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Abstract. We present a GPU-accelerated solver for the partitioned solution of fluid-structure interaction

(FSI) problems. Independent scalable fluid and structure solvers are coupled by a library which handles

the inter-code data communication, mapping and equation coupling. A coupling strategy is incorporated

which allows accelerating expensive components of the coupled framework by offloading them to GPUs.

To prove the efficiency of the proposed coupling strategy in conjunction with the offloading scheme, we

present a numerical performance analysis for a complex test case in the filed of biomedical engineering.

The numerical experiments demonstrate an excellent speed-up in the accelerated kernels (up to 133

times) which results in 6 to 8 times faster overall simulations. In addition, we observed a very good

reduction in total simulation time by increasing the exploited compute nodes up to 8 (complete machine

capacity).

1 Introduction

We present a partitioned solver which is capable of solving fluid-structure-interaction (FSI) problems

exploiting both CPUs and GPUs efficiently. We follow a partitioned approach [1, 2] which decomposes

the domain into smaller subdomains (in our case, fluid and structure subdomains) to be discretized and

solved individually. Separate solvers and numerical settings are used for each subdomain along with a

coupling technique to account for their interaction. This provides the opportunity to employ previously

developed single-physics solvers which reduces software development cost. In addition, the most adapted

and validated numerical methods for each sub-problem can be used, which considerably increases the

reliability of the simulations. As a big advantage, the partitioned approach allows exploiting different

hardware for each solver. This enables us to exploit heterogeneous CPU-GPU architectures by offloading

the most expensive kernels of the coupled solver to GPUs.

Several partitioned methods for FSI simulation on parallel compute architectures have recently been pre-

sented in literature. As an example for CPU-only exploiting solvers, Hewitt et al. [3] presented a multi-

code coupled framework using OpenFOAM for the fluid and ParaFEM for the structure. The solver is
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shown to scale well on 1,536 cores for a coupled FSI problem. Naseri et al. [4] developed a scalable and

efficient simulation environment for the partitioned solution of FSI problems. This framework employed

two instances of TermoFluids [5] to solve the fluid and the solid problem and the preCICE coupling li-

brary [6] to handle inter-solver data communication, boundary data mapping and equation coupling. The

strong scalability measurements proved high efficiency (83%) on up to 10,080 CPU cores. In addition,

there are several hybrid architecture investigations for solving FSI problems in literature. For instance,

Jiang et al. [7] presented a GPU-accelerated solver which follows a multi-code coupling strategy for

the solution of FSI problems in the filed of biomechanics. A lattice Boltzmann solver was used for the

incompressible fluid flow along with an explicit finite element solver for the solid domain. An Aitken

relaxation was employed to improve the stability of the fixed point iterations. The numerical perfor-

mance analysis showed that the GPU acceleration (using a single Nvidia GeForce 108Ti GPU) results in

18.44 times faster simulation compared to CPU-only simulation (on a Xeon E5-1620v4 CPU) for an FSI

benchmark problem.

In the current study, we extend the solver presented in [4], to exploit hybrid architectures (CPU-GPU) ef-

ficiently. A coupling strategy is incorporated that allows using GPUs to accelerate the expensive kernels

of our FSI coupling procedure, minimizing the total run–time while preserving the simulation accu-

racy. The presented setup can be applied to many other surface-coupled multi-physics problems such as

conjugate heat-transfer, flow-acoustics coupling, or porous-media-free-flow coupling.

The remainder of this article is organized as follows. In Section II, we briefly introduce the governing

equations and numerical methods for fluid and structure domain, as well as the coupling conditions

and convergence acceleration techniques. Section III explains how the hybrid CPU-GPU architectures

are exploited to accelerate the expensive kernels of the coupled solver. To show the efficiency of the

proposed setup, we present the numerical performance analysis for a challenging FSI test case in Section

IV. Finally, Section V summarizes and concludes the article.

2 Governing Equations and Numerical Methods

This section explains the governing equations for the fluid and the solid solver along with the numerical

methods for solving them. In addition, the coupling conditions on the common interface are presented

as well as the iterative procedure to achieve a converged solution at the common interface. In this work,

we refer to the fluid and the structure domain as Ω f (t) ⊂ R
3 for all t in (0,T ) and Ωs(t) ⊂ R

3 for all

t in (0,T ), respectively, where t ∈ (0,T ) represents time. The fluid-structure interface is the common

boundary of the domains, denoted by Γ(t) = ∂Ω f (t)∩∂Ωs(t).

