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Abstract
This thesis presents a methodology for computational fluid dynamics (CFD)
-based multi-fidelity surrogate models for indoor environmental applications.
The main idea of this work is to develop a model that has an accuracy compa-
rable to CFD simulations but considerably lower computational cost and is
capable of performing real-time or faster than real-time simulations of indoor
environments using ordinary office computers.

This work can be divided into three main parts. In the first part, a rigorous
analysis of the feasibility of affordable high-fidelity CFD simulations for indoor
environment design and control is carried out. In this chapter, we analyze two
representative test cases, which imitate common indoor airflow configurations,
on a wide range of different turbulence models and discretizations methods to
meet the requirements for the computational cost, run-time, and accuracy. We
apply the knowledge on the growth in computational power and advances
in numerical algorithms in order to analyze the possibility of performing
accurate yet affordable CFD simulations on ordinary office computers. We
consider statistically steady-state simulations for indoor environment design
and transient simulations for control. Among studied turbulence models,
the no-model and large-eddy simulation (LES) with staggered discretizations
show the best performance. We conclude that high-fidelity CFD simulations
on office computers are too slow to be used as a primary tool for indoor envi-
ronment design and control. Taking into account different laws of computer
growth prediction, we estimate the feasibility of high-fidelity CFD on office
computers for these applications for the next decades.

The second part of this thesis is dedicated to developing a surrogate data-
driven model for the prediction of comfort-related flow parameters in a venti-
lated room. This chapter is an answer to the conclusions of the first part of the
thesis, where we establish the unfeasibility of accurate and computationally
cheap CFD simulations for routine use in building applications. This chapter
uses a previously tested ventilated cavity with a heated floor case. The devel-
oped surrogate model predicts a set of comfort-related flow parameters, such
as the average Nusselt number on the hot wall, jet separation point, average
kinetic energy, average enstrophy, and average temperature, which were also
comprehensively studied in the previous part of the thesis. The developed
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surrogate model is based on the gradient boosting regression, chosen due to
its accurate performance among four tested machine learning methods. The
model inputs are the temperature and velocity values in different locations,
which act as a surrogate of the sensor readings. The locations and the number
of these sensors were determined by minimizing the prediction error. This
model does not require the repetition of CFD simulations in order to be applied
since the structure of the input data imitates sensor readings. Furthermore,
the low computational cost of model execution and good accuracy makes it
an effective alternative to CFD for applications where rapid predictions of
complex flow configurations are required, such as model predictive control.

The third part of the thesis is an extension of the surrogate model de-
veloped in the second part. In this chapter, we implement a multi-fidelity
approach to reduce the computational cost of the training dataset generation.
The developed surrogate model is based on Gaussian process regression (GPR),
a machine learning approach capable of handling multi-fidelity data. The
variable fidelity dataset is constructed using coarse- and fine-grid CFD data
with the LES turbulence model. The surrogate model takes the temperature
and velocity magnitude values at four different cavity locations determined
as optimal in the previous part of the work. We test three multi-fidelity ap-
proaches: GPR trained on both high- and low-fidelity data without distinction,
GPR with linear correction, and multi-fidelity GPR or co-cringing. The compu-
tational cost and accuracy of these approaches are compared with GPRs based
only on high- or low-fidelity data. All of the tested multi-fidelity approaches
successfully reduce the computational cost of dataset generation compared
to high-fidelity GPR while maintaining the required level of accuracy. The
co-cringing approach demonstrates the best trade-off between computational
cost and accuracy.
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Nomenclature

Acronyms

ANN Artificial neural network
CFD Computational fuid dynamics
DDM Data-driven model
DDSM Data-driven surrogate model
DNS Direct numerical simulation
FFD Fast fluid dynamics
GBR Gradient boosting regression
GP Gaussian process
GPR Gaussian process regression
HF High-fidelity
HVAC Heating ventilation and air conditioning
LBM Lattice Boltzmann method
LCGPR Gaussian process regression with linear correction
LES Large-eddy simulation
LF Low-fidelity
LOO Leave-one-out
MFGPR Multi-fidelity Gaussian process regression
ML Machine learning
MPC Model predictive control
MRE Mean relative error
POD Proper othognal decomposition
RANS Reynolds average Navier-Stokes
RB Radial-basis
ReLU Rectified linear unit
RE Relative error
RMSE Root mean square error
SVR Support vector regression
URANS Unsteady Reynolds average Navier-Stokes
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2 Nomenclature

Dimensionless numbers

Fr Froude number based on the ratio between the bulk inlet and
buoyant velocity

Frhin Froude number based on the inlet height
Nu Nusselt number on the hot wall
Pr Prandtl number
RaH Rayleigh number based on the cavity height
ReH Reynolds number n the cavity height
Rehin Reynolds number based on the inlet height
Reτ friction Reynolds number

Latin symbols

A surface area
Ad depth aspect ratio
Ah height aspect ratio
Ain inlet slot aspect ratio
Aout outlet slot aspect ratio
Aw width aspect ratio
Cr coefficient of the refinement
c arbitrary constant
D depth
DS data sample
DSh high-fidelity data sample
DSl low-fidelity data sample
d(·, ·′) Euclidean distance
E kinetic energy
g gravitational acceleration
H height
hin inlet height
hout outlet height
Kνk(·) modified Bessel function
k(·, ·′) covariance function
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l kernel length scale
M(Xd, yd) surrogate model
N number of samples in the dataset
Nbulk number of the vertical grid points in the bulk area
Nin number of the vertical grid points in the inlet area
Nout number of the vertical grid points in the outlet area
Ntotal total number of grid points
Nx number of grid points in the horizontal direction
Ny number of grid points in the vertical direction
Nz number of grid points in the spanwise direction
p kinematic pressure
R simulation time ratio
S stratification
T temperature
Tc temperature on the cold wall
Th temperature on the hot wall
TV average cavity temperature
t time
tend end of the time integration period
tini beginning of the time integration period
tphy physically simulated time
tre f reference time
tsim computational time
U velocity magnitude
Ubuo buoyant velocity
Uin bulk inlet velocity
Ure f reference velocity
u velocity vector
u horizontal (x) component of the velocity vector
V volume of the cavity
v vertical (y) component of the velocity vector
W width
w spanwise (z) component of the velocity vector
Xd input data sample
Xd

h high-fidelity input data sample
Xd

l low-fidelity input data sample
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x Cartesian coordinates vector
x horizontal coordinate
xsep jet separation point
y vertical coordinate
yd output data sample
ŷd output of the multi-fidelity surrogate model
ỹd output of the single-fidelity surrogate model
yd

h high-fidelity output data sample
yd

l low-fidelity output data sample
z spanwise coordinate

Greek symbols

α thermal diffusivity
β thermal expansion coefficient
Γ(·) gamma function
γx grid concentration factor in the horizontal direction
γx grid concentration factor in the vertical direction
∆T temperature difference
∆xmax maximum grid size in the horizontal direction
∆ymax maximum grid size in the vertical direction
∆xmin minimum grid size in the horizontal direction
∆ymin minimum grid size in the vertical direction
∆yd test set error of the surrogate model
∆z grid size in the spanwise direction
δ(·â·′) Kronecker delta
ε Gaussian white noise
ηGrö Grötzbach estimate
ν kinematic viscosity
νk kernel smoothness
ρ density
σ2 variance
τW wall-shear stress
φ arbitrary variable
φCFD arbitrary variable obtained via CFD simulation
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φSM arbitrary variable obtained via surrogate model
φDNS arbitrary variable obtained via DNS CFD simulation
Ω enstrophy
ω vorticity

Brackets

<> time-averaged values
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Introduction

This thesis aims to develop fast and robust surrogate models for simu-
lations of an indoor environment combining computational fluid dynamics
(CFD) and machine learning (ML) techniques. This chapter presents an in-
troduction to indoor environmental simulations and their state-of-the-art
techniques. The chapter includes an extensive literature review on different
approaches to indoor environmental modeling, discussing their advantages
and disadvantages. The scope, objectives, and the outline of the thesis are
presented at the end of this chapter.

1.1 Indoor environmental applications

Energy consumption in buildings is a significant aspect of the global energy-
saving strategy. Nowadays, most heating ventilation and air conditioning
(HVAC) systems are mechanical. They consume a significant amount of energy
and account for approximately 40% of total primary energy consumption in
developed countries [1]. Energy consumption in buildings can be decreased by
various means, among them the proper design and precise control of indoor
air parameters, which require knowledge of indoor air dynamics. However,
indoor air dynamics is usually a nonlinear, transient process, which depends
on many factors such as weather, building geometry, occupants’ behavior,
etc. Thus, indoor air dynamics usually involve various complex physical
phenomena, such as stratification, natural and forced convection. As a result,
the task of precise prediction of indoor air parameters is not straightforward.

Precise prediction of indoor air parameters is used to design effective
ventilation setups. The design of HVAC systems is usually divided into two

7
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stages: early conceptual design and final detailed design. In the former, highly
accurate simulations are not required. At this stage of a project, only concep-
tual decisions are made. More important for conceptual design is the speed of
the calculations, which allows to test different design decisions. On the other
hand, final stage design applications require accurate and detailed simulation
results. A building project, in many cases, demands several representative
daily simulations [2], which imposes constraints on the maximum compu-
tational cost. In many cases, simulations for indoor environmental design
should be faster than real-time in order to be feasible for practical use. For
example, a reasonable computational speed for a daily simulation should be
at least twice faster than real-time since it would allow an engineer to start a
24 hours physical time simulation at the end of the working day and obtain
the results the following day (in 12 hours approximately).

Another important application is indoor environment control. Many con-
trol methods have been developed or proposed for HVAC systems. However,
because of their simplicity, simple on/off and proportional integral deriva-
tive control are still used in many HVAC systems, resulting in inconsistent
performance and inadequate thermal comfort. With advances in data storage,
computing, and communication devices, it is now feasible to adopt and im-
plement a more precise control approach, such as model predictive control
(MPC). MPC elaborates a model of the system evolution and executes control
actions based on it [3]. Typically, building airflow MPC systems have a control
horizon range of 4-5 hours with a time step of 1-3 hours [4], which is a rela-
tively short period in the building dynamics scale. Transient simulations are
necessary to develop high-quality MPC models since they help capture the
system dynamics; moreover, the nature of MPC requires these simulations to
be faster than real-time.

1.2 Indoor environmental prediction models

There are several common ways to evaluate air distribution in buildings,
namely, analytical and empirical models, experimental measurements, and
computer simulations. Analytical models are derived from fundamental
equations of fluid dynamics and heat transfer; they simplify geometry and
boundary conditions to obtain a solution. As a result, the final equations
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obtained for one case may not be used for another without modifications. The
empirical models are developed from the conservation equations of mass,
energy, and chemical species, similar to the analytical models. In many cases,
experimental measurements or computer simulations are used to develop
empirical models. In theory, the analytical and empirical models do not differ
very much. The perception is that the empirical models may use more ap-
proximations than the analytical models. As a result, the complexity of indoor
airflow and unique features of each building make the usage of analytical or
empirical models very difficult [5]. The experimental models are based on
either full- or small-scale experiments. Despite their high accuracy, they experi-
ence major scaling and generalization issues and are considered too expensive
for studying ventilation performance in buildings. Nowadays, experimental
models are mainly used for validation. As a result, computer simulations are
considered the primary tool for evaluating indoor air dynamics since they
allow a high degree of flexibility with smaller efforts.

Computer simulations of indoor environments are typically conducted
using multizone (airflow network) models, zonal models, and CFD. Multizone
models have the lowest computational cost and the lowest accuracy, while
CFD simulations provide detailed information about indoor airflow at the cost
of high computational effort. Airflow network models are one-dimensional
models. They represent a building as a set of zones (rooms) connected by the
airflow paths with resistances. The air parameters are uniform inside each
zone. A schematic represenation of a multizone model is shown in Figure 1.1.
These models are based on the Bernoulli equation, so the momentum effect is
neglected [6]. Considering that each node represents a single room, its airflow
distribution cannot be determined. Because of their simplicity, these models
have severe limitations that produce significant errors in the results. Axley [7]
provides a complete review of existing multizone models and their theoretical
background. The multizone models are mainly used to predict air exchange
rates [8], thermal loads [9], ventilation efficiency [10], and contaminant trans-
port in buildings [11]. Despite their severe limitations, multizone models
seem to be the only tool to obtain meaningful results for predicting ventilation
performance in an entire building.

The well-mixing assumption used in the multizone models is not valid
for large indoor spaces or rooms with stratified ventilation systems. There-
fore, zonal models have been used to remedy the problem in predicting air
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Figure 1.1: Schematic representation of a multizone model.

temperature distributions. Zonal models divide a room into a small number
of cells (usually less than 1000 per room) and solve mass and energy balance
equations in each cell. A schematic represenation of a room with zonal model
is shown in Figure 1.2 (left). To reduce the computational cost, zonal models
discard the momentum equation. When the flow momentum is strong, model
accuracy may considerably drop [12]. To improve simulation accuracy, regions
with strong flow momentum are treated separately using empirical jet mod-
els [13]. It significantly increases case dependency computational cost and
decreases the stability of zonal models. A review of existing zonal models can
be found in [14]. By comparing with very coarse-grid CFD simulations, the
zonal models do not show much superiority in reducing computing time. In
many cases, the overhead time in preparing data input for a zonal model may
be longer than that for a CFD simulation [5], which makes them impractical.

In CFD simulations (Figure 1.2, right), Navier-Stokes equations are solved
numerically on a finite number of control volumes, which divide the case
domain. The solution provides a complete set of air parameters for each con-
trol volume. One of the primary CFD challenges is turbulence modeling [15].
The effect of turbulence can be resolved using a direct numerical simulation
(DNS) or modeled using large-eddy simulation (LES) and Reynolds average
Navier-Stokes (RANS) approaches. DNS is the most accurate and the most
computationally expensive method because it resolves all the turbulent flow
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scales, which require very fine grids. LES models resolve only large scales
of motion and model the small ones, while RANS solves the mean flow and
models its turbulent fluctuations. LES models are computationally more ex-
pensive than RANS, but both methods successfully reduce computational
cost compared to DNS. However, CFD still has a vast data processing cost in
comparison with the above-explained multizone and zonal models.

Figure 1.2: Left: schematic representation of a zonal model, grey area shows the cells
which require using a jet model. Right: schematic representation of a CFD simulation.

CFD has been successfully used for detailed simulations of building air-
flows by many researchers [16–20]. Nevertheless, all of these studies show the
need for a compromise between computational cost and accuracy. Van Hooff
et al. [16] performed CFD simulations of a generic isolated building. They used
a computational grid of 5× 106 control volumes to achieve reliable results,
which required using 14 CPU cores on a high-performance computer. Other
studies also indicate the high computational cost of CFD. For example, Chen
et al. [18] showed that an accurate simulation of a kitchen room would require
at least 106 control volumes. Chen et al. [17] used a grid of 4× 106 control
volumes for an accurate simulation of an office room with a ceiling fan. Zheng
et al. [20] studied the wind flow for buildings with balconies using a fine mesh
of 2× 107 cells. An ordinary office computer does not have sufficient memory
and CPU power to complete such large simulations in a reasonable amount
of time for indoor environment design and control. Moreover, the widely
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used RANS turbulence models do not always produce satisfactory results,
making the use of more accurate (and more expensive) turbulence models
indispensable [16, 20]. Accurate CFD simulations require large computational
resources, while using ordinary office computers can result in unreasonably
long run-times. Grid coarsening and RANS turbulence modeling are com-
mon ways to reduce the cost of CFD, but they can lead to overly inaccurate
results. Therefore, the task of performing affordable yet accurate CFD is not
straightforward.

Over the last decade, several attempts to reduce the computational cost
of CFD for indoor environmental applications have been made. Wang &
Zhai [21] examined the credibility of coarse-grid CFD for HVAC applications
and optimized the space discretization to reduce the total truncation error.
Kempe & Hantsch [22] applied the immersed boundary method to an LES sim-
ulation of a room with a heat source and achieved real-time LES simulations
with 32 CPU cores. Zhang & Mirzaei [23] improved the results of coarse-grid
CFD by mapping into them the results of fine-grid CFD simulations and then
coupled these CFD simulations with building energy simulations achieving a
computational speed about 200 times faster than ordinary coupling methods.
Chen et al. [24] applied polyhedral meshes for the CFD simulations of indoor
environment and reported saving almost 95% of computing time without sac-
rificing model accuracy, compared with the use of tetrahedral and hexahedral
meshes. However, all of the aforementioned studies focus only on the specific
aspects of computational cost reduction; thus, their methods have limited
applicability. Moreover, they did not study the transient flows and did not
consider different turbulence models.

Apart from classical CFD methods, two other similar approaches are used
nowadays. Those are the lattice Boltzmann method (LBM) and fast fluid
dynamics (FFD). LBM method [25–27] uses the discretized Boltzmann equa-
tion with density-momentum and internal energy distribution functions to
calculate the flow [28]. The LBM deals with microscopic particle collision and
streaming to construct the macroscopic quantities. Since the advection term
limits the time step, LBM is shown to be slower than CFD simulations with
similar grid resolutions [26] and has not gained much popularity in the field
of indoor environmental simulations. However, the LBM method is still used
in the simulations of indoor environments, which focus on particle tracking.
For example, simulations of pollutant dispersion [29] or emission behaviors of
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organic compounds [30].
FFD was first introduced by Stam [31] for computer games. Zuo &

Chen [32] adapted the numerical algorithm for airflow in buildings and
introduced turbulence modeling. The FFD method uses a first-order semi-
Lagrangian scheme to solve the advection term, computes the diffusion term
implicitly, decouples pressure and velocity with fractional step method [33].
The implicit scheme allows an increased time step, besides computational
speed is additionally enhanced by using low order discretization schemes.
As a result, FFD has lower computing costs but also lower accuracy than the
classic CFD [32]. FFD was claimed to be capable of faster than the real-time
simulations, but due to the low accuracy of the predictions, it was recognized
as a valid alternative to CFD. Nevertheless, FFD found its niche in the urban
flow simulations because classical CFD models are unable to meet the demand
for fast simulations with meter-level spatial resolution and minute-level tem-
poral resolution due to the huge computational domain with numerous grids
for urban residential areas [34, 35].

All the aforementioned methods are primarily used in indoor environment
design. On the other hand, for MPC, usually, low order models such as
multizone are used [36, 37]. So far, CFD has not been integrated into MPC
directly due to the enormous computational cost and nonlinearity of the
governing equations. However, several preliminary attempts have been made
to simplify CFD to fit MPC requirements [38, 39].

1.3 Surrogate models

Surrogate models are models that approximate the behavior of complex sys-
tems, based on a limited set of computationally expensive simulations. Surro-
gate models mimic the complex behavior of the underlying simulation models
as closely as possible while being considerably computationally cheaper to
evaluate. Figure 1.3 shows the schematic representation of surrogate modeling
principles. Surrogate models are constructed using a data-driven, bottom-up
approach. Data-driven models (DDM) are based on using data analysis to
find relations between system state variables without explicit knowledge of
the physical behavior of the system. Essentially, they represent a shift from
“knowledge-based” to “knowledge-learned” modeling. DDMs are classified
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as either statistical or ML-based models, depending on factors such as their
origin, governing philosophy, and the typical size of the data sets analyzed.
DDMs can be developed comparatively easily since they do not require an
understanding of system physics. In order to train these models, a compre-
hensive set of input-output data of the system is needed under all possible
working conditions. Thus, the ease of development of surrogate models
comes at the cost of reduced generalization capability compared to the clas-
sical modeling approaches. The accuracy of DDMs decreases when training
data deviates from testing data. Hence, it is critical to train these models
with the data covering all the possible scenarios, which could be challenging,
especially for indoor environmental applications that operate under a wide
range of weather conditions throughout the year. However, difficulties in
obtaining high-fidelity training data are compensated by the high accuracy
and the low computational cost of the resulting models [40].

Figure 1.3: Schematic representation of surrogate modeling principles.

Statistical DDMs are usually based on proper orthogonal decomposition
(POD). The POD method essentially provides an orthogonal basis for repre-
senting a given set of data in a certain least-squares optimal sense, i.e., it offers
ways to find optimal lower-dimensional approximations for the given data
set. Modeling framework employing POD has been extensively employed
for rapid prediction of indoor environmental parameters for different appli-
cations, like data centers [41, 42] or airplane cabins [43]. Wang et al. [44] used
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a CFD-based POD model to optimize air supply schemes in indoor environ-
ments. The results from these studies indicate that POD-based models have
good interpolative accuracy but quite poor extrapolative accuracy and are
therefore impractical for predictions beyond the input parameter space [45].
However, according to [46], the POD method is successfully used as prepro-
cessing dimensionality reduction step in ML-based DDMs.

Machine learning-based data-driven models are also regularly used to
model indoor environments. ML-based models are used as surrogate models
for building design, sensitivity and uncertainty analysis, thermal load pre-
dictions, and MPC [47]. For instance, DDM-MPC for HVAC systems were
developed for a university building [48], an airport [49], and a residential
building [40, 50]. DDM based MPC are used to minimize energy consump-
tion [51], maintain thermal comfort at acceptable level [52], and minimize
thermal discomfort hours [53]. Moreover, DDMs are widely used for HVAC
load predictions. For example, DDMs for thermal load predictions were devel-
oped for a single building [54] and a non-residential district [55]. Besides, Park
& Park [56] performed a comparative analysis on the predictability of natural
ventilation rates. All of the aforementioned works show low computational
cost and sufficient accuracy. However, these models primarily rely on other
reduced-order models, experimental results, or historical data to generate the
input-output data for their DDMs.

