
Bachelor’s thesis
Bachelor’s degree in Mathematics

Bachelor’s degree in Informatics Engineering

Extracting weather features from
outdoor scene images using

Convolutional Neural Networks

May 2022

Author: Francesc Martí Escofet

Advisor: Shuran Song

Tutor: Jordi Torres Vinyals

Acknowledgments

First of all, I would like to thank Prof. Shuran Song for giving me the opportu-
nity to do my bachelor’s thesis under her supervision and for guiding me in my
research. I would also like to thank Columbia University for making this stay pos-
sible using their resources and being able to be part of their Columbia Artificial
Intelligence and Robotics Lab (CAIR). I would also like to acknowledge Professor
Jordi Torres for his supervision on my project from Barcelona.

In addition, I would like to thank Centre de Formació Interdisciplinària Superior
(CFIS), Prof. Miguel Ángel Barja, Prof. Toni Pascual and Prof. Eduardo Alarcón
for giving me the opportunity to do my final thesis project in one of the top uni-
versities in the world. Also, I would like to thank fundació CELLEX and CFIS’
private sponsors for their economical support.

Finally, I would like to thank my parents Eduard and Dolors, and my family
M.Àngels E., Romà, Jenny, M.Àngels M., Cata, Júlia, Mihir and Laura for encour-
aging me to take this opportunity and their support throughout the whole expe-
rience. Moltes gràcies a tots.

Abstract

In this thesis we construct a new dataset with images extracted from webcams
around the world using EarthCam, a public website where they have multiple
live cameras showing outdoor scenes and any user can take a screenshot of the
camera at any time and it becomes publicly available, they call this the Hall of
Fame. We associate the images with their weather conditions, obtained via the
OpenWeather API, such as the main weather description and the temperature.

We also develop convolutional neural networks to predict a weather condition for
an image and we propose some newmodel architectures for being able to predict
the temperature from images from places the model has not been trained on.

Keywords: Artificial intelligence, computer vision, deep learning, convolutional
neural networks

MSC2020: 68T07

www.earthcam.com
https://openweathermap.org/

Resum

En aquesta tesi construïm un nou conjunt de dades amb imatges extretes de web-
cams situades arreu del món utilitzant EarthCam, una web pública on tenen di-
verses càmeres en directe que mostren escenes exteriors i on qualsevol usuari pot
realitzar una captura de pantalla en qualsevol moment i es publica a la web, ho
anomenen Saló de la Fama. Aleshores associem les imatges amb les seves condi-
cions meteorològiques, obtingudes a través de l’API d’OpenWeather, com la des-
cripció de la condició meteorològica principal i la temperatura.

També desenvolupem vàries xarxes neuronals convolucionals per predir la con-
dició meteorològica per una imatge i proposem noves arquitectures per predir la
temperatura d’imatges d’escenes en les quals el model no ha estat entrenat.

Paraules clau: Intel·ligència artificial, visió artificial, aprenentatge profund, xar-
xes neuronals convolucionals

MSC2020: 68T07

www.earthcam.com
https://openweathermap.org/

Resumen

En esta tesis construimos un nuevo conjunto de datos con imágenes extraídas de
webcams situadas alrededor del mundo usando EarthCam, unaweb pública don-
de tienen múltiples cámaras en directo que muestran escenas exteriores y donde
cualquier usuario puede realizar una captura de pantalla en cualquier momento y
se publica en la web, lo llaman Salón de la Fama. Entonces asociamos las imágenes
con sus condiciones meteorológicas, obtenidas mediante la API de OpenWeather,
como la descripción de la condición meteorológica principal y su temperatura.

También desarrollamos diferentes redes neuronales convolucionales para prede-
cir la condición meteorológica principal de una imagen y proponemos nuevas ar-
quitecturas para predecir la temperatura de imágenes de escenas donde elmodelo
no ha sido entrenado.

Palabras clave: Inteligencia artificial, visión artificial, aprendizaje profundo, redes
neuronales convolucionales

MSC2020: 68T07

www.earthcam.com
https://openweathermap.org/

Bachelor’s thesis Francesc Martí Escofet

Contents

1 Introduction 5

2 Related work 6
2.1 Label prediction . 6
2.2 Temperature prediction . 7

3 Artificial Intelligence, Deep Learning and Computer Vision 9
3.1 Artificial Intelligence . 9
3.2 Deep Learning . 9

3.2.1 Artificial Neural Networks 9
3.2.1.1 Activation functions 10

3.2.2 Convolutional Neural Networks (CNNs) 11
3.2.2.1 Most popular CNNs architectures 14
3.2.2.2 CLIP . 19

3.2.3 Training of neural networks 21

4 Dataset 23
4.1 Weather condition labels . 23
4.2 Temperature . 28

5 Weather classifier 30
5.1 Metrics . 30

5.1.1 Accuracy . 31
5.1.2 Precision . 31
5.1.3 Recall . 31
5.1.4 F1-score . 32

5.2 ResNet . 32
5.3 CLIP . 33
5.4 Loss . 34

6 Temperature regressor 36
6.1 Metrics . 36

6.1.1 Mean Squared Error (MSE) 36
6.1.2 Root Mean Squared Error (RMSE) 37

1

Bachelor’s thesis Francesc Martí Escofet

6.1.3 Mean Absolute Error (MAE) 37
6.1.4 R2 . 37

6.2 Using all cameras . 38
6.3 Different evaluation cameras . 38

6.3.1 Without reference images . 42
6.3.2 Using reference images . 42

6.3.2.1 Batch concatenating 42
6.3.2.2 Channel concatenating 43
6.3.2.3 Two CNNs . 45

6.4 Loss . 46

7 Results 49
7.1 Weather classifier . 49
7.2 Temperature regressor . 51

8 Conclusions 57

2

Bachelor’s thesis Francesc Martí Escofet

List of Figures

2.1 WeatherNet archicture [13] . 7

3.1 Structure of simple neural networks 10

3.2 Graphs of the most common activation functions: sigmoid, tanh
and ReLU [17] . 11

3.3 Visualization of the feature maps and the filters on some CNNs . . 13

3.4 Example of feature map of size 4x4 going through a Max Pooling
and a Average Pooling layers with a kernel size of 2x2 [36] 13

3.5 An example of fully connected layers with three output cells: each
one containing the probability of the image being of a specific class
respectively [25] . 14

3.6 LeNet-5 Architecture [21] . 14

3.7 Evolution of the top 5 error in the classification task and architec-
ture depth [33] . 15

3.8 Inception modules of the GoogLeNet architecture [30] 16

3.9 Architecture of the VGG network [29] 16

3.10 Residual block [11] . 17

3.11 ResNet-34 architecture compared to VGG and a plain 34 layer net-
work [11] . 18

3.12 CLIP learning and testing process [26] 20

4.1 Example of images in the datasetwith the name of their camera and
their weather condition . 24

4.2 Some examples of imageswhere theweather code is from the group
7XX: Atmosphere . 25

4.3 Some examples of imageswhere theweather code is from the group
80X: Clouds . 26

4.4 Some examples of sequence of images where the weather condi-
tions change rapidly . 27

4.5 Class distribution of the final dataset 27

4.6 Temperature distribution of the dataset 28

5.1 Different architectures for ResNet [11] 32

3

Bachelor’s thesis Francesc Martí Escofet

6.1 Architecture of the network for predicting temperature from im-
ages using only the image to predict the temperature from as in-
put. B is the batch size and H andW the image height and width
respectively. In this diagram B = 4 38

6.2 Example images extracted from the evaluation cameras and their
temperature . 40

6.3 Probability density function of the temperature for train and vali-
dation data and for each camera on the validation dataset 41

6.4 Architecture of batch concatenating network. B is the batch size,
N_REF is the number of reference images used, andH andW the
image height and width respectively. In this diagram B = 4 and
N_REF = 3 . 43

6.5 Diagram showing how weights are initialized in the first convolu-
tion layer for the channel concatenating architecture. N_REF is
the number of reference images used. In this diagram N_REF = 3. 44

6.6 Architecture of channel concatenating network. B is the batch size,
N_REF is the number of reference images used, andH andW the
image height and width respectively. In this diagram B = 4 and
N_REF = 3 . 45

6.7 Architecture of two CNNs network. B is the batch size, N_REF
is the number of reference images used, and H and W the image
height andwidth respectively. In this diagramB = 4 andN_REF =

3 . 46
6.8 Example of covariate shift . 47
6.9 Graph of the used scaling function for the weights: tanh, sigmoid

and scaled_sigmoid . 48
7.1 Test dataset confusion matrix for the best ResNet-50 model 51
7.2 Temperature prediction results of the best model for some exam-

ples of each testing camera . 56

4

Bachelor’s thesis Francesc Martí Escofet

1 Introduction

Formanyyears the task of identifying visual attributes from images has beenheav-
ily studied, mainly, previous works have been focused on recognizing ‘explicit
visual attributes’ such as textures, color distribution [7] or semantics categories
[16]. During the years, as the computer vision techniques improved, many works
have been studying what is called ‘subtle attributes.’ These subtle attributes are
usually not clearly defined in an explicit form but the human mind can usually
recognize them. One example of this is a method proposed by Hays and Efros
where they estimated geographic information from images [10].

As human beings, we usually associate colors with some adjectives, for example,
red is usually associated with ‘warm’ or ‘hot’ and blue with ‘cold’. In the case
of temperate climate, white is associated with ‘cold’ and ‘winter’ due to winter
snow, green with ‘fresh’ and ‘summer’ as the flora becomes green in ‘spring’ and
‘summer’ and yellow light is associated to ‘warm’ due to the color of sunlight.
Given an outdoor image, a person canmake an approximate guess on the ambient
temperature by looking at the amount of light, the colors on the image and the
present man-made objects, and this is one of the tasks we will be focusing on in
this thesis.

Another problem in the field of data science is the creation of datasets, currently
there exists a lot of datasets but most of them have been labeled by humans, and
that increases a lot the cost of creating a new dataset or expanding an existing
one to have more images, as, with bigger models, bigger datasets are needed. For
that reason, in this thesis we first create a new dataset and label it automatically
using data from weather stations around the world so that people are not needed
to label each image.