2.1 Fluid Solver

2.1.1 Governing Equations

The Navier-Stokes equations are chosen to mathematically describe the unsteady flow of an incompress-

ible viscous fluid. An Arbitrary Lagrangian-Eulerian (ALE) formulation together with a conforming

mesh technique are employed to solve the fluid flow in a moving domain. The ALE formulation of the

Navier-Stokes equations in a moving domain is given by

∂u

∂t
+ c ·∇u =

1

ρ f

∇ ·σ f , (1)
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∇ ·u = 0, (2)

where u denotes the fluid velocity and ρ f the fluid density. The ALE convective velocity is shown by

vector c = u−w, which is the fluid velocity relative to a domain moving with a velocity w. The stress

tensor σ f for an incompressible Newtonian fluid is defined as

σ f =−pI+µ f (∇u+∇uT ), (3)

where p is the fluid pressure, I the unit tensor, and µ f the dynamic viscosity of the fluid.

2.1.2 Numerical Methods

An explicit time advancement method along with a fractional-step projection is used for the solution of

the velocity-pressure coupling of the momentum equation. The following three step solution of the fluid

governing equations must be followed from time step n to n+1

up = un −∆t[
3

2
(cn ·∇un −

µ f

ρ f

∆un)−

1

2
(cn−1 ·∇un−1 −

µ f

ρ f

∆un−1)],

(4)

∆t

ρf

∆pn+1 = ∇ ·up, (5)

un+1 = up −
∆t

ρf

∇pn+1 (6)

in Ωn+1
f , where ∆t is the time increment and up is a predicted velocity field which does not satisfy the

incompressibility condition (Eq. (2)).

The fluid equations are discretized in space using a finite-volume method on a collocated unstructured

mesh with second-order symmetry-preserving schemes. These schemes conserve the mass, momentum

and kinetic energy of the flow at the discrete level which is crucial in turbulent flow simulations [8, 9].

For more details please consult [4].

2.2 Structural Solver

2.2.1 Governing Equations

The conservation laws of mass and momentum govern the structural domain. The Lagrangian form is

given by

ρ0
s = ρsJ, (7)

∂

∂t

(

ρs

∂d

∂t

)

= ∇ ·σs, (8)
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where the superscript 0 refers to the undeformed configuration of the body, ρs is the structural density

and d is the displacement from the reference configuration. The hyper-elastic Saint Venant-Kirchhoff

constitutive model relates the Cauchy stress tensor σs to the displacement field:

σs =
B

2J
[2µs(B− I)+λstr(B− I)], (9)

where B is the left Cauchy-Green deformation tensor B=F ·FT , and µs and λs are the Lamé’s parameters.

The material deformation tensor F is evaluated as F = I+∇d and its determinant is denoted by J =
det(F).

2.2.2 Numerical Methods

An implicit trapezoidal rule time integration is used to solve the solid equations, where both the inertial

and the surface forces are evaluated at the current time instant tn+1:

vn+1 = vn +
∆t

2ρs

(

∇ ·σn+1
s +∇ ·σn

s

)

, (10)

dn+1 = dn +
∆t

2

(

vn+1 +vn
)

. (11)

where v approximates the first time derivative of the displacements d, v = ∂d
∂t

.

The equations are discretized in space using a finite-volume method with a total Lagrangian approach.

The momentum equation is integrated on the undeformed configuration. More details concerning the

governing equations and numerical methods for this solver can be found in [4].

2.3 FSI coupling

2.3.1 Governing Equations

The coupling conditions on the fluid-structure interface are derived from the kinematic and dynamic

equilibrium at the common boundary. For a no-slip type interface they read

uΓ =
∂dΓ

∂t
, (12)

σsnΓ = σ f nΓ (13)

at Γ, where nΓ is the unit normal vector on the interface.

