRODUCTION .. 9

CHAPTER 1. THEORICAL CONCEPTS OF CONVOLUTIONAL NEURAL
NETWORKS USED IN THE MASTER THESIS ... 11

1.1 Introduction to Machine Learning ... 11

1.2 Introduction to CNN ... 13

1.3 Mask R-CNN for crowd segmentation .. 16
1.3.1 Introduction ... 16
1.3.2 Mask R-CNN solution .. 17
1.3.3 Faster R-CNN network configuration ... 18

1.4 CSRNet CNN for crowd counting .. 19
1.4.1 Introduction ... 19
1.4.2 CSRNet solution ... 20
1.4.3 Dilated convolution .. 21
1.4.4 Network configuration.. 22

CHAPTER 2. IMPLEMENTATION OF CROWD COUNTING 24

2.1 Development environment .. 24

2.2 Main Neural Network projects used .. 26

2.3 Labelling tools ... 26

2.4 Converting video to pictures and pictures to video ... 28

2.5 Programming steps ... 29
2.5.1 Crowd segmentation ... 30
2.5.2 Crowd counting ... 34
2.5.3 Data analytics ... 38

CHAPTER 3. RESULTS .. 39

3.1 Crowd segmentation results ... 39
3.1.1 Validation .. 39
3.1.2 Segmentation with false positive.. 41

3.2 Crowd counting results ... 44
3.2.1 Crowd counting with segmented images.. 45
3.2.2 Manual count vs Density Map .. 47

3.3 Further studies .. 48
3.3.1 R-CNN counting crowd .. 48
3.3.2 Cropping images ... 48

3.3.3 Without crowd segmentation ... 51
3.3.4 With different resolutions ... 52
3.3.5 With false positives ... 52
3.3.6 Comparison of results using the same image .. 53

3.4 Sensitivity evaluation .. 54

3.5 Processing time ... 60

CHAPTER 4. CONCLUSIONS AND FUTURE WORK 62

REFERENCES ... 65

Crowd Counting using Density Maps 9

INTRODUCTION

The main target of this Master Thesis is to provide some tools to the ICARUS
research group of the UPC to be able to improve the quality of people crowd
counting in images taken from drones in public areas by police forces. This
Master Thesis is complementing a previous Master Thesis called “Drones
against COVID-19 propagation by controlling capacity in public spaces” [25]
defended in 2021 and where the main target was to count individual persons
using YOLO technology via an Android application connected to a drone.

Crow count could be used in many scenarios and has particular importance to
control crowds specially during COVID pandemic. The same technology could
be used to count people but also it could be evolved for other type of object
management as cars or animals. We just need to train the systems with new
images and configuration.

There were 3 main categories to classify the different methods to count crowd
before using CNN [9]. First one is detection-based methods. This method
detects people by extracting low-level features of the human body. However,
the performance is low as in very congested images it is difficult to detect
human features. To improve this problem new methods are in place to detect
only some parts of the human body but even that the results are not accurate
for very congested scenes. Second category is regression-based methods. As
previous methods do not work properly for high congested images, this
regression method crops the original image in smaller parts and extracts the
low-level features, as foreground and texture, of each cropped image. Then
analyses the relation with the other cropped images and calculates the number
of people. And the last category is density estimation-based methods. In this
method it is generated a linear mapping between features in the local region
and its object density maps.

CNN has been used as an evolution method to these 3 methods based on the
success in classification and object detection. It has been demonstrated by
different researchers that CNN solutions are much more accurate: [10], [11],
[12]. So, we can conclude that CNN are the leading solution nowadays to count
people. In this Master Thesis we are going to use 2 CNN’s, the first one to
segment crowds using Mask R-CNN and the second one for crowd counting
using CSRNet.

As we did not find any pre-trained model with crowd segmentation we needed
to generate our own model using all the images available for the training
process. To train we used Shanghai public dataset [17] as main source but also
we added some UPC and Police pictures taken from drones in Castelldefels. To
test false positives in segmentation process we used Unsplash data set [31].
For crowd counting we used the pre-trained model based on Shanghai data set.
Finally, to analyse the different results we used an additional external data set
from University of Central Florida (UCF) [6] with high resolution images from
public Internet sources.

Crowd Counting using Density Maps 10

Thanks to automatize the full process for crowd counting and the result metrics,
where we only needed to place in a folder the input images, we were able to
test many scenarios and parameters.

The main conclusion is that crowd segmentation is not improving significantly
the metrics (less than 1% considering MAPE), at least considering the type of
images used in the test, very congested images with an average of 60% of
pixels with crowd. Anyway, segmentation is needed because CSRNet is not
able to count individual people and also other backgrounds as trees, buildings
or sky are adding noise to the images.

We have also demonstrated that CSRNet gets better results with images with
high density, high volume of people and congested scenes.

The structure of this Master Thesis is described here:

• Chapter 1: explains a brief introduction to Machine Learning (ML),
Convolutional Neural Networks (CNN) and some of the theoretical
concepts used in the Master Thesis. Also, a more detailed explanation
about Mask R-CNN for crowd segmentation and CSRNet for crowd
counting.

• Chapter 2: explains the different tools used to do the research as the
development environment and all the programming steps for crowd
segmentation and counting.

• Chapter 3: explains the main testing and results performed.

• Chapter 4: explains the conclusions of the research and future work.

Crowd Counting using Density Maps 11

CHAPTER 1. Theorical concepts of
Convolutional Neural Networks used in the Master

Thesis

1.1 Introduction to Machine Learning

This thesis is using technologies included in what is called Machine Learning
(ML). ML is about making machines get better at some tasks by learning from
data, instead of having to explicitly code rules. Next, we are going to explain the
main theoretical concepts of ML based on reference [26].

Figure 1.1. On the left traditional approach and on the right ML approach [26]

In figure 1.1 we can see on the left the traditional approach of programming
based on rules and on the right the ML approach where the system learns from
the data. ML approach is good when we found a problem where the code
requires a long list of rules (for example email spam). In that way ML can even
simplify the code compared with the traditional approach. Also, ML could find a
solution to complex problems where traditional approach is not able to find it or
the solution is not good enough. On the other hand, ML is able to adapt to
changing environments just processing new data and learning from it, so it is
not needed to code again new rules or new functions. Finally, another
advantage of ML is that allows to get additional information about data and
complex problems so we can understand for example how data is evolving to
help improve the monitoring and analysis.

In order to understand better ML we will list next some of the main techniques
with an example:

1. Image classification: Analysing images of products on a production line to
automatically classify them.

2. Object detection: Detecting tumors in brain scans or as we do in this

Thesis detect a crowd in drone picture.

Crowd Counting using Density Maps 12

3. Regression: Forecasting crowd counting using Density Maps in a picture
as we do in this Thesis.

These 3 ML examples use CNN as a main technical driver. So, we can see as
the CNN used in this thesis is one of the technologies included in ML. In section
1.2 we can go deeper on CNN concepts.

Other examples of ML techniques are natural language processing, speech
recognition, anomaly detection, data visualization, recommender system,
reinforcement learning … so the list of uses in real live is huge and accessible
thanks to the high level of computational power existing today.

ML has 3 types of techniques that can be categorized in:

• Supervised or not: Supervised, unsupervised, semi supervised, and
reinforcement learning. Whether they are trained with human supervision
or not.

• Online or batch learning: Whether they can learn incrementally on the fly.

• Instance-based or model-based learning: Whether they work by simply
comparing new data points to known data points, or instead by detecting
patterns in the training data and building a predictive model, much like
scientists do.

The typical steps to manage a ML project could be summarized in the next
steps: study the data, select a model, train it on the training data and finally
apply the model to new data to make predictions (inference).

The way to know how well a model will generalize to new cases is to try it out
on new cases. For that reason, the data set needs to be split in training (to train
the model), test (to test the model) and validation (to evaluate candidate
models). This value tells you how well your model will perform on instances it
has never seen before.

The main challenges for ML could be summarized in:

• Insufficient quantity of training data: Even for very simple problems you
typically need thousands of examples. Data matters more than
algorithms for complex problems.

• Nonrepresentative training data (sampling bias): Training data has to be
representative of the new cases you want to generalize. By using a
nonrepresentative training set, we trained a model that is unlikely to
make accurate predictions.

• Poor-quality data: If training data is full of errors it will make it harder for
the system to detect the patterns.

• Data mismatch: Large amount of data for training but this data is not
representative of the data that will be used in production.

• Irrelevant features: A critical part of the success of a ML project is coming
up with a good set of features to train on.

• Overfitting the training data: the model performs well on the training data,
but it does not generalize well.

Crowd Counting using Density Maps 13

• Underfitting the training data: it occurs when the model is too simple to
learn the underlying structure of the data.

1.2 Introduction to CNN

This section explains the main theoretical concepts of Convolutional neural
networks (CNN) based on reference [26]. CNNs emerged from the study of the
brain’s visual cortex. CNNs have managed to achieve superhuman
performance on some complex visual tasks. Neurons in the visual cortex have a
small local receptive field, meaning they react only to visual stimuli located in a
limited region of the visual field. Some neurons react only to images of
horizontal lines, while others react only to lines with different orientations. They
also noticed that some neurons have larger receptive fields, and they react to
more complex patterns that are combinations of the lower-level patterns. These
observations led to the idea that the higher-level neurons are based on the
outputs of neighbouring lower-level neurons (in figure 1.2, notice that each
neuron is connected only to a few neurons from the previous layer). This
powerful architecture can detect all sorts of complex patterns in any area of the
visual field. Next, we will explain the main concepts to understand CNN.