Surrogate modeling is often built from and compared with CFD simula-
tions, which allows producing comparable to CFD results in terms of accuracy.
Because of its inexpensiveness, surrogate modeling is the major focus of the
current research of built environment applications. For example, Athavale et
al. [42], and Fang et al. [57] compared different CFD-based ML-based DDM
approaches for temperature prediction in data centers and concluded that
results produced by these models are in good agreement with the reference
CFD data. Warey et al. [58] created an accurate model of vehicle cabin thermal
comfort prediction using ML algorithms and high-fidelity CFD simulation
results. The models mentioned above are of practical significance. Neverthe-
less, they are developed for specific applications and cannot directly predict
flow parameters in a more generic indoor environment. Zhang et al. [59] used
DDMs in general indoor environments with CFD as training data to solve the
inverse design problem and identify a possible relationship between thermal
comfort and inlet boundary condition. On the other hand, Tian et al. [60]



16 §1.4 Objectives of the thesis

used ML based on CFD and experimental data to model indoor environment
indicators in the stratified environments in order to evaluate human thermal
comfort. Ding et al. [60] developed data-driven regression model for coupled
indoor-outdoor flow analysis together with CFD simulations. The researchers
mentioned above note that CFD-based surrogate models produce accurate
predictions at a low computational cost and could be a low-cost alternative to
classical modeling techniques.

Using CFD simulations for surrogate modeling usually results in the high
computational cost of dataset generation; thus, the increasing number of
works is trying to optimize the computational cost of CFD database by us-
ing a data-driven multi-fidelity approach, which combines a large number
of computationally cheap low-fidelity simulations and a smaller number of
expensive high-fidelity simulations, in order to find a trade-off between simu-
lation cost and surrogate model accuracy. Multi-fidelity is a new approach in
surrogate modeling, and not many works have been published on this topic.
For instance, Lamberti & Gorlé [61] combined RANS and LES simulations in
order to create a ML-based model which predicts wind loads on buildings.
They showed that the proposed multi-fidelity framework has the potential
to significantly reduce the number of expensive LES simulations while re-
taining a significantly higher accuracy than standard empirical models. The
multi-fidelity kriging technique was used by Li et al. [62] for the optimization
of high-speed train cabin ventilation system design, which led to significant
savings of computational time. Zhang et al. [63] combined high-fidelity models
using a CFD evaluation with fine grid and the low-fidelity models using the
same CFD model with a coarse grid to optimize the aerodynamic shape opti-
mization of a RAE2822 airfoil, which improved optimization efficiency and
outperformed the single-fidelity method. However, to the best of the author’s
knowledge, multi-fidelity surrogate modeling has not yet been applied to
simulations of the indoor environment.

1.4 Objectives of the thesis

Traditional reduced-order modeling approaches like multizone and zonal
models are extensively used in building simulations due to their low compu-
tational, even though they offer minimal information about indoor airflows.
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On the other hand, CFD represents a certainly more economical solution than
physical experiments. However, as later shown in Chapter 2, CFD is still not
feasible for routine use in indoor environmental design and control. Because
CFD simulations are either not to be trusted entirely due to the insufficient
grid resolutions and wrong turbulence models choice or are too computation-
ally expensive to run. Besides, the problem with CFD simulations in a built
environment is that, even with a small indoor domain, the airflow is quite
complex, making simulations, especially demanding in the design process
with a number of scenarios. Moreover, the different attempts to reduce the
computational cost of CFD have not resulted in models with acceptable accu-
racy. From this perspective, surrogate modeling looks like an attractive option
due to its low computational cost and comparable with CFD accuracy.

Eventually, surrogate modeling is a valuable technique whose main ad-
vantage resides in the possibility to obtain fast and inexpensive predictions,
otherwise unfeasible with more expensive CFD simulations. It also comes
with limitations such as being case dependent and needing extensive training
data sets. However, the ability of surrogate models to imitate the accuracy
of CFD simulations makes them especially useful for applications where a
rapid prediction of a complex flow phenomenon is required, and traditional
reduced-order models cannot be relied on, while CFD simulations turn out
to be prohibitively expensive. Moreover, the multi-fidelity approach can help
to reduce the computational cost of CFD database generation and improve
the model’s generalization by increasing the size of the training dataset. On
the other hand, case dependence is less significant for indoor environmental
applications requiring standard room geometries.

This work aims to show how surrogate modeling can fill a gap between
multizone models and CFD, resulting in models which provide more informa-
tion about indoor airflow than multizone models and demanding considerably
less than CFD computational resources. The developed surrogate model acts
as a proof of concept. The problem of case dependency is reduced by con-
sidering two representative cases of the indoor environment, namely, a tall
differentially-heated cavity and a ventilated cavity with a heated floor. These
are the classical benchmark test cases used by many researchers in the field
of indoor environmental simulations [64–68] for testing novel simulation
methods. We have chosen these test configurations because of the challenges
they present and because of the availability of both experimental [69, 70] and
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DNS CFD [71, 72] data for validation. The multi-fidelity approach is used
to overcome another bottleneck of the surrogate modeling by reducing the
computational cost of dataset generation and further increasing the developed
model’s prediction capabilities.

We believe this thesis significantly contributes to developing surrogate
models for fast predictions of indoor environmental parameters. It also helps
to better understand different numerical aspects of these models and their
effect on the accuracy and computational cost of the resulting models. More-
over, we demonstrate the capability of the proposed methods to prove almost
instantaneous predictions of the indoor environmental parameters on an office
computer.

1.5 Outline of the thesis

This thesis is organized into five chapters. The first chapter provides an intro-
duction and an extensive literature review on indoor environmental modeling
techniques. The main contributions of this research work are presented in
three main chapters (chapters 2-4). These chapters are selfâcontained and
could be read on their own, without the need to read the complete document.
Each chapter contains a short introduction that aims to highlight the contribu-
tion of the chapter and put it in the proper context by reviewing related works
in the literature. The content of each main chapter is published as original
research articles in international journals and presented in different scientific
conferences. The last chapter provides concluding remarks and possible future
works.

Chapters 2 to 4 present the main contributions of this thesis. Chapter 2
studies the feasibility of affordable high-fidelity CFD for indoor environmental
applications using the aforementioned test cases of a tall differentially-heated
cavity and a ventilated cavity with a heated floor. Both cases are tested on
a wide range of staggered and collocated grids with different LES, RANS,
and DNS approaches. Performed CFD simulations are analyzed in terms of
computational cost and accuracy to meet the indoor environmental applica-
tions requirements. Moreover, the estimation of the feasibility of high-fidelity
CFD on office computers for these applications for the next decades is per-
formed using different laws of computer growth prediction. The chapter
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provides a comprehensive analysis of the capabilities and limitations of CFD
for simulations of the indoor environment, taking into account the growth in
computational power and advances in numerical algorithms.

Chapter 3 focuses on developing a data-driven surrogate model, which is
based on the data from CFD simulations. The model predicts comfort-related
airflow parameters in the aforementioned test case of a ventilated room with a
heated floor. The main focus of this chapter is on investigating the capabilities
and limitations of surrogate modeling as a fast and robust alternative to
CFD, taking into account specific requirements for indoor environmental
applications. First, different ML methods are tested in order to choose the
approach that best fits the developed model specifics. After selecting the
appropriate ML method, the surrogate model is optimized to accommodate
the requirements of indoor environment design and control applications. The
optimization consists of two steps. First, the structure of the input data is
changed so that it takes the values of temperature and velocity in the locations,
which in a practical case could be replaced by sensor readings. Then different
combinations of input probe positions are tested in order to find the optimal
sensor placement.

Chapter 4 presents the improvements of the model, developed in Chapter
3 by adopting a multi-fidelity approach combining a small number of high-
fidelity simulations with a large number of low-fidelity simulations. LES
simulations used in the previous chapter act as high-fidelity data, while low-
fidelity data is obtained using coarse-grid LES simulations. The developed
model is based on multi-fidelity Gaussian process regression. The model
is analyzed in terms of computational cost and accuracy in order to find a
trade-off between the number of simulations and their fidelity.

Chapter 5 summarizes and concludes the thesis and contains suggestions
for future works.

1.6 Background of the research group

This work was conducted in the Heat and Mass Transfer Technological Center
(CTTC) at the Universitat Politècnica de Catalunya. CTTC was created in
the 1990s, with a research focus on mathematical modeling and numerical
solution of fluid dynamics and heat transfer phenomena, complemented
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with experimental research for their validation. The main objective of the
research work at CTTC is to develop efficient fluid and thermal systems and
equipment. In the early 2000s, the simulation tools developed within the group
were joined and generalized to create two CFD software packages, namely
TermoFluids [73] and STG [74]. TermoFluids is a robust general-purpose
software for fluid and heat transfer problems, using state-of-the-art methods
for turbulent flows [75, 76] and complex thermal systems [77, 78], with high
computational efficiency and parallel scalability [79]. On the other hand, STG
is a fast and highly-scalable [80] in-house code for numerical simulations of
three-dimensional problems with one periodic direction [81, 82], mainly used
in the turbulence modelling [83, 84] and regularization techniques [85, 86]
research. The numerical simulations presented in this thesis were carried
out using both TermoFluids and STG software, as well as open-source CFD
software - OpenFOAM [87].

1.7 Related publications

The material of this thesis have appeared in the following publications:
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• N. Morozova, F.X. Trias, V. Vanovskiy, C. Oliet and E. Burnaev. A CFD-
based multi-fidelity surrogate model for prediction of flow parameters
in a ventilated room. In Proceedings of 8th European Congress on Computa-
tional Methods in Applied Sciences and Engineering, June 5-9, 2022, Oslo,
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• E. Schillaci, J. Vera, N. Morozova and J. Rigola. A numerical set-up for
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perimental and numerical investigation of turbulent natural convection
in a large air-filled cavity. International Journal of Heat and Fluid Flow,
25(5):824–832, 2004.

[70] D. Blay, S. Mergui, J. L. Tuhault, and F. Penot. Experimental turbulent
mixed convection created by confined buoyant wall jets. In Proceedings of
the First European Heat Transfer Conference, UK, pages 821–828, 1992.
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On the feasibility of

affordable high-fidelity

CFD simulations for indoor

environment design and

control

Main content of this chapter has been published in:

N. Morozova, F.X. Trias, R. Capdevila, C. D. Pérez-Segarra and A. Oliva.
On the feasibility of affordable high-fidelity CFD simulations for indoor envi-
ronment design and control. Building and Environment, 184:107144, 2020.

Abstract: Computational fluid dynamics (CFD) is a reliable tool for indoor environmen-
tal applications. However, accurate CFD simulations require large computational resources,
whereas significant cost reduction can lead to unreliable results. The high cost prevents CFD
from becoming the primary tool for indoor environmental simulations. Nonetheless, the
growth in computational power and advances in numerical algorithms provide an opportunity
to use accurate and yet affordable CFD. The objective of this study is to analyze the feasibility of
fast, affordable, and high-fidelity CFD simulations for indoor environment design and control
using ordinary office computers. We analyze two representative test cases, which imitate
common indoor airflow configurations, on a wide range of different turbulence models and
discretizations methods to meet the requirements for the computational cost, run-time, and
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accuracy. We consider statistically steady-state simulations for indoor environment design
and transient simulations for control. Among studied turbulence models, the no-model and
large-eddy simulation with staggered discretizations show the best performance. We conclude
that high-fidelity CFD simulations on office computers are too slow to be used as a primary
tool for indoor environment design and control. Taking into account different laws of computer
growth prediction, we estimate the feasibility of high-fidelity CFD on office computers for
these applications for the next decades.

2.1 Introduction
Heating ventilation and air conditioning (HVAC) systems account for approximately 40% of
the energy consumption in buildings [1], which can be decreased by proper design and precise
control of indoor air parameters. Therefore, the fast computation of indoor airflow is required
for testing different design options or performing model predictive control (MPC) using real-
time weather and occupant’s behavior data. Nowadays, air distribution in buildings is usually
evaluated by multizone models [2], zonal models [3], and computational fluid dynamics (CFD).
Multizone models are the most popular choice due to the low computational cost, but they have
limited applicability because each room is represented by only one node. Zonal models are
considered intermediate between multizone and CFD; however, they usually suffer from case
dependency. In CFD, the physical domain is divided into a finite number of control volumes
to solve the Navier-Stokes equations numerically. The solution provides a complete set of air
parameters for each control volume.

Its high computational cost prevents CFD from becoming the primary design tool, and
it is mainly used for particular high-end buildings. To become a primary design tool, CFD is
required to provide sufficient accuracy in capturing flow properties, be fast, and fit into an office
computer. The indoor airflow is usually a multi-scale problem requiring fine computational
grids [4]. Moreover, the majority of indoor airflows are turbulent. The effect of turbulence can
be accurately resolved using direct numerical simulation (DNS) or modeled using large-eddy
simulation (LES) or Reynolds average Navier-Stokes (RANS) approaches. LES models are
computationally more expensive than RANS, and both methods have a lower computational
cost than DNS.

CFD has been successfully used for detailed simulations of building airflows by many
researchers [5–9]. Nevertheless, all of these studies show the need for a compromise between
computational cost and accuracy. Van Hooff et al. [5] performed CFD simulations of a generic
isolated building. They used a computational grid of 5× 106 control volumes to achieve reliable
results, which required to use 14 CPU cores on a high-performance computer. Other studies
also indicate the high computational cost of CFD. For example, Chen et al. [7] showed that
an accurate simulation of a kitchen room would require at least 106 control volumes. Chen
et al. [6] used a grid of 4× 106 control volumes for an accurate simulation of an office room
with a ceiling fan. Zheng et al. [9] studied the wind flow for buildings with balconies using
a fine mesh of 2× 107 cells. An ordinary office computer does not have sufficient memory
and CPU power to complete such large simulations in a reasonable amount of time for indoor
environment design and control. Moreover, the widely used RANS turbulence models do not
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always produce satisfactory results, making the use of more accurate (and more expensive)
turbulence models indispensable [5, 9].

Accurate CFD simulations require large computational resources, while using ordinary
office computers can result in unreasonably long run-times. Grid coarsening and RANS
turbulence modeling are common ways to reduce the cost of CFD, but they can lead to
overly inaccurate results. Therefore, the task of performing affordable yet accurate CFD is not
straightforward.

Over the last decade, several attempts to reduce the computational cost of CFD for indoor
environmental applications have been made. Wang & Zhai [10] examined the credibility of
coarse-grid CFD for HVAC applications and optimized the space discretization to reduce the
total truncation error. Kempe & Hantsch [11] applied the immersed boundary method to an
LES simulation of a room with a heat source and achieved real-time LES simulations with
32 CPU cores. However, they did not provide an extensive error analysis to evaluate the
accuracy of the simulations. Moreover, they did not study the transient flows and did not
consider different turbulence models. As an alternative to CFD, the lattice Boltzmann method
(LBM) [12–14] and fast fluid dynamics (FFD) [15, 16] were applied for indoor environmental
simulations. LBM time step is limited by the advection term, which makes it slower than CFD
with similar grid resolutions [13]. Zuo & Chen [16] adapted FFD for airflow in buildings and
introduced turbulence modeling. FFD has lower computing cost but also lower accuracy than
CFD [16].

Another important application is indoor environment control. MPC elaborates a model
of the system evolution and executes control actions based on it [17]. Usually, low order
models such as multizone are used in MPC [18, 19]. So far, CFD has not been integrated into
MPC directly due to the huge computational cost and nonlinearity of the governing equa-
tions. However, several preliminary attempts have been made to simplify CFD to fit MPC
requirements [20, 21]. The growth in computational power provides an opportunity to test
the feasibility of CFD for MPC. Typically, building MPC systems have a control horizon of
4-5 hours [22], which is relatively short for building dynamics scale; thus, transient simula-
tions are required. Moreover, CFD simulations for MPC should be faster than real-time and
computationally affordable.

The objective of this work is to study the feasibility of affordable high-fidelity CFD for
indoor environmental applications. We consider two representative cases, namely, a tall
differentially-heated cavity and a ventilated cavity with a heated floor. We test both cases on a
wide range of staggered and collocated grids with different LES, RANS, and DNS approaches.
Performed CFD simulations are analyzed in terms of computational cost and accuracy in order
to meet the requirements for indoor environmental applications. The work is primarily focused
on steady CFD for design and transient CFD for MPC in buildings, using affordable office
computers.

The content of this chapter is organized as follows: Section 2.2 describes the details of the
test cases and the governing equations, Section 2.3 describes the numerical methods, Sections
2.4, 2.5 and 2.6 show obtained results and their analysis, Section 2.7 discusses results and their
applications, and Section 2.8 contains concluding remarks.
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2.2 Governing equations and physical problems

2.2.1 Governing equations
The incompressible Navier-Stokes equations for a Newtonian fluid with constant physical
properties are considered. The Boussinesq approximation is adopted to account for the den-
sity variations due to temperature difference. Thermal radiation is neglected. Under these
assumptions, the governing equations are

∇ · u = 0, (2.1)

∂u
∂t

+ (u · ∇)u = ν∇2u−∇p + βg∆T, (2.2)

∂T
∂t

+ (u · ∇)T = α∇2T, (2.3)

where u = (u, v, w) is the velocity vector in Cartesian coordinates x = (x, y, z), p the kine-
matic pressure, T the temperature, ν the kinematic viscosity, ρ the density, g the gravitational
acceleration, β the thermal expansion coefficient and α the thermal diffusivity.

Hereafter, all the results are presented in dimensionless form. The reference values of time
velocity temperature and length are specified for each problem separately.

2.2.2 Test case 1: Differentially heated cavity
The first test case is a three-dimensional tall cavity driven by buoyancy forces. The objective of
this configuration is to mimic a highly stratified turbulent indoor environment with natural
convection. This airflow can be found in a tall building atrium, or a staircase. Natural
convection is important for the thermal comfort, thus, its correct prediction is crucial for
building applications. The cavity has a height aspect ratio of Ah = H/W = 3.84 and a depth
aspect ratio of Ad = D/W = 0.86 (Figure 4.1, left). The Prandtl number corresponds to air and
is equal to Pr = ν/α = 0.71 and the Rayleigh number is RaH = ρgβ∆TH3/(να) = 1.2× 1011.
This configuration resembles the experimental set-up performed by Saury et al. [23]: the two
opposite vertical walls of the cavity in the x direction are maintained at uniform temperatures
Th = 0.5 at x = 0 and Tc = −0.5 at x = W. The temperature at the rest of the walls is given
by the “Fully Realistic” boundary conditions proposed in [24]. They are time independent
analytical functions that fit the experimental data obtained by Salat et al. [25].

In the experiment by Saury et al. [23] the cavity is 3.84 m high, 1 m wide, 0.86 m deep and
is exposed to a temperature difference of ∆T = 20◦C. The air properties are the following:
ν = 1.51× 10−5m2/s, α = 2.13× 10−5m2/s, ρ = 1.2kg/m3, g = 9.81m/s2 and β = 2.90×
10−3m3/(kg◦C).

For this test case the reference length is H and the reference velocity, time and temperature
used for the dimensionless form are, respectively, Ra1/2

H (α/H), Ra−1/2
H (H2/α) and ∆T. Initial

temperature conditions repeat the temperature profile of the front/rear wall boundaries. The
initial velocity is set to zero.
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Figure 2.1: Left: geometry of the differentially heated cavity case. Right: geometry of
the mixed convection case.

As detailed in Table 2.1, we used twelve different Cartesian structured grids for the
numerical tests. Grid M1.0 was used in the reference DNS simulation, which was previously
published in Álvarez et al. [26]. All the grids are, uniform in the vertical (y) and spanwise (z)
directions, and refined near the lateral walls (x) using the hyperbolic tangential function:

x =
W
2

(
1 +

tanhγx(2(i− 1)/Nx − 1)
tanhγx

)
, (2.4)

where the concentration factor is γx = 2 and Nx is the number of grid points in the
horizontal direction. All steady simulations run for 600 non-dimensional time units, which
was found to be a long enough time-integration period to record the flow statistics for further
averaging. All transient simulations were carried out for 10 non-dimensional time units to
capture the initial flow development.

2.2.3 Test case 2: Mixed convection in a ventilated cavity
The second test case is a three-dimensional ventilated cavity with a heated floor. This configu-
ration was first studied experimentally by Blay et al. [27] and later numerically by Ezzouhri et
al. [28]. The geometry of the studied cavity is shown in Figure 4.1 (right). The height aspect
ratio of the cavity is Ah = H/W = 1 and the depth aspect ratio is Ad = D/W = 0.3/1.04.
Cold air at Tc = −0.5 enters the cavity through the long thin inlet at the top of the left wall.
The inlet velocity profile in the vertical (y) direction corresponds to a parabolic Poiseuille flow
with a bulk velocity Uin = 1. The inlet slot has an aspect ratio Ain = hin/H = 0.018/1.04. The
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Table 2.1: Computational grids used in the simulations of the differentially heated
cavity case (test case 1).

Case Nx Ny Nz Ntotal

M1.0 (DNS) 450 900 256 1.04× 108

M1.1 8 30 4 9.60× 102

M1.2 10 40 6 2.40× 103

M1.3 12 50 8 4.80× 103

M1.4 14 60 10 8.40× 103

M1.5 18 80 12 1.73× 104

M1.6 24 100 16 3.84× 104

M1.7 30 120 20 7.20× 104

M1.8 40 150 24 1.44× 105

M1.9 50 180 30 2.70× 105

M1.10 70 240 40 6.72× 105

M1.11 80 320 50 1.28× 106

M1.12 100 400 60 2.40× 106

air is discharged through the outlet with an aspect ratio Aout = hout/H = 0.024/1.04 at the
bottom of the right wall of the cavity. The bottom wall is maintained at a hot temperature
of Th = 0.5, while the three other sidewalls are kept at the cold temperature of Tc = −0.5.
Periodic boundary conditions are used in the spanwise (z) direction.

The cavity is filled with air (Pr = 0.71) at Rayleigh number based on the cavity height
RaH = 2.4× 109. Froude number based on the inlet height is equal to Frhin

= Uin/
√

ρgβ∆Thin =
5.24, Reynolds number based on the inlet height is Rehin

= Uinhin/ν = 684. At the outlet,
convective boundary conditions (∂φ/∂t + Uin∂φ/∂x = 0) are imposed for the velocity and
temperature. No-slip boundary conditions are applied on the walls. The initial velocity field is
set to zero and the initial temperature is set equal to the temperature at the cold wall.

