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Generation of bursting magnetic fields by nonperiodic torsional flows
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A mechanism for the cyclic generation of bursts of magnetic fields by nonlinear torsional flows of complex
time dependence but very simple spatial structure is described. These flows were obtained numerically as
axisymmetric solutions of convection in internally heated rotating fluid spheres in the Boussinesq approximation.
They behave as repeated transients, which start with nearly periodic oscillations of the velocity field of slowly
increasing amplitude. This regime is followed by a chaotic fast increase and a final decrease of the amplitude
of, at least, one order of magnitude. The magnetic field decays due to the magnetic diffusion during the regular
oscillations, but it grows in the form of bursts during the intervals of irregular time dependence of the velocity.
The magnetic field is strongly localized in spirals, with spatial- and temporal-dependent intensity.
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I. INTRODUCTION

The generation of magnetic fields by thermal convection
is a fundamental subject of study in astrophysics and geo-
physics. Many efforts have concentrated in studying dynamos
driven by thermal Rossby waves and bifurcated flows at
moderate Prandtl numbers, Pr, because these waves were the
stable solutions visualized experimentally and found from di-
rect numerical simulations (DNSs) in rotating heated spheres
and spherical shells (see Refs. [1–11] among many others).
Most of them use the Boussinesq or anelastic approximations.
These flows are axially nonsymmetric, and their velocity, v,
and temperature, T , fields are symmetric or almost symmetric
by reflections with respect to the equator, i.e., they fulfill
or closely fulfill (vr, vθ , vϕ )(r, θ, ϕ) = (vr,−vθ , vϕ )(r, π −
θ, ϕ) and T (r, θ, ϕ) = T (r, π − θ, ϕ), θ and ϕ being, re-
spectively, the colatitude and the longitude. The efficiency
of these dynamos at low Reynolds number depends on the
generation of mean zonal flows. The magnetic fields have, in
general, a large-scale dipolar or multipolar structure like those
observed in several planets. Simultaneously, other studies (see
Refs. [12–19] among many others) focus on understanding the
magnetic fields observed in stars, mainly in the photosphere
of the Sun, and in the interstellar medium. These fields are
associated with the turbulent motions of plasmas at high
Reynolds numbers, and therefore they lack any symmetry.
Their study requires adding hyperdiffusivities to the equations
or the development of tailored models [20,21]. There are
several recent reviews [22–24] and books [25–28] covering
the current knowledge of astrophysical and geophysical dy-
namos, under any point of view, i.e., focusing either on direct
observations and laboratory experiments or on DNSs and
theoretical models. In any case two fundamental points are
to understand the transfer and dissipation of magnetic energy
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from large to small scales, and from the small magnetic scales
to the small kinetic scales by means of reversed dynamos [19].

Large-scale dynamos driven by turbulent flows are studied
through mean-field theories. They usually assume that the
small scales generated by the turbulent velocity field origi-
nate in the shredding of the large magnetic field lines, and
that they disappear when the mean field vanishes (see, e.g.,
Refs. [22,28]). On the other hand, homogeneous and isotropic
turbulence can generate directly self-sustained small-scale
magnetic fields by means of random stretching and folding
of the small field lines (see, e.g., [28,29]).

Recently Sánchez et al. [30], Zhang et al. [31], and Kong
et al. [32] found that axially axisymmetric time-periodic
flows, with prevailing equatorial antisymmetric velocity and
temperature fields (torsional flows), can also be preferred at
the onset of convection. At low Ekman number, Ek (defined
below as the inverse of the rotation rate in viscous time units),
this holds for small Pr fluids, like that of the liquid metals
for which Pr � 0.1 under different temperature and pressure
conditions (see, e.g., estimations in Refs. [33–35]). The flows
bifurcated from these solutions are three-dimensional, but
they retain a large antisymmetric and torsional part satis-
fying (va

r , v
a
θ , v

a
ϕ )(r, θ, ϕ) = (−va

r , v
a
θ ,−va

ϕ )(r, π − θ, ϕ), and
T a(r, θ, ϕ) = −T a(r, π − θ, ϕ). Then it is important to know
if the torsional velocity fields are able of driving dynamos,
and if so, what is the structure of the generated magnetic
fields. This paper is mainly devoted to solving a fundamental
problem of magnetohydrodynamics (MHD): to find out if
nearly heteroclinic cycles with these latter symmetry proper-
ties are able to generate and sustain magnetic fields by a purely
kinematic action. The flows were found by DNSs as solutions
of the axisymmetric Navier-Stokes equation for an internally
heated rotating fluid sphere with stress-free conditions at the
boundary [36].