Figure 1.2. Biological neurons in the visual cortex [26]

Convolutional Layers: The most important building block of a CNN is the
convolutional layer. Neurons in the first convolutional layer are not connected to
every single pixel in the input image, but only to pixels in their receptive fields
(see Figure 1.3). In turn, each neuron in the second convolutional layer is
connected only to neurons located within a small rectangle in the first layer. This
architecture allows the network to concentrate on small low-level features in the
first hidden layer, then assemble them into larger higher-level features in the
next hidden layer, and so on.

Crowd Counting using Density Maps 14

Figure 1.3. CNN layers with rectangular local receptive fields [26]

Filters or convolution kernels: A neuron’s weights can be represented as a small
image the size of the receptive field. A convolutional layer simultaneously
applies multiple trainable filters to its inputs, making it capable of detecting
multiple features anywhere in its inputs. See figure 1.4.

Feature map: is a layer full of neurons using the same filter which highlights the
areas in an image that activate the filter the most. See figure 1.4.

Figure 1.4. Convolutional layers with multiple feature maps, and images with
three color channels [26]

Pooling Layers: Their goal is to subsample (i.e., shrink) the input image in order
to reduce the computational load, the memory usage, and the number of
parameters (thereby limiting the risk of overfitting). A pooling layer has no
weights; all it does is aggregate the inputs using an aggregation function such
as the max or mean.

Crowd Counting using Density Maps 15

Data Augmentation: Data augmentation artificially increases the size of the
training set by generating many realistic variants of each training instance.

Transfer Learning: If you want to build an image classifier but you do not have
enough training data, then it is often a good idea to reuse the lower layers of a
pretrained model.

Main types of techniques working with CNN and images:

1. Localization: Localizing an object in a picture can be expressed as a

regression task. To predict a bounding box (rectangle that surrounds an
object, that specifies its position, class and confidence) around the
object, a common approach is to predict the horizontal and vertical
coordinates of the object’s center, as well as its height and width. You
then need to create a dataset whose items will be pre-processed images
along with their class labels and their bounding boxes. For regression
tasks we can use MAPE and MAE as main metric for quality indicators.

2. Image classification: The task to be able to identify an image based on
different predefined class labels as animals, flowers, cars,… For
example, we can process an image and the computer could classify it as
a flower and even the computer can predict the type of flower (rose,
gardenia, geranium…). As main metric to measure the quality, we can
use the accuracy. Accuracy is the percentage of good classification
results versus the total number of cases tested.

3. Object detection: The task of classifying and localizing multiple objects in

an image is called object detection (see figure 1.5). As main metric to
measure the quality, we can use Intersection over Union (IoU). IoU is the
area of overlap between the predicted bounding box and the target
bounding box (see figure 1.6).

Figure 1.5. Detecting multiple objects [26]

Crowd Counting using Density Maps 16

Figure 1.6. Intersection over Union metric example

4. Semantic segmentation: Each pixel is classified according to the class of

the object it belongs to. Different objects of the same class are not
distinguished (see figure 1.7). IoU also could be used as main metric to
control the quality of the results.

Figure 1.7. Semantic segmentation [26]

1.3 Mask R-CNN for crowd segmentation

This section explains the method used to segment crowd called “Mask R-CNN”
[1].

1.3.1 Introduction

Mask Region-based CNN (Mask R-CNN) is a framework for object instance
segmentation evolved from Faster R-CNN [18]. It can detect an object and also
define the segmentation mask of this object. We will use it in this Master Thesis

Crowd Counting using Density Maps 17

to detect and segment a crowd although it could be used also to detect other
objects already pre-trained as cars, animals,...

Mask R-CNN is adding a branch for predicting segmentation masks on each
Region of Interest (RoI), in parallel with the existing branch for classification and
bounding box regression. The mask branch is a small Fully Convolutional
Network (FCN) [19] applied to each RoI, predicting a segmentation mask in a
pixel-to-pixel manner. And only adds a small computational overhead.

Mask R-CNN adds a simple quantization-free layer, called RoIAlign, that
preserves exact spatial locations for more accurate segmentation. Also predicts
a binary mask for each class independently, without competition among
classes, and relies on the network’s RoI classification branch to predict the
category.

1.3.2 Mask R-CNN solution

Mask R-CNN is conceptually simple: Faster R-CNN has two outputs for each
candidate object, a class label and a bounding-box offset; to this we add a third
branch that outputs the object mask. Next, we introduce the key elements of
Mask R-CNN, including pixel-to-pixel alignment, which is the main missing
piece of Faster R-CNN.

In order to understand better the evolution of Mask R-CNN from Faster R-CNN
we will explain first Faster R-CNN. Faster R-CNN consists of two stages. The
first stage, called a Region Proposal Network (RPN), proposes candidate object
bounding boxes. The second stage extracts features using RoIPool (standard
operation for extracting a small feature map, e.g., 7x7, from each RoI) from
each candidate box and performs classification and bounding-box regression.
Mask R-CNN adopts the same two-stage procedure, with an identical first stage
(which is RPN). In the second stage, in parallel to predicting the class and box
offset, Mask R-CNN also outputs a binary mask for each RoI. This stage allows
the network to generate masks for every class without competition among
classes. This means that object mask overlapping is allowed. In figure 1.8 we
can see an example using Mask R-CNN, in the top of the image we can see
some clear examples of object masks overlapping.

Crowd Counting using Density Maps 18

Figure 1.8. Example of object segmentation using Mask R-CNN. Source: [30]

1.3.3 Faster R-CNN network configuration

Authors split the architecture in 2 parts:

• Convolutional backbone: used for feature extraction over an entire
image. Feature Pyramid Network (FPN) uses a top-down architecture
with lateral connections to build an in-network feature pyramid from a
single-scale input. Faster R-CNN with an FPN back bone extracts RoI
features from different levels of the feature pyramid according to their
scale, but otherwise the rest of the approach is similar to ResNet [15].
Using a ResNet-FPN backbone for feature extraction with Mask R-CNN
gives excellent gains in both accuracy and speed.

• Network head: for bounding-box recognition (classification and
regression) and mask prediction that is applied separately to each RoI.
Authors extend the Faster R-CNN box heads from the ResNet [15] and
FPN [16] papers. See figure 1.9. as a reference for more details. The
head on the ResNet-C4 backbone includes the 5-th stage of ResNet
(namely, the 9-layer ‘res5’ [20]), which is compute intensive. For FPN,
the backbone already includes res5 and thus allows for a more efficient
head that uses fewer filters.

Crowd Counting using Density Maps 19

Figure 1.9. Head architecture of Mask R-CNN. Source: [1]

1.4 CSRNet CNN for crowd counting

This section explains the method used to count people called “CSRNet: Dilated
Convolutional Neural Networks for Understanding the Highly Congested
Scenes” [2].

1.4.1 Introduction

CSRNet is a deep learning method that from an input image can give a count
estimation figure and represents a density map of the input image where it is
shown the crowd distribution.

Figure 1.10 shows three examples from Shanghai data set. The top images are
the original pictures and at the bottom we can see the Density Map for each
one. Density Map uses different colours to show the density level. For example,
red and yellow colours mean more congested scene and blue dots represent
individual people.

Density map plays a key role to understand the results as we can see in a
graphical way the congested area in the original image and we can use to
check the quality of counting.

Crowd Counting using Density Maps 20

Figure 1.10. Example of density map for 3 images from Shanghai data set.
Source [2]

CSRNet has two main components:

• Front-end: Convolutional Neural Network for 2D feature extraction.

• Back-end: Dilated Neural Network which uses dilated kernels to deliver
larger reception fields and to replace pooling operations.

CSRNet model was trained with 4 crowd data sets: ShanghaiTech [17], UCF
CC 50 [22], WorldEXPO’10 [21] and UCSD [23]. Where ShanghaiTech data set
has been the main one.

As we are going to see in chapter 3, images with crowd have different
perspectives and density of people. Also crowd images have irregular
distribution that makes the count difficult. The only relevant method to get high
accuracy is by using deep neural networks (DNN).

Small size kernels of convolution filters (like 3 x 3) are used in all layers. The
first 10 layers are deployed from VGG-16 [8] as the front-end and dilated
convolution layers as the back-end to enlarge receptive fields and extract
deeper features without losing resolutions (pooling layers are not used).

1.4.2 CSRNet solution

The CSRNet solution is to deploy a deeper CNN for capturing high-level
features with larger receptive fields and generating high-quality density maps
without expanding network complexity.

Authors choose VGG-16 [8] as the front-end of CSRNet because of its strong
transfer learning ability and its flexible architecture for easily concatenating the
back-end for density map generation. Authors first remove the classification part

Crowd Counting using Density Maps 21

of VGG-16 (fully-connected layers) and build the proposed CSRNet with
convolutional layers in VGG-16. The output size of this front-end network is 1/8
of the original input size. Authors try to deploy dilated convolutional layers as
the back-end for extracting deeper information of saliency as well as
maintaining the output resolution.