The experimental setup by Blay et al. [27] has height and width of 1.04 m and depth of
0.3 m. The inlet slot has a height of 0.018 m and the outlet slot - 0.024 m. The temperature
difference is ∆T = 20◦C and the inlet bulk velocity is Uin = 0.57m/s. The air properties are the
following: ν = 1.5× 10−5m2/s, α = 2.1× 10−5m2/s, ρ = 1.2kg/m3 and g = 9.81m/s2.

In this test case, the reference values used for non-dimensionalizing are the cavity height
H, the time tre f = H/Ure f , the velocity Ure f = Uin and the temperature difference ∆T. This
flow configuration is a mixed convection phenomenon. It resembles an airflow in a room with
mixing ventilation and thermal exhausts. The aspect ratios of the inlet and the outlet are very
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similar to the real-size rooms.

Table 2.2: Computational grids used in the simulations of the mixed convection case
(test case 2).

Case Nx Nout + Nbulk + Nin = Ny Nz Ntotal

M2.0 (DNS) 512 57 + 398 + 57 = 512 128 3.36× 107

M2.1 10 2 + 10 + 3 = 15 4 6.00× 102

M2.2 15 2 + 20 + 3 = 25 4 1.50× 103

M2.3 20 2 + 25 + 3 = 30 4 2.40× 103

M2.4 30 4 + 32 + 4 = 40 4 4.80× 103

M2.5 40 4 + 32 + 4 = 40 6 9.60× 103

M2.6 40 6 + 48 + 6 = 60 8 1.92× 104

M2.7 50 6 + 48 + 6 = 60 12 3.60× 104

M2.8 60 7 + 60 + 8 = 75 16 7.20× 104

M2.9 80 10 + 70 + 10 = 90 20 1.44× 105

M2.10 100 15 + 90 + 15 = 120 24 2.88× 105

M2.11 120 20 + 120 + 20 = 160 30 5.76× 105

M2.12 160 20 + 140 + 20 = 180 40 1.15× 106

Cartesian structured grids detailed in Table 2.2 were used for this test case. All grids are
uniform in the spanwise (z) direction. In the horizontal (x) direction grids are refined near
the walls using the hyperbolic tangent function given in equation (2.4) with a concentration
factor γx = 1.5. In the vertical (y) direction the grids are uniform in the zones of inlet (Nin)
and outlet (Nout) and refined near the lateral walls in the bulk part (γy = 2). All simulations
run for 500 and 10 non-dimensional time units, respectively for steady and transient cases.

2.3 Numerical methods
We use three different software to perform the simulations:

• OpenFOAM v1706 [29] for unsteady RANS (URANS) approach using finite-volume
discretization on collocated grids with fully implicit Euler time integration scheme;

• TermoFluids [30], an in-house CFD code for LES and no-model approaches using
symmetry-preserving finite-volume discretization on collocated grids [31] with a one-
parameter fully explicit second-order temporary discretization scheme [32];
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• STG [33, 34], an in-house CFD code for LES, DNS and no-model simulations using
symmetry-preserving finite volume discretization on staggered grids [35] with a one-
parameter fully explicit second-order temporary discretization scheme [32].

The choice of the turbulence models is based on the findings of Morozova et al. [36] and
Zhai et al. [37] for steady simulations and on findings of Morozova et al. [38] for transient
simulations.

2.3.1 Unsteady Reynolds-averaged Navier-Stokes approach
The RANS approach is based on the time-averaged filtering of the governing equations (4.1)
- (4.3). RANS equations calculate only averaged flow; thus, they are not suitable to describe the
transient flow evolution. For this reason, the URANS approach is adopted. URANS equations
are obtained when the temporal derivative of velocity is averaged over a chosen finite time.
More details on the URANS can be found in [39]. The computational time of the URANS
approach is smaller than LES or DNS; hence it is widely used for industrial applications. How-
ever, URANS does not always provide sufficient accuracy for the simulations. Nevertheless, it
is interesting to test URANS models, as they offer computational time reduction.

In this study three different RANS turbulence models are tested: k− ε [40], RNG k− ε [41]
and SST k−ω [42]. During the numerical experiments, the SST k−ω model showed the best
transient predictions among all the URANS models, but the k− ε model has given better results
for the steady flow. The RNG k− ε and k− ε models showed similar performance in terms of
accuracy, but the k− ε model had a lower computational cost. Thus, the k− ε and SST k−ω
models are chosen for further analysis. Results of the simulations with the RNG k− ε model
are published online in the data archive [43].

2.3.2 Large-eddy simulation approach
A different approach to turbulence modeling is LES. Namely, the large-scale turbulent motions
are resolved, whereas the effects of the smallest-scale motions are modeled using a subgrid-scale
(SGS) model. In this work, three different SGS models are tested: the WALE model [44], the
VMS-WALE [45], the QR [46] and the S3PQ model [47]. In terms of computational cost, LES lies
between URANS and DNS. Since the large-scale unsteady motions are represented explicitly,
LES can be expected to be more accurate and reliable than URANS for flows in which large-scale
unsteadiness is significant, including unsteady separation and vortex shedding [48]. In this
work, we carry out the spatial discretization in LES simulations using symmetry preserving
discretization on structured collocated [31] and staggered [35] Cartesian grids.

In a staggered grid discretization arrangement, the scalar variables are stored at the cell
centers of the control volumes, whereas the vector variables are stored at the cell faces. In
a collocated grid discretization, on the other hand, all variables are stored at the cell cen-
ters. A staggered grid discretization helps avoid odd-even decoupling between the pressure
and velocity (a discretization error that leads to unphysical pressure fields). However, the
implementation of the staggered arrangement on the unstructured grids could be extremely
complex [31]. Thus, the majority of the common CFD codes use collocated grids with special
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numerical treatments, which, however, cause considerable numerical dissipation [49]. Nonethe-
less, many HVAC problems do not require an unstructured grid; therefore, they could be easily
used with a staggered grid discretization. This could improve simulation accuracy and reduce
numerical dissipation [31, 35] since staggered methods do not require any special numerical
treatment. Discretization methods can have an important effect on the simulation stability
and the accuracy of the results, especially for the coarsest grids. This reduction of the artificial
numerical dissipation is not relevant for RANS models because the dissipation introduced by
the model itself is much larger [49]; therefore, staggered grid discretization is only applied to
LES and no-model approaches.

LES models tested on collocated grids are WALE, VMS-WALE, and QR. For both test
cases, WALE and QR show similar computational costs, but the VMS-WALE is more expensive
due to the additional filtering operations. However, the QR model under-predicted overall
heat transfer. For these reasons, we choose the WALE model for further tests. Results of the
simulations for the VMS-WALE and QR models are published in the data archive [43]. WALE,
QR, and S3PQ turbulence models are tested on structured staggered grids. All three LES
models showed similar results, but the WALE had the highest computational cost, and the QR
showed the least accurate results. The S3PQ model is chosen for further simulations. Results
for the WALE and QR models are published in the online data archive [43].

2.3.3 No-model approach
The no-model approach is similar to DNS, which consists of solving the Navier-Stokes equa-
tions, resolving all the scales of motion [48]. Conceptually DNS is the simplest approach, and
it is unrivaled in accuracy. However, the cost is extremely high; and the computer require-
ments increase so rapidly with Reynolds number that the applicability of the approach is very
limited even for the research. The no-model approach, like DNS, does not use any model
for turbulence. Nonetheless, the computational grid used for no-model simulations is not
fine enough to resolve all the turbulent flow scales. Despite the unresolved flow scales, the
no-model approach is capable of producing reasonable results. Moreover, the absence of a
turbulence model reduces the computational cost.

2.4 Results of the steady-state analysis
The ability for real-time simulations is always a compromise between available computing
power and required accuracy. The focus of this paper is on the possibility of real-time CFD on
office computers. We performed all the simulations on a machine with an AMD Opteron 2350
processor with a 24Gb/s memory bandwidth. Then we re-scaled computational time to Intel
Core i9-9900K processor with 41.6Gb/s memory bandwidth, which is a modern but affordable
processor. CFD codes are usually memory-bound and tend to exhibit irregular access patterns
to data [50]. The High-Performance Conjugate Gradient benchmark, proposed by Dongarra et
al. [50] shows, that the computational performance of CFD applications is mostly limited by a
processor’s bandwidth. Thus, assuming the ideal behavior of the solvers, we re-scaled all the
simulations using linear dependencies of the processor’s memory bandwidth and the number
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of nodes. The indicator to evaluate the performance of the solvers is the time ratio between the
computational time, tsim, and physically simulated time, tphy = t · tre f . A simulation is faster
than real-time when R < 1.

R =
tsim
tphy

, (2.5)

To evaluate the overall quality of the simulations, we choose five global flow quantities for
comparison: Nusselt number, stratification, kinetic energy, enstrophy, and the temperature of
the cavity. They represent basic airflow properties and are relevant to the thermal comfort [51].
Nusselt number, stratification, and temperature represent the thermal properties of the flow.
Nusselt is a measure of heat transfer. It is computed using the temperature gradient at the
wall. Stratification corresponds to a vertical temperature gradient, and the average temperature
is the operative room temperature. Kinetic energy measures the level of motion. Enstrophy
corresponds to turbulence intensity. Both kinetic energy and enstrophy are used to measure
draught and local discomfort.

Nu = − 1
A

∫
A

∂T
∂x

dA at x = 0 (2.6)

S =
∂T
∂y

at x =
W
2

, y =
H
2

, z =
D
2

(2.7)

E =
1
V

∫
V

u2

2
dV (2.8)

Ω =
1
V

∫
V
ω2dV (2.9)

TV =
1
V

∫
V

TdV, (2.10)

where A is the surface of the hot wall, V is the volume of the cavity and ω = ∇× u is the
vorticity. All these quantities are time-dependent, and for the steady-state evaluation they are
averaged over time. Standard bracket “<>” notation is used for time-averaged values.

The design of HVAC systems is normally divided into two stages: early conceptual design
and final detailed design. In the former, highly accurate simulations are not required. At this
stage of a project, only conceptual decisions are made. More important for conceptual design
is the ability to have fast calculations. For this design stage, a 15% relative error is assumed
acceptable. On the other hand, final stage design applications require accurate and detailed
simulation results. Therefore, a relative error of the global quantities should remain below 5%,
as it is suggested in [52]. A building project in many cases requires several representative daily
simulations [53]. We assume the simulation speed for HVAC design should be at least twice
faster than real-time (R 6 0.5) so that an engineer can start a daily simulation at the end of the
working day and obtain the results the next morning.

Figures 2.2 - 2.6 show global airflow quantities plotted with different grid resolutions and
turbulence models against the computational time ratio in a semi-logarithmic scale. Each point
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of the graph corresponds to a mesh from Tables 2.1 and 2.2, respectively. On the left side of the
graphs, there are less computationally expensive and less accurate coarse grids with a small
ratio R. The mesh resolution is increasing while moving from the left to the right side of the
graphs. The thick horizontal black line is the reference value, obtained in the DNS simulations.
Gray areas around the reference line show the 5% and 15% error margins, respectively.

2.4.1 Test case 1 - differentially heated cavity. Results of the steady
simulations

For this test case we investigate four global quantities: the average Nusselt number, the average
stratification, the average kinetic energy and the average enstrophy. We compare them against
the DNS data, published in [26].

All the turbulence models except URANS k − ε predict the average Nusselt number
(Figure 2.2, top) rather well. All approaches show small values of <Nu> on coarse grids, but
from mesh M1.5 onward, results start falling into the 15% error range. URANS simulations
have the least accurate predictions, although their computational cost is the smallest. LES
(with both discretization approaches) and no-model on collocated grids show the best results
and perform faster than real-time simulations with less than 15% relative error. Average
stratification (Figure 2.2, bottom) shows good accuracy for most of the approaches. The errors
are mostly originating from the fact that it is not an integral quantity. Both no-model techniques
predict stratification accurately. URANS k− ε model is giving an accurate prediction, while
SST k − ω is experiencing errors. Both LES simulations perform faster than real-time with
about 15% relative error.

Average kinetic energy (Figure 2.3) is well predicted only by the LES-S3PQ model on
staggered grids. Relatively small values of kinetic energy make its correct prediction more
difficult. LES-WALE and both no-model approaches have converged to the DNS solution only
for the finest meshes (M1.11 and M1.12 from Table 2.1), and URANS failed to predict average
kinetic energy correctly for all the mesh resolutions. None of the methods achieves faster than
real-time performance with required accuracy.

Average enstrophy (Figure 2.4) is a characteristic of turbulence cascade, so it is the most
difficult quantity to predict accurately. No-model and LES methods provide sufficiently
accurate results, however, they are not faster than real-time. Both URANS models, on the other
hand, fail to give accurate values of the enstrophy. A significant difference in the accuracy of
the results is due to the nature of turbulence modeling. Unlike the other approaches, URANS
does not solve the turbulent fluctuations in time, which is the reason for its low accuracy.

From the simulation results could be concluded that, despite the lowest computational
cost, URANS simulations have the least accurate predictions of the averaged global quantities
of the differentially-heated cavity test case. Both LES models show similar levels of accuracy.
No-model simulations on collocated grids show large errors on coarse grids. On the other
hand, no-model approach on staggered grids has more stable behavior than the collocated
discretization. On fine grids, no-model and LES approaches provide similar results. In general,
the LES-S3PQ model on staggered grids shows the best trade-off between computational cost
and accuracy for the steady-state analysis of the differentially-heated cavity test case. It reaches
the desired accuracy of 15% and 5% with time ratios of R ≈ 25 and R ≈ 60, respectively. The
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Figure 2.2: Test case 1. Steady-state analysis. Average Nusselt number (top) and
average stratification (bottom) on different grid resolutions and turbulence models
against time ratio. Each point in the graph corresponds to a mesh from Table 2.1. “C”
stands for collocated grid discretization and “S” - for staggered.

least accurate prediction is provided by the URANS SST k−ω model. Nusselt number appears
to be the easiest quantity to predict, while enstrophy is the most difficult one.
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Figure 2.3: Test case 1. Steady-state analysis. Top: Average kinetic energy on different
grid resolutions and turbulence models against time ratio. Bottom: Zoomed image of
the graph at the top. Each point in the graph corresponds to a mesh from Table 2.1.
“C” stands for collocated grid discretization and “S” - for staggered.



46 §2.4 Results of the steady-state analysis
<

Ω
>

R

DNS [26]
No−model C

LES WALE C
URANS k−ε C

URANS SST k−ω C
LES S3PQ S
No−model S

17.26

0.00

10.00

20.00

30.00

40.00

50.00

0.15 0.5 1 10 100 1000 10000

Figure 2.4: Test case 1. Steady-state analysis. Average enstrophy on different grid
resolutions and turbulence models against time ratio. “C” stands for collocated grid
discretization and “S” - for staggered.

2.4.2 Test case 2 - mixed convection. Results of the steady simula-
tions

For this test case, we use three global quantities: the average temperature, the average kinetic
energy, and the average enstrophy. We compare them against the DNS data (published in the
data archive in [54]), obtained using the in-house STG code described in section 2.3.2. In this
case, we use a fourth-order symmetry preserving discretization scheme [35].

Averaged temperature (Figure 2.5) is well predicted by all of the approaches. Even the
coarsest meshes fall within a 15% error range and perform faster than real-time simulations.
The temperature field appears to be relatively easy to predict since it is an integral quantity,
which mostly depends on the energy balance.

Average kinetic energy (Figure 2.6, top) is more difficult to calculate correctly. Even
though none of the models show very large errors, they are far from the DNS solution. The
specific geometry of the test case makes the accurate resolution of the jet possible only with
sufficiently fine spatial grid near the inlet area. Nonetheless, all the approaches show positive
convergence tendency towards the reference value of kinetic energy. Enstrophy (Figure 2.6,
bottom) is reasonably well predicted by the LES and no-model approaches, however, the
computational speed is slower than real-time. URANS models show incorrect results, which
could be explained by the nature of the turbulence modeling in URANS.

This test case is more difficult to be solved accurately due to the small aspect ratios of
the inlet and outlet openings. Figure 2.7 features a snapshot from a video [54] of the DNS
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Figure 2.5: Test case 2. Steady-state analysis. Average temperature with different
grid resolutions and turbulence models against time ratio. Each point in the graph
corresponds to a mesh from Table 2.2. “C” stands for collocated grid discretization
and “S” - for staggered.

simulations with different mesh resolutions. The quantity plotted in the snapshot is the velocity
magnitude. It is seen in the figure how the mesh resolution affects the prediction of the jet
shape. Results for the finest mesh show a well-defined jet, which separates from the ceiling
near the right wall. As the mesh resolution decreases, the jet appears to look more distorted
and the separation point moves away from the right wall.

As seen in the Figures 2.5-2.6, the no-model and LES approaches give similar results, but
the no-model on staggered grids shows the best performance for the steady-state analysis. It
reaches the desired accuracy of 15% and 5% with the time ratios of R ≈ 4 and R ≈ 13810,
respectively. The least accurate predictions are provided by the URANS models. The average
cavity temperature appears to be the easiest quantity to predict, while enstrophy is the most
difficult one.

2.5 Results of the transient analysis
This section presents the analysis of the transient simulations of the same test cases. The
purpose of the analysis is to study the feasibility of CFD for MPC of indoor air parameters. In
MPC for buildings the prediction is usually made for the next 4-5 hours with the time step of
1-3 hours [22]. Therefore, for the worst-case scenario the CFD for MPC should be at least 6
times faster than real-time (R ≤ 1/6 . 0.15). Transient simulations are re-scaled in the way
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Figure 2.6: Test case 2. Steady-state analysis. Average kinetic energy (top) and
average enstrophy (bottom) with different grid resolutions and turbulence models
against time ratio. Each point in the graph corresponds to a mesh from Table 2.2. “C”
stands for collocated grid discretization and “S” - for staggered.

described in Section 2.4. The same global quantities are considered in the transient analysis.
The quality of transient simulations is studied by measuring the dynamic trend using root
mean square error (RMSE) of the instantaneous values with respect to the DNS solution. The
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.

Figure 2.7: Snapshot from a video of the DNS simulations of the mixed convection
case (test case 2). The plotted quantity is the velocity magnitude. The full video is
available at [54]

values of the error are calculated as follows:

RMSE(φ) =

√∫ tend
tini

(φ− φDNS)2dt√∫ tend
tini

φ2
DNSdt

, (2.11)

where tini and tend are the beginning and the end of the time integration period respectively,
φ is the variable of interest, φDNS its value obtained via the DNS simulation. In the next
subsections, the results of the two test cases are discussed in detail using the methodology
presented above.

2.5.1 Test case 1 - differentially heated cavity. Results of the tran-
sient simulations

For the differentially heated cavity case, three global quantities are considered: Nusselt number
on the hot wall, kinetic energy, and enstrophy. Stratification was discarded because of its high
fluctuations. Simulation results are compared to DNS results previously published in [26].
Time evolution of these quantities is shown in Figures 2.8-2.10 (top). Time evolution is plotted
for mesh M1.8 (Table 2.1), as it is the coarsest mesh that provided the desired accuracy. In
Figures 2.8-2.10 (bottom) the RMSE of these quantities are plotted against the computational
time ratio R in logarithmic scale. Each point of the graph represents a mesh from Table 2.1.
The dashed line separates the area within 15% error from the value of perfect correlation
(RMSE(φ) = 0).



50 §2.5 Results of the transient analysis

 100

 200

 300

 400

 500

 600

 700

 0  2  4  6  8  10

N
u

t

DNS [26]
M1.8 No−model C

M1.8 LES WALE C
M1.8 URANS k−ε C

M1.8 URANS SST k−ω C
M1.8 LES S3PQ S
M1.8 No−model S

R
M

S
E

 (
N

u
)

R

No-model C
LES WALE C
URANS k-ε C

URANS SST k-ω C
LES S3PQ S
No-model S

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.15 0.5 1 10 100 1000 10000

Figure 2.8: Test case 1. Top: Time evolution of the Nusselt number on the hot wall.
Bottom: RMSE of the Nusselt number with different grids and turbulence models
against time ratio. Each point in the bottom graph corresponds to a mesh from
Table 2.1. “C” stands for collocated grid discretization and “S” - for staggered.

Nusselt number (Figure 2.8) is the fastest quantity to converge towards a steady-state. LES
and no-model behave similarly to the reference. URANS SSTk−ω model also has acceptable
dynamic trend. However, URANS k− ε model shows a negative correlation since its transient
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behavior is completely different from that of DNS.
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Figure 2.9: Test case 1. Top: Time evolution of the kinetic energy. Bottom: RMSE
of the kinetic energy with different grids and turbulence models against time ratio.
Each point in the bottom graph corresponds to a mesh from Table 2.1. “C” stands for
collocated grid discretization and “S” - for staggered.

Reference kinetic energy (Figure 2.9) shows a good correlation tendency on LES and
no-model approaches (both staggered and collocated discretizations). On the other hand,
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both URANS models again exhibit a negative tendency because of the late peak. Enstrophy
(Figure 2.10) is showing behavior similar to kinetic energy. URANS results exhibit the peak
later than the reference, and this gives low correlation values. LES and no-model approaches
show good transient correlation.

For test case 1, the LES and no-model approaches give the best transient correlations,
but the LES-S3PQ model on staggered grids has the lowest computational cost. Results for
staggered and collocated approaches are very similar, but the staggered discretization has a
better correlation at low mesh resolutions. LES and no-model approaches enter 15% error
range at mesh resolution M1.8 of the Table 2.1 with the time ratio R ≈ 130. The least accurate
predictions are provided by the URANS models.

