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A B S T R A C T   

First Order Reliability Methods (FORM) have been used by specification committees in the reliability analyses 
required for the calibration of resistance and safety factors for the past 40 years. However, these methods are 
iterative, require input information that may not be readily available, and make comparisons between different 
approaches or design frameworks difficult. This paper presents a set of simplified equations to estimate reliability 
indices β, resistance factors ϕ and partial safety factors γM based on simpler First Order Second Moment (FOSM) 
considerations for the US and Eurocode frameworks, which are particularized for different load cases, and on the 
semi-probabilistic approach prescribed in the Eurocode 0. The equations provide direct relationships between the 
reliability calibration results corresponding to different design frameworks, and can be used to estimate resis-
tance factors as simple cross-checks for the US framework based on the partial safety factors derived for the 
Eurocode (or vice versa) from basic statistical input information and given target reliability, including when the 
data available in the literature is insufficient to perform FORM analyses. The accuracy of the proposed equations 
is assessed against reliability results derived using FORM techniques for an extensive database of steel and 
stainless steel frames subjected to gravity and combined gravity plus wind load cases collected from the liter-
ature, and limitations for their applicability are recommended. The results demonstrate that the set of equations 
proposed in this paper provides accurate estimations of the reliability index β, resistance factors ϕ and partial 
safety factors γM and can assist specification committees in the process of calibrating suitable ϕ and γM-factors.   

1. Introduction 

New structural verification methods based on direct design ap-
proaches are currently being developed for international steel standards 
as a consequence of the increase of computational power in desktop 
computers and the better access to advanced finite element software. In 
these direct design approaches, also referred to as the Direct Design 
Method, the resistance of structures (or members) can be directly esti-
mated from advanced numerical analyses without requiring further 
resistance checks, provided the models incorporate all relevant char-
acteristics that affect the strength of the structure, including initial im-
perfections, nonlinear geometric effects, residual stresses and accurate 
nonlinear material behaviour. During the last years, significant ad-
vances have been made in the development of design recommendations 
[1–7] and benchmark examples [8] for the direct design of steel struc-
tures, the development of new finite elements [9,10], the proposal of 
strain limits to be used with beam-type finite elements [11,12], and the 
calibration of system resistance and partial safety factors [13–22]. Since 

advanced finite element models are capable of accurately predicting the 
strength and capturing the failure mode of complex structures, direct 
design approaches can be applied to whole systems (e.g., frames) to fully 
exploit the benefits arising from load redistribution, spread of plasticity 
and strain hardening [11–22]. A few structural steel standards already 
incorporate versions of system-based direct design approaches, 
including AS/NZS 4100 [23], AISC 360 [24], AISC 370 [25] and 
prEN 1993-1-14 [26], which adopt the simple Load and Resistance 
Factor Design (LRFD) design format given in Eqs. (1) and (2) for the US/ 
Australian and Eurocode design frameworks, respectively. In these 
equations, Rn and Rk are the nominal and characteristic system re-
sistances, respectively, Qni and Qki denote the nominal and characteristic 
structural loads, ϕ and γM are the system resistance and partial safety 
factors for resistance that account for the uncertainties in the system 
strength, and γi are the load factors corresponding to the load combi-
nation rules specified in the load standards. 

ϕRn ≥
∑

γiQn,i (1) 
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Rk/γM ≥
∑

γiQk,i (2) 

The specifications [23–26] require that a level of reliability equiva-
lent to that obtained from member-based design be achieved when using 
system-based approaches, but they do not provide system resistance ϕ or 
partial safety factors γM for use in system-based direct design. Thus, 
recent research efforts have focused on the calibration of system factors 
to guarantee that the target reliability levels required by the different 
specifications are met, based on robust reliability frameworks built for 
different types of structures and materials [14–22]. Nevertheless, the 
calibration of system factors is generally carried out to one of the 
existing specifications or design frameworks (e.g., the Australian, US or 
Eurocode frameworks), using the load combinations and the load sta-
tistics specific to that framework. Thus, the extension of design recom-
mendations to other frameworks with different load models and 
particular load combinations is not direct. It requires the use of 
advanced techniques and that all the basic input information (i.e., sta-
tistical characterization of the system strength and loads) is available. 

With the aim of assisting researchers and specification committees 
use information in the literature to develop new recommendations for 
different design frameworks, the derivation of simple expressions that 
estimate the level of reliability associated with a certain resistance or 
partial safety factor is useful, including expressions that allow per-
forming simple cross-checks on more accurate reliability analyses. 
Furthermore, having expressions that directly relate the reliability 
calibration results for different design frameworks through a few basic 
variables for a rapid comparison, or that estimate suitable resistance (or 
safety) factors for a target reliability index based on the partial safety (or 
resistance) factors proposed in a different framework for a different 
target reliability, is also useful for researchers and specification 
committees. 

This paper presents a set of simple expressions to carry out reliability 
calculations without requiring the use of more advanced (but iterative) 
techniques. Although the proposed simplified equations are not inten-
ded to replace these advanced reliability analysis procedures for code 
calibration, they serve different purposes, (i) they provide a simple 
cross-check on the more accurate reliability calculations, (ii) they allow 
a direct comparison between codes, notably Eurocodes and US codes, 
and (iii) they provide a means of calculating partial factors for members 
and connections whose nominal strength is based on tests, as prescribed 
in some international specifications such as prEN 1990 [27] and AISI 
S100 [28]. The derivation of the expressions and their application to 
different load cases is presented in Section 2, while Section 3 provides an 
overview of the system reliability studies on steel frames available in the 
literature, from which a database for the evaluation of the developed 
expressions has been assembled. Section 4 assesses the accuracy of the 
derived equations to predict reliability indices and resistance or partial 
safety factors, while in Section 5 expressions for the direct comparison of 
reliability levels in the US and Eurocode design frameworks are devel-
oped and assessed. 

2. Derivation of simplified expressions for β, ϕ and γM 

2.1. General 

The safety or failure of a structure has been traditionally quantified 
through its probability of failure Pf (i.e., the probability of load effects S 
exceeding the structural resistance R or reaching a certain limit state), 
which can be determined as Pf = P(R ≤ S). Introducing the limit state 
function g = R − S, then Pf = P(g ≤ 0), since g ≤ 0 defines the failure 
domain. Often, the reliability index β is used as an indirect measurement 
of Pf , which is calculated from β = Φ− 1(1 − Pf ), where Φ− 1 is the inverse 
standard normal distribution function. One option to compute the 
probability of failure is to sample the variables of the limit state function 
randomly and to obtain the probability using direct Monte Carlo simu-

lation (MCS) techniques. However, this method requires a large number 
of simulations to accurately capture the lower tail of the density prob-
ability function and thus alternative methodologies have been devel-
oped over the last decades [29], including First Order Second Moment 
(FOSM) and First Order Reliability Methods (FORM). 

Broadly speaking, code-based reliability traditionally adopts First 
Order Second Moment (FOSM) reliability procedures, which linearize 
the limit state function and use only the first two moments (mean and 
standard deviation) to represent random variables, ignoring higher 
moments such as the skew and flatness [30]. Although FOSM procedures 
are simple and useful, refinements have been developed from the orig-
inal method to overcome some of its drawbacks. These include the 
extension of the method to nonlinear limit state functions and modifi-
cations that allow approximating the actual probability distributions of 
the random variables using equivalent normal distributions – since the 
probabilistic distributions of random variables are often known. These 
new methods are usually referred to as First Order Reliability Methods 
(FORM) and adopt iterative solution schemes [29,31] which convert 
non-normal random variables to equivalent normal distributions. Since 
FORM techniques were shown to provide reliability indices only 
marginally lower than those obtained using direct Monte Carlo simu-
lations (with deviations of about 2–5%) [14], they were deemed suffi-
ciently accurate to carry out reliability studies for code calibration, and 
have been systematically used in the calibration of resistance factors, 
including the system factors derived in [14–22] for the direct design of 
steel and stainless steel frames. 