1.4.3 Dilated convolution

Dilated convolution is a better choice, which uses sparse kernels (as shown in
figure 1.11) to alternate the pooling and convolutional layer. This character
enlarges the receptive field without increasing the number of parameters or the
amount of computation (e.g., adding more convolutional layers can make larger
receptive fields but introduce more operations). In dilated convolution, a small-
size kernel with k x k filter is enlarged to k + (k - 1)(r - 1) with dilated stride r.
Thus, it allows flexible aggregation of the multi-scale contextual information
while keeping the same resolution.

Figure 1.11. 3 x 3 convolution kernels with different dilation rate as 1, 2, and 3.
Source: [2]

In figure 1.12 we can see an example of dilate convolution. For maintaining the
resolution of feature map, the dilated convolution shows distinct advantages
compared to the scheme of using convolution + pooling + deconvolution. The
input is an image of crowds, and it is processed by two approaches separately
for generating output with the same size:

• First approach: input is down sampled by a max pooling layer with factor
2, and then it is passed to a convolutional layer with a 3x3 Sobel kernel
(see figure 1.12). Since the generated feature map is only 1/2 of the
original input, it needs to be upsampled by the deconvolutional layer
(bilinear interpolation).

• Second approach: the authors tried dilated convolution and adapt the
same 3x3 Sobel kernel to a dilated kernel with a factor = 2 stride (see
figure 1.12). The output is shared the same dimension as the input
(meaning pooling and deconvolutional layers are not required). Most

Crowd Counting using Density Maps 22

importantly, the output from dilated convolution contains more detailed
information.

Figure 1.12. Comparison between dilated convolution and maxpooling,
convolution, upsampling. The 3 x 3 Sobel kernel is used in both operations

while the dilation rate is 2. Source: [2]

1.4.4 Network configuration

The authors tested four network configurations of CSRNet in Table 1.1 which
have the same front-end structure but different dilation rate in the back-end.
Regarding the front-end, authors adapt a VGG-16 network [24] (except fully-
connected layers) and only use 3 x 3 kernels. Experiment shows a best tradeoff
can be achieved when keeping the first ten layers of VGG-16 [24] with only
three pooling layers. Since the output (density maps) of CSRNet is smaller (1/8
of input size), authors choose bilinear interpolation with the factor of 8 for
scaling and make sure the output shares the same resolution as the input
image.

Crowd Counting using Density Maps 23

Table 1.1. Configuration of CSRNet. All convolutional layers use padding to
maintain the previous size. The convolutional layers’parameters are denoted as

“conv-(kernel size)-(number of filters)-(dilation rate)”, max-pooling layers are
conducted over a 2 x 2 pixel window with stride 2. Source: [2]

Crowd Counting using Density Maps 24

CHAPTER 2. IMPLEMENTATION OF CROWD
COUNTING

In the previous chapter we have been introducing the theoretical concepts
related to the technology implemented. Now we are going to explain the
implementation steps used in the Master Thesis. In figure 2.1 shows the
summary of the main implementation steps that we will explain in detail in this
chapter.

Figure. 2.1 Main implementation steps used in the Master Thesis

2.1 Development environment

Machine learning techniques require a lot of image processing that consumes
huge number of computer resources. This is the main reason why we are using
Gooble Colab platform in the cloud where we have available GPUs that we can
run in parallel using also CUDA1 (parallel computing platform and programming
model that speed up applications by taking advantage of the power of GPU
accelerators).

1 https://blogs.nvidia.com/blog/2012/09/10/what-is-cuda-2/

https://blogs.nvidia.com/blog/2012/09/10/what-is-cuda-2/

Crowd Counting using Density Maps 25

On the other hand, Google Colab offers free access for students. It has some
limitations as the time available for running jobs, number of active sessions or
GPU power of processing. Anyway, neither of these limitations have been a
problem to execute the Master Thesis. Also, it is an easy way to share the code
with other researchers, it does not depend on your local hardware constraints
and the code is always secure with a back-up.

As a disadvantage, we need to keep in mind that you need to install always in
each new session the full environment of libraries and connectivity. Secondly,
you do not control what is installed at each moment in the machine, so you can
get different results based on hardware configuration. On the other hand,
Google Colab gives only 12 hours of continuous execution time. After that, the
whole virtual machine is reset and it is needed to start from zero. Anyway in our
Master Thesis we never needed more than the limit time.

To be able to work with convolutional neural networks we use Keras and
Tensorflow libraries from Google [4].

Finally, as programming language Python was selected. Python is the most
popular and powerful language for machine learning. As Integrated
Development Environmnet (IDE) Spyder is used to program the main python
functions locally in the PC. Spyder is an open-source and free platform. Finally,
Google Colaboratory has been used to execute the python programs in the
cloud and get the results.

Figure 2.2 presents a visualization of all these tools.

Figure. 2.2 Main development tools used in the Master Thesis

Crowd Counting using Density Maps 26

2.2 Main Neural Network projects used

For object segmentation and training the main project used is based on paper
“Mask R-CNN” [1]. This project provides a framework that can segment objects
in an image and identify a segmentation mask of the same object. It is an
extension of “Faster R-CNN” framework and it uses Convolutional Neural
Networks (CNN). More information was given in section 1.3.

For density map the main project used is based on paper “CSRNet: Dilated
Convolutional Neural Networks for Understanding the Highly Congested
Scenes” [2]. This project has 2 main functions, it is able to represent graphically
a density map of congested scenes and also it is able to count the number of
objects in the scene. As the previous project it also uses CNN. More details
were also given in section 1.4.

2.3 Labelling tools

During the Master Thesis we have been using 2 main labelling tools. These
tools are needed to label the images used for training so the system can
understand what an object crowd is. The tools are very similar and basically
offer the chance to edit each image and add an area of interest. Then, once you
have all the images labelled, it can generate a file with all the images and the
coordinates of the introduced polygons. This file and the images are the main
inputs for the training process.

Labelbox2:

Labelbox is an online tool very popular and with many features that were used
in the previous Master Thesis. It is free but with some constraints that are not a
problem for the development of the Master Thesis. It was used to segment
manually the images before having the automatic segmentation using Mask R-
CNN. Figure 2.3 shows an example of an image labelled for a crowd of people.

2 URL: https://labelbox.com/

https://labelbox.com/

Crowd Counting using Density Maps 27

Figure 2.3 Image captured from Labelbox with a real example. Source: [29]

VIA (VGG Image Annotator)3:

VIA is a local web tool that runs in your PC without any installation needed, just
the browser. You do not need to upload pictures to label to the cloud, but the
number of features is limited although enough for our purpose. As it was used
for R-CNN project we used it to facilitate the integration but also because of
confidentiality. Being a local tool that does not need to upload pictures to the
cloud, allows us to keep better confidentiality when processing the images from
the police.

All the pictures for training were labelled using this tool. Figure 2.4 shows an
example of an image labelled for a crowd of people.

3 URL: https://www.robots.ox.ac.uk/~vgg/software/via/

https://www.robots.ox.ac.uk/~vgg/software/via/

Crowd Counting using Density Maps 28

Figure 2.4 Image captured from VIA with a real example. Source: [17]

2.4 Converting video to pictures and pictures to video

One of the functionalities required was the option to input a video. To be able to
integrate the video in the CNN process what we did was to convert a video in a
sequence of images, one for each frame, and then process the images as part
of the CNN process. Also, once we get the images processed, we wanted the
possibility to generate a new video with the result.

For that purpose, the main tool used was Ezgif.com4. In figure 2.5. we can see
a screenshot of one example used.

4 URL: https://ezgif.com/video-to-jpg

https://ezgif.com/video-to-jpg

Crowd Counting using Density Maps 29

Figure 2.5 Screenshot of Ezgif tool to convert video to images. Source: [28]

2.5 Programming steps

As it is shown in figure 2.6, in our Master Thesis we split the process in 2 main
steps. One for crowd segmentation and the second for crowd counting.

Crowd Counting using Density Maps 30

Figure 2.6 Flow diagram of the main programming steps

2.5.1 Crowd segmentation

The first step in our process is to split the original image in 2. The first one with
the crowd segmented and the second one with the background, this is, the
other area different to the crowd. The reason is simple, we need to process 2
different algorithms to count people, one for crowd and the other for individual
people. It means that we need to be able to identify a crowd from the image and
segment it from the picture.

To be able to identify crowds we use R-CNN (Region-Based Convolutional
Neural Networks) [1] that was the most suitable architecture, as shown in [1], for
the type of images we need to process. In following section 2.5.1.1 we explain
the reason why we use R-CNN and not POLY-YOLO.

All the process for this section has been centralized in one program file called
crowd.py.

The main functionalities step by step are described below.

2.5.1.1 Why R-CNN and not Yolo

Currently there are several methods to detect objects and it is important to
introduce some background before moving forward. In the abstract of this
document we explained that this work was complementing another previous
Master Thesis where individual object detection was the target using Yolo as
the main method to detect persons [25]. So, the first option in the research of
this Master Thesis was to use Poly-Yolo that is an evolution of Yolo but with the
advantage that is able to detect objects using polygons instead of boxes. As
crowds are not uniform, having a polygon was a great solution.