After that, we explore different methods to extract weather features from images
such as themain weather condition and the temperature. In the case of predicting
the temperature we propose different convolutional network architectures for the
model being able to predict temperature from cameras it has not been trained on.

5

Bachelor’s thesis Francesc Martí Escofet

2 Related work

In this section of the thesis, we will show some related work in the field of extract-
ing weather data from images.

One of the largest public database with outdoor webcams images is the Archive
of Many Outdoor Scenes (AMOS) [14], a project started in 2007 by Jacobs et al.
It consists of a dataset of hundred of millions of images gathered from publicly
accessible outdoor webcams from around the world. It has been used to predict
wind speed and vapor pressure [15] and other conditions from the images.

2.1 Label prediction

In the case of labeling an image with a weather condition, one of the first works
was done by Lu et al. [23] in 2014, they introduced a new dataset consisting of
10k images labeled as either Cloudy or Sunny. They compute for each image what
they call weather features, a multi-dimensional feature vector formed by concate-
nating five hand-crafted feature components: Sky, Shadow, Reflection, Contrast,
and Haze.

A few years later, the same authors of the previous paper combined hand-crafted
features and features extracted by a CNNarchitecture to increase the performance
of their method [24].

In 2015, Elhoseiny et al. [6] used the dataset introduced in [23] and used the
AlexNet architecture [19] to predict the labels and achieved a 54.8% relative im-
provement in comparison to the previous work using hand-crafted features.

The problemwithmany of these architectures were that they considered that each
image could only have one unique label, but in real-world conditions weather can
have multiple labels, i.g. in one image it can be rainy and sunny at the same time.

In 2017, Li et al. [22] proposed using auxiliary semantic segmentation of weather
cues to comprehensively describe the weather conditions.

In 2019, Ibrahim et al. [13] used the ResNet architecture [11] to extract various

6

Bachelor’s thesis Francesc Martí Escofet

weather and visual conditions such as Dawn/dusk, day and night for time de-
tection, and glare for lighting conditions, and clear, rainy, snowy, and foggy for
weather conditions. In Figure 2.1 is shown the architecture used for them to pre-
dict multiple labels.

Figure 2.1: WeatherNet archicture [13]

2.2 Temperature prediction

In the more concrete case of temperature prediction using images, one of the first
works on it is a work byGlasnet et al. in 2015 [9]. They study interactions between
the appearance of an outdoor scene and its temperature from images from a spe-
cific camera with past recordings. They managed to achieve impressive results
using handcrafted features and simple regressionmodelswithout using deep con-
volutional networks.

After this work, Volotkin et al. [34] used deep neural networks to predict temper-
ature as well as the time of the year of an image achieving some better results than
the works using hand-crafted features. As in the work of Glasner et al. [9], they
use the VGG-16 [29] architecture for their CNNs pretrained on ImageNet. Some
of their more important findings are the following: i) The pooling layers provide

7

Bachelor’s thesis Francesc Martí Escofet

better features than the fully connected layers. ii) The quality of the features im-
proves a little with fine-tuning of the CNN on training data.

In 2018, Chu et al. [2] studied ambient temperature prediction based on deep
neural networks in two different scenarios: predicting the ambient temperature
of a single outdoor image and predicting the temperature of the last image in a
sequence of images. In the first scenario, they used visual features extracted by
a CNN. In the second scenario they take into account the temporal evolution of
visual appearance and they construct a recurrent neural network to predict the
temperature of a given image sequence.

8

Bachelor’s thesis Francesc Martí Escofet

3 Artificial Intelligence, Deep Learning and
Computer Vision

This chapter contains an introduction toArtificial Intelligence, Deep Learning and
Computer Vision field. More specifically, it contains an introduction to Artificial
Neural Networks and how they work.

3.1 Artificial Intelligence

Artificial Intelligence (AI) is an immense research field for trying to simulate hu-
man intelligence processes by machines. The most popular textbooks define the
field as the study of ‘intelligent agents’ that receive percepts from the environment
and take actions that affect the environment to achieve its goals.

AI includes many different subfields such as speech processing, computer vision,
natural language processing, knowledge representation...

3.2 Deep Learning

In the recent years, Deep Learning (DL) has become one of the fastest growing
subfields of AI. DL is part of a broader family of machine learning methods based
on Artificial Neural Networks (ANN). The advantage of deep learning over some
classical machine learning methods like linear regression or a support vector ma-
chine is that an ANN can process unstructured data like images or text and can
process them without the need for human experts.

3.2.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are computing systems inspired by the bio-
logical neural networks that make up the brains of animals. Biologically, a brain
neuron receive a series of stimuli (also named inputs) and produces a specific out-
put signal depending on them. In the AI world, a neuron is a node that performs

9

Bachelor’s thesis Francesc Martí Escofet

a mathematical function depending on its inputs x and produces an output y:

y = f(W Tx + θ) (1)

Where W , θ and f are parameters of the neuron called weights, bias, and acti-
vation function, respectively. In 3.1a we can see a diagram of how an artificial
neuron works.

When we start grouping neurons and using their outputs as the inputs of other
neurons we call it a Neural Network (NN). A NN has at least one input layer and
one output layer, but more layers can be added between them, these are called
hidden layers. A NN with one or more hidden layers is called a Deep Neural
Network (DNN).

(a) An artificial neuron [35] (b) A neural network with 1 input layer,
1 output layer and 3 hidden layers [5]

Figure 3.1: Structure of simple neural networks

3.2.1.1 Activation functions

To introduce nonlinearity in neural networks, we need to use activation functions,
these are nonlinear mathematical functions that are applied to the output of a
neuron before passing the value to the next layer. Themost used are the following
ones:

sigmoid

The sigmoid takes any real value as input and outputs a value in the range [0, 1],
the larger the input, the closer the output will be to 1, whereas the smaller the
input, the output will be closer to 0.

10

Bachelor’s thesis Francesc Martí Escofet

tanh

The tanh takes any real value as input and outputs a value in the range [−1, 1]. It
has a similar shape as the sigmoid function. The larger the input, the closer the
output will be to 1, whereas the smaller the input, the ouput will be closer to -1.

ReLU

The rectified linear unit (ReLU) is the most widely used actually as the hidden lay-
ers activation function. It is common because it is simple and effective in solving
some of the problems of the activation functions previously used, such as sigmoid
and tanh. In particular, it is less sensitive to the vanishing gradient problem, al-
though it can suffer from other problems, such as saturated units.

The plots and formulas of these activation functions are shown in Figure 3.2.

Figure 3.2: Graphs of the most common activation functions: sigmoid, tanh and
ReLU [17]

3.2.2 Convolutional Neural Networks (CNNs)

One of the main architectures of neural networks for working with image data are
Convolutional Neural Networks (CNNs). They were introduced by Fukushima
in 1980 [8], the Neocognitron introduced the two basic types of layers in CNNs:
convolutional layers and downsampling layers. In 1989 LeCun et al.[20] used the
backpropagation algorithm (a gradient based method) to learn the convolution
kernel coefficients directly from images of handwritten numbers. This learning
was fully automatic and performed better than manual coefficient design. This
approach became one of the foundations of modern computer vision.

11

Bachelor’s thesis Francesc Martí Escofet

CNNs are designed to process images because they use their spatial structure to
extract additional information, treating differently pixels which are close together
from pixels which are far apart in the image. CNNs architectures are mainly com-
posed of three types of layers:

• Convolutional layers: They are the most important layers in the architec-
ture and the ones after which the architecture is named, they perform an
operation called convolution. In the context of neural networks, a convolu-
tion is a linear operation that involves the multiplication of a set of weights
with the input, similarly to a traditional neural network. As the input to the
network is two-dimensional, these multiplication is performed between an
input data and a two-dimensional array of weights, which is called a filter
or a kernel. These layers consists of a number of predefined filters, each of
them smaller than the input as it allows the same filter to be multiplied by
the input multiple times at different points on the input, usually these fil-
ters are applied systematically to each filter-sized patch of the input data.
In the case of images with more than one channel (e.g. 3 channels for RGB
images), the filter has a third dimension which extends to all the channels.

Each of these filters produces a two-dimensional resultwhich is called feature
map. After a featuremap is created, each value on it is passed through a non-
linear function, usually a ReLU .

Figure 3.3a shows an example of the feature maps extracted by the VGG-16
architecture [29] and Figure 3.3b shows an example of the filters learned by
AlexNet [19].

• Pooling layers: These layers are responsible for reducing the dimensional-
ity of the feature maps by combining the outputs of neuron clusters in one
layer into a single output. These are layers without learnable parameters.
The most common pooling layers areMax Pooling andAverage Pooling. Their
operation is really instinctive, first they divide the feature map in regions of
the size of the kernel of the layer, usually 2x2, and later they compute their
function on each of these patches, taking the maximum of their values or
averaging them respectively.

Figure 3.4 shows an example of a featuremap that goes through these layers.

12

Bachelor’s thesis Francesc Martí Escofet

(a) Visualization of the feature maps ex-
tracted from the first Convolutional Layer
in the VGG-16 Model [1]

(b) Visualization of 96 convolutional
filters of size 11x11x3 learned by the
first convolutional layer of AlexNet on
224x224x3 input images [19]

Figure 3.3: Visualization of the feature maps and the filters on some CNNs

Figure 3.4: Example of feature map of size 4x4 going through a Max Pooling and
a Average Pooling layers with a kernel size of 2x2 [36]

• Fully connected layers: Finally, the last layers are fully connected layers. These
layers connect every neuron in one layer to each neuron in the following. Be-
fore the feature maps are passed through these layers, they are flattened, so
the spatial dimension is lost before going through them. Each of these layers
has a lot of trainable parameters and they tend to overfit the data, so, usually,
CNNs use a small number of fully connected layers. The number of outputs
depends on the task is the architecture designed to solve, for example, if we
are trying to classify images in 100 classes the output will be of size 100, each

13

Bachelor’s thesis Francesc Martí Escofet

one containing the probability of the image belonging to that class.

Figure 3.5: An example of fully connected layers with three output cells: each one
containing the probability of the image being of a specific class respectively [25]

3.2.2.1 Most popular CNNs architectures

Although the convolutional and pooling layers can be combined in very differ-
ent ways, there are some architectures that work better than others due to their
structure.