2.2. Estimation of β, ϕ and γM using FOSM methods 

The FOSM gives an exact solution of the reliability index when both 
the resistance R and the load effect S are normal (or lognormal) random 
variables. For a steel structural member, the resistance R can often be 
modelled as a lognormal. If the load effect S is also a lognormal, the limit 
state function can be written as g = ln(R/S). Note that ln(R/S) is a 
normal random variable. In this case, the reliability index can be 
computed using the mean and standard deviation of ln(R/S), as per β =

ln(R/S)/σln(R/S). β represents the distance from ln(R/S) to the origin in 
standard deviation units and the area under ln(R/S) ≤ 0 is the proba-
bility of failure Pf (see Fig. 1); in other cases (non-normal or non- 
lognormal distributions), β provides a relative measure of the struc-
tural safety. Note that throughout this paper X, σX and VX represent the 
mean value, the standard deviation and the coefficient of variation 
(COV), respectively, of the random variable X. Using small variance 
approximations, then ln(R/S) = ln(R/S) and σln(R/S) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
VR

2 + VS
2

√
, and 

the reliability index β is approximately given by the relationship shown 
in Eq. (3), which was the basis for the development of the probability- 
based LRFD criteria for steel structures in [32]. 

Fig. 1. Graphic definition of the reliability index β and the probability of 
failure Pf . 
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β =
ln(R/S)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V2
R + V2

S

√ (3) 

While the values for R and VR can be obtained from theoretical 
resistance models or extensive numerical simulations that account for all 
relevant uncertainties, S and VS depend on the type of loading investi-
gated, the load combination and the statistical models (mean and co-
efficient of variation) assumed for the different loads in the design 
framework considered. Thus, to develop simplified expressions for 

reliability calibrations it is necessary to estimate R/S and 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V2
R + V2

S

√

as 
functions of the basic statistical parameters used in reliability analyses, 
including stochastic models for loads, suitable load combinations (load 
factors), stochastic models for resistance, etc. From the general LRFD 
design equation for the US framework given in Eq. (1), assuming that the 
structure (or member) is at its limit state and defining a new coefficient 
C as CUS =

∑
γiQn,i/S, R/S can be written as R/S = CUS/ϕ⋅R/Rn, from 

which a direct relationship can be established between β and ϕ as a 
function of the coefficient CUS, the mean-to-nominal resistance ratio R/
Rn and the coefficients of variation for the resistance VR and load effects 
VS,US, as shown in Eq. (4). If this equation is inverted, the expression that 
provides the required resistance factor ϕ for a certain level of reliability 
β can be obtained, as given by Eq. (5). 

β =

ln
(

CUS
R
Rn

1
ϕ

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
V2

R + V2
S,US

√ (4)  

ϕ = CUS
R
Rn

exp
[
− β

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V2
R + V2

S,US

√ ]
(5) 

For the calculation of CUS and VS,US, the load combinations prescribed 
in the ASCE 7 [33] Specification and load statistics specific to the US 
framework should be considered. Eq. (5) is very similar to the expression 
prescribed in Chapter K of the AISI S100 [28] Specification, as devel-
oped in [32,34] for the calibration of ϕ-factors when the resistance of 
members is determined through testing, where the mean-to-nominal 
resistance ratio R/Rn is calculated as the product of the mean values 
of the material factor Mm, the fabrication factor Fm and the professional 
factor Pm, while VR depends on the coefficients of variation of the same 
factors. Despite being originally prescribed for studies based on exper-
imental results, this approach has been systematically used by re-
searchers to carry out reliability calibrations when proposing design 
expressions for cross-section and member resistance based on hybrid 
databases comprising experimental and numerical results. In the AISI 
S100 equation, the CUS and VS,US parameters representing uncertainties 
in the loads are expressed as Cϕ and VQ, and are calculated for the gravity 
load combination with a dead-to-live load ratio of 1/5, the load ratio 
commonly used for cold-formed steel structures [28,30]. 

Equivalent relationships to Eqs. (4) and (5) can be derived for the 
Eurocode framework following the same procedure and considering the 
Eurocode LRFD equation Eq. (2), as given in Eqs. (6) and (7), in which 
CEN and VS,EN are to be determined using suitable characteristic load 
values and load factors according to the different parts of Eurocode 1 
[35,36] and the load combinations prescribed in prEN 1990 [27]. 

β =

ln
(

CEN
R
Rk

γM

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
V2

R + V2
S,EN

√ (6)  

γM =
1

CENR/Rk
exp

[
β

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V2
R + V2

S,EN

√ ]
(7) 

Eqs. (4) and (6) can be used to predict reliability indices β without 
performing FORM analyses, while Eqs. (5) and (7) provide a direct 
estimation of the resistance or partial safety factors required to meet 

certain levels of target reliability specific to the design framework under 
consideration. 

2.3. Application to particular load cases 

The parameters CUS (or CEN) and VS,US (or VS,EN) defined in the pre-
vious Section depend not only on the design framework considered in 
the analysis, but also on the load cases investigated. The development of 
these factors for different load cases is further investigated in this Sec-
tion, including the gravity load (dead and live loads), wind load and 
combined gravity plus wind load cases. Since the calibration coefficients 
C and coefficients of variation of the load effects VS depend on the load 
combinations and the statistics assumed for the loads, they typically 
exhibit different values in the US and Eurocode frameworks; however, 
the expressions presented herein are generic and can be used in both 
design frameworks. It should be noted that although the development of 
the expressions in this Section is based on the nominal load concept, 
which would correspond to the US design framework, equivalent 
equations can be obtained if based on the characteristic loads typically 
used in the Eurocode framework. For simplicity, equations have not 
been duplicated and only expressions that use nominal loads are pro-
vided. 

2.3.1. Gravity loads, G + Q 
When the reliability of structures under gravity loads is evaluated, 

different dead-to-live load ratios ζ = Gn/Qn are customarily considered, 
where Gn and Qn are the nominal dead and live load, respectively, since 
the calibrated reliability indices depend on the load ratio ζ [14–22]. The 
general form of the load combination under gravity loads is 

∑
γiQn,i =

γGGn + γQQn, where γG and γQ are the load factors for the dead and live 
load, respectively. The mean value of the total load S can be re-written as 
S = G + Q, where G and Q are the mean values of the dead and live 
loads, from which the CGQ,j coefficient under gravity loads shown in Eq. 
(8) can be obtained. Note that the sub-index j refers to the US or the 
Eurocode design frameworks, and that the CGQ,j coefficient depends on 
the load factors (γi), the dead-to-live load ratio ζ and the load statistics 
(G/Gn and Q/Qn). 

CGQ,j =
ζγG + γQ

ζ G
Gn

+ Q
Qn

(8) 

Similarly, the coefficient of variation of the total gravity loads VS,GQ,j 

can be determined utilising that VS = σS/S and σ2
S = σ2

G +σ2
Q (assuming G 

and Q are uncorrelated), as per in Eq. (9), which also depends on the 
ζ-ratio and the stochastic models adopted for the loads (G/Gn, Q/Qn, VG 

and VQ). Information about the load models for the different load types 
and different design frameworks can be found in the literature 
[21,22,37–39] and is summarized in Table 1, which reports the mean 
value, coefficient of variation and distribution type for the most com-
mon loads for the US and Eurocode frameworks. 

VS,GQ,j =

[

ζ2
(

G
Gn

)2

V2
G +

(
Q
Qn

)2

V2
Q

]1/2

ζ
(

G
Gn

)

+

(
Q
Qn

) (9) 

In particular, the values of the calibration coefficient Cϕ and the 
coefficient of variation of the load effects VQ prescribed in the AISI S100 
[28] Specification are 1.52 and 0.21, respectively, which correspond to 
the CGQ and VS,GQ parameters given in Eqs. (8) and (9) when γG = 1.20, 
γQ = 1.60, ζ = 0.2 and the load statistics reported in Table 1 for the US 
framework are adopted. The equations derived herein, together with 
those presented in the next sub-sections, give a better estimation of the 
Cϕ and VQ coefficients for load cases different to ζ = 0.2 because they are 
broader and adopt general cases of ζ instead of assuming fixed values of 
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the coefficients, and are equivalent to the equations given in [30]. Ac-
cording to AISI S100 [28], these general equations should be adopted in 
special situations when loading cases deviate from the gravity load case 
assumed. 