Kinematic dynamos driven by convective flows of complex
time dependence have been studied recently in Refs. [37]
and [38]. Calkins et al. [37] focused on dynamos driven
by velocity fields ranging from laminar flows to geostrophic
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turbulence. The flows were obtained by integrating a quasi-
geostrophic asymptotic model based on the anisotropic struc-
ture of the convection in a plane three-dimensional (3D) layer.
They found a weak influence of the velocity field on the
spatial characteristics of the large-scale magnetic field, but the
behavior of the small-scale magnetic field showed important
variations when the type of forcing was changed. Currie
and Tobias [38] considered a convective dynamo model in a
Cartesian domain, in which the shear of a two-dimensional
flow is generated self-consistently by a horizontal temperature
gradient and a rotation vector oblique to gravity. They found
this system is a good dynamo even at high magnetic Reynolds
number, for which other models pointed to a decrease of the
efficiency of convection to sustain magnetic fields. However,
these flows act only as small-scale dynamos.

In a full MHD problem, the evolution of a magnetic field,
B, from a weak seed can be divided in two stages: a kinematic
phase, in which there is an exponential growth of B and the
Lorentz force is unimportant, and the nonlinear saturation
phase, in which B is able to change the flow and stop the
growth. The spatial scale of B, which will depend on the
parameters of the problem, is selected during the first phase,
but it may change in the second [13]. In contrast, a kinematic
dynamo problem (like that studied in this article) is linear in
B, uncoupled from the origin of the forcing velocity field.
It is in fact an eigenvalue problem for steady and periodic
flows. Therefore, in spherical geometry the azimuthal wave
number, m, of B can be selected in advance by expanding it
in spherical harmonics. The solution provides a growth rate
for any magnetic Prandtl number, Prm, also fixed in advance,
and the corresponding leading eigenfunction, which gives the
structure of the magnetic field. In the case of periodic flows,
the hydrodynamic equation must be integrated together with
the induction equation, unless the time dependence is trivial
(for instance, if it is harmonic). The same holds for temporally
chaotic or turbulent velocity fields. The information obtained
is then the average growth or decay of B and its time evolution.
Since the different azimuthal wave numbers are uncoupled,
studying the interchange of magnetic energy between them or
possible energy cascades does not make sense.

Dynamos driven by heteroclinic cycles were studied from
the late 1980s mainly in plane layers [39] or even in spherical
geometry [40]. In the first work, the authors showed that struc-
turally stable heteroclinic cycles can be destabilized trans-
versely by applying very small amounts of noise, even when
the individual fixed points of the cycle are stable to transverse
modes. As an example they simulated a convectively driven
dynamo in a plane layer, in which the magnetic field strength
acted as the transverse coordinate. The equilibrium points
consisted of rolls with different symmetries, which could not
lead separately to dynamo instability. However, these flows
were able to increase the magnetic energy from an initial
weak seed for a finite time before magnetic diffusion led to
exponential decay. Gog et al. [39] integrated the equations
adding at each time step a normally distributed noise. They
showed that the instability mechanism depended on construc-
tive interactions between transiently growing solutions. Con-
sequently, non-normality of the transverse dynamics favored
the instability. In Refs. [40,41] the states making up the cycle
were themselves unstable to dynamo action.

In this article, the equations and their numerical treatment
are discussed in Sec. II, which includes some tests to check
the code of the induction equation. In Sec. III the thermal
convective flows computed in rotating fluid spheres at low Pr
are briefly introduced. Section IV contains the description of
the bursting magnetic fields generated by kinematic dynamo
action and some tests to check the robustness of the calcula-
tions. The paper concludes in Sec. V with some remarks on
the results obtained.

II. EQUATIONS AND NUMERICAL METHODS

To study a kinematic dynamo generated by complex time-
dependent velocity fields, v, in a fluid sphere, the induction
equation

∂t B = Prm
−1�B + ∇ × (v × B), (1)

for the magnetic field B must be time evolved together with
the equations that supply v, responsible for the dynamo effect.

Equation (1) has been written in nondimensional form by
using the radius of the sphere, ro, as length scale and tν = r2

o/ν

as timescale, ν being the kinematic viscosity. The magnetic
Prandtl number is Prm = ν/η, η = 1/σμ0 being the magnetic
diffusivity. The coefficient σ is the conductivity of the fluid
and μ0 is its magnetic permeability. It represents the ratio
of the magnetic to the viscous timescales, and therefore the
magnetic timescale is given by tη = Prmtν . The critical Prm

is the value above which the magnetic field generated by
dynamo effect can be sustained. The results obtained will be
shown versus the viscous timescale.

The outer space is considered a homogeneous dielectric,
of permeability μo, extending to infinity. The boundary con-
ditions of B between a conductor (i) and an insulator (o) are
r̂ · (Bo − Bi ) = 0, and r̂ × (Bo − Bi ) = 0 if μo ≈ μ0. The unit
vector r̂ is normal to the boundary of the sphere pointing
outwards. Then the components of B are continuous across
the boundary, Bo

r = Bi
r , Bo

θ = Bi
θ , Bo

ϕ = Bi
ϕ .

