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Abstract

Objective

Patients admitted to the Intensive Care Unit (ICU) oftentimes show immunological signs of

immune suppression. Consequently, immune stimulatory agents have been proposed as an

adjunctive therapy approach in the ICU. The objective of this study was to determine the

relationship between the degree of immune suppression and systemic inflammation in

patients shortly after admission to the ICU.

Design: An observational study in two ICUs in the Netherlands.

Methods

The capacity of blood leukocytes to produce cytokines upon stimulation with lipopolysaccha-

ride (LPS) was measured in 77 patients on the first morning after ICU admission. Patients

were divided in four groups based on quartiles of LPS stimulated tumor necrosis factor

(TNF)-α release, reflecting increasing extents of immune suppression. 15 host response

biomarkers indicative of aberrations in inflammatory pathways implicated in sepsis patho-

genesis were measured in plasma.

Results

A diminished capacity of blood leukocytes to produce TNF-α upon stimulation with LPS was

accompanied by a correspondingly reduced ability to release of IL-1β and IL-6. Concurrently
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measured plasma concentrations of host response biomarkers demonstrated that the

degree of reduction in TNF-α release by blood leukocytes was associated with increasing

systemic inflammation, stronger endothelial cell activation, loss of endothelial barrier integ-

rity and enhanced procoagulant responses.

Conclusions

In patients admitted to the ICU the strongest immune suppression occurs in those who

simultaneously display signs of stronger systemic inflammation. These findings may have

relevance for the selection of patients eligible for administration of immune enhancing

agents.

Trial registration

ClinicalTrials.gov identifier NCT01905033.

Introduction

Critical illness is associated with a disturbed homeostasis characterized by a complex interplay

between hyperinflammation and immune suppression [1–3]. Exaggerated proinflammatory

responses include an excessive systemic release of inflammatory cytokines, endothelial cell

activation and dysfunction, and activation of the coagulation system. Conversely, the reduced

capacity of blood leukocytes to produce pro-inflammatory cytokines upon stimulation with

lipopolysaccharide (LPS) has been described as a common feature of immune suppression [2,

4]. These host response aberrations have been reported in various intensive care conditions

including sepsis, surgery and trauma patients [1–4]. Originally, hyperinflammation and

immune suppression were considered subsequent phases in the immune response to critical

illness, and the term “compensatory anti-inflammatory response syndrome” was introduced

for the (later) immune suppressive “phase” [5, 6]. However, more recent evidence supports the

co-existence of these seemingly opposite responses in patients at admission to the intensive

care unit (ICU), although the extent of this association still needs to be determined [1–3].

In the past decades multiple clinical trials evaluating immune modulatory agents have been

conducted in critically ill patients, particularly in those with sepsis [2, 7, 8]. Partially driven by

the failure of these trials to show benefit, controversy has grown over how the host response

should be manipulated in critically ill patients. In this context immune profiling may guide

therapeutic options in the future, with selection of patients with predominantly exaggerated

systemic inflammation for anti-inflammatory therapies and selection of those with dominant

immune suppressive features for immune stimulating strategies [2, 9]. As an example, dimin-

ished HLA-DR expression on circulating monocytes and a reduced capacity of blood leukocyte

to produce TNF-α upon LPS stimulation have been used as markers of immune suppression

for patient selection and treatment monitoring in studies evaluating the immune enhancing

effects of recombinant interferon-γ and granulocyte-macrophage colony stimulation factor in

sepsis [10–12]. To date, evidence for the effectiveness of such precision strategies is scarce.

