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Abstract.- Global industry has suffered deep changes in last years because of the success-
ful development and integration of new technologies. Industry 4.0 has emerged as a new
standard for achieving efficiency and improve processes. Among the technologies used in
Industry 4.0, Internet of Things applied to industry (IIoT) enable real-time, intelligent,
and autonomous access, collection, analysis, communications, and exchange of process,
product and/or service information, within the industrial environment, so as to optimize
overall production value. Because of its importance, in this project, a methodology for
extracting, analyzing and using the data gathered by IIoT devices is proposed in order
to extract meaningful information and to predict industrial key metrics with Artificial
Intelligence. In addition, for the complete validation of the proposed methodology, a prac-
tical implementation of all the mentioned aspects is carried out by developing a study
of the industrial process in the wastewater treatment field using the data collected by an
Industrial Internet of Things infrastructure and modeling key time series metrics, such
as total organic carbon (TOC) and carbon removal performance (CRP) by using Ma-
chine Learning models XGBOOST Regressor, Multi-Layer Perceptron (MLP) Regressor
and Support Vector Regressor (SVR) to implement a dashboard with an operational panel
and a decision-making panel that help anticipate possible deviations in the performance of
the industrial process.

keywords.- Industrial Internet of Things methodology, time series analysis, time series
prediction, time series visualization
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1 Introduction

1.1 Context

Global industrial landscape has changed over the last few years in a radical manner due
to the innovations in technology development. Industry 4.0 has become the solution to
key problems related with performance and efficiency. This new paradigm has deeply
change how industry works and it brings consequences on processes, industry, economy
and markets.

Industry 4.0 brings to the scenario new participants like Cyber-Physical Systems, Inter-
net of Services (IoS), Internet of Things (IoT), Big Data, Analytics, Robotics and Cloud
Manufacturing. Those new technologies allow all the participants to exchange informa-
tion between them, triggering actions, to control each other, to collect large amount of
information and to create an intelligent industrial environment. This new approach will
bring improvement in productivity rates and efficiency among companies that adopt this
new paradigm. Not only IIoT based systems can adopt easily new regulations and tight
the process to the existing ones but they will perform better regarding time-efficiency and
performing rates.

With the introduction of Internet of Things in industry and the exchange of information
between devices, the amount of data collected has become an important aspect for com-
panies. The study and analysis of data collected and exchanged between devices has given
companies the possibility of understand deeply the key factors of the industrial process
and, by using Artificial Intelligence, to predict important metrics for their business.

As Industry 4.0 is becoming the standard, new methodologies have to be applied to create
data-driven systems that allow companies to extract information of industrial process and
to proactively predict industrial key metrics. In this thesis, we present a new methodology
of designing a monitoring and predicting application for industrial key metrics by using
information collected by Industrial Internet of Things and a data-driven model able to
give meaningful information. The mentioned methodology will be proven by creating a
system under the use case of wastewater treatment plant by using the process parameters
collected with Industrial Internet of Things (IIoT) devices, consolidating that information,
creating a data-driven model able to predict the key metrics of the process: total organic
carbon value (TOC) and carbon removal performance (CRP) and presenting its insights
to the final user by creating a visualization application. This use case will cover all the
phases of the methodology proposed and will help to assess its correctness and validity.

1.2 Motivation

This Master Thesis is result of my work in the company IThinkUPC located in Barcelona
under the tutorship of Daniel Méndez Mart́ı. There I have been working on a project
in the Industrial Internet of Things field. By working building an intelligent solution for
a wastewater treatment company, I have found the need of an intelligent tool that help
plant operators to anticipate the values of TOC and CRP to be able to proactively react
to future up-trends in those plant parameters.
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Project origin was the identification of the need for an intelligent solution that exploit
data gathered with Industrial Internet of Thing devices to characterize their industrial of
water treatment process by giving insights about key metrics performance such us value
of organic carbon degradation (TOC) and the carbon removal performance (CRP) and,
then, with use of prediction, to act proactively in order to avoid metric deviations and
ensure the correct behaviour of the plant processes. Monitoring of those metrics is vital
for the correct operation of the plant, based on their values, operators have to modify
process parameters so as to ensure that TOC and CRP are correctly in range regarding
the strict regulations.

The final use case is included in the project to complement the importance of creating a
general methodology that captures all the steps needed to create the mentioned system.
This methodology has to move the use case-driven process to a data-driven one and has
to lead the theoretical development of an intelligent data-driven system with the ability
of monitoring and prediction key industrial metrics by using data collected in the process
with IIoT devices. It has to be completely decoupled from the use case and satisfy general
objectives for all, complying with the theoretical design requirements. Once the objectives
have been achieved, practical case will be designed and developed under the methodology
proposed.

1.3 Objectives and thesis structure

1.3.1 Main objective

Having into account the Industry 4.0 challenges and the problematic stated in the Context
and Motivation sections, the main objective of this project is to formalize the methodology
of how to design and create a monitoring and predicting application for industrial key
metrics by using information gathered by Industrial Internet of Thing devices and to
create a data-driven model able to give meaning information based on that data. In an
ideal scenario, the final objective of the thesis would be to obtain a methodology that
can completely decouple from the practical use case indented to be developed. Because of
completely decoupling is hard to obtain, the system to be implemented has to have some
characteristics such us parameter and data gathering using IIoT devices, the use of an
artificial intelligence model and the visualization of those insights reached by the model.

In order to achieve it, we have to stablish the three core parts of the architecture (in-
frastructure, model and visualization), their importance, their functionalities and their
contribution to the correct performance of the system.

Combined with the statement of the methodology, a real system implementation will
be developed to serve the monitoring and prediction of TOC and CRP signals in the
wastewater treatment field. The real system will be asses the validity and the correctness
of the methodology.

1.3.2 Specific objectives

The first specific objective is to explore the Industrial Internet of Things literature pro-
posed up to today to capture objectives, limitations, advantages and disadvantages of
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using this kind of technology in industrial data gathering and process monitoring.

The second specific objective that we have is to design the complete system architecture,
based on Industrial Internet of Thing devices and to fully exploit the data collected and
exchanged between them. This objective ranges from the location of the IIoT devices
to the consolidation of the data collected by using and extraction, transformation and
loading processes that will store the information in a database, ready to be analysed and,
later, exploited by the machine learning model.

Once we have the data consolidated, the third specific goal is to establish how an arti-
ficial intelligence model has to use the data in order to achieve meaningful insights in
key industrial metric prediction by stating vital steps to obtain validity and correctness.
Those steps have to be as much independent as possible from the use case, having into
account some assumptions that will be written later in this memory. This analysis and
model development will be based in signal analysis and auxiliary signal analysis and it
also includes the complete machine learning workflow composed by the exploratory data
analysis (EDA), model selection, model training, model evaluation and deployment.

In particular, as it was mentioned before, industrial metric forecasting is one of the im-
portant objectives to achieve and it is the main task of the model phase. In order to
achieve this goal, this project will review and use, the models proposed in the up-to-date
literature, including industrial process monitoring by means of neural networks (ANN),
support vector regression (SVR) for industrial process monitoring, time-series XGBOOST
regression, within others.

In terms of the final user experience, the fourth specific goal is to obtain a user-friendly
application in which all the information obtained by the model can be displayed clearly.
This application consumes the information consolidated with the infrastructure, the fore-
casting and the meaningful insights achieved by the model developed.

In order to achieve those goals, the thesis will also review the updated tools for each one
of the phases of the real implementation of the methodology and will present their pros
and cons.

1.3.3 Thesis structure

In section Background and state of art relevant concepts for the development of this
project are going to be covered. Industry 4.0 and Industrial Internet of Things will cover
the Industry 4.0 and the basis of Industrial Internet of Things and a general architecture.
In IIoT and Data Science, works that combine both IIoT and Data Science are going to
be explained including their approaches. Regarding the practical use case, in Wastewater
treatment the specific problematics of this field and the solutions of other authors are
going to be reviewed.

In Theoretical Methodology, the proposed framework for Industry 4.0 and the industrial
field that uses Data Science to achieve important insights about industrial processes is
going to be analysed. In section CRISP-DM Methodology, the IIoT CRISP-DM Method-
ology for data science projects is explained and modified to satisfy the necessities of
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the introduction of the Internet of Things, by including personalized steps such us IoT
architecture design and industrial signal analysis.

Regarding the real use of the methodology, in Practical use of the methodology the know-
how proposed in the theoretical methodology is used to address the wastewater treatment
industrial problem. Trying to extract meaning information about the industrial process
and to achieve a model which is able to predict chaotic key industrial metrics which
define the correct performance of the plant. Theoretical methodology is going to guide
the complete development of the system and will assess if the methodology was well design
for the industrial world.
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2 Background and state of art

In this section, important papers related with the research in the most relevant areas to
the thesis are going to be reviewed.

Firstly, in Industry 4.0 and Industrial Internet of Things. we cover the most important
aspect regarding Industry 4.0 and Industrial Internet of Things. This includes the fun-
damentals, why the industry has evolved towards industry 4.0, why it is important and
which advantages does it bring to the industry field.

Secondly, in IIoT and Data Science. we cover IIoT in combination with Data Science.
Data Science is a very broad topic and there are many fields of study, but we are only
covering the researches related to this thesis. This includes information about the complete
data workflow, from how data gathered by IIoT is extracted, transformed and loaded
into a database to visualization of metrics acquired by an artificial intelligence model,
going through Industrial process monitoring and prediction of key industrial metrics with
artificial intelligence.

Lastly, regarding the practical use case, in Wastewater treatment literature regarding this
topic is reviewed. This encloses the distribution of a wastewater treatment plant and its
main parts, also how and why IIoT devices are used to gather data and monitor the plant’s
parameters, which are the important metrics and signal to be monitored and predicted
and why they are important to the use case.

2.1 Industry 4.0 and Industrial Internet of Things

2.1.1 Industry 4.0

Industry 4.0 was firstly introduced in Germany in 2011 [1], once the idea was evolving,
Germany officially adopted it in 2013 as a German strategic initiative to take a step
forward in the modernization and updating of the industrial network of the country. The
introduction of Industry 4.0 establishes the beginning of the fourth industrial revolution,
which is based in the introduction of technologies such as cyber-physical systems (CPS),
the Internet of Things (IoT), the Internet of Services (IoS) and Cloud Computing. In
Industry 4.0 paradigm, embedded systems, machine-to-machine communication (M2M),
IoT, IoS and CPS technologies are introducing the digital space to the physical one and,
with that, new generation of industrial actors, such us smart factories, are appearing
to deal with the increasing complexity and new challenges faced by the industrial field.
Industry 4.0 is focused on bringing end-to-end digitization and the introduction of smart
and digital industrial ecosystems by creating complete integrated solutions [2].

In Industry 4.0, IoT offers transformational solutions for the operation and functioning
of many existing industrial systems [3]. It has revolutionized the existing manufacturing
systems in production so, it is considered a key participant in the new generation of smart
industry. IoT gives the fundamental concept of integration of all devices that are part of
the industrial process by enabling creation of virtual networks to support the gathering
and exchange of information between all the participants in the network. The introduction
of IoT provides new opportunities for users, manufactures and companies as it changes the
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industry to become smarter, autonomous, more reliable and provide added-value services
and products. It has a great impact in several industries such us automation, industrial
manufacturing, business processes, logistics and transportation. It provides three main ap-
plications: (1) process optimization, (2) optimized resource consumption and (3) creation
of complex autonomous systems.

Internet of Services (IoS) [3] have emerged recently and it brings new opportunities to the
service industry. It provides the capability of building business networks between service
providers and customers based on technology. It has a similar approach to IoT, but, as its
name suggests, it is applied to services instead of physical entities. IoS can be summarized
as a new business model that changes deeply the way that services are provided to the
user by increasing the value of creation gathered from all the participants in the industry
environment, such us the organization, the customers, suppliers and intermediators.

Cloud computing contributes significantly to the realization of the Industry 4.0. It uses
a network of resources by distributing them within the network. It is widely used in
Manufacturing-as-a-Services (MaaS) and it has been gaining attraction in the last few
years.

Cyber-physical systems are the core of the introduction of Industry 4.0 [3]. It has been
one of the most important developments in information and communication technology.
They are systems made of collaborative entities and connected to the physical surround-
ings and their processes and they create an intelligent network and a smart production. In
order to achieve that goal, CPS use data-accessing and data-processing services available
on the Internet. CPS have physical and software elements that are under high coor-
dination standards because they have evolved from embedded systems. Last researches
confirmed that the introduction of CPS has helped factories to create a communication
environment between machines and decentralized control over their systems that lead to
an production optimization. The introduction of CPS in the industry allows vertical and
horizontal integration with information technology systems and the interconnection of the
whole industry workflow, potentially transforming the today factories and industries by
introducing intelligence in the manufacturing process.

