
Fotovoltaic Excess
Management and

Visualization System

Bachelor Thesis

Information Technology Specialization

Pablo Esteban Baquero

Director: Luis Velasco Esteban
(Computer architecture department)

27th June, 2022

1

Contents

Contents

1 Context and scope 4
1.1 Context . 4

1.1.1 Project context . 4
1.1.2 Concepts . 4
1.1.3 Problem to solve . 5
1.1.4 Stakeholders . 5

1.2 Justification . 6
1.2.1 Existing solutions . 6
1.2.2 Existing technologies . 6
1.2.3 Conclusion . 6

1.3 Scope . 7
1.3.1 Objectives . 7
1.3.2 Sub-objectives . 7
1.3.3 Requirements . 7
1.3.4 Obstacles and risks . 8

1.4 Methodology and rigor . 9
1.4.1 Methodology . 9
1.4.2 Rigor . 9

2 Time planning 10
2.1 Task description . 10

2.1.1 Task definition . 10
2.1.2 Resources . 11
2.1.3 Task summary . 12

2.2 Gantt estimates . 13
2.3 Risk management . 14

2.3.1 Inexperience . 14
2.3.2 Security threats . 14
2.3.3 Data loss . 14
2.3.4 Hardware failure . 14
2.3.5 Network issues . 14

3 Budget and sustainability 15
3.1 Budget . 15

3.1.1 Human resources . 15
3.1.2 Material resources . 16
3.1.3 Incidentals . 17
3.1.4 Final budget . 17
3.1.5 Management control . 18

3.2 Sustainability report . 18
3.2.1 Self-assessment . 18
3.2.2 Economic dimension . 19
3.2.3 Environmental dimension . 19
3.2.4 Social dimension . 19

4 Planning changes 20
4.1 Scope . 20
4.2 Time planning . 20
4.3 Budget . 21

CONTENTS 2

Contents

5 Development process 23
5.1 First steps . 23

5.1.1 Central hub . 23
5.1.2 Initial software overview . 28
5.1.3 Initial network overview . 39
5.1.4 MiniPC monitoring integration 40

5.2 Main functionality . 42
5.2.1 Solar inverter . 42
5.2.2 Backup system . 48
5.2.3 Software overview . 52
5.2.4 Network overview . 59
5.2.5 Shelly 3EM integration . 62

5.3 Final additions . 64
5.3.1 Active devices . 64
5.3.2 Final software overview . 67
5.3.3 Final network overview . 69

6 Conclusions 76
6.1 Obstacles . 76
6.2 Mistakes . 76
6.3 Lessons . 77

7 Future work 78

8 References 79

Appendices 88

A User manual 88
A.1 minipc-status.sh . 91
A.2 minipc-status.service . 92
A.3 *.json configuration files . 92
A.4 influxdb-setup.sh . 92
A.5 import-configuration.sh . 93
A.6 export-configuration.sh . 94
A.7 docker-compose.yml . 95
A.8 *.env environment files . 97

B Development listings 98
B.1 Initial docker-compose.yml . 98
B.2 Final docker-compose.yml . 99
B.3 Local . 101

B.3.1 docker-compose.override.yml 101
B.3.2 *.env environment files . 102
B.3.3 internal.sh . 103

B.4 Remote . 105
B.4.1 docker-compose.override.yml 105
B.4.2 *.env environment files . 106
B.4.3 internal.sh . 107

CONTENTS 3

1. Context and scope

1 Context and scope

1.1 Context

This first section aims to provide a general overview of the project as a whole. First,
the context of the project will be laid out. Then, some key concepts will be defined,
followed by a short statement of the problem to solve. Finally, a brief description of
the stakeholders will be given.

1.1.1 Project context

The present document describes the work done for a Bachelor Thesis in Informatics
Engineering in the Facultat d’Informàtica de Barcelona (FIB), faculty of the Uni-
versitat Politècnica de Catalunya (UPC). More precisely, it can be framed as part of
the Information Technology specialization curriculum, within the FIB’s Informatics
Engineering degree.

The project is done within the framework of the university (A modality), although
with the collaboration of Ontec Energy, and is directed by Luis Velasco Esteban.

1.1.2 Concepts

Internet of Things (IoT)

Figure 1: Example of an IoT system [71]

The Internet of Things is a rather broad term used to describe the growing network
of devices able to communicate over the Internet or other communications networks
without the need for human interaction [158]. Many of these devices are embedded

1.1. Context 4

1. Context and scope

with sensors processing ability or software, but their use cases range from built-in
sensors in vehicles to heart monitor implants [71].

Domotics
Also known as home automation, domotics can be summarized as the subset of Inter-
net of Things found in smart homes. These automation systems are able to monitor
and control a wide variety of home attributes, such as lighting or temperature, as well
as taking care of security or task automation [30].

Containerization
A container is a standard unit of software used to run applications quickly and re-
liably from one computing environment to another [63]. Although similar to virtual
machines at a first glance, they serve different purposes: containers are designed to be
lightweight and easily replaceable, while virtual machines are mainly used to provide
isolation and hardware virtualization.

(a) Virtualized operating systems (b) Containerized applications

Figure 2: Comparison between containers and virtual machines [63]

1.1.3 Problem to solve

This project’s main objective, as may be inferred from its title, is the development of
a working prototype for a photovoltaic excess management and visualization system
based on the integration of already existing technologies. In doing so it aims to solve
a practical requirement for the stakeholders.

This description might be a bit vague, but it will be expanded upon in further sections
and should give the reader a general idea for the time being.

1.1.4 Stakeholders

The main stakeholders for this project are twofold: one being the director for this
thesis, Luis Velasco Esteban, researcher at the FIB’s Computer Architecture depart-
ment, and the other one being Ontec Energy as a direct collaborator. The first one
will benefit from the research done during the project, and the second one from the
developed final product.

Aside from the main stakeholders, the results of the project will be of interest to some
other groups of people as well. These will mainly be smart home owners, domotic
companies or researchers sharing similar requirements.

1.1. Context 5

1. Context and scope

1.2 Justification

Whenever a project deals with a software system a decision must be made regarding
how it will be realized: whether it will be developed from scratch, modify an existing
solution or some other alternative. This section will detail some of the explored
existing solution and technologies and justify the final decision made.

1.2.1 Existing solutions

Rather than reinventing the whole wheel, many times what a project needs to achieve
its goal is to find an already existing solution that fits its requirements and configure
or adapt it to its particular needs.

Home assistant [149] could be one such solution for this project. It is a free and
open-source software for home automation designed to be a smart home’s main control
system. Many IoT devices and software are supported as additional modules, which
makes it highly customizable.

1.2.2 Existing technologies

It can also be the case that no perfect solution exists for the problem at hand, so
that the best solution is to combine independent technologies to achieve the desired
functionality. As we shall see later on, there are many perfectly useful technologies
out there that can be leveraged to build a solution to our problem.

1.2.3 Conclusion

In order to not be tied to a particular stack and some other reasons, the design decision
made for this project is to build the system by integrating existing technologies.

To implement this we’ll make use of a microservice architecture, a way of designing
applications as suites of independently deployable services which has gained traction
in recent years and can bee seen in opposition to a monolithic architecture [107, 147].

(a) Monolithic architecture (b) Microservice architecture

Figure 3: Comparison between the two architectures [138]

1.2. Justification 6

1. Context and scope

1.3 Scope

So far the project has been described in a general manner only. In order to narrow
down its scope some specifics need to be addressed.

First of all, the main objectives of the project will be described together with more
fine-grained sub-objectives. Then, requirements, both functional and non-functional,
will follow. Finally, obstacles and risks will be considered.

1.3.1 Objectives

This project’s main objective, as may be inferred from its title, is the development of
a working prototype for a photovoltaic excess management and visualization system
based on the integration of already existing technologies.

In more concrete terms, this means the implementation of a software-based solution
capable of managing excess power from a smart home or similar installation (track-
ing use of imported/exported power, deciding when and how to use excess power,
etc.), as well as visualizing it (consumption of different devices, computation of power
costs/benefits, hardware resources, etc.).

1.3.2 Sub-objectives

In order to attain the above-mentioned objectives, they will be further subdivided
into simpler, more concrete sub-objectives:

• Study the IoT devices that will be used in the project as well as the protocols
used to interface with them.

• Study the various software components that will be used within the project and
how they interact with each other.

• Explore and understand how electrical import and export prices are determined
by electrical companies and develop algorithms to minimize costs.

• Install and configure the hardware devices according to the network topology.

• Implement the system by deploying and configuring the required components
and ensure proper communication between them.

1.3.3 Requirements

To fulfill all of the objectives some requirements need to be met. These are further
divided into hardware, functional and non-functional requirements.

Hardware requirements
These are some of the hardware devices that will be needed for the project:

• Management unit: The system should by driven by a central device with an
additional requirement that it be low-powered, as it may need to be embedded
into other systems. The chosen device is an Asus MiniPC, although it could
easily be replaced by some other Linux low-power device such as a Raspberry.

• Solar inverter: The chosen device is an Autarco inverter.

1.3. Scope 7

1. Context and scope

Functional requirements
These are the main components of the system to be built:

• IoT wiring: The hub of the system, framework used to coordinate all devices
and act as a middleman for the other components. Node-RED [23] will be
used.

• Messaging protocol: Communication protocol able to communicate different
IoT devices in an efficient manner. MQTT [126] will be used.

• Database: Fast and lightweight persistent storage able to store all the data
generated by devices. InfluxDB [92] will be used.

• Visualization tool: Tool capable of displaying and transforming the informa-
tion stored in the database. Grafana [104] will be used.

• Container engine: Component used to deploy and manage all other compon-
ents as containerized services. Docker [62] will be used.

Non-functional requirements
During the development of the system, some quality attributes should be kept in mind
to ensure a good final result. Following are the main such attributes in no particular
order:

• Reliability: To provide a good user experience the system should be able to
provide diagnostic information and tolerate failures. In particular it should be
able to tolerate failure on services, devices and the network.

• Performance: Since most IoT devices have limited computational resources
performance should be kept in mind when designing the system.

• Reusability: Modularity in software not only allows for a better understanding
of the system by reducing its complexity but also make reusing existing pieces
in other projects feasible.

• Security: Nowadays vulnerabilities are being found increasingly both in soft-
ware and hardware, for this reason, systems should be designed with security in
mind. This is specially important for IoT devices, since a compromised device
could affect many others.

1.3.4 Obstacles and risks

As with every other project, some precautions must be taken to ensure that it can
continue even in the face of unexpected events. What follows is a non-exhaustive list
of obstacles and risks, short enough to be useful while remaining faithful to the actual
project setting (otherwise, it would most likely be infinite).

• Inexperience

• Security threats

• Data loss

• Hardware failure

• Network problems

1.3. Scope 8

1. Context and scope

1.4 Methodology and rigor

Because a project without methodology is not such, this section will deal with the
development methodology that will be applied throughout the project to ensure its
proper planning and execution, as well as the development principles that will be
followed so that all requirements are met with rigor.

1.4.1 Methodology

Traditionally, development and IT operations teams have carried out their work sep-
arately from each other, which often results in unexpected problems or a subpar end
product due miscommunication between the teams. DevOps aims to solve this issue
by integrating both aspects into a single methodology [110, 51].

In addition to integrating the development and administration of applications the
DevOps methodology also tries to go beyond that and include stakeholders (end-
users, customers, etc.) into the life cycle of the project.

Figure 4: DevOps methodology [51]

Although this project is lead by a one-man team, its core principles remain applic-
able and its focus in integrating both development and administration should prove
beneficial for our security and reliability requirements.

1.4.2 Rigor

Rigor will be enforced by following industry best practices: application develop-
ment guidelines such as Twelve-Factor App from Heroku [155] or NGINX’s Mi-
croservices Reference Architecture [147] and work will be tracked using git as
a revision control system on GitHub.

In addition to that meetings with both the tutor and Ontec will be scheduled regularly
to discuss updates in the project or notify changes in planning.

1.4. Methodology and rigor 9

2. Time planning

2 Time planning

2.1 Task description

Defining a time planning for a project requires a good understanding of the individual
tasks that will need to be carried out during its course. This section aims to define
tasks reflecting the objectives and requirements mentioned previously as well as to
describe their dependencies on resources and other tasks.

The project was officially inscribed the 15th of December 2021, although actual work
started some time after, and is expected to finish around June 2022. This leaves us
with about 150 days and 500 hours of work, or about 3 hours of work per day.

2.1.1 Task definition

The project will be divided into four main tasks, some of which will be executed in
parallel with others. These tasks will be briefly described and further divided into
more manageable sub-tasks, which will be more precisely defined.

Project management
The appropriate management of a project is of utmost importance. The following are
tasks that will allow the project to develop in a focused and controlled manner:

• Meetings: Meetings scheduled with the tutor to give updates on the imple-
mentation of the project and get feedback to ensure its proper progress.

• Context and scope: Description of the project’s context and scope, including
an overview of concepts used and a definition of its objectives and requirements.

• Time planning: Definition of the tasks to be carried out during the project,
the resources required to fulfill said tasks and the dependencies between them.

• Budget and sustainability: Creation of a budget for the project and analysis
of its sustainability considering economic, environmental and social dimensions.

• Initial report: Devising of a preliminary report based on the initial manage-
ment tasks that will serve as basis for the final thesis report.

Documentation
As the project progresses changes and improvements made will need to be docu-
mented. Given its importance and changing nature, this task will be present all
throughout most part of the project.

• General documentation: Documentation for developers and stakeholders.

• Thesis report: Creation of the document that will serve as a written record
of the work done in the project as well as the problems faced during its course.

• Thesis defense: Creation of a presentation for the thesis defense aiming to
provide a brief summary of the thesis report in spoken form.

Initial prototype
This task could be considered the first stage of the project, essentially the develop-
ment of a minimum viable product with the essential features required by the main
stakeholders. This stage of the project will be comprised of the following tasks:

2.1. Task description 10

2. Time planning

• Software study: Study of the various software technologies that will be used
in the project together with the possible interactions between them.

• Device study: Study of the various devices that will be used in the project as
well as their software requirements and communication methods.

• Environment setup: Installation of the required combination of operating
system and software on the initial devices and configuration of the system.

• Prototype implementation: Implementation of the actual system. It should
be able to monitor system resources, keep track of the exported and imported
power and distribute excess power among devices.

Final product
If the initial prototype was the first stage of the project, this is the second and last
stage. The final product stage will consist in the addition of extra features, quality
control and refinement of the prototype developed during the first stage.

• Additional features: Features not present in the original prototype that the
stakeholders consider necessary for the final product.

• Prototype testing: Testing of the developed product to ensure that both
functional and non-functional requirements are met.

• Prototype polishing: Improvement of the final product (e.g., user experience)
and fixing of any flaws found through testing.

2.1.2 Resources

Many of the tasks depend on resources to be accomplished, these will be grouped into
human and material resources and named accordingly to increase readability.

Human resources
These resources include the following people and organizations:

• Student [H1]: I, Pablo Esteban Baquero, will be in charge of developing,
troubleshooting and documenting the project for the most part.

• Tutor [H2]: The tutor, Luis Velasco Esteban, will mentor the project by
scheduling meetings with H1 and H3, giving advice on technical aspects and
providing feedback for the overall project.

• Collaborators [H3]: The collaborators, Ontec Energy, will be in charge of
defining the project requirements and providing most of the material resources
included in M4 and M6.

Material resources
These resources include the following software and devices:

• Documentation software [M1]: The software used to document the project
will consist in the LATEX typesetting suite together with Biber as the biblio-
graphy backend and GanttPro for the creation of Gantt diagrams.

• Version control software [M2]: All code and documentation in the document
will be tracked using the git version control system and GitLab will be used
as a remote storage location to prevent data loss if something goes wrong.

2.1. Task description 11

2. Time planning

• Development software [M3]: As mentioned in previous sections, the project
will follow a microservice architecture managed with Docker and the main
software components will be those mentioned in it. Additionally, OpenVPN
will be used to allow remote access to the environment.

• Development devices [M4]: During the development of the prototype the
only required devices will be the ASUS MiniPC, used as the development
environment, together with some IoT devices provided by H2 and H1’s personal
computer.

• Additional software [M5]: Software required to carry out the implementation
of additional features should the stakeholders require it.

• Additional devices [M6]: Devices required to carry out the implementation
of additional features should the stakeholders require it.

2.1.3 Task summary

According to the FIB’s academic regulations a thesis is worth 18 ECTS, which roughly
corresponds to 500 hours of dedication. This section will give a rough time estimate
for every task by distributing the total dedication time of the project among them.

Besides time estimates, dependencies on tasks and resources will also be indicated,
but with some caveats. Dependencies of dependencies aren’t explicitly mentioned to
avoid clutter. For the same reason, resource H1 (i.e., myself) will be assumed to be
implicitly required by all tasks.

ID Task Time Dependencies Resources

T1 Project management 80h

T1.1 Meetings 20h H2
T1.2 Context and scope 15h
T1.3 Time planning 15h T1.2
T1.4 Budget and sustainability 15h T1.3
T1.5 Initial report 15h T1.4

T2 Documentation 70h

T2.1 General documentation 25h M1,M2
T2.2 Thesis report 25h T1.5 M1,M2
T2.3 Thesis defense 20h T2.1 M1,M2

T3 Initial prototype 200h

T3.1 Software study 50h M3,H2
T3.2 Device study 50h M4,H2
T3.3 Environment setup 50h M3,M4,H2
T3.4 Prototype implementation 50h T3.3 M2-M4,H2

T4 Final product 150h T3

T4.1 Additional features 50h T3.4 M2-M6,H3
T4.2 Prototype testing 50h T4.1 M2-M6,H3
T4.3 Prototype polihsing 50h T4.1 M2-M6,H3

Total 500h

Table 1: Summary of the tasks

2.1. Task description 12

2. Time planning

2.2 Gantt estimates

Figure 5 shows an estimated timeline for the project with all the tasks previously
described. The start date is taken from the first meeting with the director and ends
with the approximate date of the thesis defense.

Figure 5: Gantt diagram of the tasks

2.2. Gantt estimates 13

2. Time planning

2.3 Risk management

Previously, risks and obstacles were only mentioned, in this section they will be revis-
ited, and for each of them a solution will be proposed that accounts for their impact
on the project, alternative tasks or additional resources that may be required.

2.3.1 Inexperience

Because I haven’t previously worked on any IoT project and am not very familiar
with the field any problems that arise related to it could pose a threat to the time
planning. If such a problem was serious enough it could cause a delay in some of the
tasks and as result affect the deadline of the project.

Hopefully my own study together with the tutor’s guidance will be enough to avoid
this type of situation. At any rate, to mitigate such an issue more time could be
allocated to its troubleshooting while sacrificing some additional features.

2.3.2 Security threats

According to the DevOps methodology, security should be inherent to the devel-
opment process and not separate process or an afterthought. As a result, if the
methodology is followed, any security threats should be minimized.

Again, reality is often unpredictable and such contingencies must be accounted for.
In the event that any security concerns arise they could be addressed by adding an
additional task focused on the securing of the system as a whole.

2.3.3 Data loss

Any project that runs for long enough must at some point face the common problem
of data loss. For this reason, the project will backup all of its code in a GitLab
repository from day one. For the time being other types of data (e.g., resource
monitoring data) won’t be backed up as they can easily be regenerated.

Once the project enters its second stage, however, data loss could prove fatal for the
project’s progress. With that in mind, a new resource such as Amazon’s S3 might be
required for the purpose of general data backups.

2.3.4 Hardware failure

Another common problem found in any project dealing with devices is that of hard-
ware failure. This is specially true for projects involving multiple devices (as indicated
by the MTTF formula), such as an IoT project.

If a hardware failure were to occur on a device it would most likely need to be replaced
by another one. This would imply the purchase of an additional resource, which will
have an impact on the budget and sustainability of the project.

2.3.5 Network issues

Many of the tasks in the project will be done remotely, as the physical devices will be
in installations belonging to either H2 or H3. Connectivity issues due to bad Internet
access or VPN misconfiguration could have an impact on productivity.

To get around this problem other tasks not requiring remote access could be prioritized
while the problem persits or the remote enviornment be locally replicated.

2.3. Risk management 14

3. Budget and sustainability

3 Budget and sustainability

3.1 Budget

Once a planning has been laid out for the project, it becomes necessary to draw up
a budget matching the contents outlined in it. This section will deal with the identi-
fication of costs by dividing them into human and material resources, relating them
to the tasks that constitute the project as well as taking amortization, contingencies
and incidentals into account.

3.1.1 Human resources

In order to compute costs derived from human resources, we must first define a list
of roles together with their corresponding salary. Resources H2 and H3 will each
correspond to a single role, but H1 will be divided into three roles that mirrors the
main groups of tasks in the project. Table 3 shows these roles together with estimated
hourly salaries based on data obtained through Glassdoor (except for H2, and H3).
Table 2 shows the staff cost computed from the list of tasks according to the estimated
dedication time of each role and their respective salaries.

ID Task Time per role Cost (€)

H1.1 H1.2 H1.3 H2 H3

T1 Project management 80h 20h 2180.00

T1.1 Meetings 20h 20h 920.00
T1.2 Context and scope 15h 315.00
T1.3 Time planning 15h 315.00
T1.4 Budget and sustainability 15h 315.00
T1.5 Initial report 15h 315.00

T2 Documentation 70h 1470.00

T2.1 General documentation 25h 525.00
T2.2 Thesis report 25h 525.00
T2.3 Thesis defense 20h 420.00

T3 Initial prototype 200h 20h 3900.00

T3.1 Software study 50h 850.00
T3.2 Device study 50h 850.00
T3.3 Environment setup 50h 10h 1100.00
T3.4 Prototype implementation 50h 10h 1100.00

T4 Final product 75h 75h 20h 2825.00

T4.1 Additional features 50h 850.00
T4.2 Prototype testing 50h 10h 950.00
T4.3 Prototype polihsing 25h 25h 10h 1025.00

Total 150h 275h 75h 40h 20h 10375.00

Table 2: Staff cost estimates by task

3.1. Budget 15

https://www.glassdoor.es

3. Budget and sustainability

ID Role Cost (€/hour)

H1.1 Junior Project manager 21.00

H1.2 Junior DevOps engineer 17.00

H1.3 Junior QA engineer 14.00

H2 Project tutor 25.00

H3 Project collaborator 25.00

Table 3: Hourly salary estimates for staff according to roles

3.1.2 Material resources

This section identifies costs that do not qualify as human resources and classifies them
as either software or hardware resources.