We here hypothesized that the extent of immune suppression is associated with the degree

of hyperinflammation in patients with critical illness. We considered testing this hypothesis

relevant considering that evidence supporting this would hamper selection of patients for tar-

geted anti-inflammatory or immune enhancing therapies. To this end, we used the decreased

PLOS ONE Immune suppression simultaneously display signs of systemic inflammation in critically ill patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0271637 July 25, 2022 2 / 14

Funding: This research was performed within the

framework of the Center for Translational

Molecular Medicine (CTMM) (www.ctmm.nl),

project Molecular Diagnosis and Risk Stratification

of Sepsis (grant 04I-201). The sponsor CTMM was

not involved in the design and conduction of the

study; nor was the sponsor involved in collection,

management, analysis, and interpretation of the

data or preparation, review or approval of the

article. Decision to submit the article was not

dependent on the sponsor. X.B. was supported by

a grant from the Netherlands Organization for

Health Research and Development (ZonMW #50-

53000-98-139).

Competing interests: The authors have declared

that no competing interests exist.

https://clinicaltrials.gov/ct2/show/NCT01905033
https://doi.org/10.1371/journal.pone.0271637
http://www.ctmm.nl


capacity of whole blood leukocytes to produce TNF-α in response to LPS-stimulation as a

readout for critically-ill patient immune suppression in conjunction with measurement of a

comprehensive set of plasma biomarkers reflecting a variety of systemic pro-inflammatory

responses linked to specific pathophysiological mechanisms, focusing on cytokine release,

endothelial cell activation and activation of the coagulation system. Part of this work has been

presented during the French Intensive Care Society International Congress 2021 [13].

Methods

Study population and sample collection

Consecutive patients older than 18 years admitted to the ICU in the Academic Medical Center

(Amsterdam, the Netherlands) between April 2012 and June 2013 were included when they

had at least two systemic inflammatory response syndrome criteria upon admission (body

temperature�36˚C or�38˚C, tachycardia >90/min, tachypnea >20/min or pCO2 <4.3 kPa,

leukocyte count< 4.109/L or >12/109/L) [14]. Patients transferred from another ICU, receiv-

ing antibiotics for more than 48 hours before admission, and/or with an expected length of

ICU stay of less than 24 hours were excluded. The presence of an infection was assessed by

attending physicians, and the likelihood of infection was subsequently adjudicated by indepen-

dent observers using a four point scale (ascending from none, possible, probable to definite)
[15]. Sepsis was defined as the presence of an infection diagnosed within 24 hours after admis-

sion with a possible, probable or definite likelihood combined with at least one general, inflam-

matory, hemodynamic, organ dysfunction or tissue perfusion variables derived from the 2001

International Sepsis Definitions Conference [16]. Patients without infection upon admission,

or patients initially suspected of infection but with a post hoc infection likelihood of none were

classified as non-septic critically ill patients. Healthy subjects serving as controls for whole

blood stimulation results were matched with regard to age, sex, and timing of blood draw. The

study received approval from the medical ethical committee of the Academic Medical Center

in Amsterdam (no. NL 34294.018.10), and was registered at the Central Committee for

Human Research. Written informed consent to participate in the study and for publication

was obtained from all patients (or legal representative) and healthy controls.

Clinical variables

Sequential Organ Failure Assessment (SOFA) [17] and Acute Physiology And Chronic Health

Evaluation (APACHE) IV scores [18] were calculated upon ICU admission. Shock was defined

by the need of vasopressors for hypotension at a dose of at least 0.1 μg/kg/min during at least

50% of the ICU day. Comorbidities were defined as described [19] and the Charlson comor-

bidity index [20] was calculated based hereon. Acute respiratory distress syndrome (ARDS)

and acute kidney injury (AKI) were defined according to strict definitions [21, 22].

