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Abstract 
 

Law enforcement agents have to care about the number of people in public 
areas to ensure security. The problem they have is that they do not have tools 
to measure the number of people in a fast and precise way. This need has 
been especially important since 2020 COVID pandemic arrived to our society 
and the control of people is relevant to avoid spread of COVID.  
 
This Master Thesis is complementing other previous Master Thesis presented 
in 2021 where via an Android app connected to a drone the system was able to 
count people from the images captured in real time. This solution was only able 
to count individual people, as crowds of people are complex to measure 
following standard object detection algorithms as YOLO technology.  
 
In our Master Thesis we are adding a new functionality by being able not only 
to count individuals but also counting crowds of people. With this new 
functionality the app could provide to the police a more accurate tool to be able 
to count people in different scenarios as prides, sports events, demonstrations, 
concerts… where crowd is a normal situation.  
 
As main technology driver we are working with CNN (Convolutional Neural 
Networks). First, we have been implementing a CNN density map using the 
CSRNet technology that is able to count people by measuring the 
concentration of people. Therefore, an important part of this Master Thesis is to 
create a process to split the input images in 2 (segmentation process), one for 
YOLO (individual persons) and other for CSRNET (crowds of people). This 
process has been implemented using a second CNN called Region-based 
CNN (R-CNN), that we found it was the most suitable tool to train a model to 
detect a crowd.  
 
The solution has been developed in Google Colab platform and using Python 
as programming language. 
 
We have been working with images taken from drones from Castelldefels 
Police and UPC but also public datasets.  
 
The final solution has been able to detect crowds and calculate the number of 
people in that crowd with a maximum error of 20% considering Mean Average 
Percentage Error (MAPE) and 89 considering Mean Absolute Error (MAE).   
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INTRODUCTION 
 
The main target of this Master Thesis is to provide some tools to the ICARUS 
research group of the UPC to be able to improve the quality of people crowd 
counting in images taken from drones in public areas by police forces. This 
Master Thesis is complementing a previous Master Thesis called “Drones 
against COVID-19 propagation by controlling capacity in public spaces” [25]  
defended in 2021 and where the main target was to count individual persons 
using YOLO technology via an Android application connected to a drone.  
 
Crow count could be used in many scenarios and has particular importance to 
control crowds specially during COVID pandemic. The same technology could 
be used to count people but also it could be evolved for other type of object 
management as cars or animals. We just need to train the systems with new 
images and configuration.  
 
There were 3 main categories to classify the different methods to count crowd 
before using CNN [9]. First one is detection-based methods. This method 
detects people by extracting low-level features of the human body. However, 
the performance is low as in very congested images it is difficult to detect 
human features. To improve this problem new methods are in place to detect 
only some parts of the human body but even that the results are not accurate 
for very congested scenes. Second category is regression-based methods. As 
previous methods do not work properly for high congested images, this 
regression method crops the original image in smaller parts and extracts the 
low-level features, as foreground and texture, of each cropped image. Then 
analyses the relation with the other cropped images and calculates the number 
of people. And the last category is density estimation-based methods. In this 
method it is generated a linear mapping between features in the local region 
and its object density maps. 
 
CNN has been used as an evolution method to these 3 methods based on the 
success in classification and object detection. It has been demonstrated by 
different researchers that CNN solutions are much more accurate: [10], [11], 
[12]. So, we can conclude that CNN are the leading solution nowadays to count 
people. In this Master Thesis we are going to use 2 CNN’s, the first one to 
segment crowds using Mask R-CNN and the second one for crowd counting 
using CSRNet.  
 
As we did not find any pre-trained model with crowd segmentation we needed 
to generate our own model using all the images available for the training 
process. To train we used Shanghai public dataset [17] as main source but also 
we added some UPC and Police pictures taken from drones in Castelldefels. To 
test false positives in segmentation process we used Unsplash data set [31]. 
For crowd counting we used the pre-trained model based on Shanghai data set. 
Finally, to analyse the different results we used an additional external data set 
from University of Central Florida (UCF) [6] with high resolution images from 
public Internet sources.  
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Thanks to automatize the full process for crowd counting and the result metrics, 
where we only needed to place in a folder the input images, we were able to 
test many scenarios and parameters.  
 
The main conclusion is that crowd segmentation is not improving significantly 
the metrics (less than 1% considering MAPE), at least considering the type of 
images used in the test, very congested images with an average of 60% of 
pixels with crowd. Anyway, segmentation is needed because CSRNet is not 
able to count individual people and also other backgrounds as trees, buildings 
or sky are adding noise to the images.  
 
We have also demonstrated that CSRNet gets better results with images with 
high density, high volume of people and congested scenes.  
 
The structure of this Master Thesis is described here: 
 

• Chapter 1: explains a brief introduction to Machine Learning (ML), 
Convolutional Neural Networks (CNN) and some of the theoretical 
concepts used in the Master Thesis. Also, a more detailed explanation 
about Mask R-CNN for crowd segmentation and CSRNet for crowd 
counting.  
 

• Chapter 2: explains the different tools used to do the research as the 
development environment and all the programming steps for crowd 
segmentation and counting.  

 

• Chapter 3: explains the main testing and results performed.  
 

• Chapter 4: explains the conclusions of the research and future work. 
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CHAPTER 1. Theorical concepts of  
Convolutional Neural Networks used in the Master 

Thesis 
 

1.1 Introduction to Machine Learning 

 
This thesis is using technologies included in what is called Machine Learning 
(ML). ML is about making machines get better at some tasks by learning from 
data, instead of having to explicitly code rules. Next, we are going to explain the 
main theoretical concepts of ML based on reference [26].  
 
 

  
 

Figure 1.1. On the left traditional approach and on the right ML approach [26] 
 

In figure 1.1 we can see on the left the traditional approach of programming 
based on rules and on the right the ML approach where the system learns from 
the data. ML approach is good when we found a problem where the code 
requires a long list of rules (for example email spam). In that way ML can even 
simplify the code compared with the traditional approach. Also, ML could find a 
solution to complex problems where traditional approach is not able to find it or 
the solution is not good enough. On the other hand, ML is able to adapt to 
changing environments just processing new data and learning from it, so it is 
not needed to code again new rules or new functions. Finally, another 
advantage of ML is that allows to get additional information about data and 
complex problems so we can understand for example how data is evolving to 
help improve the monitoring and analysis.  
 
In order to understand better ML we will list next some of the main techniques 
with an example: 
 

1. Image classification: Analysing images of products on a production line to 
automatically classify them.  

 
2. Object detection: Detecting tumors in brain scans or as we do in this 

Thesis detect a crowd in drone picture.  
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3. Regression: Forecasting crowd counting using Density Maps in a picture 
as we do in this Thesis. 

 
These 3 ML examples use CNN as a main technical driver. So, we can see as 
the CNN used in this thesis is one of the technologies included in ML. In section 
1.2 we can go deeper on CNN concepts.  
 
Other examples of ML techniques are natural language processing, speech 
recognition, anomaly detection, data visualization, recommender system, 
reinforcement learning … so the list of uses in real live is huge and accessible 
thanks to the high level of computational power existing today.  
 
ML has 3 types of techniques that can be categorized in:  
 

• Supervised or not: Supervised, unsupervised, semi supervised, and 
reinforcement learning. Whether they are trained with human supervision 
or not. 

• Online or batch learning: Whether they can learn incrementally on the fly. 

• Instance-based or model-based learning: Whether they work by simply 
comparing new data points to known data points, or instead by detecting 
patterns in the training data and building a predictive model, much like 
scientists do. 

 
The typical steps to manage a ML project could be summarized in the next 
steps: study the data, select a model, train it on the training data and finally 
apply the model to new data to make predictions (inference).  
 
The way to know how well a model will generalize to new cases is to try it out 
on new cases. For that reason, the data set needs to be split in training (to train 
the model), test (to test the model) and validation (to evaluate candidate 
models). This value tells you how well your model will perform on instances it 
has never seen before.  
 
The main challenges for ML could be summarized in: 
 

• Insufficient quantity of training data: Even for very simple problems you 
typically need thousands of examples. Data matters more than 
algorithms for complex problems. 

• Nonrepresentative training data (sampling bias): Training data has to be 
representative of the new cases you want to generalize. By using a 
nonrepresentative training set, we trained a model that is unlikely to 
make accurate predictions. 

• Poor-quality data: If training data is full of errors it will make it harder for 
the system to detect the patterns. 

• Data mismatch: Large amount of data for training but this data is not 
representative of the data that will be used in production.  

• Irrelevant features: A critical part of the success of a ML project is coming 
up with a good set of features to train on. 

• Overfitting the training data: the model performs well on the training data, 
but it does not generalize well. 
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• Underfitting the training data: it occurs when the model is too simple to 
learn the underlying structure of the data. 