2.3.2 Numerical Methods

A Dirichlet-Neumann domain decomposition approach is followed for the coupling of the fluid and the

structure equations. Therefore, the fluid equations are solved for a known displacement of the interface
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(Dirichlet boundary condition derived from kinematic equilibrium Eq. (12)), while the structure equa-

tions are solved for a known stress on the interface (Neumann boundary condition derived from dynamic

equilibrium Eq. (13)).

A semi-implicit FSI coupling method is employed, as proposed in [10,11], where only the fluid pressure

term is strongly coupled to the structure via coupling iterations. The remaining fluid terms and the

geometrical nonlinearities are only loosely coupled to the structure and, therefore, solved only once at

every time step. We segregate the fluid pressure term by using a projection method to solve the fluid

equations. It means that the Poisson equation (Eq. (5)) is solved several times per time step during the

FSI coupling iterations, while the remaining fluid equations and the mesh moving are only executed once

per time step. Moreover, as seen in section 2.1.2, Eq. (5) is the only part of the fluid discretized equations

which is implicit in time. For this equation, we construct and solve a a linear system of equations. Thus,

the repeated solution of the Poisson equation accounts for the majority of the computational cost of

solving the fluid equations in the coupled FSI problem. Each time step of the coupled problem consists

of performing mesh movement, convection and diffusion in the fluid solver and, subsequently, solving

the fixed point equation

(

S(σΓ)
P (dΓ)

)

=

(

dΓ

σΓ

)

(14)

iteratively, where S is the mapping of the interface stress tensor σΓ to the interface displacement vector dΓ

by the structure solver and P the mapping of the interface displacement to the interface stress by solving

the pressure Poisson equation and re-calculating stress in the fluid solver. To improve the stability of

numerical solution and accelerate the convergence of the iterative solution of Eq. (14), we use a multi-

vector quasi-Newton method, as proposed in [6, 12].

We exploit GPUs to accelerate the solution of the Poisson equation for the fluid (Eq. (5)). As a result

of the semi-implicit method used in this work, this component constitutes a significant part of the total

computational cost of solving the coupled FSI problem. The strategy introduced in the current work can

be incorporated for other applications to improve the solution performance.

3 GPU Acceleration of Poisson Solver

In this section, we describe our novel setup for the efficient exploitation of hybrid machines for par-

titioned FSI simulations. As explained earlier, due to the semi-implicit coupling strategy, the Poisson

solver in the fluid code is the most expensive component. SIMD operations are exploited within this

solver. Therefore, the huge performance benefit by GPU-acceleration of this solver can be foreseen. The

rest of computations in fluid solver is small compared to the Poisson solver. The solid solver is based on

a linear de-coupling of the computations for x,y and z directions and uses an outer iteration for solution

convergence. This implies that, the data chunks used by this solver for each iteration are small and the

work done per iteration per data is not large enough to saturate GPU’s compute capacity. Thus, offload-

ing cost overcompensates the gain in computation speed due to GPU acceleration. Therefore, we carry

out these computations on the CPUs.

The following steps are taken to efficiently exploit GPUs for FSI simulation:

1. Both solvers are initialized on the CPUs. Data structures are created, surface meshes are analyzed
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for data mapping and establishing inter-solver communication channels via the coupling library.

2. The fluid solver solves the explicit part of the ALE equations and translate the mesh on the CPU,

followed by constructing the pressure system of equations to be solved on GPUs. The solid solver

constructs the linearized structural system of equations.

3. The structure system of equations is solved on the CPUs. Simultaneously, the linear systems given

by Eq. (5) in the fluid solver are accelerated using GPUs. We use a PETSc KSP solver [13, 14] to

iteratively solve these equations.

4. After each iteration, preCICE checks the convergence of the FSI coupling and data are commu-

nicated between the solvers. For this purpose, coupling interface data are exchanged between the

single-physics solvers via TCP/IP communication between CPUs. This process is repeated until

the FSI coupling convergence is achieved.