Whole blood stimulation and biomarker assays

Blood was obtained at 9:00 AM on the first day after admission to the ICU. Within two hours

after collection, heparin-anticoagulated whole blood was stimulated for 3 hours at 37˚C with

5% CO2 and 95% humidity in pyrogen-free RPMI 1640 medium (Life Technologies, Bleiswijk,

the Netherlands) with or without 100 ng/mL ultrapure LPS (Escherichia coli 0111:B4; 100 ng/

mL, InvivoGen, Toulouse, France). After stimulation, supernatants were collected and stored

at -80˚C until measurement of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β
(assays described below). Blood stimulation experiments were partly reported in an earlier

publication from our group [22]. Additionally, EDTA anticoagulated blood was obtained for
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measurements in plasma. The following assays were used: TNF-α, IL-1β, IL-6, IL-8, IL-10, sol-

uble intercellular adhesion molecule-1 (sICAM-1), and soluble (s)E-selectin were measured by

FlexSet cytometric bead array (BD Biosciences, San Jose, CA) using a FACS Calibur (Becton

Dickinson, Franklin Lakes, NJ); angiopoietin-1, angiopoietin-2, matrix metalloproteinase

(MMP)-8, antithrombin (R&D Systems, Abingdon, UK), protein C and D-dimer (Procarta-

plex, eBioscience, San Diego, CA) were measured by Luminex multiplex assay using a BioPlex

200 (BioRad, Hercules, CA). Platelet counts were determined by hemocytometry, prothrombin

time (PT) and activated partial thromboplastin time (aPTT) by using a photometric method

with Dade Innovin Reagent or by Dade Actin FS Activated PTT Reagent, respectively (Sie-

mens Healthcare Diagnostics). C-reactive protein (CRP) was determined by immunoturbidi-

metric assay (Roche diagnostics). Leukocyte counts and differentials were determined by

fluorescence flow cytometry on a Sysmex1 XN9000 analyser (Sysmex Corporation, Kobe,

Japan). Normal biomarker values were obtained from age- and gender-matched healthy volun-

teers, with the exception of CRP, PT and aPTT (routine laboratory reference values).

Statistical analyses

A formal sample size calculation was not done prior to the study (to the best of our knowledge

previous studies associating whole blood leukocyte stimulations with biomarkers of systemic

inflammation have not been performed). Patients were stratified into quartiles based on the

capacity of their blood leukocytes to produce TNF-α. Data distribution was assessed using his-

tograms and Shapiro-Wilk tests. Non-normally distributed continuous variables are presented

as median and interquartile range (IQR, 25th, 75th percentile) and were analyzed with Kruskal-

Wallis test followed by Dunn’s post-test of multiple comparisons using rank sums. Categorical

variables, presented as numbers (percentages), were analyzed using Chi-square test or Fisher’s

exact test when appropriate. Correlations were measured using Spearman’s rank correlation

test. Analyses were performed in R (v 3.5.1, R Foundation for Statistical Computing, Vienna,

Austria). Multiple-comparison-adjusted P values less than 0.05 defined significance.

Results

Stratification of ICU patients according to TNF-α production capacity and

clinical outcome

Between April 2012 and June 2013, 77 critically ill patients and 19 age- (median, 63 years

[IQR, 52–71 years]) and sex-matched (39% male) healthy volunteers were included. 51 (66%)

patients had sepsis upon admission (for admission diagnoses see S1 Table).

In order to evaluate the extent of immune suppression in critically ill patients, we measured

the cytokine production capacity of whole blood leukocytes upon ex vivo stimulation with

LPS. Blood leukocytes of ICU patients produced less pro-inflammatory TNF-α, IL-1β and IL-6

after LPS stimulation compared with blood leukocytes from healthy volunteers (S1 Fig). We

hypothesized that critically ill patients with increasing severity of immune suppression concur-

rently show stronger systemic proinflammatory responses. Given that a reduced TNF-α pro-

duction capacity by blood leukocytes has been widely recognized as a hallmark feature of

immune suppression in critically ill patients [6, 23, 24], we stratified patients into four groups

based on quartiles of LPS-induced TNF-α production. The quartile with the highest TNF pro-

duction capacity (>896 pg/ml; n = 19) did not differ from healthy subjects and is further

referred to as “normal”; the other quartiles are further indicated as “slightly reduced” (TNF-α
384–896 pg/ml; n = 19), “moderately reduced” (TNF-α 128–383 pg/ml, n = 19) and “strongly

reduced” (TNF-α<128 pg/ml; n = 20; Fig 1A). Reduction in TNF-α production capacity was
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associated with a proportionally reduced release of IL-1β and IL-6 upon stimulation with LPS