But after many research using Poly-Yolo we did not succeed and we needed to
pivot using R-CNN instead. The reasons are described in more detail in the

Crowd Counting using Density Maps 31

article “R-CNN, Fast R-CNN, Faster R-CNN, YOLO - Object Detection
Algorithms” [4] but we can summarize in this main reason:

Yolo algorithm, when there are small objects in the image, is not able to detect
them properly due to the method used. Yolo classifies the image in different
boxes and assigns the probability of the box to be an object. When the object is
small more than one object could share the same box and gives bad results.
The classification is done only once box by box. In our Master Thesis images
are taken from high altitude and crowd is made of many small persons so it
means that our objects are very small and this is the main reason why Yolo was
not suitable.

2.5.1.2 Transfer learning from COCO model

The first time we want to detect a new object we can speed up the process by
using an existing model already trained to detect other objects. In that sense we
use COCO model that was previously trained using public COCO dataset [3].
COCO data set provides more than 80 categories and more than 200.000
labelled images.

Call script:

!python crowd.py train --dataset=crowd_dataset/crowd_mix/ --weights=coco

Main parameters of the program are:

Main call: Train. Indicates that the process needs to train so it will have as main
output a new weights file customized for the objects trained.
Dataset: Indicates the location of the input images used for training. We need to
include in the same folder the annotation file called via_region_data.json
generated by VIA labelling tool that provides the coordinates of each labelled
object.
Weights: Default weights file to start training, in that case COCO.

Output of the program:

The only output of this process is a new weights file with extension .h5 that will
include the information needed to segment the test images. The location of the
file is:

.../Mask_RCNN-2.1/logs/crowd20220221T2219/mask_rcnn_crowd_0009.h55

As the training process can take several hours and we could be in risk to lose
the job done, the program saves a version of the weights file every “epoch”

5 Master Thesis root path: /content/drive/MyDrive/MasterThesis/Master-Code-

Crowd/Mask_RCNN-2.1/

Crowd Counting using Density Maps 32

(when the full dataset is processed forward and backward through the neural
network only once). The program creates a new folder each time with a time
stamp as we can see in the previous path (crowd20220221T2219 –
crowdyyyymmddThh:mi).

2.5.1.3 Training with customized weights file

Once we have trained the first time a complete execution of the process with
COCO weights file, we can run the training with our customized crowd weights
file. As it has been done considering our images and new crowd object the
results will be better each time.

Call script:

!python crowd.py train --dataset=crowd_dataset/crowd_mix/ --weights=last

The only difference compared with the previous call is that we use weights=last
in the call to indicate that it needs to find the most recent weights file generated.
As the folder is named using the creation date, it is easy to find the last one.

The output of the program is the same than the previous execution but in this
case, we get the final weights file that contains all the information extracted from
the training with our new object called crowd. We can iterate as much time is
needed this process until we consider that the quality of the result is good
enough. Keep in mind that Colab sometimes stops the process for no reason,
remember it is a free shared service, and it is needed to restart it again.

For the training we have used the full images available from all data sets (more
than 600) and the training process lasted around 10 hours using GPUs from
Colab. Also we need to consider the manual labelling process than in our case
took more than 8 hours to edit the full image data set.

Table 2.1 shows the distribution percentage used for the full training process
between the training, the validation and the testing from each data set. Training
and validation it is used by the model to do first the training and after the
checking to measure the quality of the results. So, both are part of the training
process. The testing images are only used to measure the quality of the results
using the weights file generated by the training process. Testing images are
extracted from the same data set non-seen images, so it is a good way to
control the results of the training with the same type of images. Anyway, other
additional images are going to be used to test the quality of the results in
different scenarios.

Crowd Counting using Density Maps 33

Data Set Total 100% Training 65% Validation 25% Testing 10%

Shanghai* 482 313 121 48

UPC and Police 167 109 42 17

Internet 4 2 1 1

Total 653 423 164 66

Table 2.1. Distribution of images from data sets used for training

*Shanghai data set represents the 74% of the total images used in the training
and each photo represent a different scenario and environment.

2.5.1.4 Crowd segmentation

Once we get the weights file trained for crowd from the previous step, it is time
to start the segmentation of a crowd over the best images. Three different
options are described below based on the input.

Call script:

1. To process many images at the same time:
!python crowd.py splash --weights=last --imageFolder=…/Mask_RCNN-

2.1/imagesTest12/

2. To process one single image:

!python crowd.py splash --weights=last --image=…/Mask_RCNN-

2.1/imagestTest12/ST_IMG_120.jpg

3. To process a video:

!python crowd.py splash --weights=last --video=…/Mask_RCNN-

2.1/videoTest2/ManchesterCrowdShort.mp4

Main parameters of the program are:

Main call: Splash. Indicates inference, that is, the process has to detect the
object crowd.
Then we have 3 different input options to detect a crowd:

1. ImageFolder: Indicates the location of the folder with the images. All

images need to be in JPG format. There is no limit in the number of
images in the folder.

2. Image: Indicates the location of a single image in JPG format.

3. Video: Indicates the location of a video in MP4 format.

Weights: Default weights to be used. In that case indicating “last” we always
take the last one.

Crowd Counting using Density Maps 34

Output of the program:

For each input image the program generates 2 new images: one renamed as
“segmented” and the other as “negative”. Both keeping the original image name
at the beginning to trace it. The “segmented” image is the image containing only
the crowd and the “negative” is the opposite, the remaining part of the image
that is not a crowd. The negative image is what will need to be processed to
detect individual persons.

The “negative” folder is located in the root folder of the original images,
…/Mask_RCNN-2.1/imagesTest5/ for example, and it is called “Results-
negative”. The “segmented” folder is located also in the root folder and it is
called “Results-segmented”.

Also a CSV file is generated with the summary of all the images processed in
the segmentation (called “Results-segmentation.csv”).

2.5.2 Crowd counting

For crowd counting the Density Map model is used and all the process could
run in one call once the environment is defined.

All the process for this section has been centralized in one program file called
Final-CrowdCountingCSRNet.ipynb.

Considering Google Colab, the main steps are listed below:

1. Set up environmnet: First it is executed “nvidia-smi” to get information
about GPU assigned status and general info. Then it is installed open-
source GCC (GNU Compiler Collection) to be able to compile and run
the code from our project in Linux.

GPU information is:

Crowd Counting using Density Maps 35

As we can see the GPU assigned for our project is Tesla K80 that is a very
powerfull server with 2 GPUs and 12GB of memory for each one.

2. Download project code: The main code used for Density Map it is
downloaded from Github in the current location:

The code will be located in our Google account at: /content/CSRNet-pytorch

3. Import libraries: Main libraries are imported including the code from

CSRNet project from the previous step.

4. Initializatin the model: Once we have the main libraries imported it is just
needed to initializate the new model defined in CSRNet project and also
load the trained weights file.

Crowd Counting using Density Maps 36

5. Resize images: From the previous point, everything is ready to start
working with Density Map function. But an additional step is still needed
to prepare the images. To avoid the problem of out of memory of the
GPU and also reduce processing time is needed to resize the input
images. In our case it is was decided that the maximum width allowed in
pixels was 1024.

6. Input type: There are 2 ways developed to process the images, one for
single file and another for all the images in a folder.

When working with a folder the input folder is defined in “.../Mask_RCNN-
2.1/imagesTest12”, where “imagesTest12” could be renamed to any other name
to keep traceability of all the trials, then in the same root folder the resize image
process generates the folder “Results-segmented-smaller”. Finally, the output
folder is located in root folder and caller “Results-density-map”.

7. Call Density Map: The variable “output” is defined that will get the result
of our model where the only input is the image to measure.

The full process for 1 image is shown in figure 2.7.

Original Image Segmented Image Density Map

Predicted Count : 335

Figure 2.7 Density Map process in 3 steps. Source: [28]

In order to help to analyze the results, it is added an additional step to generate

a CSV file (called “Results-DensityMap.csv”) with the results of each image in

the input folder.

Finally, the count for each image is included in the name of the final file

(DJI_0005_DensityMap_count164.JPG).

Crowd Counting using Density Maps 37

2.5.2.1 Cropping and masking images tools

As part of the testing to check if we can get better results with Density Map, we
tried to crop images in smaller portions to check if the quality of the count was
increasing. As it is shown in section 3.3.2, after some trials the results of the
cropped images compared with the full original images, were not improving so
finally we discard this process. Anyway, as it was developed to automatize the
process and also it was used in the study, we are going to explain the
functionalities just in case could be useful for other researchers. Also, the tool
includes the option to generate segmented images with a crowd from manual
labelling that was used to compare the results between the manual crowd
segmentation and the CNN.

The name of the program is ImagesPreparationV6-CROPPINGWITHJSON.py.

The main steps are listed below:

1. Export Json file: It is used Labelbox to label manually all the images with
crowd. Then a json file is exported with all the image paths and
coordinates of the crowd polygons.

2. Initialize variables: In the root folder where the main program runs it is
needed to create the folders for the input: json file and original images.
Also, the output folders for masked files and cropped files. Finally, the
size of the cropping needs to be configured in boxes multiple of 32.

