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Summary
Being able to teach complex capabilities, such as folding garments, to a bi-manual robot is a
very challenging task, which is often tackled using learning from demonstration datasets. The
few garment folding datasets available nowadays to the robotics research community are either
gathered from human demonstrations or generated through simulation. The former have the
huge problem of perceiving human action and transferring it to the dynamic control of the
robot, while the latter requires coding human motion into the simulator in open loop, resulting
in far-from-realistic movements.

In this thesis, a novel virtual reality (VR) framework is proposed, based on Unity’s 3D platform
and the use of HTC Vive Pro system, ZED mini, and ZED 2i cameras, and Leap motion’s hand-
tracking module.

The framework is capable of detecting and tracking objects, animals, and human bodies in a
3D environment. Moreover, the framework is also capable of simulating very realistic garments
while allowing users to interact with them, in real-time, either through handheld controllers
or the user’s real hands. By doing so, and thanks to the immersive experience, the framework
gets rid of the gap between the human and robot perception-action loop, while simplifying data
capture and resulting in more realistic samples.

Finally, using the developed framework, a novel garmentmanipulation datasetwill be recorded,
containing samples with data and videos of nineteen different types of manipulationwhich aim
to help tasks related to robot learning by demonstration.
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1 Foreword
1.1 Motivation
After the third year of my degree, I was awarded with a UPC-INIREC grant to start a research
project at the Perception and Manipulation (PM) group at Institut de Robòtica i Informàtica
Industrial (IRI), CSIC-UPC.

The research conducted by the PM group focuses on enhancing the perception, learning, and
planning capabilities of robots to achieve higher degrees of autonomy and user-friendliness
during everyday manipulation tasks [24]. The PM’s team main research areas are: Learning by
demonstration, Perception of rigid and non-rigid objects and Planning for perception and manipulation.
Out of this topics, I was mainly interested on the first one.

Learning by demonstration research area devises methods to learn relations between actions and
objects in order to accomplish tasks with different levels of abstraction. For that reason, it is
crucial to track human actions and the way the objects are manipulated (as it will be the human
who is performing the actions the robot will have to learn from, like shown in Figure 1).

Figure 1: Learning from demonstration at IRI [24].

Once the grant period was coming to an end, I was offered the opportunity to continue my
work and to develop my bachelor’s thesis with that institution. With no hesitation, I accepted
the offer and started searching topics of interest that could help me decide what to do my thesis
about. With the help of my mentor, Dr. Sergi Foix Salmerón, and given the resources the PM
team has, we decided that an interesting and useful project was to develop an environment
able to detect objects and people on its surroundings to help easing the task of teaching robots
by demonstration. Not only that, but developing such an environment could also be helpful
for other research areas like the manipulation of non-rigid objects (e.g., tracking the hands of
somebody who is manipulating textiles).

After some research on the topic, we found that with the technology the PM team had, a high-
accuracy hand tracking software was achievable. For that reason, Dr. Foix suggested to redirect
the project and focus on hand tracking, as well as adding the perception and tracking of non-
rigid objects to the software (e.g., a cotton rag). I was excited about that suggestion because not
only were we focusing on one of the main research areas of the PM team, but two.

Keeping these objectives in mind, the PM team offered me a handful of devices to work with.
Some of those were Stereolabs’ industrial Artificial Intelligence (AI) stereo camera, ZED 2i, or
the high-tech Virtual Reality (VR) headset developed by theHTC corporation, theHTC Vive Pro.
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1.2 Previous requirements
As in any other project, there are some previous requirements that one must keep in mind to
develop this thesis. Those requirements can be divided into three groups: hardware, software,
and required knowledge.

The first group of requirements contains the physical components that have been used in the
development of this project. Those devices are listed below:

• HTC Vive Pro headset and accessories
• Camera ZED 2i
• Camera ZED mini
• Leap motion hand-tracking module

A detailed explanation of each of the hardware devices can be found in section 3.8. The software
used is enclosed in Table 1 and will be explained in section 3.9. It contains the main programs,
Software Development Kits (SDK) and Operative System (OS) used.

Table 1: Name and version of the used software

Main Software Used
Name Version
Unity 2020.3.22f1
Windows 10
ZED SDK 3.6.7
SteamVR 1.14.15
Cuda 11.5
Ultraleap Gemini 5.2

The final group, the required knowledge, may be the hardest to determine. As can be expected,
the usage of the different devices and software listed above requires a minimum of experience
with each of them. For that reason, the first part of this project was to work with each of the
components separately to get used to them, as well as to learn their basic programming com-
mands. Besides that, a basic knowledge of Math, Geometry, Spatial-Vision, Robotics, Computer
Science, and Deep Learning is required for this project.
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2 Introduction
2.1 Project’s objectives
The main purpose of this project is to develop a framework capable of capturing high-quality
data in the easiest way possible to upgrade the acquisition of the needed human demonstrations
to perform learning by demonstration in deformable objects manipulation tasks. As broad as
this objective may seem, it can be divided into three main topics:

• Hand Tracking: Being able to recognize the position and rotation of each finger is a key
component to predict and learn from human actions and to understand the way we inter-
act with objects.

• Object and human detection: A basic need to interact with the environment is to know
with what are you trying to interact with. For that reason, the second component of the
framework is the detection and placement of objects and human bones in a 3D environ-
ment.

• Perception and tracking of non-rigid objects: Similarly to object detection, this topic fo-
cuses on the need for robots to interact with their surroundings. Although, the main dif-
ference is that non-rigid objects do not maintain their shape and can be easily deformed.
Out of all of the non-rigid objects, this project focuses on small textiles, such as a cotton
rag.

Once these three objectives are reached, the following task is to make them all work together to
satisfy the main purpose of this project.

Finally, by using the developed framework, this project also aims to create a garment manipu-
lation dataset with the purpose of teaching robots how to fold simple planar clothing, such as
napkins or towels. For a total understanding of the data, each dataset entry should have a video
where the performed manipulation can easily be understood. Also, the data must be collected
and presented logically, to allow different research teams to understand the given data.

2.2 Project’s scope
Besides from reaching the three project objectives stated in section 2.1, to help future students
interested in those topics, this thesis also plans on giving a basic introduction to the hardware
and software used, as well as giving a brief explanation on how to reproduce the work done.

Due to the short duration of this project (three months), this thesis does not intend to use the
final dataset. Therefore, this work will contribute to the AI community by creating a public
garment manipulation dataset as well as a new framework to make new datasets.

Keeping this in mind, the following list summarizes the project’s scope:

• Study of possible ways to implement objective features into the framework

• Development of body detection and tracking Unity scene

• Development of object detection and tracking Unity scene



p. 14 Project report

• Development of hand detection and tracking Unity scene

• Development of garment manipulation Unity scene

• Development of all-in-one framework

• Creation of a tool to record the framework data

• Using the developed framework to create a dataset

Also, the following list summarizes which parts fall outside of the project’s scope:

• Providing an extended tutorial on the hardware and software used

• Using the created dataset for machine learning purposes

2.3 Project’s layout
This thesis will first start by providing a literature review in section 3. This review will present
a theoretical background a reader may find useful to understand the basic concepts behind
this project. Besides that, it can also be useful to understand some of the motivations for the
development of this work. In that same section, an introduction to the hardware and software
that will be used is also given.

Secondly, in section 4, the thesis continues by presenting how each of the features the framework
aims to havewill be implemented. This features are: human pose estimation and tracking, hand
detection and tracking, object detection and tracking, and cloth simulation. That same section
also aims to study each of the individual features, comparing different implementation options
and studying their characteristics. Later on, all the features will be put together to develop the
stated framework.

The third part of this thesis will use a reduced version of the developed framework to create
a garment manipulation dataset. Section 5 also aims to present the data of interest for a gar-
ment manipulation dataset, as well as explaining the experiments that will be performed for
the creation of the dataset.

Finally, the last sections of the thesis will focus on other aspects of the project, like how could
the project be upgraded (section 6), which is the economical budget for the development of a
project of this characteristics (section 7), or how could a project like this affect the environment
(section 8).
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3 State of the art
3.1 Research at IRI
As stated in section 1.1, this project has been developed together with the PM group in IRI’s
research institute, for this reason, much of the work done in this thesis has been influenced by
the projects that are developed in their facilities.

PM’s researches focus on three main topics [24]:

• Learning by demonstration: This area focuses on researching ways to endow robots with the
ability of learning object-action relations from human demonstration.

• Planning for perception and manipulation: In this research line, the main interest is view
planning for object modeling to come up with specific sequences of motion commands
for manipulation of objects, with a special interest in deformable objects.

• Perception of rigid and non-rigid objects: For this area, their main objective is to investigate
computer vision algorithms in order to understand and interpret scenes from images.

The Perception andManipulation Lab hosts a life-scale mock-up of a fully-equipped apartment
(see Figure 2). Inside the apartment, researchers can study the interaction between robots and
users in close-to-reality domestic environments.

Figure 2: Perception and Manipulation Lab’s apartment mock-up. As seen in the figure, the
laboratory has a two room apartment with all the furniture and home appliances expected in a
basic household. [24]

This work has been greatly influenced by some of the projects developed in PM’s lab research
areas, a few of which are: Active learning of manipulation sequences [35], Determining where
to grasp cloth using depth information [42], or the CLOTHILDE project [60]. The PM group
also has participated in the European Robotics League (ERL), a service robot competition [50].
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3.2 Cloth manipulation
Manipulating and interacting with cloth is a key part of daily life and, even if the simplest cloth-
related task (e.g. folding a kitchen rag) may seem easy for humans, fabric manipulation still
remains a challenging task for robots.

This challenge flourishes from the basic nature of cloth: it does not follow the rigid-body as-
sumptions that many algorithms use. While rigid objects can be transformed in only six degrees
of freedom (rotation and translation), cloth can deform in any given direction and, therefore, it
can be perceived as having nearly infinite number of degrees of freedom.

This project will focus on three main aspects of cloth manipulation:

• Simulation: Creation of a virtual model of a piece of fabric in a physics engine.
• Perception: Detection of a real piece of fabric and its significant parts (e.g. edges or grasp-

ing points).
• Grasping: Strategies followed by grasping claws in order to manipulate and interact with

cloth.

3.2.1 Cloth Simulation
When simulating cloth, one of the most common approaches is the mass-spring models. This
method, uses three types of springs to reproduce the internal forces between cloth particles:
shear, bend and structural springs (see Figure 3)

Figure 3: Mass-spring cloth model. The blue nodes correspond to the garment particles and
each spring is represented with one color: Red for structural springs, green for shear springs
and blue for bend springs. [59]

Each of the springs is defined when the simulation initializes [66] and connects two nodes, p1
and p2. Similarly, the node’s velocities are v1 and v2 and the spring’s initial length, L0. For
the following notations, i and j are the row and column indices, respectively. The springs are
connected as shown on the list below:

• Structural: a node can be linked to the nodes that surround it in a vertical or horizontal
direction with a structural spring. Therefore, node [i,j] can be connected to [i+1,j], [i-1,j],
[i,j+1] or [i,j-1] with this kind of springs.

• Shear: a node can be linked to the nodes that surround it in a diagonal direction with a
shear spring. Therefore, node [i,j] can be connected to [i+1,j+1], [i+1,j-1], [i-1,j+1] or
[i-1,j-1] with this kind of springs.

• Bend: a node can be linked to their second neighbours nodes in any direction with a
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bend spring. Therefore, node [i,j] can be connected to [i+2,j+2], [i+2,j], [i+2,j-2], [i,j-2],
[i-2,j-2], [i-2,j], [i-2,j+2] and [i,j+2] with this kind of springs.