Industry 4.0 brings with it a complete set of new technologies and it completely change
the manner of how industrial processes work till now. The digital transformation advance-
ments and the interconnection between all the participants bring new challenges to the
industry, and they change several domains beyond the industry sector, new impacts can
be categorized in 6 areas: (1) Industry, (2) Products and services, (3) Business models
and market, (4) Economy, (5) Work environment and (6) Skills development.

In conclusion, Industry 4.0 brings the potential of transforming the industry by introduc-
ing new technologies such as IoT, IoS, Cloud Computing and CPS. It can be said that
it will change completely the paradigm aborded now in the manufacturing process and it
provides improvements in the production, engineering processes by enhancing the quality
of products and services, bringing new business opportunities and interconnecting all the
participants in the industrial workflow.
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2.1.2 Industrial Internet of Things

It has been mentioned the importance of Internet of Things in the industry sector by
becoming a key participant in the complete transformation of the industry landscape. It
has become so important that new researches have appeared combining both fields, this
new study sector is named Industrial Internet of Things (IIoT). IIoT brings a new vision of
IoT in the industrial sector by introducing smart devices for sensing, gathering, processing
and communicating the real-time processes or events in the industrial systems. W.Z. Khan,
M.H. Rehman et al. [6] define the IIoT as a network of intelligent and highly connected
industrial components that are deployed to achieve high production rate with reduced
operational costs through real-time monitoring, efficient management and controlling of
industrial processes, assets and operational time.

Although IIoT can be considered a subset of IoT, they have differences between them.
IIoT requires higher level of safety, security and reliability in communication without the
distortion of real-time communication in industrial operations due to its critical mission in
industrial environments. It has also a different objective that is the efficient management of
industrial assets such as machines, industrial devices and operations including predictive
maintenance.

Figure 1: A generical schema for IIoT systems in which it can be seen the different parts of the IIoT
structure. [5]

• Infrastructure architectures in IIoT: han, Wazir Zada and Rehman. MH el al. [5]
presented this generic architecture. As we can see in A schema architecture for IIoT
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systems, architecture is divided in 4 layers. IIoT devices and industrial data sources
generate data streams by gathering and communicating information between them
at Layer 1, whereas the edge servers and cloud computing systems complement it at
Layer 2 & 3 by empowering the system. Enterprise operations are presented in Layer
4. This figure presents an overview of how data flows among different layers and the
orchestration of all the participants to achieve resource management in the industrial
networks. However, there are not a full consensus between all the researchers and
there are different interpretations of how an ideal architecture for IIoT system would
be. There are different considerations regarding location awareness, communication
paradigms, computational assignments, execution paradigms, resource management
schemes, safety, security, privacy, addressability, and resilience, within others.

• Communication protocols for IoT: There is no particular communication protocol
in IIoT. As many authors suggest, there are several communication protocols that
vary from each other in topology, latency and hardware-software. To mention some of
them, Meng et al. [18] proposed a ZMQ messaging protocol based on a distributed
topology and high latency by using Matlab and Visual C. Katsikeas et al. [19]
proposed a protocol with MQTT 3.1.1., OASIS, ISO/IEC, TLS, IPsec technologies
with a distributed star topology and giving optimized high latency between other
studies.

• Data management in IIoT: Once again, there are several approaches to achieve this
goal. Some of them are one proposed by Theofanis et al. [20] based on a distributed
Data Management Layer (DML) for storage data in IIoT that interact with the
network layer to help in identifying the network nodes for generating, storing and
requesting the data. Lucas-Estan et al. [21] proposed a software approach based on
a hierarchical and multi-tier architecture for network connectivity and data man-
agement, it enables data distribution and network connectivity through different
available heterogeneous and unlicensed wireless connections, such as 5G, between
others.

The main importance of IIoT is that it allows the establishment of an infrastructure on
which a big set of technologies can be deployed, for instance, IoT, cloud computing, big
data analytics, artificial intelligence, cyber-physical systems, augmented reality, virtual
reality, Humane-to-Machine (H2M), and M2M communication. Those technologies can
fully exploit the new possibilities brought by large amount of data gathered by the IIoT
backbone that can be monetized and it improve the overall performance of the systems
for providing new services.

2.2 IIoT and Data Science

Due to the fact that IIoT devices constantly monitor their environment, they generate
a massive amount of data that can be used by highly sophisticated high performance
computer systems for data analysis or systems that run autonomously with intelligence
whose objective is to minimize the human-interaction, improve efficacy and/or create
meaningful insights about the state of the industrial processes to the final user. Data
scientists have been exploring the creation of big data applications with well-designed

14



data science methods to analyze and model big volumes of structured and unstructured
data.

The main goal of those systems is to extract information that allows identifying trends,
discovering correlations, predicting patters and undertaking complex but effective deci-
sions. Once applied to industry, those systems are able to offer enhanced and deep data
collection from smart machines, real-time system monitoring, increasing efficiency and
productivity.

Sarfraz Nawaz Brohi, Mohsen Marjani et al. [7] IIoT as the telemetry analysis IoT based
that can be used in the industrial field, we have decided to evolve this approach by going
deeply in the theoretical implementation and by stating the procedure to achieve a good
system with the premises introduced in Objectives and thesis structure. As seen in the
state of art, Sarfraz Nawaz Brohi, Mohsen Marjani et al. [7] introduced a methodology
composed by three main parts: (1) plan (2) collect and (3) analytics. Phases of this
approach are described in detail:

• Plan: This phase is related with the acquisition of the project requirements in which
all the project stakeholders must be involved in the planning to ensure that their
requirements are correctly understood and analysed. In addition, all the domain
experts have to be involved in every project cycle to provide domain knowledge and
review the continuous advances of the system as well as the direction of the solutions
to perceive valuable insights and the required information. For the authors, after
this first successful requirements gathering, the data scientist can start modulating
its analysis by using statistical techniques and machine learning. After theses pre-
liminary finding, both technical stakeholders and data scientist can start working
together to select the most suitable methods to use and the selection of local, hybrid
or cloud infrastructure. In this phase, it is very important to analyze the IoT data
sources because telemetry from unknown or unreliable data sources can lead to error
in the analysis phase.

• Collect: This phase starts after the correct ending of the plan phase. The authors
stablish the use of a gateway as the communication mechanism between the IoT hub
and the IoT data sources for controlling the data obtained. This gateway manages
all IoT opened connections and implements semantics for multiple protocols such us
MQTT, CoAP, WebSockets of HTTP, to ensure that the successful communication
is performed. In addition, the gateway can perform SQL-like instructions for filtering
and selecting the incoming data. This gateway publishes all the data that can be
consumed by downstream analytical systems using stream or batch processing.

• Analytics: Data science analysis would be applied over blocks with data generated
within a period of time and that have been extracted by using batch-processing over
the telemetry data. Although this analysis is static, real-time analysis can be done
as the connection and gateways skills allows the analytics system to obtain the data
required in each moment. Each analysis could be useful in different situations, such
as analysis of data from financial services over a week for static analysis and fraud
prevention for real-time analysis. After applying batch or streaming processing, data
need to be cleaned in a pre-process step by removing duplicated samples, removing
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null values and handling outliers, this is done in the cleaning phase. Unlike manual
data cleaning, in IoT environments, automation of data workflows is very desirable
for avoid ad-hoc behaviors. Then, prepared data is analyzed by using exploratory
data analysis methods and used to feed machine learning and statistical models. To
finish, visualization of the insights achieved by the models are displayed to the final
user.

Although the PCA-IoT methodology is a good approach, it is described at high level and
written with few technical details very important for achieving a practical implementation
from a framework. The plan, collect and analytics phases are very general and each of
them can be divided into work packages that are important enough to create subtasks in
themselves. Also, PCA-IoT does not fulfill all the goals stablished in Objectives and thesis
structure as it does not stablish a general methodology for industrial signal analysis and
prediction with IoT by giving importance to industrial signal monitoring. For all those
reasons, a new theoretical methodology is created by using the main ideas stablished
Sarfraz Nawaz Brohi, Mohsen Marjani et al. [7] but evolving the idea until achieving
a completely functional framework that support the creation of a fully capable system
whose objective is the signal monitoring and prediction in IIoT.

Michael Horrell, Larry Reynolds, and Adam McElhinney [23] focus their studies in the
heavy industry, more specifically in farming industry analytics problems in equipment
reliability and predictive maintenance. They proposed and top-down approach for creating
value from industrial IoT data. The first incise in how logics behind industry field model
the KPI’s and industrial metrics to be analyzed. They state that the core of solving a
predictive maintenance problem involves gathering data, conducting analysis, building and
deploying a model, and tracking outcomes and feedback to ensure the model is performing
appropriately.

2.3 Industrial Process Monitoring

Reliability, safety and robustness are critical factors in modern industry and, with new
introductions of technology to achieve Industry 4.0 paradigm, a lot of effort have been done
to integrate process monitoring and industrial metric analysis during the last years. Being
able to predict the future of condition of industrial processes is becoming more and more
important to achieve efficiency, efficacy and reliability in the industrial process outcome. In
order to achieve that goal, industrial process monitoring has become a key participant in
the industry ecosystem of today’s world and researchers have been addressing this problem
in their last studies. Researchers also focus their studies in finding suitable models that
model future behaviors of critical industrial signals.

For Daniel Zurita, Miguel Delgado et al. [10] there are two main challenges to be ad-
dressed: (1) the consideration of suitable procedures to deal with highly non-linear signal
behaviours where the correlation of objective signal with the rest of process information
quickly decreases within a short period of time. (2) The assessment and exploitation of
such auxiliaryy information related with the objective signal, which is required to enhance
the forecasting performance avoiding computational complexity and model overfitting,
being this tradeoff between complexity and overfitting one of the key aspects to have in

16



mind.

The prediction of future signal behavior can be seen as a time series prediction problem.
Although, there is a significative amount of literature in time series analysis, signal pre-
diction has particular challenges and particular methods need to be applied in order to
achieve meaningful results.

For Instance, Su et al. [8] proposed an Adaptative Neuro Fuzzy Inference System (ANFIS)
to predict the evolution of a non-linear time series. To obtain input features, they use a
non-linear input selection model based on Adaptive Selection Method. The ANFIS model
combine the parametric adaptability of neural networks and the generalization capabilities
of fuzzy logics and, therefore, ANFIS forecasting gives a very reliable and robust condition
predictor because it can capture non-linear input reactions accurately. Because of their
characteristics. Although, ANFIS model is widely used in industrial monitoring process
modelling, but it suffers from trapping in a local minimum during the convergence phase.

Alternatively, to or in combination with ANFIS based models, Empirical Model Decompo-
sition (EMD) tries to decompose the objective signal in Intrinsic Model Functions (IMF)
and residuals. Wei [9], proposed a combination of ANFIS based model and EMD. For Wei,
the combination of ANFIS and MDE improves the performance of time series analysis
with high variability. However, the IMF are decomposed and modelled with one individual
model for each signal and it represents a high computational cost, moreover, it can lead
to an intense overfitting.

Daniel Zurite et al. [10] proposed a methodology based on a multimodal approach, in which
the outcome estimation is obtained by the combination of multiple model outcomes that
manage different signals dynamics while preserving generalization outputs. They use EMD
fo signal decomposition of the target signal and an adaptive dynamic packaging procedure
in order to define the number of models to be used. They also use a non-linear mapping
procedure to of the available auxiliary signals in order to reduce the dimensionality of the
ANFIS convergence problem. Finally, the combination of multiple model outputs is the
final forecast.

2.4 Wastewater treatment

With the introduction of IIoT in the wastewater treatment plants, the monitoring of the
correct performance of the industrial process have changed deeply in the last few years.
Quality control techniques of water monitoring analysis are primarily focused on analyt-
ical laboratory tests requiring toxic chemicals, trained personnel and longtime, moreover
they cannot be used to indicate changes in plant parameters as they are done after the
process is finished. The introduction of the analysis and monitoring of key metrics in
wastewater treatment field thanks to the use of data provided by IIoT has been a great
advantage in the operability, because it provides a fast, efficient, eco-friendly manner of
real-time analysis. Also, the ability of predicting the future state of biochemical parame-
ters, give operators the possibility of changing the parameters proactively to increase the
probabilities of a successful process.