3. Execute program: 3 main functions:
a. jsonFound: Reads the json and generate new segmented images

only with the crowd.
b. Crop: Crop the segmented images generated in the previous

steps.
c. deleteEmptyImages: Delete all images with no info or less than

98% of pixels different to the background.

Crowd Counting using Density Maps 38

Additionaly, there is another program based on this called ImagesPreparation-
ONLYCROPPING.py. In that case we only need images in a folder and the
program generates the cropped images.

2.5.3 Data analytics

To get all the metrics analysed in section 3.4, a specific program was developed
with Google Colab called CrowdCountingCSRNet_showGroundTruth-v3.ipynb.
With this new program we could get the main metrics from Shanghai and UCF
data sets and also we can calculate the main features per image as forecasted
count, resolution, percentage of the background segmented, density, MAPE,
MAE,… for a set of images defined in a folder. All the information is
automatically exported in a csv file (called “results-groundTruth-vs-DensityMap-
UCFDataSet.csv”).

Crowd Counting using Density Maps 39

CHAPTER 3. RESULTS

The previous chapter explains the steps to execute the Master Thesis. This
chapter explains the different results obtained to test the code and what are the
main conclusions for each scenario of images.

3.1 Crowd segmentation results

3.1.1 Validation

From the same data set used for crowd segmentation training a few images
were selected just for testing. Figure 3.1 shows some representative examples
used for testing with the original image on the left and the segmented image on
the right. We also indicate in the field “Result” whether we consider the
segmentation was OK or not (gray color means no segmented). Also, table 3.1
represents the final segmentation results for each type of testing data set.

Original Image Segmented image
(Gray scale = not segmented)

File name: IMG_168.jpg. Source: [17]

Result: OK. Crowd detected

File name: IMG_139.jpg. Source: [17]

Result: OK. Crowd detected

File name: IMG_153.jpg. Source: [17]

Result: OK. Crowd detected

Crowd Counting using Density Maps 40

File name: IMG_176.jpg. Source: [17]

Result: OK. Crowd detected

File name: INT_IMG_004.jpg. Source: Internet

Result: OK. Crowd detected

File name: DJI_0011.jpg. Source: [29]

Result: OK. No crowd detected

File name: DJI_0025.jpg. Source: [29]

Result: OK. Crowd detected

File name: DJI_0023.jpg. Source: [27]

Result: No good. No crowd detected

File name: DJI_0018.jpg. Source: [27]

Result: OK. Crowd detected

Figure 3.1. Example of some images used to validate segmentation

Crowd Counting using Density Maps 41

Data set

Total
images

Segmented
OK*(1)

Segmented
No good

Percentage
OK

Percentage
No good

Shanghai
data set 39 39 0 100% 0%

UPC and
Police 17 11 6 65% 35%

Total 56 50 6 89% 11%

Table 3.1. Results for segmentation validation images.

Metrics for segmentation (*1): As seen in chapter 1, object detection uses IoU
as main indicator to measure the quality of the result. To be able to get this
metric we need the theoretical polygon area for each image (ground truth) to
compare with the resulting area. As this information is not provided by any of
the data sets used in this Thesis, we can not provide an automatic and accurate
IoU. For that reason, when in table 3.1 we refer to “Segmented OK” or in figure
3.1 we refer to “Result: OK”, we consider that IoU is higher than 75% after
manual inspection image by image. From now on, this consideration applies to
all segmentation results.

Main Conclusions: Initially the data set was defined with 66 images but some
Shanghai pictures were removed because they were in gray scale and the
format was not compatible with R-CNN. So, we tested the result with 56 images
from Shanghai and UPC data set. As table 3.1 shows, the conclusions are quite
clear as 100% of the pictures from Shanghai data set have been segmented
correctly versus the 65% of UPC images. The main reason is that the
percentage of images from Shanghai data set represents 74% of the total
images used for training. So as any machine learning process, more data
means better results. We can consider this result as a data mismatch, where
data used for training is not representative of the data that will be used in
production.

3.1.2 Segmentation with false positive

To get a good indicator of the quality of the crowd segmentation, it is important
to use images where no crowd exists to check if there is any false positive.
Three image categories have been used: cities (21 images), animals (20
images) and forest (20 images). The reason to use these categories is because
it is the most common use case for drone pictures available on the Internet. The
data set used is from Unsplash web site [31] where we can get free high-
resolution images from many categories. Unsplash data set has been
exclusively used for the purpose of this section.

See figure 3.2 for some examples for each category. The image on the left is
the original and on the right is the segmented one (in color and gray). When it
appears the same original image in gray scale on the right is because has not
been segmented.

Crowd Counting using Density Maps 42

Original Image Segmented image
(Gray scale = not segmented)

Author: Abigail Keenan. Source: [31]

Result: OK. No crowd detected

Author: Denys Nevozhai. Source: [31]

Result: OK. No crowd detected even with

high altitude

Author: Andre Benz. Source: [31]

Result: OK. Crowd detected

Author: Geran De Klerk. Source: [31]

Result: OK. No crowd detected

Crowd Counting using Density Maps 43

Author: Josefina Di Battista. Source: [31]

Result: No good. Penguins detected as
crowd. Good segmentation but no good

classification

Author: Matt Reed. Source: [31]

Result: OK. No crowd detected

Author: Gary Bending. Source: [31]

Result: OK. No crowd detected

Author: Florian Hahn. Source: [31]

Result: No good. Birds detected as crowd.

Good segmentation but no good
classification

Figure 3.2. Example of some images used to validate segmentation with false

positive

Crowd Counting using Density Maps 44

Main Conclusions: As table 3.2 shows, from the 61 images tested the summary
is that only 7 where segmented incorrectly. From that 7, 6 corresponds to the
animals category, only 1 to the city category and 0 to forest. So, we can
conclude that with cities and forest scenarios the results are pretty good as are
over 95% of good segmentation and classification. The main problem is with
animals where the correct classification percentage is of 70%. The main reason
could be the similarity of the human body (eyes, head, body,…) with other
animals where CNN could confuse them. On the other hand and in our benefit
this category is the less probable in our drones urban scenarios. So, we can
conclude that for our Master Thesis target, the results are quite good
considering that the images tested are completely external from the training
scenario and with some common points for future use.

Category
Total
images

Segmented
OK

Segmented
No good

Percentage
OK

Percentage
No good

Animals 20 14 6 70% 30%

Cities 21 20 1 95% 5%

Forest 20 20 0 100% 0%

Total 61 54 7 89% 11%

Table 3.2. Results for segmentation validation images with false positive.

3.2 Crowd counting results

Once we have the crowd segmented the next step is to use density map model
to count the people.

Thanks to the Python programming developed during the research we have
been able to automatize the full process to count crowds that allow us to
process huge number of images in just some minutes.

MAPE and MAE are going to be used as main quality indicators. Below you can
find the formula of each one [7]:

Where GroundTrutht is the crowd count real value provided by each data
set, Forecastt is the forecasted value calculated from Density Map and n the
number of tested images.

Table 3.3 shows the results from Shanghai data set where Ground Truth is
available (UPC and Police data set can not be used for that reason). Shanghai

Crowd Counting using Density Maps 45

data set was used to train Density Map weights file so it is normal that Training
results are much better than Test ones as we can see in table 3.3.

Data set MAPE MAE Number of
Images

Shanghai Training 12,89% 55,39 300

Shanghai Test 22,21% 74,86 182

Table 3.3. Comparison of MAPE from Shanghai data set

3.2.1 Crowd counting with segmented images

Figure 3.3 shows the results from Density Map (right column) taken as an input
the segmented image processed by R-CNN (left column). Images are taken
from the two main data sets (Shanghai and UPC).

Segmented Image Density Map image

File name: IMG_182.jpg. Source: [17]

Predicted Count: 234. Ground Truth: 199

MAPE: 18%

File name: IMG_169.jpg. Source: [17]

Predicted Count: 293. Ground Truth: 218

MAPE: 34%

Crowd Counting using Density Maps 46

File name: DJI_0049.jpg. Source: [29]

Predicted Count: 195. Ground Truth: N/A

Figure 3.3. Example of some images processed with Density Map

In table 3.4 we can see the main indicators from Shanghai data set. As we can
see segmented images only get 0,45% reduction of MAPE considering 62,64%
of image segmented (very congested scenes in average).

Main indicators Shanghai data set

MAPE (not segmented) 20,69%

MAE (not segmented) 81,20

MAPE (segmented) 20,24%

MAE (segmented) 89,22

Number of Images 82

Resolution average 618KB

Count of crowd average 449

Density (resolution/crowd) 2074

Percentage of image segmented 62,64%

Table 3.4. Comparison of the results of the segmentation using CNN

In order to assess how the quality of the automatic segmentation process could
impact the quality of the method, we have tested with a sample of 12 images
segmented manually. And as we can see in table 3.5 MAPE are very similar
than the same result we get using CNN (less than 1% gap).

 With manual segmentation Using CNN for segmentation

Original
full image

Segmented
manually

GAP Original
full
image

Segmented
with CNN

GAP

MAPE 26,54% 26,67% -0,13% 20,69% 20,24% 0,45%

MAE 148,00 153,25 -5,25 81,20 89,22 -8,02

Table 3.5. Comparison of MAPE with manual and CNN segmentation method.