 

1.2 Introduction to CNN 

 
This section explains the main theoretical concepts of Convolutional neural 
networks (CNN) based on reference [26]. CNNs emerged from the study of the 
brain’s visual cortex. CNNs have managed to achieve superhuman 
performance on some complex visual tasks. Neurons in the visual cortex have a 
small local receptive field, meaning they react only to visual stimuli located in a 
limited region of the visual field. Some neurons react only to images of 
horizontal lines, while others react only to lines with different orientations. They 
also noticed that some neurons have larger receptive fields, and they react to 
more complex patterns that are combinations of the lower-level patterns. These 
observations led to the idea that the higher-level neurons are based on the 
outputs of neighbouring lower-level neurons (in figure 1.2, notice that each 
neuron is connected only to a few neurons from the previous layer). This 
powerful architecture can detect all sorts of complex patterns in any area of the 
visual field. Next, we will explain the main concepts to understand CNN.  
 
 

 
 

Figure 1.2. Biological neurons in the visual cortex [26] 
 
Convolutional Layers: The most important building block of a CNN is the 
convolutional layer. Neurons in the first convolutional layer are not connected to 
every single pixel in the input image, but only to pixels in their receptive fields 
(see Figure 1.3). In turn, each neuron in the second convolutional layer is 
connected only to neurons located within a small rectangle in the first layer. This 
architecture allows the network to concentrate on small low-level features in the 
first hidden layer, then assemble them into larger higher-level features in the 
next hidden layer, and so on. 
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Figure 1.3. CNN layers with rectangular local receptive fields [26] 
 

Filters or convolution kernels: A neuron’s weights can be represented as a small 
image the size of the receptive field. A convolutional layer simultaneously 
applies multiple trainable filters to its inputs, making it capable of detecting 
multiple features anywhere in its inputs. See figure 1.4.  
 
Feature map: is a layer full of neurons using the same filter which highlights the 
areas in an image that activate the filter the most. See figure 1.4. 
 

 
 

Figure 1.4. Convolutional layers with multiple feature maps, and images with 
three color channels [26] 

 
Pooling Layers: Their goal is to subsample (i.e., shrink) the input image in order 
to reduce the computational load, the memory usage, and the number of 
parameters (thereby limiting the risk of overfitting). A pooling layer has no 
weights; all it does is aggregate the inputs using an aggregation function such 
as the max or mean. 
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Data Augmentation: Data augmentation artificially increases the size of the 
training set by generating many realistic variants of each training instance. 
 
Transfer Learning: If you want to build an image classifier but you do not have 
enough training data, then it is often a good idea to reuse the lower layers of a 
pretrained model. 
 
Main types of techniques working with CNN and images: 

 
1. Localization: Localizing an object in a picture can be expressed as a 

regression task. To predict a bounding box (rectangle that surrounds an 
object, that specifies its position, class and confidence) around the 
object, a common approach is to predict the horizontal and vertical 
coordinates of the object’s center, as well as its height and width. You 
then need to create a dataset whose items will be pre-processed images 
along with their class labels and their bounding boxes. For regression 
tasks we can use MAPE and MAE as main metric for quality indicators.  
 

2. Image classification: The task to be able to identify an image based on 
different predefined class labels as animals, flowers, cars,… For 
example, we can process an image and the computer could classify it as 
a flower and even the computer can predict the type of flower (rose, 
gardenia, geranium…). As main metric to measure the quality, we can 
use the accuracy. Accuracy is the percentage of good classification 
results versus the total number of cases tested. 

 
3. Object detection: The task of classifying and localizing multiple objects in 

an image is called object detection (see figure 1.5). As main metric to 
measure the quality, we can use Intersection over Union (IoU). IoU is the 
area of overlap between the predicted bounding box and the target 
bounding box (see figure 1.6). 

 

 
 

Figure 1.5. Detecting multiple objects [26] 
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Figure 1.6. Intersection over Union metric example 
 

 
4. Semantic segmentation: Each pixel is classified according to the class of 

the object it belongs to. Different objects of the same class are not 
distinguished (see figure 1.7). IoU also could be used as main metric to 
control the quality of the results.  

 

 
 

Figure 1.7. Semantic segmentation [26] 
 

1.3 Mask R-CNN for crowd segmentation 

 
This section explains the method used to segment crowd called “Mask R-CNN” 
[1]. 
 

1.3.1 Introduction 

 
Mask Region-based CNN (Mask R-CNN) is a framework for object instance 
segmentation evolved from Faster R-CNN [18]. It can detect an object and also 
define the segmentation mask of this object. We will use it in this Master Thesis 
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to detect and segment a crowd although it could be used also to detect other 
objects already pre-trained as cars, animals,...  
 
Mask R-CNN is adding a branch for predicting segmentation masks on each 
Region of Interest (RoI), in parallel with the existing branch for classification and 
bounding box regression. The mask branch is a small Fully Convolutional 
Network (FCN) [19] applied to each RoI, predicting a segmentation mask in a 
pixel-to-pixel manner. And only adds a small computational overhead. 
 
Mask R-CNN adds a simple quantization-free layer, called RoIAlign, that 
preserves exact spatial locations for more accurate segmentation. Also predicts 
a binary mask for each class independently, without competition among 
classes, and relies on the network’s RoI classification branch to predict the 
category. 
 

1.3.2 Mask R-CNN solution 

 
Mask R-CNN is conceptually simple: Faster R-CNN has two outputs for each 
candidate object, a class label and a bounding-box offset; to this we add a third 
branch that outputs the object mask. Next, we introduce the key elements of 
Mask R-CNN, including pixel-to-pixel alignment, which is the main missing 
piece of Faster R-CNN.  
 
In order to understand better the evolution of Mask R-CNN from Faster R-CNN 
we will explain first Faster R-CNN. Faster R-CNN consists of two stages. The 
first stage, called a Region Proposal Network (RPN), proposes candidate object 
bounding boxes. The second stage extracts features using RoIPool (standard 
operation for extracting a small feature map, e.g., 7x7, from each RoI) from 
each candidate box and performs classification and bounding-box regression. 
Mask R-CNN adopts the same two-stage procedure, with an identical first stage 
(which is RPN). In the second stage, in parallel to predicting the class and box 
offset, Mask R-CNN also outputs a binary mask for each RoI. This stage allows 
the network to generate masks for every class without competition among 
classes. This means that object mask overlapping is allowed. In figure 1.8 we 
can see an example using Mask R-CNN, in the top of the image we can see 
some clear examples of object masks overlapping.  
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Figure 1.8. Example of object segmentation using Mask R-CNN. Source: [30] 
 

1.3.3 Faster R-CNN network configuration 

 
Authors split the architecture in 2 parts:  
 

• Convolutional backbone: used for feature extraction over an entire 
image. Feature Pyramid Network (FPN) uses a top-down architecture 
with lateral connections to build an in-network feature pyramid from a 
single-scale input. Faster R-CNN with an FPN back bone extracts RoI 
features from different levels of the feature pyramid according to their 
scale, but otherwise the rest of the approach is similar to ResNet [15]. 
Using a ResNet-FPN backbone for feature extraction with Mask R-CNN 
gives excellent gains in both accuracy and speed. 

 

• Network head: for bounding-box recognition (classification and 
regression) and mask prediction that is applied separately to each RoI. 
Authors extend the Faster R-CNN box heads from the ResNet [15] and 
FPN [16] papers. See figure 1.9. as a reference for more details. The 
head on the ResNet-C4 backbone includes the 5-th stage of ResNet 
(namely, the 9-layer ‘res5’ [20]), which is compute intensive. For FPN, 
the backbone already includes res5 and thus allows for a more efficient 
head that uses fewer filters. 
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Figure 1.9. Head architecture of Mask R-CNN. Source: [1] 
 

1.4 CSRNet CNN for crowd counting 

 
This section explains the method used to count people called “CSRNet: Dilated 
Convolutional Neural Networks for Understanding the Highly Congested 
Scenes” [2]. 
 

1.4.1 Introduction 

 
CSRNet is a deep learning method that from an input image can give a count 
estimation figure and represents a density map of the input image where it is 
shown the crowd distribution.  
 
Figure 1.10 shows three examples from Shanghai data set. The top images are 
the original pictures and at the bottom we can see the Density Map for each 
one. Density Map uses different colours to show the density level. For example, 
red and yellow colours mean more congested scene and blue dots represent 
individual people.  
 
Density map plays a key role to understand the results as we can see in a 
graphical way the congested area in the original image and we can use to 
check the quality of counting.  
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Figure 1.10. Example of density map for 3 images from Shanghai data set. 
Source [2] 

 
CSRNet has two main components: 
 

• Front-end: Convolutional Neural Network for 2D feature extraction. 
 

• Back-end: Dilated Neural Network which uses dilated kernels to deliver 
larger reception fields and to replace pooling operations.  

 
CSRNet model was trained with 4 crowd data sets: ShanghaiTech [17], UCF 
CC 50 [22], WorldEXPO’10 [21] and  UCSD [23]. Where ShanghaiTech data set 
has been the main one.  
 
As we are going to see in chapter 3, images with crowd have different 
perspectives and density of people. Also crowd images have irregular 
distribution that makes the count difficult. The only relevant method to get high 
accuracy is by using deep neural networks (DNN).  
 
