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ABSTRACT The rising interest in extracting value from data has led to a broad proliferation of monitoring
infrastructures, most notably composed by sensors, intended to collect this new oil. Thus, gathering data
has become fundamental for a great number of applications, such as predictive maintenance techniques
or anomaly detection algorithms. However, before data can be refined into insights and knowledge, it
has to be efficiently stored and prepared for its later retrieval. As a consequence of this sensor and IoT
boom, Time-Series databases (TSDB), designed to manage sensor data, became the fastest-growing database
category since 2019. Here we propose a holistic approach intended to improve TSDB’s performance and
efficiency. More precisely, we introduce and evaluate a novel polyglot-based approximation, aimed to
tailor the data store, not only to time-series data –as it is done conventionally– but also to the data flow
itself: From its ingestion, until its retrieval. In order to evaluate the approach, we materialize it in an
alternative implementation of NagareDB, a resource-efficient time-series database, based on MongoDB,
in turn, the most popular NoSQL storage solution. After implementing our approach into the database,
we observe a global speed up, solving queries up to 12 times faster than MongoDB’s recently launched
Time-series capability, as well as generally outperforming InfluxDB, the most popular time-series database.
Our polyglot-based data-flow aware solution can ingest data more than two times faster than MongoDB,
InfluxDB, and NagareDB’s original implementation, while using the same disk space as InfluxDB, and half
of the requested by MongoDB.

INDEX TERMS Cascading polyglot persistence, data-flow awareness, data cascade, data store, data stream,
MongoDB, multi-model database, NagareDB, time-series database.

I. INTRODUCTION

The rising interest in extracting value from data has led to
a broad proliferation of systems aimed to gather this new
oil. Sensors and monitoring infrastructures, traditionally used
for supervising the status of a specific asset, became the
starting point of bigger and more complex systems. These
system, able to refine data, are capable of bringing out its
true potential. For example, thanks to this process, factories
are able to continuously gather data from their machines,
for later applying e.g. industrial predictive maintenance tech-
niques, intended to predict and anticipate machine failures,
increasing its up-time while reducing costs [1].

However, in order to perform further analysis from sen-
sor readings, it is necessary to store them. Thus, databases
(DBMS), whose main role is to organize data collections,
became a crucial piece of these data platforms.

Traditionally, databases had been considered a passive as-
set: OnLine Transaction Processing systems (OLTP) ingested
structured data, in order to facilitate daily operations, and
the relational model was considered, de facto, the standard
model. Thus, one-size-fits-all was the extended generalistic
approach: Each scenario was just modeled to fit in the rela-
tional model, typically tied to the SQL query language.

However, the deployment of more complex and sophisti-
cated scenarios exposed the constraints and weaknesses of
traditional databases: They were not capable of enabling
modern scenarios efficiently, showing that sometimes one-
size could not fit all, at least not efficiently [2]. Thus, several
new database technologies emerged, improving the handling
of the data in a wide range of scenarios: The NoSQL (Not
Only SQL) term was coined, showing a profound distancing
from the deeply ingrained one-size-fits-all approach [3]. In
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a few years databases moved from one-size-fits-all to one-
size-for-each, where each scenario had a very specific and
efficient data model, and each data model had a plethora
of databases to choose from. For example, Graph databases
enabled the full potential of social networks, and key-value
stores became crucial in huge online marketplaces [4].

With regard to monitoring infrastructures, in order to fulfill
their particular requirements, such as real-time ingestion,
and historical querying, many specific-purpose Time-Series
Databases (TSDB) emerged [5], each with its own data
model, helping TSDBs become the fastest-growing database
type since 2019 [6].

Nevertheless, since every database is implemented differ-
ently, each one inherently holds specific properties, benefit-
ing or limiting certain query types, ingestion mechanisms
or deployment scenarios, among others. As a consequence,
altogether with the fast-growing plethora of TSDBs, selecting
and mastering the most appropriate solution, for every use
case, became fairly laborious.

In order to mitigate these problems we propose an all-
round polyglot-based approach for TSDBs, aimed at pro-
viding outstanding global performance while adapting itself
to the particularities of each use case. More precisely, our
holistic approach attempts to tailor the database not only to
time series data, but also (1) to the natural data-flow of real-
time data (ingestion, storage, retrieval), (2) to the expected
operations according to data aging, and (3) to the final format
in which users want to retrieve the data.

In order to evaluate its performance, we materialize our
approach in an alternative implementation of NagareDB,
a Time-Series database [7] built on top of MongoDB, the
most popular open-source NoSQL database [6]. With this
evaluation approach we aim (1) to demonstrate that the
proposed technique is capable of outperforming popular and
mainstream approaches, and (2) to illustrate that it is possible
to improve and adapt already-existent databases, in order to
cope with demanding specific-purpose scenarios, relieving
the need of developing further database management systems
(DBMS) from scratch. Moreover, we design and evaluate our
approach following a resource-efficient orientation, meaning
that we aim, not just to obtain good results, but to obtain
them in a resource-limited scenario. This restrictions aim
to demonstrate that fast time-series data handling can be
achieved by not only adding more and more hardware re-
sources, but also by applying resource-efficient techniques.

Applying our Polyglot-based approaches has shown to
greatly improve the original database performance, being
able to retrieve historical data up to 12 times faster than
MongoDB’s recently launched Time-Series capability, and
timestamped data up to 5 times faster than InfluxDB, the most
popular Time-series database. Moreover, we demonstrate that
our approach improves real-time ingestion, behaving two
times faster than any of InfluxDB, MongoDB and NagareDB,
while using the same disk space as InfluxDB and NagareDB,
and half as much as MongoDB.

II. BACKGROUND
A. DATA MODELS
Data models organize elements of data and define how they
relate to each-other. Each data model has its own specific
properties, performance, and may be preferred for different
use cases. As data models vary, their properties and perfor-
mance do too. Although the actual implementation might
differ from one database to another, each data model follows
some shared principles. Some of the most relevant data
models, related to this time-series, are:
• Key-Value oriented. It is composed of independent and

high granular records. These records are stored and re-
trieved by means of a key that globally identifies a record,
linking it to a value. Thanks to this independence, new
records can be inserted speedily, even in parallel, reducing
or preventing database locking procedures [3].
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Figure 1: Key-value oriented data model sample.FIGURE 1. Key-value oriented data model sample.

• Row oriented. A row, or tuple, represents a single data
structure composed of multiple related data, such as sensor
readings. Each row contains all the existing attributes that
are closely related to the row primary key, the attribute
that uniquely identifies the row. This makes it efficient to
retrieve all attributes for a given primary key. All rows
typically follow the same structure. Traditional relational
solutions follow this design principle.

Key, Sensor1, Sensor2, Sensor3

2021/01/31 10:00:00, 13.913, 30.874, 18.926

2021/01/31 10:01:00, 14.919, 32.534, 19.422

2021/01/31 10:02:00, 15.411, 33.435, 20.332

  Attributes:

FIGURE 2. Row oriented data model sample.

• Column oriented. Data is organized following a column
fashion. Each column contains all the existing values
related to the column identifier, f.i a sensorID. Column
orientation is greatly efficient when performing historical
queries [3]. In addition, they enable cost-effective com-
pression mechanisms, such as Run-Length Encoding [8].
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Atributes:

Figure 2: Row oriented data model sample.
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Figure 3: Column oriented data model sample.

DM1: Key-Value

DM2: Short Column

DM3: Long Column

Figure 4: PL-NagareDB’s Polyglot Persistence Cascade.
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Figure 5: Simplified data access of PL-NagareDB’s second data
model, when requesting all existent readings for day 2 (left),
and all historical readings for Sensor 4 (right).
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FIGURE 3. Column oriented data model sample.
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B. TIME SERIES DATA REPRESENTATION
The format in which time-series data is ingested can differ
greatly from the way it is stored in disk, as explained in
section II-A. However, most time-series databases follow
the same, or very similar, way to ingest data. A time-series
record is typically represented as a triplet, or a three-element
structure, composed by: the ID of the sensor that reads the
data, a timestamp of the instant in which it was read, and
a value, representing the reading. However, some databases
incorporate more elements, integrating further metadata.

C. POLYGLOT PERSISTENCE
The NoSQL movement represented a great distancing from
the one-size-fits-all approach, and its relational implemen-
tations. Particularly, it offered great progress towards more
efficient databases, aiming the database engineers to select
specific data models, choosing them according to type of data
to be handled, and its properties.

Even so, this was found still not sufficient for some
high demanding scenarios, which lead to the birth of Poly-
glot persistence [9], defined as using multiple data storage
technologies chosen by the way data is used by individual
applications. Thus, polyglot persistence intended to obtain
the best from every technology, tailoring every application
with the database that fitted the most. However, it had a
major problem: There were a big number of different data
models, and each data model was implemented by a plethora
of different NoSQL solutions. Finding experts for keeping
track and mastering all those rapidly evolving technologies
became increasingly difficult.