Maneesha V Ramesh et al. [12] covered the integration of IoT devices in the WWTP field
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by proposing an IoT based system that can deliver information about the contamination
level and the water quality. They introduced sensors to detect hydrocarbons, chemical and
metal content, together with pH, conductivity, dissolver oxygen and turbidity to monitor
the water quality.

Maged M. Hamed et al. [13] proposed a method based in Artificial Neural Networks
for predicting biochemical oxygen demand (BOD) and suspended solids (SS) with data
obtained in a WWTP in Egypt. They used an exploratory data analysis (EDA) to de-
tect relationships between data and evaluate data dependency. They presented two ANN
models, one for predicting BOD and another one for predicting SS concentrations in the
plant.

Gokhan Civelekoglu et al. [11] proposed six different ANFIS model to assess if those models
were a valid input-output model to predict the treatment performance of aerobic biological
treatment stage of a full-scale industrial WWTP treating sugar industry wastewater. They
implemented three with PCA and three without PCA to estimate the COD, TOC and
TN, representing carbon and nitrogen removal.
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3 Theoretical Methodology

Even though there are a lot of studies in Industrial Internet of Thing and applied Artificial
Intelligence, only few studies have explored the convergence of these two analyses and
literature regarding a dedicated methodology for IIoT key industrial metrics prediction
is scarce. To go one step further, this project proposes a methodology that tackles the
structure, plan and control of the development of a system able to extract meaningful
information and predictions of data collected from Industrial Internet of Thing devices
using data-driven artificial intelligence model for industrial process monitoring.

Although Data Science applied to Industrial Internet of Things face new challenges related
with how IoT extracts data, it can be considered as subset within the data science field
and, because of that reason, an applied methodology needs to be used to solve those
specific challenges and objectives.

3.1 CRISP-DM Methodology

There are several theoretical methodologies for data science but the two main used are
CRISP-DM (Cross Industry Standard Process for Data Mining) and SEMMA (Sample,
Explore, Modify, Model, and Assess). Both specify the tasks to be carried out in each
phase described by the process, assigning specific tasks and defining what is desirable to
obtain after each phase.

Azevedo and Santos [14] compare both implementations and conclude that, even though
a parallelism could be stablished between them, CRISP-DM is more complete because it
takes into account the applications of the results in the business environment, that is why
it has been widely used (during several polls in 2002, 2004, 2007 and 2014, CRIPS-DM
was 4 times more applied than SEMMA).

CRISP-DM methodology consists in six phases: (1) business understanding, (2) data
understanding, (3) data preparation, (4) modelling, (5) evaluation and (6) deployment.
The flow sequence is not rigid and the ability of going forward or backward between
phases is critical to make this methodology flexible. Each phase output determines which
next phase should be performed and the arrows in picture CRISP-DM methodology flow
indicate the most common flow. The external cycle indicated the iterative process of data
science projects. It does not end until the deployment has been done, but new iterations
can appear after a solution has been found. The phases are described in more detail below:
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Figure 2: CRISP-DM methodology flow

• Business understanding, requirements definitions: This is the initial phase of the
methodology and it focuses on the comprehension of the business logics and the
project objectives. Those requirements are converted into a data mining problem
and into a plan to achieve the objectives established.

• Data understanding, study of the data: This phase starts with the collection of
the initial data, identification of problems related with it and the obtainment of
preliminary knowledge to start formulating hypothesis about the hide information.

• Data preparation, exploratory data analysis and feature selection: This phase stab-
lish all the necessary steps to obtain the final dataset, the data used in the modelling
phase. This includes tasks related with data cleaning, data transformation, deep data
understating and feature selection.

• Modelling: In this phase, statistical and machine learning techniques are applied to
the data obtained in the last phase, and parameters selection is performed. Because
of some machine learning models need data to satisfy some specific constraints, it
is very common to go back to the data preparation phase.

• Evaluation: In this phase, we already have some trained machine learning models
that are able to obtain good enough solutions for the problem. Before deployment,
it is very important to asses all the workflow until the obtention of the solution
and to check that the results obtained are aligned with the initial objectives of the
project. After the end of this phase, a decision on the application of the results of
the data analysis process should be obtained.

• Deployment: The obtention of a final method that satisfies the initial requirements is
not the end of the project, the obtained insights have to be organized and processed
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to be presented to the final user. Depending on the initial objectives, the final output
could be as simple as a report or a web application.

Figure 3: Tasks of each CRISP-DM methodology phase

3.2 IIoT CRISP-DM-based methodology

As mentioned before, although this methodology can be applied for IoT analytics sys-
tems, the IIoT analytics segments face very particular problems and a more personalized
CRISP-DM-based methodology is proposed in order to achieve the possibility of stablish a
connection between IIoT and chaotic industrial signal prediction and monitoring. Method-
ology is divided in 5 different phases, related with CRISP-DM methodology by varying
the importance given to some factors: (1) problem definition, (2) IoT infrastructure &
data consolidation, (3) data preparation, signal and auxiliar signal analysis, (4) modelling
& evaluation and (5) visualization and deployment. This new methodology gives more
importance to the IoT infrastructure, as it will define which data is available for analysis
and prediction. Also, as this new methodology is focused on achieving valuable insights of
chaotic industrial metrics, so a new phase appears whose objective is to find the relation-
ships between objective signals and auxiliar signals in an isolate phase. A more detailed
description of each phase of the methodology is given.
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3.2.1 Problem definition

This phase focuses on the understating of the problem in terms of IoT. It is important to
define the objectives of IoT analytics business case and a baseline understanding which
will give a first measurement of the initial situation of the problem provided by the
Key Performance Indicators (KPI’s). This stablished business case will provide the units
to measure the impact of the IoT project in the KPI’s, project timeline and project
management methodology. The baseline and the measurement of the impact of the project
is essential for understanding if the project has reached its initial goals. The definition of
the problem and the measurement of the advance is a key part in this initial phase and
it should be done with all the stakeholders involved in the project. Sometimes, is one of
the hardest tasks to tackle.

Regarding IIoT, a recompilation of all the available IoT devices and data gathered by
them have to be created in order to avoid future data missing

3.2.2 IIoT infrastructure and data consolidation

The second phase of the methodology is related with the IoT infrastructure, data avail-
ability, data reliability and data collection. In IoT context, data sources are more diverse
than in other data science projects and the manner of collecting data can differ between
each of the IoT devices. There are two main tasks to be done in this phase: (1) design
and select the IoT infrastructure and (2) consolidation of data gathered by the IoT in-
frastructure. Those tasks have to be performed iteratively until data able to satisfy the
necessities stablished in the KPI’s are consolidated.

3.2.2.1 IoT Infrastructure

In order to define an IoT architecture, scalability, interoperability, data storage reliability
and quality of service (QoS) have to be taken into consideration. There has been a lot of
researches in this area trying to attempt to define a universal architecture for IoT. The
design of a IoT architecture is driven by six factors:

• Scalability

• Usability

• Connectivity management

• Connectivity management

• Data aggregation and management

• Integrations

Although there are discrepancies, the most used IoT architecture is divided into three
layers: (1) perception layer, (2) network layer and (3) application layer [4]. The main idea
of this architecture is that the perception layer is the bottom layer of the architecture and
it extracts the environment information and transforms it into digital signals, networks
layer is responsible of transport the information from the IoT devices through the network
and the application layer transfers those digital signals to different contexts.
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Figure 4: Layers of IoT architecture [4]

• Perception Layer: This is the initial layer of the IoT architecture, the perception layer
is responsible of measure the environment variables that are objective of study, for
instance humidity, temperature, pH, concentration of suspended solids. . . Wireless
Sensors Networks (WSN) collects information and process it to get valid data. In this
layer there is also a wireless or wired networks that connects the IoT devices using
ZigBee, Wi-Fi and many other shot-range communication protocols. As IoT network
can become huge, it is very important to identify each sensor with and address
that facilitates the communication within the network. RFID, NFC, Bluetooth and
6LoWPAN are used as identification technologies and they facilitate the integration
of devices in the network without any extra hassel.

• Network Layer: This is the core part of the architecture; it is responsible of create a
secure data transmission environment to send data from the perception layer to the
application layer. It has the ability to send information from the sources to different
applications and servers. Due to the fact that this layer is the convergence between
communication networks and Internet, this layer is the most developed layer in the
IoT architecture, combining different communication protocols and technologies.
Data filtering and data first processing take place in this layer. As every device has
a unique address, the routing ability ease the integration of numerous devices giving
the environment the IoT notion. In this layer, medium-large range communication
is the standard, so technologies such as Wi-FI, Bluetooth, xDSL, and PLC have
contributed a lot to this phenomen. Also, 6LoPWAN have been used to manage
IPv6 traffic.

• Application Layer: This is the top layer of the architecture, which serve as a bridge
between application and users. This layer is the combination of IoT power with
industry expertise to reach and intelligent and sensitive system. For instance, the
prediction of plant performance based on industrial process parameters, health mon-
itoring using devices used by the users daily or applications that avoid user capacity
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on crowded scenarios using cameras. The application layer manages the IoT appli-
cations by using standards such us CoAP that runs over UDP protocol, HTML5
websocket.

As mentioned before, the 3-layer architecture is not the only solution to this problem, there
are propositions of 4-layer architectures, 5-layer architecture and 6-layer architecture.

The 6-layer architecture introduce three more layers: (1) coding layer, (2) middleware
layer and (3) business layer. Because of the importance given to the unique identification
of IoT devices, coding layer appear as the layer which manages that identification. The
processing of the information gathered by the sensor is processed in the middleware layer,
that uses technologies as Cloud Computing and Ubiquous computing to ensure the access
to the database. The top layer becomes the business layer that is in charge of managing
the whole IoT application environment.

IoT infrastructure provides the systems with the information needed for the development
of the intelligent system. Given the problem definition and requisites specification ob-
tained in the Problem definition phase, the IoT architecture stablish which IoT devices
are collecting environment measurements that are important for the system goal achieve-
ment. For this reason, IoT architecture and data consolidation are very related and are
considered in the same phase. Iteration over the design of the IoT architecture and data
consolidation validation is common and should be done in order to assess that all the
information needed for the successful deployment of the system is achieved.

3.2.2.2 Data consolidation

Data consolidation tries to extract the information gathered by the IIoT devices and to
consolidate it in the storage system. There are two types of data processing systems that
will help running two different system functionalities, while On-Line Transactional Pro-
cessing (OLTP) systems are purely operational, On-Line Analytical Processing (OLAP)
systems uses data to gain valuable insights (not predictions).

Going deeply into OLTP systems, they enable real-time execution of large database trans-
actions, as mentioned before, they are purely transactional. They usually run over a trans-
actional database that is in charge of store data and its changes. They usually support
all the data transactions and feed periodically the OLAP systems via extraction, trans-
formation and loading (ETL) processes. Their purposes are:

• They provide support for low-cost transactions such us insertions, deletions and
updates.

• They can offer multi-user access without risking data integrity.

• They offer very rapid processing.

• They have methods of providing rapid searching, retrieval and querying.

• They need to be available all the time, backups are critic.

Otherwise, OLAP systems provide multi-dimensional analysis with high-speed at large
volumes of data, OLAP systems perform their operations over a data warehouse, data
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mart or other data store. There are excellent systems for analytical purposes, data mining,
business intelligence and reporting.

OLAP databases are based on OLAP cubes, which allows rapid querying, reporting and
data analysis. Those OLAP cubes are made of data dimensions, usually business pa-
rameters, that acts like an index identifying values within a multidimensional array and
provide a very concise manner of organizing data for exploration and retrieval. The OLAP
cube also extends the table format of a OLTP database, different operations such as drill-
down, roll up, dice, slice and pivot are used to traverse over the cube to gain valuable
information.

Figure 5: OLAP cube
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3.2.2.3 IoT Infrastructure and Data Consolidation Diagram

Figure 6: IoT Infrastructure

3.2.3 Data preparation, signal and auxiliar signal analysis

This data preparation phase is very similar to the data preparation phase of CRISP-
DM methodology. Exploratory data analysis (EDA) should be performed, together with
feature selection. However, with the IIoT introduction, the convergence between data
preparation and IIoT infrastructure is higher and the iteration between these two phases
is high.

Although data understanding is commonly done before the data preparation phase, in
this particular case, with the introduction of the chaotic industrial metrics monitoring
and prediction objective, this phase is vital for the satisfaction of the goals. In this phase,
it takes place the analysis of the industrial environment regarding the parameters that
model the industrial process.