(Fig 1B and 1C), and TNF-α levels measured in LPS stimulated blood of patients strongly cor-

related with IL-1β (rho = .72 P< .001) and IL-6 levels (rho = .69, P< .001) detected in superna-

tants, suggesting that the stratification of patients based on TNF-α production capacity of

blood leukocytes resulted in conditions of increasing degrees of immune suppression.

Patients stratified according to TNF-α production capacity did not differ in terms of demo-

graphics, chronic comorbidities or severity of disease (Table 1). Among patients admitted for

Fig 1. Whole-blood leukocyte responsiveness to LPS in critically ill patients. (A) LPS-induced whole blood leukocyte

cytokine production in critically ill patients on the first day after admission (n = 77) stratified according to quartiles of

TNF-α production capacity (normal, slightly reduced, moderately reduced, and strongly reduced), and in age and sex-

matched healthy controls (n = 19). Dotted lines indicate median cytokine concentrations in unstimulated control samples.

Data are expressed as box and whisker diagrams as specified by Tukey. HV, healthy volunteers; ICU, critically ill patients.
�P< 0.05, ��P< 0.01, ���P< 0.001, ����P< 0.0001. Dot plots depicting the relationship between LPS-induced TNF-α
and (B) IL-1β, and (C) IL-6 whole blood production capacity in critically ill patients. Rho, Spearman’s correlation

coefficient.

https://doi.org/10.1371/journal.pone.0271637.g001

Table 1. Baseline characteristics and outcomes of patients stratified according to whole blood TNF-α production capacity upon LPS stimulation.

Normal (n = 19) Slightly reduced (n = 19) Moderately reduced (n = 19) Strongly reduced (n = 20) P value

TNF-α (range), pg/mL > 896 384–896 128–383 <128

Demographics

Age, years 65 [57–73] 67 [52–78] 57 [46–65] 57 [48–64] 0.06

Male sex 14 (73.7) 12 (63.2) 13 (68.4) 7 (35.0) 0.07

BMI, kg/m2 25.3 [23.6–31.6] 26.1 [24.0–28.6] 24.9 [23.1–28.5] 24.9 [23.1–27.0] 0.79

Race, white 15 (78.9) 17 (89.5) 17 (89.5) 15 (75.0) 0.57

Medical admission 6 (31.6) 3 (15.8) 5 (26.3) 5 (25.0) 0.76

Sepsis admission diagnosis 11 (57.9) 8 (42.1) 14 (73.7) 18 (90.0)† 0.011

Chronic comorbidities

None 3 (15.8) 7 (36.8) 5 (26.3) 5 (25.0) 0.56

Charlson comorbidity index 3 [2 – 4] 4 [2 – 5] 3 [1 – 5] 3 [1 – 5] 0.88

Severity at time of admission to ICU

APACHE IV score 79 [67–94] 76 [58–100] 76 [64–91] 75 [61–103] 0.99

Acute physiology score 68 [49–84] 52 [38–89] 70 [58–78] 61 [51–97] 0.74

SOFA score 5 [4 – 8] 8 [6 – 9] 8 [6 – 9] 8 [6 – 10] 0.23

Shock 7 (36.8) 7 (36.8) 10 (52.6) 14 (70.0) 0.13

ARDS 3 (15.8) 3 (15.8) 2 (10.5) 9 (45.0) 0.06

AKI 5 (26.3) 9 (47.4) 9 (47.4) 7 (35.0) 0.47

Leukocyte counts and differentials

WBC max, x109/L 14.90 [10.85–17.50] 12.40 [9.65–15.80] 13.40 [10.20–19.30] 14.20 [9.98–18.80] 0.82