In this algorithm, the spring forces are computed using Hooke’s law. Therefore, variable Ks

increases the stiffness of the spring and Kd is the damping coefficient of the spring. The forces
of each node of the springs can be calculated using Equations (1) and (2).

f1 =

[
ks(|p2 − p1| − L0) + kd

(
(v2 − v1)(p2 − p1)

|p2 − p1|

)]
p2 − p1
|p2 − p1|

(1)

f2 = −f1 (2)

The main problemwith the mass-spring approach is that low elasticity levels are not attainable,
therefore, all fabric simulated with this method will have a behaviour closer to latex rather than
cotton.

3.2.2 Cloth Perception
Another approach in order to study garments (besides using simulations) is using sensors to
perceive real cloths. This approach requires some extra processing to be able to perceive the
characteristics and key parts of a garment, some of which can be seen in Figure 4.

Figure 4: Generic visual processes and the outputs they should provide. There are two main
inputs that are normally studied, a raw image (or video frame) and an image of an isolated
cloth (raw image with background removed). Also, some important outputs are the detection
of wrinkles and grasping points, the classification of cloth type and the estimation of state. [25]
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The first thing to do when perceiving clothes is to identify cloth items as such [25]. While for
rigid-bodies just storing objects in memory can be enough to perform object detection, due to
their deformable nature it is not possible for fabrics. For that reason, some other techniques
have to be applied for this type of objects.

Some helpful information can be knowing the texture, color or pattern, but there is one charac-
teristic that is unique of garments, wrinkles (with some exceptions). For this reason, wrinkle
detection is a key feature to master for cloth perception [76, 54].

Once the garment has been correctly detected and isolated, some other artificial intelligence or
machine learning processes will be applied to detect the rest of the key features.

3.2.3 Cloth Grasping
One of the main reasons to perceive or simulate pieces of cloth is to later perform garment
manipulation. This manipulation requires some preprocessing, like knowing which parts of
the garment are grasping points (parts of the piece of fabric graspable by the robot).

Besides form that, it is also important to know the task that will be performed to determinate
the type of gripper to use (see Figure 5), as well as the type of contact desired (explained in
section 3.4).

Figure 5: Classification of grippers used in literature focusing on cloth manipulation. The clas-
sification has been made differentiating by the amount of fingers the gripper has and if the
gripper was designed specifically for fabrics. [7]
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3.3 Garment datasets
In the context of garments, several attempts have been made to create various datasets. Some
of those classify the garments by type [75, 83, 82, 55, 56], studying only static properties (see
Figure 6). Therefore, not useful when trying to understand manipulation processes.

Figure 6: Subset of clothing items of Li Sun dataset. [55]

Others focus on the actions performedby a humanwhenmanipulating garments [47, 67]. Those
works are mainly centred in studying the actions rather than the states of the piece of fabric,
and for that reason, may not be as useful when trying to understand the evolution of garments
between folding sates.

Others use RGB-D (or RGB) images to perceive the distribution of the garment [77, 34, 12, 4, 72,
63, 43, 10]. These approaches have to estimate the occluded parts of the piece of fabric and, for
that reason, might not be as helpful when high precision methods are required.

At the time of the writing, and despite the broad variety of approaches, the authors have no
knowledge of any other studies that provide both the actions developed by a human while
manipulating garments and, at the same time, the tracking of the full evolution of the piece of
fabric from an original state (before manipulation) to an ending state (after manipulation). As
previously stated, this approach aims to fill this void.

3.4 Garment classification
A problem encountered when starting to develop the dataset was defining a proper way to
classify the different cloth states during manipulations. As it is known, garments can have an
infinite number of configurations, and, consequently, an infinite number of possible manipu-
lations can be applied to them. To be able to plan a sequence of actions to take a deformable
object from one state to another one, the state-action representation must be simplified.

For that reason, some researchers have classified the types of manipulation based on both cloth
and grasp type attributes, such as type of contact (single point, linear or planar), the number
of grippers used (single-handed or bi-manual), or its final manipulation state (see Figure 7).
Some examples of these classifications can be found in [7].

For this work, the manipulations have been classified depending on the number of grippers
used (one or two), the type of contact (single-point P, linear L, or planar Π) and the part of the
garment where the contact is made, similar to the classification method showed in [23]. The



p. 20 Project report

applied methodology will be explained in section 5.

Figure 7: Graphical representation of the grasps appearing in literature. The numbers corre-
spond to the times the corresponding grasp has been used in literature. [7]

Despite having chosen this method, due to the full observability properties and the recorded
ground truth information of the data, any other type of garment manipulation classification
could be applied. This has been one of the reasons for developing this framework, providing
the community with a tool to test and compare different classification methods, given that the
value for each classification method could depend on the manipulation task performed.

3.5 Convolutional Neural Networks
Artificial Intelligence has been one of the topics of interest in recent years, therefore witnessing
a monumental growth in the capabilities of machines to make intelligent decisions and mim-
icking human-like behaviour. One of the essential abilities a machine needs to replicate human
intelligence is to view the world as humans do. For that reason, Computer Vision (one of the
main areas of Artificial Intelligence) focuses on that need. The advancements that this field has
had thanks to the implementation of Deep Learning have been possible primarily by using one
particular algorithm, Convolutional Neural Networks.

The origins of Convolutional Neural Networks (CNNs) [16] go back to 1980, when Kunihiko
Fukushima proposed the neocognitron [14], a self-organizing Neural Network model inspired
by the discovery of the ability of animal’s visual cortex for detecting light in receptive fields [22].
Later on, the neocognitron became one of the predecessors of CNN. With that knowledge, a
decade later, LeCun established and improved a new framework of CNN called LeNet-5, which
could classify handwritten digits [31] [32]. In a more recent time, many works have been pro-
posed to improve image classification. Among them, some representative works are GoogleNet
[57], ResNet [18], VGGNet [49], AlexNet [44] and ZFNet [79].
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The basic sequence of a CNN (Figure 8) takes an input image and assigns importance to each of
the image’s aspects in order to differentiate one from the other [45, 39, 2, 73].

Figure 8: CNN sequence to classify handwritten digits [45].

After an initial preprocessing, the image is divided into its different color spaces (such as RGB,
Grayscale, CMYK, and others) obtaining a matrix that represents the pixel’s colors. In a real
scenario, images tend to have a noticeable amount of pixels (for example, 1280x1024). The role
of CNN is to reduce the images for easier processing, keeping the critical features in order to
make good predictions.

In the demonstration in Figure 9, the matrix on the left represents the initial input image (rep-
resented by a 7x7x1 matrix). The blue matrix, called Kernel or Filter, is the element involved
in carrying out the convolution operation in the first part of a Convolutional Layer. For this
example, the selected Kernel is a 3x3x1 matrix. Despite using this Filter, the dimensions of the
matrix can change depending on the initial image.

Figure 9: Convolution process for a 7x7 matrix [61].

Besides the convolution layers, there can also be other layers, like the pooling layer or flattening
layer. Pooling is the process of merging parts of the matrix with the purpose of reducing the
data size. Flattening layers convert the given data into a one-dimensional array for using it as
an inpu for the next layer. With those basic operations, an input image can be converted into an
array and, later on, use the condensed information for more sophisticated purposes.
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The process of CNNs can be used in really diverse fields. Some practical applications are the
detection of traffic signs [84] or lung cancer [41] and medical images pattern recognition [33].

3.6 Skeleton tracking
When trying to track or detect human movements, many different approaches have been pro-
posed. Some of those, include sensors fixed to the human body, like magnetic field trackers [8]
or inertial sensors [19]. Despite the high-accuracy attainable with these settings, those models
lack versatility. For this reason, within human-robot interaction context, other approaches must
be applied. These second type of techniques have to be able to rely only on robot sensors [27].

Using robot vision in order to perform tracking of human body parts has been investigated by
several research groups [1, 11]. Hence, there is a big range of methods such as background
subtraction techniques [5] or skin color segmentation [13]. Other approaches implement the
use of CNNs to track the whole body using edge detection (see Figure 10).

Figure 10: Detection of body parts using edge detection [28]

By implementing machine learning into some approaches, some research groups have devel-
oped algorithms that can detect human body joints and place key points on them, as well as
returning the coordinates of those joints [80]. Not only that, but some frameworks are also
capable of predicting parts of a body that are occluded.

The detection and tracking of human bodies has a lot of diverse practical applications, from
designing autonomous driving vehicles [36] to using it in rehabilitation tools [29].

3.7 Object detection
As skeleton tracking (section 3.6), object detection focuses on using neural networks for detec-
tion, tracking and classification purposes. While the subjects of interest in skeleton tracking, are
humans, object detection approaches are used with all kind of objects, as well as animals and
humans.

The goal of object detection is to detect all instances of objects from known groups (called
classes) present in an image [3].

Each detection is reported with some form of information indicating the pose of the detected
object in the image. Some of the most used pose reporting methods are:
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• Location of the object: The location can either be given in a 2D or 3D format and returns the
coordinates of the detected object on the image.

• Bounding box: This method returns a box inside of which the detected object is placed. The
returned box can be 2D (Figure 11a) or 3D (Figure 11b), among other options.

• Segmentation mask: This method returns all of pixels that form the detected object on the
image (Figure 11c).

(a) 2D bounding box. (b) 3D bounding box. (c) Segmentation mask.

Figure 11: Main reporting methods for object detection (Figures extracted from [52])

More advanced detection methods are focusing on detecting the 6D pose of objects, returning
both position and rotation [26, 46]. For example, PoseCNN [74], 6-PACK [69] and DenseFusion
[70] propose different methods capable of estimating 6D object pose with great accuracy (see
Figure 12).

Figure 12: Overview ofDenseFuion’s 6D pose estimation method. The image shows the process
to obtain a 6D object pose estimation from a raw image using DenseFusion methodology. [70]
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3.8 Hardware
This section’s objective is to present the hardware studied in this work that will later be used
for the development of the garment manipulation framework.

3.8.1 HTC Vive’s Headsets
HTC Vive are a series of virtual reality headsets developed by HTC Corporation in collaboration
withValve Corporation. This devices are famous for offering the possibility of entering an immer-
sive VR world in which the user is able to play several VR, Mixed Reality (MR) or Augmented
Reality (AR) games.

Despite of its main use,HTC headsets are also used by developers in other fields, such as educa-
tion [81]. In this case, the headsets are of special interest for the development ofMR experiences
in which the user can navigate through the real world while getting a virtual representation of
what a robot would see. For example, information regarding the objects on its surroundings
[62].

The HTC Corporation offers different headsets depending on the customers needs. Their main
products areHTC Vive,HTC Vive Pro,HTC Flow andHTC Vive Cosmos. In this project,HTC Vive
(Figure 13a) and HTC Vive Pro (Figure 13b) branches will be studied.

(a) HTC Vive.

(b) HTC Vive Pro.

Figure 13: HTC Vive headsets. [20]

While their main product, HTC Vive, offers a basic VR experience, HTC’s upgraded version,
HTC Vive Pro, has integrated cameras that can be used for motion tracking and space scanning,
easing the development of AR and MR experiences. As it can be seen in Table 2, the HTC Vive
Pro offers a higher resolution while maintaining the same refresh rate and field of view as the
HTC Vive. In this project, HTC Vive Pro will be used for hand tracking (see section 4.2) and to
reproduce robot vision by developing a MR experience.

