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A simple branching process

Let us consider a simple stochastic model for the evolution of the

size of a population.

(Assumptions)

1. The population evolves in generations. Let Zk , k ! 0, be the
number of members of the k-th generation. By assumption,
Z0 = 1.

2. Each member of the k-th generation gives birth to a family
(possibly empty) of members of the (k + 1)-th generation.
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A simple branching process

◮ The number of descendants of a given individual (family size)

is a random variable X with probability function

P(X = i) = pi , i ! 0

◮ The family sizes form a collection of independent random

variables identically distributed as X .

Such a branching process

{Z0,Z1, . . . ,Zk , . . .}

is called a Galton-Watson process.
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Example

For instance, suppose that

p0 =
1

2
, p1 =

1

4
, p2 =

1

4

Since Z0 = 1, we have that Z1 is distributed as X , that is,

P(Z1 = 0) =
1

2
, P(Z1 = 1) =

1

4
, P(Z1 = 2) =

1

4
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Example

If, for instance, there are two individuals in the first generation, i.e.

Z1 = 2, then

P(Z2 = 0 |Z1 = 2) = P(X1 + X2 = 0) = p20 =
1

4

P(Z2 = 1 |Z1 = 2) = P(X1 + X2 = 1) = p0p1 + p1p0 =
1

4

P(Z2 = 2 |Z1 = 2) = P(X1 + X2 = 2) = p0p2 + p1p1 + p2p0 =
5

16

P(Z2 = 3 |Z1 = 2) = P(X1 + X2 = 3) = p1p2 + p2p1 =
1

8

P(Z2 = 4 |Z1 = 2) = P(X1 + X2 = 4) = p22 =
1

16

Notice that !

n!0

P(Z2 = n |Z1 = 2) = 1
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Example

Performing similar calculations and taking into account that

P (Z2 = n) =
2!

r=0

P(Z2 = n |Z1 = r)P(Z1 = r)

we obtain the probability function of Z2:

P(Z2 = 0) =
11

16
, P(Z2 = 1) =

2

16
, P(Z2 = 2) =

9

64
,

P(Z2 = 3) =
1

32
, P(Z2 = 4) =

1

64
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Probability distribution of Zk+1

In general, if r ! 1, then

P(Zk+1 = n |Zk = r) = P(X1 + X2 + · · ·+ Xr = n |Zk = r)

= P(X1 + X2 + · · ·+ Xr = n),

where the random variables Xi are independent and identically

distributed as X .

Moreover, if r = 0, then P(Zk+1 = 0 |Zk = 0) = 1.

Then, by the TPT,

P (Zk+1 = n) =
!

r!0

P(Zk+1 = n |Zk = r)P(Zk = r)
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Extinction probabilities

Let us consider the probability dm that the population disappears

in a number of generations # m, that is to say,

dm ≡ P(Zm = 0)

In the previous example,

d0 = 0

d1 =
1

2

d2 =
11

16

· · ·
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Extinction probabilities

Let Dm = {Zm = 0}. Then

dm = P(Dm)

=

!

k!0

P(Dm |Z1 = k)P(Z1 = k) =
!

k!0

(dm−1)
k P(X = k)

Hence, if GX (s) =
"

k!0 s
k P(X = k) is the probability generating

function of X , then

dm = GX (dm−1)
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Extinction probabilities

In our example,

GX (s) =
1

2
+

1

4
s +

1

4
s2

Hence

d0 = 0

d1 = GX (d0) = GX (0) =
1

2

d2 = GX (d1) = GX

#
1

2

$
=

1

2
+

1

4
· 1
2
+

1

4
·
#
1

2

$2

=
11

16

d3 = GX (d3) = GX

#
11

16

$
=

1

2
+

1

4
· 11
16

+
1

4
·
#
11

16

$2

=
809

1024
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Ultimate extinction

Notice that D0 ⊆ D1 ⊆ · · · ⊆ Dm ⊆ Dm+1 ⊆ · · · , and so

d0 # d1 # · · · # dm # dm+1 # · · · # 1

Hence the following limit exists:

d ≡ lim
m→∞

dm

What is its meaning?
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Ultimate extinction

Since D0 ⊆ D1 ⊆ · · · ⊆ Dm ⊆ Dm+1 ⊆ · · · , ite makes sense to

consider the limit event

lim
m→∞

Dm ≡
∞%

k=0

Dk ,

which corresponds to the ultimate extinction of the population.

Therefore,

d = lim
m→∞

dm = lim
m→∞

P(Dm) = P
&

lim
m→∞

Dm

'

is the probability of that ultimate extinction.
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Ultimate extinction

(Limit of an increasing sequence of events)

Let
∅ = D0 ⊆ D1 ⊆ · · · ⊆ Dm ⊆ Dm+1 ⊆ · · ·

be an increasing sequence of events and define

lim
m→∞

Dm ≡
∞%

k=0

Dk .