Main Conclusions:

• Segmented images are getting very similar results compared with the
original image considering MAPE.

• The quality of the automatic segmentation using CNN is very accurate as
we are getting similar results than with the manual segmentation
considering MAPE.

Crowd Counting using Density Maps 47

3.2.2 Manual count vs Density Map

Figure 3.4 shows a comparative between the results from Density Map (right
column) and manual count (left column) where each person has been identified
with a dot and an identifier. As all these images have been labelled manually to
get the real count (what is called ground truth) we consider that a reasonable
error considering MAPE could be lower than 10%.

Original Image with manual count Density Map image

File name: INT_IMG_001.jpg. Source: Internet

Manual Count: 221

Predicted Count : 172
MAPE: 23%

Result: No good

File name: IMG_272.jpg. Source: [17]

Manual Count: 49

Predicted Count : 52

MAPE: 6%
Result: OK

File name: IMG_59.jpg. Source: [17]

Manual Count: 45

Predicted Count : 67

MAPE: 49%
Result: No good

Figure 3.4. Example of some images counted manually versus Density Map

Crowd Counting using Density Maps 48

Main Conclusions: Shanghai data set was used to train Density Map weights file
so it is normal that we can get better results for images from this data set. Even
that, as we can see in figure 3.4, results sometimes are not very close to what
we have defined as a reasonable error (MAPE lower than 10%).

3.3 Further studies

3.3.1 R-CNN counting crowd

Figure 3.5 shows a testing using R-CNN to count people instead of Density
Map. As we can see in the right image from figure 3.5, R-CNN technology is
very accurate with people detection when a person could be easily identified
(front image). Once we have a crowded scenario (back image) R-CNN could
not detect any person as R-CNN could not identify clearly human features as
eyes, head, arms, legs,…

From the total number of pixels, just 70% where correctly identified as people
by R-CNN. From the remaining 30%, 10% was not crowd and the other 20%
was crowd but not detected.

Original Image R-CNN image

File name: IMG_3.jpg. Source: [17]

Figure 3.5. Example of one image counted just using R-CNN.

Main Conclusions: This testing justifies the need of using Density Map for crowd
people counting.

3.3.2 Cropping images

As explained in section 2.5.2.1 cropping is a new process developed to crop the
original images in smaller images trying to see if the quality of the results was
better than processing the full image at once. Figure 3.6 shows the results of
Density Map working with cropped images that allows to process images with
higher resolution but in different steps.

Crowd Counting using Density Maps 49

Original cropped image Density Map image

File name: Image1_3_3.jpg. Source: [27]

Ground Truth: 1

Predicted Count : 18

MAPE: 1700%

File name: Image1_1_7.jpg. Source: [27]

Ground Truth: 8

Predicted Count : 18

MAPE: 125%

Figure 3.6. Example of some cropped images using Density Map.

As we can see in figure 3.6 when the cropped image is almost empty or with
low number of pixels with crowd, the results are not accurate and always is
counting extra. Two types of new functionalities were developed to minimize
this effect:

- Remove empty cropped images: As the input image is a segmented

image, there are many areas with only black background that are not
adding any information. So, when we detected an image where all pixels
are black, the image is deleted and therefore not processed by Density
Map.

- Remove almost empty cropped images: As we can see in the first
example of figure 3.6, images with a big percentage of black background
also are providing bad results. The solution developed calculates the
percentage of black pixels and deletes the image if this percentage is
higher than 95% (a parameter that could be customized depending on
the resolution and size of images). For our study, losing this 5% of
information of a cropped images was better than keeping the original
image.

After applying the previous functionalities to the same image, in figure 3.7 we
can see the new results. In this example the total count provided by Density
Map is 645, compared with the manual count 729 gives us a 11,52% of
deviation.

Crowd Counting using Density Maps 50

Figure 3.7. Example of final result of a cropped images using Density Map.
Source: [27]

Now we are going to compare the results with the same image but without
cropping. As we can see in figure 3.8 the results are very close to the manual
count, 730 from Density Map versus 729 with the manual count. What means
only 0,14% deviation.

Original Image Density Map image

Manual Count: 729. Source: [27]

Predicted Count : 730

Figure 3.8. Example of final result of a cropped images using Density Map.

In order to have a more accurate analysis of the cropping impact in the process,
we have compared different cropping scenarios with 11 samples from Shanghai
data set that can be seen in table 3.6. The 2 first columns show the result of
cropping the original imagen (without segmentation) and we can see that MAPE
is the same in both cases. In the next column we can see the impact with
different cropping size with the segmented images. In any case the MAPE is
improved.

Crowd Counting using Density Maps 51

 Original
full
image

Original
full
image

Segm.
image

Segm.
image

Segm.
image

Segm.
image

Cropping NO YES NO YES YES YES

Segmented NO NO YES YES YES YES

Cropping
size

N/A 128x128 N/A 128x128 160x160 192x192

Resolution 1024x768 1024x768 1024x768 1024x768 1024x768 1024x768

MAPE 28% 28% 26% 29% 34% 32%

Table 3.6. Comparison of different examples using cropped images

Main Conclusions: After research in the process of cropping images, we have
observed that cropping images is not improving the results with Density Map.
Main reasons are:

• Almost empty images, even with crowd, are counting extra with the
samples used in the research.

• In average using external data set, cropped images are giving worst
results than the full segmented image (considering MAPE as the quality
indicator).

3.3.3 Without crowd segmentation

Figure 3.9 shows an image processed by Density Map without segmentation.

Original Image Density Map image

File name: DJI_0017.JPG. Source: [27]

Manual Count: 729
Predicted Count: 620

Figure 3.9. Example of an image without crowd segmentation using Density

Map. Source: [27]

Main Conclusions: As we can see in figure 3.9, using the original image without
segmentation with this example is giving 14,95% of deviation compared with the
manual count. The same image with segmentation gives only 0,14% deviation.
It demonstrates the importance for Density Map to process an image only with
crowd.

Crowd Counting using Density Maps 52

3.3.4 With different resolutions

Figure 3.10 shows 2 examples of the same image but with different resolutions
and what are the results using Density Map.

Original Image Density Map image

Low resolution: 32,7 KB

Manual count: 729

Predicted count: 163

Low resolution: 211 KB

Manual count: 729
Predicted count: 730

Figure 3.10. Example of an image with different resolutions using Density Map.

Source: [27]

Main Conclusions: As we can see in figure 3.10, reducing the resolution has a
very negative impact in the counting results. Specifically, 77,64% of deviation
compared with the manual count.

3.3.5 With false positives

Figure 3.11 shows some examples of false positive images using Density Map.

Original Image Density Map image

 Manual count: 0. Source: Internet

Predicted Count : 68
Result: No good.

Crowd Counting using Density Maps 53

Manual count: 0. Source: Internet

Predicted Count : 241
Result: No good.

Figure 3.11. Example of images with no crowd and processed by Density Map

Main Conclusions: As we can see in figure 3.11 the input images for Density
Map need to be segmented correctly before processing. In the first example we
can see a landscape and how Density Map is counting the cliff and trees as
crowd. In the second picture is the same problem but in this case is counting
cows.

3.3.6 Comparison of results using the same image

After going through different testing scenarios in this chapter, we summarize the
results in table 3.7 using the same image (DJI_0017.JPG taken in Canal
Olimpic by Castelldefels Police [27]) to help understand the final conclusions.

Rank

Resol.

Cropping Segm.

image

Density
Map
Count

Manual
Count MAPE

1st High No Yes 730 729 0,14%

2nd*(1)
High Yes

(416x416) Yes 666 729 8,64%

3rd*(2)
High Yes

(640x640) Yes 645 729 11,52%

4th*(3)
High Yes

(416x416) Yes 629 729 13,72%

5th High No No 620 729 14,95%

6th Low No No 485 729 33,47%

7th Low No Yes 163 729 77,64%

Table 3.7. Results using different methods with the same image

*(1): Including empty cropped images.
*(2): Removing empty and almost empty images.
*(3): Removing empty images.

Crowd Counting using Density Maps 54

As we can see in table 3.7 the best method is using a whole segmented image
only with crowd and with high resolution. It is clear also that segmentation plays
a key role in the quality of the counting as the 4 main methods in the ranking
are using segmentation. Also notice that low resolution has a very negative
impact as the 2 last methods are the ones with lower resolution. After analysing
this data, we discard the cropping process and we focus on high resolution
crowd segmented images as the implementation method. Also notice that
method in rank 2 is counting empty images so it’s not really a valid method.

3.4 Sensitivity evaluation

In order to get objective metrics about the research, UCF-QNRF data set [6]
has been used. This is a public large data set of crowd images (1535 in total)
with high resolution (average of 5,8MB) and from many different scenarios
taken around the world. It has been used a sample of 100 images from the UCF
test data set.

Metrics 1: Segmentation results comparison

Table 3.8 shows the results of the segmentation results for the three main data
sets including UCF.

Data set

Total
Images

Segmented
OK

Segmented
No good

Percentage
OK

Percentage
No good

Shanghai
data set 39 39 0 100% 0%

UPC and
Police 17 11 6 65% 35%

UCF 100 100 0 100% 0%

Table 3.8. Segmentation results comparison

Source: Shangai [17]

Image name: IMG_13.jpg
Source: UCF [6]

Image name: img_0006.jpg

Figure 3.12. Comparison of 2 images from Shanghai and UCF data sets

Main Conclusions: UCF, even not been used at all for segmentation training,
gets the same results that Shanghai data set with 100% of good segmentation.