The axisymmetric velocity field, v, is obtained from nu-
merical simulations of the thermal convection of a self-
gravitating (g = −γ r) fluid sphere, subject to internal uni-
form heating, with stress-free boundary conditions. The flow
is inertial at low Ek, so by neglecting the Lorentz force
the magnetic fields obtained will be different from those in
magnetostrophic balance, being close to flows with Elsasser
numbers much lower than one.

The magnetic field is split into toroidal, G, and
poloidal, H , components, and treated numerically as
the velocity field v(r, θ, t ) = ∇ × (�(r, θ, t )r) + ∇ × ∇ ×
(�(r, θ, t )r) in Ref. [36], where the physical and dynamical
properties of v were studied. Then

B(r, θ, ϕ, t ) = ∇ × (G(r, θ, ϕ, t )r)

+∇ × ∇(H (r, θ, ϕ, t )r). (2)

The magnetic potentials are expanded in spherical harmonic
series. Since Eq. (1) is linear, the problem decouples for the
azimuthal order. Therefore the expansion for a fixed order, m,
up to degree L is

X (r, θ, ϕ, t ) =
L∑

l=m

X m
l (r, t )Pm

l (cos θ ) exp(imϕ), (3)
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where X = (G, H ), and Pm
l (cos θ ) are the normalized associ-

ated Legendre functions defined as

Pm
l (cos θ ) =

√
2l + 1

2

(l − m)!

(l + m)!
P̃m

l (cos θ ),

for l � 0, and 0 � m � l, (4)

where P̃m
l (cos θ ) are the standard Legendre functions. Finally,

collocation in a radial Gauss-Lobatto mesh of Nr points is
used. Then Eq. (1) splits into the scalar equations

(∂t − Prm
−1�)L2G = r · ∇ × ∇ × (v × B) (5)

(∂t − Prm
−1�)L2H = r · ∇ × (v × B). (6)

The boundary conditions of B at r = ro become

Gm
l = 0 and

l + 1

ro
Hm

l + dHm
l

dr
= 0, (7)

in terms of the amplitudes of the potentials. At r = 0 only
regularity conditions are required.

The linearity of Eq. (1) for the kinematic dynamo has
several implications. When the forcing velocity field is ax-
isymmetric, as is the case of this article, Eq. (1) can be
separated, as stated in the introduction, into a system of
uncoupled equations, one for each azimuthal wave number m.
They can therefore be studied separately. It also implies that
B does not saturate. Its norm can, on average, grow or decay
exponentially. Consequently, an interpolation method is used
here to approximate the critical parameter for the generation
of magnetic fields by complex time-dependent flows. The
parameters of nearby solutions, of increasing and decreasing
growth rates obtained by time evolution, allow us to determine
an approximation of the critical value, and the structure of the
most unstable eigenfunction.

The velocity field, v, is calculated by integrating the
Boussinesq approximation of the Navier-Stokes and energy
equations, written in terms of the potentials � and �,

(∂t − �)L2� = −2Ek−1Q� − r · ∇ × (ω × v), (8)

(∂t − �)L2�� = 2Ek−1Q� − L2

+ r · ∇ × ∇ × (ω × v), (9)

(Pr∂t − �) = RaL2� − Pr(v · ∇), (10)

together with the induction equation.
In Eqs. (8)–(10) and (5) and (6) the operator L2 is defined

as L2 = −r2� + ∂r (r2∂r ), and Q as Q = r cos θ� − (L2 +
r∂r )(cos θ∂r − r−1 sin θ∂θ ) in Eqs. (8) and (9). Moreover, ω =
∇ × v is the vorticity, and (r, θ ) = T (r, θ ) − Tc(r) is the
temperature perturbation from the conduction state, Tc(r), in
ν2γαr4

o units
The nondimensional parameters of the convective system

are the Rayleigh, Prandtl, and Ekman numbers, defined as

Ra = Sγαr6
o

3κ2ν
, Pr = ν

κ
and Ek = ν

�r2
o

, (11)

respectively. The coefficient κ is the thermal diffusivity, α the
thermal expansion coefficient, � the angular velocity, and S

accounts for the internal heat generation. It appears in Eq. (10)
in the term RaL2� through the Rayleigh number.

The stress-free and perfectly conducting boundary condi-
tions become

� = ∂2
rr� = ∂r (�/r) =  = 0 at r = ro. (12)

Since stress-free boundary conditions are applied, the con-
servation of the z component of the angular momentum
is achieved in the way explained in Sánchez Umbría and
Net [36]. At r = 0 only regularity conditions are required.

The functions �, �, and  are expanded in spherical
harmonic series of order 0 and degree up to L as

Z (r, θ, t ) =
L∑

l=0

Z0
l (r, t )P0

l (cos θ ),

where Z = (�,�,). The indeterminacy of � and � is
solved by taking �0

0 = �0
0 = 0.