2.5.2 Test case 2 - mixed convection. Results of the transient simu-
lations

For the transient analysis, three global quantities are considered: kinetic energy, enstrophy, and
cavity temperature. Time evolution of these quantities is presented in Figures 2.11-2.13 (top)
and their associated RMSE is plotted against time ratio R in Figures 2.11-2.13 (bottom). Again,
the DNS simulation is used as a reference [54]. Time evolution is plotted for the mesh M2.12
(Table 2.2), as no other coarser mesh has reached the desired accuracy.

The mean cavity temperature (Figure 2.11) is predicted correctly even by very coarse
meshes. Both LES and no-model approaches show the smooth convergence aligned with the
DNS profile. Although URANS profiles look different from the reference, their prediction error
is still within the acceptable margin. LES-S3PQ model on staggered grids has shown the best
transient correlation.

The time evolution of kinetic energy for the mixed convection is more difficult to predict
than temperature (Figure 2.12). The best prediction is given by LES-S3PQ and no-model
methods on staggered grids. Collocated LES and no-model simulation show slower time con-
vergence, and URANS convergence is too fast. For the kinetic energy of the mixed convection
case, all six tested approaches show an acceptable transient correlation. Enstrophy (Figure 2.13)
is a highly fluctuating quantity, and it is difficult to predict its transient evolution. The behavior
of time evolution of the enstrophy is well predicted by LES and no-model simulations, mean-
while, the predictions of URANS are very inaccurate. URANS time evolution is smooth, while
other approaches show multiple small peaks. This is demonstrated by the low values of the
correlation coefficient for URANS models.

Even though this test case is less turbulent than the previous one, the complexity of the
physics of the problem requires high mesh resolution, which explains the low accuracy of the
obtained results. As could be concluded from the results, only the finest mesh M2.12 nears the
required accuracy for the transient simulations. The no-model approach on staggered grids
gives the lowest computational cost of R ≈ 13810 at this mesh resolution.
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Figure 2.10: Test case 1. Top: Time evolution of the enstrophy. Bottom: RMSE of the
enstrophy awith different grids and turbulence models against time ratio. Each point
in the bottom graph corresponds to a mesh from Table 2.1. “C” stands for collocated
grid discretization and “S” - for staggered.
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Figure 2.11: Test case 2. Top: Time evolution of the average cavity temperature.
Bottom: RMSE of the average cavity temperature with different grids and turbulence
models against time ratio. Each point in the bottom graph corresponds to a mesh
from Table 2.2. ”C” stands for collocated grid discretization and ”S” - for staggered.

2.6 Summary of the obtained results
Results for both transient and steady simulations, for both test cases, are summarized in the
Table 2.3. The Table shows computational time ratios for both test cases with all approaches
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Figure 2.12: Test case 2. Top: Time evolution of the kinetic energy. Bottom: RMSE of
the kinetic energy against time ratio. Labeling is the same as in figure 2.11.

used. The time ratios displayed in the table correspond to the coarsest meshes at which the
desired accuracy for all the global quantities of interest is achieved. Since several assumptions
are made while computing time ratios, their intervals are given instead of the exact values.

As seen in Table 2.3, required accuracy was not achieved by real-time or faster than real-
time simulations, performed by any of the tested approaches for both transient and steady
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Table 2.3: Computational time ratios R, obtained for the differentially heated cavity
(test case 1) and the mixed convection (test case 2) for several indoor environmental
applications and different turbulence models. ”C” stands for collocated grid dis-
cretization and ”S” - for staggered. The shadows of blue from light to dark show
computational time ratios from low to high, respectively. The red cross stands for the
insufficient accuracy.

Case
Model

LES LES URANS URANS No-model No-model

WALE C S3PQ S k− ε C SST k−ω C C S

1

< 15% error
steady

(Conceptual
design)

< 5% error
steady

(Detailed
design)

< 15% error
transient
(MPC)

2

< 15% error
steady

(Conceptual
design)

< 5% error
steady

(Detailed
design)

< 15% error
transient
(MPC)

Notation

R 6 1 1 < R 6 10 10 < R 6 100 100 < R 6 1000 R > 1000 Low accuracy
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Figure 2.13: Test case 2. Top: Time evolution of the enstrophy. Bottom: RMSE of the
enstrophy against time ratio. Labeling is the same as in figure 2.11.

simulations. Kinetic energy and enstrophy appear to be especially difficult to predict. Even
though URANS simulations are the least computationally expensive, their accuracy is often
insufficient. Moreover, URANS tends to converge to a solution different from the one provided
by the DNS reference. This could be explained by the nature of the URANS models, as they
are not suitable for the natural convection and mass separation flows because they have been
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developed mostly for aerodynamic applications, where boundary layers are usually attached
or partially attached [48]. The no-model and LES simulations provide similar results, but
the computational cost of the no-model approach is approximately 30% lower. Staggered
symmetry-preserving discretization considerably improves the accuracy of the results for
coarse and extremely coarse grids with the no-model approach. For the LES simulations, the
effect of staggered discretization on the results is less notable.

2.7 Discussion
In this section, we present the interpretation of the obtained results by moving from the
analyzed test cases to their real-life analogs (a generic closed system and a generic open
system). We discuss the computational requirements for the indoor environmental simulations
and the feasibility of these simulations.

2.7.1 Extrapolation to real-size problems
To perform the simulations, we adopted the conditions used in the experiments of Saury et
al. [23] and Blay et al. [27] detailed in Section 2.2. However, these experimental domain sizes
and temperature differences are not realistic for indoor environmental problems. The purpose
of this section is to extrapolate the findings (in terms of simulation time and feasibility) to more
realistic problems.

As an example of a closed system, we consider a building atrium exposed to an arbitrary
summer temperature of Th = 27◦C on one side and maintained at the constant temperature of
an air-conditioned building of Tc = 23◦C (∆T = 4◦C). Maintaining constant dimensionless Pr
and RaH numbers of the differentially heated cavity, and constant air properties, the simulated
domain size becomes equal to 1.71× 6.57× 1.47 meters. The physical time of the simulation is
proportional to the square of the domain size; thus, the time ratios for this case decrease by a
factor of 2.93, compared to the simulated case.

According to the results presented in Figures 2.2 - 2.4 and 2.8 - 2.10 for the differentially-
heated cavity test case, the minimal time ratios for conceptual design, detailed design and MPC
are R ≈ 25, R ≈ 60 and R ≈ 130, respectively. These are the minimal time ratios which reached
the desired accuracy for all the global quantities (LES-S3PQ turbulence model on staggered
grids). Using the aforementioned re-scaling factor, they become equal to R ≈ 10, R ≈ 20 and
R ≈ 45, respectively.

A similar procedure could be done for the second test case. We assume a room with the
temperature difference of ∆T = 4◦C, constant inlet bulk velocity, and constant air properties.
Maintaining constant dimensionless Pr, RaH and Frhin

numbers, the new domain size becomes
1.78× 1.78× 0.51 meters. Therefore, the physical time of the simulation is multiplied by a factor
of 1.71 (proportional to the domain size). Thus the time ratios for conceptual design, detailed
design and MPC are re-scaled from R ≈ 4, R ≈ 13810 and R ≈ 13810 (no-model approach on
staggered grids) to R ≈ 3, R ≈ 8000 and R ≈ 8000, respectively.

Re-scaled domain sizes for both test cases are not far from the realistic ones, as a result,
we conclude that the computational time of the test cases is of the same order of magnitude as
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of the real HVAC setups. Therefore, they could be used as an estimation for a generic closed
system and generic open system, respectively.

2.7.2 Availability of steady-state simulations for design applications
We assume reasonable speed for both conceptual and detailed design applications as two times
faster than real-time (R 6 0.5). We accept the values of 15% relative error for the conceptual
design and 5% for the detailed design. The minimal time ratios which reached the desired
accuracy for all the global quantities, are R ≈ 10 and R ≈ 20 for the early and detailed design
stages of the real-size closed system. On the other hand, the time ratios for a generic open
system are R ≈ 3 and R ≈ 8000, respectively.

The obtained time ratios of the simulations are significantly higher than the required. The
computational cost cannot be further reduced without sacrificing the essential accuracy. Results
indicate that fast reliable CFD simulations on office computers are currently not available
neither for detailed design nor conceptual design stages. Of course, a high-performance
supercomputer can handle these simulations with required time ratio and accuracy. However,
large computational resources are usually available only for particular high-end building
designs, and not for routine use. Thus, it is interesting to analyze when fast and accurate CFD
will be feasible on ordinary office computers.

The most well-known law of computational growth is Moore’s law [55]. It states that the
number of transistors in a dense integrated circuit would double in about every 18 months.
We use it as an rough optimistic prediction. On the other hand, as we mentioned earlier, CFD
applications are memory-bound. In other words, their performance depends mostly on the
memory bandwidth of the processor. Thus, it is interesting to see how it grows. Yet, there
is no law, which could predict the bandwidth growth rate. As an estimation, we derive the
growth rate from the increase of the DDR SDRAM capacity between the years 1998 and 2020.
Within these 22 years, the DDR SDRAM memory bandwidth has grown approximately 39
times bigger. As a rough pessimistic prediction, we estimate that the memory bandwidth will
continue growing at the same rate in the future.

Figure 2.14 shows the estimated decreasing simulation time ratio due to the growing
computational power over the years for different applications and different growth estimations
for a generic closed system (top) and a generic open system (bottom). We extrapolate the
possible future values of the time ratio using different prediction laws: solid line - the memory
bandwidth growth rate, dashed line - Moore’s law, the shadowed area between the lines -
intermediate possibilities.

Results in Figure 2.14 significantly vary between optimistic and pessimistic predictions.
According to optimistic prediction, the early design stage simulations will be possible in about
5 years. For the detailed design stage, the optimistic predictions go up to 10 years for a generic
closed system and 20 years for a generic open system. Yet, pessimistic predictions have a very
different waiting horizon. CFD for the early design stage simulations will be possible in 10-15
years. The guess for the detailed design stage is at least 25 years for a closed system and 60
years for an open one.
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Figure 2.14: Potential of accessing affordable high-fidelity CFD over the next years.
Top: estimation for a generic closed system. Bottom: estimation for a generic open
system. The solid line is the memory bandwidth growth rate, and the dashed line
is Moore’s law growth rate, the shadowed area between the lines - intermediate
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2.7.3 Availability of transient simulations for MPC applications
As mentioned earlier, CFD for MPC should be at least 6 times faster than real-time (R . 0.15).
The required simulation accuracy highly depends on the controlled building function. It could
be assumed that a 15% error in the prediction of the transient evolution of global quantities is
sufficient for civil building applications. The time ratio for a generic closed system is R ≈ 45,
which is the best trade-off between computational cost and accuracy. For open systems like the
test case 2 (Figures 2.11 - 2.13), the obtained time ratio (R ≈ 8000) is bigger due to the required
high mesh resolution in the jet area.

With the current computational resources, it is not possible to incorporate CFD into the
MPC system of a building. However, taking into account the aforementioned predictions of
Moore’s law [55] and the bandwidth growth rate, we estimate the time in which transient CFD
applications would be available for MPC (Figure 2.14). The required mesh resolution and the
computational resources for different test cases vary significantly. For a closed system based on
the differentially heated cavity test case, a good temporal resolution with the required time ratio
(R . 0.15) could be achieved within the next 10 years (optimistic prediction). However, an
open system based on the mixed convection case needs a higher spatial resolution to perform
correct transient simulations, which give us an optimistic prediction of at least 25 years. The
pessimistic prediction is showing a very different expected availability - around 35 years for a
closed system and around 70 years for an open system with a jet.

The difference between optimistic and pessimistic scenarios is drastic. However, now we
can not completely adopt either of them. Probably, at a certain point in the future, a significant
technological transformation might occur, which would match the bandwidth growth rate with
Moore’s law. Alternatively, with the growth of computational performance, more and more
applications will become memory-bound, which would shift the further acceleration towards a
pessimistic scenario.

2.8 Conclusions
This work studied the feasibility of affordable, fast, and high-fidelity CFD simulations for
indoor environmental applications, considering two representative test cases and a wide range
of numerical setups. We considered three possible building applications: conceptual design,
detailed design, and MPC.

We tested LES, URANS, and no-model approaches with both staggered and collocated
discretizations on a set of structured Cartesian non-uniform grids. LES and no-model approach
showed considerably higher accuracy than URANS. Even though URANS simulations were the
least computationally expensive, their accuracy was often insufficient. The no-model approach
produces similar to LES results, but with the lower computational cost. Staggered symmetry-
preserving discretization considerably improves the accuracy of coarse and extremely coarse
grids.

Based on the obtained run-times of the simulations and the building applications require-
ments, we conclude that, fast high-fidelity CFD simulations on the office computers are not
feasible neither for design nor for control of indoor environments. Obtained run-times are
too long to make CFD a primary tool for HVAC applications. We estimated the growth of
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computational resources in the future to determine when CFD would be available for routine
use on office computers. The optimistic prediction estimates that CFD would be feasible for
conceptual design in 5 years, for the detailed design in 10-20 years, and in 10-25 years for MPC.
The pessimistic prediction anticipates at least 15 years for the conceptual design, 25 years for
the detailed design, and 35 years for control.
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3

A CFD-based surrogate

model for predicting flow

parameters in a ventilated

room using sensor readings

Main content of this chapter has been published in:

N. Morozova, F.X. Trias, R. Capdevila, E. Schillaci and A. Oliva. A CFD-based surrogate
model for predicting flow parameters in a ventilated room using sensor readings. Energy and
Buildings 266:112146, 2022.

Abstract: In this work, we develop a computational fluid dynamics (CFD)-based surro-
gate model, which predicts flow parameters under different geometrical configurations and
boundary conditions in a benchmark case of a mechanically ventilated room with mixed
convection. The model inputs are the temperature and velocity values in different locations,
which act as a surrogate of the sensor readings. The model’s output is a set of comfort-related
flow parameters, such as the average Nusselt number on the hot wall, jet separation point,
average kinetic energy, average enstrophy, and average temperature. We tested four different
machine learning methods, among which we chose the gradient boosting regression due to its
accurate performance. We also adapted the developed model for indoor environment control
applications by determining the optimal combinations of sensor positions which minimize the
prediction error. This model does not require the repetition of CFD simulations in order to be
applied since the structure of the input data imitates sensor readings. Furthermore, the low
computational cost of model execution and good accuracy makes it an effective alternative
to CFD for applications where rapid predictions of complex flow configurations are required,
such as model predictive control.
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3.1 Introduction
The quality of the indoor environment is an important issue in our daily life, as we spend most
of our time indoors. The quality of the indoor environment mostly depends on proper design
and precise control of ventilation systems, which require knowledge of indoor air dynamics.
Building air dynamics is usually a nonlinear, transient process, which depends on many factors
such as weather, building geometry, occupants’ behavior, etc. Thus, indoor air distribution
usually involves various complex physical phenomena, such as natural and forced convection.
As a result, the task of precise prediction of indoor air parameters is not straightforward.

Computational fluid dynamics (CFD) is a very powerful tool for evaluating indoor air
distribution. In CFD, the physical domain is divided into a finite number of control volumes
to solve the Navier-Stokes equations numerically. The solution provides a complete set of air
parameters for each control volume. However, despite the sustained growth in computational
power and advances in numerical algorithms, accurate CFD simulations are still prohibitively
expensive [1] for most of the practical building applications and are mainly used for research
and particular high-end buildings. The usual alternatives to CFD are the multizone [2] and
zonal models [3], which can provide very rapid predictions but offer limited information due to
the assumptions required. Moreover, the growth of computational resources in the foreseeable
future would not be enough to make CFD available for routine use in building applications [1].
As a result, new numerical models capable of providing accuracy comparable with high-fidelity
CFD but at considerably lower computational cost are needed.

Over the last years, several attempts to develop an alternative to zonal and multizone
reduced-order models for building simulations have been made. For example, Li et al. [4]
investigated a multiple model approach for predictive control of indoor thermal environment
using proper orthogonal decomposition (POD). Phan et al. [5] developed a reduced-order
model of a data center with multi-parameters using the POD method. Wang et al. [6] used
CFD-based POD model to optimize air supply schemes in indoor environments. These models
successfully reduce the simulation time while maintaining an acceptable level of accuracy.
However, these works focus on temperature and thermal load predictions and do not consider
motion-related flow parameters, which are usually more complex as they are described by
nonlinear processes. Zuo & Chen [7] applied fast fluid dynamics (FFD) [8] method for indoor
environmental simulations. They have successfully reduced the computing cost compared to
CFD but at the expense of a considerably lower accuracy.

Data-driven models (DDMs) are steadily gaining popularity in building modeling applica-
tions due to their accurate approximations of nonlinear processes. They are used as surrogate
models for building design, sensitivity and uncertainty analysis, thermal load predictions,
and model predictive control (MPC) [9]. For instance, DDM-MPC for heating, ventilation,
and air conditioning (HVAC) systems were developed for a university building [10], an air-
port [11], and a residential building [12,13]. DDMs for thermal load prediction were developed
for a single building [14] and for a non-residential district [15]. On the other hand, Park &
Park [16] performed a comparative analysis on the predictability of natural ventilation rates.
However, these models are not based on CFD simulations and rely on reduced-order models,
experimental results, or historical data to generate the database for their DDMs.

Using CFD simulations for surrogate modeling usually results in the high computational
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cost of dataset generation, yet a considerable number of researchers use this approach [17].
For example, Athavale et al. [18], and Fang et al. [19] compared different CFD-based DDSM
approaches for temperature prediction in data centers and concluded that results produced
by these models are in good agreement with the reference CFD data. Warey et al. [20] created
an accurate model of vehicle cabin thermal comfort prediction using machine learning (ML)
algorithms and high-fidelity CFD simulation results. The models mentioned above are of
practical significance. Nevertheless, they are developed for specific applications and cannot
be directly used to predict flow parameters in a more generic indoor environment. Zhou &
Ooka [21] studied the influence of data preprocessing on DDM performance for reproducing
CFD simulations of indoor airflow distribution and concluded that without data preprocessing,
DDMs are likely to result in poor predictions. However, the objective of their work was not
to reduce the simulation cost by using surrogate modeling. On the other hand, Lamberti &
Gorlé [22] tackled the problem of the high computational cost of CFD database generation by
combining low and high fidelity CFD simulations in an ML model to predict wind loads on
buildings. Tian et al. [23] used ML to model indoor environment indicators in the stratified en-
vironments. All the researchers mentioned above note that DDMs produce accurate predictions
at a low computational cost and could be an alternative to classical modeling techniques.

DDMs are based on using data analysis to find relations between system state variables
without explicit knowledge of the physical behavior of the system. They can be developed
relatively easily since they do not require an understanding of system physics. A comprehensive
set of the high-quality input-output dataset is needed to train these models for all possible
working conditions. The accuracy of DDMs decreases when training data deviates from
testing data. Therefore, it is critical to use training data covering all the operating conditions,
which could be challenging. However, difficulties in obtaining high-fidelity training data are
compensated by the high accuracy and the low computational cost of the resulting model [12].
Therefore, DDMs could be used for complex indoor environments with stratification, natural,
and forced convection, where multizone and zonal reduced-order models cannot be relied on,
and computationally expensive CFD simulations are required.

In this work, we develop a data-driven surrogate model (DDSM), which is based on
the data from CFD simulations. The model predicts comfort-related airflow parameters in a
ventilated room with a heated floor, which is a classical benchmark test case used by many
researchers in the field of indoor environmental simulations [24–27] for testing of novel simu-
lation methods. We have chosen this test configuration because of the challenges it presents
(the mixture of natural and forced convection) and because of the availability of both exper-
imental [28] and direct numerical simulation (DNS) CFD [1] data for validation. Our work
aims to develop a model which acts as a proof of concept. The main focus of our research is
on investigating the capabilities and limitations of this model as a fast and robust alternative
to CFD, taking into account specific requirements for indoor environmental applications. We
begin with testing different ML methods to choose the approach that best fits our model
specifics. After selecting the appropriate ML method, we optimize our DDSM to accommodate
the requirements of indoor environment design and control applications. The optimization
consists of two steps. First, we change the structure of the input data so that it takes the values
of temperature and velocity in the locations, which in a practical case could be replaced by
sensor readings. Then we test different combinations of input probe positions in order to find
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the optimal sensor placement.
The content of this paper is organized as follows: Section 3.2 describes the governing

equations, details of the test case, and the database generation; Section 3.3 describes the
numerical details of the CFD simulations and ML methods used in this study; Section 3.4 shows
the results of the comparison of different DDSMs and the analysis of the optimal thermostat
placement; Section 3.5 provides a discussion on model advantages and disadvantages; and
Section 3.6 contains concluding remarks.

3.2 Physical problem and dataset generation
This section describes the physical details of the simulated test case, the governing equations
of the flow, and the details of the generated dataset.

3.2.1 Governing equations
We use the incompressible Navier-Stokes equations for a Newtonian fluid with constant physi-
cal properties. We adopt the Boussinesq approximation to account for the density variations
due to temperature differences. Thermal radiation is neglected. Under these assumptions, the
governing equations are

∇ · u = 0, (3.1)

∂u
∂t

+ (u · ∇)u = ν∇2u−∇p + βg∆T, (3.2)

∂T
∂t

+ (u · ∇)T = α∇2T, (3.3)

where u = (u, v, w) is the velocity vector in Cartesian coordinates x = (x, y, z), p the
kinematic pressure, T the temperature, ν the kinematic viscosity, g the gravitational acceleration,
β the thermal expansion coefficient and α the thermal diffusivity.

Hereafter, all the results are presented in dimensionless form. The reference values of
time, velocity, temperature, and length are tre f = H/Ure f , Ure f = Uin, ∆T, and H, respectively,
where H is the cavity height, Uin is the inlet bulk velocity, ∆T = Th − Tc is the temperature
difference, Th is the temperature of the hot wall, and Tc is the temperature of the cold wall.