Small size kernels of convolution filters (like 3 x 3) are used in all layers. The 
first 10 layers are deployed from VGG-16 [8] as the front-end and dilated 
convolution layers as the back-end to enlarge receptive fields and extract 
deeper features without losing resolutions (pooling layers are not used). 
 

1.4.2 CSRNet solution  

 
The CSRNet solution is to deploy a deeper CNN for capturing high-level 
features with larger receptive fields and generating high-quality density maps 
without expanding network complexity. 
 
Authors choose VGG-16 [8] as the front-end of CSRNet because of its strong 
transfer learning ability and its flexible architecture for easily concatenating the 
back-end for density map generation. Authors first remove the classification part 
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of VGG-16 (fully-connected layers) and build the proposed CSRNet with 
convolutional layers in VGG-16. The output size of this front-end network is 1/8 
of the original input size. Authors try to deploy dilated convolutional layers as 
the back-end for extracting deeper information of saliency as well as 
maintaining the output resolution. 
 

1.4.3 Dilated convolution 

 
Dilated convolution is a better choice, which uses sparse kernels (as shown in 
figure 1.11) to alternate the pooling and convolutional layer. This character 
enlarges the receptive field without increasing the number of parameters or the 
amount of computation (e.g., adding more convolutional layers can make larger 
receptive fields but introduce more operations). In dilated convolution, a small-
size kernel with k x k filter is enlarged to k + (k - 1)(r - 1) with dilated stride r. 
Thus, it allows flexible aggregation of the multi-scale contextual information 
while keeping the same resolution.  
 

 
 

Figure 1.11. 3 x 3 convolution kernels with different dilation rate as 1, 2, and 3. 
Source: [2] 

 
In figure 1.12 we can see an example of dilate convolution. For maintaining the 
resolution of feature map, the dilated convolution shows distinct advantages 
compared to the scheme of using convolution + pooling + deconvolution. The 
input is an image of crowds, and it is processed by two approaches separately 
for generating output with the same size:  
 

• First approach: input is down sampled by a max pooling layer with factor 
2, and then it is passed to a convolutional layer with a 3x3 Sobel kernel 
(see figure 1.12). Since the generated feature map is only 1/2 of the 
original input, it needs to be upsampled by the deconvolutional layer 
(bilinear interpolation).  

 

• Second approach: the authors tried  dilated convolution and adapt the 
same 3x3 Sobel kernel to a dilated kernel with a factor = 2 stride (see 
figure 1.12). The output is shared the same dimension as the input 
(meaning pooling and deconvolutional layers are not required). Most 
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importantly, the output from dilated convolution contains more detailed 
information. 

 

 
 

Figure 1.12. Comparison between dilated convolution and maxpooling, 
convolution, upsampling. The 3 x 3 Sobel kernel is used in both operations 

while the dilation rate is 2. Source: [2] 
 

1.4.4 Network configuration 

 
The authors tested four network configurations of CSRNet in Table 1.1 which 
have the same front-end structure but different dilation rate in the back-end. 
Regarding the front-end, authors adapt a VGG-16 network [24] (except fully-
connected layers) and only use 3 x 3 kernels. Experiment shows a best tradeoff 
can be achieved when keeping the first ten layers of VGG-16 [24] with only 
three pooling layers. Since the output (density maps) of CSRNet is smaller (1/8 
of input size), authors choose bilinear interpolation with the factor of 8 for 
scaling and make sure the output shares the same resolution as the input 
image. 
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Table 1.1. Configuration of CSRNet. All convolutional layers use padding to 
maintain the previous size. The convolutional layers’parameters are denoted as 

“conv-(kernel size)-(number of filters)-(dilation rate)”, max-pooling layers are 
conducted over a 2 x 2 pixel window with stride 2. Source: [2] 
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CHAPTER 2. IMPLEMENTATION OF CROWD 
COUNTING 

 
In the previous chapter we have been introducing the theoretical concepts 
related to the technology implemented. Now we are going to explain the 
implementation steps used in the Master Thesis. In figure 2.1 shows the 
summary of the main implementation steps that we will explain in detail in this 
chapter.  
 

 
 

Figure. 2.1 Main implementation steps used in the Master Thesis 

 

2.1 Development environment 

 
Machine learning techniques require a lot of image processing that consumes 
huge number of computer resources. This is the main reason why we are using 
Gooble Colab platform in the cloud where we have available GPUs that we can 
run in parallel using also CUDA1 (parallel computing platform and programming 
model that speed up applications by taking advantage of the power of GPU 
accelerators). 

 
1 https://blogs.nvidia.com/blog/2012/09/10/what-is-cuda-2/ 

https://blogs.nvidia.com/blog/2012/09/10/what-is-cuda-2/
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On the other hand, Google Colab offers free access for students. It has some 
limitations as the time available for running jobs, number of active sessions or 
GPU power of processing. Anyway, neither of these limitations have been a 
problem to execute the Master Thesis. Also, it is an easy way to share the code 
with other researchers, it does not depend on your local hardware constraints 
and the code is always secure with a back-up.  
 
As a disadvantage, we need to keep in mind that you need to install always in 
each new session the full environment of libraries and connectivity. Secondly, 
you do not control what is installed at each moment in the machine, so you can 
get different results based on hardware configuration. On the other hand, 
Google Colab gives only 12 hours of continuous execution time. After that, the 
whole virtual machine is reset and it is needed to start from zero. Anyway in our 
Master Thesis we never needed more than the limit time.  
 
To be able to work with convolutional neural networks we use Keras and 
Tensorflow libraries from Google [4]. 
 
Finally, as programming language Python was selected. Python is the most 
popular and powerful language for machine learning. As Integrated 
Development Environmnet (IDE) Spyder is used to program the main python 
functions locally in the PC. Spyder is an open-source and free platform. Finally, 
Google Colaboratory has been used to execute the python programs in the 
cloud and get the results.  
 
Figure 2.2 presents a visualization of all these tools.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 2.2 Main development tools used in the Master Thesis 
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2.2 Main Neural Network projects used 

 
For object segmentation and training the main project used is based on paper 
“Mask R-CNN” [1]. This project provides a framework that can segment objects 
in an image and identify a segmentation mask of the same object. It is an 
extension of “Faster R-CNN” framework and it uses Convolutional Neural 
Networks (CNN). More information was given in section 1.3. 
 

For density map the main project used is based on paper “CSRNet: Dilated 
Convolutional Neural Networks for Understanding the Highly Congested 
Scenes” [2]. This project has 2 main functions, it is able to represent graphically 
a density map of congested scenes and also it is able to count the number of 
objects in the scene.  As the previous project it also uses CNN. More details 
were also given in section 1.4. 
 

2.3 Labelling tools 
 

During the Master Thesis we have been using 2 main labelling tools. These 
tools are needed to label the images used for training so the system can 
understand what an object crowd is. The tools are very similar and basically 
offer the chance to edit each image and add an area of interest. Then, once you 
have all the images labelled, it can generate a file with all the images and the 
coordinates of the introduced polygons. This file and the images are the main 
inputs for the training process.   
 
Labelbox2: 
 

Labelbox is an online tool very popular and with many features that were used 
in the previous Master Thesis. It is free but with some constraints that are not a 
problem for the development of the Master Thesis. It was used to segment 
manually the images before having the automatic segmentation using Mask R-
CNN. Figure 2.3 shows an example of an image labelled for a crowd of people.  
 

 
2 URL: https://labelbox.com/ 

https://labelbox.com/
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Figure 2.3 Image captured from Labelbox with a real example. Source: [29] 

 

VIA (VGG Image Annotator)3:  
 

VIA is a local web tool that runs in your PC without any installation needed, just 
the browser. You do not need to upload pictures to label to the cloud, but the 
number of features is limited although enough for our purpose. As it was used 
for R-CNN project we used it to facilitate the integration but also because of 
confidentiality. Being a local tool that does not need to upload pictures to the 
cloud, allows us to keep better confidentiality when processing the images from 
the police.  
 
All the pictures for training were labelled using this tool. Figure 2.4 shows an 
example of an image labelled for a crowd of people. 
 

 
3 URL: https://www.robots.ox.ac.uk/~vgg/software/via/ 

https://www.robots.ox.ac.uk/~vgg/software/via/
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Figure 2.4 Image captured from VIA with a real example. Source: [17] 

 

2.4 Converting video to pictures and pictures to video 

 
One of the functionalities required was the option to input a video. To be able to 
integrate the video in the CNN process what we did was to convert a video in a 
sequence of images, one for each frame, and then process the images as part 
of the CNN process. Also, once we get the images processed, we wanted the 
possibility to generate a new video with the result.  
 
For that purpose, the main tool used was Ezgif.com4. In figure 2.5. we can see 
a screenshot of one example used.  
 