Software

All software that will be used during
the project is either open source or free
to use, as a result software costs are
nonexistent. Products marked with an
asterisk include paid versions, but for
our purposes its free version is enough.
Tables 4, 5 and 6 show costs for
development, storage and backup, and
miscelaneous software respectively.

ID Software Cost (€)

SW1.1 Docker 0.00

SW1.2 MQTT 0.00

SW1.3 Node-RED 0.00

SW1.4 Grafana 0.00

SW1.5 InfluxDB 0.00

Table 4: Cost estimates for develop-
ment software

ID Software Cost (€)

SW2.1 Amazon S3* 0.00

SW2.2 GitLab* 0.00

SW2.3 Duplicity 0.00

Table 5: Cost estimates for storage
and backup software

ID Software Cost (€)

SW3.1 git 0.00

SW3.2 LATEX 0.00

SW3.3 OpenVPN 0.00

Table 6: Cost estimates for other mis-
celaneous software

Hardware
Throughout the course of the project many hardware devices will be used, but for the
purpose of this preliminar examination only those that are being used at the moment
will be taken into account.

To account for amortizations, which will be computed using the following formula,
HW1 and HW2 are assumed to be used for the duration of the project (500h) and
HW3 and HW4 to always be on after being set up (4 months):

amortization = cost(euros) · usage(hours)

lifetime(hours)

3.1. Budget 16

3. Budget and sustainability

ID Hardware Lifetime Cost (€) Amortization (€)

HW1 ASUS Aspire 3 4 years 499.99 7.13

HW2 Logitech M220 3 years 25.99 0.49

HW3 ASUS MiniPC 4 years 354.00 29.10

HW4 Autarco SX-MII 10 years 500.00 16.44

Total 53.16

Table 7: Hardware cost estimates

3.1.3 Incidentals

Incidental costs are those related to the risks detailed in previous sections, more pre-
cisely, those having to do with the replacement of hardware devices due to failures or
the necessity of overtime work (estimated as 50h) for a given role (due to inexperience,
security threats, data loss or network problems). The probabilites given to each of
the incidentals are rather arbitrary and could be enhanced by a more careful analysis.

Incidental Probability (%) Cost (€) Estimate (€)

HW1 failure 5 499.99 25.00

HW2 failure 5 25.99 1.30

HW3 failure 5 354.00 17.70

HW4 failure 5 500.00 25.00

H1.1 overtime 15 1050.00 157.50

H1.2 overtime 15 1350.00 202.50

H1.3 overtime 15 700.00 105.00

Total 534.00

Table 8: Incidental cost estimates

3.1.4 Final budget

Defining an accurate budget is a difficult task, even more so when one does not have
experience, and, as a result, deviations from the budget may arise from miscalcula-
tions. Table 9 shows the final budget together with an additional contingency cost
that oversizes the orginal budget a 10% to account for possible deviations.

Concept Base (€) Contingency (€) Final (€)

Human resources 10375.00 1037.50 11412.50

Material resources 53.16 5.32 58.48

Incidentals 534.00 53.40 587.40

Total 10962.16 1096.22 12058.38

Table 9: Final budget cost estimates

3.1. Budget 17

3. Budget and sustainability

3.1.5 Management control

As it has been mentioned previously, the real budget might end up deviating from
the computed one, even with the 10% oversize provided by the addition of contingen-
cies. To facilitate control of the budget whenever deviations occur, some numerical
indicators will be defined.

Concept Indicator

Task cost (estimated cost− real cost) · real hours
Human resources cost estimated cost− real cost

Material resources cost estimated cost− real cost

Hour number estimated hours− real hours

Table 10: Budget numerical indicators

3.2 Sustainability report

Every project needs to analyze its sustainability in a way that accounts for the complex
reality it resides in. Following are a self-assessment regarding sustainability together
with an analysis of the economic, environmental and social dimensions of the project.

3.2.1 Self-assessment

This section should contain a summary of the self-evaluation survey regarding sus-
tainability, but that will not be the case. In its place, I, the author of this botch, will
use this space to briefly complain about the academic system.

Most of modern academic production could be caracterized as tedious paperwork that
nobody will ever bother to read. It comes as no surprise, then, that a great deal of
the time spent on the TFG is to be dedicated to writing a report that no one cares
about, instead of doing actual research or developing something worth the time.

As I see it, the way the TFG currently operates encourages the mass production of
half-assed report papers that will just sit wasting space in the university’s database
and, perhaps, even hinder the discovery of noteworthy research due to an overabund-
ance of mediocre work (this one being no exception).

Students, for the most part, will go on to work a normal job and not do any kind
of academic research, so why should they be required to invest so much time into
something that will be of little to no use in their career instead of focusing on the
practical side of things?

It could be argued that the elaboration of a report helps the student develop some
soft skills such as time management, critical thinking or communication competence,
but I think that is far from reality. By the time the TFG must be done, most students
have already attained such skills, and if in more than three years they have not, what
makes somebody think that they will have by the end of it?

Overall, I think it is a huge time sink that, in most cases, serves no real purpose other
than checking the corresponding box off on the university syllabus, and that both
faculty staff and students would be better off without it.

3.2. Sustainability report 18

3. Budget and sustainability

3.2.2 Economic dimension

Have you estimated the cost for the completion of the project?

The cost of the project has been roughly estimated following some of the guidelines
provided by the university. However, due to a lack of knowledge regarding economics
and project management the quality achieved is probably quite low.

How will your solution improve economic issues with respect to other
existing solutions?

The proposed solution will most likely not improve previous solutions but rather build
on top of already working ones.

3.2.3 Environmental dimension

Have you estimated the environmental impact of the project? Did you
plan to minimize its impact, for example, by reusing resources?

Although the environmental impact of the project has not been estimated as such,
its impact will most likely be favorable. As the central idea of the project is that of
measuring and managing power excess from photovoltaic generation, it could easily
be expanded to account for environmental issues.

Many of the devices used throughout the project were already owned by some of the
parties involved, so in a sense they are already being reused. In addition to that,
most of them are low-powered, which reduces the energy consumption of the project.

How will your solution improve environmental issues with respect to other
existing solutions?

The proposed solution will most likely not improve previous solutions but rather build
on top of already working ones.

3.2.4 Social dimension

What do you think you will achieve, in terms of personal growth, from
working on this project?

By the end of the project I expect to have learned more about the Internet of Things,
microservices and how they relate to one another as well as hands-on experience
regarding containerization technologies.

How will your solution improve environmental issues with respect to other
existing solutions?

The proposed solution will most likely not improve previous solutions but rather build
on top of already working ones.

Is there a real need for the project?

The main stakeholders do have a need for the project, but in more general terms,
most likely no, as there already are alternative solutions to the one presented herein.

3.2. Sustainability report 19

4. Planning changes

4 Planning changes

As it was previously mentioned, any project is subject to unexpected events that are
bound to have an impact on its original planning decisions. While minor changes
were to be expected, some noticeable changes have been necessary.

The following section is written to account for said changes, making amends to the
scope, time planning and budget definitions outlined in the previous sections.

4.1 Scope

Lack of experience, remote work, and miscommunication, among many other factors,
have impacted and somewhat limited the extent to which the project could progress.
This has required a change in its scope to better reflect reality.

Although the core of the project remains the same, that is the development of a
photovoltaic excess management and visualization system, its main objective has
shifted from the creation of a fully working prototype to the creation of a more
limited proof of concept, together with the documentation of obstacles and solutions.

Sub-objectives previously described are broad enough that they can still be used as
long as one keeps in mind the new main objective described above.

4.2 Time planning

ID Task Time Dependencies Resources

T1 Project management 80h

T1.1 Meetings 20h H2
T1.2 Context and scope 15h
T1.3 Time planning 15h T1.2
T1.4 Budget and sustainability 15h T1.3
T1.5 Initial report 15h T1.4

T2 Documentation 70h

T2.1 General documentation 25h M1,M2
T2.2 Thesis report 25h T1.5 M1,M2
T2.3 Thesis defense 20h T2.1 M1,M2

T3 Initial prototype 275h

T3.1 Software study 75h M3,H2
T3.2 Device study 75h M4,H2
T3.3 Environment setup 75h M3,M4,H2
T3.4 Prototype implementation 50h T3.3 M2-M4,H2

T4 Final product 75h T3

T4.1 Additional features 25h T3.4 M2-M6,H3
T4.2 Prototype testing 25h T4.1 M2-M6,H3
T4.3 Prototype polihsing 25h T4.1 M2-M6,H3

Total 500h

Table 11: Summary of the tasks after reassessment

4.1. Scope 20

4. Planning changes

The aforementioned change in scope also implies a change to the the way work hours
are split between tasks. The number and order of tasks will however stay the same,
as the sub-objectives and, therefore, logical units of work remain mostly the same

Because a lot more time than expected has been devoted to finding, debugging and
solving both hardware and software issues, more hours have been allotted for both
hardware and software study tasks as well as environment setup. The hours given to
these tasks will be deduced from those related to improving the final product.

4.3 Budget

After reworking the distribution of hours, the budget must be modified accordingly.
In addition to that, some new devices have been acquired during the course of the
project, increasing costs and, as a result, requiring a reassessment of the budget.

Since the number of hours is unchanged and the only other factor having an impact
on human resources is the hourly wage of a given resoruces a similar cost is to be
expected.

ID Task Time per role Cost (€)

H1.1 H1.2 H1.3 H2 H3

T1 Project management 80h 20h 2180.00

T1.1 Meetings 20h 20h 920.00
T1.2 Context and scope 15h 315.00
T1.3 Time planning 15h 315.00
T1.4 Budget and sustainability 15h 315.00
T1.5 Initial report 15h 315.00

T2 Documentation 70h 1470.00

T2.1 General documentation 25h 525.00
T2.2 Thesis report 25h 525.00
T2.3 Thesis defense 20h 420.00

T3 Initial prototype 275h 20h 5175.00

T3.1 Software study 75h 1275.00
T3.2 Device study 75h 1275.00
T3.3 Environment setup 75h 10h 1525.00
T3.4 Prototype implementation 50h 10h 1100.00

T4 Final product 37.5h 37.5h 20h 1162.50

T4.1 Additional features 25h 425.00
T4.2 Prototype testing 25h 10h 600.00
T4.3 Prototype polihsing 12.5h 12.5h 10h 637.50

Total 150h 312.5h 37.5h 40h 20h 10487.50

Table 12: Staff cost estimates by task after reassessment

4.3. Budget 21

4. Planning changes

As will be explained in later sections, new devices were acquired after having finished
the initial budget estimate. Although they were not bought at the exact same time
as previous devices, it was a close enough date that ammortization will be computed
over the same period of time, i.e. 4 months.

ID Hardware Lifetime Cost (€) Amortization (€)

HW5 Shelly 3EM 2 years 119.88 19.71

HW6 Shelly Plug S (3) 2 years 57.24 9.41

HW7 OpenEVSE 4 years 300 24.66

Total 53.78

Table 13: Additional hardware cost estimates

We also need to account for inicidental costs related to the new hardware devices:

Incidental Probability (%) Cost (€) Estimate (€)

HW5 failure 5 119.88 5.99

HW6 failure 5 57.24 2.86

HW7 failure 5 300 15

Total 23.85

Table 14: Additional incidentals cost estimates

After adding everything up we end up with a relatively similar final budget:

Concept Base (€) Contingency (€) Final (€)

Human resources 10487.50 1049.80 11537.30

Material resources 53.16 5.32 58.48

Incidentals 534.00 53.40 587.40

Additional material resources 53.78 5.38 59.16

Additional incidentals 23.85 2.39 26.24

Total 11152.29 1115.23 12267.52

Table 15: Final budget cost estimates after reassessment

If we now compute the differences between the previous and current budget we get
10487.50 − 10375.00 = 112.5 (1% increase) for human resources, 59.16 (101% in-
crease) for material resources and 12267.52 − 12058.38 = 209.14 (2% increase) for
the total budget. Considering the original 10% budget oversize it seems a somewhat
reasonable deviation.

4.3. Budget 22

5. Development process

5 Development process

The following section aims to document the development process of the project, in-
cluding some of the problems found during it as well as the solutions or workarounds
for said problems. Some particular details might have been left out for not being
specially relevant or because of time constraints.

The narration more or less follows the order in which events happened during actual
development. Explanation of the events are intertwined with relevant sections of logs
or code, unless they are too long, in which case they can be found in the appendix,
at the end of this document.

Finally, in addition to the content described above, the appendix also contains a user
manual (A) which describes in a straightforward manner the installation and setup
of the system, targeted at a potential developer wanting to test it.

5.1 First steps

5.1.1 Central hub

The first thing that had to be done was to decide the physical device that would be
in charge of receiving data, processing it and delivering the necessary signals to other
devices, essentially providing a central hub for communications.

At the start of the project the hardware in mind was some kind of low-power such
as a Raspberry, as it would not only provide a cost-effective and well-tested device,
but also one that is thoroughly documented and backed by a large user community,
which would make development easier. This idea, however, was quickly discarded, as,
at the time of writing, these devices are not easily available [153] due to a prevalent
global chip shortage [24].

In its place, it was decided that a MiniPC [14] from ASUS would be used, which,
although more expensive, had more computing power and runs an x86 processor
instead of an ARM, which perhaps could have made things more complicated in terms
of installing packages and troubleshooting.

Operating system
Once the appropriate hardware device had been chosen the next task would be to
select an operating system and install it. The choice was restricted to Linux distri-
butions, as that is what is most commonly used in these types of installations and
what I am most familiar with.

Because the system would need to be stable and easily maintainable, rolling release
distributions were discarded, and because the target hardware is somewhat limited
in computing power the decision made was Ubuntu Server. The main difference
between the server and desktop versions boils down to some configuration aspects as
well as a headless (i.e. no GUI) approach to the server version to reduce unnecessary
workload. If sometime later there was a need for a graphical interface it would be
possible to install it nevertheless.

The installation was carried out with a USB formatted with the Ubuntu live CD image
[150]. During the process a few problems arose which will be described together with
the solutions devised.

5.1. First steps 23

5. Development process

MiniPC network card
The first problem encountered when trying to install the operating system was the
lack of internet connection. According to the specifications [14], the MiniPC PN41

had both a wired network interface (RTL8125B-CG [137]) and an integrated wireless
network interface, neither of which was recognized. Even if one decided to proceed
with the installation, it would eventually run into problems, so it had to be fixed.

Figure 6: Ubuntu installer missing network error (recreated on VirtualBox)

As it turns out, the Ethernet network interface was not recognized because of a
missing driver on the live CD, as it was a somewhat recent addition to the mainline
kernel and had not yet made its way to the kernel shipped in the default Ubuntu

20.04 version [133].

Figure 7: Ubuntu installer HWE option (recreated on VirtualBox)

5.1. First steps 24

5. Development process

Indeed, the command uname -a reported a 5.4.0 kernel on the default installer while
the driver for the network card in question was first introduced in the 5.9.0 version
[133], so it makes sense that it did not work.

The proposed solutions were to either install Ubuntu with Hardware Enablement
(HWE), a stack providing support for a more recent kernel [151], or to manually install
Realtek’s driver [136]. After booting the live CD with the HWE and executing uname

-a again the kernel version returned was 5.13.0. Running lshw now displayed the
expected output, internet was accessible and the installation could proceed.

*-pci:1

description: PCI bridge

product: Intel Corporation

(···)
*-network

description: Ethernet interface

product: RTL8125 2.5GbE Controller

vendor: Realtek Semiconductor Co., Ltd.

(···)

Listing 1: Relevant output of lshw after selecting the HWE installer

MiniPC SSD
Right after the network problem was solved another more concerning one arose. Ac-
cording to the installer the system had no storage devices connected to it, which
meant it would be unable to continue unless one was supplied.

Figure 8: Ubuntu installer missing disk error (recreated on VirtualBox)

This time the specifications [14] allowed for a variety of devices, but according to
the retailer who sold it, it should have had an NVMe SSD attached by default. The
computer’s UEFI, however, agreed with the installer in not detecting any storage
devices. This made it even stranger, since if it could not see it either there must have
been something wrong with the hardware.

5.1. First steps 25

5. Development process

Figure 9: UEFI showing no NVMe devices

For the time being, the operating system was installed on a USB stick, and while
everything else worked as it should have, lsblk and lshw still gave no clue as to what
could be wrong with the SSD device, the system seemed unable to detect it.

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

loop0 7:0 0 55.4M 1 loop /snap/core18/2128

loop1 7:1 0 32.3M 1 loop /snap/snapd/12704

loop2 7:2 0 70.3M 1 loop /snap/lxd/21029

sda 8:0 1 7.4G 0 disk

+-sda1 8:1 1 512M 0 part /boot/efi

`-sda2 8:2 1 6.9G 0 part /

Listing 2: Output of lsblk after installation on a USB

Fearing that the issue might have been a hardware one, I decided to take a look inside
the computer’s case and, surprisingly, at a first glance nothing seemed out of place:
the SSD was properly connected where it should have been, there was no apparent
damage to any of the components, and, most importantly, nothing smelled burnt.

After noticing that the installed SSD was labeled as a SATA and doing looking around
the problem was found out to be an incompatibility at the interface level. As the
UEFI had previously reported, no NVMe was found, because the inserted device was
not one. Even if the form factor is the same M.2 [100] the underlying protocol must
also match the one the hardware interface is expecting, NVMe in this case [101].

5.1. First steps 26

5. Development process

Figure 10: SATA SSD inside the MiniPC

As a result, the machine had to be brought back to the retailer so the incompatible
SSD could be replace with an appropriate one. Finally, after having the brand new
NVMe installed everything was working as expected. lshw now showed an entry for
the device and, during installation, partitions were created without any problems, as
can be seen in the output of lsblk.

*-pci:0

description: PCI bridge

product: Intel Corporation

(···)
*-storage

description: Non-Volatile memory controller

product: Sandisk Corp

(···)
*-nvme0

description: NVMe device

product: WDC WDS500G2B0C-00PXH0

(···)

Listing 3: Relevant output of lshw after installing NVMe

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

loop0 7:0 0 55.5M 1 loop /snap/core18/2344

loop1 7:1 0 44.7M 1 loop /snap/snapd/15534

loop2 7:2 0 67.8M 1 loop /snap/lxd/22753

nvme0n1 259:0 0 465.8G 0 disk

+-nvme0n1p1 259:1 0 512M 0 part /boot/efi

`-nvme0n1p2 259:2 0 465.3G 0 part /

Listing 4: Output of lsblk after installation on the NVMe

5.1. First steps 27

5. Development process

5.1.2 Initial software overview

After having installed the operating system it was time to start testing locally the
different technologies that would be involved in the project, as, for the most part, I
had never used them before.

What follows is a diagram (this one and others in future sections have been created
using the free graph editor tool yEd) of the main software services being run on
the device, either containerized in Docker or as native system services, some of the
relationships among them as well as the port mapping of containers in the case of
Docker services or the exposed ports in the case of native ones:

Figure 11: Diagram of the local software stack

The following sections aim to describe in some detail the role that each technology
plays within the whole stack. The initial setup process is also skimmed over, but
proper installation and configuration instructions can be found in the appendix, either
in the user manual (A) or in scripts following the manual.

Note, however, that this section describes the software used in the initial local set-
ting, which will be improved and modified in later versions, including the removal or
replacement of some technologies due to changes in design.

Throughout the explanation some pieces of code will be referenced which, unless they
appear inlined with the rest of the explanation, can be found in the appendix’s listings
section (B). Some fragments containing sensible information, such as passwords or
tokens in configuration files, have been marked as redacted, but when replaced with
valid values they should still be functional.

5.1. First steps 28

https://www.yworks.com/products/yed

5. Development process

Docker
Historically, software has been developed in the exact same environment as the rest
of the operating system and by using the same tools (e.g. package managers) for the
dependency management of both. This coexistence often was the cause for the so-
called dependency hell [27, 124], an aptly named phenomenon consisting in the clash
of software packages due to reliance on different versions of the same dependency.

More recently, different programming languages/frameworks have tried to tackle the
issue by means of different methods, the most well known relying on the isolation of
system and development directories, such as python’s virtual environments [135] or
npm’s local packages [123]. The list of examples could go on and on, but all of them
suffer from a common issue, that of being tied to a particular software.

(a) Package manager (b) Module manager (npm) (c) Container engine

Figure 12: Dependency conflict management with different abstractions [124]

As the cloud gained traction and DevOps methodologies became predominant, the
increasing number of deployments proved that the need for faster, cheaper and more
reproducible environments could not be covered by virtual machines and CI/CD tech-
nologies alone, and that a new solution was required to tackle the problem.

Containers (or a primitive ancestor) initially appeared as a means to isolate pro-
cesses in order to provide a restricted environment to the user [156]. Eventually, they
evolved into what they are today, and, leveraging some of the same concepts men-
tioned above, they implement the concept of operating system virtualization [159],
essentially providing a per-application virtual operating system without incurring the
cost of traditional virtual machines.

As it was been mentioned throughout the document, Docker [56] is the container
engine that will be used throughout the project. Although many other container
engines are available, Docker is one of the most well known as it provides a robust
CLI fronted allowing the developer to use it without having to bother about details.

Although theCLImight initially provide a good starting point for individually testing
containers, as the number of required containers grows, it becomes unwieldy to deploy
them by hand. Docker compose [58] was created for this purpose, allowing users to
define a list of services with their configurations in YML format, specifying dependencies
among services, metadata and other parameters.