Besides the headset, the HTC Corporation also offers some accessories that help making a more
immersive experience. The two devices used in this project are the HTC Tracker (Figure 14a)
and the HTC Controller (Figure 14b). The tracker eases the connection between the real and the
virtual world, making it possible to connect virtual objects with their real counterpart (as long
as it has the tracker attached). The controller not only sends its real position to the virtual world
but it can also send some basic information using its integrated buttons.
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Table 2: HTC Vive and HTC Vive Pro comparison

General Specifications HTC Vive HTC Vive Pro
Display OLED OLED
Resolution 1080 x 1200 pixels per eye 1440 x 1600 pixels per eye
Refresh rate 90 Hz 90 Hz
Field of view 110º 110º
Sensors Accelerometer, Gyroscope G-sensor, Gyroscope, Proximity, IPD

More precisely, the HTC Vive’s controller offers a total of three different buttons, one pressure-
sensitive trigger, and a trackpad. Not only that, but it also offers 24 sensors, providing an accu-
rate tracking.

(a) HTC Vive’s tracker.
(b) HTC Vive’s controller.

Figure 14: HTC accessories. [20]

3.8.2 Stereolabs’ ZED cameras
Stereolabs is a provider of depth and motion sensing cameras based on stereo vision. The com-
pany has a total of four different cameras, but can be divided in two main groups. The ZED
branch, containing ZED, ZED 2 and ZED 2i (each of which is an upgraded version of the model
before them) and the ZED mini branch. In this project, ZED 2i (Figure 15a) and ZED mini (Fig-
ure 15b) will be studied.

(a) ZED 2i Camera.

(b) ZED mini camera.

Figure 15: Stereolabs’ ZED cameras. [78]

Stereolabs’ cameras have been used on several applications due to it’s abilities to reproduce hu-
man vision. Some applications are using its sensors for detection of painted surfaces [58] or for
indoor mapping [17].
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In this project, the ZED cameras will be used for human pose estimation (see section 4.1), for
object detection (see section 4.3) and for depth sensing (see section 4.5). Besides form those
features, the ZED camera offers an extended list of spatial perception and AI applications (see
Table 3).

Table 3: ZED applications. [52]

Application Brief description
Camera Streaming The ZED camera can be streamed on IP network
Depth Sensing Estimation of depth andmotion by comparing the displace-

ment of pixels between the left and right images
Positional Tracking Estimation of its position relative to the world around it
Spatial Mapping Creation of a 3D map of the environment
Object Detection Identify objects present in an image
Body Tracking Detection and Tracking of a person’s bones

A brief comparison between the ZED 2i and the ZED mini can be found in Table 4.

Table 4: ZED 2i and ZED mini comparison. [52]

Feature ZED 2i ZED mini
Output resolution 2208x1242 - 662x376 4416x1242 - 1344x376
Frames per second 100 - 15 100 - 15
Accelerometer Yes Yes
Gyroscope Yes Yes
Magnetometer Yes No
Barometer Yes No
Temperature sensors Yes No

3.8.3 Leap Motion

The Leap motion controller (Figure 16) is a hand tracking module developed by Ultraleap that
is able to capture the movements of human hands. The company has two main products, the
Leap motion controller and STRATOS Inspire, an haptic module used to integrate virtual touch.
In this project, the Leap motion controller’s hand tracking ability will be studied and compared
to HTC Vive Pro’s.

Figure 16: Leap motion controller. [30]

Ultraleap’s device has been used for a long list of applications, such as sign language recognition
[9].
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3.9 Unity’s software
Unity is a cross-platform game engine developed by Unity Technologies [65]. Unity’s engine is
mainly used for game development due to its versatile and easygoing interface. Despite that,
it is also used for several engineering applications. For example, developing and managing
enterprise-scale immersive training programs (WEAVR [71]) or 3D data preparation and opti-
mization (Pixyz [40]).

Figure 17: Unity Logo. [65]

In this project, Unitywill be used to build a 3D environment where the information read by the
hardware will be displayed. Besides form that, the game engine will also work as a data reading
and processing tool. With that purpose, the hardware distributors have provided the developer
community with several Unity assets. The assets that have been used to develop this project are
listed in Table 5.

Table 5: Unity assets used.

Asset Usage
ZED Unity Plugin (3.9.2) ZED implementation
Vive SRWorks (3.9.3) Use of HTC Vive Pro’s front cameras
HandSDK for SRWorks (3.9.3) Hand-tracking with HTC Vive Pro
Obi Cloth (3.9.6) Cloth Simulation
Ultraleap Unity Modules (3.9.4) Ultraleap implementation
SteamVR Plugin (3.9.5) Use of VR
ROS# (3.9.7) Unity-ROS Communication

In order to understand how this project has been developed, is crucial to understand some of
the basics of Unity’s game engine. With that objective, the following sections intend to make a
brief introduction to the software and its assets.

3.9.1 Introduction to Unity
The first step for understanding how Unity is used, is to know some of the terminology and
basic components of the engine. Table 6 summarizes Unity’s essential information.

Once a Unity project is created, the first thing that the user sees is the default scene, shown in
Figure 18. That window can be divided into four parts:

• Hierarchy: Located on the top left part of thewindow, the hierarchy shows all of the objects
in the Unity scene. It also offers a visual representation of how are the objects related to
each other, showing which objects are children of other objects.
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Table 6: Unity terminology and basic components.

Name Description
Main camera Camera that will be used on play-mode
Component Part of Unity objects that determinate its functions and

properties. The user can create their own components by
writing C# scripts.

Child object Object which transform is referred to another object’s trans-
form coordinates instead of the original coordinate system.

Parent object Object that has other objects attached to it.
Prefab Prefabricated Unity objects that contain different objects

with attached components. Commonly used to save time.
Asset Unity item created by third parties that, once downloaded,

can be used in Unity’s projects.
Scene Part of the Unity editor where the user works with content,

containing all or part of the game or application.
Project Group of files that contains all of the used assets, scenes,

prefabs, and scripts.
Transform Position and rotation of an object. Unity uses meters for

positions and degrees for rotations, following a left-handed
with y-up coordinate system.

• Current View: The part that covers the center of the screen is called the current view. It
can be changed between two views: The scene view and the game view. The scene view
offers a third-person vision of the objects in the scene, letting the user move, rotate and
scale objects and working as an editor mode. The game view is a representation of what
the user will see when the scene is playing.

• Inspector: The inspector can be found on the top right part of the window and it is used
to edit the properties of objects (For example, position or rotation), as well as for adding
new components to them.

• Project and Console: The last part of the window, located on the bottom part of the screen,
has two main uses. The first one is giving access to Unity’s console, which works like any
other programming console (it receives messages from the executed code, such as errors
or executions). The second use is accessing the project folders, where the user can find all
of the scenes, prefabs, assets, and others that are part of the project.

Finally, once a scene has been set up, by using the play button on top of the screen the user can
run the scene and see how all of the objects and components behave.

Note that this introduction does not intend to give a full tutorial on the usage ofUnity, but only
a brief explanation of the basic concepts.

3.9.2 ZED-Unity Plugin
Stereolabs offers an extended list of integrations for their ZED cameras one of which is the im-
plementation intoUnity. The company also offers some helpful samples in order to get the user
used to working with ZED cameras and Unity [51].

Besides from some useful Unity scenes and scripts, the ZED asset also comes with two essential
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Figure 18: Unity default scene view.

Unity prefabs: The ZED Rig Mono and the ZED Rig Stereo, which implement ZED’s mono and
stereo vision into the scene, substituting the scene’s main camera.

• ZED Rig Mono: This prefab mixes the virtual components rendered by the default Unity
camerawith the real world video captured by theZED. In this case, onlyZED’s left camera
is used. The prefab contains aCameraLeft component and a frame holding the video source
of the left camera.

• ZED Rig Stereo: In this case, the prefab holds both of the ZED’s video sources.

The ZED asset is mainly used by developers to obtain a depth-aware AR experience in Unity,
granting all of the ZED features. Those features can be activated through the ZED Manager, a
script component attached to the Rig prefabs.

Despite Stereolabs user-friendly prefabs, the user can also implement any of the features by writ-
ing their own C# script and then attaching it to a Unity’s empty object.

Although in this project the ZED camera will be mainly used for object detection 4.3 and skele-
ton tracking 4.1, the plugin also offers scripts to implement all of the other ZED functions. For
example, it implements spatial mapping by allowing the creation of a mesh based on the world
surroundings (see Figure 19).

3.9.3 SRWorks and HandSDK
The SRWorks SDK [21] is a tool offered by the HTC Corporation that allows the user access to
VIVE Pro,VIVE Pro Eye andCosmos’ front-facing cameras in order to create experiences that mix
see-through stereo camera with virtual worlds. This software enables developers to perform
depth sensing and 3D perception using the stereo Red-Green-Blue (RGB) sensors. The SDK
grants access to:
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(a) Spatial mapping process. (b) Obtained mesh.

Figure 19: Spatial mapping implementation in PM’s group installations. The obtained mash is
a reproduction of the laboratory.

• Depth
• Spatial Mapping
• Placing virtual objects in the real world (obtaining a MR experience)
• Live interactions with VR objects
• Simple hand interactions
• AI Vision module for semantic segmentation

As seen in Figure 20, the images from the dual-camera undergo the processing of the different
SRWorks modules, after which the output can be rendered through programs such as Unity or
Unreal.

Figure 20: SRWorks workflow. Process followed for rendering information received by SR-
Works. The process is a closed-loop that receives images recorded by Vive’s Head Mounted
Device (HMD) cameras and uses SRWorksmodules to produce the resulting renders. [21]

Besides that software, the HTC Corporation also offers a Hand Tracking SDK, enabling tracking
of hand position and gesture recognition using the HTC front cameras. Combining both of the
SDKs assets on Unity allows the creation of VR and MR experiences where the user can interact
with virtual objects using their hands as well as get a live representation of their tracked hands.

For that purpose,HTC’s teamhas build a really usefulUnity prefab, the SRWork FrameWork. This
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prefab integratesHTC’s front-facing cameras into aUnity objects calledDualCamera, which ren-
ders the images seen by the cameras into a panel, as well as the virtual objects. The SRWork
FrameWork also tracks the position of the headset, allowing the user to walk through an MR
experience. Finally, with the LeftHandRenderer and RightHandRenderer prefabs, the user can ma-
terialize the position of their tracked hands into a live Unity 3D model.

A more detailed explanation of this software can be found in section 4.2.2.

3.9.4 Ultraleap Unity Modules
Ultraleap offers a total of three different assets that integrate the use of the Leap motion intoUnity:

• Core asset
• Hands asset
• Interaction engine asset

By using these three assets the user can render a high-precision hand model into Unity which
nodes follow the real tracked hands. In order to accomplish so, Leap motion’s asset implements
an essential Unity prefab, the Leap Rig.

The Leap Rig’s prefab, similarly to the other software prefabs, adds an easy way to use Stereolabs’
hand tracking software into Unity. The main objects of this prefab are:

• Main Camera: Camera where the Leap software will render the tracked hands.
• Hand Models: Model of the hands that will be rendered. With this object, the user can

easily access the position of the hands (see Figure 21).
• Interaction manager: This object does not come on the default prefab but, when added,

allows the user to handle the interactionswith virtual objects (using the 3D handmodels).

Figure 21: Leap keypoints hand models. Each hand is composed by 24 keypoints, representing
the hands key parts or joints. Other renders that follow the same keypoint pattern can also be
used instead of the one showed in the figure.

Ultraleap’s team offers a guide on how to use their Unity asset [64]. This software will be used
in section 4.2.1, where a more detailed explanation can be found.

3.9.5 SteamVR
The SteamVR asset offers the possibility to use virtual reality headsets in Unity projects. Before
explaining the asset, it is important to remark that in order to use it the SteamVR software has
to be downloaded (the program can be downloaded from the Steam store).
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Once both the asset and the program have been installed, the user will be able to use HTC Vive,
Oculus Rift and Windows Mixed Reality headsets, among others.