In order to alleviate this problem, other NoSQL technolo-
gies emerged: The so-called multi-model databases. They
were specifically designed following a schema-less principle:
No schema was enforced, thus, holding enough elasticity to
allow the database engineer to create its own data model.
Moreover, by pushing their limits, it was found even possible
to create several data models at the same time [10]. Thus,
one single technology could hold different data models, and
each data model could serve to a different application, in the
same way polyglot persistence was conceived to do. This
alternative was able to provide similar results to using ad
hoc database solutions [11], while reducing drastically the
number of software solutions to be used and mastered.

III. RELATED WORK
This section describes related solutions and research from
two different perspectives: Time Series Databases and Poly-
glot Approaches. Time-series Databases are target solu-
tions aimed at sensor data management, while Polyglot Ap-
proaches describe some mechanisms used to improve general
data management. Our approach aims at pushing the limits of
both perspectives, while merging them into a single solution.

A. TIME SERIES DATABASES

• MongoDB is the most popular NoSQL database [6]. It is
an open-source general-purpose solution that incorporates

an extremely flexible document-based data model made
out of JSON-like documents. As Time-series databases
became increasingly relevant, MongoDB 5.0, released in
mid-2021, introduced native time-series capabilities, being
able to behave as a specific-purpose time series database on
its own by following a bucketed column-like data model
[12], embedded in its document-oriented data model. In
order to query, users may use MongoDB’s specific query
language, named MongoQL. Regarding deployment and
setup, MongoDB is able to scale horizontally at no cost,
and to run natively in Windows, Linux, and MacOS, thus
reaching a wide number of users.

• NagareDB is a Time-series database built on top of Mon-
goDB, which lowers its learning curve. Its data model,
built on top of MongoDB’s document-oriented data model,
follows a column-oriented approximation, as data columns
are embedded inside JSON-like documents [7]. NagareDB
inherits most of MongoDB’s features, including its query
language, its free and straight-forward horizontal scala-
bility. It is a free, competitive alternative to popular and
enterprise-licensed time-series databases [7], both in terms
of querying and ingestion performance–however not al-
ways with a consistent or remarkable speed-up, sometimes
falling behind.

• InfluxDB is a specific-purpose Time-Series database [13],
considered the most popular one since 2016 [6]. InfluxDB
follows a column-oriented data model, able to efficiently
reduce its disk usage. In order to query, users can use
InfluxQL, a SQL-like query language, or Flux, a more
powerful alternative, able to overcome many of the limita-
tions of InfluxQL [13]. Regarding its deployment, its open
source version is limited to a single machine, only allowing
monolithic setups, and relegating its scalable mechanisms
to the enterprise edition. InfluxDB can be installed on
Linux-based and MacOS systems, but not on Windows.

• TimescaleDB is a Time-series database built on top of
PostgreSQL, one of the most popular General-Purpose
DBMS [6], which lowers its learning curve. However,
due to the limitations of the underlying rigid row-oriented
relational data model, its scalability, performance and disk
usage might be compromised, depending on the use case
and query [14]. It is able to run on Windows, MacOS, and
Linux, thus reaching a wide number of potential users.

To sum up, MongoDB is a greatly-known general-purpose
database, recently enabled to act as a specific time-series
database (a novel change that has not been benchmarked yet).
Laying on top of it, NagareDB is able to offer outstanding
optimizations, but falls behind the other solutions in some
scenarios. A similar problem occurs to TimescaleDB: It relies
on a popular SQL solution and offers good optimizations, but
generally behaves worse than other TSDBs. Lastly, InfluxDB
offers an outstanding performance, but its usage is limited to
Linux-based and MacOS, and its open-source version is lim-
ited to monolithic set ups. Moreover, although it is the most
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popular time-series database, its general popularity is almost
20 times smaller than other general-purpose databases, such
as MongoDB or PostgreSQL [6].

Notice that most of the mentioned databases are designed
to use a column-oriented data model, either as its base data
model, like InfluxDB, or by adapting its underlying data
model, in order to simulate a column-oriented approxima-
tion. In consequence, we expect performances to be rather
similar (proficient in some scenarios and penalizing in oth-
ers), following the intrinsic limitations of column-oriented
data models.

Our goal is to overcome these constrains by not limiting
the database to a single data model, but to employ several in-
terrelated ones, able to act as a whole, in different steps of the
data-flow path, pushing the concept of polyglot persistence.

B. POLYGLOT APPROACHES

Polyglot persistence aims at leveraging multiple data storage
technologies. Each application, within an organization, is
connected to the most suitable database solution. For exam-
ple, the Future Archiver of the European Organization for
Nuclear Research (CERN), employs polyglot persistence for
storing the data of CERN’s experiments and facilities [15].
Each application is able to benefit from the preferred data
model and database, such as Apache Kudu (Column-oriented
data model) or Oracle (Relational data model).

Multi-model databases intend to provide the same ben-
efits of polyglot persistence, but within just one database
solution. Thus, a single database is able to provide different
data models at the same time, when designed to do so.
Each data model is connected to the application that fits the
most. For example, MongoDB, a multi-model database, has
been capable of offering a Graph data model approach [10],
allowing it to store, at the same time, document-oriented data
(the original MongoDB’s data model) and social-network
data, using the graph data model. In addition, multi-model
databases have shown to provide similar or even better per-
formance than simple, or specific-purpose, data stores [11].

Here we will introduce a novel and holistic polyglot ap-
proach, not only referring to the persistence itself, but also to
the ways in which users interact with the database. We will
demonstrate the potential of our approach by implementing
it in an already existing Time-Series database –NagareDB,–
expecting the outcome to be an all-round better version of its
baseline solution.

IV. DESIGN APPROACH
Here we introduce the holistic approaches materialized in
the alternative implementation of NagareDB, referred as PL-
NagareDB. They are divided in three different categories,
with respect to their scope. Concretely: (1) Cascading Poly-
glot Persistence intends to create an efficient way of in-
gesting and storing data, for its later retrieval, (2) Polyglot
Abstraction Layers aims to offer an efficient and easy way
in which users can query the database, hiding its internal

complexity, and, lastly, (3) Miscellaneous explains some ad
hoc modifications of the original NagareDB, in order to better
fit the alternative PL-NagareDB.

A. CASCADING POLYGLOT PERSISTENCE
We define Cascading Polyglot Persistence as using multiple
consecutive data models for persisting data of a specific
scope, where each data element is stored in one and only one
data model at the same time, eventually cascading from one
data model to another, until reaching the last one. Thanks to
Cascading Polyglot Persistence, the database can be tailored,
not just to time-series data itself, but also to its data-flow,
from ingestion to retrieval, and to the expected operations
performed in each step of the data flow, maximizing its
performance. Here, Cascading Polyglot Persistence is mate-
rialized on top of a multi-model database, intended to keep
all data models. This not only reduces software requirements,
but also the overhead of cascading data from one data model
to another.

PL-NagareDB implements three different data models
(DM 1 to 3), keeping sensor readings just in one single data
model at the same time, cascading from one data model
to another along time. These three data models are fitted
to the inevitable data generation order, according to time.
Moreover, this hybrid approximation is intended to benefit
ingestion and query speed, while ensuring that no extra disk
space is needed. Concretely, sensor readings will be ingested
in DM1, for later being temporarily stored in DM2, and
finally being consolidated in DM3, as shown in Figure 4.
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Figure 2: Row oriented data model sample.
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FIGURE 4. PL-NagareDB’s Polyglot Persistence Cascade, showing the three
different and consecutive data models (DM): Data is ingested using DM1, until
reaching DM3, through DM2.

More precisely, the data models are defined as follows:
DM1: Key-Value. It is modeled following a key-value

approximation, where each sensor reading is completely in-
dependent from others. This non-bucketing strategy is mainly
intended to improve the throughput in data ingestion pro-
cesses. Moreover, thanks to the fact that data is not organized
in buckets, queries that do not involve historical data will
be highly benefited. For example, real-time control panels
typically check the current status of all sensors in a certain
point in time, or even continuously. This data model is specif-
ically intended to benefit those timestamped queries as, first,
it benefits non-historical queries and, second, it only keeps
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most recent data, which is the typical target of monitoring
control panels. Its default data capacity is one day, meaning
that sensor readings will be flushed from DM1 to DM2 once
per day. However, it can be modified according to the use-
case preferences.