Crowd Counting using Density Maps 55

We think the excellent result could be because the type of images is very similar
between both data sets (very congested scenes with enough resolution). In
figure 3.12 we can see 1 image from each data set to compare visual features,
both data set are using images taken from short distances (less than 20
meters). So, we can demonstrate how the segmentation training process is
good enough if we use similar type of images for training and inference avoiding
data mismatch.

Metrics 2: Crow counting results comparison

Table 3.9 shows the results of the Density Map crow counting results for the two
main data sets including UCF.

Data set MAPE MAE Number of
Images

Shanghai Test 22,21% 74,86 182

Shanghai Training 12,89% 55,39 300

UCF 34,50% 135,54 100

Table 3.9. Crow counting result comparison

Main Conclusions: As we can see in table 3.9, UCF results are quite far from
the result of the Shanghai data set (34% versus 22% considering MAPE). In the
next metrics of this section, we will understand it better by analysing different
indicators as the density.

Metrics 3: Comparison between original and segmented images

Table 3.10 shows a comparison between Shanghai and UCF data sets with a
summary of the main indicators as MAPE between the original image and the
segmented one. We can see as UCF has higher resolution and density but also
worst MAPE and MAE than Shanghai. Average MAPE from the full UCF sample
is 33,18%. This indicator is worse than the Shanghai data set used for our
testing (20,24%).

Main indicators Shanghai data set UCF data set

MAPE (not segmented) 20,69% 34,50%

MAE (not segmented) 81,20 135,54

MAPE (segmented) 20,24% 33,18%

MAE (segmented) 89,22 201,99

Number of Images 82 100

Resolution average 618KB 1.379KB

Count of crowd average 449 606

Density (resolution/crowd) 2074 4891

Percentage of image segmented 62,64% 60,02%

Table 3.10. Comparison of UCF and Shanghai data set

Table 3.11 shows a summary of how segmentation and resolution impact in
MAPE. The first row represents when not segmented images get better MAPE

Crowd Counting using Density Maps 56

(lower value) and the second row the opposite. As we can see in table 3.11, the
results are very similar as only 51% of the images get better MAPE when are
not segmented but there is a clear relationship between resolution and
segmentation.

Type Best option
considering
MAPE

Percentage of
image
segmented

Resolution
average

Not segmented
images

51% 55,76% 1,28 MB

Segmented images 49% 64,46% 1,47 MB

Table 3.11. Main indicators comparing image segmented and original

Main Conclusions: As it is shown in table 3.10, MAPE indicators between
segmented and not segmented are very close, as there is only 1,32% different
between an image segmented or not considering UCF. This is strange as we
have seen in chapter 3.3.2 image areas where there is no crowd is adding noise
to the process. So, it seems that segmenting images is not improving the
results. But we need to consider the other 2 indicators in table 3.10 as well. As
we can see the images for the testing are very congested as 60,02% (UCF) of
the segmented images contain crowd. Also, we can see a relation between
resolution and segmentation in table 3.11, as higher both parameters more
chance to get better results with the segmentation.

Metrics 4: Evolution of MAPE based on number of people

We can see in figure 3.13 the MAPE evolution based on the number of people
for each image (in orange segmented image MAPE and in blue original image
MAPE).

Figure 3.13. Evolution of MAPE based on number of people counted (ground
truth). Bar chart representation.

Crowd Counting using Density Maps 57

Figure 3.14. Evolution of MAPE based on number of people counted (ground
truth). Dot plot representation

Main Conclusions: As we can see in figure 3.13 there is a clear relation
between the number of people and the quality of the count. As much congested
the scene lower the error. We can see that with less than 250 people we get the
worse results. In our UCF sample 30% of the images where below 250 count
and the average count was 473 so this could be one of the reason to get MAPE
of 33%. Also, as we can see in figure 3.14, where each image used represents
a dot, 84% of the samples are below 1.000 people counts so the metrics after
this limit are not very representative for the analysis.

Metrics 5: Evolution of MAPE based on image resolution

We can see in figure 3.15 the evolution of MAPE based on resolution.

Crowd Counting using Density Maps 58

Figure 3.15. Evolution of MAPE based on image resolution

Main Conclusions: As we can see in figure 3.15 there is a relationship between
the resolution and the improvement of MAPE. As much resolution better the
MAPE.

Metrics 6: Evolution of MAPE based on segmentation

We can see in figure 3.16 the evolution of MAPE based on the segmentation
percentage.

Figure 3.16. Evolution of MAPE based on percentage of background pixels
after segmentation.

Crowd Counting using Density Maps 59

Main Conclusions: As we can see in figure 3.16 there is an indirect relationship
between the percentage of segmentation and the improving of MAPE original.
On the x-axis it is represented the percentage of the image where there is
segmentation, for example the first slot (0-10%) means that the image has
hardly been segmented and therefore the majority of the photo is crowd. We
can see how in left part of the graph (low segmentation) MAPE of the original
image is better than the one of the segmented image. The opposite happen on
the left part of the graph where the level of segmentation is high.

Metrics 7: Evolution of MAPE based on density

We can see in figure 3.17 the evolution of MAPE based on the density
(resolution/count of people).

Figure 3.17. Evolution of MAPE based on density

Main Conclusions: As we can see in figure 3.17 there is a clear relationship
between the increasing of density and the deterioration of MAPE. This is one of
the most important indicators of the analysis of this chapter. We can demostrate
how Density Map works better with very congested images.

Metrics 8: Comparison of the different count methods

We can see in figure 3.18 a comparison between the 3 main count methods
used. In blue the ground truth count, in green the segmented image count and
in orange the density map count of the original image. The testing sample is of
100 images and is sorted ascending. On the left axis we have the number of
people and on the right the average count. It is also included for each method a
trend line.

Crowd Counting using Density Maps 60

Figure 3.18. Comparison of the different count methods

Main Conclusions: The average count (on the top of the graph and left y-axis)
shows that original method and ground truth are very similar. But on the other
hand the average of the segmented image is much lower. Although when we
compare the trend line we can see as the segmented count is counting more
with low values and the opposite when we move to right side of the graph with
higher count.

3.5 Processing time

The total elapsed time for the full counting process is an important factor to
consider in the future when we need to implement this project in a real scenario
with drones. Specially if we want a real time response.

Table 3.12 shows some rows of the file generated after each segmentation
execution. The layout of the file is considering for each image: file name,
processing time, size of the image and either the images was segmented or not.

Filename Time (in seconds) Size Segmented Flag

IMG_26.jpg 0:00:23.679195 37980 True

IMG_22.jpg 0:00:21.904515 83664 True

IMG_99.jpg 0:00:21.635487 56354 True

Table 3.12. Example of CSV file generated after the segmentation

Crowd Counting using Density Maps 61

Table 3.13 shows some rows of the file generated after each Density Map

execution. The layout of the file is considering for each image: file name,

processing time, size of the image and final crowd count.

Image name Process time Image size Crowd Count

DJI_0005.JPG 0:00:05.173636 107032 164

DJI_0185.JPG 0:00:05.258347 129416 161

DJI_0041.JPG 0:00:05.267386 637818 523

Table 3.13. Example of the results from Density Map image processing.

Table 3.14 shows the average time used for crowd segmentation and Density
Map for each of the two main data sets. For UCF data set, average size is lower
in Density Map than in segmentation because images were resized before due
to Density Map size constraint. Remember that UCF data set has high
resolution images.

Data set Average time Number
of images

Average size

Shanghai: segmentation 21,87” 82 144KB

Shanghai: Density Map 1,29” 82 144KB

Shanghai: Total 23,16” 82 144KB

UCF: segmentation 27,45” 100 3,926KB

UCF: Density Map 3,52” 100 299KB

UCF: Total 30,97” 100 299KB-3,926KB

Table 3.14. Time processing results for crowd segmentation and Density Map

Main Conclusions: The total elapsed time in the worst scenario (UCF data set
with high resolution) is around 30” per image. As the image size increases also
time does although not proportionally. Segmentation has a big penalty in the full
process, but it is needed if the image not only contains crowd. We can conclude
that the processing time could allow to final users use the solution in real time
without problem, as 30” per image is quite affordable. On the other hand, if time
is a big constraint, Density Map graph could be removed from the process and
just the final count could be provided to reduce the elapsed time a little bit. Also,
higher computational power could reduce the elapsed time but there is an
impact in the cost. Lower resolution images could also reduce the elapsed time
but then there is an impact in the quality of the count as seen in section 3.3.4. A
trade-off between time, resolution, cost and functionality needs to be agreed
with the final customer.

Crowd Counting using Density Maps 62

CHAPTER 4. CONCLUSIONS AND FUTURE WORK

Conclusions of the thesis:

• Importance of a large data set: In any ML system the data is a key
factor and in this Master Thesis it has been demonstrated. With large
number of images, the system finally was able to detect a crowd with
enough accuracy. Although it needed more than 600 images with big
variety of scenarios to be able to do a proper training. Even that we had
data mismatch with UPC and Police pictures because big part of the data
set was created with external public images.