What now follows is a short overview of the technologies that were initially used for
local development, most of which will still be used later on. The appendix contains
the compose file (B.1) used at the time together with other relevant files.

5.1. First steps 29

5. Development process

Node-RED
The first problem that one might think of when dealing with IoT might be that of
interconnecting hardware devices, and while that is certainly a rather important one,
there is another even more crucial: the interconnection of logical components.

After hardware devices are set up, there still is a big barrier preventing them from
being used together in a useful manner. After all, what use are sensors if their data
can not be easily processed or switches if they can not be switched from a simple
user interface. There is a need for a central tool that is able to centralize both the
management of device data as well as the issuing of commands.

In this project, the tool in charge of said task will be Node-RED, a web based
programming application able of wiring hardware devices with different protocols,
interacting with databases, creating dashboards to visualize information and many
other interesting features [23].

Figure 13: Node-RED initial welcome screen

Node-RED belongs to the family of visual programming languages [160], which
makes it more accessible for beginners and non-programmers. More precisely, it is a
flow-based programming language [157], allowing for the creation of isolated compon-
ents (named nodes) that can be reused and connected to other existing components.
In addition to the above, it makes of use of JavaScript as the underlying language
for its components. All of these traits make for a quite user-friendly framework with
a large and active community.

As with most services used throughout the project, the software required is distrib-
uted as a docker image [89] that can be run either manually or as a service in a
docker-compose deployment. For our purposes, no special configuration is required,
although the image offers support for credentials and some other configuration through
environment variables. Additional information on the image can be found on the of-
ficial website [122].

5.1. First steps 30

5. Development process

Mosquitto
Whenever two or more devices need to communicate, a messaging protocol must be
used. This could be anything ranging from physical layer wire communication, such
as serial protocol, to application layer HTTP request based communication.

Since many possible solutions to the problem exist it is important that we consider
all parameters at play that could make us choose on or another protocol. The main
requirements that will shape the final decision are those of IoT devices, namely a
tendency towards wirelessness (mainly Wi-Fi based) as well as the provision of leeway
for growth in the number of devices and, as a result, the volume of communications
among those.

These restrictions make the previously mentioned protocols completely unfeasible.
Wired connections such as serial port communication are out of the question, as they
would make installation a nightmare. Classic point to point protocols such as TCP or
even HTTP are also not ideal, as when the number of devices increased, the maximum
number of connections required would grow exponentially (granted not all devices
will talk to one another, but as long as they speak to more than one the number can
quickly get out of hand).

Figure 14: Comparison of the client-server and publish-subscribe models [139]

Fortunately, the MQTT [126] protocol provides exactly what we need. Using the TCP

protocol at the transport layer it provides a publish-subscribe [38] model that allows
clients to communicate by sending (publishing) topic-based messages to a broker
server that will then deliver them to those devices that were previously subscribed to
the topic of the message.

Figure 15: Diagram of client devices communicating through an MQTT broker [126]

In our stack the role of the broker server will be played by Mosquitto [117], which
is also provided as a docker image [82]. Although the service offers additional config-
uration such as authentication, it will not be necessary for our purposes.

5.1. First steps 31

5. Development process

InfluxDB
With devices being able to send data through MQTT, the next obvious requirement is
a way to store said data in a simple and efficient manner, essentially a database of
some kind. However, different types of databases exists and many implementation
exist for each one of them, so we must first decide which one fits our data the best.

Traditional relational databases [39] such as MySQL [119] or PostgreSQL [120] are
based around the notions of tables and relations among the columns of one or more
of them. More recent NoSQL databases [37] focus mainly on scalability with numerous
database replicas, with some of the most well known being document-oriented data-
bases such as MongoDB [115] or CouchDB [13]. While many databases belonging
to these categories can be repurposed to manage IoT workloads, they are not the
perfect fit for them, as they were not devised with the nature of IoT in mind.

Figure 16: Comparison of key differences between relational (SQL) and NoSQL [140]

According to some, the ideal solution for IoT devices that generate many periodic
measurements such as sensors appears to be a new category of emerging databases
named time series databases [48]. These kind of databases are optimized for large
and uniform datasets that usually emerge from periodic measurements composed of
data with an associated timestamp. In addition to optimizations based on specialized
compression algorithms these databases allow the configuration of the time to live of
measurements, which helps with storage space management.

The chosen database was InfluxDB [92], which has two main versions: 1.X and
2.X. Out of the two, the latter was chosen, as it provides a more capable query
language and offers some degree of compatibility with previous versions. Although
the different versions make finding configuration information somewhat confusing at
first, the project is very thoroughly and well documented.

The first thing that must be done to interact with InfluxdDB from another applic-
ation is to configure the initial bucket, user and organization. The configuration was
initially carried out manually by using the influx setup command [93].

5.1. First steps 32

5. Development process

influx setup

> Welcome to InfluxDB 2.0!

? Please type your primary username username

? Please type your password ********

? Please type your password again ********

? Please type your primary organization name organization

? Please type your primary bucket name bucket

? Please type your retention period in hours, or 0 for infinite 0

? Setup with these parameters?

Username: username

Organization: organization

Bucket: bucket

Retention Period: infinite

Yes

User Organization Bucket

username organization bucket

Listing 5: InfluxDB configuration for default user, organization and bucket

After having configured the basic elements, we need to set up a database mapping
to enable backwards compatibility with InfluxQL queries [94, 95], which were the
default in versions 1.X and allow Grafana to use an SQL-like query builder.

influx v1 dbrp create --db database --rp policy --bucket-id

cda4c0ac4521217f --default↪→

ID Database Bucket ID

Retention Policy Default Organization ID↪→

097819efc2aff000 database cda4c0ac4521217f

policy true 7a144e35e679ecb6↪→

influx v1 auth create --read-bucket cda4c0ac4521217f --write-bucket

cda4c0ac4521217f --username username↪→

? Please type your password ********

? Please type your password again ********

ID Description Username v2 User Name

v2 User ID Permissions↪→

09781c33b7aff000 username username

09781999746ff000

[read:orgs/7a144e35e679ecb6/buckets/cda4c0ac4521217f

write:orgs/7a144e35e679ecb6/buckets/cda4c0ac4521217f]

↪→

↪→

↪→

Listing 6: InfluxDB configuration for compatibility with InfluxQL

InfluxDB will be deployed using its official docker image [84], which allows for a lot
of automatic configuration through environment variables as well as scripts. Initially
all configuration was done manually but, as we shall see later on, the tools provided
are very handy to perform the initial setup on a new device or when trying changes
locally.

5.1. First steps 33

5. Development process

Grafana
Once the storage of generated data has been taken care of, there needs to be a way
of visualizing it. Some of the desired properties of the software in question are the
ability to easily extend it with new components, an easy learning curve for new users
and reliability.

With the restriction that it be user-friendly and compatible with InfluxDB two main
options appeared to be widely adopted: Grafana [104] and Chronograf [91]. Since
Grafana has a large following and is not tightly coupled with any particular data
source (unlike Chronograf, which is tied to InfluxDB), it was chosen.

After creating a user and logging in, data sources for InfluxDB must be configured
before any data can be queried. The official website for Grafana has limited inform-
ation [105, 103], while its InfluxDB [95] counterpart provides a much more detailed
guide on configuring both the data sources and database.

(a) Configuration for Flux

(b) Configuration for InfluxQL

Figure 17: Grafana InfluxDB data source configuration [95]

As with the other services, Grafana [83] comes packaged as a docker image. Config-
uration options are available for credentials and many other settings, with the official
website detailing many of them [106]. At a later time some of them will be used to
allow users to view dashboards anonymously as well as some other default behaviors.

5.1. First steps 34

5. Development process

DuckDNS
If we want to allow remote connections into our device, there are two main criteria
that must be fulfilled if we want it to be practical. First, our device must somehow be
accessible from an external identifier (IP or domain name), and, second, that identifier
must be static.

Details on how an external IP can map to an internal IP will be given on the next
section, so let us focus on the latter criterion. We need that our identifier be static
so that changes in the state of the network do not impact how we access the device.
Ideally, we could use the router’s external IP as a static identifier, but since IPs are
a scarce [32] resource nowadays ISP mostly assign IPs dynamically, unless they are
paid for. Unless we want additional costs, this leaves us with the second alternative:
domain names.

A domain name, or more precisely a DNS record, maps a string of characters to an
external IP [28, 22] (technically not all DNS records map to IPs [33]). Since DNS
records can be made static for as long as the owner of said records wants we can use
them to identify our device. There is a catch, however; in order to own DNS records
associated to a domain name one must first buy it from a regsitrar [21].

A third alternative, free Dynamic DNS subdomains, gives us a solution with no ad-
ditional costs and the added benefit of simplicity. Dynamic DNS [29, 20] is a service
offered by some DNS providers by which a user is allowed to modify the IP mapping
of their domain name by means of some software solution. Combining Dynamic DNS
with a free subdomain provider such as DuckDNS [65] we are able to obtain a static
identifier for our remote device.

Figure 18: Network communications involved in Dynamic DNS [19]

In the case of DuckDNS, the Dynamic DNS service is provided via a REST API that
requires a user token generated after singing up with an account. Although it would
not be too difficult to setup either a cron or systemd service, a docker image [81]
providing scripts configurable through environment variables already exists.

5.1. First steps 35

5. Development process

NGINX
If we want to provide remote access to web services without worrying about forwarding
ports for all of them, the easiest solution is to use reverse proxy [40]. A reverse
proxy, together with the corresponding DNS configuration, allows a single machine
to provided multiple services on a single port by treating different domain names as
virtual hosts.

Figure 19: Example of a reverse proxy with a single web server [40]

Beside being a well known web server, NGINX also has reverse proxy capabilities
[121]. By default it is managed through configuration files, which requires some addi-
tional knowledge, so instead a graphical web application alternative called NGINX
Proxy Manager [96] will be used to make configuration easier. The application
is provided as a docker image [88] and offers support for many of the features in
NGINX.

In order to create the proxied hosts, first a valid domain name is required, for the
example a dummy domain obtained from DuckDNS (tfgtest.duckdns.org will be
used. Because we want traffic to be encrypted we also need to generate a valid TLS

certificate, which can be done automatically through the application using the Let’s
Encrypt service [67].

Figure 20: Configuration of a Let’s Encrypt certificate through DuckDNS

5.1. First steps 36

5. Development process

Once the configuration form for the certificate is submitted a DNS challenge [66] is
issued to DuckDNS, which verifies that the issuer is indeed the legitimate owner of
the domain (in this case by means of a user token) and after waiting for the Let’s
Encrypt server to respond, a fully working certificate is automatically generated.

Figure 21: List of TLS certificates after creation

After having generated the certificate creating the proxy hosts is as simple as de-
ciding a further subdomain and mapping it to a port on the base domain. In the
example domains are created for the Node-RED nodered.tfgtest.duckdns.org

and Grafana grafana.tfgtest.duckdns.org services.

Figure 22: Configuration of a proxy host

Figure 23: List of proxy hosts after creation

Initially, providing public access to the services was considered an important use case,
so that if a user wanted to access any of its services from a remote location it would
be possible. As it will be explained at a later section, although still possible, this
method was deemed unnecessary and removed.

5.1. First steps 37

5. Development process

SSH
Finally, we need a way to execute commands in the remote device in order to manage it
in an effective manner. Historically, protocols based on unencrypted TCP connections
were used, with telnet [47] being the most well known. Not providing encryption (nor
authentication), however, proved to be shortsighted, and as the number of users with
Internet access increased so did security attacks taking advantage of the technology.

Figure 24: Two devices communicating communicating through an SSH tunnel [146]

Soon after, the Secure Shell (SSH) protocol [42] was born as means to provide access
to remote terminals while ensuring authentication, confidentiality and integrity. By
creating an end-to-end encrypted tunnel, traffic can neither be read nor tampered
with by an external attacker. In addition to command execution, the flexibility of the
SSH protocol allows for other uses such as tunneling of X server traffic and proxying.

Figure 25: Redirection of traffic through an SSH tunnel [70]

Because the OpenSSH [128] implementation is bundled with nearly every Linux dis-
tributions we need only configure it to start using it. Although many security
options exist, for our purposes forcing the user to verify via public key crypto-
graphy, setting PasswordAuthentication no and PubkeyAuthentication yes, on
the /etc/ssh/sshd config configuration file should be enough. Additionally, the
router needs to be configured to allow connections to port on the device 22 by estab-
lishing a port mapping.

5.1. First steps 38

5. Development process

5.1.3 Initial network overview

Having considered what the software stack looks like and what functionality it should
offer it is worth the time to describe what the network looks like and how it is
configured. Although at this point it is rather simple, it will gain relevance in future
sections as the complexity of the network increases

The following diagram depicts the relation between devices in the local network,
excluding those deemed not relevant to the project:

Figure 26: Diagram of the local network

In addition to the name describing the devices, the diagram includes their IPs (or
placeholders if they were not remembered at the time of writing), the MiniPC’s rel-
evant port numbers together with the type of service provided, as well as the router’s
mapped ports. As it was explained in the previous section, the HTTPS port is used
by NGINX to act as a reverse proxy for the other services.

Because this router was used only briefly, it will only appear in the present section,
most of the configuration details are not relevant to the overall project. The only
configurations worth mentioning are the mapping of ports 22 and 443 on the router
to their counterparts on the MiniPC, in order to allow external traffic to be forwarded
to the MiniPC, and the assignment of static IPs to the interfaces of the MiniPC, to
ensure that the port mappings do not break after the device is restarted.

5.1. First steps 39

5. Development process

5.1.4 MiniPC monitoring integration

After having the whole stack set up and running, it was time to try it out with some
real devices and data obtained from them. At that moment the simplest and most
useful option was to start monitoring the MiniPC’s resources, as no other devices
where available yet and it would have to be done at some point either way.

The solution makes use of a bash script (A.1) deployed as a systemd service (A.2)
that gathers device information from the operating system, which is then transmitted
via MQTT and fetched by Node-RED. There, JSON is parsed into an object an then
values are converted to floats and sent to the InfluxDB database. Finally, the values
are split and sent to the corresponding visual elements in the dashboard.

Figure 27: MiniPC monitoring Node-RED flow

var status = msg.payload;

status.ram_usage = parseFloat(status.ram_usage);

status.disk_usage = parseFloat(status.disk_usage);

status.cpu_usage = parseFloat(status.cpu_usage);

status.cpu_temp = parseFloat(status.cpu_temp);

return { payload: status };

Listing 7: JavaScript code for the Convert values node

var status = msg.payload;

var ram_usage = { payload: status.ram_usage };

var disk_usage = { payload: status.disk_usage };

var cpu_usage = { payload: status.cpu_usage };

var cpu_temp = { payload: status.cpu_temp };

return [ram_usage, disk_usage, cpu_usage, cpu_temp];

Listing 8: JavaScript code for the Split status node

Although the resulting flow and JavaScript code are arguably simple, the develop-
ment process took some time, as there were multiple moving parts and they had to
be properly tied together in order for it work. Most of the time was spent writing the
script and then figuring out how to get the values to Node-RED and then InfluxDB.

5.1. First steps 40

5. Development process

Figure 28: MiniPC monitoring Node-RED dashboard

After managing to get the monitoring data to the database, it was necessary to create
a Grafana dashboard that would display the data in a more visual way than simple
gauges. By comparison, this was quite simple, as once the data sources had been
configured, the only remaining step was to create a panel for each of the values,
configure it, and then write the corresponding database query.

Figure 29: Query definition with Grafana’s InfluxQL query builder

Figure 30: MiniPC monitoring Grafana dashboard

5.1. First steps 41

5. Development process

5.2 Main functionality

5.2.1 Solar inverter

After having performed the first integration test with the monitoring of the MiniPC,
it was time to start thinking about implementing some of the more important func-
tionality that would be required for the prototype, namely, that of integrating the
required devices for the monitoring of a photovoltaic system. For this purpose a
partnership was established with Ontec Energy, a company in the business of solar
energy, which would provide the required installations and physical devices for the
project.

Photovoltaic installations include some well known components such as solar panels,
electrical cables or distribution boards, but, perhaps, a lesser known component is
the solar inverter [46]. Usually hidden away from public view, an inverter is the
component in charge of transforming the direct current output generated by solar
panels into an alternating current, the type used by most consumer appliances.

Figure 31: Grid-connected residential photovoltaic power system [46]

When it comes to solar inverters used in residential or medium-sized commercial
systems two types of inverters dominate the market: string and central inverters
[46]. In a nutshell, string inverters use a distributed architecture, which grants them
high fault tolerance at the expense of of less power, while central inverters, as their
name implies, work in a centralized fashion and produce larger amounts of power at
a reduced cost [116].

(a) String solar inverter (b) Central solar inverter

Figure 32: Schematics of the two most used types of inverters [53]

5.2. Main functionality 42

https://ontecenergy.com/

5. Development process

Autarco SX-MII
Although many alternatives exist in the market of solar inverters, Ontec uses Aut-
arco, a manufacturer of solar equipment based on the Netherlands, as a provider for
theirs. As a result, the one used for the project ended up being one of their products,
more precisely, the Autarco SX-MII model, a monophasic string inverter [16].

(a) Front side view (b) Bottom side view

Figure 33: Autarco SX-MII solar inverter [16]

Although the inverter is very well built and offers strong guarantees in terms of solar
production, the documentation offered by the provider in the form of a datasheet is
quite lacking and at times even appears to intentionally omit details to prevent user
from tampering with the device or customizing it in any form.

Luckily, after asking around for information, the inverter was found out to be based
on another one by a different manufacturer, in particular the S6 Mini monophasic
inverter from Solis [145]. While the documentation itself is not much more detailed,
it does offer more precise descriptions of the user management and the different parts
of the inverter, for instance, Solis marks an RS485 port where Autarco simply makes
a veiled reference to a communication port.

(a) Autarco SX-MII manual [16] (b) Solis S6 manual [145]

Figure 34: Bottom side description from the two vendors

5.2. Main functionality 43

5. Development process

Inverter meter
By default most inverters are only concerned with converting the current from direct
to alternating, so in order to provide data about measurements such as voltage or
power another device is required, an inverter meter. Most meters measure current by
attaching a circular clasp around the measured cable and analyzing the electromag-
netic field generated by the flow of electricity.

Figure 35: Installation diagram for ACR10R [1]

Initially, the ACR10R meter from Acrel [1] was to be used, as it is one of the few
meters officially supported by the inverter. As per the installation instructions, the
meter, which communicates using RS485 [41], has to be connected to the leftmost
port on the inverter (meter port), where it feeds the data it measures to the inverter
so that it can be shown on the front panel display.

Figure 36: Diagram depicting individual connections on the ACR10R [1]

(a) Meter connected to RS485 via RJ45 (b) Front panel display

Figure 37: Figures from the Solis inverter manual [145]

5.2. Main functionality 44

5. Development process

After contacting Autarco for information regarding the extraction of data sent by
the meter directly from the inverter, the only thing provided was a short document
containing the configuration of the Modbus [36] RS485 line and a list of registers used.

Because the documentation provided little to no information on how to extract the
collected data for integration with other devices, third party resources were used to
figure things out. One particular article contained detailed instructions on reading
data through the RS485 port and then transmitting it with MQTT [52]. Although the
original article is aimed at a Solis inverter, most relevant points should still hold for
our particular inverter.

Figure 38: Modbus information provided by Autarco

For the purpose of interacting with the inverter, an RS485 to USB converter was at-
tached to the communication port of the inverter and a USB port in the MiniPC,
creating a serial device (/dev/ttyUSB0). In order to sent messages with the appro-
priate Modbus format, the PyModbus [64] python library was used.

(a) SH-U10 converter (b) Converter to RS485 slave diagram

Figure 39: RS485 to USB converter [5]

5.2. Main functionality 45

5. Development process

Despite trying different configurations, the serial device could not be read, and after
some weeks were spent trying to make the ACR10R work and failing, it was decided
to find an alternative solution to the problem. In the future, however, it might be
worth giving it another shot, as later, some resources were found that could perhaps
solve the observed issues [69].

(a) ACR10R meter [1] (b) Shelly 3EM meter [141]

Figure 40: Inverter meters used with the solar inverter

The alternative solution was to use an external meter that could directly communicate
through MQTT, which would be easier to configure and most likely yield the same
results. For this purpose, the Shelly 3EM [141] was used. Since the inverter was
monophasic, a simple Shelly EM could have sufficed, but, in case measurements from
more than one source were needed later on, the former was preferred.

Figure 41: Installation diagram for Shelly 3EM [1]

Initially there were some issues getting the meter to work. The first problem was that
the meter was being added to the MOVISTAR XXXX PLUS wireless network, a network
operating on the 5GHz band, while the device only supports networks using the
2.4GHz, and so should have been connected to the MOVISTAR XXXX network. After
the correct network was used, however, the device did not seem to be accessible on
the network for some hours, after which it appeared to magically fix itself, probably
due to some caching on the router side.

5.2. Main functionality 46

5. Development process

Figure 42: Network configuration for Shelly 3EM

Figure 43: Shelly 3EM web application displaying real-time data

Figure 44: Meters installed in a distribution board at Ontec

5.2. Main functionality 47

5. Development process

5.2.2 Backup system

At this point in the project it was time to set up a backup system that did not rely
on manually copying files over from one machine to another. This would not only
allow restoring the remote environment should anything happen to it, but also would
grant the local development environment the ability to work with a previous version
of the remote environment without need to tinker with the remote one.

Backup storage
With the advent of cloud computing [26] backups are rarely carried out manually or
stored in a private machine, the same way most companies do not actually host their
application or web servers on premises. Instead, there is a growing trend of using
third party resources for storage, mostly renting it in a pay-as-you-go manner.

Nowadays many companies have emerged whose business model resides in the renting
of cloud resources, but only a handful of them share significant market shared. In
the last decades three big cloud platforms, owned by companies which were already
leading the tech industry before, have emerged: Amazon Web Services (AWS [3]),
Google Cloud Platform (AWS [80]) and Microsoft Azure (Azure [114]). Some
other companies worth mentioning are IBM [90] Oracle [130] and Digital Ocean
[54], which although used are nowhere near the other three.