The first famous CNN that inspired most of the following works in computer vi-
sion is LeNet-5 developed by LeCun et al. in 1998 [21]. They worked on their
architecture for a decade to achieve an efficient architecture. In Figure 3.6 we can
see the architecture of the network. The architecture of LeNet-5was quite simplis-
tic if we compare it with the actual CNNs architecture, but it provided a basis from
which to develop new architectures. Their simple architecture was the following:

Input⇒ Conv ⇒ AvgPool⇒ Conv ⇒ AvgPool⇒ FC ⇒ FC ⇒ Output

Figure 3.6: LeNet-5 Architecture [21]

From 2010 to 2017 the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
[28] took place and some of the winners of the competition have become the most
widely used architectures for CNNs.

14

Bachelor’s thesis Francesc Martí Escofet

In Figure 3.7 the evolution of the top 5 error in the classification task can be seen
how it evolved from 28.2% to 3.57% in only 5 years. It also shows the depth of
the models and it can be seen that over the years the evolution has been towards
deeper architectures.

Figure 3.7: Evolution of the top 5 error in the classification task and architecture
depth [33]

In 2012, AlexNet [19] won the ILSVRC classification challenge. They created a
deeper andmore complex CNN that had kernels of different sizes andmore chan-
nels than LeNet-5. They also started usingReLU in place of using tanh or sigmoid
as an activation function.

The next important breakthrough arrived in 2014, the winner of the competition
was GoogLeNet [30]. They designed a deeper network, it had 22 layers, nearly
tripling the 8 layers used in AlexNet, and more than any of their predecessors.
Although it is a much deeper network they managed to reduce the number of
parameters by 12x in comparisonwithAlexNet, they obtained that by usingGlobal
Average Pooling instead of fully connected layers. Also, to deal with the issue of
training deepermodels they usedmultiple auxiliary classifiers between themodel
to prevent de gradient from dying. However, one of their major new ideas was
using kernels of various sizes in parallel as shown in Figure 3.8.

The 2014 runner-upwasVGG [29], whichwas also a big breakthrough as itwas the
beginning of very deep CNNs. While all previous CNN architectures used larger
receptive fields (e.g., AlexNet used 11x11 convolution kernels), VGG just used 3x3

convolutions. According to the VGG authors, multiple 3x3 convolutions stacked
together are capable of replicating larger convolution filters and can outperform
them. The architecture of this model is show in Figure 3.9.

15

Bachelor’s thesis Francesc Martí Escofet

(a) Inception module, naive version (b) Inception module with dimension re-
ductions

Figure 3.8: Inception modules of the GoogLeNet architecture [30]

Figure 3.9: Architecture of the VGG network [29]

As CNNs got deeper and computer power increased, it was expected that CNNs
would reach higher accuracy, but researchers soon noticed the problem of sim-
ply stacking multiple convolutional layers to create deeper models: the vanishing
gradient.

The vanishing gradient problem appears when trying to train deep networks us-
ing gradient-based learningmethods and backpropagation. In such type of meth-
ods the weights of the CNN update proportionally to the partial derivative of the
error function with respect to the current weight. The problem is that traditional
activation functions such as sigmoid or tanh have gradients smaller than 1 and
as backpropagation computes the gradients using the chain rule, as we go higher
in our network, the gradients become smaller reaching a point where they are
practically 0 and the weights are not updated.

16

Bachelor’s thesis Francesc Martí Escofet

In 2015, ILSVRC was won by the ResNet architecture [11]. This model introduced
shortcut or residual connections, which created an alternate path for the gradient
to skip themiddle layers and directly reach the initial layers, solving the vanishing
gradient problem. The winner of that year was ResNet-152, which contained 152
layers, back then it was the deepest CNN, with a top 5 error of 3.57%, less than the
human error, which is 5%.

The core idea of ResNet is that it is built of residual blocks, where these shortcuts
connections that skip a few layers are introduced, a diagram of a residual block is
shown in Figure 3.10.

Figure 3.10: Residual block [11]

In a regular CNN architecture, when we consider several stacked layers, we have
a mapping from the input x to the output y, which is a function y = H(x). In the
residual blocks, the desired mapped function by the layers is F (x) := H(x) − x,
so the output function is H(x) = F (x) + x.

These skip connections help solve the vanishing gradient problem as the gradient
can backpropagate through them, but they also help by allowing these blocks of
layers to learn the identity function, which ensures that if we add more layers it
will perform at least aswell as the lowest layer, all is needed is thatF (x) = 0which
is easier and the output will be H(x) = F (x) + x = 0 + x = x.

Another advantage of these shortcuts connections is that they do not add extra
parameters or computational needs.

Figure 3.11 shows the architecture of a Resnet-34.

17

Bachelor’s thesis Francesc Martí Escofet

Figure 3.11: ResNet-34 architecture compared toVGG and a plain 34 layer network
[11]

18

Bachelor’s thesis Francesc Martí Escofet

3.2.2.2 CLIP

CLIP [26] was introduced in 2021 by Radford, Wook et al. It is a contrastive ap-
proach to learn image representations from text, with a learning objective which
maximizes similarity of correct text-image pairs embeddings in a large batch size.
Specifically, given a batch of N image-text pairs, CLIP learns a multi-modal em-
bedding space, by jointly training an image-encoder and a text-encoder, such that
the cosine similarity of the valid N image-text pairs is maximized, while the re-
maining N2 −N pairs is minimized.

After pretraining, natural language is used to reference learned visual concepts
or describe new ones enabling zero-shot transfer. Zero-shot learning is a problem
where at test time, the model observes samples from classes which were not ob-
served during training and needs to predict the class they belong to using some
form of auxiliary information.

Figure 3.12 shows how the learning and testing process of the CLIP architecture
works.

They manage to obtain SOTA results, for example, they match the accuracy of
the original ResNet-50 [11] on ImageNet without needing to use any of the 1.28
million examples on which it was trained.

19

Bachelor’s thesis Francesc Martí Escofet

Figure 3.12: CLIP learning and testing process [26]

20

Bachelor’s thesis Francesc Martí Escofet

3.2.3 Training of neural networks

Neural networks are used to represent one function that maps an input x ∈ Rn

to an output y ∈ Rm as y = f(x). This function f is the composition of all the
layers in the NN, each one with their set of parameters: weights and biases. The
objective of training a NN is to find the values that fit best this set of parameters
so that the output of the network is closest to the desired output for each input.
In order to tune this parameters we use a set of inputs called training set and we
fit the values to these samples.

For being able to evaluate how well a set of parameters is working, we need to
have a function that returns a value that tells how far the predictions of the NN
are from the desired output, which is called ground truth, this function is called
loss function. Let ŷ ∈ Rm the output of the NN in a sample and y ∈ Rm the
ground-truth label for that sample, then the loss function returns a real number
that measures how far is ŷ from y.

There are many different loss functions depending on the task of the NN, for ex-
ample, in the case of a regression task,L2 orL1 losses are themost used. In the case
of a classification task, the most used loss function is the cross-entropy. Equation
2 shows an example of these loss functions.

L1(ŷ,y) = |ŷ − y|, L2(ŷ,y) = (ŷ − y)2, L(ŷ,y) = −
C−1∑
c=0

yclog(ŷc) (2)

After the loss function is calculated, the parameters need to be updated according
to this value so they adapt to our specific task and dataset. There are many differ-
ent algorithms that calculate these updates such as Stochastic Gradient Descent
(SGD), Adam [18], AdaGrad [4]... But they all have in common that first-order
derivatives of the loss function with respect to each parameter are needed for the
update.

Backpropagation [27] is the algorithm that calculates these derivatives and is the
core algorithm of NN training. It uses the chain rule recursively to calculate
the gradients: Consider two neurons from consecutive layers, let w and b be the
weights and bias of the first neuron and suppose that we know the derivative of
the loss with respect to the output of the first unit y = f(wx + b), which is the

21

Bachelor’s thesis Francesc Martí Escofet

input of the second unit, ∂L
∂y
, then applying the chain rule we obtain:

∂L

∂wi
=

∂y

∂wi

∂L

∂y
,

∂L

∂b
=
∂y

∂b

∂L

∂y
,

∂L

∂xi
=

∂y

∂xi

∂L

∂y
(3)

As we know that y = f(wx + b) we can easily compute ∂y
∂wi

, ∂y
∂b

and ∂y
∂xi

and once
we know ∂L

∂xi
we can repeat this process recursively until we reach the first layer.

22

Bachelor’s thesis Francesc Martí Escofet

4 Dataset

In this section of the thesis, we will explore the dataset used for this work and
explain how it was collected.

The used images are collected from the EarthCam website, a network of tourism
webcams with a searchable database of iconic places and views from around the
world. They provide live streaming video, time-lapse cameras and photo docu-
mentation. More specifically, the images are extracted from what it is called Hall
of Fame, a system that the users can use to take screenshots of the current image
of the camera and then this image becomes publicly available.

After preprocessing the different cameras and images, such as discarding cameras
with no geographic information or indoor cameras, we decided to use 123 cameras
and downloaded the images betweenDecember 2020 andDecember 2021 discard-
ing the images taken during the night as usually they are too dark for them to be
useful in our task. The total number of images is 275002.

For the weather data we used the OpenWeather API, an API from which you can
get historical weather data for a set of coordinates with hour granularity, this data
includes temperature, humidity, atmospheric pressure, main weather condition
and other conditions. Using the timestamp of each image, we were able to asso-
ciate the current weather condition with each image.

Figure 4.1 shows an example of some images extracted from the dataset with the
name of the camera and the weather conditions associated with it: the main cur-
rent weather condition, which can be one of Clear, Cloudy, Rain or Snow and the
temperature in Kelvin degrees.

4.1 Weather condition labels

In the case of the weather condition labels we had to do a little preprocessing, as
some labels were not accurate due to various causes:

• Weather data has hour granularity and in one hour the main weather con-
dition can change a lot.

23

www.earthcam.com
https://openweathermap.org/

Bachelor’s thesis Francesc Martí Escofet

Figure 4.1: Example of images in the dataset with the name of their camera and
their weather condition

• The visual weather conditions can change a lot in a small area, and some-
times, depending on where the camera is looking at, it can differ.

• The weather data is sometimes an approximation as they may not have a
weather station at the location of the camera.