 

 
4 URL: https://ezgif.com/video-to-jpg 

https://ezgif.com/video-to-jpg
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Figure 2.5 Screenshot of Ezgif tool to convert video to images. Source: [28] 

 

2.5 Programming steps 

 
As it is shown in figure 2.6, in our Master Thesis we split the process in 2 main 
steps. One for crowd segmentation and the second for crowd counting. 
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Figure 2.6 Flow diagram of the main programming steps 
 

2.5.1 Crowd segmentation 

 
The first step in our process is to split the original image in 2. The first one with 
the crowd segmented and the second one with the background, this is, the 
other area different to the crowd. The reason is simple, we need to process 2 
different algorithms to count people, one for crowd and the other for individual 
people. It means that we need to be able to identify a crowd from the image and 
segment it from the picture.  
 
To be able to identify crowds we use R-CNN (Region-Based Convolutional 
Neural Networks) [1] that was the most suitable architecture, as shown in [1], for 
the type of images we need to process. In following section 2.5.1.1 we explain 
the reason why we use R-CNN and not POLY-YOLO.  
 
All the process for this section has been centralized in one program file called 
crowd.py. 
 
The main functionalities step by step are described below. 
 

2.5.1.1  Why R-CNN and not Yolo 

 
Currently there are several methods to detect objects and it is important to 
introduce some background before moving forward. In the abstract of this 
document we explained that this work was complementing another previous 
Master Thesis where individual object detection was the target using Yolo as 
the main method to detect persons [25]. So, the first option in the research of 
this Master Thesis was to use Poly-Yolo that is an evolution of Yolo but with the 
advantage that is able to detect objects using polygons instead of boxes. As 
crowds are not uniform, having a polygon was a great solution.  
 
But after many research using Poly-Yolo we did not succeed and we needed to 
pivot using R-CNN instead. The reasons are described in more detail in the 
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article “R-CNN, Fast R-CNN, Faster R-CNN, YOLO - Object Detection 
Algorithms” [4] but we can summarize in this main reason: 
 
Yolo algorithm, when there are small objects in the image, is not able to detect 
them properly due to the method used. Yolo classifies the image in different 
boxes and assigns the probability of the box to be an object. When the object is 
small more than one object could share the same box and gives bad results. 
The classification is done only once box by box. In our Master Thesis images 
are taken from high altitude and crowd is made of many small persons so it 
means that our objects are very small and this is the main reason why Yolo was 
not suitable.  
 

2.5.1.2  Transfer learning from COCO model 

 
The first time we want to detect a new object we can speed up the process by 
using an existing model already trained to detect other objects. In that sense we 
use COCO model that was previously trained using public COCO dataset [3]. 
COCO data set provides more than 80 categories and more than 200.000 
labelled images.  
 
Call script: 
 

!python crowd.py train --dataset=crowd_dataset/crowd_mix/ --weights=coco 

 
 
Main parameters of the program are: 
 
Main call: Train. Indicates that the process needs to train so it will have as main 
output a new weights file customized for the objects trained.  
Dataset: Indicates the location of the input images used for training. We need to 
include in the same folder the annotation file called via_region_data.json 
generated by VIA labelling tool that provides the coordinates of each labelled 
object.  
Weights: Default weights file to start training, in that case COCO.  
 
Output of the program: 
 
The only output of this process is a new weights file with extension .h5 that will 
include the information needed to segment the test images. The location of the 
file is: 
 
.../Mask_RCNN-2.1/logs/crowd20220221T2219/mask_rcnn_crowd_0009.h55 
 
As the training process can take several hours and we could be in risk to lose 
the job done, the program saves a version of the weights file every “epoch” 

 
5 Master Thesis root path: /content/drive/MyDrive/MasterThesis/Master-Code-

Crowd/Mask_RCNN-2.1/ 
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(when the full dataset is processed forward and backward through the neural 
network only once). The program creates a new folder each time with a time 
stamp as we can see in the previous path (crowd20220221T2219 – 
crowdyyyymmddThh:mi). 
 

2.5.1.3  Training with customized weights file 

 
Once we have trained the first time a complete execution of the process with 
COCO weights file, we can run the training with our customized crowd weights 
file. As it has been done considering our images and new crowd object the 
results will be better each time.  
 
Call script: 
 
!python crowd.py train --dataset=crowd_dataset/crowd_mix/ --weights=last 

 
The only difference compared with the previous call is that we use weights=last 
in the call to indicate that it needs to find the most recent weights file generated. 
As the folder is named using the creation date, it is easy to find the last one.  
 
The output of the program is the same than the previous execution but in this 
case, we get the final weights file that contains all the information extracted from 
the training with our new object called crowd. We can iterate as much time is 
needed this process until we consider that the quality of the result is good 
enough. Keep in mind that Colab sometimes stops the process for no reason, 
remember it is a free shared service, and it is needed to restart it again.  
 
For the training we have used the full images available from all data sets (more 
than 600) and the training process lasted around 10 hours using GPUs from 
Colab. Also we need to consider the manual labelling process than in our case 
took more than 8 hours to edit the full image data set.   
 
Table 2.1 shows the distribution percentage used for the full training process 
between the training, the validation and the testing from each data set. Training 
and validation it is used by the model to do first the training and after the 
checking to measure the quality of the results. So, both are part of the training 
process. The testing images are only used to measure the quality of the results 
using the weights file generated by the training process. Testing images are 
extracted from the same data set non-seen images, so it is a good way to 
control the results of the training with the same type of images. Anyway, other 
additional images are going to be used to test the quality of the results in 
different scenarios.  
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Data Set Total 100% Training 65% Validation 25% Testing 10% 

Shanghai* 482 313 121 48 

UPC and Police 167 109 42 17 

Internet 4 2 1 1 

Total 653 423 164 66 

 
Table 2.1. Distribution of images from data sets used for training 

 
*Shanghai data set represents the 74% of the total images used in the training 
and each photo represent a different scenario and environment.  
 

2.5.1.4  Crowd segmentation 

 
Once we get the weights file trained for crowd from the previous step, it is time 
to start the segmentation of a crowd over the best images. Three different 
options are described below based on the input.  
 
Call script: 
 

1. To process many images at the same time:  
!python crowd.py splash --weights=last --imageFolder=…/Mask_RCNN-

2.1/imagesTest12/  

 

2. To process one single image: 

!python crowd.py splash --weights=last --image=…/Mask_RCNN-

2.1/imagestTest12/ST_IMG_120.jpg 

 

3. To process a video: 

!python crowd.py splash --weights=last --video=…/Mask_RCNN-

2.1/videoTest2/ManchesterCrowdShort.mp4  
 
Main parameters of the program are: 
 
Main call: Splash. Indicates inference, that is, the process has to detect the 
object crowd.  
Then we have 3 different input options to detect a crowd:  

 
1. ImageFolder: Indicates the location of the folder with the images. All 

images need to be in JPG format. There is no limit in the number of 
images in the folder.  
 

2. Image: Indicates the location of a single image in JPG format. 
 

3. Video: Indicates the location of a video in MP4 format.  
 

Weights: Default weights to be used. In that case indicating “last” we always 
take the last one.  
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Output of the program: 
 
For each input image the program generates 2 new images: one renamed as 
“segmented” and the other as “negative”. Both keeping the original image name 
at the beginning to trace it. The “segmented” image is the image containing only 
the crowd and the “negative” is the opposite, the remaining part of the image 
that is not a crowd. The negative image is what will need to be processed to 
detect individual persons.  
 
The “negative” folder is located in the root folder of the original images, 
…/Mask_RCNN-2.1/imagesTest5/ for example, and it is called “Results-
negative”. The “segmented” folder is located also in the root folder and it is 
called “Results-segmented”. 
 
Also a CSV file is generated with the summary of all the images processed in 
the segmentation (called “Results-segmentation.csv”).  
 

2.5.2 Crowd counting 

 
For crowd counting the Density Map model is used and all the process could 
run in one call once the environment is defined.  
 
All the process for this section has been centralized in one program file called 
Final-CrowdCountingCSRNet.ipynb. 
 
Considering Google Colab, the main steps are listed below: 
 

1. Set up environmnet:  First it is executed “nvidia-smi” to get information 
about GPU assigned status and general info. Then it is installed open-
source GCC (GNU Compiler Collection) to be able to compile and run 
the code from our project in Linux.  
 

 
 
GPU information is: 
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As we can see the GPU assigned for our project is Tesla K80 that is a very 
powerfull server with 2 GPUs and 12GB of memory for each one.  
 

2. Download project code: The main code used for Density Map it is 
downloaded from Github in the current location: 

 

 
 
The code will be located in our Google account at: /content/CSRNet-pytorch 
 

3. Import libraries: Main libraries are imported including the code from 

CSRNet project from the previous step.  
 

 

 
 

4. Initializatin the model: Once we have the main libraries imported it is just 
needed to initializate the new model defined in CSRNet project and also 
load the trained weights file. 
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5. Resize images: From the previous point, everything is ready to start 
working with Density Map function. But an additional step is still needed 
to prepare the images. To avoid the problem of out of memory of the 
GPU and also reduce processing time is needed to resize the input 
images. In our case it is was decided that the maximum width allowed in 
pixels was 1024.  