Figure 45: Amazon AWS free tier offerings [6]

Most of the cloud platforms mentioned above offer free tiers which include some
limited amount of storage which can be used for any purpose. After some research,
general consensus appeared to favor the big three platforms, not only on account
of their popularity, but also because of their larger community and more extensive
documentation. Out of those three Azure is not held in a very high regard by some,
so it was discarded. Because AWS offered a good free tier and I had previously heard
good things about it, that ended up being the final choice.

The service that will allow us to store files is called S3. Following the official docu-
mentation [7], we first need to create a bucket, a uniquely identified storage container
that is replicated across multiple availability zones [8] to provide a reliable storage.

5.2. Main functionality 48

5. Development process

Figure 46: S3 bucket that will store backups

After that we need a way to give applications access to the S3 bucket without exposing
all of AWS. The IAM [10] authentication mechanism allows the creation of groups
providing access through policies and users belonging to said groups. Once the user
is created, an access ID and key [9] are generated which can be passed to applications
to authenticate as the given user.

Figure 47: AWS group granting permissions to the S3 service

Figure 48: AWS user that will be used to access the S3 service

After setting everything up we can test that everything is working as expected by
installing the AWS CLI [11] and uploading a test file and listing the contents of the
bucket. Profiles can be configured using aws configure --profile.

$ aws --profile ontec s3 cp test.txt s3://ontec-backup

upload: ./test.txt to s3://ontec-backup/test.txt

$ aws s3 ls s3://ontec-backup

2022-05-08 17:12:20 4 test.txt

Listing 9: Copying a file and listing of a bucket via the AWS CLI

5.2. Main functionality 49

5. Development process

Mail delivery
In addition to having a place in which to store backups, when implementing a backup
system it is also wise to create some form of notification for the administrator to know
the result of the backup. The most frequent form of notification is via mail, as it is
ubiquitous and easier to implement than other alternatives.

SMTP [44] is the de facto protocol for electronic mail transmission. Oversimplifying
many details of the protocol, the transmission process consists of two users (Mail
User Agent MUA), the sender and receiver of the message, two termination servers,
one used by the sender (Mail Submission Agent MSA) and one by the receiver (Mail
Delivery Agent MDA), and one or more mail relay servers (Mail Transmission Agent
MTA) between those two endpoints.

Figure 49: Diagram depicting a simplified view of the SMTP architecture [102]

To send mails from an application, an MTA [35] server is required that will forward
them to their destination. Although setting up a self-hosted mail relay is not that
difficult by using existing solutions such as Postfix [154], it certainly requires a lot
more work than simply using an already existing server [112, 15].

Many of cloud providers mentioned previously also offer mail relay services, such as
Google’s Gmail google:smtp or Amazon’s SES [2]. Those services however, are
either not provided for free or are somewhat complex to set up. After some research
for free alternatives, Mailgun [111] was found to be a good candidate.

After creating an account for Mailgun we are granted access to a mail sandbox [144].
This essentially is a private DNS domain which we can access without the need to
setup a DNS entries for a real one, with the restriction of only being able to send
mails to 5 authorized parties.

(a) Mailgun private sandbox (b) Mailgun authorized recipients

Figure 50: Mailgun service restrictions

5.2. Main functionality 50

5. Development process

Figure 51: Instructions and credentials for sending a mail with SMTP

In order to test the newly created sandbox we can install swaks [97], an application
for interacting with SMTP servers, and send a mail with it by using our Mailgun

credentials, a valid mail account and the content and headers of the message.

sudo apt install swaks

swaks --auth \

--server smtp.mailgun.org \

--au <USERNAME> \

--ap <PASSWORD> \

--to pablo.esteban.baquero@estudiantat.upc.edu \

--from 'test@test.com' \

--h-From '"Test" <test@test.com>' \

--h-Subject 'Test mail' \

--body 'Hello world'

Listing 10: Installation of swaks and sending of test mail

After sending the mail through swaks it should arrive at the Mailgun sandbox and
be forwarded by MTA servers until it hit the Google mail server. If we check the inbox
of the recipient we can see that it did indeed arrive and was not flagged as spam, as
it came from a reputable source.

Figure 52: Mail received on the university Gmail account

5.2. Main functionality 51

5. Development process

5.2.3 Software overview

Having moved the MiniPC to a remote location meant that the software stack had to
change to adapt to the new circumstances. Besides the setup of the backup system
described in the previous section, there was now also a need to keep two separate
environments, one for local development and one for deploying changes remotely.

This section will present the changes produced in three parts. First, changes con-
cerning docker such as the deployment of containers through docker compose will
be explained. Then, both local and development environments will be depicted in
diagrams. Finally, newly added services will be described together with old services
that were removed.

Docker overhaul
Before starting this project I had only used docker sporadically to test a certain
software without having to install it locally or to run existing compose files. As project
progressed, many questions arose, which required reading the official documentation
as wells as solutions from other people.

After some time working on it, many changes were made to the initial compose file,
and requiring a way to interact with different environments was the last straw. At
that point, I decided to completely rework the compose file by replacing non-idiomatic
sections and following the best practices that I knew of at the time.

The first thing that had to be done was devising some way of separating files related
to the local and remote environments. Initially two independent compose files were
created, one for each of environment, but that resulted in duplicated YML code, which
made changes error-prone as many of them had to be reflected on both files. Even-
tually, searching for solutions to the problem lead to a feature of docker compose
enabling sharing of configuration between files [59].

·-- docker-compose.override.yml -> env/compose/override.yml

|-- docker-compose.yml

|-- env -> environments/*

`-- environments

|-- devel

| |-- compose -- override.yml

| |-- config --- *.env

| `-- scripts -- internal

`-- prod

|-- compose -- override.yml

|-- config --- *.env

`-- scripts -- internal

Listing 11: Project directory structure after the rework

The compose specification provides three major version numbers from 1 to 3, with the
first one being deprecated. Versions 2 of the specification provides a somewhat cum-
bersome method, although quite flexible, of extending services from another compose
file [59]. Version 3, on the other hand, provides a more simple override mechanism
by which a second compose file (docker-compose.override.yml) is merged with the
base file [59]. It is with this second method in mind that the directory structure
was modified so that environments could be switched by means of a symlink to the
corresponding override file. As a result, the compose version was changed to 3.

5.2. Main functionality 52

5. Development process

Although the override mechanism partially solves the issue of multiple environments,
there still is an issue with updating the remote machine after changes to the services.
Thankfully, docker’s client-server architecture [57] plays nicely with our needs. By
either setting the DOCKER HOST environment variable or creating a docker context [55]
we can specify a remote docker engine that will be used instead of the local one.

Figure 53: Diagram of the Docker client-server architecture [57]

Finally, there were various configuration changes made, perhaps the most significant
one being the usage of named volumes [60] instead of bind mounts [61]. Numerous
reasons exists why the first are preferred over the second [60, 17], but the strongest
arguments are a better handling of permissions, a tighter integration with docker and
portability. In order to migrate from bind mounts to named volumes (and some other
extensions to the docker CLI) I wrote a small helper library.

(a) Bind mount [61] (b) Named volume [60]

Figure 54: Comparison of the two methods exposing the host filesystem

In the development section of the appendix the resulting compose and configuration
files for the local (B.3) and remote (B.4) environments can be found. Keep in mind
that only the definitive version of each file is provided in the appendix to prevent
cluttering it. As a result, some sections might mention features that did not make it
to the files in the appendix.

5.2. Main functionality 53

https://github.com/UserNombre/docker-plugins

5. Development process

Remote software environment
As it has been made apparent in the previous sections, there were various changes
made in the software stack when the MiniPC was moved to a remote location. All of
the core components of the system remain essentially the same, with only configur-
ations being added or altered in some form. On the other hand, secondary services
were both added and removed as the use cases and design changed.

Figure 55: Diagram of the reworked remote software stack

First of all, the NGINX reverse proxy was removed, since it was not the best fit
for the use cases that were in mind, as it will be explained later on. In its place,
it was decided that OpenVPN would be used to interact with the remote network,
providing access to the services hosted in the MiniPC and to other physical devices
in the network.

In order to create backups Duplicity was introduced. Because most of the data to
backup is found within docker volumes, it made sense to have it be a docker service as
well. As hinted at previously, the remote environment is configured to create backups
using Amazon’s S3 storage service and sending mail notifications through Mailgun.

Finally, after a meeting with the director it was decided that a potential user might
want to interact with docker in a more visual way. Portainer is web application
providing a graphical interface for docker, and an additional agent service provides
information required by the application.

5.2. Main functionality 54

5. Development process

Local software environment
The new local environment was designed to match the remote environment as closely
as possible while removing undesired side effects while testing locally. As a result,
most of the services run on the remote environment are also present here.

Figure 56: Diagram of the reworked local software stack

To provide a locally testable backup system that does not use external services Du-
plicity was configured to use a local volume as the destination for backups and a new
local service called Mailhog that functions as a fake SMTP server.

Finally, the DuckDNS service was simply removed, as it is not needed for local
development. In fact, using it would be harmful to the project, as both the local and
remote machines would constantly fight over the DNS entries.

5.2. Main functionality 55

5. Development process

Duplicity
Earlier the storage and mail services that would be used for the backup system were
described in some detail. However, without a particular backup software, the most
important piece of the puzzle, nothing would actually be backed up, so the next step
would be to find a piece of software that satisfied our needs while also fitting in the
current software stack.

Traditionally backups were performed either manually, by copying files from one place
to another, or by repurposing already existing software [148], but it was error-prone
and not very user friendly. A well known tool for performing backups is duplicity
[79], which is based on the original rsync utility [76, 72] and supports multiple storage
backends including S3.

For this project we shall use a docker image by Tecnativa [78] that builds on top of
it while providing a high degree of customizability through the definition of periodic
jobs executed by cron. Also, since it is a docker image we can take advantage of
named volumes to select the data to backup. Configuration for the service can be
found on the appendix.

===================================

Job 200: `docker container exec influxdb influx backup

/var/lib/influxdb2/backup`↪→

Started: 2022-05-12 02:00:00.209485

Finished: 2022-05-12 02:00:03.046382

Success: True

2022/05/12 00:00:00 INFO: Downloading metadata snapshot

(···)
===================================

Job 300: `backup`

Started: 2022-05-12 02:00:03.046565

Finished: 2022-05-12 02:00:24.433660

Success: True

+ exec dup /mnt/backup/src boto3+s3://ontec-backup

(···)

--------------[Backup Statistics]--------------

(···)
TotalDestinationSizeChange 138691593 (132 MB)

Errors 0

Listing 12: Output generated by a daily backup

Figure 57: Mail generated by Duplicity on a daily backup

5.2. Main functionality 56

5. Development process

Mailhog
As it was mentioned earlier, during local development one might one to test an ap-
plication that uses an SMTP server to send mails without sending the mail to its real
destination. Mailhog [73], which has a docker image [85], provides that functionality
as well as web UI and the possibility of forwarding mail to a real SMTP server.

In the project we configure Duplicity to use the service on the local environment,
so that messages with the state of backups can be viewed and relevant information
retrieved in case of failure.

Figure 58: Mailhog showing a successful mail generated by Duplicity

Portainer
In order to allow users to view centralized info about the state of the services it was
determined that a graphical UI to Docker would be necessary. Portainer [86] is
a docker native web application providing a centralized monitoring dashboard, and
some other features, which also works with multiple instances in swarm mode. Initially
both the Portainer server [86] and agent [87] services were used, but as it will be
explained later only the server was required.

Figure 59: Portainer monitoring dashboard

5.2. Main functionality 57

5. Development process

OpenVPN
A VPN [49] enables remote users to send and receive data from a private network.
Although at first it might appear similar in concept to remote access protocols such
as SSH, the two serve quite different purposes. While SSH aims to grant a user access
to a particular remote machine, VPNs allows the user to communicate with remote
devices as if it were directly connected to their physical network.

Various protocols exist that offer VPN capabilities such as IPsec [31], but they are not
easy to set up. For our purposes, OpenVPN [129] , an open source VPN client-server
application, will be used. Since we will have direct access to the network, there will be
no need to expose the services publicly, and so the NGINX service will be removed.

Figure 60: Diagram of two private networks connected through a VPN

Because the service can be considered critical, it is required to have access to the
devices in the remote network, it shall be run as a system service outside of Docker,
so that if the Docker daemon fails we retain VPN access. Installation and configuration
of the service will be done through a helper script that guides the setup [75].

client

dev tun

proto udp

remote <REDACTED>.duckdns.org 19966

resolv-retry infinite

nobind

persist-key

persist-tun

remote-cert-tls server

auth SHA512

cipher AES-256-CBC

ignore-unknown-option block-outside-dns

block-outside-dns

verb 3

(···)

Listing 13: Client file generated by OpenVPN

5.2. Main functionality 58

5. Development process

5.2.4 Network overview

Having moved all the main devices to Ontec, there were now two principal networks,
the remote one and the local network. The local network is used for development
and to connect to devices in the remote network, while the remote network is used to
deploy the system with real devices.

In addition to those two networks, the backup system also interacts with external
services, so the network diagram depicts an approximation of the services and the
actions that are performed by devices in relation to them. Amazon S3 is represented
as a service replicated accross different Availability Zones (AZ) and is acted upon in
order to perform backups or restore them. Mailgun and Gmail services are also
shown as part of an SMTP circuit, used to send mails with information of backups.

Figure 61: Diagram of the local and remote network

RTF8115VW router
Whenever changing environments, it usually is a good idea to get acquainted with
differences before getting to work, and routers, specially consumer ones, vary quite
a lot in quality and usability. The router at Ontec is a Askey RTF8115VW, one
of the routers installed by the Spanish telecommunications provider Movistar. This
particular model does not have very a good reputation [161, 12], as its web interface
is quite restricted and not very responsive. Furthermore, information is very lacking,
and is mostly obtained from forums dedicated to networking [162, 118] instead of
official documentation, which seems to be nonexistent.

As it will be seen later on, many issues occurred in relation to the router. At some
point acquiring a new neutral router or configuring the MiniPC to work as one was
considered, but ultimately was not carried out due to time constraints and other
factors. In the future, however, it will probably be done, as it would make reproducible
installations possible and avoid issues any particular router might present.

5.2. Main functionality 59

5. Development process

Figure 62: Router configuration menu

Router configuration
The configuration required at this points is similar to that of the previous local setup
with the difference on different services being exposed to the outside world.

The first step was to configure static IPs for the new devices, so that even after being
reset they would remain the same and no applications required any reconfiguration.
The router defines 4 DHCP pools for different purposes, and each one offers the pos-
sibility to configure the range of addresses in the pool and static leases among others
things. The default pool for home devices is number 3, and the rest are reserved for
specific Movistar services [118].

To avoid having to configure a subnet, the IP subrange 192.168.1.128/25 is chosen
for all the IoT devices, and because not many devices exist in the network only devices
assigned through static leases should end up in it. Both the MiniPC’s wireless card
MAC and the Shelly 3EM’s default MAC are given an IP in the range.

Figure 63: Configuration of static DHCP entries

5.2. Main functionality 60

5. Development process

Using the previous IP assignment, a port mapping rule is created to forward traffic
coming to UDP port 19966 to the MiniPC’s OpenVPN (1194) UDP port. The
configuration for the particular router requires the selection of an interface from which
to forward traffic, which in our case is the PPPoE interface.

Figure 64: Configuration of port mappings

MiniPC network service
During this stage of the development there was an issue with the MiniPC related to
networking. Essentially, the machine got stuck waiting for a systemd service for a
few minutes after booting if no available network was found.

Figure 65: Ubuntu systemd waiting for network (recreated on VirtualBox)

After looking for similar issues online, the problem was found out to be caused by [18],
a utility for network configuration created by Canonical, which is installed in Ubuntu
server by default. The solution to the issue was to modify one of the configuration files
(/etc/netplan/00-installer-config.yaml) to indicate that some devices might
not be available by setting optional: true on their properties [152].

5.2. Main functionality 61

5. Development process

5.2.5 Shelly 3EM integration

Once the devices were set up and the remote network configured, the next thing to be
done was to integrate the meter into the existing system to collect information sent
by it. The resulting integration ended up being pretty similar to the initial MiniPC
save the way data was obtained from MQTT and processed. Information regarding the
format of messages was obtained from the official API documentation [143].

Because the Shelly 3EM is designed to send messages for each one of the three phases,
the first step is to filter the one in use. Additionally, each measurement within a phase
is sent in a different message, so data is put together in groups of 7, the number
of measurements. After that, the message’s topic is set to the value that will be
written to the database and, using the same idea as in the first integration, relevant
measurements are then split and sent to the dashboard.

Figure 66: Shelly 3EM Node-RED flow

// topic := shellies/shellyem3-<deviceid>/emeter/<i>/<data>

var topic = msg.topic.split("/")

if (topic[4] !== undefined && topic[3] == 0) {

msg.key = topic[4]

msg.payload = Number(msg.payload)

return msg;

}

Listing 14: JavaScript code for the Process topic node

var status = msg.payload;

var power = { payload: status.power };

var current = { payload: status.current };

var voltage = { payload: status.voltage };

return [power, current, voltage];

Listing 15: JavaScript code for the Split status node

5.2. Main functionality 62

5. Development process

Figure 67: Shelly 3EM Node-RED dashboard

Again, after getting all the measurements into the database, a Grafana dashboard was
created with 4 panels depicting some of the important ones via InfluxQL. Although
some measurements such as the total energy are not that relevant to the final user,
this is what could be obtained through raw data alone; some processed measurements
will be considered later on.

Figure 68: Query definition with Grafana’s InfluxQL query builder

With the obtained data we can clearly visualize how, as one would expect, the amount
of generated current and power is determined by the time of the day, forming a bell
with the highest point centered around 13:00 and lower values moving outwards.

Figure 69: Shelly 3EM Grafana dashboard

5.2. Main functionality 63

5. Development process

5.3 Final additions

5.3.1 Active devices

The next challenge after the integration of the inverter was to allow the management
of excess with other devices as well as testing and polishing the system. However,
due to the previously mentioned issues with meters and some issues faced after the
installation of these devices and network rework, not much time was left to complete
the initially designated tasks, as the project was nearing the end of its duration.

Shelly Plug S
The first device acquired was the Shelly Plug S [142], a smart plug that can be
controlled and monitored remotely with some additional capabilities. For this final
stage, three of them were bought and installed on electric outlets, which would be
used to perform simple tests with manual and scheduled management operations.

(a) Shelly Plug S power outlet [142] (b) Shelly Plug S installed at Ontec

Figure 70: Inverter meters used with the solar inverter

Configuration for the device is the same as for other Shelly products, such as the
previously seen Shelly 3EM, and the same can be said for its web interface.

Figure 71: Shelly Plug web application displaying real-time data

5.3. Final additions 64

5. Development process

OpenEVSE
With the recent surge in popularity of electric cars, it would probably be interesting
to consider adding integration support for devices such as charging stations [25].
Although initially limited in scope to specialized vendors, with the emergence of
consumer stations and open source solutions, more and more electric car owners have
taken to installing them at their own home.

(a) Components in a charging station (b) European triphasic con-
nector

Figure 72: Diagrams of electric vehicle supply equipment (EVSE)

For the purpose of the project OpenEVSE [127], an open source software and hard-
ware for charging stations, was considered. Besides technical assistance and installa-
tion, OpenEVSE offers various DIY kits, of which the advanced bundle, containing
al required components, was acquired.

(a) OpenEVSE DIY kit (b) OpenEVSE assembled station

Figure 73: OpenEVSE charging station [127]

However, as mentioned earlier, not much time was left at this time of the project, and
because not much was known about the installation and integration process it was
too late to actually set it up. Nevertheless, some time was dedicated to studying its
architecture and reading up on documentation, as it will certainly be the next step
in the project.

5.3. Final additions 65

5. Development process

Figure 74: OpenEVSE assembling diagram [74]

5.3. Final additions 66

5. Development process

5.3.2 Final software overview

Remote software environment
In this final stage of the project not much functionality was added in terms of the
software stack save for a few changes. Since the system was working as expected most
of the effort went to the making changes to the network and writing documentation.

Figure 75: Diagram of the final remote software stack

One of the only changes made to the remote environment was the removal of the
Portainer agent docker service [87]. Initially both the server and agent services were
thought to be necessary in order to run the monitoring software, but after a closer look
at the documentation [134] it was found out that the service agent was only required
for docker instances running in swarm mode, which apparently requires special access
to the underlying node resources.

As it will be explained later on, while making changes to the network some issues arose
that made it impossible to work without restarting the machine and, at the same time,
to connect remotely using the usual SSH service. To solve the issue the sysrqd [77],
which did allow to reboot the system even in those conditions, was installed. Because
it is a critical service that should work at all times it was installed as a system service.

5.3. Final additions 67

5. Development process

Local software environment
The local software environment also received minimal changes only. One being the
modification of some of the configuration files, and the other one the removal of the
Portainer service, as it was only really used in the remote environment.

Figure 76: Diagram of the final local software stack

Improved backup
Keeping an eye on the backup system and routinely testing it to ensure that everything
works as intended is as important as setting it up in the first place.

Figure 77: CloudWatch [4] dash-
board monitoring bucket size

After some time doing backups the size
of each backup appeared to be increas-
ing more than it should have, and look-
ing at data provided by Amazon cor-
roborated the observation. After look-
ing around in the docker Duplicity
container it was found out that after
backing up the InfluxDB database
generated files were not deleted, and so
the size kept on increasing. The solu-
tion was to create a new Duplicity job
that deleted previous backup files be-
fore generating new ones.

Another improvement that was in the works but not fully implemented was that of
backing up only specific files instead of entire docker volumes. For instance, saving
Node-RED json configuration files only, and discarding NodeJS modules in the
same volume. Some scripts were created for the purpose (A.5, A.6) but were not
integrated into the backup/restore process.