DM2: Short-Column. It acts as a data bridge between
DM1 and DM3. Data is bucketed in daily short columns,
per each sensor, meaning that all readings for a given sensor
and a given day will be packed together in a columnar shape.
Thus, JSON-like documents, the basic data structure of the
underlying database, are intended to store data in a columnar
shape, following a schema-fixed approach. The specific data
embedding mechanisms that DM2 follows are extensively
detailed in NagareDB’s presentation research study as, ac-
tually, the original data model of NagareDB is equivalent to
this research’s DM2 [7]. In disk, it is organized following
the natural time line, according to data arrival order from
DM1: All sensor’s data from a given day will be placed
adjacently. This makes it organized in a time-natural way:
first by day, and, later, by sensor. Figure 5 represents the in-
disk representation of DM2: All sensor readings of a given
day are consecutively organized in disk, left to right. Thus,
when solving the sample query return every sensor data
in day 2, the disk will be able to go to the first element
of day 2 (Sensor 1 data), and sequentially read all data of
other sensors, for that very same day, making it efficient.
Conversely, if requesting all historical data for Sensor 4, as
seen in Figure 5, it will have to jump from one day to another,
performing several random reads, which is far less efficient.
This bridge data model is intended to optimize daily and
hybrid queries, at the same time that its usage is mandatory,
as it is not possible to directly store all sensor historical data
consecutively in disk, because it contradicts the natural order
of time, without the usage of padding or further resource-
consuming techniques. Its default data capacity is one month,
meaning that sensor readings will be flushed from DM2 to
DM3 each month, although it can be adjusted.
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FIGURE 5. Simplified data access of PL-NagareDB’s second data model,
when requesting all existent readings for day 2 (left), and all historical readings
for Sensor 4 (right). As illustrated, the disk is able to perform an efficient
sequential access operation on the left query, whereas it needs to complete
several random-access operations on the right one.

DM3: Long-Column. It is modeled following a columnar
approximation, where all historical data of a given sensor,
in a specific month, is stored consecutively. This is intended
to improve historical queries –the ones expected in historical
and not-so-recent data– as it is able to benefit from sequential
readings. In fact, the logical data representation is the same as
in DM2, the original short-column data model of NagareDB.
The main difference is that these short-columns are stored
consecutively in disk, by sensor, forming a long-column.
Figure 6 represents the in-disk representation of DM3: All
sensor readings of a given sensor are consecutively organized
in disk, left to right. Thus, for solving the sample query return
every sensor data of day 2 it will jump from one sensor
to another, performing several random reads. Conversely, if
requesting all historical data for Sensor 4, as seen in Figure
6, the disk will be able to go to the first element of Sensor 4
(Day 1), and sequentially read all data of other days, for that
very same sensor. This data model keeps all the historical
data that is not present in DM1 or DM2.SAC’22, April 25 –April 29, 2022, Brno, Czech Republic Unknown author et al.
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FIGURE 6. Simplified data access of PL-NagareDB’s third data model, when
requesting all existent readings for day 2 (left), and all historical readings for
Sensor 4 (right). As illustrated, the disk needs to complete several
random-access operations on the left query, whereas it is able to perform an
efficient sequential access operation on the right one.

MongoDB –PL-NagareDB’s foundation database– has
usually paid little attention to document disk order, as it
brings low-level extra difficulties for the database archi-
tects. However, this disk-conscious approach is able to bring
further optimizations. Concretely, creating an in-disk long
column (DM3) from short columns (DM2) has two main
benefits: First, it does not involve the creation of a new
data structure. Thus, from a user’s code perspective there is
no difference between querying DM2 or DM3. Second, the
cascade from DM2 to DM3 is expected to be efficient, as
there is no real overhead in changing from one logical data
model to another, with the physical disk organization being
the only difference.

When cascading data to the following data model, it is not
necessary to perform any where or match query, as data is
already separated in collections, in a daily or monthly basis.
Thus, the operation intended to move data from one data
model to another only needs to perform a collection scan in
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a bulk-operation fashion, making it cost-efficient (see results
section VI-D). Moreover, this operation can be completely
performed in-database, thanks to the out and merge function
enhancement introduced in MongoDB 4.4. This allows to
perform both the operation and the disk persistence in one
single query, within the database, as explained in Mon-
goDB’s manual, aggregation operators section [16]. Finally,
as data is organized in different collections, according to
time, when flushing data from one data model to another,
a different collection will be used for storing the real-time
data received. This prevents the database from waiting due to
blocking or locking mechanisms.

B. POLYGLOT ABSTRACTION LAYERS
While Cascading Polyglot Persistence is expected to improve
the databases’ performance, it also increases the system
complexity, which can negatively affect user interaction. In
order to reduce this drawback, while providing further op-
timizations, Cascading Polyglot Persistence is coupled with
Polyglot Abstraction Layers.

An Abstraction layer typically allows users to comfortably
work with their data, without having to worry about the actual
in-disk data model or persistence mechanisms. However, PL-
NagareDB goes one step beyond by implementing Polyglot
Abstraction Layers, so, several data representations from
which the user can access the very same data, but in different
ways. This approach provides two additional main benefits:

Hybrid Queries. The Abstraction Layers enable Data-
Model Coexistence. Thus, users are able to retrieve data inde-
pendently from which data models it is stored in. This enables
users to comfortably query, at the same time, data that is
stored in 1, 2 or even 3 different data models. Moreover,
thanks to the Polyglot approach, and to the intermediate API,
users are able to choose from which abstraction layer to query
from, minimizing the data model transformation costs (see
red and green arrows in Figure 7).
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FIGURE 7. PL-NagareDB’s Abstraction Layers, in three different data model
orientations. Green colour represents direct or cost-less data flows, while red
ones represent data flows in which transformations are required. Thanks to the
Abstraction Layers, users are able to query data in their preferred data model,
and to maximize query performance.

Final Format Consciousness. Regardless of the internal

data representation, databases typically return data in one
specific and pre-defined format. For example, MongoDB
transforms its internal data representation to a key-value
approximation for its use [17], and InfluxDB returns data
in a row-oriented fashion [13]. While this might be suitable
in some occasions, it can heavily compromise the system
performance, due to excessive and unnecessary data trans-
formation overheads. For instance, if the user is expecting to
retrieve data in commonly-used Python Pandas dataframes,
which are efficiently generated from columnar data, Mon-
goDB and InfluxDB outputs are heavily penalized: Both
databases would shape their data into columns, transform it
into key-values and rows, respectively, for later re-creating
the columnar data (which was the original data model ap-
proximation), in order to fit the end dataframe format. PL-
NagareDB’s adaptability or Final Format Consciousness
prevents this data transformation overhead, becoming more
efficient and more resource-saving, accommodating itself to
the final data format needed by the user. If the user requests
data in tables or dataframes, PL-NagareDB will query the
columnar abstraction layer. If the user requests a dictionary,
PL-NagareDB will internally use the key-value abstraction
layer, and so on. This is, in fact, the main job of the API seen
in Figure 7 , consisting just in several functions that route the
query, according to the data model to tackle.

All three abstraction layers are internally implemented as a
database view, so, a new data collection made out of the result
set of a stored query or procedure. Users can query it just
as they would in a real data collection. Thus, users are able
to query any abstraction layer straightforwardly, not even
noticing that it is, in fact, a view, and not a data collection.
The main traits of our approach’s abstraction layers are:

• Non-materialized views. Abstraction layers are not per-
sisted on disk, meaning that data is only stored once,
in the database’s internal format, but shown to the user
in different perspectives. Data is transformed on-the-fly,
if necessary, following one of the three predefined data
mappings: Key-value, column or row. This transformations
are not always performed, as some abstraction layers can
be generated without further processing, or can be partially
cached in memory.

• Hinted generation. Each query involves certain data, such
as a specific time range, and/or several data origins or sen-
sors. Abstraction layers receive this query metadata, which
is, in fact, a part of the query itself, known as WHERE
clause in SQL systems. Thanks to this hint, the abstrac-
tions layers evaluate which data should be selected and
transformed, fitting the abstraction layers to the requested
data. By contrast, MongoDB, when querying time series,
typically request the whole collection to be transformed,
making it necessary to reshape data that might not be
ever used, and to keep it in RAM, replacing its cache or
consuming further RAM resources.

• On-demand. Due to its hinted generation trait, and since
every query involves different hints, there is no specific
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view ready to be queried. Instead, it is dynamically gen-
erated and returned to the user on-the-fly, when the user
executes a particular query over the generic and visible ab-
straction layer. If the user navigates through the database,
without performing any specific query, this very same
generic abstraction layer, or view, will be shown, so that
user’s database perspective is kept consistent.

• Pipelined Mapping. The data mapping from the origi-
nal data model to the final data model, offered by the
abstraction layers, is performed in multiples stages or in
several, consecutive, intermediate mappings. Each stage is
intended to transform, simultaneously, all data, taking into
account that the output of one stage will be the input of the
following one. Those stages are performed in RAM, using
the underlying MongoDB’s Aggregation Framework. This
framework is typically intended to perform operation such
as aggregations (MIN, AVG, etc.), but it is also able to
alter the shape of data, or its structure, even being able to
convert data from one data model to another, by using its
powerful tools, such as aggregation pipelines or operations
following the map-reduce paradigm.