Steam’s asset offers a variety of prefabs to ease the usage of virtual reality in Unity, being the
Camera Rig the most important. The prefab is built in three main parts:

• Main Camera: Camera that will follow the position of the headset, therefore, the camera
the images of which have to be sent to the headset’s left and right eyes.

• Controllers: A 3Dmodel of the headset controllers can be rendered into the virtual world,
letting the user know at all time where the controllers are located.

• Play zone: When SteamVR is installed, one part of the calibration process is to set a move
safe zone where the user will be able to movewithout hitting anywall or object. This zone
can be rendered into Unity with the objective of warning the user if they are exiting the
play zone.

3.9.6 Obi Cloth
Obi is a collection of particle-based physics plugins for Unity [68] (see Figure 22). Every Obi
object is made by a set of these particles that can interact with each other, affect, and be affected
by other objects and can be constrained to have a determined behaviour.

Figure 22: Cloth simulatedwith Obi particles placed on top of three-spheres, example provided
on Obi cloth’s documentation. [68]

By the usage of Obi particles, the Virtual Methods Studio has developed a total of four assets to
simulate cloth, fluids, ropes, and soft bodies. The topic of interest for this project is the simula-
tion of fabric, for that reason the asset that will be used is Obi Cloth.

To obtain an Obi simulated cloth, some previous objects that must be created:

• Obi Solver: The most important component for Obi simulation. Responsible for the sim-
ulation of particle physics and enforcing constrains. With this object, the user can set the
simulation conditions and properties.

• Cloth blueprint: Component that takes a Unity mesh as input and generates a set of Obi
particles located on each of the mesh nodes. By editing the blueprint, the user can change
properties of the particles such as the individual particle mass. The blueprint also allows
the creation of mesh particle groups used for setting constrains (for example, attaching
all of a corner’s particles to a Unity object). An example of a cloth blueprint distribution
can be seen in Figure 23.
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• Collision material: Material created to attach to objects with the purpose of interacting
with cloth objects. This material allows the addition of friction, among other properties.

• Obi Cloth: Object that takes a solver, a blueprint and a material as input and creates a
cloth simulated with Obi particles.

Figure 23: Obi’s default Blueprint. The Blueprint has a distribution of 17x17 particles with a
separation of ten centimeters each.

Obi Cloths goes one step further on cloth simulation (rather than the basicUnity physics system)
allowing more constrains per cloth and setting each particle’s restriction separately. For that
reason, this asset was used for cloth simulation, instead of Unity’s basic cloth.

3.9.7 ROS#
The Robot Operating System (ROS) [38] is a set of software used to build robot applications
available for Linux. This software is of special interest on this project because the PM lab uses
it for robot programming. The software uses a network of nodes that can publish and receive
information using messages. ROS offers a set of default messages that allows the user to work
with information such as positions and rotations.

Siemens has developed an asset to implement Unity-ROS interaction, ROS# [48], making it pos-
sible to send and receive ROS messages from Unity. With that objective, the asset adds Unity
scripts that can be divided on three groups:

• ROS-Connector Script: Basic code used to implement the interaction. This script has to be
added to a Unity object to be able to use the other scripts. Finally, the Internet Protocol
(IP) network address of the computer using ROS has to be set.

• Publisher scripts: Used to send information from Unity to ROS.
• Subscriber scripts: Used to receive information from ROS into Unity.

By the use of these scripts (and the creation of new ones), the user can send and receive any
kind of information fromUnity to ROS. Figure 24 shows ROS#’s message handling codemap for
the basic set of messages.

Despite the great benefits of having ROS-Unity interaction, an important thing to keep in mind
is that these softwares do not use the same coordinate system. For that reason, a coordinate
transformation is needed to obtain a perfect implementation. Table 7 and Figure 25 show how
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the two coordinate systems are related (ROS uses a right-handed with z-up coordinate system,
while Unity uses a left-handed with y-up system).

Figure 24: ROS# Message Handling Code Map. The figure shows how the default subscribers’
scripts are connectedwith the default publishers’ scripts to perform a connection betweenUnity
and ROS through the ROS Connector object. [48]

Table 7: ROS-Unity Coordinate directions

Unity ROS
Forward Z X
Right X -Y
Up Y Z
Rotation clockwise counter-clockwise

The ROS software also offers additional downloadable packages in order to add more features
to the framework. One of the most known packages is the tf package [37]. This ROS extension
allows the user to keep track of different coordinate frames over time (see Figure 26), maintain-
ing the relationship between frames in a tree structure. This extension is mainly used to know
the transform between two ROS frames at any given time.
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Figure 25: ROS-Unity Coordinate Systems. Notice how Unity’s X (red full line) has the same
direction but different sense as ROS’s Y (green dashed line), Unity’s Y (green full line) equals
ROS’s Z (blue dashed line), and Unity’s Z (blue full line) equals ROS’s X (red dashed line).
[48]

Figure 26: ROS tf tree example [37]. Notice how in the example, the world frame represents the
main coordinate system, which children are turtle1 and turtle2. Moreover, turtle1 has carrot1
as a child. The example shows how a each object can only have one parent but it can have as
many children as needed.
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4 Framework Development
This section pursues to explain the process followed on the development of the presented frame-
work, explaining the individual features that have been studied in this work. To conclude, in
section 4.5, all features will be put together to create the final framework.

4.1 Human pose estimation implementation
As stated in section 3.8.2, ZED products can be used to estimate human pose. Stereolabs’ body
tracking module focuses on detection and tracking of human bones. Once a bone is detected, it
is represented by two keypoints, one for each end of the bone. With those keypoints, the ZED
SDK is able to represent a skeleton model of a human body as well as sharing some crucial
information, such as the 3D position of each keypoint and the rotation between different bones.

The detection process starts by using a Neural Network (NN) to detect the keypoints. After-
wards, themodule calls depth andpositional tracking of theZEDSDK to get the final estimation.

The ZED SDK supports two body formats: POSE18 and POSE34. POSE18 detects a total of 18
keypoints (see Figure 27a) while POSE34, a more detailed version, builds the bodymodel using
34 keypoints (see Figure 27b).

(a) POSE18 Body Format. (b) POSE34 Body Format.

Figure 27: ZED SDK Body Formats. While POSE18 only has 18 keypoints, POSE34 has 34. For
that reason, POSE34 offers a more precise tracking, having keypoints in some body-parts that
POSE18 doesn’t and allowing a more real human body representation. [52]

To implement this feature into a Unity scene, the only module needed is ZED-Unity Plugin,
explained in section 3.9.2. Once the plugin is ready, the first thing that must be done is to add
one of ZED’s Camera Rig prefabs into the scene. With this step done, the last thing to do is setting
up the body tracking.

In order to do so, a newUnity object has to be created (from now on, this object will be referred
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as Skeleton Tracker Module) and attach the script ZEDSkeletonTrackingViewer to it. On this new
component, change the settings as desired. The script offers the possibility to upload an avatar
to display it instead of the basic keypoint skeleton (see Figure 28).

(a) Default keypoint skeleton. (b) Body tracking using an avatar.

Figure 28: ZED’s body tracking in Unity. As seen in the figure, Unity allows to use an human
body avatar as long as it has either POSE18 or POSE34 keypoints distribution. In no avatar is
needed, Unity uses the default keypoint skeleton (with POSE18 representation).

With this done, the scene is ready to run. As seen in Figure 29, when the scene is running a 3D
model of all the visible bodies is rendered into the view. Besides that feature, by adding a C#
script, it is possible to access some other properties like the coordinates of each tracked joint and
bone, its velocity, orientation, etc.

The ZED body tracking software proves to implement a high accuracy skeleton tracking that
works on crowded environments as well as in scenes where part of a body is occluded (see
lower-left corner on Figure 29).

To conclude, by adding this components into the developed framework, the environmentwould
have access to information that could help a robot predict what action a human is going to do
before it has been done. It will also teach how to properly interact with objects. For example,
what track to followwith an arm or hand to properly approach a piece of cloth in order to grasp
it.
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Figure 29: Body tracking Unity scene. Notice how the figure shows a representation of two
persons interacting. Also, the figure shows how the person on the left is partially occluded but
the framework is still capable of detecting their body. This image has been captured at the PM
installations.
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4.2 Hand tracking implementation
For hand tracking, two different setups have been studied. The first one, uses the HTC Vive Pro
headset, a ZED mini camera and the Leap motion controller (from now on, this setup will be
referred as Leap setup). On the other hand, the second setup only uses the HTC Vive Pro. For
both setups, the Unity engine has been used for the environment development.

4.2.1 Leap motion’s hand tracking
For the Leap setup, the first thing that had to be done was putting the three devices together
(ZEDmini, Leap motion andHTCVive headset). With that purpose, the 3Dmodel of an accessory
for the HTC Vive was designed and printed in the PM Lab at IRI. The accessory lets the user
use all three devices at the same time in a comfortable way (see Figure 30). The blueprint of the
stated accessory can be found in Appendix D.

Figure 30: 3D Printed accessory for HTC Vive Pro

Once the hardware was put together, the next step was to download the necessary Unity mod-
ules for each of the devices, the assets used can be seen in section 3.9. With the assets uploaded,
the only thing left to do was to build the scene.

To start with, the main prefabs had to be imported (Leap Rig and ZED Rig Stereo). Despite both
of the prefabs working perfectly fine when using them alone, when the two imports are put on
the same scene, there are some incompatibility errors to fix.

The main problem is having more than one Main Camera objects: Two on the ZED Rig Stereo
and one on the Leap Rig. Even though Unity does not detect this as a problem, once the scene
is running the HTC headset does not receive the right input video. It is receiving more than one
input per eye, therefore it does not knowwhich input source to display. This error can be solved
by changing the Target Eye property of the cameras as follows:

• Leap Rig ->Main Camera: Set toNone. Only the hand tracking is needed from the Leap Rig.
• ZED Rig Stereo -> Left Eye: Set to Left.
• ZED Rig Stereo -> Right Eye: Set to Right.

Note that this property will only appear if the SteamVR asset is uploaded and activated.
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The second error that appears is related with the ZED camera tracking. In order to properly
track the camera on the HTC virtual space, it is important to deactivate the camera tracking of
the ZED Rig Stereo component, because HTC Vive Pro’s tracking will be used instead.

Finally, as there is a rigid transformation between theZED camera components and the Leap one,
with the default settings the hand 3Dmodels do not display on the real position (see Figure 31a).
For this reason, a new object has to be added to the ZED Rig Stereo component, this object will
work as the offset between the two main prefabs (from now on, that object will be called Leap
Offset).

With the purpose of using the Leap Offset, some adjustments must be done to the Main Camera
object inside of Leap Rig’s prefab. On the advanced options of Leap XR Service Provider compo-
nent, set Device Offset Mode to Transform and, after doing so, set the Device Origin to the Leap
Offset object created earlier.

To finish with the setup, the Leap Offset transform has to be set. For this setup, the transform
that worked the best can be seen on Table 8. Figure 31b shows how the tracked hands are seen
after applying the offset. Despite the model not looking totally centered, when using the vir-
tual reality headset, the final display is more accurate. This happens because Unity renders all
objects on both of ZED’s eyes, but Figure 31b only displays the left eye’s image, while HTC’s
headset shows each image on its corresponding eye.

Table 8: Used Leap Offset transform

Position Rotation
X -0.02 -5
Y 0.01 0
Z 0.13 9

(a) Default tracked hands without offset
(Left eye view).

(b) Tracked hands with applied offset
(Left eye view).

Figure 31: Leap’s tracked hands implementation into Unity. The recorded images correspond
to HTC’s headset left eye’s view and use Leap’s default keypoint distribution. Notice how the
hands location is highly upgraded after applying the offset.