This website shows the main weather condition codes returned by the Open-
Weather API. We will use these codes to assign a class to our images. The API
divides the codes in 7 groups:

• Group 2XX: Thunderstorm: Used to describe different types of thunder-
storm. We will classify it as rain.

• Group 3XX: Drizzle: Used to describe different types of drizzle. We will
classify it as rain.

• Group 5XX: Rain: Used to describe different types of rain. We will classify
it as rain.

24

https://openweathermap.org/weather-conditions

Bachelor’s thesis Francesc Martí Escofet

• Group 6XX: Snow: Used to describe different types of snow. Wewill classify
it as snow.

• Group 7XX: Atmosphere: Used to describe different types of atmospheric
phenomenons such as mist, haze, dust, fog, sand... After checking some im-
ages with this class we decide to discard them as there are not many exam-
ples and most of them the difference is not clear visually. Figure 4.2 shows
an example of some images with this code.

Figure 4.2: Some examples of images where the weather code is from the group
7XX: Atmosphere

• Group 800: Clear: Used to describe a clear sky. We will classify it as clear.

• Group 80X: Clouds: Used to describe different levels of clouds in the sky.
There are 4 levels:

– 801: Few clouds: 11-25%

– 802: Scattered clouds: 25-50%

– 803: Broken clouds: 50-85%

– 804: Overcast clouds: 85-100%

Figure 4.3 shows some examples of images of the different 80X: Clouds con-
ditions codes. It can be seen that the weather data is not always accurate as
there are some images where the proportion of covered sky by clouds does
not match the associated weather data. Also, Figure 4.3a shows some exam-
ple images where the weather code is 800: Clear, it can be seen that some
images also have clouds. For that reason, since the majority of images have
associated some of these codes, wewill discard images where the associated
code is 801, 802 or 803 and we will classify images with weather code 804 as
cloudy.

25

Bachelor’s thesis Francesc Martí Escofet

(a) Some examples of images where the weather code is 800: Clear

(b) Some examples of images where the weather code is 801: Few Clouds

(c) Some examples of images where the weather code is 802: Scattered Clouds

(d) Some examples of images where the weather code is 803: Broken Clouds

(e) Some examples of images where the weather code is 804: Overcats Clouds

Figure 4.3: Some examples of images where the weather code is from the group
80X: Clouds

26

Bachelor’s thesis Francesc Martí Escofet

One of the big problems found is the hour granularity of the weather data and
that in one hour theweather can change a lot, to solve that wewill only use images
where the condition of the previous hour and the condition of the next hour are
the same. Figure 4.4 shows two examples of rapidly changingweather conditions.

Figure 4.4: Some examples of sequence of images where the weather conditions
change rapidly

After all that preprocessing we end with 124610 images with the following distri-
bution:

Figure 4.5: Class distribution of the final dataset

27

Bachelor’s thesis Francesc Martí Escofet

We can clearly see that the dataset is quite unbalanced as there are nearly 20x
images with the clear class than with snow class but we will be able to solve this
problem using weighted losses.

4.2 Temperature

In the case of temperature, we will use the weather data and we will interpolate
linearly using the temperature in the previous and in the next hour using the fol-
lowing formula:

temperature = (1− t% 3600

3600
) ∗ previous_temp+

t% 3600

3600
∗ next_temp (4)

Where t is the timestamp (in seconds) of the image and % is the modulo operator.

We get the following distribution of temperatures:

Figure 4.6: Temperature distribution of the dataset

Units are in the International System (SI), which are Kelvin degrees. Remember
that Kelvin degrees are just a translation of Celcius degrees using the following
formula:

T(°K) = T(°C) + 273.15 (5)

28

Bachelor’s thesis Francesc Martí Escofet

To speed up the training of our neural networkwewill standarize the temperature
value so it has a 0mean and a standard deviation of 1 using the following formula:

Tnorm =
T − µ
σ

(6)

Where µ =
∑N

i=1 Ti
N

and σ =

√∑N
i=1(Ti−µ)2
N−1

are the mean and unbiased standard
deviation of the samples.

29

Bachelor’s thesis Francesc Martí Escofet

5 Weather classifier

In this section of the thesis we will explore the different architectures and models
used to predict the main weather condition from an image.

This type of task is called multi-class classification as we have a set of data points
of size N , in our case RGB Images, where each sample {xi}Ni=1 is labeled with a
discrete label yi that has k different classes, i.e. yi ∈ {0, . . . , k− 1} ∀i ∈ {1, . . . , N}.

The goal in this case is that the output represents the probability distribution of
the input image belonging to each class, therefore we need to have k outputs,
each one representing the probability of the image to be labeled with that class,
consequently, all the outputs need to sum 1.

To solve this issue, the Softmax function is used at the end of the neural network.
The softmax function is a generalization of the sigmoid function (3.2.1.1) to mul-
tiple dimensions. It takes a vector z of size k as input and normalizes it into a
probability distribution. It is given by the following formula:

Softmax(z)i =
ezi∑k−1
j=0 e

zj
∀i ∈ {0, . . . , k − 1}where z = (z0, . . . , zk−1) ∈ Rk (7)

5.1 Metrics

In this case, as we are training a classifier, there are multiple metrics that are of
our interest when evaluating its performance. Some metrics are measured for the
entire dataset, such as accuracy, but others are measured separately for each class
and then averaged. There are multiple ways to average the results:

• Macro average: Arithmetic mean of the scores for each classes.

• Weighted average: The mean is calculated using the support (number of
samples) of each class to give more importance to classes that have more
representation.

30

Bachelor’s thesis Francesc Martí Escofet

5.1.1 Accuracy

Accuracy is the simplest metric used when we evaluate a multi-label classifier, it
is defined as the proportion of correct predictions:

Accuracy =

∑N
i=1 I(ŷi = yi)

N
(8)

Where ŷi is the class prediction for sample i, yi is the ground-truth class for sam-
ple i and I is the indicator function, which returns 1 if the classes match and 0
otherwise.

The main issue with this metric is that when we have an unbalanced dataset, as
in our case, if the model just predicts the most represented class it will have high
accuracy but it would be a useless model.

5.1.2 Precision

Precision is a metric measured for each class, it calculates how many of the pre-
dictions that the model made for that class were actually correct, it is definedwith
the following formula:

Precisionc =
TPc

TPc + FPc
(9)

Where TPc is the number of True Positives of class c, i.e. the number of samples
predicted as class c and their label is class c and FPc is the number of False Pos-
itives of class c, i.e. the number of samples that are predicted as class c but their
label is not class c.

5.1.3 Recall

Recall is ametricmeasured for each class too, it indicates howmany of the samples
of that class has the model predicted correctly into that class, it is definedwith the
following formula:

Recallc =
TPc

TPc + FNc

(10)

Where TPc is the number of True Positives of class c, i.e. the number of samples
that are predicted as class c and their label is class c and FNc is the number of

31

Bachelor’s thesis Francesc Martí Escofet

False Negatives of class c, i.e. the number of samples whose label is class c but are
not predicted as class c.

5.1.4 F1-score

The F1-score of a class is the harmonic mean between its precision pc and its recall
rc:

F1-scorec =
2Precisionc ·Recallc
Precisionc +Recallc

=
TPc

TPc + 1
2
(FPc + FNc)

(11)

As in our case, we are interested in having a balance between precision and recall,
we will use this metric.

5.2 ResNet

As explained in 3.2.2.1, ResNet [11] architecture has become one of the most used
architectures since itwon the ILSVRC competition in 2015. Wewill use two of their
variants, ResNet-18 andResNet-50, as theCNN in our network andwewill change
the last fully connected layers to adapt it to our task of weather classification.

Figure 5.1: Different architectures for ResNet [11]

Aswe can see, themain block structure is different for the deeper versions (ResNet-
50, ResNet-101, and ResNet-152), 1x1 convolutions are introduced in order to re-
duce the training time as they are used to reduce the dimensions and then restore
the original dimensions leaving the 3x3 layers with reduced input/output dimen-
sions.

32

Bachelor’s thesis Francesc Martí Escofet

Wewill use the pretrainedweights on ImageNet aswe areworking onRGB images
too but as our task is quite different from the ImageNet we will also retrain some
layers of the ResNet besides the last fully connected layers by setting the gradients
to True or False as desired.

5.3 CLIP

To be able to compare the results wewill use the pretrained ResNet-50 using CLIP
[26]. They use the improvements introduced in ResNet-D by He et al. [12] and
the antialiased rect-2 blur pooling from Zhang [37].

They also replace the global average pooling layerwith an attention poolingmech-
anism. The attention pooling is implemented as a single layer of ‘transformer-
style’ multi-head QKV attention where the query is conditioned on the global
average-pooled representation of the image [32, 3].

UsingCLIPpretrainedweights, wewill use twodifferent architectures to fine-tune
the weights for our task:

1. Use CLIP training architecture with the text encoder and the visual encoder
andmaximize the cosine similarity between the valid image-text pairs using
the following texts:

• “A picture of a sunny day”

• “A picture of a cloudy day”

• “A picture of a rainy day”

• “A picture of a snowy day”

2. Use the features extracted by the vision model and adding a fully connected
layer at the end with 4 outputs so it can be used as a classifier.

We will set the gradients to True or False as desired to retrain only some of the
layers of the model.

33

Bachelor’s thesis Francesc Martí Escofet

5.4 Loss

The Loss function determines how correct or wrong the current network is. As
we are working with a multi-class classification problem we will use the cross-
entropy loss, which is defined by the following formula for each sample:

CE(xi) = −
k−1∑
j=0

tj · log (Softmax(f(xi))j) (12)

Where xi is a sample of the dataset, f is the function calculated by the neural
network and t ∈ Rk is the target vector, a one-hot encoded vector where the value
at the position yi is 1 and the rest of the values are 0.