In order to check the new time integration code for the
system (5)–(6) with boundary conditions (7) using a radial
pseudospectral method, the steady axisymmetric velocity field

u(r, θ ) = ∇ × [
t0
1 (r)Y 0

1 (θ ) r̂
] + ∇ × ∇ × [

εs0
1(r)Y 0

1 (θ ) r̂
]
,

(13)

with t0
1 (r) = s0

1(r) = r sin(πr) and ε = 0.17, proposed by
Dudley and James (DJ) [42], was used. This field was mod-
ified to take into account our different decomposition of the
velocity in toroidal and poloidal components and the differ-
ent normalization of the Legendre polynomials. Specifically,
t0
1 (r) = s0

1(r) = √
2/3 sin(πr) were defined because we have

an extra factor r in the definition of B [see Eq. (2)], and
the different normalization introduces the factor

√
(2l + 1)/2.

Then (Y m
l )SN (θ, ϕ) = √

(2l + 1)/2(Y m
l )DJ (θ, ϕ). Moreover,

due to the different scales taken by the authors, the rela-
tion between our magnetic Prandtl number and their mag-
netic Reynolds number is PrSN

m = ReDJ
m , and that between the

timescales is tSN = PrmtDJ , which gives the relation between
the eigenvalues of the problem λSN = Pr−1

m λDJ . The resulting
velocity field u(r) consists of a single vortex, symmetric with
respect to the equator. The same field was also used by Li
et al. [43] to test their very accurate Galerkin scheme to
solve the kinematic dynamo problem in a full sphere. They
obtained as a leading eigenvalue, in DJ units, (λr, λi ) =
(0.313151589, 34.843592723), for m = 1, ReDJ

m = 160, and
N = L = 35, N being the number radial functions of their
approximation. In our case, the leading eigenvalues of Eq. (1),
for the same steady field and parameter Prm = 160, were
calculated from the multipliers of the map B → ϕ(τ, v, p)B
by using the ARPACK package based on the Arnoldi algo-
rithm [44], ϕ(τ, v, p) being the flow of Eq. (1) at a fixed time
τ , v the DJ velocity field, and p = Prm (see Ref. [45] for more
details).

Several of the time integrators compared in Ref. [46], for
the pure hydrodynamic problem, were tested for the integra-
tion of the coupled system of Eqs. (5), (6), and (8)–(10). It
turned out that the subroutine DLSODPK of the ODEPACK
package [47] was the most efficient, because there are very
different timescales in the problem. It is a fully implicit vari-
able step size and variable order method, based on backward
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differentiation formulas of orders up to six. This means to
control simultaneously the order and the time step to keep the
local error of the integration below a given tolerance, using
the largest possible time step.

Tests were done for several truncation numbers Nr and
L. An initial condition was first obtained by integrating
the induction equation, from a random seed, the time
needed to filter the fast decaying modes. Then Arnoldi’s
iterations were started using an integration time τ = 0.1
for the map ϕ(τ, v, p). The results (taking into account
the different normalization of the spherical harmonics and
scales) agree very well with those of Ref. [43] even with
the lower resolution used, with negligible differences be-
tween them. For instance, with Nr = L = 35, (λr, λi ) =
(0.31315335, 34.84359343) was obtained.

Following the same method we have solved the eigen-
value problem for the time-periodic axisymmetric solutions
of Eqs. (8)–(10) with boundary conditions (12). We have
been unable to find a self-sustained B driven by pure periodic
torsional oscillations. When Prm is increased the modulus of
the leading Floquet multiplier tends to 1, never reaching this
value. As will be seen in the next section the periodic orbits
play the role of the equilibria in Ref. [39].

III. THE VELOCITY FIELDS

The velocity and magnetic fields were calculated by dis-
cretizing Eqs. (5), (6), and (8)–(10), together with boundary
conditions (12) and (7), with a maximum resolution of Nr ×
L = 150 × 80 in order to confirm the validity of the results.
This corresponds to Nθ = 124 points in colatitude because
aliasing is removed in this coordinate (see Ref. [48]). The
finer meshes are needed only to resolve the smallest spatial
scales of the magnetic field. The velocity field is smoother and
can be represented with lower resolutions. The next section
includes a test with different resolutions for the magnetic field
in a temporally chaotic regime.

Two velocity fields of different and complex time depen-
dence are used in the study. Both are temporally chaotic and
correspond, respectively, to Pr = 10−3, Ek = 10−4, and Ra =
10000, and Pr = 10−2, Ek = 10−3, and Ra = 21250. These
low Prandtl numbers have been selected because they fulfill
the relation Pr/Ek ≈ 10 that, according to Ref. [31], guar-
antees the existence of flows with a dominant antisymmetric
component with respect to the equator, and approximate the
hydrodynamic Prandtl number of liquid metals and solar
plasmas [35].