Once the setup was completed, all that was left to do was to show the results. A total of three
performance tests were done, the results of which can be seen in section 4.2.3. In that same
section, a detailed explanation of the tests will be given, as well as a comparison between the
two hand-tracking models.
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4.2.2 HTC Vive Pro’s hand tracking
The second setup studiedwasHTCCorporation’s SRWorks hand tracking SDK (see section 3.9.3).
In order to use that module, aHTC headset with front-facing stereo cameras is needed. For this
project, the HTC Vive Pro headset will be used.

Similarly as for the Leap setup, once the asset had been imported, the first thing that had to be
done was to add the main prefabs to theUnity scene: SRWork FrameWork, LeftHandRenderer and
RightHandRenderer. Even though after doing so, the scene is ready to play, the performance of
the setup does not match the desired outcome. As seen in Figure 32, the view is blurred and the
hand 3D models do not match the real hands.

(a) Vive’s image before adjust-
ment. (Left eye view)

(b) Vive’s hand tracking before adjustment. (Left
eye view)

Figure 32: Vive’s scene before adjustment. See how the images have lowqualitywith a noticeable
blur.

For that reason, there are two adjustments that must be done. Firstly, by moving SRWork Frame-
Work’s RenderingPlanes further away from the Main Camera objects, the camera blur will be
slightly reduced. Secondly, by setting both of the HandRenderer objects as children of the SR-
Work FrameWork prefab and editing their transform values, a more accurate hand tracking will
be obtained. With those two adjustments, the final setup matches the viewed on Figure 33.

(a) Vive’s image before adjust-
ment. (Left eye view)

(b) Vive’s hand tracking after adjustment. (Left
eye view)

Figure 33: Vive’s scene after adjustment.See how the images have a slightly better quality with
a less noticeable blur.

Similarly to what happenedwith Leap’s setup, the images shown in this section correspond only
to the left eye’s view. For that reason, the tracked hands seem less accurate than they really are.
Finally, in section 4.2.3 the results of this setup will be compared to Leap Setup’s results.
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4.2.3 Comparison
The last step for the hand tracking implementation is to study and compare both of the built
setups. In order to do so, the models will be tested in three different scenarios:

• Test 1: See-through hand tracking test. Used to see the offset error between the real and
the virtual model.

• Test 2: Movement and occlusion test. This test consisted of developing some basic tasks
in order to see if the hand tracking failed at any point.

• Test 3: Interaction test. The last test consisted of interacting with a virtual object in order
to see the software’s grasping precision.

Leap setup results

On the first test, Leap’s setup proved a high accuracy hand tracking while having easy access
to the nodes transform, allowing to perform corrections, when needed. Besides from that, the
ZED mini grants a high-definition see-through experience (see Figure 31b).

For the second test, themain objective was to hold aHTC controller and see howwell the depth-
occlusion and hand tracking responded. As seen in Figure 34a, the Leap software proves to work
perfectly fine when tracking a hand that is holding a real object, as long as key parts of the hand
are seen. Moreover, Figure 34b shows how the left hand is still tracked despite being partially
occluded by the right hand. Note that pictures shownon Figure 34 have the offset error explained
on section 4.2.1.

(a) (b)

Figure 34: Leap’s hand tracking software interacting with real objects (a) and occluded parts
(b). Notice how Leap’s hand tracking software performs a good tracking job despite the hands
being partially occluded.

For the final test, Leap’s interaction software was used to grasp virtual objects and see how
well the user was able to interact with them. Leap’s software proved outstanding performance,
allowing the user a fully grasping interaction with virtual objects (see Figure 35).

HTC Vive Pro setup results

After the first test, HTC’s setup main shock was the low image quality, having a constant blur
that could make the user dizzy if the framework was used for long periods of time. Secondly,
even displaying a correct hand tracking, a high tracking accuracy is not easily achievable (see
Figure 33).
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Figure 35: Leap’s interaction engine. By simply grasping the virtual object, the software is able
to understand that the user is trying to manipulate it, creating a interaction between virtual
objects and real human hands.

Once the second test was performed, the HTC depth occlusion software didn’t work properly.
If the objects to be occluded were close to the ones that were occluding them, the results were
quite unpredictable, therefore this software was turned off for this test. Figure 34 shows how
the hand tracking software lacks performance when the hand is partially occluded. Firstly, in
Figure 36a both the index and the middle finger are not tracked properly and are shown to point
upwards (despite part of the middle finer not being occluded). Secondly, in Figure 36b, the
software fuses left hand’s occluded part with the right hand (see tips of index, middle and ring
fingers).

(a) (b)

Figure 36: HTC’s hand tracking software interacting with real objects (a) and occluded parts
(b). Notice how when part of a hand is occluded, the software does a poor job at tracking
the hand. In (a) the software indicates that the index and middle fingers are relaxed, when in
reality, the image shows how the middle finger is folded. In (b), the software misunderstands
the real right hand fingers as the left hand ones, creating an unreal outcome.

HTC’s software failed at the third test, not being able to allow a proper interaction with virtual
objects. Despite of that, there are two remarks to make about this setup. The first one, is that,
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as it only has one device, it is possible to use a wireless setup, easing all the use and making it
more comfortable towear. Secondly,Vive’s hand tracking SDK implements an easyway to detect
hand gestures. The software allows the user to know each finger’s state at all time, generally
having three possible states per fingers: Open, Close and Relax (Thumbs only have the two first
states). With that feature, the user can set up different conditions between fingers in order to
develop gestures (that will work as trigger actions for script development). Figure 37 shows the
different options of conditions that can be added.

(a) Single hand gesture inspector.

(b) Both hands gesture inspector.

Figure 37: Vive’s gesture creation options.

As seen in Figure 37a, to develop a single hand gesture, the user can set the state of each finger
and the distance between key hand parts. Figure 37b has a similar distribution but for both
hands gesture. This type of actions involve the state of all ten fingers, as well as the distance
between key hand parts.

Finally, Figure 38 shows how a pinch gesture is being used in a real application. for this gesture,
middle, ring, and pinky have to be in a not closed state, while the distance between thumb and
index has to be under one centimeter.

Figure 38: Pinch gesture implementation for widget interaction. Notice how the user can inter-
act with the virtual widgets when performing simple hand gestures. In the figure, the user is
moving the horizontal slider by pinching it with the left hand.
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Final comparison and results

After performing the tests for each tracking software, Leap motion proved to have a better per-
formance on the three of them. Therefore, despite HTC’s wireless capabilities or hand gesture
recognition, Leap motion’s hand tracking device came out to be the best option for this work.

4.3 Object detection implementation
The ZED 2i offers a basic module for object detection that is able to detect and classify basic
object classes (e.g. person, vehicle, bag, animal...) as well as giving more detailed information
about which object it is being detected (e.g. for vehicle class, it can differentiate between cars,
trucks, buses, etc.). By using its depth sensing and 3D information, the ZED is able to pro-
vide both 2D and 3D positions of the objects in the scene. Unfortunately, it does not give any
information about the rotation of the object.

In order to perform object detection, the ZED SDK uses neural networks and artificial intelli-
gence to determine which objects are present in both of the camera’s eyes (left and right). Using
data from the depth module, it then computes the 3D position and bounding box for each de-
tected object. Thanks to the positional tracking module from the ZED, the objects can also be
tracked within the environment over time (even if the camera was in motion).

In summary, the ZED SDK performs both object detection and tracking, displaying the posi-
tions, bounding boxes, velocities, and 2D masks of the objects in scene.

To implement this feature into Unity, similarly than with human pose estimation (section 4.1),
the only module required is ZED-Unity Plugin. From that asset, one of ZED’s Camera Rig prefabs
must be added to the scene.

With that done, to implement the object detectionmodule, a newUnity object should be created
(from now on, this object will be referred to as Object Detection Module). The scene will be
ready to play when the ZED 3D Object Visualizer is attached to the Object Detection Module
created in Unity.

TheZEDSDK offers a basic object detectionmodels that focus ondetecting the following objects:

• Persons and persons’ heads
• Vehicles
• Bags
• Animals
• Electronics
• Fruit and Vegetable

Finally, a filter can be set in order to stop object detection for any of the objects listed above.

With the scene running and no filters added, the ZED displays all of the detected objects into
the scene, as shown in Figure 39.

Other detection models

If it is desired, the ZED plugin offers an option to use a custom object detection model. If this
was done, the user could implement object detection using some of the object detection software
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(a) Raw image. (b) Detection of a Bag and banana objects.

Figure 39: ZED’s object detection implementation into Unity. When a object is detected, ZED’s
SDK uses depth information to estimate the distance between the camera and the object. Also,
the software identifies each object with an ID to be able to track them.

explained in section 3.7.

4.4 Cloth simulation implementation
4.4.1 Implementation of a cloth
The last component to be added to the developed framework was Cloth Simulation. With the
purpose of implementing this feature, Unity offers a basic cloth object that simulates a piece
of fabric. Despite that, these objects are primarily meant to be used for the development of
character clothes for video games. For that reason, Unity’s cloth object falls short when trying
to use it to perform some non-rigid object manipulation. The downsides of this object are listed
below:

• Has no option to reduce the object’s elasticity.
• Only able to fix cloth to one virtual object at the same time.
• Cloth can only collide with spheres and capsules.

With those limitations, Unity’s cloth (Figure 40a) can not be used for the desired framework.

Amore advanced cloth simulation software isObi Cloth, aUnity asset explained in section 3.9.6.
This asset does a better job at simulating cloth allowing the user to change some elasticity-related
parameters, add different restrictions per cloth particle and implement collisions with any kind
of Unity collider.

The first step for adding Obi simulated cloth into Unity is to create the cloth’s blueprint, a basic
object that uses aUnitymesh to generate a set ofObi particles located on each of themesh nodes.
In order to create a mesh with the desired parameters, a Unity script was created. This script
generates a triangular mesh following Figure 41a pattern from three given parameters: Number
of nodes on X-axis, Number of nodes on Y-axis, and Space between nodes. The resulting mesh,
using 40, 40 and 0.2 as parameters can be seen in Figure 41b.

Once the mesh has been created and saved into Unity as a new prefab, it has to be attached as
theMesh property for the blueprint object. After having done so, a distribution of Obi particles
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(a) Unity’s basic cloth. (b) Cloth implemented with Obi particles

Figure 40: Comparison of Unity’s and Obi’s cloth. Notice how Obi’s cloth has a more realistic
behaviour in comparison with Unity’s default cloth.

(a) Mesh pattern. (b) Obtained mesh (40x40 particles with a 0.2 sepa-
ration).

Figure 41: Created Unity mesh to use for Obi’s blueprint. The mesh shown in (b) follows the
pattern shown in (a). With this methodology, it will be easier in future studies to separate the
key particles (e.g. corner particles).
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will be generated following the given mesh (see Figure 41b). Inside of the blueprint editor, each
of the particle’s properties can be changed. For this project, there are two things that should be
changed. First, all of the particle’s mass should be set to 10−5. This has to be done in order to
have a balanced mass between the cloth and the objects that will be attached to it. After some
experiments, a proper attached objects - clothmass ratio has proven to be one-fourth. Therefore,
as there is a total of 1600 particles with a mass of 10−5 each of them, all the attached objects’
mass has to add up to 4 ·10−3. As four objects will be attached to the cloth, each of them should
weigh 10−3. The second thing to do is to add Obi particle groups on each of the points that will
be used for grasping the cloth object. This feature can easily be done fromUnity’s inspector (an
example of a particle group can be seen in Figure 42). As stated, for this project, four grasping
points will be conceived (one for each corner). With those two steps completed, the blueprint
is ready to use.

Figure 42: Obi’s particle group example (12 particles group, 3 per corner). The group particles
are coloured in red. The first particle of the group is coloured in yellow (bottom right).