C. MISCELLANEOUS
As our approach is aimed at increasing system performance
without increased cost, some further modifications are done
to PL-NagareDB in order to maximize the trade-off between
efficiency and resource consumption.

1) QUERY PARALLELIZATION
NagareDB’s configuration was modified so that query par-
allelization is only performed in aggregation queries. Any
other CPU-consuming query, such as the ones that involve
comparisons, were set to be executed serially.

2) TIMESTAMPS
NagareDB’s behaviour is to never generate timestamps, but
to join data with already existing, and persisted, ones. Here
we modify this behaviour so that it only happens with histor-
ical queries, where the number of timestamps is equivalent
to the number of sensor readings per sensor. Said in another
way, in those queries where the number of timestamps is
smaller than the number of values to display, the timestamps
will be generated dynamically. This affects, for example,
downsampling queries: If the baseline granularity was set to
minutes, and the target one to hours, there would be 60 sensor
readings per hour, but only one timestamp. In this situation,
the timestamp is generated dynamically.

V. EXPERIMENTAL SETUP
The experimental setup is intended to evaluate the per-
formance of the polyglot approaches implemented in PL-
NagareDB, comparing it against the Time-Series databases
described in Sec. III-A. The experimental setup is set to be
similar to the one used for NagareDB’s benchmarking [7].

A. VIRTUAL MACHINE (VM)

The set up follows a monolithic architecture, intending to
isolate the performance properties of our proposed approach,
removing distributed database techniques, that could add
further variables and noise to the results, making its inter-
pretation more difficult. Thus, following this approximation,
and the resource-efficiency goals that this research aims, the
experiment is conducted in a VM that emulates a commodity
PC, configured with:

• OS Ubuntu 18.04.5 LTS (Bionic Beaver)

• 4 threads @ 2.2Ghz (Intel® Xeon®)

• 8GB RAM DDR4 2666MHz (Samsung)

• Fixed size Storage (Samsung 860 SSD)

B. COMPARATIVE SOFTWARE
• MongoDB 5.0 CE: It is the most popular NoSQL

database. It includes, by default, a Time series imple-
mentation.

• InfluxDB OSS 2.0: The most popular TSDB.
• NagareDB: A Time-Series database, built on top of

MongoDB 4.4 CE.
• PL-NagareDB: An alternative multi-model imple-

mentation of NagareDB that includes the polyglot ap-
proaches explained in section IV.

MongoDB, NagareDB and PL-NagareDB use MongoQL,
whereas InfluxDB uses Flux, its respective query languages.

C. DATA SET

The goal of our testing data set is provide a synthetic scenario
that does not use real data, but whose sensor readings are
close enough to real-world problems. Thus, we simulate a
Monitoring Infrastructure based on real-world settings of
some external organizations that collaborate with our institu-
tion. More precisely, we simulate a Monitoring Infrastructure
composed of 500 sensors, equally distributed in five different
categories. Each virtual sensor is set to ship a reading every
minute. Sensor readings (R) follow the trend of a Normal
Distribution with mean µ and standard deviation σ:

R ∼ N (µ, σ2) : µ ∼ U(200, 400), σ ∼ U(50, 70) (1)

where each sensor’s µ and σ are uniformly distributed.

The simulation is ran in order to obtain a 10-year historical
data set. The start date is set to be year 2000, and the simula-
tion is stopped when reaching year 2009, included. In conse-
quence, the total amount of triplets, composed of Timestamp,
SensorID, and Sensor Reading, is 2,630,160,000.
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Further configurations, such as ones including a larger
amount of sensing devices, are likely to provide similar or
proportional results, depending on the query type. This is
due to the fact that seek times, in solid-state drive (SSD)
devices, are typically a constant latency [18]. This effect does
not occur on traditional Hard Disk Drive (HDD) devices,
which makes them to be broadly discouraged for intensive-
workload database scenarios, such as the ones involving
monitoring infrastructures. Taking this into account, some
database providers, such as MongoDB or InfluxDB, do not
recommend to use HDD devices, to the extend that Influx-
Data, the developers InfluxDB, the most popular Time-Series
database, have not tested their solution on HDD devices [19].

VI. EVALUATION AND BENCHMARKING
This section demonstrates the performance of PL-NagareDB,
and all its cascade data models, in comparison to other
database solutions, as explained in Section V. This all-round
benchmark is based on NagareDB’s original one, making
it easier to perform a detailed and precise analysis against
NagareDB’s original implementation.

Concretely, the evaluation and benchmarking is done in
four different aspects: Data Retrieval Speed, Storage Usage,
Data Ingestion Speed, and Data Cascading Speed. Thanks
to this complete evaluation, it is possible to analyze the
performance of the different data models during the data flow
path, with regard to the database scope: From being ingested,
to being stored and, lately, retrieved.

With respect to the data itself, DM1 is set to only hold
one day, its default configuration. DM2 is, by default, only
expected to hold one month of data. However, since it is the
baseline data model of NagareDB, it will also participate
in yearly queries, in order to obtain further insights and
behaviour differences. Last, NagareDB is able to use limited-
precision data types, allowing up to 40% of disk usage while
providing further speedup [7]. However, as this behaviour
does not affect the effectiveness of the polyglot mechanisms,
this benchmark only includes full-precision data types, in
order to avoid repetitive or trivial results.

A. DATA RETRIEVAL
This section benchmarks the efficiency and query compatibil-
ity of PL-NagareDB’s data models, evaluating them against
other TSDB solutions, in terms of query answer time. First,
our approach is evaluated against MongoDB, considered as
a Baseline solution, and, later it is evaluated against more
advanced solutions for Time-Series data management, such
as InfluxDB, and NagareDB’s original implementation. This
benchmark partitioning intends to provide clearer plots, as
execution-time result sets belong to different magnitude or-
ders, depending on the database, which substantially detracts
value from the visualizations, when plotting them together.

Moreover, in order to obtain an exhaustive benchmark,
while keeping its simplicity, data models are tested sepa-
rately. However, they can be queried simultaneously, in an
hybrid manner, as explained in section IV-B, providing a gra-

dient of times, proportional to the amount of data belonging
to one or another data model.

The testing query set is composed by 12 queries (Table 1),
intended to cover a wide range of use-cases, while providing
insights of the databases’ performance and behavior.

They lay in four different categories:

• Historical querying: These queries obtain sen-
sor readings for a specific range of time. They are
answered with a dataframe, which follows a tabular
fashion. [Q1 to Q7]

• Timestamped querying: These queries are in-
tended to obtain sensor readings for a specific times-
tamp. They are answered with a dictionary of key-value
pairs, f.i sensorID-sensorReading. [Q8]

• Aggregation querying: These queries derive
group information by analyzing a set of data entries. It
is divided in two sub-categories:

-- AVG Downsampling: They reduce the granular-
ity of the data by performing averages of individual
readings. Answered with a dataframe. [Q9 and Q10]

-- Single Value Aggregation: Intended to ob-
tain a single value from a set of readings, such as
the Minimum value. Answered with a triplet, as ex-
plained in section II-B. [Q11]

• Inverted querying: These type of queries re-
quest moments in time that matches certain value condi-
tion, such as sensor reading being smaller than a given
number. Answered with a dataframe. [Q12]

While the nature of the different query types is singularly
diverse, their implementation is straight-forward. In fact, in
SQL terms, all querying types could consist only in three dif-
ferent clauses: SELECT, FROM and WHERE, except from
the aggregation querying ones, that could also incorporate a
GROUP BY clause.

Each query is executed 10 times over the data-set described
in section V-C, one per each year (2000 to 2009). We record
all execution times and outputs, and calculate, for each query,
the average execution time, its 95% confidence interval, and
its mean value. The querying is always performed using
Python Drivers, for any of the solutions to be evaluated.
In order to ensure the cleanness and fairness of the results,
the databases are rebooted after the complete evaluation
of each query. All queries are evaluated against every PL-
NagareDB’s data model, except from Data Model 1, that only
executes queries involving time ranges equal or smaller than
one day, as it is its default maximum size, as explained in
section IV-A.
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ID Query Type #Sensors Sensor Condition Period Value Condition Target Granularity
Q1 Historical 1 Random Day - Minute
Q2 Historical 1 Random Month - Minute
Q3 Historical 1 Random Year - Minute
Q4 Historical 10 Consecutive Day - Minute
Q5 Historical 10 Consecutive Month - Minute
Q6 Historical 10 Consecutive Year - Minute
Q7 Historical 10 ID mod 50 = 0 Year - Minute
Q8 Timestamped 500 All Minute - Minute
Q9 Downsampling (AVG) 1 Random Year - Hour
Q10 Downsampling (AVG) 20 Consecutive Year - Hour
Q11 Aggregation (MIN) 1 Random Day - Minute
Q12 Inverted 1 Random Year 𝑉 ≤ 𝜇 − 2𝜎 || 𝑉 ≥ 𝜇 + 2𝜎 Minute

Table 1: Data retrieval queries, used in the benchmarking.