As in the target vector only one value is different from 0 the rest of the elements
of the sum are canceled, and we can use the following simpler formula:

CE(xi) = − log (Softmax(f(xi))yi) (13)

A problem of using the cross-entropy loss is that it gives equal importance to all
samples and while this is no problem for a balanced dataset, in our case, as we
have a heavily unbalanced dataset we will use different weights for each sample:

CE(xi) = −wi · log (Softmax(f(xi))yi) (14)

We will try two different weighting strategies:

• Weighted per class: This is themost commonly used strategy toweight each
sample when we have an unbalanced dataset. Each sample is weighted ac-
cording to its class, the weights of each class are calculated using the follow-
ing formula proposed by King and Zeng in 2001 [31]:

wi = Wyi =
N

k ∗ n_samples_yi
where yi ∈ {0, . . . , k − 1} (15)

WhereN is the total number of training examples, k is the number of classes
and n_samples_yi is the number of samples of the yi class.

34

Bachelor’s thesis Francesc Martí Escofet

• Weighted per class and camera: As each camera has a different distribu-
tion of classes we will try using different weights for each camera and each
class. We will use the formula proposed by King and Zeng [31] but using
the corresponding numbers for each different camera, i.e.:

wi = Wcami,yi =
Ncami

kcami
∗ n_samples_cami_yi

where yi ∈ {0, . . . , k − 1} (16)

Where Ncami
is the number of samples from the camera sample xi, kcami

is
the number of classes present in the samples from the corresponding camera
and n_samples_cami_yi is the number of samples of class yi of the camera.

35

Bachelor’s thesis Francesc Martí Escofet

6 Temperature regressor

In this section of the thesis we will explore the different architectures and models
used to predict the temperature from an image.

This type of task is called regression, as we have a set of data points of size N ,
in our case RGB Images, where each sample {xi}Ni=1 is labeled with a continuous
label yi, i.e. yi ∈ R ∀i ∈ {1, . . . , N}.

One of the characteristics that all previous works on predicting temperature from
images [2, 9, 34] share is the fact that they all use images from the same places as
training images and for evaluation. In our case, we will use the images on some
cameras as training and evaluate on images from different cameras such that the
CNNhas to learn patterns that can be found on any image and is able to generalize
to images taken from other cameras.

6.1 Metrics

In the case of regression there are four main metrics that are commonly used for
evaluating the performance of a model:

6.1.1 Mean Squared Error (MSE)

Mean Squared Error (MSE) is one of the most popular used loss function for re-
gression problems, it is calculated as the mean of the squared differences between
predicted and expected target value:

MSE(ŷ,y) =

∑N
i=1(ŷi − yi)2

N
(17)

Where y = {y1, . . . , yN} are the target value for all the elements in the dataset and
ŷ = {ŷ1, . . . , ŷN} are the predicted values for each sample.

The squaring has the effect of magnifying large error, so if MSE is used as the loss
function, it penalizes the models more for large error. The units of the MSE are
squared units so usually Root Mean Squared Error (6.1.2) is used to report values
as it has the same units as the prediction.

36

Bachelor’s thesis Francesc Martí Escofet

6.1.2 Root Mean Squared Error (RMSE)

Root Mean Squared Error (RMSE) is an extension of MSE, it is the square root of
MSE, as it has the same units as the target variable is common to train the model
using MSE and use RMSE to evaluate and report its performance. The RMSE can
be calculated using the following formula:

RMSE(ŷ,y) =
√
MSE(ŷ,y) =

√∑N
i=1(ŷi − yi)2

N
(18)

6.1.3 Mean Absolute Error (MAE)

Mean Absolute Error (MAE) is a widely used metric and loss function too as like
RMSE it has the same units as the target variable.

Unlike RMSE and MSE, MAE does not penalize more large errors than smaller
errors as it increases linearly with the error value.

MAE is calculated using the following formula:

MAE(ŷ,y) =

∑N
i=1 |ŷi − yi|

N
(19)

6.1.4 R2

The coefficient of determination (R2), is the proportion of the variation in the de-
pendent variable, the temperature in our case, explained by the model. It is de-
fined with the following formula:

R2(ŷ,y) = 1− SSRes
SSTotal

= 1−
∑N

i=1(ŷi − yi)2∑N
i=1(yi − ȳ)2

(20)

Where ȳ = 1
N

∑N
i=1 yi is the mean value of y.

37

Bachelor’s thesis Francesc Martí Escofet

6.2 Using all cameras

For the first experiments we will use images from all the cameras for training and
testing to check that the CNN is able to learn patterns such that temperature is a
feature that is possible to be predicted.

We will use two variants of the ResNet [11] architecture, ResNet-18 and ResNet-
50, the CNN will be used as a feature extractor, fine-tuning some of the layers,
and we will add some fully connected layers at the end of the network with one
output neuron that will output the predicted temperature for the image.

Figure 6.1 shows a diagram of the architecture of the network.

Figure 6.1: Architecture of the network for predicting temperature from images
using only the image to predict the temperature from as input. B is the batch size
and H andW the image height and width respectively. In this diagram B = 4

6.3 Different evaluation cameras

As explained in 6, all of the previous work done about temperature prediction
use images from the same scenes/cameras for training and evaluation. This part
of the thesis focuses in different architectures tested for trying to learn patterns
that can be found on any image.

We choose 7 cameras to use as testing images that have 55292 images in total so
that they make up 20.11% of the complete dataset of 275002 images. We will use

38

Bachelor’s thesis Francesc Martí Escofet

the remaining 219710 images as training images for the network. Figure 6.2 shows
some images extracted from the evaluating cameras and their temperature. We
can see that they are quite different between each other sowe have a representative
result.

Also, figure 6.3 shows the probability density functions for training and evalu-
ation data and for each testing camera, we can see that both training and test-
ing images have similar probability density functions when we aggregate all the
cameras but some cameras have quite different distributions, for example, camera
campkazuma looks like a normal distribution but statueofliberty looks more like two
different normal distributions, probably one for the summer season and another
one for the winter season.

The main problem with using different scenes/cameras for training and evaluat-
ing is that, whenwe evaluate the performance on the testing images, the neural net
has not seen similar images during training and it does not know how to predict
the temperature for images from that camera, to solve that, we propose different
architectures that use what we call reference images, the basic idea is that in ad-
dition to the image fromwhich we want to predict the temperature, we also input
into the neural network some other images with their temperature from the same
camera/scene as the main image. The idea behind that is that the network can
knowwhat the images are like from that camera and what the temperature is like
on that camera.

39

Bachelor’s thesis Francesc Martí Escofet

Figure 6.2: Example images extracted from the evaluation cameras and their tem-
perature

40

Bachelor’s thesis Francesc Martí Escofet

Figure 6.3: Probability density function of the temperature for train and validation
data and for each camera on the validation dataset

41

Bachelor’s thesis Francesc Martí Escofet

6.3.1 Without reference images

The first experiments we will try and that we will use as baseline will be using the
same architecture as in Section 6.2 and shown in figure 6.1. This will allow us to
check if there is a big or a small difference in the performance of a model in the
case we use different cameras for evaluating than the ones used in training.

6.3.2 Using reference images

As explained in 6.3 we will input to the network some images from the same cam-
era with their temperature in addition to the image we are trying to predict the
temperature from for the network to know how the images in that camera look
like. We will choose these images randomly from all the images from the same
camera but for them to be representative of the camera temperature we will sort
the images of the camera by temperature and choose references within a range
from around specific percentiles. For example, in the case we use 3 reference im-
ages we will choose images from around the 0.1, 0.5 and 0.9 percentile with a
range of 0.05 around each percentile, i.e. we will choose one image randomly that
their temperature is between the 0.05 and 0.15 percentile, another between 0.45
and 0.55 and a last one between 0.85 and 0.95.

6.3.2.1 Batch concatenating

Our first architecture will be using what we call batch concatenating, what we do
is concatenate the main images and the references images in the batch dimension,
in such a manner that we effectively have a batch size of B ∗ (N_REF + 1) where
B is the original batch size and N_REF is the number of reference images and
the +1 comes from the original image. After concatenating all the images in the
batch dimension, we pass them through a ResNet-18 network getting a feature
512-dimensional vector for each image, the main images, and the reference im-
ages. Next we reshape the B ∗ (N_REF + 1) (512)-dimensional vectors such that
we haveB (512∗ (N_REF +1))-dimensional vectors, basically we have one vector
for each main image with the features of the main images and their references im-
ages. To this vector we concatenate the references temperatures at the end, getting
B (512∗ (N_REF +1)+N_REF)-dimensional vectors that we pass through fully

42

Bachelor’s thesis Francesc Martí Escofet

connected layers and finally getting B (1)-dimensional vectors which represent
the temperature prediction for each of the main images.

We will set the gradients to True or False as desired to retrain only some of the
layers of the ResNet model.

Figure 6.4 shows a diagram of this architecture.

Figure 6.4: Architecture of batch concatenating network. B is the batch size,
N_REF is the number of reference images used, and H andW the image height
and width respectively. In this diagram B = 4 and N_REF = 3

6.3.2.2 Channel concatenating

The second architecture we propose is called channel concatenating, instead of
concatenating all the images in the batch dimension we concatenate them in the
channel dimension (the second dimension as we use channel first representation)
getting “(N_REF+1)∗3 - channels images”. Following that we pass these images
through a modified ResNet-18 where we modified the number of input channels
of the first convolutional layer to match the number of channels of the new input
images.

43

Bachelor’s thesis Francesc Martí Escofet

For the initialization of the new weights of the first layer we will use the weights
of the RGB channels of the regular ResNet architecture, i.e. we will initialize the
weights of each of the red channels of every image, the main image and the ref-
erence images, with the weights of the red channel of the pretrained resnet, we
will do the same with the green and blue channels. Figure 6.5 shows a diagram
of how these weights are initialized.

Figure 6.5: Diagram showing how weights are initialized in the first convolution
layer for the channel concatenating architecture. N_REF is the number of refer-
ence images used. In this diagram N_REF = 3.

From the ResNet-18 we output B (512)-dimensional vectors where we concacate-
nate the references temperatures getting B (512 + N_REF)-dimensional vectors
that we pass through fully connected layers and we finally get B 1-dimensional
vectors which represent the temperature prediction for each of the main images.

In this case, as we modified the first layer of the network and added some new
weights, we will have to retrain all the ResNet model.

Figure 6.6 shows a diagram of this architecture.

44

Bachelor’s thesis Francesc Martí Escofet

Figure 6.6: Architecture of channel concatenating network. B is the batch size,
N_REF is the number of reference images used, and H andW the image height
and width respectively. In this diagram B = 4 and N_REF = 3

6.3.2.3 Two CNNs

The last architecturewe proposewe call it twoCNNs, because it uses two different
convolutional networks, one for the main images and another for the reference
images.