To continue with the implementation of an Obi simulated cloth, the next step is to add the
component that simulates all of the obi particles, as well as enforces the constraints. This job
will be done by an object called Obi Solver. Once added, the solver has two main components:
The Obi Solver itself and the Obi Fixed Updater. This second component will allow the reduction
of the time-step size, which will be explained later on in this project. The Obi Solver has all of
the generic properties that the simulation will be restricted to.

The final step for having a ready-to-play simulation is to add the cloth object. For that pur-
pose, an Obi Cloth object has to be added to the scene. On these new objects, there are some
adjustments to make:

• Adding a Blueprint: One essential input for a Obi simulated cloth is a Blueprint. For this
part of the project, the used Blueprint will be the one designed earlier in this text.

• Collision Material: This object allows the addition of a material that implements friction
to the cloth object. In this scenario, a dynamic friction value of 0.9 will be used.

Despite having a usable cloth, for this project cotton-like behaviour is desired. For this rea-
son, some adjustments to the constrain and simulation properties have to be done. The set-
tings to change are: distance constraints, bend constraints, and simulation sub-steps. No other
constrains will be used, given that the desired simulation intends to reproduce a basic cloth
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behaviour.

The main objective of distance constraints is to link particles together, forcing them to keep a
certain distance. There are three properties linked to this type of constrain:

• Stretching scale: Affects the rest length of each constrain. If the constrain is higher than
one, the initial cloth will expand while if it were set under one, the initial cloth would
shrink. For this project, it will be set to one.

• Stretch compliance: Controls how much the constraints will resist a change in length. As
a stiff cloth is desired, a value of zero will be used.

• Max compression: Percentage of compression allowed before the constraints kick in. In
this case, the property will remain in its default value, zero.

The purpose of bend constraints is to limit the amount of bending allowed by a segment defined
by three particles. This type of constrain has four properties:

• Bend compliance: Similarly to stretch compliance, this controls howmuch constraints will
resist a change in curvature. Therefore, this property will be set to zero.

• Max bending: Sets the amount of bending allowed before the constrain kicks in. After
some experimentation, the ideal value for this project has been set to 0.025.

• Plastic yield: Marks the transition between plastic and elastic deformation. In order to
have only elastic deformation, this value will be kept at zero.

• Plastic creep: Sets the value of deformation that will be absorbed once plastic deformation
has been reached. As plastic deformation will not be reached, the value for this property
is not important and will be set to zero.

The last setting to change is the simulation sub-steps. This property directly affects the accuracy
and convergence speed of the simulation. For this reason, having a higher value will also affect
the elasticity of the final material. Despite that, higher values also can create a simulation that
takes a longer time per subset, therefore notworkingwith comfortable performance. After some
evaluation, a balanced value between cloth stiffness and simulation speed seems to be to have
four sub-steps.

Figure 43 shows the final setting of the Obi Cloth component.

Figure 43: Obi Cloth component settings. Only distance and bend constrains are activated. Self
collisions and friction have been activated.

With the cloth and its environment ready, the next step is to make the cloth interactable, which
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will be developed in the following sections of this project.

4.4.2 Creation of an Unity’s interactable cloth
Having created a basic garment, the next step is to add the possibility of manipulating it. There-
fore, the user has to be able to interact with the virtual cloth similarly as it could be done with
a real one. For that reason, this section is aimed at the creation of a Unity’s interactable cloth, a
garment which the user can interact with.

In order to have an interactable piece of cloth, there are two things to keep in mind: Which cloth
particles will be set for interaction and with what objects will the interaction be allowed.

The first point was easy to answer. The main idea of the final software was to fold in half a
rectangular-shaped cloth, therefore a total of four grasping points are needed, each of them set
on a different corner (as presented in section 4.4.1).To decide the ways the user will be allowed
to interact with the cloth, two options have been conceived: UsingHTC controllers or using the
user’s own hands. The following sections explain how this has been done.

Implementation of grasping points

To determine the graspable points, Obi particle groupswere used. For a first basic scenario, four
groups will be defined and later on, a cube will be attached to each of them. Figure 44 shows
the cube’s distribution.

Figure 44: Obi’s particle group with attached cubes. Each red cube is attached to a different
group. Each group is the union of three particles of the corresponding group.

Note that these cubes can be set to be invisible, achieving a more realistic software.

In order to achieve Figure 44 display, each of the cubesmust have the following components (see
Figure 45a):

• Obi Rigidbody
• Obi Collider
• Rigidbody (Unity’s default)

Besides that, the cloth object has to have four Obi Particle Attachment objects, one for each cube.
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On these components, the group of particles and the object that will be attached together have
to be set (see Figure 45b).

(a) Cubes’ components.

(b) Cloth’s particle attachments.

Figure 45: Essential components for interaction implementation. For a correct behaviour, each
cube must have the components shown in (a). Moreover, the cloth object has to have a cloth
particle attachment (b) for each of the desired grasping points.

Interaction with HTC controllers

Once the grasping points were set, the next thing to do was to implement a way to interact
with these points. The first type of interaction studied was by using HTC’s controllers. The
objective of this method was to use HTC’s integrated buttons to choose between the different
cubes attached to the fabric and, after doing so, be able to override its transform.

In order to do so, the first taken step was to add a virtual sphere object to each of the controller’s
models (see Figure 46).

Figure 46: HTC’s controllers with virtual sphere. The white spheres are the points where the
grasping will be performed. The controller models are only to make it easier for the user to
locate them in the virtual space.

With the newly attached object, the following stepwas to set up a series of codes that implement
the desired functions. In order to do so, Valve’s input reader software was used to detect when
the controller’s triggers were fully pressed. To do so, the code uses the GrabPinch action. This



Dataset Development Framework for Robot Learning by Demonstration p. 53

feature returns a value between zero and one that represents the position of the trigger, being
one the fully pressed trigger state.

After that, two new functions that depended on this new variable were written:

• Pickup: This function is called when the trigger value changes to one. As soon as it is
executed, the function calculates the distance between all of the interactable objects and
the controller’s sphere (only if the two objects are touching each other). Out of the inter-
actable in contact with the sphere, the transform of the closest one is fixed to the sphere,
as long as the trigger is fully pressed.

• Drop: The activation condition for this second function is when the trigger value changes
from one to any other number. This function will detach any object from the controller’s
sphere, if there was one.

With the twomain functions coded, the next thing that had to be donewas to create a new object
class that defined which objects were interactable. Therefore, a new script was created called
Interactable. The objects that were wanted to have this property had to have this script attached,
as well as an Interactable Unity tag.

With this new setup, the framework was already capable of allowing basic cloth manipulation,
as seen in Figure 47.

Figure 47: Cloth manipulation with HTC’s controllers. Notice how the grasping is being per-
formed where the white spheres are located.

As seen in Figure 48, this manipulation can be used to perform basic garment folding.

(a) Folding process. (b) Cloth after first fold. (c) Cloth after second fold.

Figure 48: Process of folding rectangular garment in two halves. Notice how after the second
fold, the cloth achieves a noticeable thickness.

This setup can be upgraded if the final objective of the framework is kept in mind. As stated
in section 2.1, this software will be used to create a dataset for robot learning. The robots that
will have to perform the final task use claws in order to grab the garments. For that reason, a
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Unity prefab was created that simulates the cloth and allows a more realistic manipulation (see
Figure 49).

Figure 49: Model of a robot’s claw attached toHTC’s controllers. The clawwas created with one
fixed cylinder, one fixed box, and one moving box.

This new object reacts to the trigger position, being fully closed when the stated trigger value
takes a value of one and fully openedwhen this value is zero. The claws also have a collider that
can interact with the cloth, allowing more diverse types of manipulation. Despite this being a
primitive model, as seen in Figure 50, it can already be used for garment manipulation. Finally,
the claw can be upgraded with a more realistic version, using a 3D model of the real robot’s
claw.

Figure 50: Cloth manipulation with robot’s claw. Notice how when the manipulation is being
performed, the moving box rotates to close the claw and grasp the cloth.

Interaction with user’s hands

Provided Leap’s precise hand tracking software, another garmentmanipulation distributionwas
studied. For this new type, instead of using controllers to perform the desired actions, the user
is able to use their own hands, providing more versatility.

In order to perform this, the Interactable Object Unity code was used (script from Leap’s asset).
By adding this script to the cubes attached to the garment, the user is able to use their hands
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to grab them. Moreover, they are able to perform basic cloth manipulation, as can be seen in
Figure 51.

Figure 51: Cloth manipulation with Leap tracked hands. Notice how each hand is grabbing one
of the attached cubes by simply pinching them, allowing the user to perform a simple manipu-
lation using their own hands.

Creation of a fully manipulable cloth

After developing the stated codes in the sections above, the question of a fully manipulable
cloth was raised. Having a cloth that can be folded using any of the particles that compose it
would result in a more accurate framework, allowing each individual to fold the fabric using
their preferred grasping points.

Keeping this idea in mind and after some failed first attempts, a final code was developed. This
code allows the user to override the position of any of the cloth’s particles and attach it to the
transform of the virtual sphere seen in Figure 46. In order to do so, the user only has to set
the sphere close to the desired grasping point and press the controller’s trigger. This code can
function with both controllers separately, allowing a two-hand manipulation.

4.4.3 Cloth Perception
Besides cloth simulation, another way of adding clothmanipulation to the frameworkwas stud-
ied. For this section, instead of simulating garments, they will be added to the software by
perceiving them from the real environment.

In order to do so, ZED’s spatial mapping capabilities and ROS# (section 3.9.7) were used. As
it can be seen in Figure 52a, by hanging the ZED 2i camera from the ceiling a zenith view is
obtained. From this position, the camera has a perfect view of the laboratory’s table and the
objects on it. Afterward, if the read information is sent to ROS, some already written codes can
be used to detect the grasping points of the cloth.

The obtained point cloud can be seen in Figure 52.
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(a) Setup for point cloud detection. (b) Zenith virtual view.

Figure 52: Point cloud perceived by ZED in Unity with a zenith view. While on (a) the real
distribution of the objects can be seen, (b) shows the obtained point cloud. The ZED 2i with its
attached controller are circled in red in (a).

4.5 Learning from demonstration environment
At this point of the project, the three main objectives of the thesis have been reached. Despite
of that, with the current environment, there is a total of four developed Unity scenes that im-
plement the following features:

• ZED’s skeleton tracking (section 4.1)

• Leap motion’s hand tracking (section 4.2)

• ZED’s 3D object detection (section 4.3)

• Obi’s cloth simulation (section 4.4)

The objective of this section is to merge these four scenes into one, obtaining a framework that
can do all of the listed features at the same time. In order to do so, there are some incompatibil-
ities and necessities to keep in mind:

• One ZED camera can only do one task at the same time

• ZED’s skeleton tracking virtual world has to be calibrated with HTC’s virtual world

• ZED’s 3D object detection virtual world has to be calibrated with HTC’s virtual world

• Leap motion’s hand tracking has to be able to interact with Obi’s simulated cloth

The first incompatibility forces the framework to use at least two ZED cameras: One for 3D
object detection and the other for skeleton tracking. In this project, ZED mini will be used for
the first task, while ZED 2i for the second one.

In order to solve the secondnecessity,HTC’s trackers and controllerswill come in handy. Thanks
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to their live tracking, Unity is able to know at all times where these objects are located. For that
reason, by attaching one controller or tracker to the ZED 2i camera and later on, making the
necessary calibrations inUnity, both ZED’s 3D object detection andHTC’s virtual world will be
synced. With the help of the PM lab, an accessory was developed that allowed the attachment
of a HTC tracker or controller to the ZED 2i camera (Figure 53), the blueprints of which can be
seen inAppendix C.When the objects have been attached there is a transform between Stereolabs’
andHTC’s devices. This transform can be seen in Table 9 and has to be kept in mind to calibrate
both devices properly into Unity.