5. When the coupling is converged, the fluid solver calculates the velocity using the converged pres-

sure field. This is the end of the time-step and the solver proceeds to the next time-step.

As explained earlier, we use a PETSc KSP solver to exploit GPUs for solving the fluid’s Poisson equation.

The PETSc’s design separates the application code and the solver. This allows using a wide range of

GPU programming models, such as Kokkos, CUDA and OpenCL. We employ a CUDA back-end since

we run our simulations on NVIDIA GPUs in this work. In addition, the data are shared between the

PETSc programming models and the application code and therefore no copy is needed. This improves

the efficiency by saving the copy time [14].

4 Performance and Scalability Analysis

To show the performance of the coupled solver, we present strong scalability measurements for the

simulation of blood flow inside a patient-specific aorta. In addition, we compare the simulation time

with and without using GPUs for both the fluid solver and the overall coupled simulation. The essential

parts of the current solver for the accuracy of the results are the same as those in [4]. Therefore, we do

not provide any accuracy analysis in this work and focus only on the performance perspectives.

4.1 Test Case Description

The simulation of blood flow inside a patient-specific aorta is a challenging FSI problem both from

a numerical and a computational point of view. Moreover, it is a very practical problem with direct

application in biomedical engineering. In this test case, the geometry of the aorta is provided by the 2nd

CFD challenge of the STACOM 2013 conference [15]. Figure 1 (left) shows the geometry of the aorta

with inlet and outlet boundaries. The thickness of the aortic wall and its mechanical properties were not

provided in [15], we assume h = 2mm, which is in the typical physiological range. For the mechanical

properties of the wall, we use the density ρs = 1200kg/m3, the Young modulus E = 3×105N/m2, and

the Poisson ratio ν = 0.3. The density and the viscosity of the blood are assumed to be ρ f = 1000kg/m3

and µ f = 0.004Pa · s, similar to the values used in [4, 16].

At the inlet, Dirichlet boundary conditions are used for the fluid velocity, using measured flow rate data

provided in [15], combined with Neumann boundary conditions for the fluid pressure. At the outlet

boundaries, explicit RCR Windkessel boundary conditions [17] are used to model the effect of the rest of

the vascular network. The Windkessel parameters are chosen as those reported in [18]. For the structure,
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Figure 1: Aorta test case: left: 3D geometry of the patient-specific aorta (geometry provided in [15]);

right: coupled FSI solution at t = 0.06, showing the fluid velocity vectors inside the deformed aortic wall

and the von Mises equivalent stress at the wall.
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a zero-displacement (clamped) boundary condition is used at the inlet and the outlets, while a traction-

free boundary condition is assumed on the outer surface of the aortic wall. Unstructured tetrahedral

meshes at two different resolutions (see Table 1) are used for the fluid and the solid domain. The fluid

and the structure meshes match at interface. Figure 1 (right) shows the coupled FSI solution at a time

instant t = 0.06s. The figure shows the velocity vectors inside the deformed aortic wall. The color

contours in the structural domain correspond to the von Mises equivalent stress.

Table 1: Aorta test case: computational grids used for the scalability tests.

Mesh name No. of cells

Fluid Structure Common Interface

M1 38M 20M 800K

M2 20M 9M 400K

4.2 Hardware Architecture and Numerical Library Description

The performance and scalability measurements are carried out on the Vulcan cluster at the High Perfor-

mance Computing Center Stuttgart (HLRS). This cluster includes a machine which has 8 heterogeneous

nodes. Each of these nodes consists of 2 × 2.6GHz Intel Xeon Gold 6240 (CascadeLake) with 36 cores

in total and 8 × NVIDIA Tesla V100 SXM2 GPUs. The total available memory on each node is 768GB.

We use the GNU GCC compiler and an Intel MPI implementation compatible with the GCC compiler

for intra-solver parallelization and communication.