In industrial environments combined with IoT, the number of signals and industrial met-
rics gathered is large and, therefore, the establishment of a multivariate analysis is crucial
to achieve good results. Signal and auxiliar signal analysis can be defined as a multivari-
ate time-series analysis problem in which multiple time-series data (signals and auxiliar
signals) contribute to the output of the objective signal. Not only does the past records of
the signal itself modulates the outcome, but the nature of other auxiliar signals influences.
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3.2.3.1 Signal analysis and chaotical time-series analysis

Once we have defined the problem as a multivariate time-series, another critical aspect is
the sampling frequency of the time entries. Sampling frequency is one important aspect
to take into account in IIoT infrastructure and data consolidation because it can lead to
inconsistencies of time stamp misleading between data and this is a problem that need
to be avoided in previous steps. Sometimes, the nature of the signal and the industrial
environment will tell which frequency does it need to be sampled, but a homogenization
has to be performed in data preparation step if time-series frequency misleading is found.

Another important aspect regarding time-series signals is if it is stationary or non-stationary.
Stationary time-series data is the one whose properties does not depend on the time at
which the data is observed, therefore, data with trends or cycles are non-stationary. When
performing statistical time-series modelling, stationary data is more likely to show better
results than non-stationary data due to the fact that summary statistic do not change
over time and assume they will not change at the prediction series values. Seasonality
can be another factor that make time-series data non-stationary, it means that there are
alterations in the signal values that occur at a specific regular time intervals. In order to
check seasonality, autocorrelation is used to check the correlation with the data with a
lagged version of it as a function. The autocorrelation function (ACF) calculates values
for a range of lags, and the correlation amount those lags defines the seasonality. Also,
non-linear autocorrelation can be checked with other tests such us Durbin-Watson test.
Industrial metrics signals seem to be chaotic and to present non-linear relationships with
other signals, but it depends on the nature of the industrial process.

Although the IoT infrastructure has to be reliable and avoid the bad operation of the IoT
sensors, there is the possibility of having missing data because a temporal malfunction
of the system. In order to solve missing data related problems, a time subset can be
chosen but it could result in losing the intrinsic nature of the signal and to not be able
to model it correctly. The are some methods to interpolate the values of the time-series
such us mean interpolation, median interpolation, mode interpolation, linear interpolation
or Spline interpolation, Last Observation Carried Forward (LOCF) or Next Observation
Carried Backward (NOCB).

3.2.3.2 Auxiliar Signal Analysis

As mentioned before, multivariate time-series analysis lies on the possible correlation
between two or more signals, that is why another multivariate correlation methods should
be perform to check causality within variables.

The cross-correlation is the correlation between main signal and lagged versions of auxiliar
variables, but it is not very suitable for testing causality because it can lead to problems
related with autocorrelation as it leads to peaks in the cross-relation, even if they are truly
independent. Because of that, another more suitable method such us Granger causality is
used instead. The idea behind Granger causality is to predict the value of the objective
signal by using two models, the first using the objective signal itself, and the second uses
the past values of the objective signal and the auxiliar signal. If using the past values
of the auxiliar signal improves the results of the prediction beyond using the objective
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signal alone, a Granger causality is found. There are also multivariate versions of Granger
causality that allows to check causality between more variables. Although the Granger
causality is the most used method, there are other like sim causality, intervention causality
and structural causality.

Also, there are other methods like Principal Component Analysis (PCA) that can be used
to reduce the dimensionality of the signal dataset but also for displaying some kind of
clustering if you look to the data in the visual principal components. There are some
rules in order to apply PCA to time-series data. Firstly, each time-series variable has to
represent a single feature, this is, the objects represent data throughout the time interval
and the feature itself represents the time-series. So, each time series represents an entire
feature whose values are spread out over the rows.

3.2.3.3 Data preparation

Apart from all the corrections methods applied in a normal EDA process, time-series
data need to be treated particularly regarding processing because time-series prediction
models need the data to fulfil particularly assumptions in order to achieve a good result.
The most common steps in time-series data preparation analysis are:

• Make data stationary: The objective of this step is to remove both trend or season-
ality within the data. There are several approaches to make data stationary:

– Differentiate the series values: The differentiation means that for a time-series
X, the value differentiation generates a new series z where:

zk = xt − xt−1 (1)

There could be different steps within this method regarding differentiation of
lineal trend first, quadratic trend then and so for.

– Difference the time entries: Time entries can be differentiated from a certain
occasion and receive a new series that is scaled to this event. This could lead
to another metrics, being the case of study, if the amount of carbon is high
and some alerts are shown, we can be interested in scaling the time alert to
the detection time in order to check the reaction time.

– Remove trend: To remove trend the fitting of a linear regression to model the
trend and to continuing modelling the residuals that are cleaned from the trend.
But there is a big problem, not all signals can be modelled by fitting a linear
regression model, moreover, it is almost impossible if they are chaotic or based
of a multiple number of factors such as industrial signals.

– Remove seasonality: If there was detected a seasonal lag, difference series values
method can be applied by obtaining a new time-series z where:

zk = xt–xt–seasonality lag (2)

It can be also used the seasonality pattern detected to calculate the average
pattern values and create a new series such us:

zk = xt–xavg values (3)
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– Drive a logarithmic or exponential transformation: Those transformations will
help to stabilize the variance of the series across the time.

After any of these methods have been applied, autocorrelation test has to be done
in order to check the performance of the transformations.

• Treat missing values: There are some time-series prediction methods that can handle
missing values by theirselves but it is not the case for others. As mentioned before,
after detecting missing data in the time-series a different number of methods can
be applied to try to solve it:

– Impute the entries: Interpolate the data using a linear regression to each time-
series variable to complete the missing entries by calculating the curve. Another
option is to use spline interpolation, that fits more than one curve to obtain
the missing samples or to use a machine learning model able to predict those
missing values.

– Remove samples or features with missing information: It is not useful to main-
tain variables that could be recorded throughout the time. But it is more dif-
ficult to remove a row sample because it does not have enough data, because
you do not know how much data is enough.

– Select a period of time: There are periods of time that could be without data
because different reasons such us maintenance, system or sensor failure. Select
a period of time would be latest option if we have to get rid of missing values
because by selecting a subset, we can be broken the intrinsic nature of the time
series.

– Let the model handle it if it is able to.

• Multi-frequency data to uni-frequency data: While working with different industrial
IoT sensors, there are variables that might have different sample frequency than
others. For example, temperature of the water tank could have its frequency in
hours meanwhile the pH could be working in seconds or minutes. There are some
models that assume that time-frequency is all the same for the variables and do not
accept variations between variables frequency. In order to avoid this problem, we
have to choose between working in low frequency or high frequency.

– Work with low frequency data: Summarize over the highest frequency to achieve
a new low frequency series for all the signals. For example, calculate the main
average temperature for the water tank in a day to reduce the frequency. This
could lead to the loose of important information, depending on the objective
to study.

– Work with high frequency: Expand the low frequency, for example expand
the water tank temperature to minutes or seconds, although it will produce
redundant data, we will not lose any information regarding the signal.

After finalizing with this phase, we will have a complete understating of how much an
objective signal is autocorrelated and which other signal influence the value of that objec-
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tive signal. Moreover, a cleaned and pre-processed data will be ready for fitting a model
and the evaluation phase.

3.2.4 Modelling and evaluation

A great number of industrial signals are chaotic, which means that is not periodic (but
could be stationary), has random time evolution and broadband spectrum and it is
produced by a deterministic non-linear dynamical system with an irregular behaviour.
Chaotic time-series prediction techniques address the problem of forecasting horizons of
chaotic data. This kind of predictors are focused on compacting the description data and
guarantee a low error regarding mean squared error (MSE) and root MSE (RMSE).

They are several techniques that try to solve the problem of chaotic time-series analysis
considering both short-term and long-term prediction horizons. Those methods are artifi-
cial neural networks (ANNs) [15] [16] [17], XGBOOST Regressor [28] [22], support vector
machines (SVMs) [24] [25] and hybrid systems [10] [26].

3.2.4.1 Aritificial Neural Networks (ANN’s)

ANNs are mathematical representations that tries to imitate the human brain and its
way of processing the information. Usually, ANNs are composed by elementary computing
units called neurons and their processing capacity is stored at neural connections. The
simplest structure of an ANN is formed by an input layer, one or more hidden layers and
the output layer. Each hidden layer is composed by one or more neurons that provide the
objective value. The structural form of a neuron is shown in Structure of a neuron.

Figure 7: Structure of a neuron

Takens [33] stated that there is a function with at most 2d + 1 past measurements of time
series that allows the forecasting of future values and that prediction would be as good
as solving the system with all the degree of freedom. Although Takens did not set the
function that give the desire future extrapolation, an ANN can be successfully used by
setting a future temporal delay of x(t + delta) and the input temporal time series. ANN
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can be trained with a certain number of iterations [32]. In order to choose the structure of
the ANN corresponding to the number of neurons and layers of it, there is the geometry
pyramid rule that stablish that the hidden layers have to have less neurons that the input
layer. It seems to be a consensus in which activation function the neurons depending on
the layer, being the linear function the one chosen for the output layer and the hyperbolic
tangent function for the rest of layers [32] [31].

3.2.4.2 XGBOOST Regressor

XGBoost is a popular and efficient open-source implementation of the augmented trees
algorithm. Gradient boosting is a supervised learning algorithm that attempts to ade-
quately predict a target variable by combining estimates from a set of simpler and weaker
models.

When gradient boosting is used for regression, the weak learners are the regression trees,
and each regression tree assigns an input data point on one of its leaves that contains a
continuous score. XGBoost minimizes a regularized objective function (L1 and L2) that
combines a convex loss function (based on the difference between the objective and the
predicted outputs) and a penalty term for model complexity (i.e., the tree functions of
regression). The training proceeds iteratively, adding new trees that predict the residual
errors of the previous trees, which are then combined with the previous trees to make the
final prediction. It is called gradient boosting because it uses a gradient descent algorithm
to minimize loss when new models are added.

Below is a brief illustration of how the gradient tree boost works:

Figure 8: XGBOOST Regressor schema.

3.2.4.3 Support Vector Regressor

The main characteristics of Support Vector Machines is that it is a Kernel Method so it is
uses kernel functions that describe a problem in a characteristic high-dimensional space
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and applies linear operations to nonlinear problems. A data mapping from the input space
to a. high dimensional space is done by a kernel function that computes the dot product
in the feature space. Regarding time-series problems, the Kernel function k(x, y) = x · y
has been very useful and the decision function is of type f(x) = wx+ b.

Usually, the used SVM is least squares support vector machines that is a new technique
for regression problems (LS-SVM). LS-SVM is trained using time-series data as inputs as
a single value for the output representing the value of the system in a given time instant.
The method of LS-SVM for time-series prediction is also known as sliding window. The
choice for the kernel function can vary but RBF kernels usually perform well.

Figure 9: SVR structure

3.2.5 Visualization and deployment

3.2.5.1 Visualization of time-series data and time-series predictions

Time-series data visualization methods mainly focus on how values of data attributes
vary over the time. There are two type of time-series data visualization methods: (1)
static display and (2) animation methods. Static display refers to the combination of
multi-views to show the evolution of data over the time, showing trends and the intrinsic
law within the time data. Animation methods records the state of the data in a slice of
time and the show data values in function of the chronological slice.

Both methods have advantages and disadvantages based on the goal we want to achieve,
static displays are more intuitive and effective, moreover, it avoids the over additional
cognitive load to the user. Animation methods are more align with the human being
vision, being able to distinguish different time-frames, but it may take a lot of time between
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animations and it can lead to a blurred view of the data trend. Usually, a combination of
both methods is used in order to achieve effectiveness and analytical granularity.

In this methodology, we are going to mainly focus on the two methods reviewed by
Yujie Fang et al. [30]: (1) visualization of time attributes and (2) visualization of high-
dimensional time-series data. Both methods depend on the characteristics of time-series
data to be analysed and its attributes, Yujie Fang mention three manners of differentiation
time-series attributes:

• Linear time and cycle time: Represents the differentiation between data that is
stational of has trends that are repeated in cycles and linear data that change
linearly over time.

• Time points and time intervals: Time points corresponding to discrete points and
time intervals being small linear time domain.

• Sequential time, branch time and multi-angle time: Sequential time are values that
are given in chronological order, branch time are values that can refer to main lines
in the time-frame and multi-angle time are values that describe different views of
the time.

• Time attribute visualization methods: As mentioned before, visualization of time-
series data is different depending of the data attributes, but the standard visual-
ization consists in the x axis representing the time-frame and y axis representing
other variable values, this is known as line chart. With these plots, sometimes it
is difficult to express the periodicity of time so the are other methods such us the
spiral diagram method, calendar view, theme river view and dynamic visualization.