Neutrophils, x109/L 10.12 [7.12–14.05] 9.61 [7.39–11.64] 8.60 [7.12–11.12] 8.79 [7.14–14.49] 0.87

Monocytes, x109/L 0.89 [0.53–1.10] 0.66 [0.46–0.86] 0.56 [0.44–0.85] 0.38 [0.24–0.56] 0.05

Lymphocytes, x109/L 1.05 [0.57–1.45] 0.89 [0.72–1.16] 0.84 [0.44–1.29] 0.84 [0.74–1.67] 0.67

Outcome

ICU length of stay, days 5 [4 – 8] 3 [3 – 11] 4 [3 – 7] 6 [4 – 9] 0.48

ICU mortality 3 (15.8) 4 (21.1) 2 (10.5) 5 (25.0) 0.76

Data presented as median [interquartile range], or n (%). Continuous variables were compared using the Kruskall-Wallis test. Associations between categorical variables

were tested using the Fisher’s exact test. P values represent comparisons between the four groups.

Abbreviations: AKI, acute kidney injury; APACHE, Acute Physiology and Chronic Health Evaluation; ARDS, acute respiratory distress syndrome; SOFA, Sequential

Organ Failure Assessment; WBC, white blood cell count.

https://doi.org/10.1371/journal.pone.0271637.t001
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a sepsis (n = 51) or for a non-infectious diagnosis (n = 26), 40 (78.4%) and 18 (69.2%) showed

reduced TNF production capacity (�896 pg/mL), respectively. A sepsis admission diagnosis

was over-represented in patients with a strongly reduced TNF-α production-capacity. White

blood cell and neutrophil counts did not differ between groups; patients with the lowest TNF-

α production capacity had the lowest monocyte numbers in peripheral blood. TNF-α produc-

tion adjusted for monocyte counts remained significantly lower in these patients (S2 Fig). The

ICU length of stay and ICU mortality did not differ between patient groups.

A reduced TNF-α production capacity is associated with enhanced systemic

inflammatory responses

In order to obtain insight into the association between blood leukocyte responsiveness and sys-

temic proinflammatory host responses, we compared the levels of 15 plasma biomarkers

reflecting major pathways involved in the pathogenesis of critically illness between patients

stratified according to quartiles of TNF-α production capacity. When compared with control

subjects, all critically ill patients showed signs of a dysregulated host response on ICU admis-

sion, with elevated levels of proinflammatory (CRP, IL-6, IL-8, MMP-8) and anti-inflamma-

tory (IL-10) mediators (Fig 2). Patients with moderately to strongly reduced TNF-α
production-capacity showed enhanced systemic pro- and anti-inflammatory host responses

Fig 2. Biomarkers of systemic inflammatory responses in critically ill patients stratified according to whole blood TNF-

α production capacity. Data are presented as box and whiskers, as specified by Tukey. Dotted lines represent median values

obtained in age-matched healthy subjects. Comparisons between groups were performed using the Kruskall-Wallis test

followed by Dunn’s post-tests adjusted for multiple comparisons (Bonferroni). � P< .05, �� P< .01. CRP, C-reactive protein;

IL, interleukin; MMP, matrix metalloproteinase; TNF, tumor necrosis factor.

https://doi.org/10.1371/journal.pone.0271637.g002
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compared with those with a normal TNF-α production capacity. These data suggest that criti-

cally ill patients with the strongest immunosuppression (lowest TNF-α production capacity)

concurrently show stronger systemic inflammatory responses.

A reduced TNF-α production capacity is associated with enhanced

endothelial cell activation and loss of vascular integrity

We measured biomarkers for endothelial cell activation (plasma levels of sICAM-1 and sE-S-

electin) and vascular integrity (angiopoietin 1 and 2) on admission to the ICU (Fig 3). Patients

with a strongly reduced leukocyte TNF-α production capacity displayed the highest levels of

sICAM-1, angiopoeitin-2 and angiopoietin-2:1 ratio, indicative of stronger endothelial cell

activation and a more profound loss of vascular integrity.