5.3. Final additions 68

5. Development process

5.3.3 Final network overview

On this last stage of the project only Shelly Plug S smart plugs were added to
the network, as not enough time was left to assemble and test the OpenEVSE
charging station. As with the previous sections, the idea was not so much about
adding functionality as it was about improving the existing one.

Figure 78: Diagram of the final network

In the case of the network, the planned improvements were the rework of the remote
network topology by creating a dedicated IoT subnetwork which was isolated from
the rest of devices in the Ontec network through firewall rules as well as the cre-
ation of a wireless network on through which IoT devices could communicate without
interferences with devices outside of their subnetwork.

Reality, however, is not as pretty as one would like, and router limitations, hardware
issues and other problems did not allow to perform all of the desired changes and
ended up requiring a simplification of the requirements stated above.

Access point configuration
The first configuration change attempted was the creation of a wireless network ded-
icated to devices that would belong to the IoT network. This was done in an attempt
to prevent collisions between normal devices and IoT devices, which although not
noticeable with the current amount, could become a problem as the number grew.

Because of the way wireless local area networks work, multiple groups, known as
service sets [43], can be configured to work on the same area without any interferences
through the use of different frequency channels [34] defined for use with wireless
networks. In practice, these different service sets can be configured in routers by
using different SSID. In our case the configuration was done in the 2.4G band, as it
is the one used by Shelly devices.

5.3. Final additions 69

5. Development process

By default, the router offers 4 different wireless networks, the default one and 3 guest
networks. After configuring one of the guest networks and connecting some devices
it was observed that they could communicate with the Internet but not among them-
selves, which was mandatory to allow integrating them with Node-RED. At first it
appeared to be caused by AP isolation [109, 108], a mechanism used in guest untrus-
ted networks to improve security, but even after disabling it the problem persisted.

(a) Configuration of the 2.4G band (b) Configuration of the IoT wireless net-
work

(c) List of available wireless networks

Figure 79: RTF8115VW access point configuration

After searching around not much information was found, but because of previous
issues with the router, it was assumed that it probably had to do with the router
hardcoding some default values for guest networks. It would also make sense, as for
some time the web interface did not even allow to save the disabled option for client
isolation. In the end, the default network was used for all devices.

5.3. Final additions 70

5. Development process

Subnet configuration
Previously the two devices in the IoT network had been placed in the 192.168.1.128/25
subrange, but it was considered that it would be cleaner to create a completely sep-
arate subnetwork, 192.168.0.0/24 for instance, and then create firewall rules that
kept the original network 192.168.1.0/24 apart from the rest of IoT devices.

However, once again, the tight router settings did not allow for an easy solution, as
the firewall could not be configured from the web interface and no way was found to
assign different IPs to the router interfaces. Additionally, manual IP assignment on
Shelly devices did not work, so the only way left of configuring them was by using
the DHCP server on the router.

Figure 80: DHCP configuration menu

5.3. Final additions 71

5. Development process

Again, there was probably some way of achieving the desired solution, for example the
configuration of the MiniPC as a secondary router for the subnetwork, but because
not much time could be spared on finding the appropriate setting, an easier solution
was chosen. Instead of creating two separate networks the main network was modified
to take 255.255.254.0 as the subnet, creating the larger 192.168.0.0/23 range.

Figure 81: Configuration of static DHCP entries

For the changes to take effect, the DHCP server’s range was modified to the one men-
tioned above and all of the devices were assigned an static lease in it. Besides that,
the default router interface was also modified to to account for it.

Figure 82: IPv4 interface configuration

5.3. Final additions 72

5. Development process

MiniPC crashes
At some point during the project the MiniPC started rejecting SSH connections with a
kex exchange identification error message and the problem would not be solved
until after resetting the physical machine. Some people hinted at the SSH server
malfunctioning and a possible relation to voltage problems [132, 131]. After a closer
inspection it appeared that whenever the issue occurred no new processes could be
created, as if the system were overloaded, which would explain why SSH was refusing
connections, as it could not create a new shell.

Initially the problem was noticed by seeing that backups had stopped being uploaded
to S3. After restoring a backup, or by checking short after the remote machine was
reset, one could see in the Grafana dashboard for the MiniPC that some anomalies
were present in the temperature graph. Since the MiniPC had recently been relocated,
it was assumed that bad ventilation in the new location was causing the system to
overheat and become unresponsive, so it was moved to previous location.

Figure 83: MiniPC monitoring dashboard (30 days)

Initially appearing solved, soon enough crashes returned, and the temperature issue
did not go away. After some pondering, it was found that the drastic temperature
values had been brought by a change to the linux kernel boot parameters. At some
point the system logs had been flooded with messages regarding PCIe errors, and the
solution had been to update the /etc/default/grub file with pcie aspm=off as a
boot parameter [99], disabling Active State Power Management.

AER: Multiple Corrected error received: 0000:00:1c.0

PCIe Bus Error: severity=Corrected, type=Physical Layer, (ReceiverID)

device [8086:4dbc] error status/mask=00000001/00002000

[0] RxErr

Listing 16: PCIe error message flooding the systemd logs

Although at first this could appear to be the actual cause for overheating, after further
analysis it was found that only the values reported by the monitoring script changed,
while the physical temperature of the device and one reported by another utility did
not, hinting at a possible issue with the sensors in charge of reporting temperature,
not temperature itself.

5.3. Final additions 73

5. Development process

Once again, the MiniPC was relocated to another location, and this time it finally
appeared to be solved. Whether the problem was originally caused by bad ventilation,
a faulty Ethernet connection or any other issue is still unknown, but to make sure
that if it did ever happen again something could be done without being physically
there, some mechanisms were put in place to improve remote access.

The first mechanism was the addition of a service that allowed the user to restart the
system even when unresponsive. Based on the linux sysrq mechanism [98], sysrqd
[77]. runs as a daemon allowing password-protected remote connections that give
access to commands that cannot be ignored by the kernel, such as rebooting, termin-
ating all processes, etc. For the service to work one must first enable the desired sysrq

functionality on the system, which in Ubuntu can be done by writing kernel.sysrq=X
(see [98] for values of X) to /etc/sysctl.d/99-sysctl.conf. To secure the access
to the service a password can be placed in the /etc/sysrqd.secret file either in
plaintext or as a hashed password following the crypt library format.

Figure 84: Configuration of port mappings

Because there were also issues with network interfaces sometimes not being available,
such as the wireless interface failing to be assigned an IP by dhclient, the second
mechanism was to perform pseudo-load-balancing of the exposed OpenVPN and sysrqd

services, so that if after a reboot one of the interfaces became unavailable they could
still be accessed from another external port.

Figure 85: Configuration of backup
static DHCP entries

This was achieved by adding a new
static lease entry on the DHCP server
for the wired interface and creating
duplicated port mappings for both
services. In the case of OpenVPN it
was also necessary to modify the
/etc/openvpn/server/server.conf

file by commenting the line binding
the local IP (;local 192.168.0.1)
so that it could be chosen dinamically
at boot time.

5.3. Final additions 74

5. Development process

OpenVPN unreachable machines
Once the network had been reworked, unsurprisingly, another issue was found, this
time related to access to the remote network through OpenVPN. When accessing the
VPN and trying to ping devices on the remote network some responded and some
did not, being reported as unreachable. Although most certainly caused by a miscon-
figuration of either the router or OpenVPN, with no knowledge of OpenVPN the latter
and little time to look into the real cause of the problem a workaround was devised
instead.

Since from within the SSH session the MiniPC could access all the other devices, the
first idea that came to mind was to take advantage of the client-server architecture of
the X window system [50] to establish a remote graphical session via X forwarding. This
can easily be done by configuring appropriately the server (/etc/ssh/sshd config)
and client (~/.ssh/config) files and using using ssh -X <HOST> when connecting to
the remote host [68]. The final result, however, was slow to the point of not being
usable, so another solution was needed.

(a) X client-server architecture [113] (b) X forwarding via SSH [125]

Figure 86: Connection to remote X server

The second method tried involved using a proxy to route browser traffic through
the VPN and into the MiniPC. Traditionally specific programs have been used to
create HTTP proxies, but modern browsers support the use of the SOCKS [45] protocol,
which is designed for this kind of task, to forward traffic. We can leverage SSH for
this exact purpose by using the command ssh -D 1337 -q -C -N <HOST>, which
creates a SOCKS proxy on port 1337 and tells SSH to compress traffic and work as a
proxy instead of executing remote commands [70]. By executing the command and
configuring the browser to use the proxy all devices could be accessed through their
web interface once again.

Figure 87: Web browsing through a SOCKS5 proxy with SSH [70]

5.3. Final additions 75

6. Conclusions

6 Conclusions

This section focuses on results. It analyzes the obstacles encountered during the
project, some of the mistakes made during it and how they could have been avoided,
and, finally, the lessons that can be drawn from both of them.

6.1 Obstacles

Remote management
The first obstacle, and probably the one that had the biggest impact on the project,
was the need for remote management. Not having physical access to a device might
not seem that problematic at a first glance, as technologies such as SSH or OpenVPN
already provide solutions to the basic problems of remote access.

Reality, however, is often more complex than theory, and, as I could experience
firsthand, network and hardware issues are a common occurrence in the real world.
If something happens to the physical device or network you are trying to connect to,
there is little you can do to fix the issue besides waiting for it to fix itself or fixing it
yourself, and the latter option often involves spending time commuting.

Physical distance
The previous point leads directly into this one: the distance from home to the work
environment. Even if the hurdle of remote management was not that bad by itself
and surmountable by careful planning and some extra effort, when combined with a
long distance it becomes a rather noticeable time sink. As at the start of the project
the location was not yet known, not much could be done in terms of planning.

Delayed products
Another obstacle was related to the acquisition of hardware products. Some of the
components took more time to be delivered than was expected, time during which
the project was not able to proceed according to the expected timeline. Most of the
items arrived in time, but some that did not ended up being delayed for some weeks.

Unexpected issues
Somewhat related to the first obstacle is the more general one of unexpected issues.
Besides that of remote management, during the course of the project numerous hard-
ware and software issues arose that hindered its progress. Some of them could be
solved relatively quickly, others took more time, but for some of them workarounds
had to be created to avoid wasting time.

6.2 Mistakes

Broad scope
The biggest mistake made, and probably a cause of some other ones, was defining
a too ambitious and broad scope. Even if it might have seemed feasible on paper,
and certainly achievable given more time, the time restrictions should have been taken
more into account, as ultimately that was one of the limiting factors at play. However,
as with most of the other mistakes, there was probably little to be done initially.

6.1. Obstacles 76

6. Conclusions

Risk management
Tied to the unexpected issues mentioned previously, another mistake was made, un-
derestimating the time cost associated to them. Although they were initially con-
sidered, they were somewhat dismissed as not that critical, but the effect they had on
the project far exceeded the estimates. On that note, tasks that may have appeared
simple at a first glance ended up taking more time than expected to figure out.

Time management
At some points during the project I found myself overwhelmed with the amount of
work that had to be done and the apparent little time that was available. Prob-
ably, this was partly cause by a lack of experience but also because of sloppy time
management, which could have helped with the overall organization of the project.

Development focus
Finally, perhaps not a mistake but simply a tendency, too much focus was put on the
operations side of DevOps and much less so on the development side of it. Being
an IT student I am probably biased towards it, and during the project I might have
been too fixated on creating a manageable and reproducible infrastructure and less
on developing the actual functionality.

6.3 Lessons

Knowledge integration
One of the main takeaways from this project is the integration of knowledge from
various fields. Because of the nature of IoT, many areas from both inside and outside
of computer science come together in a single project. As a result, the project allowed
me to not only hone IT related skills, but also learn new concepts from various
disciplines.

Problem solving
In addition to having learned particular technologies and concepts, there were also
multiple situations that required more general problem solving skills. Because nobody
knows everything, even about a particular subject, one of the most valuable skills is
that of figuring out the nature of a given problem, searching for information relating
to it, and, finally, reaching a solution from the extracted information.

Journey before destination
The final lesson, and perhaps the most important one, had to do with the objective
of the project. Even if the original goal was not actually reached, progress was made,
and with it came the understanding of various technologies and devices. In that sense,
the goal for the project should not have been considered an end by itself, but rather
the means to an end, the learning process which leads to knowledge of some form.

6.3. Lessons 77

7. Future work

7 Future work

As it has been mentioned before, various factors have reduced the final scope of the
project and some planned features did not make it to the prototype. Although the
project is finished, work remains to be done in the future. This section provides a
rough overview of features and changes that could guide a potential roadmap.

Improve capabilities
The first point on the list would be to improve the current capabilities of the system,
getting closer to the original outline of the project. This would include adding func-
tionality for automatic excess management, improving the visualization available by
adding additional relevant information and fixing some of the existing problems.

Device support
After having sorted out the current system, it would be a good idea to add support
for additional devices, both active and passive. The first step would be to carry out
the integrations for Shelly Plug S and OpenEVSE that were left unfinished. After
that, additional ones could be considered as the requirements of clients changed.

Software alternatives
Once enough devices have been integrated the understanding of the whole system will
have improved considerably, allowing for better insight on which parts of it work as
expected and which ones could be improved or should simply be replaced by others
fulfilling the role better. Some initial thoughts on the matter would be to evaluate
the possibility of using other visualization methods, such as Chrongraf instead of
Grafana, or considering if the addition of Home Assistant would help with the
growing number of devices to be supported.

Consumer solution
Finally, once the system prototype reached a mature enough point where everything
worked as expected and functionality solved most of the proposed use cases, it would
be possible to design a real consumer solution that took into account the resulting
system and expected workloads and optimized the hardware and software components.

One possible solution could consist of an affordable consumer hardware, aRaspberry
Pi for instance, installed in a practical manner, such as a wall mounted touchscreen or
at least placed inside a compatible casing. On the software side of things, it would be
worth the time studying available operating systems and their respective advantages,
for example BalenaOS and Home Assistant OS (both focused on IoT workloads).

(a) BalenaOS architecture (b) Home Assistant architecture

Figure 88: Comparison of the two operating system candidates

78

https://thepihut.com/products/raspberry-pi-4-model-b
https://thepihut.com/products/raspberry-pi-4-model-b
https://thepihut.com/products/official-raspberry-pi-7-touchscreen-display
https://thepihut.com/products/raspberry-pi-official-7-touchscreen-case
https://www.balena.io/os/docs/
https://www.home-assistant.io/installation/
https://www.balena.io/os/docs/architecture/
https://developers.home-assistant.io/docs/supervisor/

8. References

8 References

[1] Acrel. ACR10R energy meter for solar inverter. url: https://www.acrel.uk/
acr10r-energy-meter-for-solar-inverter.html (visited on 22/04/2022).

[2] Amazon. Amazon Simple Email Service. url: https://aws.amazon.com/ses/
(visited on 06/05/2022).

[3] Amazon. Cloud Computing Services - Amazon Web Services. url: https:
//aws.amazon.com/ (visited on 06/05/2022).

[4] Amazon. CloudWatch - Application and Infrastructure Monitoring. url: https:
//aws.amazon.com/cloudwatch/ (visited on 03/06/2022).

[5] Amazon. DSD Tech SH-U10 Convertidor USB a RS485. url: https://www.
amazon.es/DSD-TECH-SH-U10-Convertidor-Compatible/dp/B078X5H8H7

(visited on 22/04/2022).

[6] Amazon. Free Cloud Computing Services - AWS Free Tier. url: https://
aws.amazon.com/free/ (visited on 06/05/2022).

[7] Amazon. Getting started with Amazon S3. url: https://docs.aws.amazon.
com / AmazonS3 / latest / userguide / GetStartedWithS3 . html (visited on
06/05/2022).

[8] Amazon. Global Infrastructure Regions & AZs. url: https://aws.amazon.
com/about-aws/global-infrastructure/regions_az/ (visited on 06/05/2022).

[9] Amazon. Managing access keys for IAM users. url: https://docs.aws.
amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

(visited on 06/05/2022).

[10] Amazon. What is IAM? url: https://docs.aws.amazon.com/IAM/latest/
UserGuide/introduction.html (visited on 06/05/2022).

[11] Amazon. What is the AWS Command Line Interface? url: https://docs.
aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html (visited
on 06/05/2022).

[12] Banda Ancha. Firmwares para Askey RTF8115VW que permitan aprovechar
su hardware. url: https : / / bandaancha . eu / foros / askey - rtf8115vw -
cacharro-digno-1995-1740559 (visited on 27/05/2022).

[13] Apache. Apache CouchDB. url: https://couchdb.apache.org/ (visited on
25/03/2022).

[14] ASUS. Mini PC PN41 - Tech Specs. url: https://www.asus.com/Displays-
Desktops/Mini-PCs/PN-PB-series/Mini-PC-PN41/techspec/ (visited on
18/03/2022).

[15] Jeff Atwood. So You’d Like to Send Some Email (Through Code). url: https:
/ / blog . codinghorror . com / so - youd - like - to - send - some - email -

through-code/ (visited on 06/05/2022).

[16] Autarco. SX Mark II series solar inverters. url: https://www.autarco.com/
products/inverters/sx-mark-ii-series-solar-inverters/ (visited on
22/04/2022).

[17] BMitch. docker - volumes vs mount binds. what are the use cases? url: https:
//serverfault.com/a/996804 (visited on 20/05/2022).

[18] Canonical. Netplan - Backend-agnostic network configuration in YAML. url:
https://netplan.io/ (visited on 27/05/2022).

79

https://www.acrel.uk/acr10r-energy-meter-for-solar-inverter.html
https://www.acrel.uk/acr10r-energy-meter-for-solar-inverter.html
https://aws.amazon.com/ses/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://www.amazon.es/DSD-TECH-SH-U10-Convertidor-Compatible/dp/B078X5H8H7
https://www.amazon.es/DSD-TECH-SH-U10-Convertidor-Compatible/dp/B078X5H8H7
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/GetStartedWithS3.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/GetStartedWithS3.html
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://bandaancha.eu/foros/askey-rtf8115vw-cacharro-digno-1995-1740559
https://bandaancha.eu/foros/askey-rtf8115vw-cacharro-digno-1995-1740559
https://couchdb.apache.org/
https://www.asus.com/Displays-Desktops/Mini-PCs/PN-PB-series/Mini-PC-PN41/techspec/
https://www.asus.com/Displays-Desktops/Mini-PCs/PN-PB-series/Mini-PC-PN41/techspec/
https://blog.codinghorror.com/so-youd-like-to-send-some-email-through-code/
https://blog.codinghorror.com/so-youd-like-to-send-some-email-through-code/
https://blog.codinghorror.com/so-youd-like-to-send-some-email-through-code/
https://www.autarco.com/products/inverters/sx-mark-ii-series-solar-inverters/
https://www.autarco.com/products/inverters/sx-mark-ii-series-solar-inverters/
https://serverfault.com/a/996804
https://serverfault.com/a/996804
https://netplan.io/

8. References

[19] June Castillote. How to Setup Cloudflare Dynamic DNS. url: https : / /

adamtheautomator.com/cloudflare-dynamic-dns/ (visited on 01/04/2022).

[20] Cloudflare. Dynamic DNS. url: https://www.cloudflare.com/learning/
dns/glossary/dynamic-dns/ (visited on 01/04/2022).

[21] Cloudflare.What is a domain name registrar? url: https://www.cloudflare.
com/learning/dns/glossary/what-is-a-domain-name-registrar/ (vis-
ited on 01/04/2022).

[22] Cloudflare.What is DNS? - How DNS works. url: https://www.cloudflare.
com/learning/dns/what-is-dns/ (visited on 01/04/2022).

[23] OpenJS Foundation & Contributors. Node-RED. url: https://nodered.org
(visited on 27/02/2022).

[24] Wikipedia contributors. 2020–present global chip shortage — Wikipedia, The
Free Encyclopedia. 2022. url: http://en.wikipedia.org/w/index.php?
title=2020%5C%E2%5C%80%5C%93present%5C%20global%5C%20chip%5C%

20shortage&oldid=1088492023 (visited on 18/03/2022).

[25] Wikipedia contributors. Charging station — Wikipedia, The Free Encyclopedia.
2022. url: https://en.wikipedia.org/w/index.php?title=Charging_
station&oldid=1093552234 (visited on 03/06/2022).

[26] Wikipedia contributors. Cloud computing — Wikipedia, The Free Encyclope-
dia. 2022. url: https://en.wikipedia.org/w/index.php?title=Cloud_
computing&oldid=1091198609 (visited on 22/04/2022).

[27] Wikipedia contributors. Dependency hell — Wikipedia, The Free Encyclopedia.
2022. url: https://en.wikipedia.org/w/index.php?title=Dependency_
hell&oldid=1077517071 (visited on 25/03/2022).

[28] Wikipedia contributors. Domain Name System — Wikipedia, The Free En-
cyclopedia. 2022. url: https://en.wikipedia.org/w/index.php?title=
Domain_Name_System&oldid=1090882376 (visited on 01/04/2022).

[29] Wikipedia contributors. Dynamic DNS — Wikipedia, The Free Encyclopedia.
2020. url: https://en.wikipedia.org/w/index.php?title=Dynamic_DNS&
oldid=984726018 (visited on 01/04/2022).

[30] Wikipedia contributors. Home automation — Wikipedia, The Free Encyclope-
dia. 2021. url: https://en.wikipedia.org/w/index.php?title=Home_
automation&oldid=1060659571 (visited on 27/02/2022).

[31] Wikipedia contributors. IPsec — Wikipedia, The Free Encyclopedia. 2022.
url: https://en.wikipedia.org/w/index.php?title=IPsec&oldid=
1090301371 (visited on 20/05/2022).

[32] Wikipedia contributors. IPv4 address exhaustion — Wikipedia, The Free En-
cyclopedia. 2022. url: https://en.wikipedia.org/w/index.php?title=
IPv4_address_exhaustion&oldid=1090374520 (visited on 01/04/2022).