3.2.2 Physical problem
The physical setup used in this work is a classical benchmark case of a three-dimensional
ventilated cavity with a heated floor. This configuration was first studied experimentally
by Blay et al. [28]. In our previous work [1] we conducted high-fidelity DNS simulations of
this benchmark case in order to validate our CFD results. This flow configuration presents a
mixed convection phenomenon, challenging due to the interaction of both natural and forced
convection. It resembles an airflow in a middle section of a room with mixing ventilation and
thermal exhausts. The geometry of the studied cavity is shown in Figure 3.1 (left). Cold air
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at Tc = −0.5 enters the cavity through the long thin inlet at the top of the left wall. The inlet
velocity profile in the vertical (y) direction corresponds to a parabolic Poiseuille flow. The inlet
slot has an aspect ratio Ain = hin/H = 0.018/1.04. The air is discharged through the outlet slot
with the aspect ratio Aout = hout/H = 0.024/1.04 at the bottom of the right wall of the cavity.
The bottom wall is maintained at a hot temperature of Th, while the three other sidewalls are
kept at the cold temperature of Tc.

Figure 3.1: Left: geometry of the studied test case. Right: locations of the input data
probes at the mid-depth cavity plane (z = D/2).

The cavity is filled with air (Pr = ν/α = 0.71). The depth aspect ratio of the cavity is
Ad = D/H = 0.3/1.04. At the outlet, convective boundary conditions (∂φ/∂t+Uin∂φ/∂x = 0)
are imposed for the velocity and temperature. No-slip boundary conditions are applied on
the walls. The initial velocity field is set to zero and the initial temperature is set equal to
the temperature at the cold wall. Periodic boundary conditions are used in the spanwise (z)
direction.

3.2.3 Dataset generation
We build the input-output dataset by changing the width aspect ratio of the cavity (Aw =
W/H), the Rayleigh number based on the cavity height RaH = gβ∆TH3/(να), and the Froude
number based on the ratio between the bulk inlet and buoyant velocity (Fr = Uin/Ubuo =
ReH/

√
RaH , ReH = Uin H/ν is the Reynolds number based on the cavity height). Test case

configurations used in the generation of the dataset are shown in Table 4.1.
Chosen combinations of Aw− RaH − Fr are realistic and relevant for indoor environmental

applications. For example, assuming that the cavity height is 2.5 meters, the highest Rayleigh
number (9.6× 109) corresponds to a temperature difference of approximately 6◦C. On the
other hand, the maximum Reynolds number based on the cavity height used in this work is
9.79× 105. Considering the same height of 2.5 meters, it corresponds to an inlet velocity of
≈ 0.94m/s.
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Table 3.1: Combinations of the test case configurations for generating the CFD dataset.
“CG” stands for coarse-grid “FG” for fine-grid CFD simulations. Each combination
for Aw and RaH is tested for all of the 20 Fr numbers listed in the table.

Aw
RaH

1.5× 108 6× 108 2.4× 109 9.6× 109

0.25 FG FG FG CG
0.50 FG FG FG CG
1.00 FG FG FG CG
2.00 FG FG FG -
4.00 CG CG CG -
Fr = 0.15, 0.20, 0.25, ..., 0.55, 0.60, 0.70, ..., 1.50, 1.60
Total number of coarse-grid (CG) simulations 120
Total number of fine-grid (FG) simulations 240
Total number of simulations 360

3.2.4 Input and output parameters
As input parameters of our DDSM, we initially consider Froude number (Fr), Rayleigh number
(RaH), cavity width aspect ratio (Aw), temperature (T) and velocity magnitude (U) probes
at seven different locations on the mid-depth cavity plane (z = D/2). In total, we use 17
(Fr + RaH + Aw + 7T + 7U) input parameters. The positions of the probes are shown in the
figure 3.1 (right). The positions of the probes are chosen according to the results of our previous
work [29]. Most probes are located near the walls of the cavity in order to mimic the positions
of real temperature and velocity sensors. The input dataset with all of the seven probes is
used to compare the performance of different ML methods. For the problem of finding the
optimal sensor location, the number of input features is reduced, which is explained in detail
in Section 3.4.

As the outputs of the model, we choose five global flow parameters: average Nusselt
number on the hot wall - <Nu>, average kinetic energy - <E>, average enstrophy - <Ω>,
average temperature of the cavity - <TV >, and the jet separation point - xsep. They represent
basic airflow properties and are relevant for thermal comfort [30]. The average Nusselt number
is a measure of heat transfer. It is computed using the temperature gradient at the bottom wall
surface:

<Nu>= − 1
WD

∫ W

x=0

∫ D

z=0

∂ < T >

∂y
dx dz at y = 0, (3.4)
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where, the standard bracket “<>” notation is used for time-averaged values. The average
temperature is the operative room temperature. It represents the thermal properties of the flow
and is averaged over time and cavity volume:

<TV >=
1

WHD

∫ W

x=0

∫ H

y=0

∫ D

z=0
< T > dx dy dz. (3.5)

Kinetic energy is a measure of the level of motion, whereas enstrophy is a measure of
turbulence intensity. Both kinetic energy and enstrophy are directly related to draught and
local discomfort. They are averaged over time and cavity volume and calculated as follows:

<E>=
1

WHD

∫ W

x=0

∫ H

y=0

∫ D

z=0

< u2 >

2
dx dy dz (3.6)

<Ω>=
1

WHD

∫ W

x=0

∫ H

y=0

∫ D

z=0
< ω2 > dx dy dz, (3.7)

where ω = ∇ × u is the vorticity. Jet separation point is an important parameter to
measure velocity comfort in a room. It is determined as a point at the top cavity wall, where
the wall-shear stress <τW > is equal to zero:

xsep = x, at <τW >=
∫

∂ < u >

∂y
dz = 0, y = H. (3.8)

3.3 Numerical methods

3.3.1 CFD simulations
To generate input and output data for the model, we use large-eddy simulations (LES) on
staggered grids with second-order symmetry-preserving spatial discretization [31] and a one-
parameter fully explicit second-order temporal discretization scheme [32]. To perform the
simulations, we use an in-house CFD code developed by Gorobets et al. [33] with the LES-S3PQ
turbulence model [34]. The choice of the turbulence model, type of spatial and temporal
discretizations, and CFD software are based on the findings of our previous work [1]. There we
performed an extensive validation and mesh sensitivity analysis of the same test case (RaH =
2.4× 109, Fr = 0.81, and Aw = 1) comparing different LES and Reynolds average Navier-
Stokes (RANS) turbulence models, spatial grid resolutions and discretization techniques. The
Cartesian staggered grid with Nx = 120, Ny = Noutlet + Nbulk + Ninlet = 20 + 120 + 20 = 160,
Nz = 30 or 5.76× 105 total control volumes showed the best trade-off between computational
cost and accuracy for the aforementioned test configuration. This grid resolution is used as
reference for the fine grids in this study. On the other hand, the coarse grid resolution is based
on the grid with Nx = 60, Ny = Noutlet + Nbulk + Ninlet = 7 + 60 + 8 = 75, Nz = 16, which is
the coarsest grid that showed reasonable accuracy in our previous study [1].
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The task of choosing optimal grid discretization for the CFD simulations is a complex
procedure, especially if one plans to simultaneously perform many simulations. On one hand,
the nature of LES turbulence modeling requires sufficient spatial discretization [35] in order
to obtain accurate simulation results. On the other hand, the high computational cost of the
simulations requires the optimization of the grid size by tuning it to the physics and geometry
of each individual test case. Moreover, it is not feasible to conduct mesh sensitivity analysis and
validation for hundreds of CFD simulations. As a solution to this problem, we have developed
an algorithm for the automatic mesh generation based on the variable physical parameters of
the experiment (Fr, RaH , Aw), previously conducted validations [1], and desired level of mesh
refinement.

Figure 3.2: Schematic image of the computational grid used in the study.

All of the computational grids are structured and Cartesian.The schematic image of a
computational grid used in this study is shown in Figure 3.2. The biggest cells are located in
the center of the domain, their maximum size in the vertical (y) and horizontal (x) directions
(∆xmax = ∆ymax) is determined using the Grötzbach estimate [36] defined as follows:

ηGrö ≤
πPr1/2

(Nu− 1)RaH
1/4 for Pr ≤ 1 (3.9)

∆ymax ≈ CrηGrö, (3.10)
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where the average Nusselt number Nu is approximated using the expression Nu ≈
0.373(FrRaH)0.2. The expression is derived using results of our previous works [29, 37].

The smallest cells are located at the walls, their minimum cell size in the vertical direction -
∆ymin is determined by the flow in the inlet area and calculated as:

∆ymin ≈ Cr
hin
2

Re−1
τ , (3.11)

where Reτ =
√

3/2Rehin
is the friction Reynolds number for the laminar flow, and

Rehin
= Uinhin/ν is the Reynolds based on the inlet height. Cr is the coefficient of the re-

finement. Equations (3.9)-(3.11) estimate the size of the computational grid required for the
DNS simulations; thus, the value of Cr = 1 corresponds to the DNS level of refinement. The
use of LES turbulence modeling allows the use of coarser grids, thus values of Cr > 1 are
adopted in this study.

In the horizontal (x) direction grids are refined near the walls using the hyperbolic tangent
function:

x =
W
2

(
1 +

tanh{γx(2(i− 1)/Nx − 1)}
tanhγx

)
, (3.12)

where, γx is the concentration factor, Nx is the number of grid points, and i ∈ [1, 2, ..., Nx]
is the index of the grid point in the horizontal direction respectively. Their values follow
by imposing ∆xmin = 4∆ymin and ∆xmax = ∆ymax, where ∆xmin is the first off-wall control
volume, ∆xmax is the control volume in the center of the cavity, and ∆xmin/∆ymin = 4 is the
ratio, used to balance the trade-off between the computational cost and accuracy.

In the vertical (y) direction the grids are uniform in the zones of the inlet (Nin = hin/∆ymin)
and the outlet (Nout = Nin) and refined in the bulk region using a hyperbolic tangent function
similarly to equation (3.12). Both γy and Nbulk are found iteratively using the ratio between the
minimum, ∆ymin and the maximum, ∆ymax cell size. The grids are uniform in the spanwise
(z) direction and the number of grid points is calculated as Nz = 1.1D/∆ymax, where 1.1 is the
ratio suggested by [38].

However, the level of grid refinement should be high enough, in order to ensure grid
independence. Unfortunately, for the sake of covering the maximum amount of the possible
working conditions using limited computational resources, some of the CFD simulations were
performed using coarse computational. Table 4.1 shows the level of grid refinement for each
batch of the test cases. For the fine grids, we used Cr = 3 (27 times coarser than DNS), and for
the coarse grid simulations, we used Cr = 6 (216 times coarser than DNS). According to our
previous studies [1], where we performed and validated CFD simulations of the same test case,
the computational grid with Cr = 3 is sufficiently fine to achieve accurate results.

All simulations run for 500 non-dimensional time units (H/Uin), a long enough time-
integration period to record the flow statistics for further averaging. In total, we carry out 360
CFD simulations (see Table 4.1), 20% of which are reserved for testing, and 80% are used in the
model training. Test set is chosen randomly from the whole dataset before the beginning of the
model training process.
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3.3.2 Data-driven models
This section gives a brief description of the machine learning approaches used in this study
together with the description of the training and testing process. We used four different DDSMs,
namely artificial neural network (ANN), support vector regression (SVR), gradient boosting
regression (GBR), and Gaussian process regression (GPR).

Table 3.2: Summary of the tested machine learning approaches and their hyperpa-
rameters.

Model name Tested hyperparameters Values Final set

ANN
Hidden layers 1, 2 1
Hidden layer neurons 2, 4, ..., 20 16
Activation function Linear, ReLU ReLU

SVR
Kernel

Linear
RBPolynomial

Radial basis (RB)
Regularization strength 10, 50, ..., 500 100
Epsilon-tube width 0.01, 0.02, ..., 0.1 0.05

GBR

Learning rate 0.01, 0.02, ..., 0.1 0.02
Estimators 10, 50, ..., 500 100
Max tree depth 2, 3, ..., 8 3
Minimal samples split 2, 3, ..., 8 4
Minimal samples leaf 2, 3, ..., 8 2

GPR Kernel
Linear

RBDot product
Radial basis (RB)

ANN is a machine learning framework where the input is mapped to the output using a set
of interconnected nodes or neurons. Neural networks can implicitly detect complex non-linear
relationships between dependent and independent variables and support multiple training
algorithms. However, their disadvantages include its “black boxâ nature and proneness to
overfitting. Usually, ANN consists of one input layer, one or several hidden layers, and one
output layer. The number of neurons in the input and output layer represents the number of
model parameters and output values. In contrast, the number of neurons in the hidden layer
can be arbitrary. Training neural networks involve determining the appropriate combination
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of the number of hidden layers, the number of neurons in them, and the associated weight
coefficients that minimize the prediction error. The ANN that showed the minimal prediction
error is composed of one hidden layer with 16 neurons and a rectified linear unit (ReLU)
neuron activation function. All of the tested hyperparameter combinations are summarized in
Table 3.2. In our work, we use the open-source ANN library Keras [39].

SVR [40] is a machine learning framework that encodes non-linear relationships between
the inputs and outputs by mapping the data in a high dimensional feature space, where the
number of dimensions corresponds to the number of inputs. SVR is a robust model which
can effectively work with a small number of training samples. However, SVR is not suitable
for large datasets and does not perform well on noisy datasets. Training SVR is essentially
performing linear regression in that high dimensional feature space. The mapping function
is also called the “kernel” function. During the optimization of our SVR model, we tested
different kernels, regularization strength values, and the sizes of epsilon-tube. Regularization
strength is a parameter which discourages the creation of complex predictive models and
controls overfitting. The size of epsilon-tube determines the width of the tube around the
estimated function. Points that fall inside this tube are considered as correct predictions and are
not penalized by the algorithm. The optimal hyperparameter configuration for our SVR model
is the radial basis kernel function with the values of regularization strength and epsilon-tube
size equal to 100 and 0.05, respectively. Other tested configurations are summarized in Table 3.2.

GBR [41] is a technique that combines weak prediction models (usually decision trees)
into a single strong learner in an iterative fashion. The algorithm adds one tree at each stage,
optimizing a cost function by moving in the negative gradient direction. GBR usually shows
high accuracy prediction and fast training. Nevertheless, this model, similarly to ANN, is
prone to overfitting. In our GBR model, we use regularization, characterized by the learning
rate. The decision trees in GBR are characterized by the maximum tree depth, a minimal
amount of samples to split a brunch, and a minimal amount of samples to form a leaf. Another
critical parameter of GBR is the number of estimators, which is the number of boosting stages
to perform. We tested different values of the aforementioned parameters (see Table 3.2). We
chose GBR with the learning rate of 0.02, 100 estimators, maximum tree depth of 3, minimal
samples split of 4, and minimal samples leaf of 2. This combination of parameters showed the
highest accuracy for our model.

GPR [42] is a kernel-based machine learning technique for non-linear regression problems,
similar to SVR. A Gaussian Process (GP) is a set of random variables, such that any finite subset
of these variables has a joint Gaussian distribution. GPR is a flexible approach capable of
adapting to a wide range of problems by customizing kernel functions. Yet, GPR usually loses
efficiency in high dimensional spaces with many input parameters and cannot handle large
datasets. As a distribution, a GP is characterized by its kernel function and covariance function.
Due to the Bayesian context of its formulation and interpretation, GPR has a probabilistic
nature and gives prediction intervals instead of specific prediction points. In our work, we use
radial basis kernel function with length scale equal to 0.2 and length scale bounds of (10−3, 103)
and the Gaussian squared-exponential covariance function, since they showed the highest
prediction accuracy on our data. However, we also tested dot product kernel and linear kernel
functions.

For the SVR, GBR, and GPR frameworks, we use the open-source library Scikit-learn [43].
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The nature of these three models (SVR, GBR, and GPR) only supports single output problems.
In order to predict all five output parameters in a single model, we use a multi-output regressor,
which fits one regressor per target.

3.3.3 Data preprocessing and metrics
One of the most critical aspects of creating DDSMs is data preprocessing. The available
dataset should be adequately scaled to make sure all the features have the same order of
magnitude. In our work, we normalize all the input and output data to fit the range of [−1, 1].
Similar input parameters are grouped in order to apply the same normalization scale; for
example, all the values of the velocity magnitudes from all the sensors and all the scenarios
are normalized simultaneously. The same procedure is done for all of the temperature sensor
readings. However, each of the output parameters is scaled separately, as well as the Fr, RaH
and Aw from the input dataset.

We use 80% of the available data for model training and 20% for testing. Moreover, to
improve the prediction results and avoid model overfitting (lack of generalization) we use
cross-validation. In this study, we adopt a leave-one-out (LOO) cross-validation method. LOO
is a specific case of the standard k-fold cross-validation [44]. For the LOO cross-validation at
each training run, the learning set is created by taking all the samples except one, the validation
set being the sample left out. Thus, for N samples, we have N different training sets and
N different validation sets. This cross-validation procedure maximises the amount of data
used for training since only one sample is removed from the training set. Moreover, LOO
cross-validation is less biased because of the small difference in size between the training set
used in each fold and the entire dataset. It is a suitable technique for small datasets.

In order to quantify the accuracy of the model, we use mean relative prediction error
(MRE), which is designed as follows:

MRE(φ) =
1
N ∑N

i=1
|φCFD − φDDSM|

|φCFD|
, (3.13)

where N is the number of samples in the test dataset, φCFD represents any one of the 5
comfort-related parameters calculated from the CFD simulations, and φDDSM represents a
prediction from one of the DDSMs of any one of the 5 comfort-related parameters. We assume
that less than 5% MRE is acceptable for this model.

3.4 Results

3.4.1 Comparison of different DDSM approaches
Table 3.3 shows a comparative analysis of results for all the models developed in this study. The
table presents MREs (equation (4.21)) for each of the model output parameters (equations (3.4)-
(3.8)). The result are obtained using 17 (Fr + RaH + Aw + 7T + 7U) input parameters from 360
CFD simulations, among which 288 were used for training and 72 - for testing.
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Table 3.3: Mean relative prediction error (MRE) of the studied flow parameters for
different models on the test dataset.

Model
MRE

<Nu> <E> <Ω> <TV > xsep Mean
ANN 0.012 0.022 0.184 0.164 0.219 0.120
SVR 0.010 0.004 0.032 0.034 0.079 0.032
GBR 0.018 0.025 0.028 0.017 0.064 0.030
GPR 0.034 0.032 0.095 0.016 0.065 0.048

Nusselt number on the hot wall < Nu> and average kinetic energy < E> are the flow
parameters, which are accurately predicted by all of the tested models. The MRE for these two
flow parameters does not exceed 5% (0.05) and is minimal for the SVR approach. However,
average enstrophy <Ω> is more difficult to be captured correctly, and ANN shows MRE as
high as 18%. A similar picture could be observed for the average cavity temperature <TV >
and flow separation point xsep, which is accurately predicted by all modeling frameworks
except ANN. The smallest MRE for average enstrophy, average cavity temperature, and flow
separation point is given by the GBR, which also has the smallest mean MRE. SVR and GPR
are performing similarly to the GBR. However, ANN is not capable of producing accurate
predictions for some of the output parameters.

The amount of data required for the DDSMs development is always a compromise between
the computational cost and accuracy. Moreover, the creation of the dataset is usually the most
time-consuming part of the model generation. CFD simulations have high computational cost,
therefore it is useful to determine the optimum size of the training dataset to minimize the
time and computational resources required to develop the model without compromising the
model’s accuracy.

Figure 3.3 shows the relationships between the number of samples in the dataset and the
accuracy of the prediction. The models are constructed using between 10 and 360 samples.
There is a smooth decrease in the MRE with the increase of the number of samples in the dataset.
However, most of the models converge to a steady prediction error at around 150 samples.
Further increase in the dataset size provides a negligibly small decrease of the prediction
error. Nonetheless, SVR requires at least 200 samples to accurately predict the Nusselt number.
Moreover, unlike other models, ANN does not always provide a smooth error decrease with
the increase of the dataset size.

SVR, GBR, and GPR are performing similarly and show similar levels of prediction errors.
Nonetheless, ANN performs differently from three other DDSMs; it generally exhibits lower
accuracy, which is not improved by increasing the dataset size. The nature of ANNs could
explain this discrepancy. Neural networks have probabilistic nature, as they fit parameters to
transform the input and indirectly direct the activations of the following neurons. On the other
hand, SVR and GBR are deterministic and explicitly fit parameters to direct the information
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Figure 3.3: Mean relative error (MRE) of the studied flow parameters for different
number of samples in the training dataset and different ML models. Top left: Nusselt
number on the hot wall, < Nu>. Top right: average kinetic energy, <E>. Middle
left: average enstrophy, <Ω>. Middle right: average cavity temperature, < TV >.
Bottom: flow separation point, xsep.

flow [45]. Deterministic models usually handle small-sized datasets more accurately, while
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neural networks are more oriented towards complex problems involving a significant amount
of data. It, therefore, appears that the GBR framework is the most suitable data-driven model
for this kind of problem, as it shows an overall lowest level of errors. GBR framework is
adopted for further analysis.

3.4.2 Optimal sensor position for the prediction of flow parameters
In this section, we adapt the previously developed model for the requirements of MPC. Pre-
dictive building models usually use sensor readings, weather data, heating and cooling loads,
and geometrical parameters of the building as input data [46]. Therefore, in order to make
our predictive model suitable for MPC applications, the input data should be structured in a
way that once the model is trained, it would not require any additional simulations for the
model usage. With this idea in mind, we decided to reduce the number of input parameters
of the model and also relocate the positions of the temperature and velocity probes, so they
could imitate the actual thermal sensor locations. The model is then trained and tested using
different combinations of input parameters in order to determine the optimal sensor position
for the prediction of flow parameters.