The velocity fields of the solutions corresponding to Pr =
10−3 and Ek = 10−4 behave as repeated transients, which
start with nearly periodic oscillations of the velocity field
of slowly increasing amplitude. This regime is followed by
a chaotic fast increase and decrease of the amplitude. The
frequency of the transients corresponds to the frequency ap-
pearing at the third Hopf bifurcation of the flow from the
conduction state, when the axisymmetry is kept. This behavior
was identified in Sánchez Umbría and Net [36] as a global dy-
namics in which the trajectories remain for a long time close to
the unstable manifold of a periodic orbit, which is close to
the stable manifold of another more unstable cycle. When the
trajectories approach the second orbit they are repelled along

FIG. 1. Radial component of the velocity at a point of the sphere
(oscillatory curve, black online) and norm of the potentials of the
magnetic field (curve with the fast growth at t = 0.810, blue online)
showing the timescale of the temporally chaotic motion. The param-
eters are Ek = 10−4, Pr = 10−3, Ra = 104, and Prm = 75.

its unstable manifold, and they are sent back quickly to the
vicinity of the first periodic orbit, moving close to what it is
known as a heteroclinic cycle [see Figs. 13(a) and 13(b) in
Ref. [36] to visualize this dynamics]. The plots of v and 

in the θ − ϕ, r − ϕ, and r − θ sections look like those of the
periodic solutions shown, for instance, in Fig. 5 of Ref. [36],
during the normal oscillations. They look irregular during
the chaotic motion, with increasing and decreasing intensity.
When the norm of v increases, the flow intensifies mainly
near the axis. Animations of this dynamics can be seen in the
Supplemental Material [49] for this paper.

The first animation illustrates the variation of the velocity
field and the temperature perturbation during the chaotic mo-
tion, in the sections indicated by dashed lines. The parameters
are those of Fig. 1, and the time interval, (0.801, 0.816),
is contained in that shown there. It includes an initial part
in which the amplitude of the oscillations is still growing,
followed by an irregular increase and decay (see the time
in the movie). The length of the arrows and the intensity of
the color are scaled with respect to the maximum over the
full sphere and over the time interval considered, to allow
seeing the growth and decay of v. In the second animation
the contour plots correspond to the kinetic energy density. In
this case, the intensity of the color is scaled at each snapshot
taking the maximum only over the full sphere. Therefore
red corresponds to the maximal kinetic energy at each time
instant. In this way it is easier to see where the maxima
are. Both animations show that during the chaotic motion the
spatial scale of the structures is still large.

Figures 2(a) and 2(b) show that when the trajectory re-
mains on the unstable manifold of the first periodic orbit the
velocity potentials can be described with just three associated
Legendre functions, P0

1 , P0
2 , and P0

3 , while in the short fast
transient up to 15 functions must be taken into account
[Figs. 2(c) and 2(d)]. In the first case the kinetic energy of the
fluid is concentrated close to the surface of the fluid sphere,
while in the second it moves to the poles and to the center.

The second velocity field considered corresponds to a
temporally chaotic flow at Ra = 21250. It appears after
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FIG. 2. Potentials of the velocity field [(a), (b)] at t = 1.071 during the regular oscillations and [(c), (d)] at t = 1.2836 during the irregular
motion. The parameters are Ek = 10−4, Pr = 10−3, Ra = 104, and Prm = 62. The times indicated correspond to Fig. 3(c).

three Hopf bifurcations from the conduction state (see also
Ref. [36]). In contrast to the preceding case this sequence
of bifurcations does not lead to a global heteroclinic dy-
namics. The maximum value of the norm of this solution of
system (8)–(10) has a strong variation (around 33%). The
velocity field must be described by several Legendre polyno-
mials at any time instant [as happens in the case illustrated
with Figs. 2(c) and 2(d)], and the kinetic energy is always
concentrated near the rotation axis and the center of the sphere
(see Ref. [36] for more details).

IV. THE MAGNETIC FIELDS

Figure 3 shows the influence of the dynamics of the chaotic
flows found at Ek = 10−4 and Ra = 104 on the kinematic
generation of B. According to Refs. [50,51], among others,
the growth rate of the m = 1 azimuthal mode is the first in
becoming positive as Prm is increased, so, after checking this
point in a few cases, expansion (3) was restricted to m = 1
in the calculations. The left axis label denotes the Euclidean
norm of the potentials of B, defined as

‖B‖2 =
[

L∑
l=m

[∥∥Gm
l

∥∥2
2 + ∥∥Hm

l

∥∥2
2

]]1/2

, (14)

which, in principle, depends on the grid. The number of
radial points taken to compute the figures showing norms
was always the same, and the amplitudes of the Legendre
polynomials of highest degree, l , were always negligible in
the cases explored, for either B or v. Moreover Eq. (1) is linear
in B, and therefore only the relative values of the amplitudes
of B in Fig. 3 make sense. The right axis label indicates the
scale of the radial component of v, and in this way the lower
curve of Fig. 3(a) shows the variations of the amplitude of the
flow.