[33] Wikipedia contributors. List of DNS record types — Wikipedia, The Free En-
cyclopedia. 2022. url: https://en.wikipedia.org/w/index.php?title=
List_of_DNS_record_types&oldid=1090675362 (visited on 01/04/2022).

[34] Wikipedia contributors. List of WLAN channels — Wikipedia, The Free En-
cyclopedia. 2022. url: https://en.wikipedia.org/w/index.php?title=
List_of_WLAN_channels&oldid=1093319262 (visited on 03/06/2022).

80

https://adamtheautomator.com/cloudflare-dynamic-dns/
https://adamtheautomator.com/cloudflare-dynamic-dns/
https://www.cloudflare.com/learning/dns/glossary/dynamic-dns/
https://www.cloudflare.com/learning/dns/glossary/dynamic-dns/
https://www.cloudflare.com/learning/dns/glossary/what-is-a-domain-name-registrar/
https://www.cloudflare.com/learning/dns/glossary/what-is-a-domain-name-registrar/
https://www.cloudflare.com/learning/dns/what-is-dns/
https://www.cloudflare.com/learning/dns/what-is-dns/
https://nodered.org
http://en.wikipedia.org/w/index.php?title=2020%5C%E2%5C%80%5C%93present%5C%20global%5C%20chip%5C%20shortage&oldid=1088492023
http://en.wikipedia.org/w/index.php?title=2020%5C%E2%5C%80%5C%93present%5C%20global%5C%20chip%5C%20shortage&oldid=1088492023
http://en.wikipedia.org/w/index.php?title=2020%5C%E2%5C%80%5C%93present%5C%20global%5C%20chip%5C%20shortage&oldid=1088492023
https://en.wikipedia.org/w/index.php?title=Charging_station&oldid=1093552234
https://en.wikipedia.org/w/index.php?title=Charging_station&oldid=1093552234
https://en.wikipedia.org/w/index.php?title=Cloud_computing&oldid=1091198609
https://en.wikipedia.org/w/index.php?title=Cloud_computing&oldid=1091198609
https://en.wikipedia.org/w/index.php?title=Dependency_hell&oldid=1077517071
https://en.wikipedia.org/w/index.php?title=Dependency_hell&oldid=1077517071
https://en.wikipedia.org/w/index.php?title=Domain_Name_System&oldid=1090882376
https://en.wikipedia.org/w/index.php?title=Domain_Name_System&oldid=1090882376
https://en.wikipedia.org/w/index.php?title=Dynamic_DNS&oldid=984726018
https://en.wikipedia.org/w/index.php?title=Dynamic_DNS&oldid=984726018
https://en.wikipedia.org/w/index.php?title=Home_automation&oldid=1060659571
https://en.wikipedia.org/w/index.php?title=Home_automation&oldid=1060659571
https://en.wikipedia.org/w/index.php?title=IPsec&oldid=1090301371
https://en.wikipedia.org/w/index.php?title=IPsec&oldid=1090301371
https://en.wikipedia.org/w/index.php?title=IPv4_address_exhaustion&oldid=1090374520
https://en.wikipedia.org/w/index.php?title=IPv4_address_exhaustion&oldid=1090374520
https://en.wikipedia.org/w/index.php?title=List_of_DNS_record_types&oldid=1090675362
https://en.wikipedia.org/w/index.php?title=List_of_DNS_record_types&oldid=1090675362
https://en.wikipedia.org/w/index.php?title=List_of_WLAN_channels&oldid=1093319262
https://en.wikipedia.org/w/index.php?title=List_of_WLAN_channels&oldid=1093319262

8. References

[35] Wikipedia contributors. Message transfer agent — Wikipedia, The Free En-
cyclopedia. 2022. url: https://en.wikipedia.org/w/index.php?title=
Message_transfer_agent&oldid=1083371486 (visited on 06/05/2022).

[36] Wikipedia contributors. Modbus — Wikipedia, The Free Encyclopedia. 2022.
url: https://en.wikipedia.org/w/index.php?title=Modbus&oldid=
1092284871 (visited on 22/04/2022).

[37] Wikipedia contributors. NoSQL — Wikipedia, The Free Encyclopedia. 2022.
url: https://en.wikipedia.org/w/index.php?title=NoSQL&oldid=
1087561833 (visited on 25/03/2022).

[38] Wikipedia contributors. Publish–subscribe pattern — Wikipedia, The Free En-
cyclopedia. 2022. url: https://en.wikipedia.org/w/index.php?title=
Publish % E2 % 80 % 93subscribe _ pattern & oldid = 1073380138 (visited on
25/03/2022).

[39] Wikipedia contributors. Relational database — Wikipedia, The Free Encyc-
lopedia. 2022. url: https://en.wikipedia.org/w/index.php?title=
Relational_database&oldid=1088987450 (visited on 25/03/2022).

[40] Wikipedia contributors. Reverse proxy — Wikipedia, The Free Encyclopedia.
2022. url: https://en.wikipedia.org/w/index.php?title=Reverse_
proxy&oldid=1089196899 (visited on 01/04/2022).

[41] Wikipedia contributors. RS-485 — Wikipedia, The Free Encyclopedia. 2022.
url: https://en.wikipedia.org/w/index.php?title=RS-485&oldid=
1090820751 (visited on 22/04/2022).

[42] Wikipedia contributors. Secure Shell — Wikipedia, The Free Encyclopedia.
2022. url: https://en.wikipedia.org/w/index.php?title=Secure_
Shell&oldid=1090532743 (visited on 01/04/2022).

[43] Wikipedia contributors. Service set (802.11 network) — Wikipedia, The Free
Encyclopedia. 2022. url: https : / / en . wikipedia . org / w / index . php ?

title=Service_set_(802.11_network)&oldid=1073483485 (visited on
03/06/2022).

[44] Wikipedia contributors. Simple Mail Transfer Protocol — Wikipedia, The Free
Encyclopedia. 2022. url: https : / / en . wikipedia . org / w / index . php ?

title=Simple_Mail_Transfer_Protocol&oldid=1089433561 (visited on
06/05/2022).

[45] Wikipedia contributors. SOCKS — Wikipedia, The Free Encyclopedia. 2022.
url: https://en.wikipedia.org/w/index.php?title=SOCKS&oldid=
1091130060 (visited on 10/06/2022).

[46] Wikipedia contributors. Solar inverter — Wikipedia, The Free Encyclopedia.
2022. url: https://en.wikipedia.org/w/index.php?title=Solar_
inverter&oldid=1091477297 (visited on 22/04/2022).

[47] Wikipedia contributors. Telnet — Wikipedia, The Free Encyclopedia. 2022.
url: https://en.wikipedia.org/w/index.php?title=Telnet&oldid=
1091662448 (visited on 01/04/2022).

[48] Wikipedia contributors. Time series database — Wikipedia, The Free Encyc-
lopedia. 2022. url: https://en.wikipedia.org/w/index.php?title=Time_
series_database&oldid=1073518068 (visited on 25/03/2022).

[49] Wikipedia contributors. Virtual private network — Wikipedia, The Free En-
cyclopedia. 2022. url: https://en.wikipedia.org/w/index.php?title=
Virtual_private_network&oldid=1091787826 (visited on 20/05/2022).

81

https://en.wikipedia.org/w/index.php?title=Message_transfer_agent&oldid=1083371486
https://en.wikipedia.org/w/index.php?title=Message_transfer_agent&oldid=1083371486
https://en.wikipedia.org/w/index.php?title=Modbus&oldid=1092284871
https://en.wikipedia.org/w/index.php?title=Modbus&oldid=1092284871
https://en.wikipedia.org/w/index.php?title=NoSQL&oldid=1087561833
https://en.wikipedia.org/w/index.php?title=NoSQL&oldid=1087561833
https://en.wikipedia.org/w/index.php?title=Publish%E2%80%93subscribe_pattern&oldid=1073380138
https://en.wikipedia.org/w/index.php?title=Publish%E2%80%93subscribe_pattern&oldid=1073380138
https://en.wikipedia.org/w/index.php?title=Relational_database&oldid=1088987450
https://en.wikipedia.org/w/index.php?title=Relational_database&oldid=1088987450
https://en.wikipedia.org/w/index.php?title=Reverse_proxy&oldid=1089196899
https://en.wikipedia.org/w/index.php?title=Reverse_proxy&oldid=1089196899
https://en.wikipedia.org/w/index.php?title=RS-485&oldid=1090820751
https://en.wikipedia.org/w/index.php?title=RS-485&oldid=1090820751
https://en.wikipedia.org/w/index.php?title=Secure_Shell&oldid=1090532743
https://en.wikipedia.org/w/index.php?title=Secure_Shell&oldid=1090532743
https://en.wikipedia.org/w/index.php?title=Service_set_(802.11_network)&oldid=1073483485
https://en.wikipedia.org/w/index.php?title=Service_set_(802.11_network)&oldid=1073483485
https://en.wikipedia.org/w/index.php?title=Simple_Mail_Transfer_Protocol&oldid=1089433561
https://en.wikipedia.org/w/index.php?title=Simple_Mail_Transfer_Protocol&oldid=1089433561
https://en.wikipedia.org/w/index.php?title=SOCKS&oldid=1091130060
https://en.wikipedia.org/w/index.php?title=SOCKS&oldid=1091130060
https://en.wikipedia.org/w/index.php?title=Solar_inverter&oldid=1091477297
https://en.wikipedia.org/w/index.php?title=Solar_inverter&oldid=1091477297
https://en.wikipedia.org/w/index.php?title=Telnet&oldid=1091662448
https://en.wikipedia.org/w/index.php?title=Telnet&oldid=1091662448
https://en.wikipedia.org/w/index.php?title=Time_series_database&oldid=1073518068
https://en.wikipedia.org/w/index.php?title=Time_series_database&oldid=1073518068
https://en.wikipedia.org/w/index.php?title=Virtual_private_network&oldid=1091787826
https://en.wikipedia.org/w/index.php?title=Virtual_private_network&oldid=1091787826

8. References

[50] Wikipedia contributors. X Window System — Wikipedia, The Free Encyclo-
pedia. 2022. url: https://en.wikipedia.org/w/index.php?title=X_
Window_System&oldid=1090677160 (visited on 10/06/2022).

[51] Andrea Crawford. DevOps a complete guide. 2019. url: https://www.ibm.
com/cloud/learn/devops-a-complete-guide (visited on 27/02/2022).

[52] DezeStijn. Reading Ginlong Solis inverter over serial and importing in Home
Assistant over MQTT. url: https://sequr.be/blog/2021/08/reading-
ginlong - solis - inverter - over - serial - and - importing - in - home -

assistant-over-mqtt/ (visited on 22/04/2022).

[53] M. Dı́ez-Mediavilla et al. “Performance of grid-tied PV facilities based on
real data in Spain: Central inverter versus string system”. In: Energy Con-
version and Management 86 (2014), pp. 1128–1133. url: https : / / www .

sciencedirect.com/science/article/pii/S0196890414006128 (visited
on 22/04/2022).

[54] DigitalOcean.DigitalOcean - The developer cloud. url: https://www.digitalocean.
com/ (visited on 06/05/2022).

[55] Docker. Docker Context. url: https://docs.docker.com/engine/context/
working-with-contexts/ (visited on 20/05/2022).

[56] Docker. Docker Engine overview. url: https://docs.docker.com/engine/
(visited on 25/03/2022).

[57] Docker. Docker overview. url: https://docs.docker.com/get-started/
overview/ (visited on 20/05/2022).

[58] Docker. Overview of Docker Compose. url: https://docs.docker.com/
compose/ (visited on 25/03/2022).

[59] Docker. Share Compose configurations between files and projects. url: https:
//docs.docker.com/compose/extends/ (visited on 20/05/2022).

[60] Docker. Use bind mounts. url: https : / / docs . docker . com / storage /

volumes/ (visited on 20/05/2022).

[61] Docker. Use volumes. url: https://docs.docker.com/storage/bind-
mounts/ (visited on 20/05/2022).

[62] Inc. Docker. Docker. url: https://docker.com (visited on 27/02/2022).

[63] Inc. Docker.What is a Container? url: https://www.docker.com/resources/
what-container (visited on 27/02/2022).

[64] Read the Docs. PyModbus - A Python Modbus Stack. url: https://pymodbus.
readthedocs.io/en/latest/readme.html (visited on 22/04/2022).

[65] DuckDNS. DuckDNS - About. url: https://www.duckdns.org/about.jsp
(visited on 01/04/2022).

[66] Let’s Encrypt. Challenge Types. url: https://letsencrypt.org/docs/
challenge-types/ (visited on 01/04/2022).

[67] Let’s Encrypt. Getting Started. url: https://letsencrypt.org/getting-
started/ (visited on 01/04/2022).

[68] Stack Exchange. How to forward X over SSH to run graphics applications
remotely? 2016. url: https://unix.stackexchange.com/q/12755 (visited
on 10/06/2022).

82

https://en.wikipedia.org/w/index.php?title=X_Window_System&oldid=1090677160
https://en.wikipedia.org/w/index.php?title=X_Window_System&oldid=1090677160
https://www.ibm.com/cloud/learn/devops-a-complete-guide
https://www.ibm.com/cloud/learn/devops-a-complete-guide
https://sequr.be/blog/2021/08/reading-ginlong-solis-inverter-over-serial-and-importing-in-home-assistant-over-mqtt/
https://sequr.be/blog/2021/08/reading-ginlong-solis-inverter-over-serial-and-importing-in-home-assistant-over-mqtt/
https://sequr.be/blog/2021/08/reading-ginlong-solis-inverter-over-serial-and-importing-in-home-assistant-over-mqtt/
https://www.sciencedirect.com/science/article/pii/S0196890414006128
https://www.sciencedirect.com/science/article/pii/S0196890414006128
https://www.digitalocean.com/
https://www.digitalocean.com/
https://docs.docker.com/engine/context/working-with-contexts/
https://docs.docker.com/engine/context/working-with-contexts/
https://docs.docker.com/engine/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/extends/
https://docs.docker.com/compose/extends/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/bind-mounts/
https://docs.docker.com/storage/bind-mounts/
https://docker.com
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://pymodbus.readthedocs.io/en/latest/readme.html
https://pymodbus.readthedocs.io/en/latest/readme.html
https://www.duckdns.org/about.jsp
https://letsencrypt.org/docs/challenge-types/
https://letsencrypt.org/docs/challenge-types/
https://letsencrypt.org/getting-started/
https://letsencrypt.org/getting-started/
https://unix.stackexchange.com/q/12755

8. References

[69] Marcos G. Modbus Error: [Invalid Message] Incomplete message received, ex-
pected at least 2 bytes (0 received). url: https://stackoverflow.com/a/
56923891 (visited on 22/04/2022).

[70] Mattias Geniar. Create a SOCKS proxy on a Linux server with SSH to bypass
content filters. 2017. url: https://ma.ttias.be/socks-proxy-linux-ssh-
bypass-content-filters/ (visited on 01/04/2022).

[71] Alexander Gillis. What is internet of things (IoT)? 2021. url: https : / /
internetofthingsagenda . techtarget . com / definition / Internet - of -

Things-IoT (visited on 27/02/2022).

[72] GitHub. librsync. url: https://github.com/librsync/librsync (visited on
20/05/2022).

[73] GitHub. Mailhog. url: https://github.com/mailhog/MailHog (visited on
20/05/2022).

[74] GitHub. OpenEVSE PLUS. url: https://github.com/OpenEVSE/OpenEVSE_
PLUS (visited on 03/06/2022).

[75] GitHub. openvpn-install. url: https://github.com/Nyr/openvpn-install
(visited on 20/05/2022).

[76] GitHub. rsync. url: https : / / github . com / WayneD / rsync/ (visited on
20/05/2022).

[77] GitHub. sysrqd. url: https://github.com/jd/sysrqd (visited on 03/06/2022).

[78] GitHub. Tecnativa - Docker Duplicity. url: https://github.com/Tecnativa/
docker-duplicity (visited on 20/05/2022).

[79] GitLab. duplicity. url: https://duplicity.gitlab.io/ (visited on 20/05/2022).

[80] Google. Cloud Computing Services - Google Cloud. url: https://cloud.
google.com/ (visited on 06/05/2022).

[81] Docker Hub. DuckDNS. url: https://hub.docker.com/r/linuxserver/
duckdns/ (visited on 01/04/2022).

[82] Docker Hub. Eclipse Mosquitto. url: https://hub.docker.com/_/eclipse-
mosquitto/ (visited on 25/03/2022).

[83] Docker Hub. Grafana. url: https://hub.docker.com/r/grafana/grafana/
(visited on 25/03/2022).

[84] Docker Hub. InfluxDB. url: https://hub.docker.com/_/influxdb/ (visited
on 25/03/2022).

[85] Docker Hub. Mailhog. url: https://hub.docker.com/r/mailhog/mailhog
(visited on 20/05/2022).

[86] Docker Hub. Mailhog. url: https : / / hub . docker . com / r / portainer /

portainer (visited on 20/05/2022).

[87] Docker Hub. Mailhog. url: https://hub.docker.com/r/portainer/agent
(visited on 20/05/2022).

[88] Docker Hub. Nginx Proxy Manager. url: https://hub.docker.com/r/jc21/
nginx-proxy-manager (visited on 01/04/2022).

[89] Docker Hub. Node-RED. url: https://hub.docker.com/r/nodered/node-
red/ (visited on 25/03/2022).

[90] IBM. IBM Cloud. url: https://www.ibm.com/cloud (visited on 06/05/2022).

83

https://stackoverflow.com/a/56923891
https://stackoverflow.com/a/56923891
https://ma.ttias.be/socks-proxy-linux-ssh-bypass-content-filters/
https://ma.ttias.be/socks-proxy-linux-ssh-bypass-content-filters/
https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
https://github.com/librsync/librsync
https://github.com/mailhog/MailHog
https://github.com/OpenEVSE/OpenEVSE_PLUS
https://github.com/OpenEVSE/OpenEVSE_PLUS
https://github.com/Nyr/openvpn-install
https://github.com/WayneD/rsync/
https://github.com/jd/sysrqd
https://github.com/Tecnativa/docker-duplicity
https://github.com/Tecnativa/docker-duplicity
https://duplicity.gitlab.io/
https://cloud.google.com/
https://cloud.google.com/
https://hub.docker.com/r/linuxserver/duckdns/
https://hub.docker.com/r/linuxserver/duckdns/
https://hub.docker.com/_/eclipse-mosquitto/
https://hub.docker.com/_/eclipse-mosquitto/
https://hub.docker.com/r/grafana/grafana/
https://hub.docker.com/_/influxdb/
https://hub.docker.com/r/mailhog/mailhog
https://hub.docker.com/r/portainer/portainer
https://hub.docker.com/r/portainer/portainer
https://hub.docker.com/r/portainer/agent
https://hub.docker.com/r/jc21/nginx-proxy-manager
https://hub.docker.com/r/jc21/nginx-proxy-manager
https://hub.docker.com/r/nodered/node-red/
https://hub.docker.com/r/nodered/node-red/
https://www.ibm.com/cloud

8. References

[91] InfluxData. Chronograf: Complete Dashboard Solution for InfluxDB. url: https:
//www.influxdata.com/time-series-platform/chronograf/ (visited on
25/03/2022).

[92] InfluxData. InfluxDB. url: https://docs.influxdata.com/influxdb (vis-
ited on 27/02/2022).

[93] InfluxData. Install InfluxDB. url: https://docs.influxdata.com/influxdb/
v2.1/install/ (visited on 25/03/2022).

[94] InfluxData. Query data with InfluxQL. url: https://docs.influxdata.com/
influxdb/v2.1/query-data/influxql/ (visited on 25/03/2022).

[95] InfluxData.Use Grafana with InfluxDB OSS. url: https://docs.influxdata.
com/influxdb/v2.1/tools/grafana/ (visited on 25/03/2022).

[96] jc21. Nginx Proxy Manager. url: https://nginxproxymanager.com/ (visited
on 01/04/2022).

[97] John Jetmore. Swaks - Swiss Army Knife for SMTP. url: https://jetmore.
org/john/code/swaks/ (visited on 06/05/2022).

[98] The Linux Kernel. Linux Magic System Request Key Hacks. url: https://
www.kernel.org/doc/html/latest/admin-guide/sysrq.html (visited on
10/06/2022).

[99] Colin Ian King. PCIe Bus Error: severity=Corrected, type=Physical Layer,
id=00e5(Receiver ID). 2016. url: https://askubuntu.com/a/863301 (visited
on 10/06/2022).

[100] Kingston. 2 Types of M.2 SSDs: SATA and NVMe - Kingston Technology. url:
https://www.kingston.com/en/blog/pc-performance/two-types-m2-vs-

ssd (visited on 18/03/2022).

[101] Kingston. NVMe vs SATA: What is the difference? - Kingston Technology.
url: https://www.kingston.com/en/blog/pc-performance/nvme-vs-sata
(visited on 18/03/2022).

[102] Adam Kościelak.Mail Transfer Agent: advantages. url: https://elasticemail.
com/blog/advantages-of-elastic-email-mail-transfer-agent (visited
on 06/05/2022).

[103] Grafana Labs. Flux support in Grafana. url: https://grafana.com/docs/
grafana/latest/datasources/influxdb/influxdb-flux/ (visited on 25/03/2022).

[104] Grafana Labs. Grafana. url: https://grafana.com (visited on 27/02/2022).

[105] Grafana Labs. InfluxDB data source. url: https://grafana.com/docs/
grafana/latest/datasources/influxdb/ (visited on 25/03/2022).

[106] Grafana Labs. Run Grafana Docker image. url: https://grafana.com/
docs/grafana/latest/administration/configure- docker/ (visited on
25/03/2022).

[107] James Lewis and Martin Fowler. Microservices: a definition of this new archi-
tectural term. 2014. url: https://martinfowler.com/articles/microservices.
html (visited on 27/02/2022).

[108] TP-Link. Brief Introduction of AP Isolation. url: https://www.tp-link.
com/es/support/faq/2089/ (visited on 10/06/2022).