Temperature and velocity sensors are usually located alongside the walls and ceiling of
the rooms. In the previous subsection, we used the probes located as shown in the Figure 4.1
(right). Not all of these probes could be replaced by the sensor readings. For example, probe 4
is located in the center of the cavity, where it is impractical to install a sensor. Likewise, probe 6
is located on the floor. In a practical case, indoor spaces are hardly ever equipped with more
than two sensors per room. Thus, to optimize the prediction model’s performance, the number
of probes is reduced to two. Their locations are limited by the zones near the ceiling and the
sidewalls (Figure 3.4), which are the zones where temperature and velocity sensors could be
installed. We did not consider placing more than two sensors since the model could reach
sufficient accuracy with the data available. Perhaps, the increased amount of sensors could
help reduce the number of samples in the training dataset; however, it is out of the scope of
the present study. Moreover, in a realistic situation, apart from the cavity width aspect ratio,
the values of the Froude and Rayleigh numbers are not available; hence they are discarded
from the current study. As a result, the total number of the input parameters is equal to 5
(Aw + 2T + 2V).

Therefore, in order to find the optimal positions of the probes, we try 361 different combi-
nations of positions (19 per wall) for each scenario, detailed in the Figure 3.4. In configuration 1,
one sensor is located at the ceiling and another at the left wall; in configuration 2, one sensor is
again located at the ceiling and another at the right wall. In configuration 3, there is one sensor
on each lateral wall. Thick black lines in the Figure 3.4 show all the possible combinations
of sensors for each studied configuration, while only two positions at the time are used in
the model. The position of the sensor location is considered optimal when the MRE of the
predicted flow parameters is minimal. Figures 3.5-3.9 show mean relative prediction errors of
each output parameter (<Nu>,<E>,<Ω>,<TV >, xsep) for different sensor positions for
each of the studied sensor combinations from Figure 3.4. The MRE for each flow parameter
is averaged over the whole test set. Positions of the ceiling sensors are relative to the cavity
width aspect ratio.
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Figure 3.4: Studied combinations of temperature and velocity sensor locations. Thick
black lines represent the possible positions of the probes.

Figure 3.5 shows the mean relative prediction error of the Nusselt number for different
combinations of sensor positions. The shadows of the green show the values from the lowest
MRE (dark green) to the highest (light yellow), respectively. For the configuration 1, the most
accurate Nusselt number prediction is achieved when the sensors are located at the top of the
left wall and near the corners of the ceiling. These are the zones where most of the changes
occur, located near the inlet and the jet separation area. For sensor configuration 2 (ceiling
and the right wall), the smallest relative errors occur when the ceiling sensor is near one of
the sidewalls and at the bottom of the right wall, which is close to the flow outlet. A similar
tendency is observed for the third configuration, where sensors near the top of the left and the
right wall give the most accurate predictions. Even though, the maximum MRE for the <Nu>
is as high as 80%, the minimum errors for all of the sensor configurations are around 1%.

As could be seen in Figure 3.6, the error distribution for kinetic energy is drastically
different from the Nusselt number. The minimal relative errors are located at the central areas
(dark blue zones) for all sensor configurations. Moreover, the results for configurations 1 and
2 are almost identical. The best result is achieved when a ceiling sensor is placed at the right
corner and the wall sensor is placed at the mid-height. For configuration 3, the error is minimal
when the left wall sensor is located at the mid-height and the right wall - at the top of the wall.
However, the maximum MRE does not exceed 9% for any of the studied arrangements.

Figure 3.7 shows the MRE for average enstrophy. For configurations 1 and 2 (see Figure 3.4),
the error distribution is almost identical. The lowest errors are achieved when the ceiling sensor
is placed at the corners or the center of the cavity. The wall sensor for these configurations
should also be located at the top, bottom, or the wall center. On the other hand, configuration
3 shows the best results when at least one of the sensors is located in the center of the wall.
However, there is a minimal zone of sensor positions, where the MRE(<Ω>) is very high,
and for most of the domain, the error does not exceed 10%.

The mean relative error for the averaged cavity temperature is shown in Figure 3.8. The
maximum MRE(<TV >) is reached when one sensor is placed at the central part of a ceiling
and the other - at the central part of a wall (configurations 1 and 2). In this area, the error
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Figure 3.5: Mean relative error of the averaged Nusselt number MRE(< Nu >)
for different sensor positions. Top left - sensors at the ceiling and the left wall
(configuration 1 in Figure 3.4). Top right - sensors at the ceiling and the right wall
(configuration 2 in Figure 3.4). Bottom - sensors at the left and right wall (configuration
3 in Figure 3.4), where the right wall is assigned to the x axis.

level is reaching 70%; nevertheless, the remaining sensor positions have the MRE below 5%.
Configuration 3, where both sensors are placed at the sidewalls, is the most favorable for the
accurate temperature prediction. Almost any combination of the sensor positions is showing
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Figure 3.6: Mean relative error of the averaged kinetic energy MRE(<E>)for differ-
ent sensor positions. Top left - sensors at the ceiling and the left wall (configuration 1
in Figure 3.4). Top right - sensors at the ceiling and the right wall (configuration 2 in
Figure 3.4). Bottom - sensors at the left and right wall (configuration 3 in Figure 3.4),
where the right wall is assigned to the x axis.

good accuracy.
Flow separation point, xsep, shown in Figure 3.9 is easily predicted by all of the approaches,

the maximum MRE does not exceed 6%. However, the error is minimal when sensors are
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Figure 3.7: Mean relative error of the averaged enstrophy MRE(<Ω>) for different
sensor positions. Top left - sensors at the ceiling and the left wall (configuration 1 in
Figure 3.4). Top right - sensors at the ceiling and the right wall (configuration 2 in
Figure 3.4). Bottom - sensors at the left and right wall (configuration 3 in Figure 3.4),
where the right wall is assigned to the x axis.

located near the corners of the walls or the ceiling. As can be seen from the figure, it is vital
to place the sensors in the area where the velocity drop occurs in order to ensure accurate
prediction of the flow separation point.
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Figure 3.8: Mean relative error of the averaged cavity temperature MRE(< TV >)
for different sensor positions. Top left - sensors at the ceiling and the left wall
(configuration 1 in Figure 3.4). Top right - sensors at the ceiling and the right wall
(configuration 2 in Figure 3.4). Bottom - sensors at the left and right wall (configuration
3 in Figure 3.4), where the right wall is assigned to the x axis.

The obtained results from Figures 3.5-3.9 show that the optimal position of the sensor
varies from one flow parameter to the other; thus, it is interesting to determine the points where
the model gives the accurate value of all of the parameters. In order to determine these points,
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Figure 3.9: Mean relative error of the flow separation point MRE(xsep) for different
sensor positions. Top left - sensors at the ceiling and the left wall (configuration 1 in
Figure 3.4). Top right - sensors at the ceiling and the right wall (configuration 2 in
Figure 3.4). Bottom - sensors at the left and right wall (configuration 3 in Figure 3.4),
where the right wall is assigned to the x axis.

Figure 3.10 shows the maximum MRE among all of the output parameters. The scale from dark
to light represents the maximum MRE from low to high, respectively. For configuration 1 (top
left figure), the lowest errors are observed when the ceiling sensor is located near the corners
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Figure 3.10: Maximum (among studied flow parameters) mean relative error for dif-
ferent sensor positions. Top left - sensors at the ceiling and the left wall (configuration
1 in Figure 3.4). Top right - sensors at the ceiling and the right wall (configuration 2 in
Figure 3.4). Bottom - sensors at the left and right wall (configuration 3 in Figure 3.4),
where the right wall is assigned to the x axis.

and the left wall sensor is located near the ceiling. On the other hand, configuration 2 (top right
figure) shows higher accuracy when the ceiling sensor is located near the corners, and the right
wall sensor is located near the floor. Configuration 3 (bottom figure) produces the lowest MRE
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when the right wall sensor is located near the ceiling, and the left wall sensor is located either
near the ceiling or near the floor.

Figure 3.11: Locations of temperature and velocity sensors with the highest prediction
accuracy. The thick blue lines show the best sensor positions.

It is important to note that certain sensor positions have very low sensitivity when cap-
turing some of the flow parameters. For example, if at least one of the sensors is located in
the central part of the wall, the prediction error for the Nusselt numbers increases up to 70%
due to the low heat transfer in these zones. However, suppose the sensors are placed in the
wall corners of the ceiling. In that case, the Nusselt number accuracy increases as a result of a
more significant temperature difference in the sensor readings. On the contrary, the accuracy
of the average temperature prediction benefits from sensors located in the central part of the
walls because the temperature readings in these zones are closest to the mean temperature. In
contrast, sensors located in the wall corners of the ceiling introduce considerable errors due
to the bigger temperature difference between them. Therefore, when placing the sensors, a
decision to prioritize the accuracy of the prediction of some flow parameters over the others is
to be taken into account.

In this section, we showed that the developed model is capable of producing accurate
results using only the data obtained from two sensor readings. Moreover, we determined
which temperature and velocity sensors positions are preferable for the studied test case. The
combinations of the sensors, which achieved the smallest maximum relative error, are shown
in the Figure 3.11. The following section is dedicated to discussing the obtained results and the
possible applications of the developed model.

3.5 Discussion
In this section, we present the interpretation of the obtained results, discuss the advantages and
disadvantages of the data-driven models for indoor environmental simulations, and consider
possible applications of the developed model.

The computational cost of the model development is a combination of the computational
cost of CFD simulations and the model training cost. The latter is negligible - it takes approxi-
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mately 2 minutes to train the model on a personal computer using four CPU cores. Moreover,
after the training is completed, the prediction is produced almost instantly. Virtually all the
computational effort is used to produce CFD data for the model training.

The CFD database was generated using MareNostrum 4 supercomputer at the Barcelona
Supercomputing Center. We limited ourselves to 700Kh core-hours computational resources;
hence, not all of the CFD simulations were performed with the same grid resolution (see
Table 4.1 for details). In order to create the dataset, we were changing three physical parameters
of the cases - Froude number, Rayleigh number, and the cavity width aspect ratio. The range in
which these parameters were varying was chosen to represent the realistic indoor environments.
However, test cases with high Rayleigh numbers and high width aspect ratios are considerably
more computationally expensive than the others. We decided to compute these test cases with
reduced mesh resolution in order to complete the dataset. Even though these simulations were
less accurate, they still improved the accuracy of the data-driven model. The estimated cost of
generating the whole dataset of 360 simulations (240 fine-grid and 120 coarse-grid) simulations
is approximately 7000$ using Amazon Web Services with the Elastic Compute Cloud Spot
Instances subscription [47]. This is a justifiable computational and financial cost for the DDSM
development. These CFD simulations are carried out only once to form the input dataset and
will not be repeated. All of the data obtained from these simulations, including the data not
used in this work, has been carefully stored for future research.

The input data of the developed model is structured so that it takes the values of tem-
perature and velocity in the locations, which could be replaced by sensor readings. This
configuration of input data makes it possible to avoid costly CFD simulations at the model
execution stage. Moreover, the output parameters of the model are directly related to the
parameters of the thermal comfort, such as draft rating index (DR) [48] predicted mean vote
(PMV) [30], and local thermal discomfort [49]. DR can be calculated using average kinetic
energy <E>, average temperature <TV >, and enstrophy <Ω>. The average temperature is
also used in calculations of PMV, while Nusselt number <Nu> and flow separation point xsep
influence the local discomfort.However, the calculation of these thermal comfort coefficients is
out of the scope of this work. The purpose of the developed model is a proof of concept; thus,
a classical benchmark ventilated room test case was chosen in order to increase generalization
capacity and avoid problem-setup specificity. Nonetheless, once the concept is proven, the
model could be extended to a direct evaluation of comfort parameters in actual rooms with
specific geometries.

Despite the small number of the input parameters, the model maintains the accuracy
comparable to CFD, which is a significant advantage over conventional reduced-order mul-
tizone and zonal models, which are not suitable for handling complex physical phenomena.
Moreover, the small computational cost makes the model attractive for applications where fast
computations are required, such as MPC or early-stage conceptual building design. However,
the main bottleneck of the DDSMs is their case dependency. Even though a wide range of room
geometries and physical conditions was tested, the model is not universal and does not cover a
full extension of possible indoor environmental configurations. The model would not be able
to produce accurate results for the case significantly different from the training dataset, for
example, a room with complex geometry or completely different working conditions.

Data-driven models are capable of providing rapid predictions for common room geome-
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tries. Furthermore, as they are based on high-fidelity data (CFD simulations), they consider
temperature and velocity distributions inside individual rooms. Hence, DDSMs could be used
for applications where a combination of fast and accurate predictions is required, for example,
for model predictive control.

3.6 Conclusions
In this work, we created a CFD-based DDSM for predicting the comfort-related flow parameters
in a benchmark three-dimensional ventilated cavity with a heated floor. The developed DDSM
provides almost instant accurate predictions using an ordinary office computer. The input
parameters of the DDSM are the values of the temperature and velocity magnitude at different
probe locations within the cavity domain. The output parameters are the average Nusselt
number on the hot wall, the jet separation point, the average kinetic energy, the average
enstrophy, and the average temperature of the cavity.

First, we created a model that uses the readings of seven probes to test different ML
frameworks. The gradient boosting regression outperformed other methods, while the artificial
neural network showed the least accurate results. Next, in order to imitate the sensor readings,
the number of probe locations was reduced to two, and the probes were placed near the ceiling
and sidewalls of the cavity. Then the developed surrogate model was tested with the data
from different combinations of sensor positions to determine the optimal areas of the sensor
placement (Figure 3.11). The model can accurately predict comfort-related flow parameters
using only the information from temperature and velocity sensor readings, which makes it
possible to avoid repeated CFD simulations at the model execution stage by directly using
onsite data.

The developed methodology is applicable to flow configurations with complex physical
phenomena and commonly used indoor space geometrical configurations, like offices or
classrooms. The methodology takes advantage of the detailed information about indoor airflow
provided by accurate CFD simulations, which is usually not accessible by multizone and zonal
reduced-order models. Moreover, in the case of public buildings, for example, offices, the type
of ventilation systems and office geometry does not vary significantly inside one particular
building, which makes the generation of the input data easier. As a result, a comprehensive
dataset could easily be created. Therefore, the developed methodology could be used for
applications where fast and accurate predictions are required, for example, for ventilation
operation control.
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review. Energy and Buildings, 198:170–186, 2019.

[10] A. E. Ruano, S. Pesteh, S. Silva, H. Duarte, G. Mestre, P. M. Ferreira, H. R. Khosravani,
and R. Horta. The IMBPC HVAC system: A complete MBPC solution for existing HVAC
systems. Energy and Buildings, 120:145 – 158, 2016.

[11] H. Huang, L. Chen, and E. Hu. A neural network-based multi-zone modelling approach
for predictive control system design in commercial buildings. Energy and Buildings, 97:86–
97, 2015.

[12] A. Afram, F. Janabi-Sharifi, A. S. Fung, and K. Raahemifar. Artificial neural network
(ANN) based model predictive control (MPC) and optimization of HVAC systems: A
state of the art review and case study of a residential HVAC system. Energy and Buildings,
141:96–113, 2017.

[13] Q. Chen and N. Li. Fast simulation and high-fidelity reduced-order model of the multi-
zone radiant floor system for efficient application to model predictive control. Energy and
Buildings, 248:111210, 2021.
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Application of

multi-fidelity approach for

surrogate modeling of

indoor airflow parameters

in a ventilated room

Main content of this chapter has been part ially published in:

N. Morozova, F.X. Trias, V. Vanovskiy, C. Oliet and E. Burnaev. A CFD-based multi-fidelity
surrogate model for prediction of flow parameters in a ventilated room. In Proceedings of 8th
European Congress on Computational Methods in Applied Sciences and Engineering, June 5-9, 2022,
Oslo, Norway.

Abstract: In this work, we present a multi-fidelity machine learning surrogate model,
which predicts comfort-related flow parameters in a benchmark case of a ventilated room with
a heated floor. The model uses coarse- and fine-grid CFD data with the LES turbulence model.
The dataset is created by changing the width aspect ratio of the rooms, inlet flow velocity,
and temperature of the hot floor. The surrogate model takes the values of temperature and
velocity magnitude at four different cavity locations as inputs. These probes are located such
that they could be replaced by actual sensor readings in a practical case. The model’s output
is a set of comfort-related flow parameters, such as the average Nusselt number on the hot
wall, jet separation point, average kinetic energy, average enstrophy, and average temperature.
We test three multi-fidelity approaches: Gaussian process regression (GPR) trained on both
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high- and low-fidelity data without distinction between them, GPR with linear correction, and
multi-fidelity GPR or co-kriging. The computational cost and accuracy of these approaches are
compared with GPRs based only on high- or low-fidelity data. All of the tested multi-fidelity
approaches successfully reduce the computational cost of dataset generation compared to
high-fidelity GPR while maintaining the required level of accuracy. The co-kriging approach
demonstrates the best trade-off between computational cost and accuracy.

4.1 Introduction
Modern heating ventilation and air conditioning (HVAC) systems are required to maintain a
trade-off between maximizing human thermal comfort and minimizing energy consumption
in buildings. Precise control and accurate design of the indoor environment are indispensable
tools for achieving this trade-off.

Traditionally indoor environments are simulated using multizone models [1], zonal mod-
els [2], and computational fluid dynamics (CFD). Indoor environmental dynamics is usually a
nonlinear, transient process that involves various complex physical phenomena, such as natural
and forced convection. As a result, multizone and zonal models are often unable to achieve
sufficient accuracy due to the simplifications adopted. On the other hand, CFD is a powerful
tool for evaluating indoor air distribution, which provides a complete set of air parameters
for the whole simulated domain. However, despite the sustained growth in computational
power and advances in numerical algorithms, accurate CFD simulations are still prohibitively
expensive [3, 4] for most of the practical building applications and are mainly used for research
and design of particular high-end buildings. Moreover, the growth of computational resources
in the foreseeable future would not be enough to make CFD available for routine use in building
applications [5]. As a result, new numerical models capable of providing accuracy comparable
with high-fidelity CFD but at considerably lower computational cost are needed. From this
perspective, surrogate modeling looks like an attractive option due to its low computational
cost and comparable with CFD accuracy.

A surrogate model is an engineering method used when an outcome of interest cannot be
easily measured or computed, so a model of the outcome is used instead. Surrogate models
mimic the behavior of the high-fidelity simulation model as closely as possible while being
considerably computationally cheaper to evaluate. Surrogate models are constructed using a
data-driven, bottom-up approach using data analysis to find relations between system state
variables without explicit knowledge of the physical behavior of the system. In order to
construct these models, a comprehensive set of input-output data of the system is needed
under all possible working conditions. Thus, the ease of development of surrogate models
comes at the cost of reduced generalization capability compared to the classical modeling
approaches. The accuracy of surrogate models decreases when training data deviates from
testing data. Hence, it is critical to train these models with the data covering all the possible
scenarios, which could be challenging, especially for indoor environmental applications that
operate under a wide range of weather conditions throughout the year. However, difficulties
in obtaining high-fidelity training data are compensated by the high accuracy and the low
computational cost of the resulting models [6].
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Because of its inexpensiveness, surrogate modeling is the central focus of the current
research of built environment applications. Modern surrogate models are usually based on
machine learning techniques. They are extensively used in building design, thermal load pre-
dictions, and model predictive control (MPC) [7]. The surrogate MPC model, which minimizes
energy consumption in a generic office room, was developed by Kim et al. [8]. Wei et al. [9] and
Asadi et al. [10] worked on the surrogate models which maintain thermal human comfort at an
acceptable level and minimize thermal discomfort hours. Surrogate models for thermal load
predictions were developed for a single building [11] and a non-residential district [12]. All
of the aforementioned works show low computational cost and sufficient accuracy. However,
these models primarily rely on other reduced-order models, experimental results, or historical
data to generate the input-output data for their surrogate models.

Surrogate modeling is often built from and compared with CFD simulations, producing
similarly accurate results. For example, Athavale et al. [13], and Fang et al. [14] compared dif-
ferent CFD-based surrogate models for temperature prediction in data centers and concluded
that results produced by these models are in good agreement with the reference CFD data.
Warey et al. [15] created an accurate model of vehicle cabin thermal comfort prediction using
machine learning algorithms and high-fidelity CFD simulation results. Despite the practical
significance of the aforementioned models, they work with specific indoor environments and
cannot directly predict flow parameters in a more generic case. On the other hand, Zhang
et al. [16] used a data-driven approach in general indoor environments with CFD as training
data to solve the inverse design problem and identify a possible relationship between thermal
comfort and inlet boundary condition. Tian et al. [17] used machine learning on CFD and exper-
imental data to model indoor environment indicators in the stratified environments in order to
evaluate human thermal comfort. Ding et al. [18] developed data-driven regression model for
coupled indoor-outdoor flow analysis together with CFD simulations. The researchers note
that CFD-based surrogate models produce accurate predictions at a low computational cost
and could be a good alternative to classical modeling techniques.

Using CFD simulations for surrogate modeling usually results in high computational
cost of dataset generation; thus, the increasing number of works is trying to optimize it by
using a multi-fidelity approach. This approach combines a large number of computationally
cheap low-fidelity simulations and a smaller number of expensive high-fidelity simulations,
in way that ensures a trade-off between simulation cost and surrogate model accuracy. Multi-
fidelity is a new approach in surrogate modeling, and not many works have been published
on this topic yet. For instance, Lamberti & Gorlé [19] combined RANS and LES simulations
in order to create a machine learning model which predicts wind loads on buildings. They
showed that the proposed multi-fidelity framework has the potential to significantly reduce
the number of expensive LES simulations while retaining a significantly higher accuracy than
standard empirical models. The multi-fidelity kriging technique was used by Li et al. [20] for
the optimization of high-speed train cabin ventilation system design, which led to significant
savings of computational time. Zhang et al. [21] combined high-fidelity models using a CFD
evaluation with fine grid and the low-fidelity models using the same CFD model with a
coarse grid to optimize the aerodynamic shape of an airfoil, which improved optimization
efficiency and outperformed the single-fidelity method. However, to the best of the author’s
knowledge, multi-fidelity surrogate modeling has not yet been applied to simulations of the
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indoor environment.
In this work, we propose a CFD-based multi-fidelity surrogate model to predict comfort-

related flow parameters in a ventilated room with a heated floor. The chosen test case is a
classical benchmark test case [22] used by many researchers in the field of indoor environment
for testing novel simulation methods [23–26]. This particular test configuration experiences
both natural and forced convection phenomena, making it hard for the classical reduced-order
models to achieve meaningful results and making expensive CFD simulations indispensable.
However, the surrogate models have the capacity to drastically reduce the simulation cost
while maintaining an acceptable level of accuracy. The model acts as a proof of concept. The
model’s inputs are values of temperature and velocity in the locations, which in a practical case
could be replaced by sensor readings. The model’s outputs are the flow parameters important
for evaluating indoor thermal comfort. The main novelty of this work is the adoption of a
multi-fidelity approach, which allows to substantially decrease the amount of computational
resources spent on the dataset generation and increase the prediction capacity by amplifying
the set of working conditions.