2.3.2. Wind loads, W 
If only wind loads are considered in the analysis, the derivation of the 

CW,j and VS,W,j coefficients is simple since the limit state function and the 
design equation only depend on one load type. These coefficients are as 
shown in Eqs. (10) and (11), in which γW, W/Wn and VW are the load 
factor, the mean-to-nominal ratio and the coefficient of variation of the 
wind load, as defined in load standards [27,33] and reported in Table 1. 

CW,j =
γW

W/Wn
(10)  

VS,W ,j = VW (11)  

2.3.3. Combined gravity plus wind loads, G + Qapt + W 
When load combinations including imposed live loads and wind 

loads are investigated, it is necessary to consider the arbitrary-point-in- 
time live load Qapt instead of the 50-year maximum live load Q. As for 
gravity loads in Section 2.3.1, to derive the CGQaptW,j and VS,GQaptW,j co-
efficients for combined gravity plus wind loads, different ratios of dead- 
to-live loads ζ = Gn/Qn and wind-to-live loads δ = Wn/Qn need to be 
considered. Following similar steps to those adopted for the gravity load 
case, the expressions shown in Eqs. (12) and (13) can be derived to es-
timate the CGQaptW,j and VS,GQaptW,j coefficients, where Qapt is the mean 
value of the of the arbitrary-point-in-time live load. 

CGQaptW,j =
ζγG + γQ + δγW

ζ G
Gn

+
Qapt
Qn

+ δ W
Wn

(12)  

VS,GQaptW,j =

[

ζ2
(

G
Gn

)2

V2
G +

(
Qapt
Qn

)2

V2
Qapt

+ δ2
(

W
Wn

)2

V2
W

]1/2

ζ G
Gn

+
Qapt
Qn

+ δ W
Wn

(13)  

2.4. Eurocode semi-probabilistic approach 

According to Annex C of prEN 1990 [27], the calibration of partial 
safety factors for resistance can be carried out based on First Order 
Reliability Methods or on full probabilistic methods. Since it is often not 
possible to use the full probabilistic method due to the lack of statistical 
data, the approach generally adopted for the calibration of partial safety 
factors or the safety assessment of new design expressions in the 

Eurocode framework is the semi-probabilistic procedure given in Annex 
D of prEN 1990 [27]. For the case of a large number of tests (n > 100), 
the partial safety factor for resistance γM can be determined from Eq. 
(14), 

γM =
Rk

b⋅R⋅exp
[
− αRβθ − 0.5θ2] (14) 

where b is the mean of the model factor, αR is the First Order Reli-
ability Method sensitivity factor for the resistance and θ is a parameter 
that accounts for the variability in the design model and the basic 
random variables, given in Eq. (15). Note that in prEN 1990 [27] the θ 
parameter is referred to as Q, but a different notation is adopted in this 
paper to avoid confusion with the live load Q. The θ-parameter depends 
on the total coefficient of variation of the resistance Vr and can be 
estimated from Eq. (16) through the coefficients of variation of the 
model factor and the basic input parameters, Vδ and Vrt. 

θ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ln(1 + V2
r )

√

(15)  

(
1 + V2

r

)
=

(
1 + V2

δ

)
⋅
(
1 + V2

rt

)
(16) 

One of the main features of the Eurocode semi-probabilistic pro-
cedure is that it clearly separates the load and resistance sides of the 
probabilistic problem, making the calibration of the partial safety fac-
tors for the resistance independent of the variability of the loads. This is 
achieved by allocating constant fractions of the target reliability index to 
the resistance and the load sides through the factors αR and αE, which 
correspond to the First Order Reliability Method sensitivity factors. For 
the cases in which the standard deviation of the load effects and the 
resistance do not deviate much (0.16 < σE/σR < 7.6), the values adopted 
for the sensitivity factors are αR = 0.8 and αE = − 0.7, where 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
α2

R + α2
E

√
≈ 1.0. The adoption of fixed values for these sensitivity factors 

results in a non-iterative procedure, in which the value of the partial 
safety factor for resistance γM can be obtained directly. The approach 
also assumes that the resistance and model factor follow lognormal 
distributions [40]. Eq. (14) can be further simplified if the total coeffi-
cient of variation is small (Vr < 0.20), since the 0.5θ2 term in the same 
equation can be neglected [27], and if model uncertainties are 
accounted for implicitly in the resistance function, in which case b = 1 
and Vr = Vrt . Using these simplifications, the equation to estimate the 
partial safety factor for the resistance γM using the Eurocode semi- 
probabilistic approach is shown in Eq. (17), from which the expres-
sion that provides the level of reliability β achieved for a given value of 
partial safety factor γM can be derived, as given by Eq. (18). 

Table 1 
Load statistics adopted in reliability analyses.  

Design framework Load type Mean COV Distr. type Reference 

US framework Dead load, G 1.05Gn  0.10 Normal 
[39] 

Live load, Q 1.00Qn  0.25 Extreme Type I 
[39] 

Arbitrary-point-in-time live load, Qapt 0.25Qn  0.60 Gamma 
[14] 

Wind load, W 0.47Wn
† 0.35 Extreme Type I 

[37]  

Eurocode framework Dead load, G 1.00Gk  0.10 Normal 
[38] 

Live load, Q 0.80Qk  0.25 Extreme Type I 
[21] 

Arbitrary-point-in-time live load, Qapt 0.20Qn  0.60 Gamma 
[21] 

Wind load, W 0.70Wk*  0.35 Extreme Type I 
[38]  

† Wind loads in ASCE 7 [33] are based on a return period of T = 700 years. 
* Wind loads in EN 1991–1-4 [36] are based on a return period of T = 50 years. 
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γM =
1

R/Rk
exp[αRβθ] (17)  

β =
1

αRθ
ln
(

R
Rk

γM

)

(18) 

These equations are equivalent to Eqs. (6) and (7) derived in Section 
2.2, but are based on the Eurocode semi-probabilistic approach instead 
of using FOSM methods. The main difference between the Eurocode and 
other specifications based on FOSM procedures (such as AISI S100-16 
[28] or AS/NZS 4600 [41]) is that, unlike the expression given in Eq. 
(7), the partial safety factor γM estimated using Eq. (17) does not depend 
on the load combination considered (γG, γQ and γW factors) or the vari-
ability of the loads (mean values and COVs of the load distributions). 

The comparison of the γM partial safety factors calculated using the 
Eurocode semi-probabilistic approach (Eq. (17)) and FOSM procedures 
(Eq. (7)), in terms of γM,EN/γM,FOSM ratios, is presented in Fig. 2. Different 
load cases, including gravity load scenarios with dead-to-live load ratios 
ζ of 1.0, 0.5 and 0.2 and wind load cases are investigated, showing that 
the γM,EN/γM,FOSM ratios reduce for increasing values of the reliability 
index β for all load cases. In this comparison, a coefficient of variation 
equal to Vr = VR = 0.10 was assumed for the variability of the resis-
tance, which is a typical value for steel structures [13]. The results in 
Fig. 2 also show that for gravity load cases γM,EN factors are higher than 
their γM,FOSM counterparts, although the difference is reduced as the 
dead-to-live load ratio ζ decreases, and equivalent results are obtained 
for ζ = 0.2 at the 3.8–4.0 reliability index range, while the deviations 
between the two methods are more pronounced for wind loads, with the 
γM,EN-factors being lower than γM,FOSM in the intermediate-to-high 
β-range. 