[109] Linksys. Getting to know the AP Isolation function. url: https : / / www .
linksys.com/gb/support-article?articleNum=135098 (visited on 10/06/2022).

84

https://www.influxdata.com/time-series-platform/chronograf/
https://www.influxdata.com/time-series-platform/chronograf/
https://docs.influxdata.com/influxdb
https://docs.influxdata.com/influxdb/v2.1/install/
https://docs.influxdata.com/influxdb/v2.1/install/
https://docs.influxdata.com/influxdb/v2.1/query-data/influxql/
https://docs.influxdata.com/influxdb/v2.1/query-data/influxql/
https://docs.influxdata.com/influxdb/v2.1/tools/grafana/
https://docs.influxdata.com/influxdb/v2.1/tools/grafana/
https://nginxproxymanager.com/
https://jetmore.org/john/code/swaks/
https://jetmore.org/john/code/swaks/
https://www.kernel.org/doc/html/latest/admin-guide/sysrq.html
https://www.kernel.org/doc/html/latest/admin-guide/sysrq.html
https://askubuntu.com/a/863301
https://www.kingston.com/en/blog/pc-performance/two-types-m2-vs-ssd
https://www.kingston.com/en/blog/pc-performance/two-types-m2-vs-ssd
https://www.kingston.com/en/blog/pc-performance/nvme-vs-sata
https://elasticemail.com/blog/advantages-of-elastic-email-mail-transfer-agent
https://elasticemail.com/blog/advantages-of-elastic-email-mail-transfer-agent
https://grafana.com/docs/grafana/latest/datasources/influxdb/influxdb-flux/
https://grafana.com/docs/grafana/latest/datasources/influxdb/influxdb-flux/
https://grafana.com
https://grafana.com/docs/grafana/latest/datasources/influxdb/
https://grafana.com/docs/grafana/latest/datasources/influxdb/
https://grafana.com/docs/grafana/latest/administration/configure-docker/
https://grafana.com/docs/grafana/latest/administration/configure-docker/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://www.tp-link.com/es/support/faq/2089/
https://www.tp-link.com/es/support/faq/2089/
https://www.linksys.com/gb/support-article?articleNum=135098
https://www.linksys.com/gb/support-article?articleNum=135098

8. References

[110] Mike Loukides. What is DevOps? 2012. url: http://radar.oreilly.com/
2012/06/what-is-devops.html (visited on 27/02/2022).

[111] Mailgun. Transactional Email API Service For Developers. url: https://
www.mailgun.com/ (visited on 06/05/2022).

[112] Mailgun. Why not just use Sendmail + Postfix + Courier IMAP? url: https:
//documentation.mailgun.com/en/latest/faqs.html#why-not-just-

use-sendmail-postfix-courier-imap (visited on 06/05/2022).

[113] MangoHot. X Window System. 2015. url: https://nasa.cs.nctu.edu.tw/
sap/2015/slides/X_Window_System.pdf (visited on 10/06/2022).

[114] Microsoft. Cloud Computing Services - Microsoft Azure. url: https://azure.
microsoft.com (visited on 06/05/2022).

[115] MongdoDB. MongdoDB - Build faster. Build smarter. url: https://www.
mongodb.com/ (visited on 25/03/2022).

[116] Troy Morlan. String Versus Central Inverters for Solar PV Projects. url:
https://blog.norcalcontrols.net/string-versus-central-inverters-

solar-pv (visited on 22/04/2022).

[117] Mosquitto. Eclipse Mosquitto. url: https://mosquitto.org/ (visited on
25/03/2022).

[118] Comunidad Movistar. HGU RTF8115VW: ¿Para qué sirven los servers DHCP
0, 1, 2? url: https://comunidad.movistar.es/t5/Soporte-Fibra-y-
ADSL/HGU-RTF8115VW-Para-qu%C3%A9-sirven-los-servers-DHCP-0-1-

2/td-p/4631406 (visited on 27/05/2022).

[119] MySQL. MySQL. url: https://www.mysql.com/ (visited on 25/03/2022).

[120] MySQL. PostgreSQL: The World’s Most Advanced Open Source Relational
Database. url: https://www.postgresql.org/ (visited on 25/03/2022).

[121] NGINX. NGINX Reverse Proxy. url: https://docs.nginx.com/nginx/
admin-guide/web-server/reverse-proxy/ (visited on 01/04/2022).

[122] Node-RED. Running under Docker. url: https : / / nodered . org / docs /

getting-started/docker (visited on 25/03/2022).

[123] Node.js. npm global or local packages. url: https://nodejs.dev/learn/npm-
global-or-local-packages/ (visited on 25/03/2022).

[124] npm. Dependency Hell - How npm Works. url: https://npm.github.io/
how-npm-works-docs/theory-and-design/dependency-hell.html (visited
on 25/03/2022).

[125] O’Reilly. SSH: The Secure Shell, The Definitive Guide. 2016. url: https:
//docstore.mik.ua/orelly/networking_2ndEd/ssh/ch09_03.htm (visited
on 10/06/2022).

[126] OASIS. MQTT. url: https://mqtt.org (visited on 27/02/2022).

[127] OpenEVSE.OpenEVSE Kits - Electric Vehicle Charging Solutions. url: https:
//www.openevse.com/kits.html (visited on 03/06/2022).

[128] OpenSSH.OpenSSH. url: https://www.openssh.com/ (visited on 01/04/2022).

[129] OpenVPN. Business VPN - Next-Gen VPN. url: https://openvpn.net/
(visited on 20/05/2022).

[130] Oracle. Oracle Cloud Infrastructure. url: https://www.oracle.com/cloud/
(visited on 06/05/2022).

85

http://radar.oreilly.com/2012/06/what-is-devops.html
http://radar.oreilly.com/2012/06/what-is-devops.html
https://www.mailgun.com/
https://www.mailgun.com/
https://documentation.mailgun.com/en/latest/faqs.html#why-not-just-use-sendmail-postfix-courier-imap
https://documentation.mailgun.com/en/latest/faqs.html#why-not-just-use-sendmail-postfix-courier-imap
https://documentation.mailgun.com/en/latest/faqs.html#why-not-just-use-sendmail-postfix-courier-imap
https://nasa.cs.nctu.edu.tw/sap/2015/slides/X_Window_System.pdf
https://nasa.cs.nctu.edu.tw/sap/2015/slides/X_Window_System.pdf
https://azure.microsoft.com
https://azure.microsoft.com
https://www.mongodb.com/
https://www.mongodb.com/
https://blog.norcalcontrols.net/string-versus-central-inverters-solar-pv
https://blog.norcalcontrols.net/string-versus-central-inverters-solar-pv
https://mosquitto.org/
https://comunidad.movistar.es/t5/Soporte-Fibra-y-ADSL/HGU-RTF8115VW-Para-qu%C3%A9-sirven-los-servers-DHCP-0-1-2/td-p/4631406
https://comunidad.movistar.es/t5/Soporte-Fibra-y-ADSL/HGU-RTF8115VW-Para-qu%C3%A9-sirven-los-servers-DHCP-0-1-2/td-p/4631406
https://comunidad.movistar.es/t5/Soporte-Fibra-y-ADSL/HGU-RTF8115VW-Para-qu%C3%A9-sirven-los-servers-DHCP-0-1-2/td-p/4631406
https://www.mysql.com/
https://www.postgresql.org/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://nodered.org/docs/getting-started/docker
https://nodered.org/docs/getting-started/docker
https://nodejs.dev/learn/npm-global-or-local-packages/
https://nodejs.dev/learn/npm-global-or-local-packages/
https://npm.github.io/how-npm-works-docs/theory-and-design/dependency-hell.html
https://npm.github.io/how-npm-works-docs/theory-and-design/dependency-hell.html
https://docstore.mik.ua/orelly/networking_2ndEd/ssh/ch09_03.htm
https://docstore.mik.ua/orelly/networking_2ndEd/ssh/ch09_03.htm
https://mqtt.org
https://www.openevse.com/kits.html
https://www.openevse.com/kits.html
https://www.openssh.com/
https://openvpn.net/
https://www.oracle.com/cloud/

8. References

[131] Stack Overflow. How to fix? kex exchange identification: read: Connection re-
set by peer. url: https:/ /stackoverflow.com/q /69394001 (visited on
10/06/2022).

[132] Stack Overflow. SSH kex exchange identification: read: Connection reset by
peer. url: https://stackoverflow.com/q/61185751 (visited on 10/06/2022).

[133] Pilot6. Can’t get RTL8125B working on 20.04. url: https://askubuntu.
com/a/1260626 (visited on 18/03/2022).

[134] Portainer. Mailhog. url: https://docs.portainer.io/start/architecture
(visited on 20/05/2022).

[135] Python. venv - Creation of virtual environments. url: https://docs.python.
org/3/library/venv.html (visited on 25/03/2022).

[136] Realtek. Gaming Ethernet Family Controller Software. url: https://www.
realtek.com/en/component/zoo/category/network-interface-controllers-

10- 100- 1000m- gigabit- ethernet- pci- express- software (visited on
18/03/2022).

[137] Realtek. RTL8125BG(S)-CG. url: https://www.realtek.com/en/products/
communications-network-ics/item/rtl8125bg-s-cg (visited on 18/03/2022).

[138] Chris Richardson. Microservices: a definition of this new architectural term.
2015. url: https://www.nginx.com/blog/introduction-to-microservices
(visited on 27/02/2022).

[139] Ozgur Sahingoz and Ahmet Sonmez. “Agent-Based Fault Tolerant Distrib-
uted Event System.” In: Computing and Informatics 26 (Jan. 2007), pp. 489–
506. url: https : / / www . researchgate . net / publication / 220106069 _

Agent- Based_Fault_Tolerant_Distributed_Event_System (visited on
25/03/2022).

[140] ScyllaDB. ScyllaDB - NoSQL vs SQL. url: https://www.scylladb.com/
learn/nosql/nosql-vs-sql/ (visited on 25/03/2022).

[141] Shelly. Products - Shelly 3EM. url: https://shelly.cloud/products/
shelly-3em-smart-home-automation-energy-meter/ (visited on 22/04/2022).

[142] Shelly. Products - Shelly Plug S. url: https://shelly.cloud/products/
shelly-plug-s-smart-home-automation-device/ (visited on 03/06/2022).

[143] Shelly. Shelly 3EM - API Reference. url: https : / / shelly - api - docs .
shelly.cloud/gen1/#shelly-3em (visited on 27/05/2022).

[144] Stanislav Shymanskyi. How Does Mailgun Sandbox Work? url: https://
mailtrap.io/blog/mailgun-sandbox-tutorial/ (visited on 06/05/2022).

[145] Solis. S6 string inverter. url: https://www.ginlong.com/solarinverter1/
700-3600w_mini_s6_global.html (visited on 22/04/2022).

[146] SSH. SSH Tunnel. url: https://www.ssh.com/academy/ssh/tunneling
(visited on 01/04/2022).

[147] Chris Stetson. Introducing the Microservices Reference Architecture from NGINX.
2016. url: https : / / www . nginx . com / blog / introducing - the - nginx -
microservices-reference-architecture (visited on 27/02/2022).

[148] Gabby Taylor. Taming the tar command: Tips for managing backups in Linux.
url: https://www.redhat.com/sysadmin/taming-tar-command (visited on
20/05/2022).

86

https://stackoverflow.com/q/69394001
https://stackoverflow.com/q/61185751
https://askubuntu.com/a/1260626
https://askubuntu.com/a/1260626
https://docs.portainer.io/start/architecture
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://www.realtek.com/en/component/zoo/category/network-interface-controllers-10-100-1000m-gigabit-ethernet-pci-express-software
https://www.realtek.com/en/component/zoo/category/network-interface-controllers-10-100-1000m-gigabit-ethernet-pci-express-software
https://www.realtek.com/en/component/zoo/category/network-interface-controllers-10-100-1000m-gigabit-ethernet-pci-express-software
https://www.realtek.com/en/products/communications-network-ics/item/rtl8125bg-s-cg
https://www.realtek.com/en/products/communications-network-ics/item/rtl8125bg-s-cg
https://www.nginx.com/blog/introduction-to-microservices
https://www.researchgate.net/publication/220106069_Agent-Based_Fault_Tolerant_Distributed_Event_System
https://www.researchgate.net/publication/220106069_Agent-Based_Fault_Tolerant_Distributed_Event_System
https://www.scylladb.com/learn/nosql/nosql-vs-sql/
https://www.scylladb.com/learn/nosql/nosql-vs-sql/
https://shelly.cloud/products/shelly-3em-smart-home-automation-energy-meter/
https://shelly.cloud/products/shelly-3em-smart-home-automation-energy-meter/
https://shelly.cloud/products/shelly-plug-s-smart-home-automation-device/
https://shelly.cloud/products/shelly-plug-s-smart-home-automation-device/
https://shelly-api-docs.shelly.cloud/gen1/#shelly-3em
https://shelly-api-docs.shelly.cloud/gen1/#shelly-3em
https://mailtrap.io/blog/mailgun-sandbox-tutorial/
https://mailtrap.io/blog/mailgun-sandbox-tutorial/
https://www.ginlong.com/solarinverter1/700-3600w_mini_s6_global.html
https://www.ginlong.com/solarinverter1/700-3600w_mini_s6_global.html
https://www.ssh.com/academy/ssh/tunneling
https://www.nginx.com/blog/introducing-the-nginx-microservices-reference-architecture
https://www.nginx.com/blog/introducing-the-nginx-microservices-reference-architecture
https://www.redhat.com/sysadmin/taming-tar-command

8. References

[149] Home Assistant Core Team and Community. Home assistant. url: https:
//www.home-assistant.io (visited on 27/02/2022).

[150] Ubuntu. Ubuntu 20.04.4 LTS (Focal Fossa). url: https://ubuntu.com/
kernel/lifecycle (visited on 18/03/2022).

[151] Ubuntu. Ubuntu kernel lifecycle and enablement stack. url: https://ubuntu.
com/kernel/lifecycle (visited on 18/03/2022).

[152] Ask Ubuntu. A start job is running for wait for network to be configured. 2017.
url: https://askubuntu.com/q/972215 (visited on 27/05/2022).

[153] Eben Upton. Supply Chain, shortages, and our first-ever price increase. 2021.
url: https://www.raspberrypi.com/news/supply- chain- shortages-
and-our-first-ever-price-increase/ (visited on 18/03/2022).

[154] Wietse Venema. The Postfix Home Page. url: https://www.postfix.org/
(visited on 06/05/2022).

[155] Adam Wiggins. The twelve-factor app. 2017. url: https://12factor.net
(visited on 27/02/2022).

[156] Wikipedia contributors. Chroot — Wikipedia, The Free Encyclopedia. 2022.
url: https://en.wikipedia.org/w/index.php?title=Chroot&oldid=
1090719602 (visited on 25/03/2022).

[157] Wikipedia contributors. Flow-based programming — Wikipedia, The Free En-
cyclopedia. 2022. url: https://en.wikipedia.org/w/index.php?title=
Flow-based_programming&oldid=1091088877 (visited on 25/03/2022).

[158] Wikipedia contributors. Internet of things — Wikipedia, The Free Encyclope-
dia. 2022. url: https://en.wikipedia.org/w/index.php?title=Internet_
of_things&oldid=1073917710 (visited on 27/02/2022).

[159] Wikipedia contributors. OS-level virtualization — Wikipedia, The Free Encyc-
lopedia. 2022. url: https://en.wikipedia.org/w/index.php?title=OS-
level_virtualization&oldid=1090462427 (visited on 25/03/2022).

[160] Wikipedia contributors. Visual programming language — Wikipedia, The Free
Encyclopedia. 2022. url: https://en.wikipedia.org/w/index.php?title=
Visual_programming_language&oldid=1091089785 (visited on 25/03/2022).

[161] ADSL Zone. Sobre el router hgu Askey. url: https://www.adslzone.net/
foro/o2.188/sobre-router-hgu-askey.580551/ (visited on 27/05/2022).

[162] Redes Zone. Configura el router Askey RTF8115VW de Movistar en modo
bridge o puente. url: https://www.redeszone.net/tutoriales/configuracion-
routers/configurar-askey-rtf8115vw-movistar-bridge-puente/ (vis-
ited on 27/05/2022).

87

https://www.home-assistant.io
https://www.home-assistant.io
https://ubuntu.com/kernel/lifecycle
https://ubuntu.com/kernel/lifecycle
https://ubuntu.com/kernel/lifecycle
https://ubuntu.com/kernel/lifecycle
https://askubuntu.com/q/972215
https://www.raspberrypi.com/news/supply-chain-shortages-and-our-first-ever-price-increase/
https://www.raspberrypi.com/news/supply-chain-shortages-and-our-first-ever-price-increase/
https://www.postfix.org/
https://12factor.net
https://en.wikipedia.org/w/index.php?title=Chroot&oldid=1090719602
https://en.wikipedia.org/w/index.php?title=Chroot&oldid=1090719602
https://en.wikipedia.org/w/index.php?title=Flow-based_programming&oldid=1091088877
https://en.wikipedia.org/w/index.php?title=Flow-based_programming&oldid=1091088877
https://en.wikipedia.org/w/index.php?title=Internet_of_things&oldid=1073917710
https://en.wikipedia.org/w/index.php?title=Internet_of_things&oldid=1073917710
https://en.wikipedia.org/w/index.php?title=OS-level_virtualization&oldid=1090462427
https://en.wikipedia.org/w/index.php?title=OS-level_virtualization&oldid=1090462427
https://en.wikipedia.org/w/index.php?title=Visual_programming_language&oldid=1091089785
https://en.wikipedia.org/w/index.php?title=Visual_programming_language&oldid=1091089785
https://www.adslzone.net/foro/o2.188/sobre-router-hgu-askey.580551/
https://www.adslzone.net/foro/o2.188/sobre-router-hgu-askey.580551/
https://www.redeszone.net/tutoriales/configuracion-routers/configurar-askey-rtf8115vw-movistar-bridge-puente/
https://www.redeszone.net/tutoriales/configuracion-routers/configurar-askey-rtf8115vw-movistar-bridge-puente/

Appendices

A User manual

This document will detail the steps required to deploy a visualization system of photo-
voltaic power consumption in an installation with anAutarco SX-MII solar inverter,
a Shelly 3EM meter and an ASUS MiniPC as the main hub.

Although the documentation is written for the previously mentioned hardware, it
should be fairly straightforward to adapt it to other hardware combinations.

Installation

Operating system

The operating system used for the main hub will be anUbuntu 20.04 with Hardware
Enablement (HWE) enable to ensure that the latest drivers are available, as some are
needed by the ASUS MiniPC. Installation should be straightforward, but in case
of doubt check the official tutorial.

Software dependencies

Docker will be used as an orchestrator for our containers, which requires both Docker
Engine and Docker Compose. They can either be installed by following the official
instructions listed on the website or through the package manager:

$ sudo apt install docker.io docker-compose

Although MQTT will be executed as a container, the following package can be used
to send local data to a broker and test network connection to other devices:

$ sudo apt install mosquitto-clients

To enable the monitorization of the main hub the following packages are required:

$ sudo apt install msr-tools jq

In case remote access to the main hub is required OpenVPN can be used to connect
to it from outside the local network. The following command downloads and executes
a script that will walk the user through the installation process:

$ wget https://git.io/vpn -O openvpn-install.sh

$ bash openvpn-install.sh

Software utilities

This section contains a list of tools that might be useful to more easily manage the
main hub.

Remote management through ssh can be tedious for complex tasks such as develop-
ment, tmux can be used to run multiple terminal instances in a single session:

$ sudo apt install tmux

88

https://www.autarco.com/products/inverters/sx-mark-ii-series-solar-inverters/
https://shelly.cloud/knowledge-base/devices/shelly-3em/
https://www.asus.com/Displays-Desktops/Mini-PCs/PN-PB-series/Mini-PC-PN41/
https://www.releases.ubuntu.com/20.04/
https://ubuntu.com/kernel/lifecycle
https://ubuntu.com/tutorials/install-ubuntu-server
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/

Network tools such as netstat or route can be used to help debug network problems,
they are included in the net-tools package:

$ sudo apt install net-tools

By default Ubuntu server does not ship with a graphical interface, but it can be
enabled if needed by installing ubuntu-desktop-minimal:

$ sudo apt install ubuntu-desktop-minimal

Firewall configuration is a very important task if a machine must be exposed to the
Internet, in that case ufw allows a user to easily configure it:

$ sudo apt install ufw

Configuration

System settings

After installing the operating system and packages one might want to configure some
of its services. Here we describe some optional configuations together with a required
service that will provide Node-RED with status information.

Configure SSH

Configuring SSH is a must if we want to access a device remotely. To do so we need
a cryptographic key pair on the machine that will have access, which can easily be
generated with ssh-keygen.

Once generated a .pub public key file will be generated. To grant access on the
remote machine either copy it manually to ~/.ssh/authorized keys or use following
command (replacing variables as needed):

$ ssh-copy-id -i ~/.ssh/key.pub user@host

It usually is a good idea to disable password authentication as soon as public keys are
in place. This can be achieved by setting PasswordAuthentication no in the SSH

deamon configuration file /etc/ssh/sshd config. Once modified it is necessary to
restart the service:

$ sudo systemctl restart sshd

Configure time zone

Time zones are useful for making sense of logs and essential to ensure that services
executing periodic jobs such as cron are run when they are supposed to.

Timezones follow the format described in the tz database, and available ones can
be obtained with timedatectl list-timezones. They can be controlled with the
following command:

$ sudo timedatectl set-timezone timezone

89

https://en.wikipedia.org/wiki/Tz_database

Activate systemd monitoring service

Finally, we need to enable the service in charge of monitoring systems resources that
will be sent via MQTT:

$ sudo cp minipc-status.sh /usr/local/bin/minipc-status.sh

$ sudo cp minipc-status.service /etc/systemd/system/minipc-status.service

$ sudo systemctl enable minipc-status

Devices

As more devices are added to the network they can quickly become difficult to manage
unless they are easily identifiable. For this purpose we can create a subnet (or at least
reserve a range of IPs) for our IoT devices, for instance 192.168.10.0/24. For specific
information on configuration see your router’s manual or its manufacturer’s site.