The upper curve of Fig. 3(a) and those of Figs. 3(b)–3(d)
represent, in logarithmic scale, the bursting magnetic field
generated by the torsional chaotic flow. The first corresponds
to Prm = 150, far from the critical value. The bursts are
extremely vigorous. The norm of B increases several orders of
magnitude, and the magnetic diffusion is unable to dissipate,
during the long time interval of small-amplitude oscillations
between bursts, all the energy injected by the velocity field
during the bursts. In this way after each burst the intensity of
B is higher, as happens, for instance, in Figs. 3(a) and 3(b).
Between bursts the oscillations are nearly periodic with the
frequency of the periodic torsional solutions, i.e., of order Ek.
When Prm is decreased the bursting phenomenon continues,
but for values under the critical, the magnetic dissipation
is able to reduce the magnetic field until its extinction [see
Fig. 3(d)]. However, some estimations show that even in this
case the complete annihilation of B could take millions of
years for astrophysical objects. For a value near the critical
there is a time-averaged balance (from burst to burst) between
the magnetic energy dissipated and that supplied by v. Then,
after a burst, B nearly recovers the mean amplitude it had
before, as can be seen approximately in Fig. 3(c), calculated
for a value very near the critical. In this case the transient until
reaching the monotonous regime takes a long time because of
the proximity to the bifurcation.

Although it can seem from Fig. 3 that the jumps are quite
abrupt, a meticulous inspection of the time evolution shows
that there are very short time-scale fluctuations. Figure 4
contains some details of Fig. 3(b) in several time intervals.
The first, Fig. 4(a), displays the regular oscillations between
two bursts. The period of these oscillations is that of the
forcing velocity, 7 × 10−4 viscous units. During this regime
the time step taken by DLSODPK is of the order of 5 × 10−7.
However, in order to save storage space, the results of the time
integration are written only every 6 × 10−6 time units. This
means that the oscillations are smoother than what is seen in
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FIG. 3. (a–d) Time evolution of the l2 norm of the potentials of the magnetic field for Prm = 150, 75, 62, 50 in logarithmic scale. In (a) it
is shown also the time evolution of vr (ro/3, π/6, ϕ) (right axis). The other parameters are Ek = 10−4, Pr = 10−3, and Ra = 104.

Fig. 4. The second plot is a blowup of the third burst, showing
that it spans about 0.02 time units. In this case the time step
is shorter, of the order of 2 × 10−7 time units. Figures 4(d)
and 4(e) are details of the same burst when B increases and
when it reaches the maximum value. They illustrate that the
averaged timescale of the fluctuations of the magnetic field is
below 10−4. Figures 4(c) and 4(f) show the loss and the gain
of regularity of the oscillations at the beginning and at the end
of the burst, respectively.

The magnetic field B was initially calculated with Nr ×
L = 60 × 60, 100 × 50, and 150 × 80, and different values of
the parameters, to select an adequate discretization. Figure 5
shows three simulations for Ra = 104 and Prm = 75. They
were started from different initial conditions with random B
to check that the dynamics found is robust. The temporal
sequences in Fig. 5 were shifted in time and scaled vertically
to a similar level at t = 0.4, i.e., at the beginning of the
first burst, to facilitate the comparison. In addition, the initial
transients were removed. This can be done because the induc-
tion equation is linear and there is always an undetermined
multiplicative factor on B.

The dynamics including the bursts is chaotic. Changes in
the initial conditions give rise to different trajectories which
separate exponentially. The same holds when comparing solu-
tions corresponding to different truncation parameters, even if
the initial conditions are interpolated from the same solution.
Therefore it is not possible to make a complete quantitative
numerical study of the convergence of the solutions with the
resolution in this regime. Since it is chaotic the width, height,
and fluctuations of the bursts, and the relative jump between
consecutive plateaus away from the bursts, change, even for a
same trajectory. In any case it was checked that, for any of the
three resolutions, the time distance between bursts, T2, is given
by the period of the repeated transients of the velocity field,

and that the period of the almost regular oscillations between
bursts is that of the forcing, i.e., that of the inertial oscillations,
T1. These magnitudes are independent of the truncation (from
a threshold of the resolution) because they depend on the
regular oscillations of the velocity field, while the trajectories
are spiraling close to the unstable manifold of one of the
periodic orbits driving the dynamics. In contrast the shape of
the bursts depends on the chaotic part of the trajectory of the
velocity field outside the mentioned manifold, and they can
differ from one resolution to another.

Table I summarizes an approximate quantification of the
results. They agree quite well, but the width of the bursts,
WB, defined as the time distance from their starting point
to the beginning of the regularization of the oscillations, is
wider for the lower resolution than for the others. For this
reason, since T1 and T2 are approximately the same for the
higher resolutions, and in order to save computational time,
Nr × L = 100 × 50, with Nθ = 76, was usually used in the
computations.