3. System reliability calibration for steel frames 

To contribute to the widespread and normalization of system-based 
direct design approaches, recent research efforts have focussed on the 
statistical characterization of the resistance of steel structural systems 
and, through comprehensive reliability calibrations, on the recommen-
dation of system resistance and partial safety factors that meet the level 
of reliability required by the different international specifications 
[14–22]. Based on the limit state functions g = R − G − Q and g = R − W 
for the gravity and wind load cases, respectively, these studies have 
adopted First Order Reliability Method techniques to compute the reli-
ability indices β associated to different values of resistance ϕ and partial 
safety γM factors for steel structures. This process relies on an accurate 
characterization of the system strength statistics, the implementation of 
efficient FORM algorithms and the adoption of suitable target reliability 
indices for the design frameworks under investigation. This Section 

provides a summary of the different features in system reliability 
calibration. 

3.1. Statistical characterization of system strength 

To provide comprehensive design recommendations for the direct 
design of steel systems, it is fundamental to choose representative 
structural types that cover the full range of system behaviour, including 
different types of failure, regular/irregular system configurations, 
different connection types, etc. The statistics of the strength of these 
systems under different loading conditions can be determined from 
comprehensive experimental programmes or extensive advanced finite 
element (FE) simulations. Although both tests and numerical data can be 
considered when determining the strength of members, the use of 
experimental programmes to characterize system strength distributions 
is unfeasible and advanced FE simulations need to be used. 

While the presence of random properties is inherent in the specimens 
used for testing, it is necessary to sample randomly the variables that 
affect the strength of the systems (i.e., material and geometric proper-
ties, initial geometric imperfections, residual stresses, and the behaviour 
of connections) when numerical simulations are used. The basic re-
quirements for this are to build advanced finite element models capable 
of accounting for all geometric and material nonlinearities and to have 
knowledge about the variability of each of the random variables 
involved. In general, the determination of the probabilistic models for 
system strength entails a large number of simulations, although it can be 
reduced to typically 250–350 simulations through the adoption of Latin 
Hypercube Sampling (LHS) techniques [14–22]. Besides, it is necessary 
to include an additional random variable that accounts for the un-
certainties associated with the assumptions and approximations made 
when building the FE models, i.e., the model factor. Based on the 
methodology described above, the distribution type, mean value and 
coefficient of variation of the system strength can be determined, which 
in combination with the nominal system strength determined following 
the requirements prescribed in the relevant specifications, constitute the 
fundamental input information in carrying out reliability calibrations (i. 
e.,R/Rn and VR). 

3.2. Reliability calibrations using FORM 

Using the system strength statistics determined from experimental 
results or numerical simulations and the stochastic models for the loads 
relevant to the design framework and loading types under consideration 
available in the literature (and summarized in Table 1), different sets of 
reliability indices β can be computed for a range of resistance ϕ and 
partial safety γM factors using scripts coding the FORM methodology (e. 
g., see [14–22]) and considering the load factors prescribed in the 
ASCE 7 [33] and prEN 1990 [27] standards for the US and Eurocode 
design frameworks, respectively. These sets of β − ϕ and β − γM re-
lationships established using the FORM method have been utilised in 
previous studies [14–22] to derive suitable system factors that meet the 
reliability levels required by international specifications (i.e., prescribed 
target reliability indices) and to develop design recommendations for 
the direct design of steel systems. The results have also been used in the 
subsequent Sections of this paper as benchmark values for reliability 
indices β and resistance ϕ or partial safety γM factors in the assessment of 
the derived simplified equations. 

3.3. Target reliabilities in the US and Eurocode frameworks 

Target reliability indices β0 are prescribed in the international 
standards for a variety of structure classes and limit states, including 
ultimate limit states and serviceability limit states. These indices 
generally correspond to 50-year reference periods (service life for 
common steel buildings), and thus reliability calibrations are usually 

Fig. 2. Comparison between the semi-probabilistic and FOSM approaches for 
the estimation of partial safety factors γM for different load cases. 
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performed using input information that corresponds to this period, 
including the statistical characterization of the maximum expected loads 
acting on the structure. prEN 1990 [27] prescribes a minimum value of 
the target reliability index of β0 = 3.8 for ultimate limit states in 
Consequence Class 2 (CC2) structures and a reference period of 50 years, 
although for structures dominated by wind loads a lower reliability of 
β0 = 2.8 is usually accepted [22,42]. Likewise, the target reliability 
indices adopted in the ASCE 7 [33] Specification for Risk Category I and 
II structures are β0 = 2.5 and β0 = 3.0, respectively, although for wind 
load cases the reliability index has been found to be consistently lower 
than for gravity load cases [15,17,43–45]. However, if the recently 
updated wind load model proposed in [37] and reported in Table 1 is 
used when performing reliability calibrations in the US framework, 
higher reliability indices, equivalent to those obtained for gravity loads, 
are obtained because these new statistics consider part of the hidden 
reliability present in the wind load model related to the bias in the wind 
directionality factor [37]. For code calibration, an intermediate value 
between β0 = 2.5 and β0 = 3.0 (e.g., β0 = 2.8) can be adopted. 

3.4. Previous studies on system factor calibration 

To date, reliability studies on structural systems have been con-
ducted on hot-rolled steel [14–17], cold-formed steel [18–20] and cold- 
formed stainless steel [21–22] structures under different loading con-
ditions with the aim of calibrating system resistance or partial safety 
factors, featuring planar frames, spatial frames and portal frames. These 
studies adopted the methodology described in the previous Sections, and 
conducted extensive numerical simulations to characterize the sto-
chastic models for the system strength of a variety of structures. The 
system resistance factors calibrated for steel structures and the target 
reliability indices discussed in the previous Section were around ϕs =

0.80 − 0.85 for gravity loads [14–16,18,19] and combined gravity plus 
wind load cases [14,15,17,18,20] in the US design framework. Due to 
higher overstrength ratios (i.e., mean-to-nominal yield stress ratios), 
higher system resistance factors of around ϕs = 0.90 − 0.95 were pro-
posed for stainless steel portal frames in [21–22], while for the Eurocode 
framework system partial safety factors of γM,s = 1.15 − 1.20 were found 
to be appropriate. 

The R/Rn and VR results derived in these previous studies, which are 
available in the literature, have been collected herein and used to assess 
the accuracy of the simplified expressions presented in Section 2. 
Table 2 presents the database collected from [14–22], summarizing the 
frame type and load case analysed in each subset of data, in addition to 
the total number of frames investigated and the ranges of mean-to- 
nominal resistance ratios R/Rn and coefficients of variation for the 
resistance distributions VR. Within each subset of data, results 

corresponding to different types of frames (frames with and without 
rigid diaphragm, hinged or rigid beam-to-column connections, compact 
and slender sections) are included. It should be noticed that since the 
research works from which the R/Rn and VR values were obtained 
focused on the development of system-based direct design recommen-
dations for steel and stainless steel structures [14–22], the resistance and 
partial safety factors considered in this study correspond to system 
factors. However, the derived simplified equations apply to both 
member-based and system-based reliability calibrations, as do the con-
clusions drawn in Section 6. Similarly, the same equations and conclu-
sions would also be valid if strength distributions were determined using 
experimental data instead of advanced FE simulations. 

4. Estimation of reliability indices β or resistance ϕ and partial 
safety γM factors 

This Section evaluates the accuracy of the different simplified 
equations derived in Section 2 for the estimation of reliability indices β 
and resistance ϕ or partial safety γM factors against the corresponding 
values calculated using the FORM reliability procedures described in 
Section 3. While for the US framework the equations derived using the 
FOSM method are considered, for the Eurocode framework expressions 
based on both the FOSM and semi-probabilistic approaches are 
analysed. 