– Spiral diagram: This diagram is very optimal for analysing periodic data. It
is a spiral, as its name suggests, and each circle represents a cycle. Regarding
chaotic time-series data, it is not the most suitable method because one as-
sumption made over chaotic data is to not be non-stationary, that means not
to have cycles.

– Calendar view: This view allows to divide the time into time-frames according
to the wanted granularity such us hour, day, week.

– Themeriver view: This method uses the river flow shape to represent the time
progress given by the width, direction and colour of the river. Themes are
stacked over a spiral curve the its function is to represent the time axis.

– Dynamic visualization: This method can show the data trend by showing frozen
data frame by frame.

• High-dimensional time series data visualization methods: These methods have to
show data state changes over the time and the changes done by each dimension with
time. Usually, the most used time-series visualization methods include a rivertheme
and a parallel coordinate chart with a time axis. This leads to a chart in which
different attribute values changing over the time are visualized together.
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3.2.5.2 Time series visualization tools

Time series plotting tools usually have preconfigured dashboards. The most popular time-
series visualizations tools such as InfluxDB and Grafana are very suitable for visualizing
time-series data and for providing different ways of presenting meaningful insights on time
data. Usually both are used in combination because their integration allows to visualize
data from different sources.

User Interface from InfluxDB includes a user-friendly mode to deal with write data into
InfluxDB, visual scripting and querying tools, moreover, it includes the possibility to
perform data transformation tasks and alert creation tools. The visualization horizon of
InfluxDB includes different types of charts and plots such us gauge charts, line charts,
histograms, heatmaps, scatter plots and table, in addition, it also includes also different
types of powerful types:

• Visualization of time-series data using custom graphs from plotting libraries such
us Plotly and Dygraphs.

• The utilization of templates that includes a packager and set of pre-loaded dash-
boards.

Grafana allows the integration of different data sources in a straight-forward manner,
also includes data source plug-in for InfluxDB. It extends with rich graphing features the
plots available only with InfluxDB by offering high level of customization for dashboarding
building and editing. It gives:

• Dynamic and reusable dashboards.

• Data exploration and dynamic drill-down.

• Logs exploration.

• Visually defining alert rules.

• Annotations to view event metadata and tags.

3.2.5.3 Deployment

After achievement a model that satisfy the definitions done in the problem definition
phase, the systems have to be deployed in a way that it is useful to the organization. This
implies the integration of the IoT architecture, models and visualization mechanism in
the organization. This task usually is divided in four parts:

• Deployment planification: it is necessary to stablish a plan to introduce the system
in the organization information systems in a way that is extends the information
and operation available.

• Maintenance planification: Maintenance and monitorization of deployment of the
systems is an importance step in the integration within the industrial company
business. A good maintenance planification helps to avoid underperformance and
the bad use of the analysis results.
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• Final report: It is necessary to write the documentation of all the project and it
must contain all the deliverables and the result obtained in each phase. This phase
usually contains a final presentation or meeting to conclude the project.

• Project revision: This task tries to assess the correct deliver of the project and
to understand which were the difficulties of the project in order to achieve that
knowledge and to avoid future related problems.

Figure 10: Methodology for IIoT + Data Science diagram
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4 Practical use of the methodology

In this section, a practical application in a real problem is going to be addressed with the
know-how established in the theoretical methodology. As mentioned before, the field of
the problem is going to be wastewater treatment process which is a potential candidate
to be affected by the premises and solution established in the last section. In addition,
the installation of a network of IIoT devices, gives us the backbone on which to develop
the practical case with more chances of obtaining a successful result.

As mentioned, we are going to develop this practical case under the guidelines proposed
in Theoretical Methodology. This means to develop each one of the phases proposed with
their inputs and desirable outcomes.

4.1 Problem definition

Water treatment processes have become a key facility in minimizing the ecological impact
that industrial and human activities have on the planet’s water reserves. The use of digital
technologies such as IOT and artificial intelligence allow these types of facilities to take
advantage of the data generated to be more efficient and improve the quality of the water
they release into the sea.

One of the most critical points in water treatment plants is to be able to know in advance
how the process is going to behave with respect to the water we currently have in the
input tank, since it takes between 24-27h to see the water quality we will obtain at the
output, when it is already too late to establish corrective measures. The objective of the
methodology developed in this project is to predict the evolution of key metrics in the
industrial process in order to act beforehand those metrics are out of range. For then,
develop a multivariate chaotic signal prediction model that, based on current operations,
is able to forecast the carbon removal performance (CRP) and its value (TOC). Also, a
deliverable whose objective is to visualize the industrial metrics together with TOC and
CRP, in order to help to understand the causes that make the TOC and CRP deviate
from the desired range, being able to identify which cases provide poor performance in
this process.
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4.1.1 Characterization of the wastewater industrial process

Figure 11: Wastewater treatment industrial process flow.

Industrial wastewater treatment facilities are usually made up of a succession of physical-
chemical and biological processes, both aerobic and anaerobic via, that complement each
other and allow comprehensive treatment to be carried out under the best technical and
possible economics. The objectives of the plant are:

• Elimination of residues, oils, fats, floating matter or sand and evacuation to the
appropriate final destination point.

• Elimination of organic and/or inorganic settleable materials.

• Elimination of ammoniacal and phosphorus-containing compounds.

• Transform the retained waste into stable sludge and ensure that it is properly dis-
posed.

Usually, the processes in a WWTP plant are grouped as:

• Water lines: Pre-treatment, Input, Treatment, Output and Post-treatment.

• Sludge line: Thickening, Digestion, Conditioning, Drying and Elimination.

• Gas line: Methane production.

The objective of this practical case addresses the analysis of the water line as the data
available for study corresponds to this part of the process. In order to understand better
the industrial process and the data available, a schema of the Water Waste Process object
of this application and their associated parameters is given:
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Figure 12: Characterization of the WWT industrial process with ponds and parameters measured.

As we can see in Characterization of the WWT industrial process with ponds and pa-
rameters measured figure, we can distinguish three different parts within the industrial
process: (1) pre-treatment phase, (2) input phase, (3) treatment phase and (4) output
phase. Pre-treatment: it is composed by 3 ponds (J320, FQ and B59) whose objective is
to pre-treat the water input in order to maintain water parameters within a range that
makes the water treatment process able to remove the organic material. This the phase in
which operators can move water between ponds and decide which pre-treatment method
apply. Water parameters measured in this phase are directly correlated with the water
quality emitted by the plant, so it is essential for the operator stablish how the input
parameters will affect the output water to decide which action to take.

Input phase: This phase collects all the water from the pre-treatment ponds (biological
input pond) and brings them together to start the organic carbon removal process. In this
phase, the measurements of the indicators that allow establishing the performance of the
plant as well as the quantity of water and its quality that enters the process.

Treatment phase: This phase is made up of two separate lines. These two lines have 3
rafts each fulfilling a specific function each (B40, B41, B42, B44, B45, B46). Each of
these ponds contain detailed information on the concentration of oxygen in the pond,
the pH, the temperature, the soda input and the water flow rate. The organic carbon
removal process is carried out by cultivating a colony of bacteria responsible for carrying
out this task. The chemical and physical parameters of the ponds are directly related to
the performance of the bacterial colony in removing carbon from the water.

Output phase: In this phase, parameters that indicate the performance in the elimination
of organic carbon carried out in the process are defined. The water obtained in this phase is
the result of the process and although post-processing can be carried out, it should comply
with the established chemical and physical requirements to avoid additional costs.

It is also important to establish the time sequence of the process that allows us to monitor
the water over time so that the measured parameters correspond approximately to the
same water sample. Talking with the plant operators, a time lag in the process has been
established as shown in the following figure.
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Figure 13: WWTP Time Lag: B40 and B44 have 2 time lags, B41 and B45 have one time lag,
accordingly to Biological Output measurements. Process time is 24 hours so it can be seen as 3 parts of

8 hours each, corresponding to each time lag.

Figure 14: Description of how to follow the same water sample throughout the whole water line
process.

As we can see, the time required for a water sample to enter the system, be treated and
leave is 24 hours, so the difference between the same sample taken at the biological input
and output is this time range. Establishing this offset allows us to create the organic carbon
degradation performance measure, which is essential to know if the plant is operating
correctly.

4.1.2 Objectives and key metrics

The purpose of the proposal has two distinct objectives:

• To develop a data-driven model able to predict future TOC and CRP values that
allow certain reactivity and proactivity to plant operators to make changes in the
parameters of the industrial process to correct possible deviations. As mentioned in
the characterization of the problem, the prediction horizon should be 24-48 hours
to have enough time to pre-treat the water if there is a risk of deviation.

• Develop a visualization application which is able to show the relations between the
industrial process mechanism and the predictions made by the data-driven model.
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The key metrics of the project are the value of total organic carbon (TOC) in [ppm] and
plant carbon removal performance (CRP). Definitions of the key metrics are the following:

• Organic Carbon Degradation (TOC): Value in ppm measuring the presence of or-
ganic carbon in the water.

TOCt = Bio Out TOCT (4)

TOCt+24h = Regression Model TOCt+24h (5)

TOCt+48h = Regression Model TOCt+48h (6)

• Carbon Removal Performance: measurement of the carbon elimination within the
industrial process.

CRPt =
Bio Out TOCt

Bio In TOCt−24h

(7)

CRPt+24h =
Bio Out TOCt+24h

Bio In TOCt

(8)

CRPt+48h =
Bio Out TOCt+48h

Bio In TOCt+24

(9)

These key metrics will be predicted by the developed models, establishing a model for a
24-hour prediction and another model for a 48-hour prediction. These time margins allow
sufficient anticipation for the operators to carry out the pre-treatment of the water to
avoid poor degradation of the organic carbon.

4.1.3 Risks identified

The main risks identified that may condition the success of the project are the following:

• Data availability: Data of the process need can be gathered and extracted from
databases. Process data is the starting point for the posterior analysis and method-
ologies object of the project. For this reason, it is mandatory for us to be provided
with the data from the PLC’s and the different equipment of the WWT plant, with
important access to data from IIoT devices.

• Data traceability: In order to be able to carry out the project correctly, we must be
able to temporarily synchronise the continuously recorded data of the process (PI).
If any data cannot be traced, it will put under risk the analysis.

• Data quality and variability: The data collected must be of sufficient quality in terms
of completeness of the records, and sufficient variability to represent the state of the
water treatment process. We will carry out a quality study of the data obtained in
the project to ensure this point (phases: Data Preparation and Data Consolidation).
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4.2 IIoT infrastructure and data consolidation

4.2.1 IIoT infrastructure

Unfortunately, it has not been possible to access the IIoT devices that take measurements
directly from the plant because of security reasons.

On the contrary, it has been based on a historical extraction of an Osyshoft PI database.
For the use of the proposed methodology, a data extraction process (ETL) has been
recreated, which is responsible for loading them into a temporary database, imitating the
process that would be carried out in a real infrastructure. This architecture has allowed
to establish the basis for carrying out the analysis of the industrial process. creating all
the logic assets involved in the IIoT infrastructure. Below is a detailed schema of the
implementation carried out and each of the parties involved.

Figure 15: Recreation of the IoT infrastructure to simulate the the real IoT workflow.

4.2.2 Data consolidation

As mentioned above, the data has been made available through files in excel format. Due
to the amount of data available and the heterogeneity of the files, it has been decided
to implement an ad-hoc extraction, transformation and loading process that allows the
necessary operations to be carried out to ensure the highest degree of quality and integrity
of the data before inserting them in the database.

The available files contain temporary information of one or more ponds each. In the header
of the file, the origin and the measured parameter are indicated. The sampling frequency
indicated in all the files is 5 minutes, which is high for the described dynamics present in
the industrial process and the prediction objective of 24-48 hours.
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Figure 16: Extract from B40 historical file, in which it can be seen the header (B40), parameters
(F0102A, F012B, . . . ), descriptions, the units (m3, ppm, . . . ) and the values.

Once the ETL process has been done, data was loaded into an InfluxDB database that is
ideal for time-series databases (TSDB), which store time series. These databases are used,
among other things, to store and analyse sensor data or protocols with timestamps over
a certain period of time. For example, Internet of Things devices or scientific measuring
instruments deliver millions of incoming data sets in a constant stream of data. Compared
to ordinary relational databases, TSDBs like InfluxDB offer clear speed advantages when
it comes to storing and processing time-stamped measurement data. A traditional DBMS
slows down when organizing complex indexes, which are not used at all in this area of
application. InfluxDB can maintain high write speeds over a long period of time because
it uses a very simple index.