Figure 6 shows the contour plots of the largest component
of B, Bϕ , on a spherical surface, the equatorial plane, and
a meridional section, at different times. The location of the
sections is indicated in the pictures, and the gray scale (color
online) is normalized over the full sphere for each snapshot
(group of three plots). The sections in the first and third
columns pass through the maximum value of Bϕ , so the radius
of the spherical section is different at each t . The arrows are
the projections of B on each surface. The spatial structure of
B is much more complicated than that of v. In this case many
spherical harmonics contribute to the solution even during the
transients between bursts. The components of B spiral from
the interior of the sphere to its surface with variable intensity,
giving rise to bands of nonzero B at different constant radii.
In a colatitudinal section, and during the oscillations between
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FIG. 4. (a–f) Details of Fig. 3(b). Panels (a), (c), and (f) are plotted in linear scale.

bursts, the bands behave as very localized spots, most of the
time concentrated near the outer surface at different latitudes,
as in Figs. 6(a)–6(c) and Figs. 6(p)–6(r). Their position has a
strong variation over time and between bursts and can give rise
to hemispherical magnetic fields in agreement with Ref. [52].

FIG. 5. Time sequences for the resolutions Nr × L = 60 × 60
(middle curve at t = 1.1, magenta online), 100 × 50 (lower curve
at t = 1.1, black online), and 150 × 80 (upper curve at t = 1.1, blue
online) for Ek = 10−4, Pr = 10−3, Ra = 104, and Prm = 75.

Preceding each burst these spots move towards the polar
regions [see Figs. 6(d)–6(f)], and during the eruption they
concentrate around the rotation axis and close to the center
of the sphere [see Figs. 6(g)–6(i) and Figs. 6(j)–6(l)].

In order to compare the above magnetic fields with those
generated by the flows that appear after a sequence of Hopf
bifurcations giving rise to local dynamics, the temporally
chaotic v shown in the lower plot of Fig. 7 was considered.
The time evolution of the norm of B, after removing the initial
transient, is shown in the upper part in logarithmic scale.
The magnetic Prandtl number is 27. The almost horizontal

TABLE I. Comparison of the timescales of B for different res-
olutions. T1 is the period of the regular oscillations, T2 the period
of the bursts, WB the width of the bursts in time units, and Wo an
approximation of the timescale of the fast fluctuations during the
bursts. The parameters are Pr = 10−3, Ek = 10−4, Prm = 75, and
Ra = 104.

Nr × L Nθ 10−4 T1 T2 WB Wo

60 × 60 92 7.14 0.44 0.08 �10−4

100 × 50 76 7.14 0.41 0.023 �10−4

150 × 80 124 7.14 0.41 0.017 �10−4
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(j) (k) (l)

FIG. 6. Contour plots of Bϕ on a spherical surface taken at r > 0.9 in (a), (d), (m), and (p), and at r = 0.02 in (g) and (f). Equatorial
sections in the second column, and meridional planes in the third, indicated by dashed lines. In (a)–(c) t = 1.4746, (d)-(f) t = 1.6741, (g)–(i)
t = 1.6873, (j)–(l) t = 1.6947, (m)–(o) t = 1.7925, and (p)–(r) 1.8697. The arrows are the projections of B on each section. The parameters
are Ek = 10−4, Pr = 10−3, Ra = 104, and Prm = 62.

line is the exponential fit ‖B‖ = 2.34 exp(−0.19t ), indicating
that Prm is only slightly below the critical value. In fact,
Prm = 28 already gives a positive growth rate. Once again,
the generation of magnetic field is correlated with the increase
of the amplitude of the oscillations of v, but the flow never
reaches a regime of almost periodic oscillations, in which
there is a clear decay of B due to their regularity. The structure
of the magnetic field is also very localized, like that shown in
the contour plots of Fig. 6, spiraling from the interior to the
surface and forming thin bands on the spherical projections.

FIG. 7. Time evolution of the l2 norm of the potentials of the
magnetic field for Prm = 27. The other parameters are Ek = 10−3,
Pr = 0.01, and Ra = 21250. The horizontal line (blue online) is the
exponential fit of the solution.

The main difference is that the density of the spots in the
meridional sections near the rotation axis and the interior of
the sphere is significant at any time.

V. DISCUSSION AND CONCLUSIONS

This work is close to those presented at the beginning of
the introduction in the sense that it studies convection-driven
kinematic dynamos with large-scale velocity fields obtained
through DNSs, but at very low Pr and with predominantly
equatorial antisymmetric oscillatory flows. Moreover, these
torsional velocity fields need to develop a mean flow to gen-
erate magnetic fields, as happens in the case of the large-scale
thermal waves. However, in this case the simulations show
that the long-sustained spiral field in the outer surface between
bursts comes from the stretching of the strong B confined in
the interior of the sphere during the bursts. In this way the
initial small azimuthal scale of B elongates, retaining a small
latitudinal scale.