Table 2: Queries execution time, and standard deviation, in seconds.

Query ID PL-NagareDB-DM1 PL-NagareDB-DM2 PL-NagareDB-DM3 NagareDB MongoDB InfluxDB
Q1 0.150 (0.018) 0.016 (0.011) 0.016 (0.009) 0.033 (0.016) 0.783 (0.653) 0.061 (0.026)
Q2 - 0.206 (0.018) 0.143 (0.009) 0.392 (0.031) 1.636 (3.084) 0.482 (0.034)
Q3 - 2.342 0.040) 1.644 (0.035) 4.589 (0.110) 6.641 (2.635) 5.004 (0.116)
Q4 0.214 (0.017) 0.024 (0.011) 0.036 (0.007) 0.051 (0.014) 0.888 (0.796) 0.085 (0.022)
Q5 - 0.408 (0.026) 0.344 (0.037) 0.877 (0.027) 9.119 (2.845) 1.113 (0.049)
Q6 - 4.791 (0.190) 4.052 (0.189) 10.998 (0.122) 32.192 (10.926) 12.351 (0.338)
Q7 - 7.728 (0.449) 4.236 (0.113) 13.603 (0.440) 38.508 (21.974) 21.552 (0.278)
Q8 0.008 (0.005) 0.107 (0.039) 0.466 (0.028) 0.121 (0.057) 0.497 (0.065) 0.533 (0.049)
Q9 - 0.335 (0.034) 0.157 (0.021) 0.544 (0.076) 2.425 (2.838) 0.451 (0.029)
Q10 - 1.925 (0.247) 1.785 (0.131) 2.139 (0.260) 32.966 (15.799) 1.301 (0.063)
Q11 0.129 (0.013) 0.008 (0.004) 0.008 (0.006) 0.007 (0.006) 0.800 (0.930) 0.026 (0.016)
Q12 - 1.003 (0.043) 0.547 (0.029) 1.168 (0.053) 1.662 (2.550) 1.108 (0.066)

TABLE 1. Data retrieval queries, used in the benchmarking.

1) BASELINE BENCHMARK

In order to perform the first -baseline- benchmark, we evalu-
ate our approach and all its data models, materialized as PL-
NagareDB, against MongoDB’s Time-Series capability.

Table 2 contains the execution times for all PL-
NagareDB’s data models, as well as for MongoDB’s solution.
PL-NagareDB’s execution times are displayed calculating
their average execution time, plus its 95% confidence in-
terval. MongoDB’s execution times are displayed in two
fashions: its average execution time, plus its 95% confidence
interval, and its median execution time (last column). This
complementary metric, specific to MongoDB, is proposed
due to its substantially large confidence interval, which
makes execution times more unstable in MongoDB than in
our proposed approach.

This effect is due to the fact that MongoDB implements an
abstraction layer based on a fixed non-materialized view for
accessing its data: When users perform a query, MongoDB
aims to transform all data to its exposed data model, with
disregard to the specific data requested [17]. This prefetch
technique intends to anticipate to future queries, but makes
it really dependent from Random Access Memory (RAM),
as transformed data, that might never be used, is kept there,
consuming further resources. Moreover, once a different data
set is queried, if RAM is not free enough, it might be partially
or totally replaced, making it necessary to load everything
back from disk.

This pattern can be seen in Figure 8, where the first time
a query is executed, it typically lasts longer. This happens
even in the situation that different data is requested in
each iteration, as this benchmark is designed to. Thus, if
consecutive queries are performed on distant data (regarding
its disk position), or RAM is not big enough, queries are
likely to behave often as in the first iteration, the most costly
one, as it takes more time to complete. By contrast, if queries
are repetitively performed over close data, and it fits in RAM,
queries are likely to behave more often as in the second, and
consecutive, iterations.
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Figure 20: Query response time evolution, in MongoDB.
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Figure 21: Query response time evolution, in MongoDB.FIGURE 8. Query response time evolution, in MongoDB. Notice how the
execution time of the first iteration is typically higher than the following ones,
due to MongoDB’s cache-relying data prefetch mechanisms.
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Table 5: Queries execution time, and standard deviation, in seconds.

Query ID PL-NagareDB-DM1 PL-NagareDB-DM2 PL-NagareDB-DM3 MongoDB MongoDB - MED
Q1 0.150 [0.141, 0.162] 0.016 [0.011, 0.024] 0.016 [0.013, 0.023] 0.783 [0.397, 1.19] 0.446
Q2 - 0.206 [0.198, 0.219] 0.143 [0.138, 0.15] 1.636 [0.469, 3.706] 0.472
Q3 - 2.342 [2.316, 2.366] 1.644 [1.623, 1.667] 6.641 [5.713, 8.428] 5.816
Q4 0.214 [0.204, 0.225] 0.024 [0.019, 0.031] 0.036 [0.033, 0.041] 0.888 [0.422, 1.401] 0.502
Q5 - 0.408 [0.391, 0.422] 0.344 [0.321, 0.367] 9.119 [7.927, 11.147] 8.434
Q6 - 4.791 [4.656, 4.902] 4.052 [3.951, 4.184] 32.192 [28.403, 39.578] 28.472
Q7 - 7.728 [7.411, 7.928] 4.236 [4.165, 4.307] 38.508 [30.443, 53.472] 31.126
Q8 0.008 [0.005, 0.011] 0.107 [0.084, 0.131] 0.466 [0.448, 0.483] 0.497 [0.463, 0.545] 0.476
Q9 - 0.335 [0.316, 0.358] 0.157 [0.145, 0.171] 2.425 [1.459, 4.333] 1.494
Q10 - 1.925 [1.78, 2.074] 1.785 [1.704, 1.859] 32.966 [27.457, 43.554] 27.871
Q11 0.129 [0.121, 0.137] 0.008 [0.007, 0.011] 0.008 [0.005, 0.012] 0.800 [0.316, 1.481] 0.374
Q12 - 1.003 [0.974, 1.029] 0.547 [0.527, 0.565] 1.662 [0.789, 3.379] 0.818

TABLE 2. Queries execution time in seconds: Average and 95% confidence intervals, plus median for MongoDB (last column).

Thus, this cache-relying mechanism makes MongoDB to
behave differently depending on the hardware, and on the use
case. Conversely, our approach limits the abstraction layer, to
the data that is being requested, as it is generated on-the-fly
when users perform a query, as explained in section IV-B.
This approach reduces the RAM resources needed, at the
same time that offers more stable response times.

As seen in Table 2, PL-NagareDB is able to execute the
12 proposed queries much faster than MongoDB, in average,
while providing more stable results. Moreover, when taking
into account MongoDB’s best case scenario (when the ab-
straction layer’s data is already cached), it still falls broadly
behind PL-NagareDB. This goes to the extend that Historical
Queries (such as Q1 and Q4), run faster in PL-NagareDB’s
DM1 than in MongoDB, which might be surprising, as
historical queries are a worst case scenario for key-value data
models, such as the one of DM1, as its data holds the highest
granularity.

2) ADVANCED BENCHMARK

In order to perform the advanced benchmark, we evaluate our
approach and all its data models (for instance: DM1, DM2
and DM3), materialized as PL-NagareDB, against InfluxDB,
intending to evaluate its performance in comparison to a top-
tier time-series database, and against NagareDB’s original
implementation, in order to check whether our approaches
improve the performance of the database.
The benchmark, in terms of querying, is divided in four
different sections, one per each query category, for instance:
Historical Querying, Timestamped Querying, Aggregation
Querying, and Inverted Querying, as explained in section
VI-A.

2.1) Historical Querying

As it can be seen in Figure 9, PL-NagareDB is able to
globally outperform InfluxDB and NagareDB significantly.

In addition, the plots show some interesting insights:

• PL-NagareDB is generally significantly faster than In-
fluxDB and NagareDB with one single exception: when
PL-NagareDB uses its first data model (Q1, Q4). This
phenomenon is expected, since the DM1 is not intended
to participate in historical queries, and it only holds
as much as one day of data. Instead, it is meant to
improve ingestion and timestamped queries. However,
even though historical queries are a worst-case scenario
for DM1, its response time is relatively low, in absolute
terms.

• PL-NagareDB’s DM3 efficiency increases along with
the historical period requested, in comparison with
DM2. This is expected and intended, since DM2 stores
data in short columns, and DM3 in long columns, being
able to benefit from sequential (and historical) reads
much better. In contrast, when requesting short-ranged
historical queries (Q1, Q4), based in random reads
instead of sequential reads, DM2 outperforms DM3,
which is, actually, one of the goals of DM2.