4.3 Numerical Performance Analysis

We initially present the performance analysis only for the fluid solver (within the coupled solver) to

investigate the GPU speed-up individually on the accelerated solver. We run coupled FSI simulations

using both meshes in Table 1 with and without GPU acceleration. Table 2 presents the fluid solver

run–time and speed-up due to GPU acceleration for different GPU counts. We observe up to 133 times

speed-up for the fluid solver in a coupled simulation. We see a higher speed-up for a smaller number of

compute nodes as well as for the larger mesh. This is probably due to the larger data chunk sent to the

GPUs which can better exploit the GPUs computation capacity.

Table 2: Hybrid CPU-GPU test case: fluid solver speed up by GPU acceleration (run-times measured in

a coupled FSI simulation).

Mesh number of computation time (s) speed-up

CPUs-GPUs with acceleration without acceleration

M1 8 15.9 2128.3 133.4

M1 16 12.1 1064.1 88.2

M2 8 8.3 992.3 119.0

M2 16 7.1 495.2 69.4

In addition, to investigate the GPU-acceleration effect on the overall performance of the coupled solver,

we compare the coupled simulation run-times with and without GPU acceleration. Figure 2 depicts the
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average run–time per coupling iteration for different computing node numbers for mesh M2. The number

of nodes equals the total number of computing nodes exploited by the fluid and the solid solver together.

In the hybrid simulation, the fluid solver exploits an equal number of CPUs and GPUs, i.e., from each

node we exploit 8 GPUs and 8 CPU-cores. While, in a CPU-only scenario, it exploits all 36 available

CPUs on each node. For solid solver, all of the 36 CPU-cores within each node are used, without

any GPU acceleration. The node distribution is calculated using the load balancing method presented

in [19]. For compute resources distribution, we always allocate a complete node to a solver to avoid node

sharing between solvers. As seen in Figure 2, a very good reduction in computational time is achieved

by increasing the number of compute nodes to 8, which is the full machine capacity. In addition, we

observe 6 to 8 times faster simulations due to GPU acceleration of the fluid solver. In the current test-

case, the fluid-solver’s run–time is always smaller than the solid solver (in case of GPU-acceleration),

which results in fluid solver’s idling. We expect larger gain if more compute nodes were available, where

we can do finer load balancing and avoid the mentioned idle time.

2 3 4 5 6 7 8
Number of nodes

8

50

100

200

400
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n 

tim
e 
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r i
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ra
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n 
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]

Mesh M2: GPU-accelerated
Mesh M2: CPU only

Figure 2: Aorta test case: average run–time per coupling iteration for different node counts with and

without GPU-acceleration of the fluid solver (strong scalability test results using mesh M2).

5 Conclusion

We presented a semi-implicit partitioned fluid-structure interaction solver capable of efficiently exploit-

ing hybrid CPU-GPU architectures. The partitioned approach allows using individual setups for different

sub-solvers. Thus, we were able to port only the compute intensive kernels of our original CPU-only

solver to GPUs. The offloading was completely transparent to the coupling library and did not interfere

with other kernels, inter-code communication and coupling numerics. This preserved both the accuracy

of the solution and the parallel efficiency of the other components.

A patient–specific aorta test-case is show-cased for performance analysis of the solver. GPU acceleration

for various mesh sizes demonstrated an excellent run-time reduction. We observed up to 133 times speed-

up in the fluid solver which resulted in 6 to 8 times faster total simulation compared to a CPU-only
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scenario. In addition, a very good scalability was achieved for the coupled solver on up to 8 compute

nodes (full machine).
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[9] F. X. Trias, O. Lehmkuhl, A. Oliva, C. D. Pérez-Segarra, R. Verstappen, Symmetry-preserving dis-

cretization of Navier-Stokes equations on collocated unstructured grids, Journal of Computational

Physics 258 (2014) 246–267. doi:10.1016/j.jcp.2013.10.031.

10



A. Totounferoush, A. Naseri, J. Chiva, A. Oliva and M. Mehl

[10] A. Naseri, O. Lehmkuhl, I. Gonzalez, E. Bartrons, C. D. Pérez-Segarra, A. Oliva, A semi-implicit
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