The content of this paper is organized as follows: Section 4.2 describes the governing
equations and the details of the test case, Section 4.3 describes the numerical details of the
CFD simulations and dataset generation; Section 4.4 describes the the developed surrogate
models; Section 4.5 shows the results of the comparison of different multi- and single-fidelity
approaches; Section 4.6 provides a discussion on model advantages and disadvantages and
contains concluding remarks.

4.2 Test case description
This section describes the physical details of the simulated test case, the governing equations
of the flow, and the details of the generated dataset.

4.2.1 Governing equations
We use the incompressible Navier-Stokes equations for a Newtonian fluid with constant physi-
cal properties. We adopt the Boussinesq approximation to account for the density variations
due to temperature differences. Thermal radiation is neglected. Under these assumptions, the
governing equations are

∇ · u = 0, (4.1)

∂u
∂t

+ (u · ∇)u = ν∇2u−∇p + βg∆T, (4.2)

∂T
∂t

+ (u · ∇)T = α∇2T, (4.3)

where u = (u, v, w) is the velocity vector in Cartesian coordinates x = (x, y, z), p the
kinematic pressure, T the temperature, ν the kinematic viscosity, g the gravitational acceleration,
β the thermal expansion coefficient and α the thermal diffusivity.
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Hereafter, all the results are presented in dimensionless form. The reference values of
time, velocity, temperature, and length are tre f = H/Ure f , Ure f = Uin, ∆T, and H, respectively,
where H is the cavity height, Uin is the inlet bulk velocity, ∆T = Th − Tc is the temperature
difference, Th is the temperature of the hot wall, and Tc is the temperature of the cold wall.

4.2.2 Physical problem
The physical setup used in this work is a classical benchmark case of a three-dimensional
ventilated cavity with a heated floor. This configuration was first studied experimentally
by Blay et al. [22]. In our previous work [5] we conducted high-fidelity DNS simulations of
this benchmark case in order to validate our CFD results. This flow configuration presents a
mixed convection phenomenon, challenging due to the interaction of both natural and forced
convection. It resembles an airflow in a middle section of a room with mixing ventilation and
thermal exhausts. The geometry of the studied cavity is shown in Figure 4.1 (left). Cold air
at Tc = −0.5 enters the cavity through the long thin inlet at the top of the left wall. The inlet
velocity profile in the vertical (y) direction corresponds to a parabolic Poiseuille flow. The inlet
slot has an aspect ratio Ain = hin/H = 0.018/1.04. The air is discharged through the outlet slot
with the aspect ratio Aout = hout/H = 0.024/1.04 at the bottom of the right wall of the cavity.
The bottom wall is maintained at a hot temperature of Th, while the three other sidewalls are
kept at the cold temperature of Tc.

Figure 4.1: Left: geometry of the studied test case. Right: locations of the input data
probes at the mid-depth cavity plane (z = D/2).

The cavity is filled with air (Pr = ν/α = 0.71). The depth aspect ratio of the cavity is
Ad = D/H = 0.3/1.04. At the outlet, convective boundary conditions (∂φ/∂t+Uin∂φ/∂x = 0)
are imposed for the velocity and temperature. No-slip boundary conditions are applied on
the walls. The initial velocity field is set to zero and the initial temperature is set equal to
the temperature at the cold wall. Periodic boundary conditions are used in the spanwise (z)
direction.
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4.3 Dataset generation

4.3.1 Description of the dataset
We build the input-output dataset by changing the width aspect ratio of the cavity (Aw =
W/H), the Rayleigh number based on the cavity height RaH = gβ∆TH3/(να), and the Froude
number based on the ratio between the bulk inlet and buoyant velocity (Fr = Uin/Ubuo =
ReH/

√
RaH , ReH = Uin H/ν is the Reynolds number based on the cavity height). Test case

configurations used in the generation of the dataset are shown in Table 4.1.

Table 4.1: Combinations of the test case configurations for generating the CFD dataset.
“LF” stands for low-fidelity (coarse-grid) “HF” for high-fidelity (fine-grid) CFD simu-
lations. Each combination for Aw and RaH is tested for all of the 20 Fr numbers listed
in the table.

Aw
RaH

1.5× 108 6× 108 2.4× 109 9.6× 109

0.25 HF+LF HF+LF HF+LF LF

0.50 HF+LF HF+LF HF+LF LF

1.00 HF+LF HF+LF HF+LF LF

2.00 HF+LF HF+LF HF+LF -

4.00 LF LF LF -

Fr = 0.15, 0.20, 0.25, ..., 0.55, 0.60, 0.70, ..., 1.50, 1.60

Total number of low-fidelity (LF) simulations 360

Total number of high-fidelity (HF) simulations 240

Total number of simulations 600

Chosen combinations of Aw− RaH − Fr are realistic and relevant for indoor environmental
applications. For example, assuming that the cavity height is 2.5 meters, the highest Rayleigh
number (9.6× 109) corresponds to a temperature difference of approximately 6◦C. On the
other hand, the maximum Reynolds number based on the cavity height used in this work is
9.79× 105. Considering the same height of 2.5 meters, it corresponds to an inlet velocity of
≈ 1m/ss.

4.3.2 Input and output parameters
As input parameters of our surrogate model, we consider cavity width aspect ratio (Aw),
temperature (T) and velocity magnitude (V) probes at four different locations on the mid-depth
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cavity plane (z = D/2). In a practical situation, apart from the cavity width aspect ratio, the
values of the Froude and Rayleigh numbers are not available; hence they are discarded from
the current study. In total, we use 9 (Aw + 4T + 4V) input parameters. The positions of the
probes are shown in the figure 4.1 (right). The positions of the probes are chosen according
to the results of our previous work [27]. The probes are located near the walls of the cavity in
order to mimic the positions of real temperature and velocity sensors.

As the outputs of the model, we choose five global flow parameters: average Nusselt
number on the hot wall - <Nu>, average kinetic energy - <E>, average enstrophy - <Ω>,
average temperature of the cavity - <TV >, and the jet separation point - xsep. They represent
basic airflow properties and are relevant for thermal comfort [28]. The average Nusselt number
is a measure of heat transfer. It is computed using the temperature gradient at the bottom wall
surface:

<Nu>= − 1
WD

∫ W

x=0

∫ D

z=0

∂ < T >

∂y
dx dz at y = 0, (4.4)

where, the standard bracket “<>” notation is used for time-averaged values. The average
temperature is the operative room temperature. It represents the thermal properties of the flow
and is averaged over time and cavity volume:

<TV >=
1

WHD

∫ W

x=0

∫ H

y=0

∫ D

z=0
< T > dx dy dz. (4.5)

Kinetic energy is a measure of the level of motion, whereas enstrophy is a measure of
turbulence intensity. Both kinetic energy and enstrophy are directly related to draught and
local discomfort. They are averaged over time and cavity volume and calculated as follows:

<E>=
1

WHD

∫ W

x=0

∫ H

y=0

∫ D

z=0

< u2 >

2
dx dy dz (4.6)

<Ω>=
1

WHD

∫ W

x=0

∫ H

y=0

∫ D

z=0
< ω2 > dx dy dz, (4.7)

where ω = ∇ × u is the vorticity. Jet separation point is an important parameter to
measure velocity comfort in a room. It is determined as a point at the top cavity wall, where
the wall-shear stress <τW > is equal to zero:

xsep = x, at <τW >=
∫

∂ < u >

∂y
dz = 0, y = H. (4.8)

4.3.3 CFD simulations
To generate input and output data for the model, we use large-eddy simulations (LES) on
staggered grids with second-order symmetry-preserving spatial discretization [29] and a one-
parameter fully explicit second-order temporal discretization scheme [30]. To perform the
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simulations, we use an in-house CFD code developed by Gorobets et al. [31] with the LES-S3PQ
turbulence model [32]. The choice of the turbulence model, type of spatial and temporal
discretizations, and CFD software is based on the findings of our previous work [5], where
we performed an extensive validation and mesh sensitivity analysis of the same test case
(RaH = 2.4× 109, Fr = 0.81, and Aw = 1).

Choosing optimal grid discretization for the CFD simulations is a complex procedure,
especially if one plans to perform many simulations simultaneously. On the one hand, the
nature of LES turbulence modeling requires sufficient spatial discretization [33] in order to
obtain accurate simulation results. On the other hand, the high computational cost of the
simulations requires optimizing the grid size by tuning it to the physics and geometry of each
test case. As a solution to this problem, we have developed an algorithm for the automatic
mesh generation based on the variable physical parameters of the experiment (Fr, RaH , Aw),
previously conducted validations [5], and desired level of mesh refinement.

Figure 4.2: Schematic image of the computational grid used in the study.

All of the computational grids are structured and Cartesian. The schematic image of a
computational grid used in this study is shown in Figure 4.2. The algorithm is determining
the maximum cell size in each direction (∆xmax, ∆ymax, ∆z) using the Grötzbach estimate [34]
based on the average Nusselt number derived from the results of our previous works [35, 36].
The minimum cell size in the vertical direction (∆ymin) is determined by the flow in the inlet
area, and the minimum cell size in the horizontal direction ∆xmin = 4∆ymin. Once minimal
and maximal cell sizes are found, the interpolation is done in order to approximate grid
concentration factors. The detailed description of this algorithm could be found in our previous
work [27].

The developed algorithm estimates the computational grid size required for a fully resolved
flow simulation of a direct numerical simulation (DNS). However, the use of LES turbulence
modeling allows coarser grids. The high-fidelity simulations are performed on the grids in
which are each direction 3 times coarser than the corresponding DNS grids. Meanwhile, the
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low-fidelity simulations are performed in the grid 6 times coarser than DNS in every direction.
According to our previous studies [5], where we performed and validated CFD simulations of
the same test case, the computational grids used for high-fidelity simulations are sufficiently
fine to achieve accurate results.

4.4 Surrogate models
This section describes the machine learning techniques we used to develop our surrogate model
and the details on data preprocessing and metrics. Our work is based on the Gaussian process
regression (GPR) approach, which is an attractive machine learning framework capable of
constructing nonlinear regression models [37] with some guaranteed theoretical properties [38].
A significant advantage of GPR over other machine learning frameworks is the ability to
treat variable fidelity data [38–41], which allows to reduce the computational cost of dataset
generation. We investigate the computational complexity and compare accuracies of the
following approaches: GPR for single-fidelity data [42], GPR with linear correction (LC GPR),
and multi-fidelity GPR (MF GPR) or co-kriging [43]. All of the models use an open-source
machine learning library scikit-learn [44].

4.4.1 Gaussian process regression for single-fidelity data
GPR [42] is a kernel-based machine learning technique for non-linear regression problems. A
Gaussian Process (GP) is a set of random variables, such that any finite subset of these variables
have a joint Gaussian distribution. We consider a training sample DS = (Xd, yd) = {xd

i , yd
i =

yd(xd
i )

n
i=1, where a point xd ∈ X ⊆ Rd and a function value yd(xd) ∈ R. We assume that

yd(xd) = f (xd) + ε, where f (x)d is a GP and ε is a Gaussian white noise with a variance σ2.
The goal is to construct a surrogate model for the target function f (xd). As a distribution, a GP
is characterized by its mean and covariance function:

k(xd, x′d) = cov( f (xd), f (x′d)) = E((xd −E(xd)(x′d −−−E(x′d))) (4.9)

To simplify the ++notations we assume that the mean value to be zero. We also as-
sume that the covariance function belongs to the parametric family k(xd, x′d) = kθ(xd, x′d)
for some θ ∈ Θ. Then y(xd) will be the GP with zero mean and the covariance function
cov(yd(xd), yd(x′d)) = kθ(xd, x′d) + σ2δ(xd âx′d), where δ(xd âx′d) is the Kronecker delta. In
this work we use Matérn covariance function, which is a generalization of commonly used
squared exponential covariance function. It has an additional parameter νk which controls the
smoothness of the resulting function. It is parameterized by a length-scale parameter l. The
kernel is given by:

k(xd, x′d) =
1

Γ(νk)2νk−1

(√
2νk
l

d(xd, x′d)
)νk

Kνk

(√
2νk
l

d(xd, x′d)
)

, (4.10)
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where d(xd, x′d) is the Euclidean distance, Kνk (·) is a modified Bessel function, and Γ(·)
is the gamma function. In our work we adopt νk = 3/2, while l is approximated during the
regression process.

GPR is a flexible approach capable of adapting to a wide range of problems by customizing
kernel functions. Yet, GPR usually loses efficiency in high dimensional spaces with many input
parameters and cannot handle large datasets. Usually, not more than a few thousand points
are used when training Gaussian Process regression [38].

We test thee different single-fidelity GPR:

• HF-GPR - a model trained only high-fidelity (HF) data;

• LF-GPR - a model trained only on low-fidelity (LF) data;

• HFLF-GPR - a model trained on a mix of LF and HF data without distinguishing the
data fidelity.

4.4.2 Gaussian process regression with linear correction
Now we consider the case of variable fidelity data: we have a sample of low-fidelity function
evaluations DSl = (Xd

l , yd
l ) = {x

l
i , yd

l (x
l
i)}

nl
i=1 and a sample of high-fidelity function evaluations

DSh = (Xd
h, yd

h) = {xh
i , yh(xh

i )}
nh
i=1 with xl

i , xh
i ∈ Rd, yd

l (x
d
l ), yd

h(x
d
h) ∈ R. The low-fidelity

function yd
l (x

d
l ) and the high-fidelity function yd

h(x
d
h) model the same physical phenomenon

but with different fidelities. Using the samples of low- and high-fidelity finction values our
aim is to construct a surrogate model of the high-fidelity function - ŷd

h ≈ yd
h.

This approach is a modification of single-fidelity GPR detailed in the Section 4.4.1. The
developed surrogate model consists of three steps. In the first step we train a single-fidelity
GPR model Ml(Xd

l , yd
l ) on low-fidelity data and test it on high-fidelity data:

Ml(X
d
l , yd

l ) = ỹd
h, (4.11)

where ỹd
h is the test result on high-fidelity data. In the second step we estimate an error

(∆yd
h) between the test results and the actual high-fidelity data and train a linear regression

model ∆M(Xd
h, ∆yd

h) to predict this error:

∆yd
h = yd

h − ỹd
h = yd

h −Ml(X
d
h) (4.12)

∆M(Xd
h, ∆yd

h) = ∆ỹd
h. (4.13)

In the third step we correct the predictions of low-fidelity surrogate model for the the step
one - Ml(Xh) using the error correction model from the step two:

ŷd
h = ỹd

h + ∆ỹd
h = Ml(X

d
h) + ∆M(Xd

h), (4.14)

where ŷd
h is the corrected prediction result. LC GPR approach allows to compensate

simulation-induced errors and reduce the amount of high-fidelity data used in the model
training process.
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4.4.3 Multi-fidelity Gaussian process regression
In this work we consider a well-known multi-fidelity data model (co-kriging) [43]:

yd
l (x

d) = fl(x
d) + εl (4.15)

yd
h(x

d) = cyd
l (x

d) + yd
c (x

d), (4.16)

where yd
c (xd) = fd(xd) + εc and c is an arbitrary constant. Here fl(xd), fd(xd) are the

realizations of independent GP with zero means and covariance functions kl(xd, x′d) and
kd(xd, x′d), respectively, and εl , εc are Gaussian white noise processes with variances σ2

l ans

σ2
c , respectively. We also set Xd =

(
Xd

l
Xd

h

)
, yd =

(
yd

l
yd

h

)
. Then the posterior mean of high-fidelity

values at next points has the form

ŷd
h(X
∗
d) = K(X∗d), Xd)) ·K−1yd, (4.17)

where

K(X∗d , Xd)) =
(
cK(X∗d , Xd

l ) c2Kl(X∗d , Xd
h) + Kc(X∗d , Xd

h)
)

, (4.18)

K(Xd, Xd)) =

(
Kl(Xd

l , Xd
l ) cKl(Xd

l , Xd
h)

cKl(Xd
h, Xd

l ) c2Kd
l (X

d
h, Xd

h) + Kc(Xd
h, Xd

h)

)
, (4.19)

Kl(Xa, Xb), Kc(Xa, Xb) are matrices of pairwise covariances between yl(x) and yc(x) and
points from arbitrary samples Xa and Xb, respectively. The posterior covariance function has
the form

V(Xd) = c2Kl(X
∗
d , X∗d) + Kc(X∗d , X∗d)−K(X∗d , Xd) ·K−1 · (K(X∗d , Xd))T . (4.20)

To evaluate the parameters of the covariance functions of GP fl(xd) and fc(xd), the follow-
ing algorithm is used [40]:

1. Estimate parameters of the covariance function kl(xd, x′d) using the algorithm for the
single-fidelity GPR, described in Section 4.4.1 with the sample DS = DSl .

2. Calculate values of the posterior mean ŷd
l of the GP yd

l (x
d) for xd ∈ Xd.

3. Estimate parameters of the GP yc(xd) with a covariance function kc(xd, x′d) and the
parameter c by maximizing likelihood estimation [38].

4.4.4 Data preprocessing and metrics
Data preprocessing is important for the correct performance of the data-driven models, because
the difference in values between various parameters could be of several orders of magni-
tude [45]. In our work, we normalize all the input and output data to fit the range of [−1, 1].
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To improve the prediction results and avoid model overfitting (lack of generalization) we
use cross-validation. In this study, we adopt a leave-one-out (LOO) cross-validation method.
LOO is a specific case of the standard k-fold cross-validation [46]. For the LOO cross-validation
at each training run, the learning set is created by taking all the samples except one, the
validation set being the sample left out. Thus, for N samples, we have N different training
sets and N different validation sets. This cross-validation procedure maximises the amount of
data used for training since only one sample is removed from the training set. Moreover, LOO
cross-validation is less biased because of the small difference in size between the training set
used in each fold and the entire dataset. It is a suitable technique for small datasets. All of the
high-fidelity data, not involved in the training process is used for testing. The size of the test
dataset varies depending on the analysis performed (see Section 4.5 for details).

In order to quantify the accuracy of the model, we use mean relative error (MRE), which
are designed as follows:

MRE(φ) =
1
N ∑N

i=1
|φCFD − φSM|
|φCFD|

, (4.21)

where N is the number of samples in the test dataset, φCFD represents any one of the
5 comfort-related parameters calculated from the CFD simulations, and φSM represents a
prediction from one of the surrogate models of any one of the 5 comfort-related parameters.
We assume that less than 10% RE is acceptable for this model.

4.5 Results
This section analyzes the results obtained using different surrogate modeling techniques in
terms of computational cost and accuracy. First, the comparison of the single-fidelity models is
shown, then the multi-fidelity models are evaluated. All the results are averaged of 15 model
runs.

4.5.1 Single-fidelity models
Here we present a comparison between two single-fidelity models, namely HF-GPR - a model
trained only high-fidelity data and LF-GPR - a model trained only on low-fidelity data. Both
models are tested on HF data. Figure 4.3 shows the MRE for each of the output flow parameters
and different number of samples.
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Figure 4.3: Mean relative error (MRE) of the studied flow parameters for different
number of samples in the training dataset and different single-fidelity models. Top
left: Nusselt number on the hot wall, <Nu>. Top right: average kinetic energy, <E>.
Middle left: average enstrophy, < Ω >. Middle right: average cavity temperature,
<TV >. Bottom: flow separation point, xsep.
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Nusselt number on the hot wall < Nu> (Figure 4.3, top left) and flow separation point
xsep (Figure 4.3, bottom) show steady improvement of accuracy on both HF and LF surrogate
models with the increase of the number of samples in the training dataset. However, even
with the highest available number of samples, the LF model does not reach the same accuracy.
Moreover, the prediction of flow separation point has a high variance. Kinetic energy <E>
(Figure 4.3, top right) and average enstrophy <Ω> (Figure 4.3, center left) show very high
MREs on a low number of samples for both HF and LF models while significantly improving
the results with the increasing number of samples. Again LF GPR does not reach the accuracy
of HF GPR, which is caused by the model-induced errors. On the other hand, average <TV >
(Figure 4.3, center right) is generally poorly predicted by the LF model; even though the results
improve for larger training datasets, the prediction error variance is still high for LF GPR.

The performance of these two single-fidelity models establishes the baseline for further
comparison between the different multi-fidelity approaches. The minimum size of the dataset
is increased to 60 samples, since smaller datasets do not produce accurate results. The high-
fidelity dataset is reduced to 130 data samples since all of the studied flow parameters converge
to a steady prediction error at this dataset size. On the other hand, the low-fidelity dataset is
used entirely since the computational cost of low-fidelity dataset is lower, and both <Ω> and
<TV > did not reach a steady prediction error. The extensive comparison between different
multi-fidelity approaches is made only for the enstrophy <Ω> since this flow parameter is
the most illustrative example due to the highest LF and HF prediction differences. The results
for other flow parameters are summarized in Table 4.3.