4.1. Assessment of the estimated reliability indices β 

The reliability indices calibrated using the FORM method for the 
steel and stainless steel frames collected in the database are compared 
with the β-values predicted from Eqs. (4) and (6) for the US and Euro-
code design frameworks, respectively, and with the values calculated 
using the Eurocode semi-probabilistic approach (Eq. (18)). The resis-
tance and partial safety factors considered were defined based on values 
of practical interest, ranging approximately between ϕ = 0.80 − 1.00 
and γM = 1.00 − 1.30. Since the database included frames under gravity 
and combined gravity plus wind load cases, suitable C and VS co-
efficients were considered and calculated according to the expressions 
presented in Section 2.3 for the approaches based on the FOSM method. 
For the gravity load case, different dead-to-live load ratios ζ were 
assumed, while the analysis for the combined gravity plus wind load 
case also included a range of gravity-to-wind load ratios. It should be 
noticed that the combined load cases investigated in this paper and re-
ported in [14,15,17,20,22] correspond to push-over type analyses, in 
which the uncertainties of the gravity loads are implicitly accounted for 
in the stochastic models reported for the resistance (i.e., R/Rn and VR 
values). Thus, only wind load statistics need to be considered in the 

Table 2 
Summary of assembled database on steel and stainless steel frames for reliability calibrations.  

Frame type Load case No. of frames Range of R/Rn Range of VR Reference 

HR planar sway frames G+Q 24 1.02–1.11 0.09–0.11 [14,15] 
HR planar sway frames G+Qapt+W 27 1.06–1.36 0.11–0.15 [14,15] 
HR planar braced frames G+Q 57 1.00–1.10 0.07–0.12 [14,15] 
HR 3D sway frames G+Q 40 0.97–1.12 0.09–0.14 [16] 
HR 3D sway frames G+Qapt+W 24 1.07–1.38 0.10–0.16 [17] 
HR 3D braced frames G+Q 22 0.99–1.09 0.09–0.12 [16] 
CF HSS 3D sway frames G+Q 30 0.99–1.08 0.09–0.12 [18] 
CF HSS 3D braced frames G+Q 34 0.97–1.08 0.09–0.11 [18] 
CF HSS 3D sway frames G+Qapt+W 24 1.11–1.39 0.10–0.18 [18] 
CF portal frames G+Q 8 0.99–1.08 0.07–0.10 [19] 
CF portal frames G+W 12 0.93–1.28 0.05–0.18 [20] 
CF HSS stainless steel portal frames G+Q 6 1.18–1.37 0.09–0.12 [21] 
CF HSS stainless steel portal frames G+W 18 1.12–1.32 0.09–0.11 [22] 

HR: hot-rolled 
CF: cold-formed 
HSS: hollow structural section 

I. Arrayago et al.                                                                                                                                                                                                                                



Engineering Structures 256 (2022) 114013

7

calibration of β, γM or ϕ, and the expressions presented in Section 2.3.2 
for wind loads only have been considered instead of those reported in 
Section 2.3.3, which would be suitable for load cases in which all loads 
are simultaneously applied. 

The assessment of the accuracy of Eqs. (4), (6) and (18) to estimate 
reliability indices is presented in Fig. 3, in which the β-values deter-
mined from FORM analyses (βFORM) are compared with the β-values 
predicted using the proposed method βpred (i.e., computed using Eqs. (4), 
(6) and (18)) and plotted against the reference βFORM-values. The results 
are presented separately for the different load cases and the different 
simplified procedures investigated in this paper, including the FOSM- 
based equations for the US and Eurocode frameworks, and the semi- 

probabilistic approach prescribed in Annex D of prEN 1990 [27] for 
the Eurocode framework. It should be noticed that although dead-to-live 
ratios ζ ranging between 0.2 − 1.0 have been analysed for the gravity 
load case, for simplicity, Fig. 3 only shows results corresponding to ζ =

0.5 and ζ = 0.2, which are the common load ratios for steel structures 
[18,21] and cold-formed steel structures [28,30], respectively. Accord-
ing to the results shown in Fig. 3(a) and (b), the estimation of the reli-
ability index for the gravity plus wind load case is slightly more accurate 
than for the gravity load case for the FOSM-based approaches, and the 
βpred/βFORM values for gravity plus wind loads show a considerably lower 
scatter and more consistent results over the full range of βFORM-values. 
Conversely, the results for gravity loads are more scattered and the ac-
curacy in the prediction of the reliability index decreases with increasing 
values of the reliability index. 

In general, the results for the US and Eurocode frameworks exhibit 
the same trend for each of the load cases considered when the reliability 
index is estimated using FOSM-based approaches. Hence, the accuracy 
observed for the two design frameworks is similar. However, since the 
absolute values of the reliability indices calibrated for gravity loads in 
the Eurocode framework are higher than for the US framework, the 
accuracy of the βpred-values is somehow lower for the Eurocode. 
Regarding the Eurocode semi-probabilistic approach, Fig. 3(c) shows a 
considerably higher scatter in the results, with a significantly lower 
accuracy in the prediction of the reliability index due to the fact that Eq. 
(18) does not explicitly consider load factors or the variability of the 
load effects in the formulation, and that it adopts fixed values of the 
sensitivity factors αR and αE. The values of the sensitivity factors α 
change significantly depending on the load cases, load ratios and target 
reliability indices considered in the calculation. In the FORM reliability 
calibrations carried out in this paper for the Eurocode framework, for 
example, the sensitivity factors for the resistance αR ranged between 
0.26 and 0.57, while values ranging between –0.80 and –0.96 were 
observed for the sensitivity factors of the loads αE. These values are 
significantly different, for many of the load ratios considered, from the 
α-values prescribed in prEN 1990 [27] (αR = 0.8 and αE = − 0.7), even 
if the 0.16 < σE/σR < 7.6 condition stated in Section 2.4 is fulfilled. 
However, when the results corresponding to the β-values relevant to the 
Eurocode are analysed (i.e., β = 3.8), it can be appreciated that the 
βpred/βFORM ratios for gravity loads are very close to unity. 

The analysis of the results also indicates that for the ranges of R/Rn 
and VR factors investigated in this paper (see Table 2), the accuracy of 
the estimated reliability indices is uniform for all the load cases and 
simplification methods, while the influence of the dead-to-live load ratio 
is found to be more important, with the βpred/βFORM ratios closest to unity 
being aligned with the lowest values of Gn/Qn for the FOSM-based 
simplified expressions (as demonstrated by the results shown in Fig. 3 
(a) and (b)), and with the highest Gn/Qn ratios for the Eurocode semi- 
probabilistic approach (see Fig. 3(c)). This is in line with the differ-
ences observed between the FORM sensitivity factors and the fixed 
values of αR and αE defined in prEN 1990 [27], since the biggest dif-
ferences in the α-values correspond to the lowest Gn/Qn ratios, while the 
sensitivity factors closest to the prEN 1990 values are observed for the 
highest Gn/Qn load ratios. The fact that the accuracy of Eq. (18) im-
proves as the β-values get closer to the target reliability index and for 
high Gn/Qn ratios suggests that the α-values prescribed in prEN 1990 
[27] were calibrated using these values as reference. 

The statistics of the βpred/βFORM ratios are reported in Table 3 for the 
different design approaches and load cases analysed, including the mean 
values, the coefficients of variation and the minimum-to-maximum ratio 
ranges. Note that the results presented in Table 3 correspond to frames 
with different dead-to-live and gravity-to-wind load ratios, and that only 
results lying in the area of interest βFORM = 2.5 − 3.8 have been consid-
ered. From these results, it can be concluded that the reliability indices 
can be estimated with average differences of about 5% for the US 
framework and between 5 and 10% for the Eurocode framework using 

Fig. 3. Assessment of the simplified expressions to calculate reliability indices β 
for different load cases and design frameworks: a) US–FOSM, b) EN–FOSM and 
c) EN–semi-probabilistic. 
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the FOSM-based simplified expressions given in Eqs. (4) and (6), with 
significantly low variations. For the Eurocode semi-probabilistic 
approach, the accuracy in the predicted β-values is significantly lower, 
although βpred/βFORM ratios close to unity are observed in the vicinity of 
the reliability index relevant to the Eurocode. 