A reduced TNF-α production capacity has some association with enhanced

procoagulant responses

We measured biomarkers of coagulation activation (D-dimer, PT, aPTT, platelet counts) and

anticoagulant mechanisms (protein C, antithrombin) on admission to the ICU (Fig 4).

Patients with a moderately and strongly reduced TNF-α production-capacity showed

increased plasma levels of D-dimer and decreased levels of antithrombin respectively, indica-

tive of a more disturbed hemostatic balance.

Fig 3. Endothelial cell activation biomarkers in critically ill patients stratified according to whole blood TNF-α
production capacity. Data are presented as box and whiskers, as specified by Tukey. Dotted lines represent median values

obtained in age-matched healthy subjects. Comparisons between groups were performed using the Kruskall-Wallis test

followed by Dunn’s post-tests adjusted for multiple comparisons (Bonferroni). �� P< .01. ANG, angiopoietin; sE-Selectin,

soluble E-selectin; sICAM, soluble intercellular adhesion molecule; TNF, tumor necrosis factor.

https://doi.org/10.1371/journal.pone.0271637.g003
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Discussion

Immune suppression is a common feature in critically ill patients and administration of

immune stimulatory agents has been advocated as a new therapeutic strategy to reverse this

host response aberration in this population. However, drugs that stimulate the immune system

may enhance excessive proinflammatory responses also present in patients selected for this

adjunctive therapy. We here sought to obtain insight in the proportionality of immune sup-

pression and concurrently detectable systemic hyperinflammation in critically ill patients. To

this end we used the TNF-α production capacity of LPS-stimulated blood leukocytes as a read-

out for immune suppression, stratified patients into quartiles according to the extent in which

this response was impaired and measured 15 biomarkers indicative of dysregulation of proin-

flammatory host response mechanisms in plasma. We demonstrate that critically ill patients

with the most severe immunosuppression (as indicated by the lowest TNF-α production

capacity) concurrently show the strongest signs of systemic inflammatory and endothelial

responses.

Immune suppression is considered an important determinant in the outcome of critical ill-

ness [1–3, 24, 25]. Previous studies also used a reduced capacity of blood leukocytes to produce

Fig 4. Coagulation activation biomarkers in critically ill patients stratified according to whole blood TNF-α production

capacity. Dotted lines represent median values obtained in age-matched healthy subjects. Comparisons between groups

were performed using the Kruskall-Wallis test followed by Dunn’s post-tests adjusted for multiple comparisons

(Bonferroni). � P< .05. aPTT, activated partial thromboplastin time; PT, prothrombin time; TNF, tumor necrosis factor.

https://doi.org/10.1371/journal.pone.0271637.g004
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proinflammatory cytokines upon ex vivo stimulation with bacterial agonists like LPS in

patients with sepsis or non-infectious critical illness [2, 4, 6, 10, 11, 24, 26]. Measurement of

HLA-DR expression on monocytes is another commonly used readout for immune suppres-

sion in clinical settings [2, 6, 10–12, 24, 27]; monocyte HLA-DR levels showed a strong correla-

tion with the responsiveness of whole blood leukocytes to LPS in critically ill patients [10, 26,

28]. Likewise, in a model of in vitro LPS tolerance a reduced ability of monocytes to produce

TNF-α was associated with a diminished HLA-DR expression [29]. These data provide further

validity to the use of TNF-α production capacity of blood leukocytes to stratify patients in

groups with different severities of immune suppression. Moreover, low TNF-α producers also

exhibited reductions in IL-1β and IL-6 release in LPS-stimulated whole blood, suggesting that

these patients indeed displayed a stronger immunosuppressive phenotype.

