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Abstract

An in-depth analysis of the stress fields that surround a broken fibre in fibre

reinforced composites is performed and the effects of different material prop-

erties are analysed. The stress fields obtained using a spring element model

with a random distribution are compared with analytical formulations present

in the literature, within a progressive failure model framework. This analysis is

then extended to clusters of broken fibres with different sizes and the evolution

of the stress fields are analysed. Finally, material macro behaviour and cluster

formation is analysed using the spring element model and the progressive failure

model framework. The authors found that while for the spring element model

the stress redistribution and material behaviour changes with the main material

parameters, the same was not found to be true using the analytical formulations

for stress concentration and ineffective length. Furthermore, it was found that

the current definition for a cluster of broken fibres can lead to erroneous results,

depending on the material system.
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1. Introduction

As the main load carrying component, fibres play a fundamental role in

failure of composite materials. It is widely accepted that fibre strength is a

stochastic property [1, 3? ] and that longitudinal tensile failure of composite

materials is dominated by the formation of clusters of broken fibres [4–8]. The5

formation of clusters of broken fibres depends not only on the fibre strength

statistics but also on the stress redistribution after a fibre breaks [9]. A broken

fibre only looses its load carrying capability within a small region, denominated

ineffective length [10, 11]. Within this region the surrounding intact fibres need

to support the loss of load carrying capability of the broken fibre and are,10

therefore, subjected to stress concentration. This stress redistribution depends

on the matrix’s ability to transfer stress to the intact fibres and back to the

broken fibre itself by shear. The redistribution of stress is the main factor

affecting the creation of clusters of broken fibres, which makes it necessary to

have accurate models for stress redistribution to correctly capture the failure15

phenomena.

There are several different models available in the literature. Depending on

how the stress from a broken fibre is redistributed the models can be consid-

ered global load sharing models (GLS) [12–14], if the stress of the broken fibre

is equally distributed to all intact fibres, or local load sharing models (LLS)20

[6, 10, 15–24] if the stress redistribution depends on the distance to the broken

fibre. As cluster formation is considered to be the mechanism that dominates

failure, local load sharing is the best strategy to predict the behaviour of fibre

reinforced composites under longitudinal tension. The LLS models have dif-

ferent backgrounds, ranging from analytical models [10, 25] to spring element25

models [17, 18, 21] to fibre bundle models [19, 22] or finite elements models

[6, 20]. The different modelling approaches have their own advantages, how-

ever, it is currently considered that, although the models are able to predict the

strength of the material, the physics of failure, mainly the cluster formation,

are not accurately predicted [26, 27]. This discrepancy between experimental30
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and numerical results can be explained by several factors. Additional experi-

mental data is necessary, not only to define the properties of the constituents,

as there is no consensus on the fibre strength stochastic properties, but also on

the actual failure process, as it has not yet been possible to conclude whether

ultimate failure results from the overall accumulation of fibre breaks and clus-35

ters distributed over a volume of material, or from the formation of a critical

cluster with a universal size [26]. On the modelling side, drawbacks such as

not representing accurate microstructures or disregarding dynamic effects have

been pointed out [26, 27].

This work aims to provide additional insight on the damage development40

in unidirectional fibre reinforced composites under longitudinal tension and un-

derstanding the properties that affect this evolution. This is achieved by un-

derstanding the properties that affect the stress redistribution around a broken

fibre, how the stress fields around a cluster of broken fibres evolve with the

cluster size and its influence in the macro behaviour of the material. The re-45

sults from the Spring Element Model (SEM) [21] are compared with the results

from the Progressive Failure Model (PFM) [22], using different functions for

stress concentration and ineffective length, to understand the models’ capabili-

ties to accurately capture the stress redistribution in the tensile failure of fibre

composites50

2. Modelling strategies

In this work two very distinct model strategies are used. Firstly, the Spring

Element Model [21], a simplified finite element model, that inherently accounts

for the effects of the different relevant fibre and matrix material properties on

the longitudinal failure of composite materials. Secondly, a Progressive Failure55

Model [22] is used. This model is based on the chain of bundles approach

[13] and uses known Stress Concentration Factor (SCF) and ineffective length

functions to capture the stress redistribution around a broken fibre. The latter

model is used in this work to understand if the current literature SCF and
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ineffective length formulations are able to accurately capture the damage process60

in longitudinal failure of composite materials.