• While PL-NagareDB’s DM2 is identical to NagareDB’s
data model, it is able to retrieve data approximately
1.5 times faster. This phenomenon is explained by PL-
NagareDB’s efficient Polyglot Abstraction Layers, that
are able to reduce data transformation overheads, as
explained in section IV-B.
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ID Query Type #Sensors Sensor Condition Period Value Condition Target Granularity
Q1 Historical 1 Random Day - Minute
Q2 Historical 1 Random Month - Minute
Q3 Historical 1 Random Year - Minute
Q4 Historical 10 Consecutive Day - Minute
Q5 Historical 10 Consecutive Month - Minute
Q6 Historical 10 Consecutive Year - Minute
Q7 Historical 10 ID mod 50 = 0 Year - Minute
Q8 Timestamped 500 All Minute - Minute
Q9 Downsampling (AVG) 1 Random Year - Hour
Q10 Downsampling (AVG) 20 Consecutive Year - Hour
Q11 Aggregation (MIN) 1 Random Day - Minute
Q12 Inverted 1 Random Year 𝑉 ≤ 𝜇 − 2𝜎 || 𝑉 ≥ 𝜇 + 2𝜎 Minute

Table 1: Data retrieval queries, used in the benchmarking.
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Figure 8: Historical querying response times, in seconds (shorter is
better).

FIGURE 9. Historical querying response times. PL-NagareDB’s DM2 and
DM3 are able outperform any other approach, while DM1 provides the slowest
response time, as it is not meant for intensive historical querying.

2.2) Timestamped Querying
As it can be seen in Figure 10, PL-NagareDB is able to

retrieve timestamped data globally faster than InfluxDB, in
all of its possible data models. More precisely:

• PL-NagareDB’s DM1 is able to solve timestamped
queries more than 60 times faster than InfluxDB. This
evidences that non-historical queries are greatly bene-
fited from data models that do not follow a column-
oriented approach, such as DM1, intentionally imple-
mented following a key-value orientation.

• PL-NagareDB’s DM3, that follows a long-column ori-
entation similar to InfluxDB, is able to solve times-
tamped queries slightly faster than it. As timestamped
queries are a worst-case scenario for column-oriented
data models, its efficiency is far lower than other data
models, such as short-column oriented ones (NagareDB
and PL-NagareDB’s DM2) or Key-value oriented ones
(PL-NagareDB’s DM1).

• PL-NagareDB’s DM2 is able to provide good average

results in terms of query answer time, not being as
efficient as DM1, but neither as costly as DM3. This is
intended and expected, as DM2 is built to be a generalist
data bridge between the specialized data models (DM1
and DM3). Thus, it is expected to be globally good,
while not standing out in any particular case.
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Table 2: Queries execution time, and standard deviation, in seconds.

Query ID PL-NagareDB-DM1 PL-NagareDB-DM2 PL-NagareDB-DM3 NagareDB MongoDB InfluxDB
Q1 0.150 (0.018) 0.016 (0.011) 0.016 (0.009) 0.033 (0.016) 0.783 (0.653) 0.061 (0.026)
Q2 - 0.206 (0.018) 0.143 (0.009) 0.392 (0.031) 1.636 (3.084) 0.482 (0.034)
Q3 - 2.342 0.040) 1.644 (0.035) 4.589 (0.110) 6.641 (2.635) 5.004 (0.116)
Q4 0.214 (0.017) 0.024 (0.011) 0.036 (0.007) 0.051 (0.014) 0.888 (0.796) 0.085 (0.022)
Q5 - 0.408 (0.026) 0.344 (0.037) 0.877 (0.027) 9.119 (2.845) 1.113 (0.049)
Q6 - 4.791 (0.190) 4.052 (0.189) 10.998 (0.122) 32.192 (10.926) 12.351 (0.338)
Q7 - 7.728 (0.449) 4.236 (0.113) 13.603 (0.440) 38.508 (21.974) 21.552 (0.278)
Q8 0.008 (0.005) 0.107 (0.039) 0.466 (0.028) 0.121 (0.057) 0.497 (0.065) 0.533 (0.049)
Q9 - 0.335 (0.034) 0.157 (0.021) 0.544 (0.076) 2.425 (2.838) 0.451 (0.029)
Q10 - 1.925 (0.247) 1.785 (0.131) 2.139 (0.260) 32.966 (15.799) 1.301 (0.063)
Q11 0.129 (0.013) 0.008 (0.004) 0.008 (0.006) 0.007 (0.006) 0.800 (0.930) 0.026 (0.016)
Q12 - 1.003 (0.043) 0.547 (0.029) 1.168 (0.053) 1.662 (2.550) 1.108 (0.066)

Table 3: Queries execution time, and standard deviation, in seconds.

Query ID PL-NagareDB-DM1 PL-NagareDB-DM2 PL-NagareDB-DM3 MongoDB MongoDB - MED
Q1 0.150 (0.018) 0.016 (0.011) 0.016 (0.009) 0.783 (0.653) 0.446
Q2 - 0.206 (0.018) 0.143 (0.009) 1.636 (3.084) 0.472
Q3 - 2.342 0.040) 1.644 (0.035) 6.641 (2.635) 5.816
Q4 0.214 (0.017) 0.024 (0.011) 0.036 (0.007) 0.888 (0.796) 0.502
Q5 - 0.408 (0.026) 0.344 (0.037) 9.119 (2.845) 8.434
Q6 - 4.791 (0.190) 4.052 (0.189) 32.192 (10.926) 28.472
Q7 - 7.728 (0.449) 4.236 (0.113) 38.508 (21.974) 31.126
Q8 0.008 (0.005) 0.107 (0.039) 0.466 (0.028) 0.497 (0.065) 0.476
Q9 - 0.335 (0.034) 0.157 (0.021) 2.425 (2.838) 1.494
Q10 - 1.925 (0.247) 1.785 (0.131) 32.966 (15.799) 27.871
Q11 0.129 (0.013) 0.008 (0.004) 0.008 (0.006) 0.800 (0.930) 0.374
Q12 - 1.003 (0.043) 0.547 (0.029) 1.662 (2.550) 0.818
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Figure 9: Timestamped querying times, in seconds.
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Figure 10: Aggregation querying response times, in seconds.

FIGURE 10. Timestamped querying response times. PL-NagareDB’s DM1 is
able to extensively outperform any other approach, as its data model fits more
naturally with timestamped querying, the opposite that occurs with long
column solutions, such as the ones of PL-NagareDB’s DM3 and InfluxDB.

2.3) Aggregation Querying

PL-NagareDB and InfluxDB show similar results, taking
into account the global results, as seen in Fig.11. In addition:

• PL-NagareDB is found to provide faster responses than
InfluxDB and NagareDB when aggregating sensors one-
by-one (Q9), while InfluxDB is found to be slightly
faster when aggregating a set of sensors (Q10).

• PL-NagareDB’s DM2 is found to be slightly faster than
its sibling data model, the one of NagareDB. This is
explained by the change in the behaviour with respect
to timestamp generation, as explained in section IV-C.

• PL-NagareDB’s DM3 is found to be more efficient than
DM2. This is expected, since aggregation queries are,
actually, historical queries with further processing steps.

• PL-NagareDB’s DM1 falls behind all other PL-
NagareDB’s data models (Q11), as its data model is
not intended for querying historical data, or performing
aggregations in historical data. Although the difference
might seem considerable, DM1 is just expected to keep
as much as one day of data, the same amount of data
that Q11 involves, making its total cost of 0.12 seconds
relatively insignificant.
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Table 2: Queries execution time, and standard deviation, in seconds.

Query ID PL-NagareDB-DM1 PL-NagareDB-DM2 PL-NagareDB-DM3 NagareDB MongoDB InfluxDB
Q1 0.150 (0.018) 0.016 (0.011) 0.016 (0.009) 0.033 (0.016) 0.783 (0.653) 0.061 (0.026)
Q2 - 0.206 (0.018) 0.143 (0.009) 0.392 (0.031) 1.636 (3.084) 0.482 (0.034)
Q3 - 2.342 0.040) 1.644 (0.035) 4.589 (0.110) 6.641 (2.635) 5.004 (0.116)
Q4 0.214 (0.017) 0.024 (0.011) 0.036 (0.007) 0.051 (0.014) 0.888 (0.796) 0.085 (0.022)
Q5 - 0.408 (0.026) 0.344 (0.037) 0.877 (0.027) 9.119 (2.845) 1.113 (0.049)
Q6 - 4.791 (0.190) 4.052 (0.189) 10.998 (0.122) 32.192 (10.926) 12.351 (0.338)
Q7 - 7.728 (0.449) 4.236 (0.113) 13.603 (0.440) 38.508 (21.974) 21.552 (0.278)
Q8 0.008 (0.005) 0.107 (0.039) 0.466 (0.028) 0.121 (0.057) 0.497 (0.065) 0.533 (0.049)
Q9 - 0.335 (0.034) 0.157 (0.021) 0.544 (0.076) 2.425 (2.838) 0.451 (0.029)
Q10 - 1.925 (0.247) 1.785 (0.131) 2.139 (0.260) 32.966 (15.799) 1.301 (0.063)
Q11 0.129 (0.013) 0.008 (0.004) 0.008 (0.006) 0.007 (0.006) 0.800 (0.930) 0.026 (0.016)
Q12 - 1.003 (0.043) 0.547 (0.029) 1.168 (0.053) 1.662 (2.550) 1.108 (0.066)

Table 3: Queries execution time, and standard deviation, in seconds.