Once the loading process has been carried out successfully, we find data corresponding
to the period between 01-01-2017 and 30-06-2022 which, with a frequency of 5 minutes,
correspond to 577,944 samples, which makes the database quite extensive to carry out the
objective analysis. In addition, the number of characteristics is also extensive, comprising
a total of 103 variables corresponding to the water lines of the treatment process to be
analysed. Despite this large number, not all the variables and not all the samples will
be used. On one hand, only the interesting variables for the organic carbon degradation
process will be used, which correspond to Characterization of the WWT industrial process
with ponds and parameters measured figure, and only the longest period will be chosen
where the data integrity and quality is the highest possible.
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4.3 Data preparation, signal and auxiliary signal analysis

4.3.1 Data preparation

In this phase, the variables that are interesting for the analysis of organic carbon removal
and for the operation of the water lines will be chosen, as well as the time window that
allows the analysis to be carried out.

The time window to be analysed and modelled is the one corresponding to 2019 due
to the fact that it has the two important factors. 2019 has a percentage of low null
values that corresponds to 6.11% and also has a percentage of 0.05% of null values in the
target variable. The table below shows the values that have been taken into account when
choosing the period.

Table 1: Percentage of null values per year (objective variable & mean of all variables)

Year % Null values Biological Output TOC Mean % Null values all variables
2017 0.01% 7.91%
2018 0.01% 6.68%
2019 0.05% 6.11%
2020 1.15% 5.06%
2021 7.84% 2.04%

First of all, the structure and the variables of the dataset (2019 samples) is going to be
presented (only variables that correspond to the Biological Input, B40, B41, B42, B44,
B45, B46 and Biological Output are presented):

• Structure: The data set is composed by 105,002 rows and 35 variables and it contains
multiple missing values.

• Variables:

– Time: Timestamp of the sample taken.

– (B40—B41—B42—B44—B45—B46) Caudal ox́ıgeno A: Variable that mea-
sures the oxygen flow of input 1 of the corresponding pond.

– (B40—B41—B42—B44—B45—B46) Caudal ox́ıgeno B: Variable that mea-
sures the oxygen flow of input 2 of the corresponding pond.

– (B40—B41—B42—B44—B45—B46—BI) Temperatura: Variable that measures
the water temperature of the pond.

– (B40—B41—B42—B44—B45—B46) Concentración ox́ıgeno disuelto: Variable
that measures the oxygen concentration of the corresponding pond.

– (B40—B41—B42—B44—B45—B46—BI) pH: Variable that measures the pH
value of the corresponding pond.
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– BI TOC: Variable that measures the organic carbon value in the Biological
Input pond.

– BI NT: Variable that measures the nitrogen value in the Biological Input pond.

– BI caudal A: Variable that measures the water flow of input 1 of the Biological
Input pond.

– BI caudal B: Variable that measures the water flow of input 2 of the Biological
Input pond.

– BO TOC 24H (Target): Variable that measures the organic carbon value in the
Biological Output pond 24 hours in the feature.

– BO TOC 48H (Target): Variable that measures the organic carbon value in the
Biological Output pond 48 hours in the feature.

All of the above variables are numerical. In addition, the oxygen flow is going to be added
in one variable per pond to ease the analysis as it does not influence.

Figure 17: Time series corresponding to biological input and output TOC over the 2019 year, blue
and orange respectively.

Figure 18: Time series corresponding to B40 and B42 pH’s over 2019 year, green and orange
respectively

4.3.2 Signal analysis - target variable

In this section, the univariate statistical analysis of the time series corresponding to the
target variable, total organic carbon (TOC), is performed. These characteristics allow
us to know how the variable behaves over time and establishes the bases for subsequent
modeling, as well as the models that will be capable of making predictions of future values.
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4.3.2.1 Missing values

As previously mentioned, 2019 has been chosen, among other reasons, for its low content
of null values in the target variable. Having 265 null values that corresponds to 0.05%
of the total samples. Below is a heat map that allows identifying how these values are
located within the timeline.

Figure 19: TOC null values heatmap representing the areas of the TOC time series whose values are
null. Those areas are represented with dark colors.

As seen in the documentation, there are several options for handling missing values:

• Fill the entries:

– Fill the missing value with a non-representative value such us inf or zero,
depending on the case.

– Fill the missing value with the mean.

– Fill the missing value with the last value recorded

– Fill the missing values with linear interpolate values

• Remove samples or features with missing information

• Select a period of time

The decision has been to fill in the entries and for this the visual results of the meth-
ods mentioned above are presented below. As a result, it has been decided to linearly
interpolate the missing values.
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Figure 20: Results for methods used to fill values: a) Fill with 0, b) Fill with the mean value (35,16)
and c) fill with last value and interpolate.

4.3.2.2 Frequency and resample

The sampling frequency of the industrial process parameters is 5 minutes. This interval
is quite low for the time horizon to be predicted and analyzed (24-48 hours). In addition,
the variation of the parameters of the ponds, as well as the organic carbon present,
undergo changes very gradually, being processes that change in a matter of hours or days.
Therefore, it has been decided to resample the signal to adapt it to the requirements.
Resampling must allow it to continue to have sufficient sensitivity to changes to be able
to continue detecting variations in the parameters.

The following graph shows the difference in the view of the time series depending on the
range chosen for the resample. As can be seen, with the weekly resample a lot of sensitivity
to changes is lost, only the trend of the signal is being reflected. Therefore, the applied
resampling has been 2 hours, which allows maintaining the sensitivity to changes and
obtaining the trend of the signal to predict its behavior, according to the process experts.
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Figure 21: Different kinds of resampling methods for TOC time series: a) Initial TOC values, b)
2-hours resampling, c) Daily resampling and d) Weekly resampling

4.3.2.3 Stationarity

Stationary time-series data is the one whose properties does not depend on the time at
which the data is observed, therefore, data with trends or cycles are non-stationary. Some
models do assume that data is stationary in order to make predictions. Stationarity can
be checked with visual methods or statistical methods.

Stationary data has statistical characteristics like constant mean and constant variance.
To check it, the target time series has been plotted together with the 7-days rolling mean
and rolling standard deviation. As we can see, nor the mean is constant neither the
standard deviation. So that mean that target variable is non-stationary.

Figure 22: TOC time series and 7-day rolling standard deviation (yellow) and mean (black) over year
2019.

For the statistical analysis, It has been used the Augmented Dickey-Fuller test (ADF)
that is a unit root test for time-series data. The Augmented Dickey-Fuller statistic, used
in the test, is a negative number. The more negative it is, the stronger the rejection of
the null hypothesis that a unit root exists for a certain level of confidence.
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• Null hypothesis (N0): Data has a unique root, so data is non-stationary.

• Alternative hypothesis (N1): Time series has no unique root, so data is stationary.

If N0 can be rejected, we conclude that data is stationary. We can reject N0 by two
manners. On one hand, if p-value is less than a critical level (usually this level is 5%). On
the other hand, by comparing statistics with critical values.

Figure 23: ADF test for TOC variable. ADF Statistic -8.502, p-value: 0.000 — Critical Values 1%:
-3.432, 5%: -2.862, 10%: -2.567

As we can see, Null hypothesis (N0) can be rejected, so we can say that data is stationary.
P-value is less than 0.05 and ADF Statistic is below 10% threshold.

4.3.2.4 Time series decomposition

Time series decomposition is a technique that is able to split time-series data into several
components that represent the real time-series. The components are:

• Level: Average value of the time-series data.

• Seasonality: Describes the periodic signal in the time-series.

• Trend: Describes the direction of the time series, if it is increasing, decreasing or
constant.

• Noise: Describes the information left after separating seasonality and trend. Is the
variability of the data that cannot be explained.

Decomposition is useful for understanding the time-series data generally and for under-
standing the nature of each component of the data. Although decomposing the temporal
sequence may not be very useful for chaotic signals, we may find some characteristic
that indicates a pattern or signal of seasonality, and therefore, deepen the analysis of
seasonality.
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Figure 24: Decomposition of TOC time series: a) Initial TOC values, b) TOc trend, c) TOC seasonal
and d) TOC residual.

4.3.2.5 Autocorrelation analysis

In order to check the autocorrelation of time-series data, we are going to use Autocorre-
lation Function (ACF) and Partial Autocorrelation Function (PACF).

• Autocorrelation Function: Autocorrelation Function (ACF) gives a value that rep-
resents how similar a value is within a time-series with a lagged version of it.

• Partial Autocorrelation Function (PACF): A partial autocorrelation is a summary
of the relationship between an observation in a time series with observations at prior
time steps with the relationships of intervening observations removed.

The correlation and autocorrelation will be reviewed in a time range of two weeks, al-
though the industrial process is of shorter duration and, a priori, there should be no
correlation, although the water entering the plant may have some type of temporal cor-
relation that can influence the final correlation of the study variable.
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Figure 25: Autoorrelation and Partial autocorrelation of TOC analysis: a) autocorrelation and b)
partial autocorrelation (máximum number of lags 168).

We can see that the autocorrelation decreases as the periods advance, there does not seem
to be a high autocorrelation beyond the autocorrelation that can exist in a process whose
changes are gradual and not abrupt. It seems that there is no periodicity in the inflow of
water that could affect the correlations of total organic carbon.

4.3.3 Auxiliary signal analysis

As previously mentioned, the analysis of multivariate series is based on the possible direc-
tion and causality of the variables over time. This allows establishing temporal ties that
make the models capable of finding patterns that model processes.

Table 2: Number and percentage of missing values per variable for 2019.

Variable Total Null Values Percentage Null Values
Oxygen flow B40 112 0.106%

Ph B40 113 0.107%
Soda B40 1068 1.016%

Oxygen flow B41 122 0.116%
Ph B41 113 0.107%

Oxygen flow B42 120 0.114%
Ph B42 128 0.121%
Soda B42 2502 2.380%

Oxygen flow B44 114 0.108%
Ph B44 165 0.156%

Oxygen flow B45 143 0.136%
Ph B45 114 0.108%
Soda B45 133 0.126%

Oxygen flow B46 143 0.136%
Ph B46 126 0.119%
soda B46 2456 2.336%

TOC Biological Input 354 0.336%

First of all, Variable missing values table shows the number and percentage of null values
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for the year 2019 of all the auxiliary variables considered for the analysis. As can be
seen, the number of null values is quite small, with the variables referring to the soda
input being the ones with the most null values. Due to the reduced number of null values,
interpolation has been performed to fill the dataset.

There are various methods to establish relationships between the variables of a dataset,
generic numerical methods and methods focused on the analysis of time series. In this
project we will use a combination of both of the knowledge acquired about the industrial
process and the information obtained about it.

As a first analysis, a labeling of the TOC target variable has been carried out according
to its status:

• < 150: Accepted (Green).

• 150 ≤ TOC < 300: High (Orange).

• ≥ 300: Critical (Red).

After this labeling, histograms were created for each variable of the ponds: pH, oxygen
flow, and, in some cases, soda dosification. This would allow establishing whether for
certain values of the auxiliary variables the TOC values were always of the same state,
indicating a clear influence on the final TOC value. Below there is a series of histograms:

Figure 26: B40 Ph histogram labeled with TOC status: green - low (TOC < 150), orange - high
(150 ≤ TOC < 300), red - critical (TOC ≥ 300).
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Figure 27: B44 oxygen flow histogram labeled with TOC status: green - low (TOC < 150), orange -
high (150 ≤ TOC < 300), red - critical (TOC ≥ 300).

As can be seen, no clear clustering is obtained. This is repeated for the rest of the variables
of the pools, none of which achieves a clear differentiation between the different states of
the TOC.

Another experiment that has been carried out has been the calculation of the correlation
matrices between the different variables of the ponds and the TOC and CRP metrics. This
correlation has been calculated using the Pearson correlation, its equation is presented
below:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(10)

where r is the Pearson coefficiente, n represents the sample size, x̄ = 1
n

∑n
i=1 xi is the

sample mean (analogously for ȳ). Correlation coefficient, r, tells us how closely data in
a scatterplot fall along a straight line. The closer that the absolute value of r is to one,
the better that the data are described by a linear equation. If r = 1 or r = −1 then the
data set is perfectly aligned. Data sets with values of r close to zero show little to no
straight-line relationship.

If this calculation is performed between each of the variables, a matrix is obtained that
can be represented by a heatmap and that offers us a view of the correlations of the
dataset. This heat map has been made for each pool, below are those obtained for pools
B42 and B46.
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Figure 28: B42 - TOC - CRP variables Pearson’s correlation

Figure 29: B46 - TOC - CRP variables Pearson’s correlation

As can be seen, there is no clear correlation between the variables of the pools with TOC
and CRP.