 

 
 

6. Input type: There are 2 ways developed to process the images, one for 
single file and another for all the images in a folder.  

 
When working with a folder the input folder is defined in “.../Mask_RCNN-
2.1/imagesTest12”, where “imagesTest12” could be renamed to any other name 
to keep traceability of all the trials, then in the same root folder the resize image 
process generates the folder “Results-segmented-smaller”. Finally, the output 
folder is located in root folder and caller “Results-density-map”. 
 
 

7. Call Density Map: The variable “output” is defined that will get the result 
of our model where the only input is the image to measure.  

 

 
 
The full process for 1 image is shown in figure 2.7. 
 

Original Image Segmented Image Density Map 

   
Predicted Count :  335 

 

Figure 2.7 Density Map process in 3 steps. Source: [28] 

 
In order to help to analyze the results, it is added an additional step to generate 

a CSV file (called “Results-DensityMap.csv”) with the results of each image in 

the input folder.  

 

Finally, the count for each image is included in the name of the final file 

(DJI_0005_DensityMap_count164.JPG).  
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2.5.2.1  Cropping and masking images tools 

 
As part of the testing to check if we can get better results with Density Map, we 
tried to crop images in smaller portions to check if the quality of the count was 
increasing. As it is shown in section 3.3.2, after some trials the results of the 
cropped images compared with the full original images, were not improving so 
finally we discard this process. Anyway, as it was developed to automatize the 
process and also it was used in the study, we are going to explain the 
functionalities just in case could be useful for other researchers. Also, the tool 
includes the option to generate segmented images with a crowd from manual 
labelling that was used to compare the results between the manual crowd 
segmentation and the CNN.  
 
The name of the program is ImagesPreparationV6-CROPPINGWITHJSON.py. 
 
The main steps are listed below: 
 

1. Export Json file: It is used Labelbox to label manually all the images with 
crowd. Then a json file is exported with all the image paths and 
coordinates of the crowd polygons.  
 

2. Initialize variables: In the root folder where the main program runs it is 
needed to create the folders for the input: json file and original images. 
Also, the output folders for masked files and cropped files. Finally, the 
size of the cropping needs to be configured in boxes multiple of 32. 

 

 
 

3. Execute program: 3 main functions: 
a. jsonFound: Reads the json and generate new segmented images 

only with the crowd.  
b. Crop: Crop the segmented images generated in the previous 

steps.  
c. deleteEmptyImages: Delete all images with no info or less than 

98% of pixels different to the background.  
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Additionaly, there is another program based on this called ImagesPreparation-
ONLYCROPPING.py. In that case we only need images in a folder and the 
program generates the cropped images.  
 

2.5.3 Data analytics 

 
To get all the metrics analysed in section 3.4, a specific program was developed 
with Google Colab called CrowdCountingCSRNet_showGroundTruth-v3.ipynb. 
With this new program we could get the main metrics from Shanghai and UCF 
data sets and also we can calculate the main features per image as forecasted 
count, resolution, percentage of the background segmented, density, MAPE, 
MAE,… for a set of images defined in a folder. All the information is 
automatically exported in a csv file (called “results-groundTruth-vs-DensityMap-
UCFDataSet.csv”).  
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CHAPTER 3. RESULTS 
 

The previous chapter explains the steps to execute the Master Thesis. This 
chapter explains the different results obtained to test the code and what are the 
main conclusions for each scenario of images.  

3.1 Crowd segmentation results 

3.1.1 Validation 

 
From the same data set used for crowd segmentation training a few images 
were selected just for testing. Figure 3.1 shows some representative examples 
used for testing with the original image on the left and the segmented image on 
the right. We also indicate in the field “Result” whether we consider the 
segmentation was OK or not (gray color means no segmented). Also, table 3.1 
represents the final segmentation results for each type of testing data set.  
 

Original Image Segmented image  
(Gray scale = not segmented) 

 
File name: IMG_168.jpg. Source: [17] 

 
Result: OK. Crowd detected 

 
File name: IMG_139.jpg. Source: [17] 

 
Result: OK. Crowd detected 

 
File name: IMG_153.jpg. Source: [17]  

Result: OK. Crowd detected 
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File name: IMG_176.jpg. Source: [17] 

 
Result: OK. Crowd detected 

 
File name: INT_IMG_004.jpg. Source: Internet 

 
Result: OK. Crowd detected 

 
File name: DJI_0011.jpg. Source: [29] 

 
Result: OK. No crowd detected 

 
File name: DJI_0025.jpg. Source: [29] 

 
Result: OK. Crowd detected 

 
File name: DJI_0023.jpg. Source: [27] 

 
Result: No good. No crowd detected 

 
File name: DJI_0018.jpg. Source: [27] 

 
Result: OK. Crowd detected 

Figure 3.1. Example of some images used to validate segmentation 
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Data set 
 

Total 
images 

Segmented 
OK*(1) 

Segmented 
No good 

Percentage 
OK 

Percentage 
No good 

Shanghai 
data set 39 39 0 100% 0% 

UPC and 
Police 17 11 6 65% 35% 

Total 56 50 6 89% 11% 

 
Table 3.1. Results for segmentation validation images. 

 
Metrics for segmentation (*1): As seen in chapter 1, object detection uses IoU 
as main indicator to measure the quality of the result. To be able to get this 
metric we need the theoretical polygon area for each image (ground truth) to 
compare with the resulting area. As this information is not provided by any of 
the data sets used in this Thesis, we can not provide an automatic and accurate 
IoU. For that reason, when in table 3.1 we refer to “Segmented OK” or in figure 
3.1 we refer to “Result: OK”, we consider that IoU is higher than 75% after 
manual inspection image by image. From now on, this consideration applies to 
all segmentation results.  
 
Main Conclusions: Initially the data set was defined with 66 images but some 
Shanghai pictures were removed because they were in gray scale and the 
format was not compatible with R-CNN. So, we tested the result with 56 images 
from Shanghai and UPC data set. As table 3.1 shows, the conclusions are quite 
clear as 100% of the pictures from Shanghai data set have been segmented 
correctly versus the 65% of UPC images. The main reason is that the 
percentage of images from Shanghai data set represents 74% of the total 
images used for training. So as any machine learning process, more data 
means better results. We can consider this result as a data mismatch, where 
data used for training is not representative of the data that will be used in 
production. 
 

3.1.2 Segmentation with false positive 

 
To get a good indicator of the quality of the crowd segmentation, it is important 
to use images where no crowd exists to check if there is any false positive. 
Three image categories have been used: cities (21 images), animals (20 
images) and forest (20 images). The reason to use these categories is because 
it is the most common use case for drone pictures available on the Internet. The 
data set used is from Unsplash web site [31] where we can get free high-
resolution images from many categories. Unsplash data set has been 
exclusively used for the purpose of this section.  
 
See figure 3.2 for some examples for each category. The image on the left is 
the original and on the right is the segmented one (in color and gray). When it 
appears the same original image in gray scale on the right is because has not 
been segmented.  
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Original Image Segmented image  
(Gray scale = not segmented) 

 
Author: Abigail Keenan. Source: [31]  

Result: OK. No crowd detected 

 
Author: Denys Nevozhai. Source: [31] 

 
Result: OK. No crowd detected even with 

high altitude 

 
Author: Andre Benz. Source: [31] 

 
Result: OK. Crowd detected 

 
Author: Geran De Klerk. Source: [31]  

Result: OK. No crowd detected 
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Author: Josefina Di Battista. Source: [31] 

 
Result: No good. Penguins detected as 
crowd. Good segmentation but no good 

classification 

 
Author: Matt Reed. Source: [31] 

 
Result: OK. No crowd detected 

 
Author: Gary Bending. Source: [31] 

 
Result: OK. No crowd detected 

 
Author: Florian Hahn. Source: [31] 

 
Result: No good. Birds detected as crowd. 

Good segmentation but no good 
classification 

 
Figure 3.2. Example of some images used to validate segmentation with false 

positive 
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Main Conclusions: As table 3.2 shows, from the 61 images tested the summary 
is that only 7 where segmented incorrectly. From that 7, 6 corresponds to the 
animals category, only 1 to the city category and 0 to forest. So, we can 
conclude that with cities and forest scenarios the results are pretty good as are 
over 95% of good segmentation and classification. The main problem is with 
animals where the correct classification percentage is of 70%. The main reason 
could be the similarity of the human body (eyes, head, body,…) with other 
animals where CNN could confuse them. On the other hand and in our benefit 
this category is the less probable in our drones urban scenarios. So, we can 
conclude that for our Master Thesis target, the results are quite good 
considering that the images tested are completely external from the training 
scenario and with some common points for future use.  
 

Category 
Total 
images 

Segmented 
OK 

Segmented 
No good 

Percentage 
OK 

Percentage 
No good 

Animals 20 14 6 70% 30% 

Cities 21 20 1 95% 5% 

Forest 20 20 0 100% 0% 

Total 61 54 7 89% 11% 

 
Table 3.2. Results for segmentation validation images with false positive. 