The SEM is able to accurately capture the stress redistribution after a fi-

bre breaks and the effect of the different properties considered in the model,

although using simplified 1D elements. Nonetheless, this model requires the

solution of a system of equations at each increment, making it more computa-65

tionally expensive than the PFM. The latter model uses known functions for

stress redistribution and uses a superposition rule to determine the final stress

redistribution profiles, which is important when there is interaction between

multiple fibre breaks. This approach allows the model to be computationally

efficient with reduced computational times.70

To more realistically capture the stress redistribution, both models consider

a random distribution of fibres. This distribution is generated using a modified

version of Melro et al. [28] random fibre generator.

2.1. Spring element model

The SEM was firstly developed by Okabe et al. [18, 29] and later extended75

to a random distribution of fibres and hybrid composites by Tavares et al. [21].

The latter model is used in this work and is briefly explained in this section.

The SEM consists of longitudinal spring elements, which represent the fibres,

connected by transverse spring elements representing the matrix. The generated

2D geometry, with a random fibre distribution, is extruded in the fibre direction80

therefore creating straight fibres that are divided in elements of length (lz).

The fibres are connected by matrix shear elements, being that the mesh of

matrix elements is generated using a 2D Delaunay triangulation algorithm [30].

Considering that the cross section area of the fibre does not change along the

spring element the stiffness matrix for the fibre elements is given by [21]:85

Ke
f =

AefE
e
f

lz

 1 −1

−1 1

 , (1)
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where Aef is the fibre sectional area, Eef is the fibre elastic modulus. The super-

script e refers to element properties or parameters, which can be different for

the different fibres involved. The matrix shear elements stiffness matrix is given

by:

Km =
Gm

(
A

(2)
m −A(1)

m

)
d ln (A(2)

m /A(1)
m )

 1 −1

−1 1

 , (2)

where Gm is the matrix shear stiffness, d is the length of the element, which

is given by the distance between the centres of the fibres it connects minus the

radii of the fibres. A
(1)
m and A

(2)
m are given by:

A(1)
m =

2πR1

n1
lz and A(2)

m =
2πR2

n2
lz , (3)

where Ri and ni are, respectively, the fibre radius and the number of matrix90

elements connected to the fibre i.

The simulation is done under isostrain conditions and the strain increment

in each iteration is computed to trigger failure of a single fibre element. In each

iteration the equilibrium system of equations needs to be solved to obtain the

relevant fields.95

To simulate the longitudinal failure of composite materials an appropriate

failure criterion for the fibres is required. A maximum stress failure criterion is

considered, which can be written in its general form as:

σe
Xe
T

− 1 < 0 if σf > 0 , (4)

where σe is the fibre element stress and Xe
T is the tensile strength of the fibre

element, generated according to an appropriate statistical distribution, e.g.,

Weibull distribution [31].

The matrix behaviour plays an important role in the tensile failure of com-

posite materials, since this is the constituent that allows stress redistribution to100

occur after a fibre breaks. This stress-redistribution is affected by both matrix

plasticity and damage, as well as fibre-matrix decohesion [20, 32]. The ma-

trix is considered to be linear elastic and perfectly plastic. This behaviour is

implemented in the SEM using sequentially linear analysis [33, 34].
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In a sequentially linear strategy, the stress-strain diagram can be reproduced

by consecutively reducing the shear stiffness (Gi) as well as changing the yield

stress of each critical element (τui ). The shear stiffness is reduced in a discrete

manner according to:

Gi+1 =
Gi
αm

, (5)

where αm is a parameter larger than one and that can be controlled by the105

user, ensuring a control in accuracy versus computational time. A more detailed

description of the model is available in Tavares et al. [21].

2.2. Progressive Failure Model

In this section the PFM [22] is briefly reviewed. The model is based on the

chain of bundles approach [13] and assumes a RVE with a random distribution110

of fibres. Similarly to the SEM presented, the fibres are divided into elements

of length lz along their longitudinal direction. Each fibre is denoted with the

subscript q, while each plane is denoted with the sub-subscript p. Furthermore,

each element has a stochastic strength according to an appropriate statistical

distribution. Once an element fails, a damage is distributed over the ineffective115

length of the broken fibre, whereas stress concentration is applied into the neigh-

bouring intact fibre elements. The stress redistribution is performed according

to different analytical formulations, presented in Section 2.2.1 and 2.2.2. The

proposed approach allows to capture both fibre clustering and stiffness loss of

composite materials under longitudinal tension.120

The constitutive equation of the PFM which relates the stress of each ele-

ment, σp,q, and the strain εp is

σp,q =
SCF p,q

Ωp
Ef (1−Dp,q) εp , (6)

where SCF p,q is the stress concentration factor of element p, q and Dp,q is the

state damage variable which is equal to 1 for broken elements, equal to zero for

intact elements and in between for elements in any stress recovery region. εp

is the strain of the plane (which is assumed to be the same for all elements of

plane p) and Ωp is a stress ratio which enforces load equilibrium by modifying125
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the stress concentration according to the strain level. Further details on the

load equilibrium scheme can be seen in Guerrero et al. [22]. The evolution

of Dp,q depends on the formulation for the ineffective length considered while

SCFp,q depends on the stress concentration model used. In this work, different

formulations for damage and SCF are used in the PFM with the objective of130

understanding if the current analytical formulations available in the literature

can capture accurately the stress redistribution around broken fibres. These

formulations are shown in the following sections.