Query ID PL-NagareDB-DM1 PL-NagareDB-DM2 PL-NagareDB-DM3 MongoDB MongoDB - MED
Q1 0.150 (0.018) 0.016 (0.011) 0.016 (0.009) 0.783 (0.653) 0.446
Q2 - 0.206 (0.018) 0.143 (0.009) 1.636 (3.084) 0.472
Q3 - 2.342 0.040) 1.644 (0.035) 6.641 (2.635) 5.816
Q4 0.214 (0.017) 0.024 (0.011) 0.036 (0.007) 0.888 (0.796) 0.502
Q5 - 0.408 (0.026) 0.344 (0.037) 9.119 (2.845) 8.434
Q6 - 4.791 (0.190) 4.052 (0.189) 32.192 (10.926) 28.472
Q7 - 7.728 (0.449) 4.236 (0.113) 38.508 (21.974) 31.126
Q8 0.008 (0.005) 0.107 (0.039) 0.466 (0.028) 0.497 (0.065) 0.476
Q9 - 0.335 (0.034) 0.157 (0.021) 2.425 (2.838) 1.494
Q10 - 1.925 (0.247) 1.785 (0.131) 32.966 (15.799) 27.871
Q11 0.129 (0.013) 0.008 (0.004) 0.008 (0.006) 0.800 (0.930) 0.374
Q12 - 1.003 (0.043) 0.547 (0.029) 1.662 (2.550) 0.818
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Figure 9: Timestamped querying times, in seconds.
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Figure 10: Aggregation querying response times, in seconds.FIGURE 11. Aggregation querying response times. PL-NagareDB’s DM1
provides the slowest response time, as it is not designed for handling historical
or aggregation queries. The other solutions provide a variety of response
times, greatly differing depending on the specific querying parameters.

2.4) Inverted Querying
As seen in Figure 12, PL-NagareDB’s DM2 and DM3 are

able to outperform both NagareDB’s original implementation
and InfluxDB. Also, the plot shows some interesting insights:

• PL-NagareDB’s DM3 is the fastest one. This is due to its
long-column orientation, that benefits from sequential
reads, such as the ones that inverted queries perform, as
they have to analyze every record in a time period, for
later selecting the ones that meet certain condition.

• PL-NagareDB’s DM2 is twice as costly as DM3. This is
due to the fact that DM2 keeps its data in short-columns,
instead of long-columns, which implies that the disk has
to perform further random-access operations.

• Although NagareDB’s data model is identical to PL-
NagareDB’s DM2, our approach is able to retrieve
data slightly faster. This can be explained due to the
miscellaneous re-configurations, explained in section
IV-C. Thanks to them, PL-NagareDB only generates the
timestamps that are going to be retrieved (the ones that
meet certain value condition), instead to all the ones that
are analyzed, as typically happens in NagareDB.SIG Proceedings Paper in LaTeX Format SAC’22, April 25 –April 29, 2022, Brno, Czech Republic
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in MongoDB.
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ing, in MongoDB.

FIGURE 12. Inverted querying response times. PL-NagareDB’s DM3 is able
to outperform all other alternatives, that provide similar results.

3) SUMMARY
The experiments show that, in general, PL-NagareDB, Na-
gareDB, and InfluxDB extensively outperform MongoDB.
Moreover, PL-NagareDB is able to substantially surpass both
NagareDB and InfluxDB in every query, with one single
exception: When downsampling a subset of sensors (Q10),
PL-NagareDB’s falls slightly behind InfluxDB. In addition,
the experiments confirm that the three data models of PL-
NagareDB work efficiently when they are expected to: Key-
value data model (DM1) improve timestamped queries sig-
nificantly, long-column data model (DM3) greatly improve
historical querying, and short-column data model (DM2)
effectively acts as a hybrid bridge between DM1 and DM3.
Precise querying execution times can be found in Table 3.

B. STORAGE USAGE
After ingesting the data, as explained in Section V-C, the disk
space usage of the different database solutions is as shown in
Figure 13.

MongoDB is the database that requires more disk space.
This could be explained due its schema-less approach, and
by its snappy compression mechanisms intended to improve
query performance while reducing its compression ratio [20].
Moreover, it keeps, per each data triplet, a unique insertion-
time identifier plus its generation timestamp [17]. Con-
versely, the other database solutions do not require insertion-
time identifiers, and generation times are globally shared,
keeping them just once, preventing timestamps repetitions.

Thus, all other alternatives require similar disk usage,
which could be explained by its shared pseudo-column ori-
ented data representation and by its powerful compression
mechanisms.

Last, when comparing PL-NagareDB against its original
and non-polyglot version, the storage usage does not have
any significant difference. This is due to two different rea-
sons: First, while PL-NagareDB has three different data mod-
els, the first one is only used for storing one day, out of the
total 10 years. Secondly, although DM2 and DM3 represent
different on-disk global structures (short-column and long-
column, respectively), the document-based representation is
the same in both data models, also coinciding with the
NagareDB’s data model.
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Figure 8: Historical querying response times, in seconds
(shorter is better).
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Table 2: Queries execution time, and standard deviation, in seconds.

Query ID PL-NagareDB-DM1 PL-NagareDB-DM2 PL-NagareDB-DM3 NagareDB MongoDB InfluxDB
Q1 0.150 (0.018) 0.016 (0.011) 0.016 (0.009) 0.033 (0.016) 0.783 (0.653) 0.061 (0.026)
Q2 - 0.206 (0.018) 0.143 (0.009) 0.392 (0.031) 1.636 (3.084) 0.482 (0.034)
Q3 - 2.342 0.040) 1.644 (0.035) 4.589 (0.110) 6.641 (2.635) 5.004 (0.116)
Q4 0.214 (0.017) 0.024 (0.011) 0.036 (0.007) 0.051 (0.014) 0.888 (0.796) 0.085 (0.022)
Q5 - 0.408 (0.026) 0.344 (0.037) 0.877 (0.027) 9.119 (2.845) 1.113 (0.049)
Q6 - 4.791 (0.190) 4.052 (0.189) 10.998 (0.122) 32.192 (10.926) 12.351 (0.338)
Q7 - 7.728 (0.449) 4.236 (0.113) 13.603 (0.440) 38.508 (21.974) 21.552 (0.278)
Q8 0.008 (0.005) 0.107 (0.039) 0.466 (0.028) 0.121 (0.057) 0.497 (0.065) 0.533 (0.049)
Q9 - 0.335 (0.034) 0.157 (0.021) 0.544 (0.076) 2.425 (2.838) 0.451 (0.029)
Q10 - 1.925 (0.247) 1.785 (0.131) 2.139 (0.260) 32.966 (15.799) 1.301 (0.063)
Q11 0.129 (0.013) 0.008 (0.004) 0.008 (0.006) 0.007 (0.006) 0.800 (0.930) 0.026 (0.016)
Q12 - 1.003 (0.043) 0.547 (0.029) 1.168 (0.053) 1.662 (2.550) 1.108 (0.066)

Table 3: Queries execution time, and standard deviation, in seconds.

Query ID PL-NagareDB-DM1 PL-NagareDB-DM2 PL-NagareDB-DM3 MongoDB MongoDB - MED
Q1 0.150 (0.018) 0.016 (0.011) 0.016 (0.009) 0.783 (0.653) 0.446
Q2 - 0.206 (0.018) 0.143 (0.009) 1.636 (3.084) 0.472
Q3 - 2.342 0.040) 1.644 (0.035) 6.641 (2.635) 5.816
Q4 0.214 (0.017) 0.024 (0.011) 0.036 (0.007) 0.888 (0.796) 0.502
Q5 - 0.408 (0.026) 0.344 (0.037) 9.119 (2.845) 8.434
Q6 - 4.791 (0.190) 4.052 (0.189) 32.192 (10.926) 28.472
Q7 - 7.728 (0.449) 4.236 (0.113) 38.508 (21.974) 31.126
Q8 0.008 (0.005) 0.107 (0.039) 0.466 (0.028) 0.497 (0.065) 0.476
Q9 - 0.335 (0.034) 0.157 (0.021) 2.425 (2.838) 1.494
Q10 - 1.925 (0.247) 1.785 (0.131) 32.966 (15.799) 27.871
Q11 0.129 (0.013) 0.008 (0.004) 0.008 (0.006) 0.800 (0.930) 0.374
Q12 - 1.003 (0.043) 0.547 (0.029) 1.662 (2.550) 0.818

Table 4: Queries execution time, and standard deviation, in seconds.