For the main images we make a forward pass through a ResNet-18 and get one
(512)-dimensional vector for each image. In the case of the reference images we
use batch concatenating, we concatenate all the reference images in the batch di-
mension and pass them through another ResNet-18 to get one feature vector for
each reference image. After that, we reshape this feature map so that we have
one feature vector for each group of reference images and concatenate this with
the feature map of the main image and the reference temperatures, obtaining
B (512 ∗ (N_REF + 1) + N_REF)-dimensional vectors that go through a fully
connected layer, finally obtainingB (1)-dimensional vectors with the temperature
prediction.

Figure 6.7 shows a diagram of this architecture.

45

Bachelor’s thesis Francesc Martí Escofet

Figure 6.7: Architecture of two CNNs network. B is the batch size, N_REF is
the number of reference images used, and H andW the image height and width
respectively. In this diagram B = 4 and N_REF = 3

6.4 Loss

As explained in 6.1 there are multiple metrics that can be used as the loss function
in the case of a regression task. In our case, we will use MSE as the loss function,
but we will use some modifications using weights to try to obtain better results.

The problem we are trying to solve is the fact that the distribution of the input
data to the model is different between the training data and the test data, as they
come from different webcams.

This problem is called Dataset Shift, and it occurs when training and test joint
distributions are different. That is when Ptraining(y, x) 6= Ptest(y, x). There are
multiples types of dataset shift but we will focus on our case, which is Covariate
shift.

Covariate shift is the case when the distribution of x changes but the rest stays
the same, formally it is defined as the case where Ptraining(y|x) = Ptest(y|x) and
Ptraining(x) 6= Ptest(x).

46

Bachelor’s thesis Francesc Martí Escofet

Figure 6.8 shows an example of Covariate shift, in Figure 6.8a we can see how
Ptraining(x) 6= Ptest(x), both are normal distributions but their mean and standard
deviation are different and in Figure 6.8bwe can see how amodel learns a function
using the training samples that is completely from the real functionPtraining(y|x) =

Ptest(y|x).

(a) Density functions of x for the training
and testing samples

(b) Plot with training and testing samples,
the real function we want to predict and
the learned function using only the training
samples

Figure 6.8: Example of covariate shift

In our case, when we use different cameras for training and testing we have a
case of Covariate Shift, as the distribution of the input images change between
training and testing but the distribution of the temperature does not change as
seen in Figure 6.3.

To try to solve this problem, we will weight each sample of the training dataset
differently on the loss function according to how “similar” it is to the images on
the test dataset. The idea behind this is to givemore importance to the images that
are in some way close to the testing images. To measure that “similarity” we will
train a binary classifier to classify the input images into the training or the testing
dataset. After that we will use the outputs of this classifier on each image of the
training dataset to weight them on the loss function for the regressor.

We will use a ResNet-18 architecture and modify the fully connected layer to just
output one neuron because in binary classification we only need one output neu-
ron to be able to classify, and we will train it using the Binary Cross-Entropy Loss.

47

Bachelor’s thesis Francesc Martí Escofet

As the output of our classifier will be the raw logits and their range is R, we have
to normalize them to be able to use them in our loss function, we will use the
following loss function:

L(ŷ,y) =

∑N
i=1wi(ŷi − yi)2

N
=

∑N
i=1 e

f(classifier(xi))(ŷi − yi)2

N
(21)

Where classifier(xi) is the raw output (logits) of the classifier neural network
for image xi and f is a function that maps R to [0, 1] or [−1, 1]. We will use the
following different functions as f :

tanh(x) =
ex − e−x

ex + e−x
, sigmoid(x) =

1

1 + e−x
, scaled_sigmoid =

2

1 + e−x
−1 (22)

Figure 6.9 shows the graph of these three functions.

Figure 6.9: Graph of the used scaling function for the weights: tanh, sigmoid and
scaled_sigmoid

48

Bachelor’s thesis Francesc Martí Escofet

7 Results

In this section of the thesis we will expose the obtained results.

7.1 Weather classifier

For the weather classifier we used 65% of the dataset to train the model, 20% as
the validation dataset and the remaining 15% as a test dataset that we will only
evaluate with the best model.

In the following Table 1 we can see the best results obtained by each architecture
in the weather classifier task. In the case of ResNet-18 and ResNet-50 we trained
different convolutional layers of the architecture in addition to the last fully con-
nected layer, and in the case of ResNet-18 the best results were achieved when we
fine-tuned the entire network initialized with ImageNet weights, but in the case
of ResNet-50, the best results were obtained when we retrained only the last con-
volutional block named conv5_x in Figure 5.1. That is probably because when we
trained the complete model in ResNet-50 it had 24M parameters in comparison
to the 11M that full ResNet-18 model had, in the case we only retrain conv5_x of
ResNet-50, it had 15M parameters.

As explained in 5.3, we used two different architectures for using the CLIP pre-
trained weights, the first one is to use the visual encoder and the text encoder and
maximize the cosine similarity between the valid image-text pairs as how CLIP
was trained. We also tested retraining only some layers of the model and the best
model results were obtained when we retrained the whole visual encoder but the
text encoder was frozen. In the second case we used only the visual encoder and
added a fully connected layer at the end of the model so it can be used as a clas-
sifier, the same way as we did with ResNet-18 and ResNet-50. In this case, the
best results were achieved when we retrained the last convolutional block named
conv5_x and the attention pooling mechanism.

In the case of weighting strategies we can see that weighting the samples just by
class instead of class and camera works better in all architectures.

49

Bachelor’s thesis Francesc Martí Escofet

Model
Metric

Weights Acc. Macro F1 Weighted F1 Clear F1 Cloudy F1 Rain F1 Snow F1

ResNet-18 Class 0.8183 0.7258 0.8266 0.8971 0.7062 0.598 0.702
ResNet-50 Class 0.8618 0.7877 0.8653 0.9208 0.7676 0.7014 0.761

CLIP-RN50 (1) Class 0.8266 0.7247 0.8343 0.9027 0.7234 0.6292 0.6436
CLIP-RN50 (2) Class 0.8018 0.6981 0.811 0.8871 0.683 0.5723 0.6502

ResNet-18 Class & Cam 0.8007 0.7053 0.8078 0.8865 0.6646 0.5706 0.6994
ResNet-50 Class & Cam 0.8535 0.7735 0.8566 0.9179 0.7465 0.6803 0.7495

CLIP-RN50 (1) Class & Cam 0.8221 0.712 0.8236 0.9083 0.6695 0.5773 0.6928
CLIP-RN50 (2) Class & Cam 0.7724 0.651 0.7802 0.8768 0.6066 0.4907 0.6298

Table 1: Validation dataset metrics for the different net configurations

In Table 1 it can be seen that the best results in the validation dataset are obtained
with the ResNet-50 architecture and weighting the samples only by class instead
of by class and camera. In the following Table 2 we can see the results of the best
model in the test dataset.

Model
Metric

Weights Acc. Macro F1 Weighted F1 Clear F1 Cloudy F1 Rain F1 Snow F1

ResNet-50 Class 0.8591 0.7744 0.863 0.921 0.7635 0.6845 0.7285

Table 2: Test dataset metrics for the best model

Also, Figure 7.1 shows the confusion matrix for the test dataset, it is normalized
by rows (the ground truth class), so the numbers on the diagonal indicate the
recall of each class. It shows that in the case of a clear image, it sometimes con-
fuses it with a cloudy image, this is probably because the labels are generated au-
tomatically and, as explained in Section 4.1, they can be wrong for some different
reasons, and one of the labels that can have a little confusion is the level of cloud
cover.

Also, in the case of rain and snow images it sometimes classifies them as cloudy,
this is probably because in some cameras the quality does not allow the image to
see rain or snow falling and, as the sky is probably cloudy, it classifies the image
as cloudy.

50

Bachelor’s thesis Francesc Martí Escofet

Figure 7.1: Test dataset confusion matrix for the best ResNet-50 model

7.2 Temperature regressor

As explained in 6.2, first we will train some networks to prove that it is actually
possible to predict temperature from images using images from all the cameras to
train the CNN and test it. Table 3 shows the results on the validation set, we used
75% of the data for training and the rest for validation.

R2 RMSE (°K) MAE (°K)
ResNet-18 0.8488 4.153 2.973
ResNet-50 0.8262 4.452 3.286

Table 3: Temperature prediction results (R2, RMSE, and MAE) when using all
cameras for training and testing

We can see that the RMSE error is a little bit more than 4°K which is an improve-
ment from the the previous works [2, 9, 34], these results prove that predicting
the temperature from the images in our dataset is possible.

51

Bachelor’s thesis Francesc Martí Escofet

As explained in 6.4, to try to solve the Covariate Shift problem in our dataset, we
trained a binary classifier to distinguish images from the training dataset and im-
ages from the test dataset to weight differently each image in the loss function.
In the following Tables 4 and 5 we can see the confusion matrix and the metrics
of the camera classifier that we will use to weight differently each sample for the
training when using different cameras for training and evaluating. We can see
that it is a really good classifier as it is not a difficult task, each camera is static,
and although the images can be zoomed in and cropped at different sizes, which
can make the scene change, it is an easy task for a CNN.

Predicted class
Evaluating camera Training camera

True class
Evaluating camera 13607 223
Training camera 296 54624

Table 4: Confusion matrix for the validation dataset for camera classifier

Training cameras (0 class) Evaluating cameras (1 class)

Model
Metric

Accuracy Recall Precision F1 Recall Precision F1

ResNet-18 0.9925 0.9946 0.9959 0.9953 0.9839 0.9787 0.9813

Table 5: Validation dataset metrics for the camera classifier

In the following Table 6 we can see the results when we use different cameras
for training and evaluating with the different proposed architectures, different
number of reference images, and all the weight functions explained in 6.4.