 

3.2 Crowd counting results 

 
Once we have the crowd segmented the next step is to use density map model 
to count the people.  
 
Thanks to the Python programming developed during the research we have 
been able to automatize the full process to count crowds that allow us to 
process huge number of images in just some minutes.  
 
MAPE and MAE are going to be used as main quality indicators. Below you can 
find the formula of each one [7]: 

 

 
 

 

 
 
Where GroundTrutht is the crowd count real value provided by each data 
set, Forecastt is the forecasted value calculated from Density Map and n the 
number of tested images. 
 
Table 3.3 shows the results from Shanghai data set where Ground Truth is 
available (UPC and Police data set can not be used for that reason). Shanghai 
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data set was used to train Density Map weights file so it is normal that Training 
results are much better than Test ones as we can see in table 3.3.  
 
 

Data set MAPE MAE Number of 
Images 

Shanghai Training 12,89% 55,39 300 

Shanghai Test 22,21% 74,86 182 

 
Table 3.3. Comparison of MAPE from Shanghai data set 

 

3.2.1 Crowd counting with segmented images  

 
Figure 3.3 shows the results from Density Map (right column) taken as an input 
the segmented image processed by R-CNN (left column). Images are taken 
from the two main data sets (Shanghai and UPC).   
 

Segmented Image Density Map image 

 
File name: IMG_182.jpg. Source: [17] 

 
Predicted Count: 234. Ground Truth: 199 

MAPE: 18% 

 
File name: IMG_169.jpg. Source: [17] 

 
Predicted Count: 293. Ground Truth: 218 

MAPE: 34% 
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File name: DJI_0049.jpg. Source: [29] 

 
Predicted Count: 195. Ground Truth: N/A 

 

 
Figure 3.3. Example of some images processed with Density Map 

 
In table 3.4 we can see the main indicators from Shanghai data set. As we can 
see segmented images only get 0,45% reduction of MAPE considering 62,64% 
of image segmented (very congested scenes in average).  
 

Main indicators Shanghai data set 

MAPE (not segmented) 20,69% 

MAE (not segmented) 81,20 

MAPE (segmented) 20,24% 

MAE (segmented) 89,22 

Number of Images 82 

Resolution average 618KB 

Count of crowd average 449 

Density (resolution/crowd) 2074 

Percentage of image segmented 62,64% 

 
Table 3.4. Comparison of the results of the segmentation using CNN 

 
In order to assess how the quality of the automatic segmentation process could 
impact the quality of the method, we have tested with a sample of 12 images 
segmented manually. And as we can see in table 3.5 MAPE are very similar 
than the same result we get using CNN (less than 1% gap).  
 

 With manual segmentation Using CNN for segmentation 

Original 
full image  

Segmented 
manually  

GAP Original 
full 
image  

Segmented 
with CNN  

GAP 

MAPE 26,54% 26,67% -0,13% 20,69% 20,24% 0,45% 

MAE 148,00 153,25 -5,25 81,20 89,22 -8,02 

 
Table 3.5. Comparison of MAPE with manual and CNN segmentation method. 

 
Main Conclusions:  

• Segmented images are getting very similar results compared with the 
original image considering MAPE.  

• The quality of the automatic segmentation using CNN is very accurate as 
we are getting similar results than with the manual segmentation 
considering MAPE.  
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3.2.2 Manual count vs Density Map 

 
Figure 3.4 shows a comparative between the results from Density Map (right 
column) and manual count (left column) where each person has been identified 
with a dot and an identifier. As all these images have been labelled manually to 
get the real count (what is called ground truth) we consider that a reasonable 
error considering MAPE could be lower than 10%. 
 

Original Image with manual count Density Map image 

 
File name: INT_IMG_001.jpg. Source: Internet 

Manual Count: 221 
 

Predicted Count : 172  
MAPE: 23%  

Result: No good 

 
File name: IMG_272.jpg. Source: [17] 

Manual Count: 49 

 
Predicted Count : 52 

MAPE: 6% 
Result: OK 

 
File name: IMG_59.jpg. Source: [17] 

Manual Count: 45 

 
Predicted Count : 67 

MAPE: 49% 
Result: No good 

 
Figure 3.4. Example of some images counted manually versus Density Map 
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Main Conclusions: Shanghai data set was used to train Density Map weights file 
so it is normal that we can get better results for images from this data set. Even 
that, as we can see in figure 3.4, results sometimes are not very close to what 
we have defined as a reasonable error (MAPE lower than 10%). 
 

3.3 Further studies 

3.3.1 R-CNN counting crowd 

 
Figure 3.5 shows a testing using R-CNN to count people instead of Density 
Map. As we can see in the right image from figure 3.5, R-CNN technology is 
very accurate with people detection when a person could be easily identified 
(front image). Once we have a crowded scenario (back image) R-CNN could 
not detect any person as R-CNN could not identify clearly human features as 
eyes, head, arms, legs,…  
 
From the total number of pixels, just 70% where correctly identified as people 
by R-CNN. From the remaining 30%, 10% was not crowd and the other 20% 
was crowd but not detected.  
 

Original Image R-CNN image 

 
File name: IMG_3.jpg. Source: [17]  

 
Figure 3.5. Example of one image counted just using R-CNN. 

 
Main Conclusions: This testing justifies the need of using Density Map for crowd 
people counting.  
 

3.3.2 Cropping images  

 
As explained in section 2.5.2.1 cropping is a new process developed to crop the 
original images in smaller images trying to see if the quality of the results was 
better than processing the full image at once. Figure 3.6 shows the results of 
Density Map working with cropped images that allows to process images with 
higher resolution but in different steps.  
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Original cropped image Density Map image 

 
File name: Image1_3_3.jpg. Source: [27] 

Ground Truth: 1 

 
Predicted Count : 18 

MAPE: 1700% 

 
File name: Image1_1_7.jpg. Source: [27] 

Ground Truth: 8 

 
Predicted Count : 18 

MAPE: 125% 

 
Figure 3.6. Example of some cropped images using Density Map. 

 
As we can see in figure 3.6 when the cropped image is almost empty or with 
low number of pixels with crowd, the results are not accurate and always is 
counting extra. Two types of new functionalities were developed to minimize 
this effect: 

 
- Remove empty cropped images: As the input image is a segmented 

image, there are many areas with only black background that are not 
adding any information. So, when we detected an image where all pixels 
are black, the image is deleted and therefore not processed by Density 
Map.  
 

- Remove almost empty cropped images: As we can see in the first 
example of figure 3.6, images with a big percentage of black background 
also are providing bad results. The solution developed calculates the 
percentage of black pixels and deletes the image if this percentage is 
higher than 95% (a parameter that could be customized depending on 
the resolution and size of images). For our study, losing this 5% of 
information of a cropped images was better than keeping the original 
image.   

 
After applying the previous functionalities to the same image, in figure 3.7 we 
can see the new results. In this example the total count provided by Density 
Map is 645, compared with the manual count 729 gives us a 11,52% of 
deviation.  
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Figure 3.7. Example of final result of a cropped images using Density Map. 
Source: [27]  

 
Now we are going to compare the results with the same image but without 
cropping. As we can see in figure 3.8 the results are very close to the manual 
count, 730 from Density Map versus 729 with the manual count. What means 
only 0,14% deviation.  
 

Original Image Density Map image 

 
Manual Count: 729. Source: [27]  

Predicted Count : 730 

 
Figure 3.8. Example of final result of a cropped images using Density Map.  

 
In order to have a more accurate analysis of the cropping impact in the process, 
we have compared different cropping scenarios with 11 samples from Shanghai 
data set that can be seen in table 3.6. The 2 first columns show the result of 
cropping the original imagen (without segmentation) and we can see that MAPE 
is the same in both cases. In the next column we can see the impact with 
different cropping size with the segmented images. In any case the MAPE is 
improved.  
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 Original 
full 
image  

Original 
full 
image  

Segm. 
image  

Segm. 
image 

Segm. 
image 

Segm. 
image 

Cropping NO YES NO YES YES YES 

Segmented NO NO YES YES YES YES 

Cropping 
size 

N/A 128x128 N/A 128x128 160x160 192x192 

Resolution 1024x768 1024x768 1024x768 1024x768 1024x768 1024x768 

MAPE 28% 28% 26% 29% 34% 32% 

 
Table 3.6. Comparison of different examples using cropped images 

 
Main Conclusions: After research in the process of cropping images, we have 
observed that cropping images is not improving the results with Density Map. 
Main reasons are: 
 

• Almost empty images, even with crowd, are counting extra with the 
samples used in the research. 

• In average using external data set, cropped images are giving worst 
results than the full segmented image (considering MAPE as the quality 
indicator).  

3.3.3 Without crowd segmentation  

 
Figure 3.9 shows an image processed by Density Map without segmentation.  
 