4.2. Assessment of the estimated resistance ϕ and partial safety γM factors 
for a given level of reliability 

Following a similar approach to that adopted for the assessment of 
the estimated reliability indices using the simplified expressions re-
ported in Section 2, this Section presents the results corresponding to the 
estimation of resistance ϕ and partial safety γM factors using Eqs. (5), (7) 
and (17), considering the same load cases and frames investigated in the 
previous Section. Fig. 4 evaluates the accuracy of Eqs. (5), (7) and (17) 
by comparing the predicted resistance ϕpred and partial safety γM,pred 

factors with the equivalent factors calibrated using FORM techniques, 
ϕFORM and γM,FORM. Predicted-to-FORM ratios are plotted against the 
reference βFORM-values, as in Fig. 3, and the results are presented sepa-
rately for the different load cases and simplification procedures inves-
tigated. For simplicity, only gravity load results corresponding to dead- 
to-live ratios of ζ = 0.5 and ζ = 0.2 and gravity plus wind load cases are 
shown. Fig. 4 indicates that the accuracy observed for the two FOSM- 
based simplified expressions (Eqs. (5) and (7)) is very similar, since 
the results in Fig. 4(a) and (b) are symmetric about the ϕpred/ϕFORM = 1.0 
(or γM,pred/γM,FORM = 1.0) axis. As for the reliability index, the scatter in 
the prediction of the partial safety factors γM is higher for the Eurocode 
semi-probabilistic method, but the γM,pred/γM,FORM ratios are close to 
unity as the β-values approach the reference value of 3.8 for gravity load 
cases. For gravity plus wind load scenarios, the prediction of the 
γM-factors is less accurate. 

The results indicate that the FOSM-predicted ϕ-factors for the gravity 
plus wind load case in the US framework are lower than the corre-
sponding ϕFORM-values, while the converse is true for gravity loads. This 
indicates that the prediction of ϕ-factors is conservative for the gravity 
plus wind load case, and slightly unconservative for gravity loads. It 
should be emphasized that the results for FOSM and FORM will be same 
in the particular cases in which R and S are normal, or if R and S are 
lognormal, for which the FOSM equations are exact. Since for steel 
structures it is customary to model R as lognormal [13], FOSM and 
FORM approaches will give similar results if the loads are close to 

lognormal distributions, although according to the stochastic models 
traditionally adopted for gravity and wind loads in the literature, the 
loads to which structures are subjected will typically be a combination of 
a normal distribution and an Extreme Type I distribution (see Table 1). 
These can differ significantly from lognormal distributions, especially 
for small gravity-to-wind load ratios. Likewise, it is found that the 
γM-factors estimated using Eq. (7) are lower than those calibrated using 
the FORM method for gravity loads in the Eurocode, while the predic-
tion of γM-factors is conservative for gravity plus wind loads. On the 
contrary, in the case of the Eurocode semi-probabilistic approach the 
prediction of the partial safety factor is in general unconservative for the 
gravity plus wind load combinations in the range of reliability levels 
close to 3.8 and conservative for gravity load cases, although with sig-
nificant errors. In line with the results reported in the previous Section, 
the accuracy in the estimation of the ϕ and γM-factors was found not to 
be significantly influenced by the R/Rn (or R/Rk) and VR values or the 
type of material. 

Finally, Table 3 reports the mean values, coefficients of variation and 
minimum-to-maximum ranges of the ϕpred/ϕFORM and γM,pred/γM,FORM 

ratios calculated considering all the frames and load ratios investigated. 
According to these values, Eqs. (5) and (7) provide accurate estimations 
of the resistance ϕ and partial safety γM factors for the gravity and 
gravity plus wind load cases, with average differences between 3 and 7% 
and 5–8% for the US and Eurocode frameworks, respectively, and with 
low coefficients of variation. On the other hand, the estimation of partial 
safety factors using the semi-probabilistic approach detailed in Annex D 
of prEN 1990 [27] provides average differences of 13% and 5% with the 
FORM-based values for the gravity and gravity plus wind load cases, 
respectively, in the area of interest: βFORM ranging from 2.5 to 3.8. While 
the mean accuracy of this approach is reasonable, the range of γM,pred/

γM,FORM ratios obtained is 0.74–1.41, as shown in Table 3, too scattered 
to be used in code calibration, although the accuracy for reliability 
indices of around 3.8 is notably better according to the results shown in 
Fig. 4(c). As highlighted in the previous Section, the values of the 
sensitivity factors α – and therefore the accuracy of the prEN 1990 semi- 
probabilistic approach – depend on the load ratios and the target reli-
ability indices considered. Providing a fixed value of these sensitivity 
factors can be useful, but it is necessary to limit the applicability of this 
expression when used for the calibration of partial safety factors. Ac-
cording to the reliability results analysed in this paper, and considering 
that an acceptable estimation of γM-factors remains in the ±10% range, 

Table 3 
Assessment of the simplified expressions to estimate the reliability index β and the resistance ϕ or partial safety γM factors in different design frameworks and load cases 
(Eqs. (4)–(7), (17), (18)).  

Design framework Load case  βpred

βFORM 

ϕpred

ϕFORM 
or 

γM,pred

γM,FORM  

US framework (FOSM) Gravity loads Mean 1.05 1.03 
COV 0.034 0.020 
Min-Max 0.91–1.22 0.97–1.12 

Gravity plus wind loads Mean 0.94 0.93 
COV 0.007 0.006 
Min-Max 0.91–0.97 0.91–0.96  

Eurocode framework (FOSM) Gravity loads Mean 1.09 0.95 
COV 0.028 0.020 
Min-Max 0.96–1.23 0.87–1.02 

Gravity plus wind loads Mean 0.94 1.08 
COV 0.009 0.007 
Min-Max 0.90–0.96 1.06–1.12  

Eurocode framework (EC-0 [27]) Gravity loads Mean 0.63 1.13 
COV 0.361 0.056 
Min-Max 0.03–1.76 0.90–1.30 

Gravity plus wind loads Mean 1.27 0.95 
COV 0.262 0.128 
Min-Max 0.43–2.89 0.74–1.41  
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it is recommended to limit the applicability of Eq. (17) to β ∈ [2.5 − 3.5]
for wind load cases with Gn/Wn ratios in the range of 0.10–0.33, and to 
β ∈ [2.5 − 4.0] for gravity load ratios between ζ = 0.2 and ζ = 0.5, 
ranges that are in the vicinity of the Eurocode target reliability index. 

5. Direct comparison of the US and Eurocode frameworks 

The simplified expressions to estimate the required resistance ϕ and 
partial safety γM factors corresponding to specific target reliability 
indices β0 (Eqs. (5), (7) and (17)) can be used to derive relationships to 
directly compare the US and Eurocode frameworks. These relationships 
allow not only to carry out a comparative assessment of the reliability 

levels present in the two design frameworks, but can also assist speci-
fication committees in developing suitable resistance ϕ factors, corre-
sponding to the particular levels of reliability required by the 
specification under consideration, using the partial safety factors γM 
prescribed by an independent committee for a different value of target 
reliability β0 (or vice versa, to estimate partial safety factors γM from 
existing resistance ϕ factors considering the suitable reliability frame-
works and target β0 values in each case). Expressions for these two 
scenarios are developed in this Section. Both of the two alternative ap-
proaches for the estimation of partial safety factors considered in this 
paper (equations based on FOSM and semi-probabilistic approaches) are 
investigated. For each approach, the results are assessed using the 
resistance and partial safety factors derived from the FORM analyses 
introduced in Section 3 in order to evaluate how the inaccuracies 
observed in the previous Section for the estimation of the individual γM 
and ϕ factors compound when Eqs. (5), (7) and (17) are combined. 

5.1. Development of direct comparison expressions using FOSM 

Combining the expressions to estimate resistance ϕ and partial safety 
γM factors obtained from FOSM approaches (Eqs. (5) and (7), respec-
tively), the relationship given by Eq. (19) can be derived, which directly 
relates the US and Eurocode design frameworks. The equation can be 
used for different loading cases through the definition of suitable CUS, 
CEN, VS,US and VS,EN coefficients, as indicated in Section 2.3. Neverthe-
less, Eq. (19) can be further simplified for different load combinations in 
some particular cases, as presented in this Section, since Eqs. (5) and (7) 
have been derived using similar procedures and assumptions. 