Architecture NUM_REF Weights function R2 RMSE (°K) MAE (°K)
ResNet-18 0 None 0.0413 8.652 6.963
ResNet-50 0 None 0.0706 8.519 6.76

Batch Concatenating 3 None 0.3717 7.004 5.458
Channel Concatenating 3 None 0.2706 7.546 5.923

Two CNNs 3 None 0.3513 7.117 5.553
Batch Concatenating 5 None 0.3679 7.025 5.478

Channel Concatenating 5 None 0.2179 7.814 6.083
Two CNNs 5 None 0.3903 6.899 5.398

Batch Concatenating 3 Tanh 0.4788 6.379 4.956

52

Bachelor’s thesis Francesc Martí Escofet

Table 6 continued from previous page
Architecture NUM_REF Weights function R2 RMSE (°K) MAE (°K)

Batch Concatenating 3 Sigmoid 0.3545 7.099 5.528
Batch Concatenating 3 Scaled Sigmoid 0.4084 6.796 5.329

Channel Concatenating 3 Tanh 0.4094 6.79 5.209
Channel Concatenating 3 Sigmoid 0.2842 7.476 5.842
Channel Concatenating 3 Scaled Sigmoid 0.3469 7.141 5.566

Two CNNs 3 Tanh 0.3849 6.93 5.333
Two CNNs 3 Sigmoid 0.3407 7.175 5.629
Two CNNs 3 Scaled Sigmoid 0.3646 7.043 5.593

Batch Concatenating 5 Tanh 0.4366 6.632 5.209
Batch Concatenating 5 Sigmoid 0.4608 6.488 5.036
Batch Concatenating 5 Scaled Sigmoid 0.4152 6.757 5.187

Channel Concatenating 5 Tanh 0.3691 7.018 5.453
Channel Concatenating 5 Sigmoid 0.3478 7.136 5.509
Channel Concatenating 5 Scaled Sigmoid 0.3572 7.084 5.526

Two CNNs 5 Tanh 0.4522 6.54 5.105
Two CNNs 5 Sigmoid 0.403 6.827 5.381
Two CNNs 5 Scaled Sigmoid 0.4029 6.828 5.311

Table 6: Temperature prediction results (R2, RMSE andMAE) when using differ-
ent cameras for training and testing

The first thing that can be clearly seen is that the results are definitely not as good
as when we used all cameras for training and evaluating as shown in Table 3 as
here theRMSE is around 7°K in comparison to the nearly 4°K achievedwhenusing
the same cameras for training and evaluation.

Another thing shown in the table is that the reference images clearly help the CNN
to predict the temperature as if we use a regular ResNet with one input image
the error is much higher than when we add reference images to the input. From
the three proposed architectures, Batch Conatenating, Channel Conatenating and
Two CNNs we can see that Channel Concatenating is the one that performs the
worst and Batch Concatenating is usually the one that performs the best. Also,
it looks that with 3 reference images the results are better than with 5 reference
images, except in the case of Two CNNs architecture, one of the reasons of this
may be because the dimensionality of the feature vector with 5 references may
be too high, but more experiments with different number of references should be
done to confirm this hypothesis.

53

Bachelor’s thesis Francesc Martí Escofet

Also in the case of weight functions, we can clearly see that tanh usually out-
performs the other two and also the base case where all the images are equally
weighted except in the Batch Concatenating architecture with 5 references.

In the following Table 7 we can see the different metrics (R2, RMSE and MAE)
of the best model (Batch Concatenating with 3 Reference images and tanh as the
weight function) on the validation dataset for each camera. In the next Table 8 the
mean and standard deviation of each validation camera is shown.

R2 RMSE (°K) MAE (°K)
ALL CAMERAS 0.4788 6.379 4.956
campkazuma -1.1281 7.1287 5.7551
fortlauderdale -0.1268 5.278 4.2063
hydenkentucky 0.3399 8.1281 6.6968

naples 0.041 4.462 3.4506
sanfrancisco -0.9715 6.1128 4.9587
statueofliberty 0.4077 7.8338 6.1381

statueofliberty_hd 0.4231 7.9296 6.3153

Table 7: Temperature prediction results (R2, RMSE, and MAE) on the different
testing cameras for the best model

mean std
ALL CAMERAS 294.848 8.836
sanfrancisco 288.065 4.354

hydenkentucky 290.886 10.006
statueofliberty 288.513 10.179
fortlauderdale 297.154 4.972
campkazuma 302.890 4.887

naples 299.445 4.557
statueofliberty_hd 288.021 10.442

Table 8: Mean and standard deviation of the validation cameras

We can see that the cameras of which the temperature distribution is more similar
to the training temperature distribution (as seen in Figure 6.3), which are statue-
ofliberty, statueofliberty_hd and hydenkentucky, are the ones with higher R2 score

54

Bachelor’s thesis Francesc Martí Escofet

although their RMSE error may be higher. This is because their variance is also
higher, as shown in Table 8, and although the RMSE error is higher, if we recall
the formula in Equation 20, it divides by the variance. In the case of campkazuma
and sanfrancisco, the R2 is much lower than in the other cases, around −1, that
is because their standard deviation is much lower, around 4.5 in both cases, in
comparison to the standard deviation of 10 in other cases.

Figure 7.2 shows 5 examples of each testing camera, its real temperature, and the
prediction made by the best model. We can see that the error of each of the sam-
ples in each camera is quite similar to the errors reported above so they are good
representative of the errors of each camera.

55

Bachelor’s thesis Francesc Martí Escofet

Figure 7.2: Temperature prediction results of the best model for some examples
of each testing camera

56

Bachelor’s thesis Francesc Martí Escofet

8 Conclusions

In this work we have created a new dataset in a fully automated way without the
need of human help to label the images and have proven that it is an accurate
dataset with which deep learning models can work and are tested to be effec-
tive. This method of creating a dataset could help to create much larger datasets
and extend the existing ones, as with the evolution of deep learning then huge
datasets are needed to train the bigger models. In our case we have labeled more
than 275000, but more images could easily be downloaded and labeled in case our
model needed more data.

After that we have used the images to train a model to be able to classify the main
weather condition achieving a weighted F1 score of 0.863.

Following that, we have worked on a more difficult task, predicting the ambient
temperature of an image, it is more difficult as the cues that can help a model
predict the temperature are usually more subtle than the ones that indicate the
main weather condition, which are more explicit in the image. As explained in
Section 6, all previous works done in predicting temperature use images from
same cameras for training and evaluating, in our case we proposed three different
architectures so that our model can predict images from any camera, even if it has
not been trained on images from that place.

We proposed three different architectures: Batch Concatenating, Channel Con-
catenating and Two CNNs using References Images so the model can use this
images for being able to know how the different temperatures look like in that
specific location. The results show that concatenating the images in the Batch di-
mension is the architecture that achieves the best results.

We also suggested a method for trying to solve what is called Covariate Shift,
training an auxiliary model to detect which training images are more ‘similar’ to
the testing images. This model is used to weight differently each sample in the
training and the results show that it helps the model to perform better.

Future Work

Although the main goals of this project have been achieved, there are always new

57

Bachelor’s thesis Francesc Martí Escofet

ideas that can improve the results obtained in this thesis.

One of the first tasks to dowouldprobably be to extend the useddatasetwithmore
cameras and new images to be able to use more images to train the network and
evaluate the temperature regressor in more different cameras. This could be done
by using the AMOS dataset or findingmore datasets where they have screenshots
of outdoor webcams.

Another future work would be to try more different architectures changing the
way that reference images are used and try using different numbers of references
images and more hyperparameters if the computing resources allow it.

58

Bachelor’s thesis Francesc Martí Escofet

References

[1] Jason Brownlee.How to visualize filters and feature maps in Convolutional Neu-
ral Networks. July 2019. url: https://machinelearningmastery.com/how-
to-visualize-filters-and-feature-maps-in-convolutional-neural-

networks/.
[2] Wei-Ta Chu, Kai-Chia Ho, and Ali Borji. “Visual Weather Temperature Pre-

diction”. In: 2018 IEEE Winter Conference on Applications of Computer Vision
(WACV). 2018, pp. 234–241. doi: 10.1109/WACV.2018.00032.

[3] Alexey Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale”. In: International Conference on Learning Rep-
resentations. 2021. url: https://openreview.net/forum?id=YicbFdNTTy.

[4] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive Subgradient Meth-
ods for Online Learning and Stochastic Optimization”. In: Journal of Ma-
chine Learning Research 12.61 (2011), pp. 2121–2159. url: http://jmlr.org/
papers/v12/duchi11a.html.

[5] IBM Cloud Education. What are neural networks? Aug. 2020. url: https://
www.ibm.com/cloud/learn/neural-networks.

[6] Mohamed Elhoseiny, Sheng Huang, and Ahmed Elgammal. “Weather clas-
sification with deep convolutional neural networks”. In: 2015 IEEE Interna-
tional Conference on Image Processing (ICIP). 2015, pp. 3349–3353. doi: 10.
1109/ICIP.2015.7351424.

[7] Vittorio Ferrari and Andrew Zisserman. “Learning Visual Attributes”. In:
Advances in Neural Information Processing Systems. Ed. by J. Platt et al. Vol. 20.
Curran Associates, Inc., 2007. url: https://proceedings.neurips.cc/
paper/2007/file/ed265bc903a5a097f61d3ec064d96d2e-Paper.pdf.

[8] Kunihiko Fukushima. “Neocognitron: A Self-Organizing Neural Network
Model for a Mechanism of Pattern Recognition Unaffected by Shift in Posi-
tion”. In: Biological Cybernetics 36 (1980), pp. 193–202.

[9] Daniel Glasner et al. “Hot or Not: Exploring Correlations between Appear-
ance and Temperature”. In: 2015 IEEE International Conference on Computer
Vision (ICCV). 2015, pp. 3997–4005. doi: 10.1109/ICCV.2015.455.