4.5.2 Multi-fidelity models
This subsection shows the comparison of the performance of different multi-fidelity models,
detailed in Section 4.4, namely HFLF GPR single-fidelity GPR, which is trained both high-
and low-fidelity data without distinction between them, GPR with linear correction (LC GPR),
and multi-fidelity GPR (MF GPR). Figures 4.4-4.6 show the computational cost and accuracy
of these models for different combinations of HF and LF data samples. Figure 4.7 shows
the comparison of computational cost and accuracy between different modeling approaches
using a different number of HF training data samples. Table 4.2 details the training dataset
configurations which showed the best trade-off between computational cost and accuracy for
different modeling approaches, and Table 4.3 summarises the accuracy of these models.

The main purpose of using the multi-fidelity approach is to reduce the computational cost
of dataset generation without substantial loss of accuracy. As we have determined earlier, the
HF surrogate models require 130 data samples for optimal performance. The average computa-
tional cost of one high-fidelity simulation is approximately 2700 core-hours, while the average
cost of one low-fidelity simulation is 285 core-hours. These numbers are approximated using
the whole datasets; however, the computational cost of each individual simulation depends on
the physical and geometrical parameters of the test case and is highly variable. Nonetheless,
the total computational cost of HF GPR model training is 351Kh, which is considered the
maximum reference computational cost.

Figure 4.4 (left) shows the MRE of the average enstrophy <Ω> predicted using the HFLF
GPR model. The horizontal axis is the total number of samples in the training dataset, and
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Figure 4.4: HFLF GPR model. Left: Mean relative error (MRE) of the average enstro-
phy <Ω> for a different total number of training samples and different percentage
of high-fidelity (HF) samples. Right: Computational cost of dataset generation for
accurate predictions (< 0.1) using different percentages of HF samples.

the vertical axis is MRE(<Ω>). Each plot line is obtained by changing the percentage of HF
samples in the training dataset. The blue line (0% HF) is the single-fidelity model, trained only
on LF data, while the red line (100% HF) is the HF model. The dotted black line marks the
MRE(<Ω>) = 0.1 - the required accuracy. Even the small number of HF samples introduced
in the dataset successfully improves the model’s accuracy to an acceptable level. Figure 4.4
(right) shows the computational cost, [Kh] of CFD simulations, which were required to achieve
the desired accuracy (MRE < 0, 1) for each of the studied dataset configurations. Only the
HFLF GPR model with 75% of HF samples could reduce the computational cost compared to
the baseline HF model. The reason is that there is no distinction between the samples’ fidelity;
thus, the model’s accuracy mostly depends on the amount of HF data samples.

The accuracy of the LC GPR model for the different number of samples in the training
dataset and the different number of HF samples used in the correction step is shown in
Figure 4.5 (left). This model is trained on the LF dataset, and the HF data is used inside
a submodel that estimates and corrects the error between LF and HF predictions. LC GPR
model has relatively low accuracy for the small number of samples, but when more than 200
samples are used, the accuracy is improved substantially. Moreover, the amount of HF samples
in the correction step does not significantly influence the model’s accuracy, which allows to
reduce the computational cost of the dataset generation considerably. Figure 4.5 (right) shows
the computational cost of different configurations of LC GPR models in comparison with
single-fidelity models and the HFLF GPR model with 75% of HF samples (the only HFLF GPR
configuration which was able to reduce the computational cost). LC GPR model has substantial
advantages over both HF GPR and HFLF GPR, resulting in lower computational cost since it
has achieved the required level of prediction error using only 25% of available HF samples.

Figure 4.6 (left) shows the MRE of the average enstrophy < Ω > predicted using the
MF GPR model for different configurations of the training dataset. The model is performing
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Figure 4.5: LC GPR model. Left: Mean relative error (MRE) of the average enstrophy
<Ω> for different total number of training samples and different percentage of high-
fidelity (HF) samples. Right: Computational cost of dataset generation for accurate
predictions (< 0.1) using different percentage of HF samples.
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Figure 4.6: MF GPR model. Left: Mean relative error (MRE) of the average enstrophy
<Ω> for different total number of training samples and different percentage of high-
fidelity (HF) samples. Right: Computational cost of dataset generation for accurate
predictions (< 0.1) using different percentage of HF samples.

similarly to the HFLF GPR and LC GPR; however, it needs smaller datasets in order to reach
the desired prediction accuracy. This makes the model computationally cheaper than the others
(Figure 4.6, right) since it requires less than 75 HF samples with a total of less than 300 samples
to reach less than 10% of the MRE. This makes the MF GPR model the most efficient among the
studied multi-fidelity models.

The computational cost of the dataset generation mostly depends on the number of HF
simulations used; thus, it is interesting to see more closely how they influence the models’
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Figure 4.7: Left: Mean relative error (MRE) of the average enstrophy < Ω > for
different number of high-fidelity (HF) training samples using different surrogate
models. Right: Computational cost of dataset generation for accurate predictions
(< 0.1) using different number HF samples with different surrogate models.

accuracy. In Figure 4.7 (left), we plot the MRE(<Ω>) for the studied multi-fidelity surrogate
models using a different number of HF samples in the training dataset. The number of LF
samples is always the same and is equal to 350 (all of the available LF samples). The big blue
point on the left corresponds to the MRE(<Ω>), and its standard deviation obtained using the
LF GPR model, while the red point on the right corresponds to the HF GPR model, respectively.
The standard deviation of other points was omitted for the sake of clarity. The dotted black
line marks the MRE(<Ω>) = 0.1 - maximum acceptable error. All of the studied approaches
show a similar tendency and steadily improve the prediction quality with the increase in the
amount of HF data samples. However, the MF GPR model requires the least amount of HF
samples to reach the required prediction accuracy, while the HFLF model needs considerably
more samples. Figure 4.7 (right) shows the minimal computational cost at which the required
accuracy was reached for the tests on the left. Both MF GPR and LC GPR models successfully
reduce the computational cost of the dataset generation and prove their utility. These models
are aware of the fidelity of each sample and learn from the existing dataset more efficiently.
On the other hand, the HFLF GPR model results in a computational cost higher than the HF
GPR model since it simply mixes all of the available data samples, which results in a higher
computational cost.

Table 4.2 summarises the configurations of training datasets which showed the best trade-
off between computational cost and accuracy for each of the studied surrogate modeling
approaches. These configurations are based on the analysis of Figures 4.4-4.7, where the mean
relative prediction error of the enstrophy was plotted. Table 4.3 summarises the prediction
errors of all of the studied flow parameters, which are obtained using the models from Table 4.2.
The multi-fidelity models have higher accuracy than the single-fidelity model trained only
on HF data and reduced the computational cost compared to the baseline HF model. The
prediction errors are very similar for all of the multi-fidelity models. However, the MF GPR
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Table 4.2: Mean MRE error (see Table 4.3 for details), computational cost and number
of low- and high-fidelity dataset samples of the studied models with the best trade-off
between computational cost and accuracy.

Model
Samples

Comp cost, [Kh] Mean MRE
HF LF total

HF GPR 130 - 130 351 0.060± 0.018
LF GPR - 350 350 100 0.163± 0.043
HFLF GPR 120 40 160 335 0.083± 0.061
LC GPR 75 225 240 285 0.093± 0.050
MF GPR 40 350 380 208 0.080± 0.045

has the lowest dataset generation cost.

4.6 Discussion and conclusions
In this work, we presented a multi-fidelity machine learning surrogate model, combining a
large number of computationally efficient coarse grid LES simulations with a smaller number
of fine grid high-fidelity LES. The model predicts the comfort-related flow parameters in a
benchmark three-dimensional ventilated cavity with a heated floor. The developed surrogate
model provides almost instant accurate predictions using an ordinary office computer and
requires less training computational resources than a similar single-fidelity model. The model’s
input parameters are the temperature and velocity magnitude values at different probe locations
within the cavity domain. The output parameters are the average Nusselt number on the hot
wall, the jet separation point, the average kinetic energy, the average enstrophy, and the average
temperature of the cavity.

The input data of the developed model is structured to take the values of temperature and
velocity in the locations, which could be replaced by sensor readings. This configuration of
input data makes it possible to avoid costly CFD simulations at the model execution stage.
Moreover, the output parameters of the model are directly related to the parameters of the
thermal comfort, such as draft rating index (DR) [47] predicted mean vote (PMV) [28], and
local thermal discomfort [48]. DR can be calculated using average kinetic energy < E >,
average temperature <TV >, and enstrophy <Ω>. The average temperature is also used in
calculations of PMV, while Nusselt number <Nu> and flow separation point xsep influence
the local discomfort. This methodology for single-fidelity modeling was presented in our
previous work [27]. The main purpose of this study is to improve the method by reducing the
dataset generation cost using a multi-fidelity approach.

The main computational burden of the surrogate model is the cost of its development
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Table 4.3: Mean relative prediction error (MRE) of the studied flow parameters for
different models on the test data using training dataset configurations summarized in
Table 4.2.

Model
MRE

<Nu> <E> <Ω> <TV > xsep

HF GPR 0.046± 0.02 0.134± 0.03 0.046± 0.03 0.051± 0.01 0.021± 0.01
LF GPR 0.193± 0.03 0.234± 0.04 0.246± 0.07 0.092± 0.03 0.051± 0.06
HFLF GPR 0.042± 0.06 0.160± 0.09 0.093± 0.05 0.102± 0.09 0.019± 0.02
LC GPR 0.112± 0.06 0.145± 0.08 0.100± 0.05 0.088± 0.06 0.020± 0.04
MF GPR 0.092± 0.04 0.121± 0.07 0.093± 0.05 0.068± 0.04 0.026± 0.02

because, at this step, a comprehensive set of high-fidelity data is required. The training data
was generated using the MareNostrum 4 supercomputer at the Barcelona Supercomputing
Center. We limited ourselves to 750Kh core-hours computational resources; we spent 650Kh on
240 high-fidelity CFD simulations and 100Kh on 350 low-fidelity simulations. In order to create
the dataset, we were changing three physical parameters of the cases - Froude number, Rayleigh
number, and the cavity width aspect ratio. The range in which these parameters were varying
was chosen to represent the realistic indoor environments. Test cases with high Rayleigh
numbers and high width aspect ratios are considerably more computationally expensive than
the others, and we did not compute them with high-fidelity CFD (see Table 4.1 for details). On
the other hand, not only did the low-fidelity simulations completely cover the high-fidelity
range, but we were able to run 110 additional simulations with high Rayleigh number and
high width aspect ratios.

Three different multi-fidelity approaches, namely HFLF GPR, LC GPR, and MF GPR, were
compared against two single-fidelity models - HF GPR and LF GPR. All of the models are
based on Gaussian process regression with Matérn kernel function. All models were validated
on high-fidelity data, and the validation results were averaged over 15 runs. HF GPR is the
model trained only on high-fidelity data; it is the most accurate and computationally expensive
among the studied models. LF GPR is trained only on low-fidelity data; the model is the least
computationally expensive and least accurate; however, it has shown the required accuracy
for predicting average temperature and jet separation point. HF GPR model required 130
training samples to reach the maximum accuracy, while LF GPR has used all of the available
350 low-fidelity samples.

The use of multi-fidelity models allowed us to reduce the computational cost of the dataset
generation considerably. Even a simple HFLF GPR model, which mixes high- and low-fidelity
data without distinguishing between them, appeared less computationally expensive than
the baseline HF GPR model. HFLF GPR model needed 100 high-fidelity samples. More
sophisticated multi-fidelity models like LC GPR and MF GRP required not more than 75
and 40 high-fidelity points, respectively, making them at least 1.5 times cheaper than the HF
GPR model. LC GPR does not perform as well as the MF GPR since it is a simpler linear
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model. It corrects the estimated error between HF and LF data, which does not always
improve the resulting accuracy because the errors are not necessarily proportional to the model
input parameters. The MF GRP, or co-kriging, is a model that uses autocorrelation and cross-
correlations between two variable types to make better predictions. This model has shown
the best trade-off between computational cost and accuracy among studied multi-fidelity
models. It has the potential to significantly reduce the number of costly CFD simulations
needed for training while providing notably higher accuracy than standard reduced-order
models. Nonetheless, a broad study is required on a proper choice of high-fidelity data in
order to further reduce the computational cost and increase the covered range of the operation
conditions.

The developed methodology is applicable to flow configurations with complex physical
phenomena and commonly used indoor space geometrical configurations, like offices or
classrooms. The methodology takes advantage of the detailed information about indoor airflow
provided by accurate CFD simulations, which is usually not accessible by multizone and zonal
reduced-order models. Moreover, in the case of public buildings, for example, offices, the type
of ventilation systems and office geometry does not vary significantly inside one particular
building, which makes the generation of the input data easier. As a result, a comprehensive
dataset could easily be created. Therefore, the developed methodology could be used for
applications where fast and accurate predictions are required, such as ventilation operation
control. Moreover, the use of a multi-fidelity approach significantly reduces the computational
cost of dataset generation, which is usually the most expensive step in surrogate modeling.
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5

Concluding remarks

This thesis presented the methodology for developing multi-fidelity surrogate models for
fast predictions of an indoor environment. This work aimed to fill a gap in building simulation
tools. Indoor environmental applications can be typically divided into three main types:
conceptual design, detailed design, and control. Conceptual design, unlike detailed design,
prioritizes computational cost over accuracy. Both of these applications typically need faster
than real-time simulations in order to test different design decisions in a reasonable time frame;
however, detailed design applications usually have more computational resources available.
On the other hand, control applications not only have minimal computational resources (due
to energy saving reasons) but must be faster than real-time and rely solely on data available
onsite. Generally, indoor airflow in buildings is evaluated either by reduced-order models
(typically multizone or zonal) or CFD. The former can provide very rapid predictions but offer
limited information due to the assumptions required. On the other hand, CFD is a powerful but
computationally expensive tool. As a result, more work is required to develop better models
which reduce the computational cost of the simulations while maintaining their accuracy.

In the first part of the work, we analyzed the feasibility of using CFD simulations for
routine use in building applications. Over the last decades, there have been significant changes
in computer hardware and numerical algorithms, which have the potential to reduce the
computational cost of the simulations and improve their robustness. Moreover, when one
speaks about the high computational cost of CFD, they have in mind a detailed representation
of indoor airflow. This level of detalization is often unnecessary for building applications,
where integral flow parameters play a more critical role. With these two ideas in mind, we
compared the performance of different LES, URANS, and no-model approaches with both
staggered and collocated discretizations on a set of structured Cartesian non-uniform grids.
We considered two representative test cases, namely differentially heated cavity and mixed
convection.

LES and no-model approaches showed considerably higher accuracy than URANS. Even
though URANS simulations were the least computationally expensive, their accuracy was
often insufficient. The no-model approach produces similar to LES results but with a lower
computational cost. Staggered symmetry-preserving discretization considerably improves
the accuracy of coarse and extremely coarse grids. Based on the obtained run-times of the
simulations and the building applications requirements, we conclude that fast, high-fidelity
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CFD simulations on the office computers are neither feasible for the design nor control of
indoor environments. Obtained run-times are too long to make CFD a primary tool for HVAC
applications. We estimated the growth of computational resources in the future to determine
when CFD would be available for routine use on office computers. The optimistic prediction
estimates that CFD would be feasible for conceptual design in 5 years, detailed design in 10-20
years, and 10-25 years for MPC. The pessimistic prediction anticipates at least 15 years for the
conceptual design, 25 years for the detailed design, and 35 years for control.

Based on the conclusion from the first part of our work, which stated infeasibility of
affordable CFD simulation neither now nor in the near future, we developed a multi-fidelity
surrogate model for a fast prediction of comfort-related flow parameters. We used the mixed
convection test case from the first part of the work, which is essencially a ventilated room with a
heated floor. The input parameters of the model are the values of the temperature and velocity
magnitude at different probe locations within the cavity domain. The output parameters are
the average Nusselt number on the hot wall, the jet separation point, the average kinetic energy,
the average enstrophy, and the average temperature of the cavity. These are the same global
integral parameters which were tested in the first part of the work. The developed model
provides almost instant accurate predictions using an ordinary office computer.

In order to develop this model, we first tested different single-fidelity machine-learning
frameworks. The gradient boosting regression outperformed other methods; however, gaussian
process regression showed similar results. For this step, we used seven different probe locations.
Next, in order to imitate the sensor readings, the number of probe locations was reduced to two,
and the probes were placed near the ceiling and sidewalls of the cavity. Then the developed
surrogate model was tested with the data from different combinations of sensor positions to
determine the optimal areas of the sensor placement. Once the optimal position of the sensor
was determined, we applied a multi-fidelity approach in order to reduce dataset generation
cost, which is by far the most computationally expensive step in surrogate modeling.

Three different multi-fidelity approaches were compared against two single-fidelity models
based only on high- and low-fidelity datasets. The high-fidelity model is the most accurate
and computationally expensive among the studied approaches, while low-fidelity is the least
computationally expensive and least accurate. The use of multi-fidelity models allowed us to
reduce the computational cost of the dataset generation considerably. Even a simple model,
which mixes high- and low-fidelity data without distinguishing between them, appeared less
computationally expensive. More sophisticated multi-fidelity models like linear correction and
co-kriging are at least 1.5 cheaper. The co-kriging model has shown the best trade-off between
computational cost and accuracy among studied multi-fidelity models. It has the potential to
significantly reduce the number of costly CFD simulations needed for training while providing
notably higher accuracy than standard reduced-order models.

The developed methodology is applicable to flow configurations with complex physical
phenomena and commonly used indoor space geometrical configurations, like offices or
classrooms. The methodology takes advantage of the detailed information about indoor airflow
provided by accurate CFD simulations, which is usually not accessible by multizone and zonal
reduced-order models. Moreover, in the case of public buildings, for example, offices, the type
of ventilation systems and office geometry does not vary significantly inside one particular
building, which makes the generation of the input data easier. As a result, a comprehensive
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dataset could easily be created. Therefore, the developed methodology could be used for
applications where fast and accurate predictions are required, such as ventilation operation
control.

There are several possible future directions for this work. The most interesting one is to
study the generalization properties of the developed methodology, for example, by combining
displacement and mixing ventilation systems in one surrogate model. Moreover, the model
could be further analyzed in terms of extrapolation capabilities. Another challenging problem
is adapting the existing methodology to a direct prediction of comfort parameters, such as
predicted mean vote. This model would require a more realistic dataset, which could be later
validated in a practical case. Furthermore, the multi-fidelity part of the surrogate model could
be improved by introducing more than two fidelity levels and a more broad study on a proper
choice of high-fidelity data in order to further reduce the computational cost and increase
the covered range of the operation conditions. And the last challenge is to adapt the existing
methodology to optimize indoor airflow conditions to achieve human thermal comfort.
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Appendix A

Results from the direct

numerical simulation of a

turbulent air-filled mixed

convection

This appendix presents the results from the direct numerical simulation of a turbulent
air-filled (Pr = 0.71) mixed convection at RaH = 2.4× 109, Rehin

= 684 and Frhin
= 5.24. These

results were used to validate the accuracy of the CFD simulations used in this thesis. The
available data is shown here only partially; the complete dataset could be downloaded from [1].

-0.001

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.00 0.20 0.40 0.60 0.80 1.00

<
u

>

x

DNS [1]

0.00

0.20

0.40

0.60

0.80

1.00

-0.002 0.000 0.002 0.004 0.006 0.008 0.010

y

<u>

DNS [1]

Figure A.1: Mean horizontal velocity in the median plan (z = 0.15). Left: at the cavity
mid-height (y = 0.50). Right: at the cavity mid-width (x = 0.50).
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We consider a cavity of height H, width W and depth D filled with an incompressible
Newtonian viscous fluid. The geometry of the problem is displayed in Figure 4.1 (right). The
Boussinesq approximation is used to account for the density variations. Thermal radiation is
neglected. The configuration considered here resembles the experimental set-up performed by
Blay et al. [2]. The height aspect ratio of the cavity is Ah = H/W = 1 and the depth aspect ratio
is Ad = D/W = 0.3/1.04. Cold air at Tc = −0.5 enters the cavity through the long thin inlet
at the top of the left wall. The inlet velocity profile in the vertical (y) direction corresponds
to a parabolic Poiseuille flow with a bulk velocity Uin = 1. The inlet slot has an aspect ratio
Ain = hin/H = 0.018/1.04.
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Figure A.2: Mean vertical velocity in the median plan (z = 0.15). Left: at the cavity
mid-height (y = 0.50). Right: at the cavity mid-width (x = 0.50).

The air is discharged through the outlet with an aspect ratio Aout = hout/H = 0.024/1.04
at the bottom of the right wall of the cavity. The bottom wall is maintained at a hot temperature
of Th = 0.5, while the three other sidewalls are kept at the cold temperature of Tc = −0.5.
Periodic boundary conditions are used in the spanwise (z) direction. At the outlet, convective
boundary conditions (∂φ/∂t + Uin∂φ/∂x = 0) are imposed for the velocity and temperature.
No-slip boundary conditions are applied on the walls. The initial velocity field is set to zero
and the initial temperature is set equal to the temperature at the cold wall.

Hereafter, the results are presented in dimensionless form. The reference values used for
non-dimensionalizing are the cavity height H, the time tre f = H/Ure f , the velocity Ure f = Uin
and the temperature difference ∆T. Cartesian structured grid detailed in Table 2.2 was used.
The grid is uniform in the spanwise (z) direction. In the horizontal (x) direction grids it is
refined near the walls using the hyperbolic tangent function given in equation (2.4) with a
concentration factor γx = 1.5. In the vertical (y) direction the grid is uniform in the zones of
inlet (Nin) and outlet (Nout) and refined near the lateral walls in the bulk part (γy = 2). The
time integration period for this simulation is 500 non-dimensional time units.
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Figure A.3: Mean temperature in the median plan (z = 0.15). Left: at the cavity
mid-height (y = 0.50). Right: at the cavity mid-width (x = 0.50).

Figure A.4: Instantaneous (left) and averaged (right) temperature fields in the median
plan (z = 0.15).
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Figure A.5: Instantaneous (left) and averaged (right) horizontal velocity fields in the
median plan (z = 0.15).

Figure A.6: Instantaneous (left) and averaged (right) vertical velocity fields in the
median plan (z = 0.15).
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