Furthermore, and as discussed in the theoretical part, the Granger Causality test has been
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applied. The following table shows the results:

Table 3: Granger causality test results

Variable 6 lags (12 hours) 12 lags (1 day) 24 lags (2 days)
Oxygen flow B40 0.77 0.91 0.91

Ph B40 0.95 0.93 0.93
Soda B40 0.53 0.65 0.65

Oxygen flow B41 0.64 0.88 0.88
Ph B41 0.95 0.93 0.93

Oxygen flow B42 0.97 0.81 0.81
Ph B42 0.88 0.92 0.92
Soda B42 0.97 0.98 0.98

Oxygen flow B44 0.82 0.87 0.87
Ph B44 0.01 0.21 0.82

Oxygen flow B45 0.18 0.24 0.24
Ph B45 0.59 0.48 0.48
Soda B45 0.11 0.05 0.05

Oxygen flow B46 0.18 0.24 0.24
Ph B46 0.51 0.87 0.87
soda B46 0.51 0.18 0.18

As can be seen, the test has been carried out with different maximum lags: 12 hours, 1 day
and 2 days. Despite this, the results are not conclusive, causality has only been detected
in the case of the pH of the B44 pool for 12 hours.

Despite these results, process experts consider that the most critical parameter is pH. This
parameter very actively influences how bacteria degrade the carbon present in the water
and is the main parameter that makes the population of bacteria increase or decrease.

Therefore, the modeling has been carried out taking into account this information and
using only the pH of the ponds, if the modeling is poor, other experiments will be carried
out.
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4.4 Modelling and evaluation

Once the problem has been described, the analysis of the TOC signal and the analysis of
auxiliary variables have been carried out, we can start with the modelling about prediction
horizon of 24-48 hours that will allow the operators to anticipate possible erroneous range
of TOC in the water. This section will be used to present the modelling parts that have
taken place in this project.

4.4.1 Preprocessing

In addition to the actions presented in sections Missing values and Frequency and resam-
ple, a series of pre-processing steps have been carried out with the intention of making
the modelling as correct as possible.

4.4.1.1 Dataset used

All the variables that do not correspond to the variables that describe the pH’s of the
ponds have been eliminated with the intention of avoiding the introduction of unnecessary
complexity for the model and under the premises explained in section Auxiliary signal
analysis. Therefore, the dataset used for modelling consists of 9 variables: 6 corresponding
to the measurements of the pH of the ponds, the initial value of the TOC in the biological
input and two target variables that correspond to the TOC 24h and 48h later measured
in the biological output.

Table 4: Dataset used for modelling with Min, Max and Mean statistics for all variables.

Variable Type Max Min Mean
Ph B40 Numerical — Auxiliary 5.64 8.36 7.29
Ph B41 Numerical — Auxiliary 5.64 8.63 7.29
Ph B42 Numerical — Auxiliary 6.13 9.40 7.44
Ph B44 Numerical — Auxiliary 4.30 9.33 7.54
Ph B45 Numerical — Auxiliary 5.07 9.60 7.38
Ph B46 Numerical — Auxiliary 5.34 9.69 7.63

Biological Input TOC Numerical — Auxiliary 639.71 1942.22 843.77
Biological Output TOC 24h Numerical — target 112.65 1533.23 170.87
Biological Output TOC 48h Numerical — target 112.65 1533.23 170.87

4.4.1.2 Scaling

Some of the models (MLP and SVR), used in this phase, require data to be scaled. There
are several methods to normalize data and each has its advantages and disadvantages.
In this case, the Min-Max rescaling is used because it is useful when trying to compare
datasets of different factors or that use different units (pH and TOC in ppm’s).
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4.4.1.3 Splitting and shuffling data

For all the experiments described later, a division has been made in the dataset as follows:
70% for training and 30% for testing. With the data available for modelling, the number
of samples dedicated to training and testing is 2971 and 1274, respectively. This allows
validating the prediction for both the model with vision at 24h and the model with vision
at 48h.

The training data has been shuffled before being introduced into the model, but in the
test set the order has not been modified to correctly observe the visual results with the
intention of validating the proactivity of the model before the TOC trend changes. This
will help to achieve a more robust model and will help to validate the experiments.

Table 5: Split Train & Test set

Set Initial time End time Number of samples
Train 01-01-2019 00:00:00 07-09-2019 00:00:00 2971
Test 07-09-2019 02:00:00 29-12-2019 20:00:00 1274

4.4.2 Metrics

The metrics used to compare the performance between models are Mean Squared Error
(MSE) and R2 Score or coefficient of determination.

• MSE: Mean square error (MSE) is the average of the square of the errors. The larger
the number, the larger the error. Error in this case means the difference between
the observed values x1, x2, x3, . . . , xn, and the predicted ones y1, y2, y3, . . . , yn. We
square each difference (xi–yi)

2 so that negative and positive values do not cancel
each other out.

MSE =
1

n

n∑
i=1

(xi − yi)
2 (11)

where n is the sample size, xi is the observed value at position i and y is the predicted
value at position i.

• R2 Score: R2, the coefficient of determination, determines the ability of a model
to predict future outcomes. The best possible result is 1.0, and it occurs when the
prediction matches the values of the target variable. R2 can take negative values
because the prediction can be arbitrarily bad. When the prediction matches the
expected values of the target variable, the result of R2 is 0. It is defined as 1 minus
the total sum of squares divided by the sum of squares of the residuals.

R2 = 1− sum squared regression(SSR)

total sum of squares(SST )
, 1−

∑
(yi − ŷi)

2∑
(yi − y)2

(12)

where yi is the observed value at position i, ŷi is the predicted value at position i
and y is the mean of the observed values.The sum squared regression is the sum of
the residuals squared, and the total sum of squares is the sum of the distance the
data is away from the mean all squared.
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4.4.3 Models used and model tunning

There are simple models that can be surprisingly effective for time series analysis tasks.
Three different models have been used for this project: Multi-Layer Perceptron Regressor
(MLP), Support Vector Regressor (SVR) and XGBoost Regressor, all obviously dedi-
cated to regression tasks. The theory behind these models has been explained in section
Modelling and evaluation.

To improve its performance, a search of hyperparameters has been carried out in order to
find the ones that offer the best performance for the characteristics of the available data.
Below is a description of the hyperparameters for each of the models, the tested values
and the final values used in the experiments. The search for hyperparameters has been
carried out using the Stratified Cross-Validation technique with 3 folds on the training
set.

• MLP Regressor:

– Hidden Layer Sizes: It represents the number of hidden layers and the number
of neurons per layer.

– Activation Function: Activation function for each hidden layer.

∗ Tanh: the hyperbolic tan function, returns: f(x) = tanh(x).

f(x) = tanh(x) (13)

∗ Relu: the rectified linear unit function, returns:

f(x) = max(0, x) (14)

– Solver: Solver for weight optimization.

∗ SGD: refers to stochastic gradient descent.

∗ ADAM: refers to a stochastic gradient-based optimizer proposed by Kingma,
Diederik, and Jimmy Ba.

• SVR:

– Kernel: Specifies the kernel type to be used in the algorithm.

∗ RBF: Radial-Basis Function Kernel

f(x) =
n∑

i=1

αig(x− xi). (15)

– C: Regularization parameter, which inverse proportional to C.

– Epsilon: It specifies the epsilon-tube within which no penalty is associated in
the training loss function with points predicted within a distance epsilon from
the actual value.
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• XGBOOST Regressor:

– Alpha: L1 regularization term on weights. Increasing this value will make model
more conservative.

– Lambda: L2 regularization term on weights. Increasing this value will make
model more conservative.

– Estimators: Number of estimators to be used in the model.

– Maximum depth: Maximum depth of a tree. Increasing this value will make the
model more complex and more likely to overfit. 0 indicates no limit on depth.

– Learning Rate: Step size shrinkage used in update to prevents overfitting.

The tests have been carried out with parameters obtained through an iterative process
of trial and error based on other configurations in the literature and the error results
obtained. For SVR [27], XGBOOST Regressor [28], MLP Regressor [29].

Table 6: Hyperparameter searching XGBOOST

Parameter V1 V2 V3
Alpha 0.1 0.01
Lambda 0.001 0.1

Estimators 100 500 1000
Maximum depth 0 6 10
Learning rate 0.01 0.1

Table 7: Hyperparameter searching SVR

Parameter V1 V2 V3 V4 V5
C 200 100 10 1 0.1

Epsilon 1 0.1 0.01 0.001 0.0001
Kernel RBF

Table 8: Hyperparameter searching MLP

Parameter V1 V2 V3
Hidden layer sizes (10, 10) (5, 5) (20, 20)
Activation function relu tanh

Solver adam sgd

Here there are presented the best parameters for each of the models obtained, 24 hours
and 48 hours prediction models:
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• 24 Hours:

Table 9: Best parameters XGBOOST 24h

Parameter Best Val
Alpha 0.1
Lambda 0.001

Estimators 500
Maximum depth 10
Learning rate 0.1

Table 10: Best parameters SVR 24h

Parameter Best val V5
C 200

Epsilon 0.01
Kernel RBF

Table 11: Best parameters MLP 24h

Parameter Best Val
Hidden layer sizes (20, 20)
Activation function relu

Solver adam

• 48 hours:

Table 12: Best parameters XGBOOST 48h

Parameter Best Val
Alpha 0.1
Lambda 0.001

Estimators 500
Maximum depth 10
Learning rate 0.1

Table 13: Best parameters SVR 48h

Parameter Best val V5
C 200

Epsilon 0.01
Kernel RBF

59



Table 14: Best parameters MLP 48h

Parameter Best Val
Hidden layer sizes (5, 5)
Activation function relu

Solver adam

4.4.4 Results

This section describes the results based on the conditions explained above, with special
emphasis on the metrics described. Comparison plots are shown that allow understand-
ing the performance of each of the models used, likewise, time series graphs that allow
observing the predictions made on the test set to have a vision of how the model has
responded to data never seen before.

4.4.4.1 Forecasting results: 24h

The results for the models trained for a 24-hour forecast are presented below. A compar-
ison is shown based on MSE and R2 Score. In addition, a temporary graph is shown over
the entire test set and a zoom to be able to observe in more detail the proactivity of each
of the models.

Multi-Layer Perceptron

Figure 30: Predictions 500 samples test set 24h: real values (blue) and predicted values MLP
Regressor (orange).

Figure 31: Predictions 200 samples test set 24h: real values (blue) and predicted values MLP
Regressor (orange).
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Figure 32: R2 score plot MLP Regressor: Coefficient of determination: -0.31901, MSE: 3973.99

As we can see in the results corresponding to the MLP regressor, the model is not able
to recognize the patterns within the data, not being able to observe the delay and the
modifications between the TOC values of the biological input and output. If we care-
fully observe the temporal graph, we can see that the signal is replicated one day apart,
indicating a transposition of the signal at t+24h. In addition to the aforementioned trans-
position, there is a vertical one, which further distances the results from reality. The lack
of concordance of the predictions with reality is reflected in the R2 Score graph, with the
value below 0, indicating that the prediction is worse than the random prediction.

Support Vector Regressor

Figure 33: Predictions 500 test set 24h: real values (blue) and predicted values SVR (orange).

Figure 34: Predictions 200 samples test set 24h: real values (blue) and predicted values SVR (orange).
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Figure 35: R2 score plot SVR: Coefficient of determination: -0.07773, MSE: 3247.06

The results for the SVR are quite similar to those obtained for the MLP regressor. As
can be seen, it is also unable to interpret the delay and changes that exist between the
input biological TOC and the output biological TOC. This is evident by looking at the
transposition that exists from t+24h. Both the R2 Score and the MSE are pretty bad so
the results are not good.

XGBOOST Regressor

Figure 36: Predictions 500 samples test set 24h: real values (blue) and predicted values XGBOOST
Regressor (orange).

Figure 37: Predictions 200 samples test set 24h: real values (blue) and predicted values XGBOOST
Regressor (orange).
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Figure 38: R2 score plot XGBOOST Regressor: Coefficient of determination: 0.91375, MSE: 259.86

In this case the results change quite a bit with respect to the previous two. It can be seen
that the interpretability of the model is quite good, the delay is almost non-existent and
the model acts proactively before of changes in the TOC trend. Both in the general view
and in the extended view of the time series, it can be seen that the model predicts with
some accuracy the real changes of the test set. Also, the R2 Score graph is very good, the
linear regression is very correct and the value is very close to 1.