In agreement with Ref. [53], it has been found that periodic
axisymmetric torsional velocity fields are unable to sustain
magnetic fields. The asymptotic theory of Zhang et al. [31]
shows that periodic torsional convection is dominated at first
order by inertial periodic oscillations, while buoyancy forces
appear only at next order to overcome the viscous dissipation.
These flows cannot generate mean flow since the Reynolds
stresses related to them are zero. On the other hand, the theory
of Herreman and Lesaffre [53] shows that simple inertial
waves cannot drive dynamos at leading order because the
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Stokes drift, which acts as a mean flow, is zero. Moreover,
one of the applications studied there is the inertial flow in
a rotating sphere. Consequently, the above numerical results
seem to confirm that this theory could be applied to the pure
periodic case and during the long transients between bursts,
but not when the trajectory leaves the manifold connecting
the unstable periodic solutions. Torsional flows, like that of
Fig. 3(a), can be seen as a perturbation of the thermal-inertial
solutions throughout the long time of regular oscillations. In
this case they are very well represented by three Legendre
functions without generation of mean flow, and B tends to
decay. However, out of the manifold connecting the unstable
orbits, the temporal dependence of v, illustrated in Fig. 3(a),
involves several Legendre functions [see Figs. 2(b) and 2(c)],
generating mean flow and consequently magnetic field.

Although it is already known that the periodic torsional
solutions bifurcate to 3D flows, our recent calculations show
that the transition can take place through a bifurcation that
breaks the axisymmetric invariance and leads the flow to drift
azimuthally, as it is well known that that happens when the
axisymmetry of a steady flows is broken (see, e.g., Ref. [54]).
Then the quasiperiodic flow consists of a torsional dynamics
precessing azimuthally. Subsequent Hopf bifurcations could
either give rise to a global dynamics similar to that described
in Ref. [36] with a superposed drift, or to a sequence of
local bifurcations, in any case generating mean zonal flow
and maintaining the torsional oscillations. However, an im-
portant open problem is to find out in a next step how the
Lorentz force and the saturation of the magnetic field would
affect the bursting phenomenon and the structure of B. One
should expect that during the bursts the balance of forces
of the momentum equation will be modified. Cattaneo and
Tobias [15] studied how dynamos saturate from a full MHD
system (rotating plane layer) and from a turbulent shell model.
Two magnetic fields were considered: one, B1, coupled with
the velocity via the Lorentz term, and another, B2 uncoupled.
They concluded that a saturated velocity satisfying the full
MHD system remains a source of kinematic dynamos for
any initial condition of B2 not aligned with B1. Livermore
et al. [55] analyzed the differences between a kinematic and
a dynamic dynamo driven by a nonaxisymmetric helical flow
in spherical geometry without rotation. They found that the
nonlinear interactions enlarge the scale of B generating a
significant mean component. The forcing of the kinematic
dynamo studied in the present work is a predominant equato-
rial antisymmetric inertial flow and requires further attention.
On the other hand, the unlikely preferred instability of higher
azimuthal wave-number modes in some regions of the param-
eter space would not change the conclusions of this work. It
would only lower the critical value at which the instability
takes place, and it would increase the number of arms of the
spirals of B.

The dynamics found in this study shows two important
differences with the study of Gog et al. [39] mentioned in

the introduction, aside from the existence of rotation in our
model. The states organizing the nearly heteroclinic cycle
are unstable periodic orbits, and no noise is added to the
system to sustain the dynamo. An initial perturbation of the
zero magnetic field is enough to drive the kinematic dynamo,
above the critical parameter. Although the parameters of this
work are far from astrophysical and geophysical values, the
velocity fields taken into account are real solutions of a
thermal convection problem in internally heated rotating fluid
spheres. Then the cyclic generation of B in the form of bursts,
each one followed by a long interval of almost constant energy
and a subsequent decay, can provide some insight for the
development of theoretical models explaining observations
of cyclic phenomena. The periodicity should depend on the
time spent by the trajectories spiraling close to the manifold
that connects the periodic orbits. The duration and height of
the bursts should depend on the time spent by the trajectory
outside this manifold and how far it arrives, respectively.

Intermittent bursts of strong magnetic activity were de-
scribed by Sweet et al. [56] when they investigated the dy-
namo action of a 3D chaotic v, solution of the MHD equa-
tions in three dimensions with periodic boundary conditions.
They found that the transition from B = 0 to bursts takes
place when a Lyapunov exponent becomes positive for per-
turbations transverse to the invariant manifold B = 0, which
contained an already chaotic v for parameter values under the
critical. However, as far as we know the cyclic generation of
bursts of magnetic field has not been reported before in MHD,
but bursting and spiking behavior is well known in other fields
as nonlinear optics [57], mathematical models of excitable
neurons [58], and, in general, in the presence of excitable
media [59]. Despite these spikes and trains of spikes are very
narrow, they grow exponentially in a very short timescale
compared with the time between them.

Although the velocity fields used as dynamo generators
were obtained from a thermal convection problem of a pure
fluid in spherical geometry, a global dynamics similar to
that described here is shared by many other systems in fluid
dynamics. For instance, in Ref. [60] the presence of concen-
tration gradients gives rise to heteroclinic chains connecting
different objects. Consequently, the global mechanism of
generation of B in the form of bursts is probably a general
phenomenon due to this dynamics, although the structure of
B will change in each problem.
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