Shelly

All Shelly devices are configured pretty much the same way. Once they are turned
on they will create a wireless access point named after the device, after joining the
network they can be accessed at 192.168.33.1. Specific details can be found on the
Shelly’s website, for instance see Shelly 3EM’s product page and API documenta-
tion. Information for other devices can be found in a similar way.

Services

To deploy the set of services a docker-compose.yml file is provided together with
environment configuration files. The following table describes the list of services,
files associated to them that require configuration (if any) and relevant links to their
respective official sites:

Service File Documentation

Node-RED [1], [2]

InfluxDB influxdb.env [1], [2]

Grafana grafana.env [1], [2]

Portainer [1], [2]

Duckdns duckdns.env [1], [2]

Once the services have been started with docker-compose, the provided files describ-
ing Node-RED flow and Grafana dashboards and datasources can be either manu-
ally imported, via web the UI, or automatically through by executing the provided
import-configuration.sh script.

Finally, Node-RED requires access to the REE API to fetch information about
prices. As explained in their website, the public token changes periodically, so it is
necessary to request a personal token by sending a mail to consultasios@ree.es.

90

https://shelly.cloud/knowledge-base/devices/shelly-3em/
https://shelly-api-docs.shelly.cloud/gen1/#shelly-3em-overview
https://shelly-api-docs.shelly.cloud/gen1/#shelly-3em-overview
https://nodered.org/docs/
https://nodered.org/docs/getting-started/docker
https://docs.influxdata.com/influxdb/v2.2/
https://github.com/docker-library/docs/blob/master/influxdb/README.md
https://grafana.com/docs/grafana/latest/
https://grafana.com/docs/grafana/latest/installation/docker/
https://docs.portainer.io/
https://docs.portainer.io/start/install/server/docker/linux
https://www.duckdns.org/
https://github.com/linuxserver/docker-duckdns
https://www.esios.ree.es/es/pagina/api

A. User manual

A.1 minipc-status.sh

#!/bin/bash

period=30

modprobe msr

compute_ram_usage()

{

awk '$1=="MemAvailable:" {available=$2}; $1=="MemTotal:"

{total=$2}; END {print 100*(total-available)/total}'

/proc/meminfo

↪→

↪→

}

compute_disk_usage()

{

df / | tail -1 | awk '{print 100*$3/$4}'

}

compute_cpu_usage()

{

top -bn 2 -d 0.5 | grep '^%Cpu' | tail -n 1 | awk '{print

$2+$4+$6}'↪→

}

compute_cpu_temp()

{

echo $((98 - $(rdmsr --bitfield 22:16 -u 0x1B1)))

}

while sleep $period

do

ram_usage=$(compute_ram_usage)

disk_usage=$(compute_disk_usage)

cpu_usage=$(compute_cpu_usage)

cpu_temp=$(compute_cpu_temp)

message=$(jq -n \

--arg ru "$ram_usage" \

--arg du "$disk_usage" \

--arg cu "$cpu_usage" \

--arg ct "$cpu_temp" \

'{ram_usage: $ru, disk_usage: $du, cpu_usage: $cu, cpu_temp:

$ct}')↪→

mosquitto_pub -h localhost -t "minipc" -m "$message"

done

A.1. minipc-status.sh 91

A. User manual

A.2 minipc-status.service

[Unit]

Description=MiniPC resource monitorization

[Service]

ExecStart=/usr/local/bin/minipc-status.sh

Restart=on-failure

[Install]

WantedBy=multi-user.target

A.3 *.json configuration files

Configuration files for Grafana dashboards and datasources as well as Node-RED flows
are not included because they are too long and not very interesting in terms of content.

A.4 influxdb-setup.sh

#!/bin/bash

set -euo pipefail

influx v1 dbrp create \

--org ${DOCKER_INFLUXDB_INIT_ORG} \

--bucket-id ${DOCKER_INFLUXDB_INIT_BUCKET_ID} \

--db ${DOCKER_INFLUXDB_INIT_BUCKET} \

--rp ${DOCKER_INFLUXDB_INIT_BUCKET}-policy \

--default

influx v1 auth create \

--org ${DOCKER_INFLUXDB_INIT_ORG} \

--username ${DOCKER_INFLUXDB_INIT_USERNAME} \

--password ${DOCKER_INFLUXDB_INIT_PASSWORD} \

--write-bucket ${DOCKER_INFLUXDB_INIT_BUCKET_ID} \

--read-bucket ${DOCKER_INFLUXDB_INIT_BUCKET_ID}

A.2. minipc-status.service 92

A. User manual

A.5 import-configuration.sh

#!/bin/bash

set -euo pipefail

global_test_or_read()

{

[[-v $1]] || read -p "${2:-$1}: " "$1"

}

nodered_import_flows()

{

curl -X POST localhost:1880/flows \

-H "Content-Type: application/json"

--data-binary @nodered/flows.json

}

grafana_import_datasources()

{

for file in grafana/datasources/*

do

curl -X POST localhost:3000/api/datasources \

-H "Content-Type: application/json" \

-u "$GRAFANA_USERNAME:$GRAFANA_PASSWORD" \

--data-binary "@$file"

done

}

grafana_import_dashboards()

{

for file in grafana/datasources/*

do

curl -X POST localhost:3000/api/dashboards/db \

-H "Content-Type: application/json" \

-u "$GRAFANA_USERNAME:$GRAFANA_PASSWORD" \

--data-binary "@$file"

done

}

global_test_or_read GRAFANA_USERNAME

global_test_or_read GRAFANA_PASSWORD

nodered_import_flows

grafana_import_datasources

grafana_import_dashboards

A.5. import-configuration.sh 93

A. User manual

A.6 export-configuration.sh

#!/bin/bash

set -euo pipefail

global_test_or_read()

{

[[-v $1]] || read -p "${2:-$1}: " "$1"

}

nodered_export_flows()

{

curl -s localhost:1880/flows > nodered/flows.json

}

grafana_export_datasources()

{

curl -s localhost:3000/api/datasources \

-u "$GRAFANA_USERNAME:$GRAFANA_PASSWORD" | \

jq -c '.[]' | split -l 1 - grafana/datasources/

}

grafana_export_dashboards()

{

local jq_query='.[] | select(.type == "dash-db") | .uid'

for id in $(curl -s localhost:3000/api/search \

-u "$GRAFANA_USERNAME:$GRAFANA_PASSWORD" \

| jq -r "$jq_query")

do

curl -s "localhost:3000/api/dashboards/uid/$id" \

-u "$GRAFANA_USERNAME:$GRAFANA_PASSWORD" \

> "grafana/dashboards/$id"

done

}

global_test_or_read GRAFANA_USERNAME

global_test_or_read GRAFANA_PASSWORD

mkdir -p nodered

nodered_export_flows

mkdir -p grafana/datasources

grafana_export_datasources

mkdir -p grafana/dashboards

grafana_export_dashboards

A.6. export-configuration.sh 94

A. User manual

A.7 docker-compose.yml

services:

nodered:

image: nodered/node-red:2.2.2

ports:

- "1880:1880"

volumes:

- nodered-data:/data

depends_on:

- influxdb

- mosquitto

restart: always

container_name: nodered

grafana:

image: grafana/grafana:8.2.6

env_file:

- ./env/config/grafana.env

ports:

- "3000:3000"

volumes:

- grafana-data:/var/lib/grafana

depends_on:

- influxdb

restart: always

container_name: grafana

influxdb:

image: influxdb:2.1

env_file:

- ./env/config/influxdb.env

ports:

- "8086:8086"

volumes:

- influxdb-data:/var/lib/influxdb2

- influxdb-config:/etc/influxdb2

- influxdb-backup:/var/lib/influxdb2/backup

restart: always

container_name: influxdb

mosquitto:

image: eclipse-mosquitto:2.0.14

command: mosquitto -c /mosquitto-no-auth.conf

ports:

- "1883:1883"

volumes:

- mosquitto-config:/mosquitto/config

- mosquitto-data:/mosquitto/data

- mosquitto-log:/mosquitto/log

restart: always

A.7. docker-compose.yml 95

A. User manual

container_name: mosquitto

portainer:

image: portainer/portainer-ce:2.9.3

command: --admin-password "${PORTAINER_PASSWORD}"

ports:

- "8000:8000"

- "9000:9000"

volumes:

- /var/run/docker.sock:/var/run/docker.sock

- portainer-data:/data

restart: always

container_name: portainer

duckdns:

image: lscr.io/linuxserver/duckdns

env_file:

- ./env/config/duckdns.env

restart: always

container_name: duckdns

volumes:

nodered-data:

grafana-data:

influxdb-data:

influxdb-config:

influxdb-backup:

mosquitto-data:

mosquitto-config:

mosquitto-log:

portainer-data:

A.7. docker-compose.yml 96

A. User manual

A.8 *.env environment files

.env

Generate with htpasswd

https://portainer.readthedocs.io/en/stable/configuration.html

PORTAINER_PASSWORD=

influxdb.env

Enable automated influxdb setup

DOCKER_INFLUXDB_INIT_MODE=setup

Username of the main influxdb user

DOCKER_INFLUXDB_INIT_USERNAME=

Password of the main influxdb user

DOCKER_INFLUXDB_INIT_PASSWORD=

Name of the main influxdb organization

DOCKER_INFLUXDB_INIT_ORG=

Name of the main influxdb bucket

DOCKER_INFLUXDB_INIT_BUCKET=

Fix issues when restoring

https://github.com/influxdata/influxdb/issues/22890

TMPDIR=/var/lib/influxdb2

grafana.env

Password of the admin user

GF_SECURITY_ADMIN_PASSWORD=

Allow anonymous access without login

GF_AUTH_ANONYMOUS_ENABLED=true

Set permissions for anonymous access

GF_AUTH_ANONYMOUS_ORG_ROLE=Viewer

duckdns.env

Account token provided by duckdns

TOKEN=

Comma separated list of subdomains to be updated

SUBDOMAINS=

Timezone for logging purposes

https://en.wikipedia.org/wiki/Tz_database

TZ=

A.8. *.env environment files 97

B. Development listings

B Development listings

B.1 Initial docker-compose.yml

version: "2"

services:

nodered:

image: nodered/node-red:2.2.2

volumes:

- ./nodered/data:/data

ports:

- "1880:1880"

depends_on:

- nginx

restart: always

container_name: nodered

grafana:

image: grafana/grafana:8.2.6

user: "1000"

volumes:

- ./grafana/data:/var/lib/grafana

ports:

- "3000:3000"

depends_on:

- influxdb

- nginx

restart: always

container_name: grafana

influxdb:

image: influxdb:2.1

volumes:

- ./influxdb/data:/var/lib/influxdb2

- ./influxdb/config:/etc/influxdb2

ports:

- "8086:8086"

restart: always

container_name: influxdb

mosquitto:

image: eclipse-mosquitto

volumes:

- ./mosquitto/config:/mosquitto/config

ports:

- "1883:1883"

restart: always

container_name: mosquitto

nginx:

B.1. Initial docker-compose.yml 98

B. Development listings

image: jc21/nginx-proxy-manager

volumes:

- ./nginx/data:/data

- ./nginx/letsencrypt:/etc/letsencrypt

ports:

- "80:80"

- "81:81"

- "443:443"

restart: always

container_name: nginx

duckdns:

image: lscr.io/linuxserver/duckdns

env_file:

- duckdns.env

restart: always

container_name: duckdns

B.2 Final docker-compose.yml

version: "3"

services:

nodered:

volumes:

- nodered-data:/data

depends_on:

- influxdb

- mosquitto

restart: always

container_name: nodered

grafana:

env_file:

- ./env/config/grafana.env

volumes:

- grafana-data:/var/lib/grafana

depends_on:

- influxdb

restart: always

container_name: grafana

influxdb:

env_file:

- ./env/config/influxdb.env

volumes:

- influxdb-data:/var/lib/influxdb2

- influxdb-config:/etc/influxdb2

- influxdb-backup:/var/lib/influxdb2/backup

restart: always

container_name: influxdb

B.2. Final docker-compose.yml 99

B. Development listings

mosquitto:

volumes:

- mosquitto-config:/mosquitto/config

- mosquitto-data:/mosquitto/data

- mosquitto-log:/mosquitto/log

restart: always

container_name: mosquitto

duplicity:

env_file:

- ./env/config/duplicity.env

volumes:

- /var/run/docker.sock:/var/run/docker.sock:ro

- duplicity-root:/root

- nodered-data:/mnt/backup/src/nodered-data

- grafana-data:/mnt/backup/src/grafana-data

- influxdb-backup:/mnt/backup/src/influxdb-backup

depends_on:

- influxdb

restart: always

container_name: duplicity

volumes:

nodered-data:

grafana-data:

influxdb-data:

influxdb-config:

influxdb-backup:

mosquitto-data:

mosquitto-config:

mosquitto-log:

duplicity-root:

B.2. Final docker-compose.yml 100

B. Development listings

B.3 Local

B.3.1 docker-compose.override.yml

version: "3"

services:

nodered:

image: nodered/node-red:2.2.2

ports:

- "1880:1880"

grafana:

image: grafana/grafana:8.2.6

ports:

- "3000:3000"

influxdb:

image: influxdb:2.1

ports:

- "8086:8086"

mosquitto:

image: eclipse-mosquitto:2.0.14

command: mosquitto -c /mosquitto-no-auth.conf

ports:

- "1883:1883"

duplicity:

image: ghcr.io/tecnativa/docker-duplicity-docker

volumes:

- backup:/mnt/backup/dst

hostname: devel-backup

mailhog:

image: mailhog/mailhog

command:

- -storage=maildir

- -maildir-path=/home/mailhog

volumes:

- mailhog:/home/mailhog

ports:

- "1025:1025"

- "8025:8025"

restart: always

container_name: mailhog

volumes:

backup:

mailhog:

B.3. Local 101

B. Development listings

B.3.2 *.env environment files

influxdb.env

DOCKER_INFLUXDB_INIT_MODE=setup

DOCKER_INFLUXDB_INIT_USERNAME=admin

DOCKER_INFLUXDB_INIT_PASSWORD=development

DOCKER_INFLUXDB_INIT_ORG=ontec

DOCKER_INFLUXDB_INIT_BUCKET=data

TMPDIR=/var/lib/influxdb2

grafana.env

GF_SECURITY_ADMIN_PASSWORD=devel

GF_AUTH_ANONYMOUS_ENABLED=true

GF_AUTH_ANONYMOUS_ORG_ROLE=Viewer

duplicity.env

Duplicity

DST=file:///mnt/backup/dst

PASSPHRASE=devel

Mail

SMTP_HOST=mailhog

SMTP_PORT=1025

EMAIL_FROM=backup@devel.com

EMAIL_TO=admin@devel.com

TZ=Europe/Madrid

InfluxDB job

JOB_190_WHAT="rm -f /mnt/backup/src/influxdb-backup/*"

JOB_190_WHEN="daily weekly"

JOB_200_WHAT="docker container exec influxdb influx backup

/var/lib/influxdb2/backup"↪→

JOB_200_WHEN="daily weekly"

B.3. Local 102

B. Development listings

B.3.3 internal.sh

#!/bin/bash

set -euo pipefail

[[-v DEBUG]] && set -x

restore()

{

[[-n "${1:-}"]] ||

{ echo 'Missing argument'; return 1; }

declare -F "_restore_$1" > /dev/null ||

{ echo "Invalid environment '$1'"; return 3; }

restore$1

}

###

restore

###

_restore_devel()

{

docker container exec duplicity \

restore --force

docker container exec influxdb \

influx restore --full /var/lib/influxdb2/backup

}

_restore_prod()

{

local env_file=./env/config/restore_prod.env

docker container exec --env-file "$env_file" duplicity \

restore --force

docker container exec influxdb \

influx restore --full /var/lib/influxdb2/backup

}

_restore_prod_old()

{

_tmp_setup

local ret=0

local names=("nodered-data" "grafana-data"

"influxdb-data" "influxdb-config")

local prefix_prod=ontec_prod

local prefix_devel=ontec_devel

for name in ${names[@]}

do

local volume_prod="${prefix_prod}_${name}"

local volume_devel="${prefix_devel}_${name}"

echo "Cloning volume $name"

sudo DOCKER_HOST="ssh://minipc@192.168.0.1" \

B.3. Local 103

B. Development listings

dockext volume get "$volume_prod" "$name" &&

sudo DOCKER_HOST="unix:///var/run/docker.sock" \

dockext volume put "$volume_devel" "$name" ||

{ ret=$?; break; }

done

_tmp_cleanup

return $ret

}

###

tmp

###

_tmp_setup()

{

trap '_tmp_trap $? $LINENO' ERR

tmp_dir=$(mktemp -d)

cd "$tmp_dir"

}

_tmp_cleanup()

{

cd /tmp

rm -rf "$tmp_dir"

}

_tmp_trap()

{

set +e

echo "Exit status $1 at line $2"

_tmp_cleanup

exit 1

}

declare -F $1 > /dev/null || exit 3

"$@"

B.3. Local 104

B. Development listings

B.4 Remote

B.4.1 docker-compose.override.yml

services:

nodered:

image: nodered/node-red:2.2.2

ports:

- "1880:1880"

grafana:

image: grafana/grafana:8.2.6

ports:

- "3000:3000"

influxdb:

image: influxdb:2.1

ports:

- "8086:8086"

mosquitto:

image: eclipse-mosquitto:2.0.14

command: mosquitto -c /mosquitto-no-auth.conf

ports:

- "1883:1883"

duplicity:

image: ghcr.io/tecnativa/docker-duplicity-docker-s3

hostname: prod-backup

duckdns:

image: lscr.io/linuxserver/duckdns

env_file:

- ./env/config/duckdns.env

restart: always

container_name: duckdns

portainer:

image: portainer/portainer-ce:2.9.3

command: --admin-password "${PORTAINER_PASSWORD}"

volumes:

- /var/run/docker.sock:/var/run/docker.sock

- portainer-data:/data

ports:

- "8000:8000"

- "9000:9000"

restart: always

container_name: portainer

volumes:

portainer-data:

B.4. Remote 105

B. Development listings

B.4.2 *.env environment files

.env

PORTAINER_PASSWORD=<REDACTED>

influxdb.env

DOCKER_INFLUXDB_INIT_MODE=setup

DOCKER_INFLUXDB_INIT_USERNAME=admin

DOCKER_INFLUXDB_INIT_PASSWORD=<REDACTED>

DOCKER_INFLUXDB_INIT_ORG=ontec

DOCKER_INFLUXDB_INIT_BUCKET=data

TMPDIR=/var/lib/influxdb2

grafana.env

GF_SECURITY_ADMIN_PASSWORD=<REDACTED>

GF_AUTH_ANONYMOUS_ENABLED=true

GF_AUTH_ANONYMOUS_ORG_ROLE=Viewer

duplicity.env

Duplicity

DST=file:///mnt/backup/dst

PASSPHRASE=devel

Mail

SMTP_HOST=mailhog

SMTP_PORT=1025

EMAIL_FROM=backup@devel.com

EMAIL_TO=admin@devel.com

TZ=Europe/Madrid

InfluxDB job

JOB_190_WHAT="rm -f /mnt/backup/src/influxdb-backup/*"

JOB_190_WHEN="daily weekly"

JOB_200_WHAT="docker container exec influxdb influx backup

/var/lib/influxdb2/backup"↪→

JOB_200_WHEN="daily weekly"

duckdns.env

TOKEN=<REDACTED>

TZ=Europe/Madrid

SUBDOMAINS=<REDACTED>

B.4. Remote 106

B. Development listings

B.4.3 internal.sh

#!/bin/bash

set -euo pipefail

[[-v DEBUG]] && set -x

restore()

{

[[-n "${1:-}"]] ||

{ echo 'Missing argument'; return 1; }

declare -F "_restore_$1" > /dev/null ||

{ echo "Invalid environment '$1'"; return 3; }

restore$1

}

###

restore

###

_restore_prod()

{

docker container exec duplicity \

restore --force

docker container exec influxdb \

influx restore --full /var/lib/influxdb2/backup

}

declare -F $1 > /dev/null || exit 3

"$@"

B.4. Remote 107

	Context and scope
	Context
	Project context
	Concepts
	Problem to solve
	Stakeholders

	Justification
	Existing solutions
	Existing technologies
	Conclusion

	Scope
	Objectives
	Sub-objectives
	Requirements
	Obstacles and risks

	Methodology and rigor
	Methodology
	Rigor

	Time planning
	Task description
	Task definition
	Resources
	Task summary

	Gantt estimates
	Risk management
	Inexperience
	Security threats
	Data loss
	Hardware failure
	Network issues

	Budget and sustainability
	Budget
	Human resources
	Material resources
	Incidentals
	Final budget
	Management control

	Sustainability report
	Self-assessment
	Economic dimension
	Environmental dimension
	Social dimension

	Planning changes
	Scope
	Time planning
	Budget

	Development process
	First steps
	Central hub
	Initial software overview
	Initial network overview
	MiniPC monitoring integration

	Main functionality
	Solar inverter
	Backup system
	Software overview
	Network overview
	Shelly 3EM integration

	Final additions
	Active devices
	Final software overview
	Final network overview

	Conclusions
	Obstacles
	Mistakes
	Lessons

	Future work
	References
	Appendices
	User manual
	minipc-status.sh
	minipc-status.service
	*.json configuration files
	influxdb-setup.sh
	import-configuration.sh
	export-configuration.sh
	docker-compose.yml
	*.env environment files

	Development listings
	Initial docker-compose.yml
	Final docker-compose.yml
	Local
	docker-compose.override.yml
	*.env environment files
	internal.sh

	Remote
	docker-compose.override.yml
	*.env environment files
	internal.sh