We measured TNF-α, IL-1β and IL-6 levels after a 3-hour incubation of whole blood with

LPS. Likely, monocytes are the main producers of cytokines in this setting. Patients with the

lowest TNF-α production capacity showed a clear trend toward lower monocyte numbers in

blood. However, strong differences between quartiles based on whole blood TNF-α produc-

tion capacity remained after adjustment for monocyte counts, suggesting that an altered

responsiveness of monocytes and not their numbers was responsible for the immunosuppres-

sive phenotype. This notion is supported by previous studies showing a reduced capacity of

blood monocytes harvested from critically ill sepsis patients to activate nuclear factor-κB and

to produce TNF-α upon stimulation [30–32].

To study systemic inflammatory responses implicated in the pathogenesis of critical illness

we measured a set of 15 biomarkers. Earlier investigations from our and other laboratories

have used these biomarkers to obtain insight in host response disturbances in critically ill

patients [2, 3, 33–35]. Especially biomarkers of systemic inflammation (CRP, IL-6, IL-8,

MMP-8), endothelial activation (sICAM-1) and endothelial barrier dysfunction (angiopoietin

2/1 ratio) showed clear relationships with the extent of impairment of LPS-induced TNF-α
production by blood leukocytes. This association was also present for coagulation activation,

albeit to a lesser extent, as indicated by higher D-dimer and lower antithrombin levels in

patients with the lowest TNF-α production capacity, while other coagulation parameters

(platelet counts, PT, aPTT and protein C) were not different between groups. Of note, patients

with a reduced TNF-α production capacity by whole blood leukocytes had a proportionally

diminished capacity of blood leukocytes to produce IL-6, whilst IL-6 concentrations measured

in (directly stored) plasma were proportionally increased. These seemingly opposing results

can be explained by the fact that the whole blood stimulation assay measures IL-6 production

of blood leukocytes stimulated by LPS, whilst plasma IL-6 levels reflect the resultant of IL-6

released into the circulation from a variety of (partially extravascular) cellular sources and the

clearance of this cytokine from the circulation. We recently reported a study in patients with

community-acquired pneumonia showing a similar association between a reduced capacity of

blood leukocytes to produce proinflammatory cytokines upon ex vivo stimulation with LPS

and stronger systemic proinflammatory responses relating to cytokine release, endothelial cell

activation and activation of the coagulation system [36]. This investigation involved patients

admitted to a general hospital ward and only a small subset had sepsis [36], suggesting that the

association between immune suppression and hyperinflammation can also be detected in non-

critically ill patients.

Our study has strengths and limitations. This investigation to the best of our knowledge for

the first time addresses the association between immune suppression and systemic hyperin-

flammation in critically ill patients. We used unseparated blood leukocytes in a functional

assay to measure immune suppression. The use of flow cytometry would have allowed for phe-

notypic characterization of specific leukocyte subsets, such as T and B cells. While the sample
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size of our study is relatively small, our analyses did show strongly significant differences in

systemic inflammatory responses between normal and low TNF-α producers. Our observa-

tional study does not address causal relationships between distinct host response aberrations.

It should be emphasized that our study was not intended to generate information that could

change clinical practice and/or could guide clinical decisions by physicians in the ICU. Rather,

the results presented provide preliminary evidence that a commonly used feature of immune

suppression in the ICU is associated with systemic responses that suggest concurrent

hyperinflammation.

In critically ill patients the extent of immune suppression, as reflected by an impairment in

the ability of blood leukocytes to produce proinflammatory cytokines upon stimulation, is pro-

portional to the concurrent presence of systemic hyperinflammation. These data indicate that

if one selects patients for immune stimulatory therapy based on a common readout such as the

TNF-α production capacity of blood leukocytes, one likely also selects patients who have the

strongest systemic inflammatory and endothelial cell responses. This knowledge is relevant for

the development of precision medicine in critical care and selection of patients for treatment

with immune stimulatory agents.
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