Then,

P
&

lim
m→∞

Dm

'
= lim

m→∞
P(Dm)
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Ultimate extinction

Proof:

P
&

lim
m→∞

Dm

'
= P

( ∞%

k=0

Dk

)
= P

( ∞%

k=1

(Dk \ Dk−1)

)
,

where the last union is of mutually disjoint events

Therefore,

P
&

lim
m→∞

Dm

'
=

∞!

k=1

(P(Dk)− P(Dk−1))

= lim
m→∞

m!

k=1

(P(Dk)− P(Dk−1))

= lim
m→∞

P(Dm)
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Ultimate extinction

Letting m → ∞ we get from dm = GX (dm−1) that

d = GX (d)

◮ So, the extinction probability d is a solution of the equation

s = GX (s)

◮ Notice that s = 1 is always a root of s = GX (s).
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Ultimate extinction

Returning to our example, but considering arbitrary values of the

probabilities p0, p1, and p2, such that p0 + p1 + p2 = 1, we have

s = GX (s) ⇐⇒ s = p0 + p1 s + p2 s
2

Hence, p2 s
2 − (p0 + p2) s + p0 = 0. The two roots of this

equation are

s1 = 1, s2 =
p0
p2

Let m be the expected number of descendants per individual:

m = E(X ) = p1 + 2p2 = 1− p0 + p2
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Ultimate extinction

(1) Case m < 1 ⇐⇒ p0 > p2 ⇐⇒ s2 > 1
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2.0

2.5

Figure: p0 = 1/2, p1 = 1/4, p2 = 1/4

The iterations dm = GX (dm−1) converge to d = 1.
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Ultimate extinction

(2) Case m = 1 ⇐⇒ p0 = p2 ⇐⇒ s1 = s2 = 1
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Figure: p0 = 1/4, p1 = 1/2, p2 = 1/4

The iterations dm = GX (dm−1) also converge to d = 1.
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Ultimate extinction

(3) Case m > 1 ⇐⇒ p0 < p2 ⇐⇒ s2 < 1
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Figure: p0 = 1/4, p1 = 1/4, p2 = 1/2

The iterations dm = GX (dm−1) converge to d = s2 < 1.
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General case

The same analysis can be performed in the case of a more general

probability generating function GX (s).

Notice that if s ! 0, then

GX (s) = p0 + p1s + p2s
2
+ p3s

3
+ · · ·! 0

G ′
X (s) = p1 + 2p2s + 3p3s

2
+ · · ·! 0

G ′′
X (s) = 2p2 + 6p3s + · · ·! 0

So, the plot of GX (s) is as in the case of a polynomial of degree 2.
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General case

◮ In general, if s ! 0, the plot of GX (s) will intersect in two

points the line (with equation) s. So, the equation s = GX (s)
will have two solutions.

◮ The iterations dm = GX (dm−1) will converge to the smallest

of the two solutions.

◮ Moreover, m = E(X ) = G ′
X (1) is the slope of the tangent line

of GX (s) at s = 1.

◮ Hence, we have again the three cases considered previously for

GX (s) a polynomial of degree 2.
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Ultimate extinction

Theorem

Let d be the smallest nonnegative root of the equation s = GX (s)
and let m = E(X ). Then d is the probability of ultimate extinction
of the population. Moreover,

◮ If m < 1, then d = 1. The extinction is sure.

◮ m = 1, then d = 1. The line s is tangent at s = 1 to GX (s)
(double root d = 1). The extinction is sure.

◮ m > 1, then d < 1. In this case, there is a non-zero
probability, 1− d, of non-extinction.
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Probability generating function of Zn

Let Gn(s) be the probability generating function of Zn.

Gn+1(s) = E
&
sZn+1

'
= E

&
E
&
sZn+1 |Zn

''

Since

E
&
sZn+1 |Zn = k

'
= E

&
sX1+···+Xk |Zn = k

'

= E
&
sX1 · · · sXk

'
=

&
E
&
sX

''k
= (GX (s))

k

we have

Gn+1(s) = E
&
(GX (s))

Zn

'
= Gn (GX (s))
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Probability generating function of Zn

So, we have

G1(s) = GX (s)

G2(s) = G1(GX (s)) = GX (GX (s)) = G
(2)
X (s)

G3(s) = G2(GX (s)) = GX (GX (GX (s))) = G
(3)
X (s)

· · · · · · · · ·

The probability generating function of Zn is the n-folded
composition of GX (s) with itself:

Gn(s) = Gn−1(GX (s)) = G
(n)
X (s), n ! 1.
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Probability generating function of Zn

In our example,

GX (s) =
1

2
+

1

4
s +

1

4
s2

Then

G2(s) = GX (GX (s)) =
1

2
+

1

4
GX (s) +

1

4
(GX (s))

2

=
1

2
+

1

4

#
1

2
+

1

4
s +

1

4
s2
$
+

1

4

#
1

2
+

1

4
s +

1

4
s2
$2

=
11

16
+

1

8
s +

9

64
s2 +

1

32
s3 +

1

64
s4
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Expected number of individuals

Let mn = E(Zn).

The derivative of Gn+1(s) = Gn (GX (s)) is

G ′
n+1(s) = G ′

n (GX (s)) G
′
X (s)

Taking s = 1 we have

G ′
n+1(1) = G ′

n (GX (1)) G
′
X (1) = G ′

n (1) G
′
X (1)

Hence mn+1 = mn m. Therefore,

mn = mn
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