QID PL-NagareDB-DM1 PL-NagareDB-DM2 PL-NagareDB-DM3 NagareDB MongoDB InfluxDB
Q1 0.150 [0.141, 0.162] 0.016 [0.011, 0.024] 0.016 [0.013, 0.023] 0.033 [0.026, 0.044] 0.783 [0.397, 1.19] 0.061 [0.051, 0.08]
Q2 - 0.206 [0.198, 0.219] 0.143 [0.138, 0.15] 0.392 [0.373, 0.412] 1.636 [0.469, 3.706] 0.482 [0.466, 0.507]
Q3 - 2.342 [2.316, 2.366] 1.644 [1.623, 1.667] 4.589 [4.522, 4.662] 6.641 [5.713, 8.428] 5.004 [4.933, 5.079]
Q4 0.214 [0.204, 0.225] 0.024 [0.019, 0.031] 0.036 [0.033, 0.041] 0.051 [0.044, 0.06] 0.888 [0.422, 1.401] 0.085 [0.075, 0.101]
Q5 - 0.408 [0.391, 0.422] 0.344 [0.321, 0.367] 0.877 [0.86, 0.895] 9.119 [7.927, 11.147] 1.113 [1.086, 1.145]
Q6 - 4.791 [4.656, 4.902] 4.052 [3.951, 4.184] 10.998 [10.916, 11.073] 32.192 [28.403, 39.578] 12.351 [12.165, 12.58]
Q7 - 7.728 [7.411, 7.928] 4.236 [4.165, 4.307] 13.603 [13.321, 13.867] 38.508 [30.443, 53.472] 21.552 [21.385, 21.742]
Q8 0.008 [0.005, 0.011] 0.107 [0.084, 0.131] 0.466 [0.448, 0.483] 0.121 [0.087, 0.158] 0.497 [0.463, 0.545] 0.533 [0.505, 0.567]
Q9 - 0.335 [0.316, 0.358] 0.157 [0.145, 0.171] 0.544 [0.5, 0.595] 2.425 [1.459, 4.333] 0.451 [0.434, 0.473]
Q10 - 1.925 [1.78, 2.074] 1.785 [1.704, 1.859] 2.139 [1.975, 2.312] 32.966 [27.457, 43.554] 1.301 [1.273, 1.347]
Q11 0.129 [0.121, 0.137] 0.008 [0.007, 0.011] 0.008 [0.005, 0.012] 0.007 [0.005, 0.011] 0.800 [0.316, 1.481] 0.026 [0.019, 0.037]
Q12 - 1.003 [0.974, 1.029] 0.547 [0.527, 0.565] 1.168 [1.138, 1.203] 1.662 [0.789, 3.379] 1.108 [1.068, 1.15]

TABLE 3. Queries average execution time, and their 95% confidence interval, in seconds.

C. DATA INGESTION

1) PERFORMANCE METRICS AND SET UP

The simulation is run along with one to five data shipping
jobs, each shipping an equal amount of sensor values, in
parallel. It is performed simulating a synchronized, dis-
tributed and real-time stream-ingestion scenario. Each write
operation is not considered as finished until the database
acknowledges its correct reception, and physically persists
its Write-ahead log, guaranteeing write operation durability.
Thus, the faster the database is able to acknowledge the
data safety, the faster the shipper will send the following
triplet, or sensor reading, being able to finalize the ingestion
of the data-set faster. Thus, the pace or streaming rate is
naturally adjusted by the database according to its ingestion
capabilities. In consequence, the performance metric is the
average triplets writes/second.

2) RESULTS

As seen in Figure 14, PL-NagareDB provides the fastest
writes/second ratio, being able to ingest data twice as fast
as the other solutions. This is due to the fact that it ingests
data using the Data Model 1, based on a key-value approach,
in contrast to the other solutions, that implement column-
oriented approaches. This is, in fact, one of the main goals
of DM1, as it stores data triplets independently one from
each other, whereas other solutions, such as NagareDB, keep
their data in buckets, following a columnar shape. Thus, the
key-value data model that our approach follows is found to
be more suitable for ingestion-intensive applications, such as
large monitoring infrastructures.

Finally, all databases show an efficient parallel ingestion
speedup, as none of them reached the parallel slowdown
point–when adding further parallel jobs reduces the sys-
tem’s performance. Moreover, PL-NagareDB seems to be-
have more efficiently in parallel ingestion scenarios, while,
in contrast, both InfluxDB and MongoDB show a slight
dropping tendency.
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Figure 13: Scalability of ingestion with parallel jobs.
FIGURE 14. Scalability of ingestion with parallel jobs. PL-NagareDB is able to
greatly outperform, in ingestion capabilities, all the alternative solutions, that
provide similar performance.

D. DATA CASCADING

As the database is composed of three different data models, it
is essential that data can efficiently flow from one to another,
following its cascade data path. It is important to recall that
there are two different moments in which the data must
flow: From DM1 to DM2, and from DM2 to DM3. The first
cascade is executed, by default, once per day, and the second
one, once per month.

Taking into account the set-up and the data set of this
experiment, explained in section V, the data cascading from
DM1 to DM2 took, on average, 2.25 seconds, being able
to process approximately 320.000 readings per second. The
second data cascade, from DM2 to DM3, took on average
approximately 3 seconds. This fast data model conversions
are mainly due to several design key aspects:
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• Data Bucketing. Data is already separated into differ-
ent buckets or collections, so that it is not necessary
to perform any conditional search, being enough with
performing a bulk read, translated into a disk sequential
scan.

• Internal operation. Thanks to the out and merge oper-
ations of MongoDB’s aggregation framework, available
from MongoDB 4.4, the database is able to perform in-
database calculations, leaving the result directly into the
database, relieving the application from transferring the
data to its memory space.

• Shared Logical Data Model. The conversion from
DM2 to DM3 does not involve any kind of document-
altering action, and it is just based on a sort operation
plus a bulk write.

To sum up, this efficient data cascade provides the advan-
tages of three different data models, being able to speed up
both read and write operations, at a proportionally insignif-
icant overhead cost, as the data cascade is only performed
once a day, and once a month. For instance, if we added the
cost of cascading from DM1 to DM2 to the ingestion times,
showed in section VI-C, no difference would be noticeable.

VII. CONCLUSIONS
We discussed the evolution of data models and databases,
passing through the one-size-fits-all approach, to the NoSQL
movement, and up to multi-model databases, powered by
polyglot persistence. We also considered some of the most
popular solutions existing nowadays, with respect to the
specific field of time-series databases, the ones that enable
sensor data management.

This paper put together both perspectives, by introducing
the concept of Cascading Polyglot Persistence, consisting in
using multiple consecutive data models for persisting data,
where each data element is expected to cascade from the first
data model, until eventually reaching the last one. Moreover,
in order to evaluate its performance, we materialized this
approach, along with further optimizations, into an alterna-
tive implementation of NagareDB, a Time-Series database,
comparing it against top tier popular databases, such as
InfluxDB and MongoDB. The evaluation results show that
the resulting database benefits from the data-flow awareness,
empowered by three different data models, at virtually no
cost. In addition, we demonstrated that good performance
can be obtained without multiple software solutions, as it was
implemented using a single database technology.

More specifically, after evaluating the response times of
twelve different common queries in time-series scenarios, our
experimental results show that our polyglot-based data-flow
aware approach, implemented as PL-NagareDB is able, not
just to outperform the original NagareDB, but also to greatly
outperform MongoDB’s novel Time-series approach, while
providing more stable response times. Moreover, our bench-
mark results showed that PL-NagareDB was able to globally
surpass InfluxDB, the most popular time-series database.

In addition, in order to evaluate its ingestion capabili-
ties, we simulated a synchronized, distributed and real-time
stream-ingestion scenario. After running it with different
parallelization levels, PL-NagareDB showed to be able to
ingest data streams two times faster than any of NagareDB,
MongoDB and InfluxDB.

Finally, regarding its data storage consumption, InfluxDB,
PL-NagareDB, and NagareDB have shown to request similar
disk usage, being able to store two times more data than
MongoDB, in the same space.

DATA AVAILABILITY STATEMENT
The data-set used in this benchmark, as well as the code
itself, is freely available under demand. Please, reach us at
nagaredb@bsc.es, and we will be glad to help you, in case
you are interested in benchmarking our approach in your own
machine or infrastructure ecosystem.
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