• Segmentation algorithm for each type of images: Also it has been
demonstrated that each type of images could require an specific
segmentation algorithm. In our case for example because we process
small objects R-CNN was the best choice.

• Density map only for crowd: Density Map is a technology specifically
trained for crowd so when you process images that are not a crowd the
system gives bad results. Also cropping the images is not a good
solution and it has been demonstrated that processing the full crowd
image segmented is the best option. So, this is the main reason why it is
a key point to do a good segmentation of the crowd as first step.

• Density map performance: it has been demonstrated how some image
parameters impact the error of the counting at different levels. Some
main parameters measured where the resolution, the volume of people,
the background and the density (resolution/count of people). Density was
the one with higher impact in the error. As much congested the scene
(lower number of pixels per person) lower the error considering MAPE.

• Time & resources: The fact of adding an additional step for crowd
segmentation means that we can get more accurate results by using
different count methods, but time is penalized between 21,87 seconds
(image size average of 144KB) and 27,45 seconds (image size average
of 3,926KB). Crowd count is less time consuming with figures between
1,29 and 3,52 seconds. Of course, this time could be reduced increasing
the GPU power processing, reducing resolution (that has an impact in
accuracy) and/or loosing functionalities as not generating density map or
segmentation.

Future lines of development and research:

• Improve data set: Images taken from a drone are not easy to process.
The main reasons are because of high altitude, brightness due to the
sun, very low pixels per person rate in some cases as local police data
set and visual obstacles like trees. Also, images taken from the police
are difficult to share because of confidentiality. Therefore, building a big

Crowd Counting using Density Maps 63

data set of real drone images with people should be a next target to be
able to get crowd counting from different scenarios, especially for high
altitude.

• Different scenarios: Some kind of user interaction of the drone operator
could help to define the type of scenario and then the best method to use
in the calculation to get better accuracy. Input parameters could be the
altitude and the scenario chosen (demonstration, beach, marathon…).
For example, it is better to have a specific weights file trained with
specific images from demonstrations and another with beaches. So, the
operator just needs to select the best scenario and the system will take
the weights file that suits better. Of course, in a second phase also the
selection of the scenario could be automatized with AI.

• Improve speed: The total process duration takes around 30 seconds (25
seconds for crowd segmentation and 5 seconds for counting). A new line
of development could be to try to reduce this time to be able to show in
almost real time the image processed to the drone operator.

Sustainability considerations:

• Drones: In terms of sustainability the drones used by the police are
reducing the need for example to fly with helicopters or small planes to
get an overview of an area for security supervision. So, it has an
important reduction of energy consumption and noise pollution.

• Energy consumption: In terms of energy consumption when the final
system is running it just takes a few minutes to process the images
captured by the drone. So, we can say that sustainability impact is very
low. The only moderate energy consumption impact is when the system
is training new images that could take many hours running. This process
needs to be done just at the beginning of a new project or when a new
scenario is introduced, so the impact is very low. Also, it could be
scheduled to run at night where the impact is lower. Using computers
with high number of GPUs could also reduce the training time but not
necessarily the power consumption.

Ethical considerations:

• COVID: This Master Thesis has an important ethical consideration as this
is mainly funded with the target to support the control of people in open
spaces to reduce the risk of pandemic propagation as COVID. Therefore,
it will have an important role to prevent the spread of a virus in scenarios
of crowd in public areas.

• Personal privacy data: All pictures used in the Master Thesis either
have been shared voluntarily by the Police department of Castelldefels or
have been downloaded in public free web sites or have been taken in
EETAC UPC campus outdoor area by UPC staff. Also, in the cases
where the author is known a reference to the author has been included in

Crowd Counting using Density Maps 64

this document. Highlight also that the police and UPC images do not
compromise any personal privacy or confidentiality as they are taken
from high altitude in public areas where is not possible to identify a
specific person. Therefore, all photos have been used in accordance with
current Spanish laws6.

6 “Ley Orgánica 1/1982” https://www.boe.es/buscar/act.php?id=BOE-A-1982-11196

https://www.boe.es/buscar/act.php?id=BOE-A-1982-11196

Crowd Counting using Density Maps 65

REFERENCES

[1] Kaiming He, Georgia Gkioxari, Piotr Dollar, Ross Girshick. “Mask R-

CNN”. Facebook AI Research (FAIR)
 https://github.com/matterport/Mask_RCNN

[2] Yuhong Li , Xiaofan Zhang , Deming Chen. University of Illinois at

Urbana-Champaign. Beijing University of Posts and Telecommunications
“CSRNet: Dilated Convolutional Neural Networks for Understanding the
Highly Congested Scenes”

 https://github.com/vivek-bombatkar/CSRNet-pytorch

[3] Images data set: COCO data set for object detection
 https://cocodataset.org/

[4] Géron, Aurélien. Hands-on machine learning with Scikit-Learn, Keras,
and TensorFlow: Concepts, tools, and techniques to build intelligent
systems. " O'Reilly Media, Inc.", 2019.

[5] Rohith Gandhi. R-CNN, Fast R-CNN, Faster R-CNN, YOLO — Object

Detection Algorithms
 https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-

detection-algorithms-36d53571365e

[6] Images data set: University of Central Florida – Center for research in

computer vision
 UCF-QNRF - Large Crowd Counting Data Set
 https://www.crcv.ucf.edu/data/ucf-qnrf/

[7] Wikipedia. Mean absolute percentage error and mean absolute error.
 https://en.wikipedia.org/wiki/Mean_absolute_percentage_error
 https://en.wikipedia.org/wiki/Mean_absolute_error

[8] Karen Simonyan and Andrew Zisserman. Very deep convolutional

networks for large-scale image recognition. Preprint arXiv:1409.1556,
2014.

[9] Chen Change Loy, Ke Chen, Shaogang Gong, and Tao Xiang.
 Crowd counting and profiling: Methodology and evaluation.
 In Modeling, Simulation and Visual Analysis of Crowds, pages 347–382.

Springer, 2013.

[10] Yingying Zhang, Desen Zhou, Siqin Chen, Shenghua Gao, and Yi Ma.

Single-image crowd counting via multi-column convolutional neural
network. In Proceedings of the IEEE. Conference on Computer Vision
and Pattern Recognition, pages 589–597, 2016.

[11] Lokesh Boominathan, Srinivas SS Kruthiventi, and R Venkatesh Babu.

Crowdnet: a deep convolutional network for dense crowd counting. In

Crowd Counting using Density Maps 66

Proceedings of the 2016 ACM on Multimedia Conference, pages 640–
644. ACM, 2016.

[12] Mark Marsden, Kevin McGuiness, Suzanne Little, and Noel E O’Connor.

Fully convolutional crowd counting on highly congested scenes. Preprint
arXiv:1612.00220, 2016.

[13] Deepak Babu Sam, Shiv Surya, and R Venkatesh Babu.
 Switching convolutional neural network for crowd counting.
 In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, volume 1, page 6, 2017.

[14] Vishwanath A Sindagi and Vishal M Patel. Generating high quality

crowd density maps using contextual pyramid CNNs.
 In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1861–1870, 2017.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. In CVPR, 2016.

[16] T.-Y. Lin, P. Doll´ar, R. Girshick, K. He, B. Hariharan, and S. Belongie.

Feature pyramid networks for object detection. In CVPR, 2017.

[17] Images data set: Shanghai
 https://paperswithcode.com/dataset/shanghaitech
 https://www.shanghaitech.edu.cn/eng/

[18] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-

time object detection with region proposal networks. In NIPS, 2015.

[19] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for

semantic segmentation. In CVPR, 2015.

[20] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. In CVPR, 2016.

[21] Cong Zhang, Hongsheng Li, Xiaogang Wang, and Xiaokang Yang.

Cross-scene crowd counting via deep convolutional neural networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 833–841,2015.

[22] Haroon Idrees, Imran Saleemi, Cody Seibert, and Mubarak Shah. Multi-

source multi-scale counting in extremely dense crowd images. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2547– 2554, 2013.

[23] A. B. Chan, Zhang-Sheng John Liang, and N. Vasconcelos. Privacy

preserving crowd monitoring: Counting people without people models or
tracking. In 2008 IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–7, June 2008.

Crowd Counting using Density Maps 67

[24] Karen Simonyan and Andrew Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[25] Alex Asenjo. Drones against COVID-19 propagation by controlling

capacity in public spaces. UPC
 https://upcommons.upc.edu/handle/2117/352862

[26] Géron, A. (2019). Hands-on machine learning with scikit-learn, keras,

and tensorflow: Concepts, tools, and techniques to build intelligent
systems. O'Reilly Media

[27] Images data set: Image courtesy of the “Policia Local de Castelldefels”
 https://www.castelldefels.org/

[28] Images data set: Image courtesy of “Mars Intelligence” company
 https://www.mars-intelligence.com/

[29] Images data set: Icarus research group. EETAC (UPC)
 https://icarus.upc.edu/en

[30] Images data set: Juan Manuel Trujillo Gómez
 jmtrujillogomez@gmail.com

[31] Images data set: Unsplash, Internet’s source of freely-usable images.
 https://unsplash.com/

