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A simple branching process

Let us consider a simple stochastic model for the evolution of the
size of a population.

(Assumptions)

1. The population evolves in generations. Let Zi, k > 0, be the
number of members of the k-th generation. By assumption,
Zy = 1.

2. Each member of the k-th generation gives birth to a family
(possibly empty) of members of the (k + 1)-th generation.
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A simple branching process

» The number of descendants of a given individual (family size)
is a random variable X with probability function

P(X=i)=p;, i=0

» The family sizes form a collection of independent random
variables identically distributed as X.

Such a branching process
{207219"'721(7"‘}

is called a Galton-Watson process.



Example Example

If, for instance, there are two individuals in the first generation, i.e.

Z1 = 2, then
For instance, suppose that P(Zy = 0| Zy = 2) = P(X1 + Xo = 0) pg _ 1
4
1 1 1 1
p0:§> p1:Za p2:Z IP(Z2:1|ZI:2):P(X1+X2:1)=P0P1+P1P0=Z
5
P(Zy = 2| Z1 = 2) = P(Xq + Xo = 2) = pops - p1p1 + Doy = —
Since Zy = 1, we have that Z; is distributed as X, that is, (% 14=2) (X1 + X2 = 2) = pop2 + p1p1 Plzpo 16
1 1 1 ]P’(ZQ:3|Zl:2):P(X1+X2:3)=p1p2+p2p1:§
]P’(Z2=4|Zl 22)=]P>(X1+X2=4)=p§= 1_6
Notice that
Y P(Z=nlz1=2)=1
n=>0
5/27 6 /27
Example Probability distribution of Zj;

In general, if r > 1, then
Performing similar calculations and taking into account that
]P’(Zk+1 :n|Zk :r) :[P(Xl +X2+---+X,:n|Zk :r)

2 =P(Xy + Xo +---+ X, = n),

P(Zy=n) =Y P(Z=n|Zy=rP(Zy=r)
r=0 where the random variables X; are independent and identically
we obtain the probability function of Z: distributed as X.

Moreover, if r = 0, then P(Zx41 = 0] Zx =0) = 1.

11 2 9
P(Z=0=1 PZ=1)=1 PKZ=2)=g,
. Then, by the TPT,
P(Zy=3)=—=, P(Zo=4)=—
32 6 P(Zisr=n)=> P(Ziyr=n|Zk=rP(Z=r)

r=0



Extinction probabilities

Extinction probabilities

Let us consider the probability d,, that the population disappears
in a number of generations < m, that is to say,

Let Dy = {Zm = 0}. Then
dm = P(Zm = 0) G = P(Dpy)
k
In the previous example, = ZP(Dm | Z1 = k)P(Z1 = k) = Z(dm—l) P(X = k)
k=0 k=0
do=0
& = 1 Hence, if Gx(s) = > >0 sKP(X = k) is the probability generating
2 function of X, then
db — E dm GX(dm—l)
2716
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Extinction probabilities Ultimate extinction
In our example,

11 1,

Gx(s) = 5 +15+15 Notice that Dy C D; C -+ C D;yy € D1 € -+ -, and so
Hence do <<+ < <dmp1 << 1
do=0
1 Hence the following limit exists:
di = Gx(do) = 6x(0) = 5
1\ 1 11 1 [1\* 11 9= i O
m—o0

b=6x)=6x(3) =35 31 (3) =16

11 1 1 11 1 11\ 2 809 What is its meaning?
d3—GX(d3)—GX<E> —§+1'1—6+Z'<E> = 1024
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Ultimate extinction

Since Dy C Dy C---C Dy € D1 C -+ -, ite makes sense to
consider the limit event

lim Dy, = U Dy,

m—00
k=0

which corresponds to the ultimate extinction of the population.

Therefore,
d= lim dm= lim P(Dm) :]P’( lim Dm)
m—o0 m—0o0 m—00

is the probability of that ultimate extinction.