Original Image Density Map image 

 
File name: DJI_0017.JPG. Source: [27] 

Manual Count: 729  
Predicted Count: 620 

 
Figure 3.9. Example of an image without crowd segmentation using Density 

Map. Source: [27] 
 
Main Conclusions: As we can see in figure 3.9, using the original image without 
segmentation with this example is giving 14,95% of deviation compared with the 
manual count. The same image with segmentation gives only 0,14% deviation. 
It demonstrates the importance for Density Map to process an image only with 
crowd.  
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3.3.4 With different resolutions 

 
Figure 3.10 shows 2 examples of the same image but with different resolutions 
and what are the results using Density Map.  
 

Original Image Density Map image 

 
Low resolution: 32,7 KB 

Manual count: 729 
 

Predicted count: 163 

 
Low resolution: 211 KB 

Manual count: 729  
Predicted count: 730 

 
Figure 3.10. Example of an image with different resolutions using Density Map. 

Source: [27] 
 
 

Main Conclusions: As we can see in figure 3.10, reducing the resolution has a 
very negative impact in the counting results. Specifically, 77,64% of deviation 
compared with the manual count.  

 

3.3.5 With false positives 

 
Figure 3.11 shows some examples of false positive images using Density Map.  
 

Original Image Density Map image 

 
 Manual count: 0. Source: Internet  

Predicted Count : 68 
Result: No good.  
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Manual count: 0. Source: Internet  

Predicted Count : 241 
Result: No good. 

 
Figure 3.11. Example of images with no crowd and processed by Density Map 

 
Main Conclusions: As we can see in figure 3.11 the input images for Density 
Map need to be segmented correctly before processing. In the first example we 
can see a landscape and how Density Map is counting the cliff and trees as 
crowd. In the second picture is the same problem but in this case is counting 
cows.    
 

3.3.6 Comparison of results using the same image 

 
After going through different testing scenarios in this chapter, we summarize the 
results in table 3.7 using the same image (DJI_0017.JPG taken in Canal 
Olimpic by Castelldefels Police [27]) to help understand the final conclusions.  
 
 

Rank 
 

 
Resol. 

 
Cropping Segm. 

image 

Density 
Map 
Count 

Manual 
Count MAPE   

1st High No Yes 730 729 0,14% 

2nd*(1) 
High Yes 

(416x416) Yes 666 729 8,64% 

3rd*(2) 
High Yes  

(640x640) Yes 645 729 11,52% 

4th*(3) 
High Yes 

(416x416) Yes 629 729 13,72% 

5th High No No 620 729 14,95% 

6th Low No No 485 729 33,47% 

7th Low No Yes 163 729 77,64% 

 
Table 3.7. Results using different methods with the same image 

 
*(1): Including empty cropped images. 
*(2): Removing empty and almost empty images. 
*(3): Removing empty images. 
 



Crowd Counting using Density Maps   54 

As we can see in table 3.7 the best method is using a whole segmented image 
only with crowd and with high resolution. It is clear also that segmentation plays 
a key role in the quality of the counting as the 4 main methods in the ranking 
are using segmentation. Also notice that low resolution has a very negative 
impact as the 2 last methods are the ones with lower resolution. After analysing 
this data, we discard the cropping process and we focus on high resolution 
crowd segmented images as the implementation method. Also notice that 
method in rank 2 is counting empty images so it’s not really a valid method.  
 

3.4 Sensitivity evaluation 

 
In order to get objective metrics about the research, UCF-QNRF data set [6] 
has been used. This is a public large data set of crowd images (1535 in total) 
with high resolution (average of 5,8MB) and from many different scenarios 
taken around the world. It has been used a sample of 100 images from the UCF 
test data set.  
 
Metrics 1: Segmentation results comparison 
 
Table 3.8 shows the results of the segmentation results for the three main data 
sets including UCF.  
 
 

Data set 
 

Total  
Images 

Segmented 
OK 

Segmented 
No good 

Percentage 
OK 

Percentage 
No good 

Shanghai 
data set 39 39 0 100% 0% 

UPC and 
Police 17 11 6 65% 35% 

UCF 100 100 0 100% 0% 

 
Table 3.8. Segmentation results comparison 

 

  
Source: Shangai [17] 

Image name: IMG_13.jpg 
Source: UCF [6] 

Image name: img_0006.jpg 

 
Figure 3.12. Comparison of 2 images from Shanghai and UCF data sets 

 
Main Conclusions: UCF, even not been used at all for segmentation training, 
gets the same results that Shanghai data set with 100% of good segmentation. 
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We think the excellent result could be because the type of images is very similar 
between both data sets (very congested scenes with enough resolution). In 
figure 3.12 we can see 1 image from each data set to compare visual features, 
both data set are using images taken from short distances (less than 20 
meters). So, we can demonstrate how the segmentation training process is 
good enough if we use similar type of images for training and inference avoiding 
data mismatch.  
 
Metrics 2: Crow counting results comparison 
 
Table 3.9 shows the results of the Density Map crow counting results for the two 
main data sets including UCF. 
 

Data set MAPE MAE Number of 
Images 

Shanghai Test 22,21% 74,86 182 

Shanghai Training 12,89% 55,39 300 

UCF 34,50% 135,54 100 

 
Table 3.9. Crow counting result comparison 

 
Main Conclusions: As we can see in table 3.9, UCF results are quite far from 
the result of the Shanghai data set (34% versus 22% considering MAPE). In the 
next metrics of this section, we will understand it better by analysing different 
indicators as the density.  
 
Metrics 3: Comparison between original and segmented images 
 
Table 3.10 shows a comparison between Shanghai and UCF data sets with a 
summary of the main indicators as MAPE between the original image and the 
segmented one. We can see as UCF has higher resolution and density but also 
worst MAPE and MAE than Shanghai. Average MAPE from the full UCF sample 
is 33,18%. This indicator is worse than the Shanghai data set used for our 
testing (20,24%). 
 

Main indicators Shanghai data set UCF data set 

MAPE (not segmented) 20,69% 34,50% 

MAE (not segmented) 81,20 135,54 

MAPE (segmented) 20,24% 33,18% 

MAE (segmented) 89,22 201,99 

Number of Images 82 100 

Resolution average 618KB 1.379KB 

Count of crowd average 449 606 

Density (resolution/crowd) 2074 4891 

Percentage of image segmented 62,64% 60,02% 

 
Table 3.10. Comparison of UCF and Shanghai data set 

 
Table 3.11 shows a summary of how segmentation and resolution impact in 
MAPE. The first row represents when not segmented images get better MAPE 
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(lower value) and the second row the opposite. As we can see in table 3.11, the 
results are very similar as only 51% of the images get better MAPE when are 
not segmented but there is a clear relationship between resolution and 
segmentation.  
 

Type Best option 
considering 
MAPE 

Percentage of 
image 
segmented 

Resolution 
average 

Not segmented 
images 

51% 55,76% 1,28 MB 

Segmented images 49% 64,46% 1,47 MB 

  
Table 3.11. Main indicators comparing image segmented and original 

 
Main Conclusions: As it is shown in table 3.10, MAPE indicators between 
segmented and not segmented are very close, as there is only 1,32% different 
between an image segmented or not considering UCF. This is strange as we 
have seen in chapter 3.3.2 image areas where there is no crowd is adding noise 
to the process. So, it seems that segmenting images is not improving the 
results. But we need to consider the other 2 indicators in table 3.10 as well. As 
we can see the images for the testing are very congested as 60,02% (UCF) of 
the segmented images contain crowd. Also, we can see a relation between 
resolution and segmentation in table 3.11, as higher both parameters more 
chance to get better results with the segmentation.  
 
Metrics 4: Evolution of MAPE based on number of people 
 
We can see in figure 3.13 the MAPE evolution based on the number of people 
for each image (in orange segmented image MAPE and in blue original image 
MAPE).  
 

 
 

Figure 3.13. Evolution of MAPE based on number of people counted (ground 
truth). Bar chart representation. 
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Figure 3.14. Evolution of MAPE based on number of people counted (ground 
truth). Dot plot representation 

 
Main Conclusions: As we can see in figure 3.13 there is a clear relation 
between the number of people and the quality of the count. As much congested 
the scene lower the error. We can see that with less than 250 people we get the 
worse results. In our UCF sample 30% of the images where below 250 count 
and the average count was 473 so this could be one of the reason to get MAPE 
of 33%. Also, as we can see in figure 3.14, where each image used represents 
a dot, 84% of the samples are below 1.000 people counts so the metrics after 
this limit are not very representative for the analysis.  
 
Metrics 5: Evolution of MAPE based on image resolution 
 
We can see in figure 3.15 the evolution of MAPE based on resolution.  
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Figure 3.15. Evolution of MAPE based on image resolution 
 

Main Conclusions: As we can see in figure 3.15 there is a relationship between 
the resolution and the improvement of MAPE. As much resolution better the 
MAPE. 
 
Metrics 6: Evolution of MAPE based on segmentation 
 
We can see in figure 3.16 the evolution of MAPE based on the segmentation 
percentage.  