Forecasting models comparison: 24h

Figure 39: Predictions 500 samples test set 24h: real values (blue), predicted values XGBOOST
Regressor (orange), predicted values SVR (green) and predicted values MLP Regressor (red).

Figure 40: Predictions 200 samples test set 24h: : real values (blue), predicted values XGBOOST
Regressor (orange), predicted values SVR (green) and predicted values MLP Regressor (red).
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Figure 41: MSE (left plot): MLP Regressor, SVR and XGBOOST Regressor (3973.99, 3247.06, 259.86)
— R2 score (right plot): MLP Regressor, SVR and XGBOOST Regressor (-0.31090, -0.07773, 0.91375).

In reference to the comparison of results between models, we can observe what was pre-
viously mentioned. The model that best responds to the temporal patterns of the data is
XGBOOST, whose metrics are very good. As for MLP Regressor and SVR, it can be seen
that both models are penalized by the observed transpositions, with MLP Regressor being
the most penalized model due to its two transpositions, both vertical and horizontal.

4.4.4.2 Forecasting results: 48h

The results for the models trained for a 48-hour forecast are presented below. A compar-
ison is shown based on MSE and R2 Score. In addition, a temporary graph is shown over
the entire test set and a zoom to be able to observe in more detail the proactivity of each
of the models. The results for the prediction of 48 hours ago are quite similar to those
obtained for 24 hours, the results are detailed below.

Multi-Layer Perceptron

Figure 42: Predictions 500 samples test set 48h: real values (blue) and predicted values MLP
Regressor (orange).
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Figure 43: Predictions 200 samples test set 48h: real values (blue) and predicted values MLP
Regressor (orange).

Figure 44: R2 score plot MLP Regressor: Coefficient of determination: -0.29152, MSE: 3928.02

The results obtained for the MLP Regressor are quite similar to those obtained for 24
hours. The model is not able to find the inherent patterns in the data and therefore the
same horizontal and vertical translation is obtained, leading to very poor results.

Support Vector Regressor

Figure 45: Predictions 500 samples test set 48h: real values (blue) and predicted values SVR (orange).
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Figure 46: Predictions 200 samples test set 48h: real values (blue) and predicted values SVR (orange).

Figure 47: R2 score plot SVR: Coefficient of determination: -0.07637, MSE: 3273.66

The results obtained by the SVR are quite similar to those obtained by the MLP regressor
and coincide with the same problems seen in the 24-hour forecast. Although they do not
present the vertical translation seen in the MLP Regressor, the horizontal translation is
maintained, which prevents good results from being obtained.

XGBOOST Regressor

Figure 48: Predictions 500 samples test set 48h: real values (blue) and predicted values XGBOOST
Regressor (orange).
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Figure 49: Predictions 200 samples test set 48h: real values (blue) and predicted values XGBOOST
Regressor (orange).

Figure 50: R2 score plot XGBOOST Regressor: Coefficient of determination: 0.8903, MSE: 9.41843

The predictions obtained by the XGBOOST Regressor are still the best, and its results
are good. The interpretability of the offset is very good, being able to obtain results that
are very close to reality. In addition, the determination coefficient continues to be high,
not being penalized by the increase in the prediction window to 48 hours. The model’s
proactivity in anticipating trend changes is good.

Forecasting models comparison: 48h

Figure 51: Predictions 500 samples test set 48h: real values (blue), predicted values XGBOOST
Regressor (orange), predicted values SVR (green) and predicted values MLP Regressor (red)
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Figure 52: Predictions 200 samples test set 48h: real values (blue), predicted values XGBOOST
Regressor (orange), predicted values SVR (green) and predicted values MLP Regressor (red)

Figure 53: MSE (left plot): MLP Regressor, SVR and XGBOOST Regressor (3928.02, 3273.66,
9.41843) — R2 score (right plot): MLP Regressor, SVR and XGBOOST Regressor (-0.29152, -0.07637,

0.8903).

The comparison between models is still quite similar. XGBOOST Regressor improves all
the results obtained by the other models. Obtaining both a better R2 Score metric and a
better MSE.
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4.5 Visualization and deployment

4.5.1 Visualization

To carry out the visualization, a dashboard has been created by integrating InfluxDB with
Grafana. This combination has made it possible to create a control panel with different
metrics that characterize the industrial process. In the dashboard you can see different
indicators with a specific function for each one. The dashboard has been divided into two
parts: (1) operational dashboard that has the objective of indicating the most relevant
parameters of the plant, being able to see the current values of the indicators to know
what their status is, (2) business intelligence dashboard where the predictive analytics is
located and for which the models developed in the previous section are used.

The implemented dashboards are described below, with their purpose, graphics and op-
eration of use that allow understanding how they should be used to carry out a correct
operation.

Figure 54: Decision Panel from Grafana Dashboard

In the first place we can observe the predictive analytics dashboard. This dashboard
shows the indicators related to key metrics such as TOC and organic carbon removal
performance (CRP), these are the two metrics that guide the operation of the plant, so it
is vitally important to obtain a clear vision and to be able to anticipate to trend changes.

Two well-differentiated parts can be seen. The first part consists of indicators in gauge
format, they indicate the current state of the carbon degradation performance and the
current value of the TOC. In addition, by means of a color code, the states of the possible
ranges are shown, which are:

69



• For TOC values:

– TOC < 150: Accepted (Green).

– 150 ≤ TOC < 300: High (Orange).

– TOC ≥ 300: Critical (Red).

• For Carbon Removal Performance (CRP):

– CRP < 0.25: Accepted (Green).

– 0.25 ≤ CRP < 0.75: High (Orange).

– CRP ≥ 0.75: Critical (Red).

In this first part there is also predictive analytics and it is also shown in gauge format.
4 predictive indicators are displayed: TOC value 24h, TOC value 48h, carbon removal
performance 24h and carbon removal performance 48h. These indicators allow anticipating
possible upward trends to carry out a more effective pre-treatment of the water, and
therefore ensure the correct functioning of the water line. These indicators maintain the
same color code as mentioned above.

The second part consists of the historical time series where the evolution of the values
of the key metrics, TOC and carbon removal performance, can be observed in detail.
Especially, it helps to locate episodes of bad operations. The same color code is also
maintained for the indication of the different status of the operation, these thresholds are
shown by horizontal lines in the graphs.

Figure 55: Operational Panel from Grafana Dashboard
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The second part of the dashboard consists of the operational part of the process. As we
have seen in the section on auxiliary signal variable analysis, the parameters that most
influence the operation of the plant is the pH of the ponds, so this variable takes on a
special role in the operational part.

For this part, the variables have been divided into three parts, corresponding to the time
period of each of them. In the first two graphs we obtain information on the historical,
minimum and maximum of the selected period of the Ph of the B40 and B44 ponds.

The two subsequent graphs contain the same information but from the corresponding
pools, first pools B41 and B45 and then pools B42 and B46.

Indicators have been defined by means of colors according to the state of the pH of the
ponds and their interpretation by the operational, the defined states are detailed below:

• pH < 6: Low level (Red).

• 6 ≤ pH < 8: Accepted level (Green).

• pH ≥ 8: High level (Red).

This color legend has been established based on the performance criteria of carbon degra-
dation of bacteria, being the range of 6-8 the indicated so that the colony of bacteria
obtains the optimal conditions to avoid a decrease of individuals below the range putting
at risk the correct degradation of organic carbon. Additionally, in combination with the
predictive dashboard, relationships can be established between pH variation and current
and future TOC and CRP levels.

4.5.2 Deployment

In theoretical section Deployment, the steps for the deployment of the project and its
closure have been established. Therefore, based on the points discussed in this section,
we proceed to detail the steps that should be carried out for the integration of the imple-
mentation of the practical part in production.

As part of the final report, this document in which all the implementations are collected,
theoretical as well as practical, it also contains all the necessary information to know the
reasons and the scope of the project.

For the production of the model, an implementation using docker containers is suggested.
Docker is a software available for Linux, Windows and MacOS, which packages applica-
tions and facilitates their deployment in any environment, its base is the use of lightweight
containers that run processes independently. Its advantages are:

• Docker facilitates distribution: These Dockerfiles are very easy to distribute (it is a
mere text file, very light), and with them we can build each container from scratch,
so dispensing and implementing it is as simple as it is elegant, also relieving the
load when distributing software

• Docker deployment is very fast: This is because the containers are optimized: each
container has its own library and its own executable, that is, strictly what is neces-
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sary. While a virtual machine takes several minutes to launch each container, with
Docker we can do it in seconds.

• The layering system in Docker is very optimal: The layered file system that prevails
in Docker allows optimizing those that are common to several containers: if different
processes require the same file, both are not executed separately, but rather it is
served simultaneously.

• Docker makes the most of the server: Thanks to the hyper-specialization of the
Docker layers, it is possible to increase the density of each of the servers, taking
advantage of resources and optimizing spending, without the loading speed suffering
at any time.

As a service infrastructure, the use of cloud platforms is recommended. It enables exper-
imenting and testing multiple models, cloud allows you to scale your machine learning
projects up and down as needed. You can start with a small set of data points and add
more as you get more confident in your predictions. Traditional machine learning isn’t
just complex and hard to set up: It’s pricey. If you want to train and deploy large ma-
chine learning models, such as deep learning, on your own servers, you’ll need expensive
GPU cards. In order to scale your models to accommodate large-scale needs, you’ll need
high-end GPU units, which means that they’ll remain largely unused during periods of
low use. In other words, you’ll have expensive servers sitting around collecting dust, while
still requiring extensive maintenance. Most popular cloud services also provide SDKs (soft-
ware developer kits) and APIs. This allows you to embed machine learning functionality
directly into applications. They also support most programming languages.
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5 Conclusion and future work

5.1 Conclusions

In this project, a methodology for the implementation of analytical applications in the
field of Industrial Internet of Things has been introduced, explaining the particularities
that this type of applications has. The methodology based on CRIPS-DM adapted to the
problems of the IIOT has served to lay the foundations for the practical implementation
presented and has guided its implementation.

As can be seen throughout this report, all the points of the proposed methodology have
been developed, proposing a theoretical implementation and then using it in a real project
to obtain a specific solution. The only points that have not been practically developed
are the implementation of an infrastructure dedicated to obtaining data from industrial
processes through IoT due to the available access to the extracted data, and it is also
outside the scope of the project. On the other hand, some of the parts that correspond
to the deployment have been carried out in this report.

In the technical part, highlight three tools that have improved the quality of the practical
solution and have helped to obtain a more complete solution:

• InfluxDB is an ideal tool for storing time series, standing out for its efficiency and
speed of reading and writing. Its direct integration with IIoT infrastructure man-
agement tools, visualization tools and the great support provided by the community
make it a very competitive tool.

• After the comparison made between the Multi-Layer Perceptron, Support Vector
Regressor and XGBOOST Regressor models, the comparison of the results made was
surprising. XGBOOT Regressor has offered very good results compared to the other
models, being able to identify the lag problem. The proactivity and anticipation of
the model is good and has allowed obtaining the results to present them in the
visualization tool.

• Grafana has made it possible to implement visualization quickly. The integration
with InfluxDB is direct and very fast, the interface is comfortable to use and it
is pleasant offering a really good experience. The tool helps us study, analyze and
monitor data over a period of time, technically called time series analysis. It helps
us to track the behaviour of key parameters and metrics; the frequency of errors;
the type of errors that appear and the contextual scenarios when providing relative
data.

5.2 Future work

Data science applied to the Industrial Internet of Things is a novelty in the field of data
analytics and, although significant advances have been made in recent years, it is a fairly
new field with projections to become a standard. in the industry.

The attempt to characterize chaotic time series has been developing over the last few years.
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In this project it is very relevant and, therefore, one possibility to expand this project
is to use the latest advances in this field such as ANFIS (adaptive network based fuzzy
inference system) models, which are complex models that can model chaotic processes
with more accuracy. In addition, the use of data windowing could help to obtain better
results in the analysis of chaotic time series, expanding the possibilities of the project.

One of the greatest limitations has been the inability to directly access the IoT devices that
collected the data from the industrial process. This has prevented the initial validation of
the data; in addition, the quality of these data is not the best since by not having access
to the sensors there are many problems in collecting data from them. It has prevented
the implementation of the complete flow of the proposed methodology and, although it is
not project-based, it would have been important to carry out the implementation of the
entire workflow for a more exhaustive validation.

Furthermore, the proposed methodology has been practically tested through its use in a
WWTP project, being able to validate it through its use in another project of a different
scope would make its application much safer in a real scenario.
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