59

https://machinelearningmastery.com/how-to-visualize-filters-and-feature-maps-in-convolutional-neural-networks/
https://machinelearningmastery.com/how-to-visualize-filters-and-feature-maps-in-convolutional-neural-networks/
https://machinelearningmastery.com/how-to-visualize-filters-and-feature-maps-in-convolutional-neural-networks/
https://doi.org/10.1109/WACV.2018.00032
https://openreview.net/forum?id=YicbFdNTTy
http://jmlr.org/papers/v12/duchi11a.html
http://jmlr.org/papers/v12/duchi11a.html
https://www.ibm.com/cloud/learn/neural-networks
https://www.ibm.com/cloud/learn/neural-networks
https://doi.org/10.1109/ICIP.2015.7351424
https://doi.org/10.1109/ICIP.2015.7351424
https://proceedings.neurips.cc/paper/2007/file/ed265bc903a5a097f61d3ec064d96d2e-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/ed265bc903a5a097f61d3ec064d96d2e-Paper.pdf
https://doi.org/10.1109/ICCV.2015.455

Bachelor’s thesis Francesc Martí Escofet

[10] James Hays and Alexei A. Efros. “IM2GPS: estimating geographic informa-
tion from a single image”. In: 2008 IEEE Conference on Computer Vision and
Pattern Recognition. 2008, pp. 1–8. doi: 10.1109/CVPR.2008.4587784.

[11] KaimingHe et al. “DeepResidual Learning for ImageRecognition”. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016,
pp. 770–778. doi: 10.1109/CVPR.2016.90.

[12] Tong He et al. “Bag of Tricks for Image Classification with Convolutional
Neural Networks”. In: 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 2019, pp. 558–567. doi: 10.1109/CVPR.2019.
00065.

[13] MohamedR. Ibrahim, JamesHaworth, andTaoCheng. “WeatherNet: Recog-
nisingWeather andVisual Conditions fromStreet-Level ImagesUsingDeep
Residual Learning”. In: ISPRS International Journal of Geo-Information 8.12
(2019). issn: 2220-9964. doi: 10.3390/ijgi8120549. url: https://www.
mdpi.com/2220-9964/8/12/549.

[14] Nathan Jacobs, Nathaniel Roman, and Robert Pless. “Consistent Temporal
Variations in Many Outdoor Scenes”. In: 2007 IEEE Conference on Computer
Vision and Pattern Recognition. 2007, pp. 1–6. doi: 10 . 1109 / CVPR . 2007 .
383258.

[15] Nathan Jacobs et al. “The Global Network of Outdoor Webcams: Proper-
ties and Applications”. In: Proceedings of the 17th ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems. GIS ’09.
Seattle, Washington: Association for Computing Machinery, 2009, pp. 111–
120. isbn: 9781605586496. doi: 10.1145/1653771.1653789. url: https://
doi.org/10.1145/1653771.1653789.

[16] Dinesh Jayaraman, Fei Sha, and Kristen Grauman. “Decorrelating Semantic
Visual Attributes by Resisting the Urge to Share”. In: 2014 IEEE Conference
on Computer Vision and Pattern Recognition. 2014, pp. 1629–1636. doi: 10.
1109/CVPR.2014.211.

[17] Bhavika Kanani.Activation functions in neural network. Oct. 2019. url: https:
/ / studymachinelearning . com / activation - functions - in - neural -

network/.
[18] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Opti-

mization”. In: 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA,May 7-9, 2015, Conference Track Proceedings. Ed. by

60

https://doi.org/10.1109/CVPR.2008.4587784
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2019.00065
https://doi.org/10.1109/CVPR.2019.00065
https://doi.org/10.3390/ijgi8120549
https://www.mdpi.com/2220-9964/8/12/549
https://www.mdpi.com/2220-9964/8/12/549
https://doi.org/10.1109/CVPR.2007.383258
https://doi.org/10.1109/CVPR.2007.383258
https://doi.org/10.1145/1653771.1653789
https://doi.org/10.1145/1653771.1653789
https://doi.org/10.1145/1653771.1653789
https://doi.org/10.1109/CVPR.2014.211
https://doi.org/10.1109/CVPR.2014.211
https://studymachinelearning.com/activation-functions-in-neural-network/
https://studymachinelearning.com/activation-functions-in-neural-network/
https://studymachinelearning.com/activation-functions-in-neural-network/

Bachelor’s thesis Francesc Martí Escofet

Yoshua Bengio and Yann LeCun. 2015. url: http://arxiv.org/abs/1412.
6980.

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey EHinton. “ImageNet Classi-
fication with Deep Convolutional Neural Networks”. In: Advances in Neural
Information Processing Systems. Ed. by F. Pereira et al. Vol. 25. Curran Asso-
ciates, Inc., 2012. url: https://proceedings.neurips.cc/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[20] Y. LeCun et al. “BackpropagationApplied toHandwritten Zip Code Recog-
nition”. In: Neural Computation 1.4 (1989), pp. 541–551. doi: 10.1162/neco.
1989.1.4.541.

[21] Y. Lecun et al. “Gradient-based learning applied to document recognition”.
In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. doi: 10.1109/5.
726791.

[22] Xuelong Li, Zhigang Wang, and Xiaoqiang Lu. “A Multi-Task Framework
for Weather Recognition”. In: Proceedings of the 25th ACM International Con-
ference on Multimedia. MM ’17. Mountain View, California, USA: Associa-
tion for Computing Machinery, 2017, pp. 1318–1326. isbn: 9781450349062.
doi: 10.1145/3123266.3123382. url: https://doi.org/10.1145/3123266.
3123382.

[23] Cewu Lu et al. “Two-ClassWeather Classification”. In: 2014 IEEE Conference
on Computer Vision and Pattern Recognition. 2014, pp. 3718–3725. doi: 10.
1109/CVPR.2014.475.

[24] Cewu Lu et al. “Two-Class Weather Classification”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 39.12 (2017), pp. 2510–2524. doi:
10.1109/TPAMI.2016.2640295.

[25] Charlotte Pelletier, Geoffrey Webb, and François Petitjean. “Temporal Con-
volutional Neural Network for the Classification of Satellite Image Time Se-
ries”. In: Remote Sensing 11 (Mar. 2019), p. 523. doi: 10.3390/rs11050523.

[26] Alec Radford et al. Learning Transferable VisualModels FromNatural Language
Supervision. 2021. doi: 10.48550/ARXIV.2103.00020. url: https://arxiv.
org/abs/2103.00020.

[27] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learn-
ing representations by back-propagating errors”. In: nature 323.6088 (1986),
pp. 533–536.

61

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1145/3123266.3123382
https://doi.org/10.1145/3123266.3123382
https://doi.org/10.1145/3123266.3123382
https://doi.org/10.1109/CVPR.2014.475
https://doi.org/10.1109/CVPR.2014.475
https://doi.org/10.1109/TPAMI.2016.2640295
https://doi.org/10.3390/rs11050523
https://doi.org/10.48550/ARXIV.2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020

Bachelor’s thesis Francesc Martí Escofet

[28] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Chal-
lenge”. In: International Journal of ComputerVision (IJCV) 115.3 (2015), pp. 211–
252. doi: 10.1007/s11263-015-0816-y.

[29] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. 2014. doi: 10.48550/ARXIV.1409.1556.
url: https://arxiv.org/abs/1409.1556.

[30] Christian Szegedy et al. “Going deeper with convolutions”. In: 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2015, pp. 1–9.
doi: 10.1109/CVPR.2015.7298594.

[31] Michael Tomz, Gary King, and Langche Zeng. “ReLogit: Rare Events Lo-
gistic Regression”. In: Journal of Statistical Software 8.2 (2003), pp. 1–27. doi:
10.18637/jss.v008.i02. url: https://www.jstatsoft.org/index.php/
jss/article/view/v008i02.

[32] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural
Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Asso-
ciates, Inc., 2017. url: https://proceedings.neurips.cc/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[33] Armando Vieira. The revolution of depth. June 2016. url: https://medium.
com/@Lidinwise/the-revolution-of-depth-facf174924f5.

[34] Anna Volokitin, Radu Timofte, and Luc Van Gool. “Deep Features or Not:
Temperature and Time Prediction in Outdoor Scenes”. In: 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition Workshops (CVPRW). 2016,
pp. 1136–1144. doi: 10.1109/CVPRW.2016.145.

[35] Joseph Yacim and Douw Boshoff. “Impact of Artificial Neural Networks
TrainingAlgorithms onAccurate Prediction of Property Values”. In: Journal
of Real Estate Research 40 (Nov. 2018), pp. 375–418. doi: 10.1080/10835547.
2018.12091505.

[36] Muhamad Yani, S Irawan, and Casi Setianingsih. “Application of Transfer
LearningUsing Convolutional Neural NetworkMethod for Early Detection
of Terry’s Nail”. In: Journal of Physics: Conference Series 1201 (May 2019),
p. 012052. doi: 10.1088/1742-6596/1201/1/012052.

[37] Richard Zhang. Making Convolutional Networks Shift-Invariant Again. 2019.
doi: 10.48550/ARXIV.1904.11486. url: https://arxiv.org/abs/1904.
11486.

62

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.48550/ARXIV.1409.1556
https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.18637/jss.v008.i02
https://www.jstatsoft.org/index.php/jss/article/view/v008i02
https://www.jstatsoft.org/index.php/jss/article/view/v008i02
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://medium.com/@Lidinwise/the-revolution-of-depth-facf174924f5
https://medium.com/@Lidinwise/the-revolution-of-depth-facf174924f5
https://doi.org/10.1109/CVPRW.2016.145
https://doi.org/10.1080/10835547.2018.12091505
https://doi.org/10.1080/10835547.2018.12091505
https://doi.org/10.1088/1742-6596/1201/1/012052
https://doi.org/10.48550/ARXIV.1904.11486
https://arxiv.org/abs/1904.11486
https://arxiv.org/abs/1904.11486

	Introduction
	Related work
	Label prediction
	Temperature prediction

	Artificial Intelligence, Deep Learning and Computer Vision
	Artificial Intelligence
	Deep Learning
	Artificial Neural Networks
	Activation functions

	Convolutional Neural Networks (CNNs)
	Most popular CNNs architectures
	CLIP

	Training of neural networks

	Dataset
	Weather condition labels
	Temperature

	Weather classifier
	Metrics
	Accuracy
	Precision
	Recall
	F1-score

	ResNet
	CLIP
	Loss

	Temperature regressor
	Metrics
	Mean Squared Error (MSE)
	Root Mean Squared Error (RMSE)
	Mean Absolute Error (MAE)
	R2

	Using all cameras
	Different evaluation cameras
	Without reference images
	Using reference images
	Batch concatenating
	Channel concatenating
	Two CNNs

	Loss

	Results
	Weather classifier
	Temperature regressor

	Conclusions