 

 
 

Figure 3.16. Evolution of MAPE based on percentage of background pixels 
after segmentation. 
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Main Conclusions: As we can see in figure 3.16 there is an indirect relationship 
between the percentage of segmentation and the improving of MAPE original. 
On the x-axis it is represented the percentage of the image where there is 
segmentation, for example the first slot (0-10%) means that the image has 
hardly been segmented and therefore the majority of the photo is crowd. We 
can see how in left part of the graph (low segmentation) MAPE of the original 
image is better than the one of the segmented image. The opposite happen on 
the left part of the graph where the level of segmentation is high.  
 
Metrics 7: Evolution of MAPE based on density 
 
We can see in figure 3.17 the evolution of MAPE based on the density 
(resolution/count of people).  

 

 
 

Figure 3.17. Evolution of MAPE based on density 
 
Main Conclusions: As we can see in figure 3.17 there is a clear relationship 
between the increasing of density and the deterioration of MAPE. This is one of 
the most important indicators of the analysis of this chapter. We can demostrate 
how Density Map works better with very congested images.  
 
Metrics 8: Comparison of the different count methods  
 
We can see in figure 3.18 a comparison between the 3 main count methods 
used. In blue the ground truth count, in green the segmented image count and 
in orange the density map count of the original image. The testing sample is of 
100 images and is sorted ascending. On the left axis we have the number of 
people and on the right the average count. It is also included for each method a 
trend line.  
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Figure 3.18. Comparison of the different count methods 
 
Main Conclusions: The average count (on the top of the graph and left y-axis) 
shows that original method and ground truth are very similar. But on the other 
hand the average of the segmented image is much lower. Although when we 
compare the trend line we can see as the segmented count is counting more 
with low values and the opposite when we move to right side of the graph with 
higher count.  
 

3.5 Processing time  

 
The total elapsed time for the full counting process is an important factor to 
consider in the future when we need to implement this project in a real scenario 
with drones. Specially if we want a real time response.  
 
Table 3.12 shows some rows of the file generated after each segmentation 
execution. The layout of the file is considering for each image: file name, 
processing time, size of the image and either the images was segmented or not.  
 

Filename Time (in seconds) Size Segmented Flag 

IMG_26.jpg 0:00:23.679195 37980 True 

IMG_22.jpg 0:00:21.904515 83664 True 

IMG_99.jpg 0:00:21.635487 56354 True 

 
Table 3.12. Example of CSV file generated after the segmentation 
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Table 3.13 shows some rows of the file generated after each Density Map 

execution. The layout of the file is considering for each image: file name, 

processing time, size of the image and final crowd count.  

 

Image name Process time Image size Crowd Count 

DJI_0005.JPG 0:00:05.173636 107032 164 

DJI_0185.JPG 0:00:05.258347 129416 161 

DJI_0041.JPG 0:00:05.267386 637818 523 

 
Table 3.13. Example of the results from Density Map image processing. 

 
Table 3.14 shows the average time used for crowd segmentation and Density 
Map for each of the two main data sets. For UCF data set, average size is lower 
in Density Map than in segmentation because images were resized before due 
to Density Map size constraint. Remember that UCF data set has high 
resolution images. 
 

Data set Average time Number 
of images 

Average size 

Shanghai: segmentation 21,87” 82 144KB 

Shanghai: Density Map 1,29” 82 144KB 

Shanghai: Total 23,16” 82 144KB 

    

UCF: segmentation 27,45” 100 3,926KB 

UCF: Density Map 3,52” 100 299KB 

UCF: Total 30,97” 100 299KB-3,926KB 

 
Table 3.14. Time processing results for crowd segmentation and Density Map 

 
Main Conclusions: The total elapsed time in the worst scenario (UCF data set 
with high resolution) is around 30” per image. As the image size increases also 
time does although not proportionally. Segmentation has a big penalty in the full 
process, but it is needed if the image not only contains crowd. We can conclude 
that the processing time could allow to final users use the solution in real time 
without problem, as 30” per image is quite affordable. On the other hand, if time 
is a big constraint, Density Map graph could be removed from the process and 
just the final count could be provided to reduce the elapsed time a little bit. Also, 
higher computational power could reduce the elapsed time but there is an 
impact in the cost. Lower resolution images could also reduce the elapsed time 
but then there is an impact in the quality of the count as seen in section 3.3.4. A 
trade-off between time, resolution, cost and functionality needs to be agreed 
with the final customer.  
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CHAPTER 4. CONCLUSIONS AND FUTURE WORK 

 

Conclusions of the thesis:  
 

• Importance of a large data set: In any ML system the data is a key 
factor and in this Master Thesis it has been demonstrated. With large 
number of images, the system finally was able to detect a crowd with 
enough accuracy. Although it needed more than 600 images with big 
variety of scenarios to be able to do a proper training. Even that we had 
data mismatch with UPC and Police pictures because big part of the data 
set was created with external public images.  
 

• Segmentation algorithm for each type of images: Also it has been 
demonstrated that each type of images could require an specific 
segmentation algorithm. In our case for example because we process 
small objects R-CNN was the best choice.  
 

• Density map only for crowd: Density Map is a technology specifically 
trained for crowd so when you process images that are not a crowd the 
system gives bad results. Also cropping the images is not a good 
solution and it has been demonstrated that processing the full crowd 
image segmented is the best option. So, this is the main reason why it is 
a key point to do a good segmentation of the crowd as first step.  
 

• Density map performance: it has been demonstrated how some image 
parameters impact the error of the counting at different levels. Some 
main parameters measured where the resolution, the volume of people, 
the background and the density (resolution/count of people). Density was 
the one with higher impact in the error. As much congested the scene 
(lower number of pixels per person) lower the error  considering MAPE.  
 

• Time & resources: The fact of adding an additional step for crowd 
segmentation means that we can get more accurate results by using 
different count methods, but time is penalized between 21,87 seconds 
(image size average of 144KB) and 27,45 seconds (image size average 
of 3,926KB). Crowd count is less time consuming with figures between 
1,29 and 3,52 seconds. Of course, this time could be reduced increasing 
the GPU power processing, reducing resolution (that has an impact in 
accuracy) and/or loosing functionalities as not generating density map or 
segmentation.  
 

Future lines of development and research:  
 

• Improve data set: Images taken from a drone are not easy to process. 
The main reasons are because of high altitude, brightness due to the 
sun, very low pixels per person rate in some cases as local police data 
set and visual obstacles like trees. Also, images taken from the police 
are difficult to share because of confidentiality. Therefore, building a big 
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data set of real drone images with people should be a next target to be 
able to get crowd counting from different scenarios, especially for high 
altitude.  
 

• Different scenarios: Some kind of user interaction of the drone operator 
could help to define the type of scenario and then the best method to use 
in the calculation to get better accuracy. Input parameters could be the 
altitude and the scenario chosen (demonstration, beach, marathon…). 
For example, it is better to have a specific weights file trained with 
specific images from demonstrations and another with beaches. So, the 
operator just needs to select the best scenario and the system will take 
the weights file that suits better. Of course, in a second phase also the 
selection of the scenario could be automatized with AI.  
 

• Improve speed: The total process duration takes around 30 seconds (25 
seconds for crowd segmentation and 5 seconds for counting). A new line 
of development could be to try to reduce this time to be able to show in 
almost real time the image processed to the drone operator.  
 

Sustainability considerations: 
 

• Drones: In terms of sustainability the drones used by the police are 
reducing the need for example to fly with helicopters or small planes to 
get an overview of an area for security supervision. So, it has an 
important reduction of energy consumption and noise pollution.  
 

• Energy consumption: In terms of energy consumption when the final 
system is running it just takes a few minutes to process the images 
captured by the drone. So, we can say that sustainability impact is very 
low. The only moderate energy consumption impact is when the system 
is training new images that could take many hours running. This process 
needs to be done just at the beginning of a new project or when a new 
scenario is introduced, so the impact is very low. Also, it could be 
scheduled to run at night where the impact is lower. Using computers 
with high number of GPUs could also reduce the training time but not 
necessarily the power consumption.  

 
Ethical considerations:  

 

• COVID: This Master Thesis has an important ethical consideration as this 
is mainly funded with the target to support the control of people in open 
spaces to reduce the risk of pandemic propagation as COVID. Therefore, 
it will have an important role to prevent the spread of a virus in scenarios 
of crowd in public areas.  
 

• Personal privacy data: All pictures used in the Master Thesis either 
have been shared voluntarily by the Police department of Castelldefels or 
have been downloaded in public free web sites or have been taken in 
EETAC UPC campus outdoor area by UPC staff. Also, in the cases 
where the author is known a reference to the author has been included in 
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this document. Highlight also that the police and UPC images do not 
compromise any personal privacy or confidentiality as they are taken 
from high altitude in public areas where is not possible to identify a 
specific person. Therefore, all photos have been used in accordance with 
current Spanish laws6. 
 

 

 
6 “Ley Orgánica 1/1982” https://www.boe.es/buscar/act.php?id=BOE-A-1982-11196 

https://www.boe.es/buscar/act.php?id=BOE-A-1982-11196
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