Ultimate extinction

Proof:
o0 o0
P( lim Dp) =P (kL:JO Dk) P (kL:JI(Dk \ Dk_l)) ,
where the last union is of mutually disjoint events

Therefore,

m—00

IP( lim Dm) :i P(Dy) — P(Dy_1))

= lim Z(P(Dk — P(Dx-1))

m—00

= lim ]P(Dm)

m—o0
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Ultimate extinction

(Limit of an increasing sequence of events)

Let

Q):DOQDIQ 'gDngm+1g"‘

be an increasing sequence of events and define

o0
lim D, = U Dx.

m—00

Then,
IP’( lim Dm) — lim P(Dp)
m— o0

m—y00

Ultimate extinction

Letting m — oo we get from d,, = Gx(dpn—1) that

d = Gx(d)

» So, the extinction probability d is a solution of the equation

s = Gx(s)

» Notice that s = 1 is always a root of s = Gx(s).
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Ultimate extinction

Returning to our example, but considering arbitrary values of the
probabilities pg, p1, and py, such that pg + p1 + p2 = 1, we have

s=Gx(s) < s=po+pis+ps

Hence, p» s> — (po + p2) s + po = 0. The two roots of this

equation are
_ ko

P2

si=1, s

Let m be the expected number of descendants per individual:

m=EX)=p1+2p2=1—po+ p2

Ultimate extinction

(2)Casem=l<=p=p<=si=5=1

05 0 15 20

Figure: pp=1/4, p1=1/2, pp=1/4

The iterations dp, = Gx(dm—1) also converge to d = 1.
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Ultimate extinction

(I)Casem<l<—=py>pp<=s>1

Figure: pp=1/2, p1=1/4, p=1/4

The iterations dp, = Gx(dm—1) converge to d = 1.

Ultimate extinction

(3)Casem>1l<=p<pp<=s<l
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Figure: pp=1/4, p1=1/4, pp=1/2

The iterations d,, = Gx(dm—1) converge to d = s, < 1.
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General case

The same analysis can be performed in the case of a more general
probability generating function Gx(s).

Notice that if s > 0, then
Gx(s) = po+ p15s+ p2s® +p3s> +---= 0
G (s) = p1+2p2s +3p3s®+-+- =0
Gk(s) =2p2 +6pss+--->0

So, the plot of Gx(s) is as in the case of a polynomial of degree 2.
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Ultimate extinction

Theorem

Let d be the smallest nonnegative root of the equation s = Gx(5s)
and let m = E(X). Then d is the probability of ultimate extinction
of the population. Moreover,

» /fm < 1, then d = 1. The extinction is sure.

» m=1, then d = 1. The line s is tangent at s = 1 to Gx(s)
(double root d = 1). The extinction is sure.

» m > 1, then d < 1. In this case, there is a non-zero
probability, 1 — d, of non-extinction.

General case

» In general, if s > 0, the plot of Gx(s) will intersect in two
points the line (with equation) s. So, the equation s = Gx(s)
will have two solutions.

» The iterations dp, = Gx(dm—1) will converge to the smallest
of the two solutions.

» Moreover, m = E(X) = Gy(1) is the slope of the tangent line
of Gx(s) at s =1.

» Hence, we have again the three cases considered previously for
Gx(s) a polynomial of degree 2.

Probability generating function of Z,

Let G,(s) be the probability generating function of Z,.

Gnir(s) = E <sZn+1) —E (]E (sZn+1 | Z,,))
Since
E (sZn+1 | Z, = k) ~E (5X1+"'+Xk 1Z, = k)

B (% 5%) = (E ()" = (6x(s))!

we have

Gri1(s) = E ((6x(s)™) = Ga (Gx(5))

N
N}
N
3
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Probability generating function of Z,

So, we have

Gl(S) = Gx(s)
Ga(s) = Gi(Gx(s)) = Gx(Gx(s)) = G2(s)
G3(s) = Ga(Gx(s)) = Gx(Gx(Gx(s))) = 6L)(s)

The probability generating function of Z, is the n-folded
composition of Gx(s) with itself:

Go(s) = Go_1(Gx(s)) = G)(s), n>1.

Expected number of individuals

Let m, = E(Z,).

The derivative of Gp11(s) = G, (Gx(s)) is
Graa(5) = G, (Gx(s)) Gk(s)

Taking s = 1 we have

Gpi1(1) = G, (Gx(1)) Gx(1) = G, (1) Gx(1)

Hence m,+1 = m, m. Therefore,

m,=m"
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Probability generating function of Z,

In our example,

1 1 1
GX(S) = 5 + ZS'f‘ 152

Then

Go(s) = Gx(Gx(s)) = 5 + 3 6x(5) +

1
4
N N S A
T2\ 4

_E+15+352+i53+i5
16 8 64 32 64

(Gx(s))?

1,1
2 4

4

1
s+ -s°

4

y

26

27