ϕ⋅γM =
CUS(R/Rn)USexp

(
βEN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
V2

R + V2
S,EN

√ )

CEN(R/Rk)ENexp
(

βUS

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
V2

R + V2
S,US

√ ) (19)  

5.1.1. Calibration coefficients, C 
According to the definition of the calibration coefficients C given in 

Section 2.3.1 for the gravity load case, the CUS and CEN terms depend on 
the Gn/Qn ratio, the load combination and the stochastic models that 
characterize the effects of dead and live loads. Since these inputs are 
different in the US and Eurocode frameworks, the CUS and CEN co-
efficients will typically be different, as illustrated in Fig. 5, where the 
values of the CUS and CEN coefficients are plotted as functions of the 
dead-to-live load ratio ζ. Nevertheless, Fig. 5 also demonstrates that the 
CEN/CUS ratio shows a nearly constant value of 1.16 in the range of 
common Gn/Qn ratios, so it is possible to simplify the CUS/CEN term in 
Eq. (19) for the gravity load case by the constant value of 1/1.16 = 0.86. 
On the contrary, the CUS and CEN ratios are very similar when the gravity 
plus wind load case is considered, since from the equations presented in 
Section 2.3.2, the calibration coefficients for wind loads result in CUS =

Fig. 5. Comparison of the calibration coefficients C for the US and Eurocode 
frameworks for gravity load cases. 

Fig. 4. Assessment of the simplified expressions to calculate resistance ϕ or 
partial safety γM factors for different load cases and design frameworks: a) 
US–FOSM, b) EN–FOSM and c) EN–semi-probabilistic. 
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2.13 and CEN = 2.14. Hence, the CUS/CEN term in Eq. (19) can be 
ignored for this load case. 

5.1.2. Coefficient of variation for the load effect, VS 
From the expressions presented in Section 2.3.1 for the calculation of 

the coefficient of variation for the load effect VS, it is also evident that VS 
depends on the Gn/Qn load ratio and load statistics, which are different, 
in principle, for the two design frameworks investigated. Fig. 6 shows 
the values of the VS coefficients for the US and Eurocode frameworks for 
varying Gn/Qn load ratios, which demonstrate that although the VS,US 

and VS,EN coefficients are different, they can be reasonably considered as 
equal. The maximum difference between the two coefficients of varia-
tion is about 6% (see the 

(
VS,US− VS,EN

)/
VS,EN curve in Fig. 6), which 

occurs for a dead-to-live load ratio of ζ = 1.0. For the gravity plus wind 
load case, the values of the VS,US and VS,EN parameters are equal, since 
the two design frameworks adopt maximum wind load models with the 
same coefficient of variation of 0.35 (see Table 1). 

5.1.3. Bias and coefficient of variation for the resistance, R/Rn, R/Rk and 
VR 

The distribution of the resistance of structures (or members) is 
generally calculated through an analysis of random samples that ac-
count for the most influential uncertainties (i.e., geometric and material 
properties, imperfections, residual stresses, etc.) following statistical 
models that are based on measurements on real structures. The random 
samples of resistance can be the results of either advanced finite element 
simulations or actual test specimens, from which statistical distributions 
describing the variability of the resistance can be inferred. Hence, these 
statistical parameters (mean resistance R and coefficient of variation VR) 
will typically be the same in the different design frameworks, since they 
are based on real random structures. On the contrary, the value of 
nominal resistance Rn will usually differ from one design framework to 
another, because it is based on a certain structural standard. However, 
these differences depend on the design approach and material investi-
gated. 

When system-based direct design approaches are considered, the 
nominal Rn or characteristic Rk resistances in the different frameworks 
are determined from advanced finite element simulations based on 
specifications that generally prescribe the same (or very similar) nomi-
nal characteristics, such as initial imperfection patterns and magnitudes, 
residual stresses and material properties. Thus, the resulting Rn,US and 
Rk,EN resistances will be very similar when calculated to the US and 
Eurocode frameworks. However, for some particular cases, such as 
stainless steel structures, the corresponding material specifications 
prescribe considerably different nominal properties for each framework 
[21,22]; hence in these situations, the nominal and characteristic re-
sistances can be significantly different. On the other hand, if member- 
based reliability calibrations are performed, the nominal resistances 

will typically be based on analytical expressions incorporated in the 
relevant specifications (e.g., buckling curves predicting the strength of 
columns), which can substantially differ depending on the standard 
considered and produce significantly different Rn,US and Rk,EN values. 
Since this paper is concerned with system-based reliability calibrations 
based on the direct design approach for steel and stainless steel frames, it 
can be assumed that the (R/Rn)US and (R/Rk)EN terms in Eq. (19) can be 
ignored when structural steel frames are analysed, whereas the Rk,EN/

Rn,US coefficient should be kept for stainless steel frame cases owing to 
the differences in the prescribed nominal material properties for these 
alloys. 

5.2. Direct estimation of resistance ϕ and partial safety γM factors for 
different levels of reliability β 

Considering the simplifications discussed in the previous Section, Eq. 
(19) can be re-written for the particular cases in which the US and 
Eurocode frameworks are compared for structures subjected to gravity 
loads (as per in Eq. (20)) and under gravity plus wind loads (as per in Eq. 
(21)). These equations can be further simplified by adopting Rk,EN/

Rn,US = 1.0 when structural steel frames are analysed. 

ϕ⋅γM = 0.86
Rk,EN

Rn,US
exp

[

(βEN − βUS)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V2
R + V2

S

√ ]

(gravity load case) (20)  

ϕ⋅γM =
Rk,EN

Rn,US
exp

[

(βEN − βUS)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V2
R + V2

S

√ ]

(gravity plus wind load case)

(21) 

Eqs. (20) and (21) can be used to propose suitable resistance factors ϕ 
that meet the reliability requirements indicated in the US framework (i. 
e., the target reliability indices β0,US discussed in Section 2.1) based on 
the partial safety factors γM calibrated for the Eurocode frameworks for a 
different target reliability β0,EN (or vice versa). For the assessment of 
these equations, this Section presents the comparison of the resistance ϕ 
and partial safety γM factors estimated using Eqs. (20) and (21) with the 
equivalent values obtained using FORM methods. For example, the 
predicted resistance factors ϕpred considered in this Section have been 
obtained from Eqs. (20) and (21) using β0,US and the partial safety factors 
calibrated from FORM analyses γM,FORM for the typical Eurocode target 
reliability β0,EN and the suitable Rk,EN/Rn,US relationship, depending on 
the material considered. In the analysis, the target reliability indices 
typically assumed in the two design frameworks have been adopted (see 
Section 2.1): for the gravity load case, β0,US = 2.5 and β0,EN = 3.8 values 
have been assumed; for the gravity plus wind load case, β0,US = β0,EN =

2.8 is adopted. 
Fig. 7 presents the assessment of the ϕpred- and γM,pred-factors esti-

mated using Eqs. (20) and (21) against the values that a proper FORM- 
based reliability calibration would produce (ϕFORM and γM,FORM) for 
different load cases. The results are presented separately for the US and 
Eurocode frameworks, and different markers have been used for the 
gravity or gravity plus wind load cases, and for steel or stainless steel 
frames. The figures also show the ±5% and ±10% intervals. According 
to the results presented in Fig. 7, the prediction of the resistance and 
partial safety factors is, in general, reasonably accurate, since most of 
the results lie within the ±5% range for the gravity and gravity plus 
wind load cases, although the results for the gravity load case are found 
to be more accurate and less scattered. It is worth mentioning that some 
of the datapoints corresponding to stainless steel frames included in 
Fig. 7(a) show resistance factors ϕ higher than unity, which can be 
explained by the high R/Rn ratios resulting from the remarkably low 
yield stress values prescribed for these alloys in the SEI/ASCE 8 [46] 
Specification, as discussed in [21,22]. Similar observations have also 
been reported for timber and masonry structures [29]. The mean values, 
coefficients of variation and minimum-to-maximum ranges of the ϕpred/

Fig. 6. Comparison of the coefficients of variation for the load effect VS for the 
US and Eurocode frameworks for gravity load cases. 
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ϕFORM and γM,pred/γM,FORM ratios are reported in Table 4 for the different 
cases analysed. 