Table 9: Transform between ZED 2i and HTC’s device.

Position Rotation
X -0.08 0
Y -0.1 0
Z 0.05 0

Figure 53: Accessory for ZED 2i and HTC controller attachment.

The third necessity can be solved similarly to the second one. Although, as the Leap motion is
mounted inside of the accessory explained in section 4.2.1, the camera can be placed in that
same mount. In such a case, the HTC’s headset could be used for tracking instead of a tracker
or controller.

The last requirement is to be able to interact with Obi’s cloth using the user’s hands. With that
objective, a Unity game-object has to be attached to each of the grasp points of the cloth, as
explained in section 4.4.2.

With those four calibrations the framework is ready to use. Table 10 lists the final hardware used
for this project and Figure 54 shows the final distribution of Unity’s scene.

With the scene set up, althoughUnity starts working as desired and performing all of the stated
tracking and detection, the information is not being used for anything more than rendering 3D
models into the virtual world. In order to make that information useful, ROS# asset will be
implemented into the scene (explained in section 3.9.7).
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Table 10: Final Hardware used.

Device Usage
HTC Vive Pro headset Virtual Reality
ZED 2i Skeleton tracking
ZED mini 3D Object detection
Leap motion Hand tracking
First HTC tracker Tracking of ZED 2i
Second HTC tracker Calibration of real table into

the virtual world

The first thing to do once the asset has been uploaded is to add ROS-Connector script into an
empty object of the scene. Later on, a subscriber or publisher script can be added for each
component the transform of which will be sent or received from ROS. This step presents two
main problems: Some of the objects in the scene have a high number of children (having one
transform for each child) and there are some other objects that will not appear in the scene until
it is already running.

(a) Unity view. (b) Real distribution of objects.

(c) Unity close view.

Figure 54: Final setup used to develop the framework. In (a) and (b) the key components have
been circled. The color code for the circles is: Red - HTC sensors, Yellow - ZED 2i (performing
skeleton tracking), Green - HTC tracker (to track the white table), and Purple - HMD (with
both Leap motion and ZED mini on it).
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For those two reasons, two new codes have been written:

• TF Publisher: This script sends toROS all of the transforms related to aUnity object, main-
taining a parent-child hierarchy. ROS receives the transforms under a tf component, eas-
ing any post-processing necessary.

• TF Subscriber: Has a similar behaviour to TF Publisher, but instead of sending the coor-
dinates of Unity’s objects into ROS in a TF, it works the opposite way. This script receives
all transforms of a ROS TF and creates a new Unity object for each of them while, at the
same time, maintaining the same parent-child hierarchy.

The second code, the Subscriber, can be used to implement an already working detection soft-
ware into Unity. The main reason for the development of this code was to implement ROS
detection software developed by the PM lab into this project. The first code has a similar objec-
tive. By sending the information read byUnity into ROS it allows to access data from anywhere
within the net.

After some first experiments with the software, especially those where pass-through video was
not activated (fully virtual reality), it was decided to add some real-world key points to the
framework. Those key points had the objective of showing the user virtual objects that are
located in the same place as their real-world counterparts. Two types of objects were added:
camera/sensors objects and a main table. The implementation of camera/sensors was easy.
The only thing to do was to add a virtual object placed on all of the cameras transforms (ZED
2i, ZED mini and HTC sensors). For the table, a new Unity prefab was created. This prefab
(see Figure 55) had a recreation of a PM lab’s table with a HTC tracker mounted of top. By
attaching the tracker to the table, a 3D representation of that piece of furniture appears in the
virtual world, allowing the user to rest the controllers on top of the table in a more secure way.
With all that done, the software was ready to use. In order to provide a flexible framework, the
Unity scene was created in the most customizable way possible. For that reason, the user is able
to decide which tracking or simulating features to enable. Figure 56 summarizes the different
characteristics of the developed framework.

Figure 55: View of virtual table prefab. Notice how the prefab has a virtual HTC tracker on it’s
bottom right corner. This virtual tracker has a real counterpart located within the real world,
allowing a precise calibration for the virtual scene.
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Figure 56: Summarizing graph of the developed learning from demonstration framework. The
nodes on the left correspond to the hardware components while the nodes on the right to the
software ones. The boxes on the figure’s orbit represent the framework’s main characteristics.
All the characteristics where the author of this thesis has made a major contribution have been
outlined in red.
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5 Garment Manipulation Dataset
Non-rigid object manipulation has gained a lot of attention during the last decade since it has
proven to be one of the big milestones to reach in the field of robotics in order to come closer
to achieving full human-like capabilities. But the robotic manipulation of deformable objects is
certainly not an easy task. There are two main difficulties that robots must face when manipu-
lating a deformable object. On the one hand, there is the problem of fully estimating its state.
Due to their ability to deform, non-rigid objects can take an infinite amount of configurations
in space. Since fully observability is impossible to have in a real scenario, estimations must be
made. Whereas rigid objects’ pose can be easily estimated once a portion of its body is identified
and located in 3D space, the correct deformable objects’ state is nearly impossible to detect with
just partial observability. On the other hand, there is the problem of gracefully manipulating
a deformable object for fulfilling a task. Among others, factors such as the friction, elasticity
and thickness of the fabrics, the weight, size and shape of the garment, determine, not only the
possible type of grasping, but also which actions can be taken and which ones not.

Probably, due to these difficulties, there are not as many good datasets of deformable objects as
there are of their rigid counterparts (or skeletons). This fact slows down the development of
new artificial intelligence algorithms capable of understanding this type of objects, and there-
fore, creates a knowledge gap that this work pursues to fill. Currently, most of the available
datasets are based on RGB-D images coming from real clothing data [77, 34, 12, 4, 72, 63, 43, 10].
Despite the convenience of having real data, it is very hard to extract the ground truth informa-
tion from garments and humans during a manipulation sequence. Moreover, data tend to have
noise and multiple occlusions, and post-processing is always needed in order to have good es-
timated labeling.

On the other hand, other approaches exploit the use of simulation environments to easily ob-
tain fully observable ground truth data, although they must program the cloth manipulation
behaviours with scripts. Therefore, this type of data lacks human-like demonstrations, losing
the crucial manipulation dexterity contributions that would be provided by having the human
perception into the loop.

Imagine, for instance, the movement followed by a human hand previous to the prehension of
a deformable object. That trajectory will, first, determine whether the grasping point will be
successful or not and, second, which are going to be the next possible actions over that object
in order to fulfill the assigned task. Recall that deformable objects may change their state after
a manipulation and that, depending on that action, that change may be irreversible without
adding extra manipulations.

In order to overcome those challenges, the developed framework will be used. The framework
will only have activated the cloth manipulation and interaction features (see Figure 56). Finally,
as the dataset is aimed to train robots in garment manipulation, the used features will be set
to only on grasping points and HTC controllers, respectively. With those settings applied, the
framework looks as shown in Figure 57b.

This section is aimed to presenting a dataset created by using the framework developed on pre-
vious sections to fill the stated data gap. An article based of this section of the thesis waswritten
and submitted to the 24th International Conference of the Catalan Association for Artificial In-
telligence (CCIA 2022) on May 30th [6]. Later on, on June 26th, the article, named "Garment
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manipulation dataset for robot learning by demonstration through a virtual reality framework", was ac-
cepted by the Programme Committee for long presentation with great feedback.

(a) (b)

Figure 57: Virtual and Real setups used. Themanipulation is done on top of a real table that has
its virtual version inside of the framework. To make sure that both of the objects are located in
the same space (virtual and real worlds) trackers were used HTC for extrinsic calibration. (a)
Real setup showing HTC’s tracker (top left), headset (middle) and controllers (bottom). (b)
Virtual setup showing HTC’s tracker (top left), controllers (bottom) and simulated garment
(center).

5.1 Collected data
This section provides a brief explanation on how the dataset has been collected. Each manipu-
lation is stored in a XML document with threemain fields: Name, Mesh and Frames. The Name
field corresponds to a string representing the name’s experiment that has been performed. The
Mesh field indicates the index of all the vertices that create a mesh element. Finally, the Frames
field stores the evolution of the data at each timestamp.

For this dataset, the elements of interest were all the ones involved in a cloth manipulation task.
In the current experiments, four elements were completely tracked. The first one, the garment
per se. The dataset collects the coordinates of each particle of the fabrics, saving it under the tag
name of vertices, inside of the geometry field within each frame. In order to easily export each
mesh frame, data has been recorded maintaining Ogre’s mesh XML data-structure [53].

Secondly, it was desired to keep track of each of the HTC controllers used for manipulating
the garments. In the case of a bi-manual operation, the tag names for each controller are Con-
trollerRight and ControllerLeft. The stored variables for each controller are its pose components
(position and rotation), a variable telling whether a grasping point is being held and a variable
tracking the state of the trigger. This value was added thinking about future upgrades where
changing the pressure over the surface of the grasped objects could be necessary for carrying
out tasks such as edge tracing.
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Thirdly, it is also important to keep track of the position and rotation of the grasping points.
Besides from that, and similarly to the controllers, a variablewas addedwhich indicateswhether
the right or left controller is holding the object or not. That third object type can be found
under the tag of GraspPoint[i], where i is an integer value between one and the number of total
simulated grasping points.

Finally, the last object added to the dataset is the simulated table. From this object, the position
and rotation are recorded under the name of Table.

All the experiments within the dataset have been conducted by a human using the HTC con-
trollers as grippers. All the stated variables are recorded in XML files at 10Hz. Each experiment
is accompanied by video of each manipulation.

5.2 Experiments to be performed
For a better versatility of the collected data, the conducted experiments have been divided into
states. Each experiment starts in one described state and ends into another, after performing
one of the manipulation types shown in Figure 58. With that methodology, if data of new exper-
iments were required, only the new states would have to be recorded, given that the processes
that follow the same sequence of actions can be reused.

(a) 1 PPc + Πe (b) 1 LLm + Πe (c) 2 PPc+c + Πe (d) 2 PPm+m (e) 2 PPc+m + Πe

Figure 58: Classification of the different types of garment manipulations studied in this work:
(a) One corner double point grasp (PPc) with extrinsic planar contact (Πe), (b) one middle
edge double line grasp (LLm) with (Πe), (c) two corner double point grasp (PPc+c) with (Πe),
(d) twomiddle edge double point grasp (PPm+m), and (e) one corner, one middle edge double
point grasp (PPc+m) with (Πe).

A total of three different garments were used in these experiments, the properties of which can
be seen in Table 11. These garments have been extracted from the household cloth object set
studied in [15].

Table 11: Types of garment used in the experiments.

Name Size [m] Weight [kg]
Small Towel 0.3 x 0.5 0.08
Napkin 0.5 x 0.5 0.05
Tablecloth 0.90 x 1.30 0.188

In order to keep the dataset as brief and as rich as possible, only themost representative garment
manipulations were performed, which are equivalent to all the studied garments. Both single
handed and bi-manual interactions are used over different combinations of point, line and plane
contact types. Figure 59 shows the complete sequence of states that have been studied for the
Napkin case. As shown in the graph, some states can be achieved by performing different types
of manipulation.
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Figure 59: Graph of possible states for the napkin garment classified bymanipulation using [23]
method. The coloured dots indicate the different types of manipulation that can be performed
in order pass from the previous state to the next one.

Whereas the Small Towel garment shares nearly the same state transition diagram, the Tablecloth
garment is far too big for carrying on the examples within the state transition diagram. Despite
that, a special case has been included into the dataset where the Tablecloth garment is hang-
ing from a bar and has to set on the table thanks to a bi-manual manipulation and by taking
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advantage of the dynamics of the fabrics (see Figure 60).