5.3. Direct comparison of resistance ϕ and partial safety γM factors for 
the same level of reliability β 

The comparison of the resistance ϕ and partial safety γM factors 
calibrated in the US and Eurocode frameworks is not direct, as shown in 
the previous Section, because the reliability levels required for the two 
design framework are different (i.e., different target reliabilities are 
generally adopted). However, Eqs. (20) and (21) can be further elabo-
rated to provide simple expressions that allow a direct comparison of the 
resistance ϕ and partial safety γM factors when the same level of reli-
ability is assumed for the two frameworks, by adopting βEN = βUS. In 
such cases, the exponential terms in Eqs. (20) and (21) are equal to unity 
and thus ϕ and γM-factors are related by the ϕ⋅γM = 0.86Rk,EN/Rn,US and 
ϕ⋅γM = Rk,EN/Rn,US relationships for the gravity and gravity plus wind 
load cases, respectively. For the particular situations in which Rk,EN/

Rn,US = 1.0 (i.e., the steel frames analysed in this paper), these equations 
can be reduced to ϕ⋅γM = 0.86 and ϕ⋅γM = 1.0. These relationships 
provide a simple and direct comparison of the equivalent resistance ϕ 
and partial safety γM factors that would be required for the same level of 
reliability in the two design frameworks. The equation for gravity loads 
indicates that, in general, the Eurocode framework is less conservative 
than the US framework for a given level of reliability, since the required 

γM-factors are about 15% lower than the 1/ϕ factors for equivalent 
values of β, while for the gravity plus wind load combination the two 
frameworks are similar in terms of conservatism. This is also illustrated 
in Fig. 8, which compares the γM-factors required in the Eurocode 
framework for the gravity and gravity plus wind load cases with the 1/ϕ 
values, assuming an equivalent level of reliability in all cases. 

5.4. Analysis using the Eurocode semi-probabilistic approach 

This last Section presents the derivation and assessment of the 
expression for the direct estimation of resistance and partial safety fac-
tors using Eq. (5) and the Eurocode semi-probabilistic approach for γM, 
Eq. (17). The combination of these two equations results in the rela-
tionship given by Eq. (22), in which the term Rk,EN/Rn,US can be ignored 
when structural steel frames are analysed, as discussed in Section 5.1.3, 
but should be kept for other materials with different nominal properties 
prescribed in the relevant US specification and the Eurocode. Further 
simplifications are not possible in principle because Eqs. (5) and (17) are 
based on different backgrounds. 

ϕ⋅γM = CUS
Rk,EN

Rn,US
exp

(
αRβENθ − βUS

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V2
R + V2

S,US

√ )
(22) 

Nevertheless, all parameters in Eq. (22) are basic statistical input 
information so the relationship can still be used for the direct estimation 
of resistance and partial safety factors, as per in Section 5.2, the accuracy 

Fig. 7. Assessment of the expressions directly relating the reliability of different design frameworks based on FOSM (Eqs. (20) and (21)).  

Table 4 
Assessment of the expressions directly comparing the reliability for different 
frameworks and load cases based on FOSM (Eqs. (20) and (21)).  

Design framework Load case  ϕpred

ϕFORM 
or 

γM,pred

γM,FORM  

US framework Gravity loads Mean 0.97 
COV 0.014 
Min-Max 0.94–0.99 

Gravity plus wind loads Mean 1.03 
COV 0.031 
Min-Max 0.98–1.12  

Eurocode framework Gravity loads Mean 0.97 
COV 0.014 
Min-Max 0.94–0.99 

Gravity plus wind loads Mean 1.03 
COV 0.031 
Min-Max 0.98–1.12  

Fig. 8. Comparison of the resistance ϕ and partial safety γM factors for the US 
and Eurocode framework for a constant level of reliability. 
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of which is assessed herein. Fig. 9 compares the predicted resistance ϕpred 
and partial safety γM,pred factors using Eq. (22) with the equivalent values 
obtained from FORM analyses for different load cases, and also depicts 
the ±5% and ±10% intervals. The target reliability indices considered in 
the analysis were those adopted previously, i.e., β0,US = 2.5 and β0,EN =

3.8 for the gravity load cases and β0,US = β0,EN = 2.8 for the gravity plus 
wind load cases. Note that these values are within the applicability 
ranges of β-values for the use of Eq. (17) proposed in Section 4.2. The 
results in Fig. 9 indicate that the prediction of the resistance and partial 
safety factors using Eq. (22) is less accurate than when Eqs. (20) and (21) 
are used (see Section 5.2 and Fig. 7), although the predictions are still 
reasonable as they lie within the ±10% range, with no significant dif-
ferences in accuracy observed for the load cases and design frameworks 
investigated. Similar results are shown in Table 5, in which the means, 
coefficients of variation and minimum-to-maximum ranges of the ϕpred/

ϕFORM and γM,pred/γM,FORM ratios for the different cases analysed are 
reported. 

6. Conclusions 

First Order Reliability Methods (FORM), traditionally used by spec-
ification committees in the calibration of suitable resistance and safety 
factors, are advanced and iterative reliability calculation procedures. 

Sometimes, these techniques require input information (e.g., statistical 
characterization of the system strength and load effects) that might not 
be readily available in the literature. Thus, simplified expressions that 
require no iteration but are sufficiently accurate in estimating reliability 
indices β, resistance factors ϕ and partial safety factors γM can be of great 
interest for these committees and the research community in general to 
provide a simple cross-check on the more accurate reliability calcula-
tions or to provide direct relationships between the reliability results for 
different design frameworks. This paper presents a set of simple equa-
tions to estimate reliability indices β, resistance factors ϕ and partial 
safety factors γM for the US and Eurocode frameworks based on basic 
First Order Second Moment (FOSM) reliability considerations and the 
semi-probabilistic approach prescribed in Annex D of prEN 1990 [27] 
for design assisted by testing. The equations based on FOSM are similar 
to those prescribed in the AISI S100 [28] Specification to derive resis-
tance factors when strengths are determined through testing, but have 
been extended to different load cases and design frameworks. The paper 
also proposes simple interrelationships between the reliability calibra-
tion results for the US and Eurocode frameworks that allow a direct 
comparison between the two design frameworks. The assessment of the 
different equations against reliability results derived using the FORM 
method for an extensive database on steel and stainless frames subjected 
to the gravity and gravity plus wind load cases collected from the 
literature showed that the differences in the predicted values of β, ϕ and 
γM lie within the ±5% and ±10% ranges when compared to the refer-
ence FORM-based values for the FOSM-based approaches. The results 
also indicated that, to guarantee a similar level of accuracy for the 
prEN 1990 [27] semi-probabilistic approach, some limitations are 
required due to the additional simplifications made by this method (i.e., 
the adoption of fixed sensitivity factors for the loads and the resistance). 

CRediT authorship contribution statement 

Itsaso Arrayago: Software, Data curation, Methodology, Formal 
analysis, Writing – original draft. Hao Zhang: Methodology, Supervi-
sion, Writing – review & editing. Kim J.R. Rasmussen: Methodology, 
Supervision, Writing – review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Fig. 9. Assessment of the expressions directly relating the reliability of different design frameworks based on the Eurocode semi-probabilistic approach (Eq. (22)).  

Table 5 
Assessment of the expressions directly comparing the reliability for different 
frameworks and load cases based on the Eurocode semi-probabilistic approach 
(Eq. (22)).  

Design framework Load case  ϕpred

ϕFORM 
or 

γM,pred

γM,FORM  

US framework Gravity loads Mean 1.05 
COV 0.025 
Min-Max 0.98–1.10 

Gravity plus wind loads Mean 0.96 
COV 0.045 
Min-Max 0.89–1.10  

Eurocode framework Gravity loads Mean 1.05 
COV 0.025 
Min-Max 0.98–1.10 

Gravity plus wind loads Mean 0.96 
COV 0.045 
Min-Max 0.89–1.10  
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