Figure 60: Manipulation of Tablecloth: From initial hanging position (top-left) to set on the
table (bottom-right). The images in-between show frames from the two corner double point
grasp manipulation performed on the Tablecloth garment.

5.3 Dataset results
Once all experiments were performed, a total of 57 dataset entries were obtained (three sam-
ples for each of the nineteen different manipulations shown in Figure 59). The 1.32 GB of data
(799 MB for the manipulation videos and 515 MB for the XML documents) were stored in a
public domain space. 1

In this section, some of the recorded data will be analyzed, with the objective of giving a glance
at how the information can be displayed. For this purpose, the videos of the dataset will be
compared with the obtained cloud points (displayed in MATALB).

Firstly, as seen in Figure 61, the point cloud can also be used to achieve different perspectives,
besides the birds-eye view offered by the video. In Appendix A some other point clouds can be
found for other manipulation types.

Besides that, Figure 62 shows a comparison between the cloud point and the recorded simula-
tion. Here, it can be seen how the videos can become useful. Due to the two-sided coloured
garment, it is easy to understand the cloth configuration from the recorded video, while it could
be more difficult only by looking at the cloud point.

Due to the easygoing developed framework, more dataset entries could be recorded, if needed
(either with new types of garments or with different manipulations).

1The dataset can be found in: http://www.iri.upc.edu/groups/perception/clothingDataset/Data.rar

http://www.iri.upc.edu/groups/perception/clothingDataset/Data.rar


p. 66 Project report

Figure 61: Sequence of point clouds obtained during a PPc +Πe manipulation, with a z-axis
heat map.
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Figure 62: Sequence of point clouds obtained during a PPc +Πe manipulation, with a z-axis
heat map with video frames.
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6 Future Work
Section 4.5 presented a virtual reality framework capable of detecting and tracking both humans
and objects, simulating different types of garments and allowing the performance of different
types of manipulation, one of which used the user’s real hands to interact with the simulated
piece of cloth. Later on, in section 5, some features of the framework were used in order to
develop a reduced but very accurate garment manipulation dataset, containing a total of 57
XML documents with an attached video for each of the dataset entries.

This section will present some possible upgrades that couldn’t have been implemented into
the framework, mainly due to the short duration of this project. The upgrades can be mainly
divided into two groups, the first two, that correspond to the framework itself, and the last one,
that corresponds to the recorded data.

Firstly, if the detection of objects presented on section 4.3 could detect not only the 3D position,
but also the 3D rotation of the objects (achieving 6D object detection), the framework could be
used for teaching robots how to properly grasp rigid objects. This could greatly help in those
scenarios where objects have to be grasped in a particular way, for which the fully understand-
ment of the objects pose (position and rotation) is needed.

Another possible upgrade was the addition of a new grasping method, that combined a more
developed version of the virtual grippers showed in Figure 49 with a real counterpart attached
to theHTC controllers. By adding this feature into the framework, the user would have to follow
a similar trajectory that a robot gripper would have to in order to perform the garment manip-
ulation, therefore the collected data would be more useful for tasks related to robot learning
from demonstration.

This featurewas started to be studied in this project but, due to a lack of time, it was not added in
the final version. Despite that, the few advancementsmade related to this pathwill be explained
in the following paragraphs.

To correctly reproduce the trajectory to be followed by the grippers, it was of high importance to
create an accessory for theHTC controllers (used to perform themanipulations). This accessory
was developed and 3D printed in the PM lab and can be seen in Figure 63 (the blueprints of the
accessory can be seen in Appendix B).

(a) (b)

Figure 63: 3D printed gripper accessory for HTC controllers.

As seen in Figure 63, the accessory has cables coming out of it. This is because the device was
built to keep track of the degree to which it is folded (in grasping scenarios similar to the ones
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shown in Figure 64). Keeping track of the position the accessory is in can help to better under-
stand the trajectory followed by the gripper.

(a) (b)

Figure 64: 3D printed gripper accessory for HTC controllers. Notice how, when pressure is
applied, the external part of the gripper folds in order to properly grasp garments.

A Unity 3D model of the gripper was added to the framework with the objective of creating a
more immersive experience, where the folding degree of the real accessory could be reproduced
into the virtual version.

As stated, one last upgrade has been considered regarding the dataset itself. The collected data
could be upgraded by adding more data entries. There is two different methods of obtaining
new data:

• NewGarment Types: The geometry and size of a garment can highly influence the type of
manipulation that has to be performed. For that reason, adding other types of garments
to the dataset could greatly help those research teams focused on the interaction with
garments. In this project, the possibility of adding a shirt was studied but, due to the
physics engine and hardware’s limitations, the environment did not work with a proper
frame rate to perform accurate manipulations.

• New Manipulation Types: The manipulations shown in this work are only a few of all
the possible manipulations that can be performed on a piece of cloth. By adding new
type of grippers to the framework or the possibility of using more than two grippers (by
having more than one user), a new large amount of manipulations could be performed
that would enrich the collected data. Also, by doing so, other situations where garment
manipulation is needed could be studied.

Finally, one last future work consideration was the creation of other types of datasets that used
the other features of the developed framework, such as object detection or skeleton tracking.
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7 Budget
The total economical expenses for this project will be calculated from the individual costs of
each part. The costs that have been considered are listed below:

• Intellectual cost: This part encloses the salary that the researchers and engineers should
be paid for this project.

• Licenses and software cost: Price of the licenses needed to work with the used software.

• Hardware cost: Total economical expenses of the devices used to carry this project.

• Materials cost: Costs for the everyday items used for this project.

• Energetic cost: Estimated costs for the electricity used for the project.

Starting with the intellectual cost, it is estimated that the average salary for an industrial engi-
neer is 15€ per hour. Thiswork has been performed for a total of fivemonths, averaging 25 hours
of work each week, obtaining a total of 500 worked hours. Therefore, this first cost is estimated
to be 7.500€.

Secondly, there are several software licenses to keep in mind:

• SolidWorks: Used to develop the accessories for the HTC products. The total amount for
one SolidWorks Professional license is 4.400€ per year. Therefore, the cost for this project
averages 1.834€.

• Unity: Used to develop the main framework. Unity has a Personal plan which has no
costs. For this reason, Unity is free for this project. Besides from that, the Obi cloth asset
has a cost of 42€

• Matlab: Used for the post-processing of the collected data. Matlab has a cost of 800€ each
year. Considering that Matlab has only been used in the last months of the project, the
total cost of the software averages 134€.

• Microsoft Office Tools: Both Word and Excel have been used to keep track of some parts
of the project. A Microsoft Office license averages 50€ for five months of usage.

• Windows OS: The operating system used for this project costs 139€.

• Others: There have been other software tools used, such as SDK or other Unity plugins.
Despite that, all of them are either free or are already included in the hardware cost.

The total software expenses average 2.199€. Despite of that, some licenses have a student version
with no associated cost. For that reason, the real software cost is 42€ (only the Obi cloth asset).

Similarly as with the software costs, the hardware can be divided into different parts:

• HTC Vive Pro: The full kit version, which comes with two controllers, two base stations
and the necessary accessories costs 1.199€. For this project, two extra vase stations have
been used with a price of 199€ each.
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• HTC trackers: Two trackers have been used on the development of the project, with a
price of 130€ each.

• ZED 2i: The last model of Stereolabs’ cameras costs 449€.

• ZED mini: The compact version of Stereolabs’ cameras costs 399€.

• Leap motion: The hand tracking device averages 140€.

• Computer: A computer with the characteristics of the one used on this project averages
750€.

• 3D printer: A 3D printer with the characteristics of the one used on this project averages
850€.

The total hardware expenses add up to 4.445€. All the used hardware has been lent by the
Perception and Manipulation lab.

The materials cost for this project averages 15€, containing both the 3D printer filament used as
well as other office supplies.

Finally, the estimated energetic cost for the devices used averages 62€.

Table 12 summarizes the costs of this project.

Table 12: Total costs of the project.

Item Unitary Cost Quantity Cost [€]
Engineer 15 €/h 500 h 7.500

Intellectual cost 7.500
SolidWorks 4.400 €/year 5 months 1.834

Unity Free 5 months 0
Obi cloth 42 € 1 42
Matlab 800 €/year 2 months 134

Microsoft Office Tools 10 €/month 5 months 50
Windows OS 139 € 1 139
Software cost 2.199
HTC Vive Pro 1.199 € 1 1.199
HTC tracker 130 € 2 260

ZED 2i 449 € 1 449
ZED mini 399 € 1 399

Leap motion 140 € 1 140
Computer 750 € 1 750
3D printer 850 € 1 850

Hardware cost 4.445
Materials cost 15
Energetic cost 62
TOTAL COST 14.221
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8 Project’s sustainability
In the development of any kind of project, it is of great importance to keep track of all the impacts
that it can have, as well as trying to reduce them (if negative). This project has impact in mainly
two ways: social impact and environmental impact.

The impact that causes the development of this work to the environment can be considered
small. This is because the project has no need to be built and, therefore, there are almost no
manufacturing or building associated impacts in comparison with those projects that have to
be built in industries. Despite of that, two things have to be considered.

Firstly, there is the impact produced by the usage of the stated hardware. This encloses all the
impact produced by the devices, since they were built (which is not part of this project) until
the end of their use. Therefore, there is the electric impact associatedwith using the devices and
the impact that the hardware can have if it is not correctly recycled at the end of their lifespan.

Secondly, all collected data must be stored in the cloud (in order to grant access to everyone
who is interested) and, for that reason, there is an environmental impact associated with it.
This impact can be heavily reduced if, when the data stops being useful, it is correctly removed
from the cloud.

Also, there is a positive social impact to consider in this work. The provided tool and dataset
can greatly help on the task of teaching robots by demonstration, getting one step closer to
creating household robots capable of helping in the everyday life. If those kind of robots were
to be developed, the life of people with special needs (such as elders or people with reduced
mobility) could be greatly eased.

One last thing to consider is the economical sustainability of the project. The developed software
will be of public domain and, therefore, this project might not be as economically sustainable
as other projects. Nonetheless, this project did not search to have an economic return.
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Conclusions
The results of the work done in the present bachelor’s thesis of the bachelor’s degree in indus-
trial technology engineering have been the development of a virtual reality framework and the
recording of a garment manipulation dataset using the stated framework, both of which of pub-
lic domain. With these results, it can be said that themain objectives presented in this work have
been reached.

After a first evaluation and comparison of hardware options, it was concluded that the best
devices to use for the framework were the HTC Vive Pro headset and accessories, Stereolabs’
ZED cameras, and Leap motion’s hand-tracking module. Moreover, the use of Unity’s engine
with Obi cloth’s physics simulator in a full virtual reality experience was proven to be the best
option for simulating realistic manipulable garments.

Once the framework was developed and after evaluating the Perception andManipulation lab’s
necessities, a decision was made to focus the developed dataset on garment manipulation. The
recorded data has proven to be helpful to understand the distribution followed by a piece of
cloth during manipulations. It is remarkable how the dataset allows a full comprehension of
the state of the garment, while other approaches only allow full understandment of those parts
of the garment that are not occluded.

As a downside of the dataset, the author believes that it could greatly be upgraded by recording
more samples using different garments, creating a richer dataset which could result more useful
for a greater amount of researchers.

Finally, the author recalls that an article based on this thesis was accepted for the 24th Inter-
national Conference of the Catalan Association for Artificial Intelligence (CCIA 2022)2. The
author considered this submission of great importance, as he is aware of the importance of
sharing scientific and technological advancements with other researchers.

2Garment manipulation dataset for robot learning by demonstration through a virtual reality framework [6].
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