2.2.1. Functions for ineffective length

The stiffness loss of the system is simulated by means of the damage variable,135

which is obtained using a shear-lag model. Two different possibilities arise

depending on the matrix behaviour: perfectly plastic or linear elastic.

If the matrix is assumed to be plastic, the ineffective length Lin
p,q of a broken

fibre element is computed with the Kelly-Tyson shear-lag model

Lin
p,q =

EfRf
2τu

εp , (7)

where τu is the shear yield strength of the matrix and Rf is the fibre radius.

Another possibility is to use the modified Kelly-Tyson model as given in St-

Pierre et al. [23], which adds a multiplier factor Hp,c that depends on the

cluster size, capturing the increase in the ineffective length with the cluster size.

Two fibre elements belong to the same cluster (c), if the distance between the

centres of both fibres is below four times the fibre radius and both elements

are in the same plane p. Thus, at each plane p, there can be several clusters

represented by the subscript p, c. The subscript c ranges from 0 to the number

of clusters at plane p, N c
p . With this method, the ineffective length of a broken

element belonging to cluster p, c is given by:

Lin
p,q =

EfRf
2τu

Hp,cεp =
np,cπR

2
fEf

Cp,cτu
εp , (8)

where Cp,c = 4s
√
np,c, np,c is the number of broken fibres on cluster p, c, and s is

the mean centre-to-centre distance between each fibre and its closest neighbour,

given by s = Rf
√
π/Vf , where Vf is the fibre volume fraction.140
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The damage along the broken fibre within a plastic matrix is simply applied

assuming a gradual decrease of damage from 1 at the position of the break, to

0 at both ends of the ineffective length. As fibres may fail many times along

their length, different ineffective lengths may overlap. In these cases the highest

damage always prevails for each element inside overlapping stress recoveries.

Hence an element p, q is affected by each break in the fibre q at each plane i

with

Dp,q =


max

(
Lin
i,q − |i− p| lz

Lin
i,q

)
∀i : (Di,q = 1) ∪

(
|i− p| lz < Lin

i,q

)
0 otherwise.

. (9)

If the matrix is assumed to be elastic, the Cox’s [35, 36] shear-lag model is

adapted including the same scaling factor Hp,c introduced earlier. The scaling

factor can also be imposed to be 1, which disables its effect and leads to the

original Cox’s model. This parameter is added to the model to capture the

influence of the cluster size on the ineffective length [23, 24]. The effective

stress of a broken element at each plane p due to a break on plane i follows

σ̃p,q = Efεp

(
1− exp

(
−|i− p| l

z

Hp,cRf

√
2GmRf

Ef (s− 2Rf )

))
, (10)

where Gm is the matrix shear modulus. Because the model is exponential, the

ineffective length at which the load is completely recovered approaches infinite.

This would cause all elements along the length of fibre q to have damage not

equal to zero but with an extremely low value. Moreover, no SCF would be

applied along the fibre, as the SCF is only applied into elements with zero

damage. To avoid having an infinite ineffective length it is here considered the

ineffective length to be the distance at which 99.9% of the stress is recovered.

Taking this into account, the ineffective length is obtained by substituting σ̃p,q =

0.999Efεp in 10:

Lin
p,q =

−Hp,cEf (s−2Rf ) ln(0.001)

√√√√ 2GmRf
Ef (s− 2Rf )

2Gm
. (11)

The damage along the ineffective length of the broken fibre can now be
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computed by inserting σ̃p,q = Ef (1−Dp,q) εp in Eq. 10 giving

Dp,q =


max

(
exp−|i− p| l

z

Hp,cRf

√
2GmRf

Ef (s− 2Rf )

)
∀i : (Di,q = 1) ∪

(
|i− p| lz < Lin

i,q

)
0 otherwise.

.

(12)

It is worth mentioning that the ineffective length for an elastic matrix does

not depend on the strain, εp. That is, because the stress transfer in the matrix

has no upper limit, whereas it is limited by τu in the plastic model.

2.2.2. Functions for stress concentration factor

Different analytical models to predict the SCF around fibre breaks are avail-145

able in the literature [23, 27, 37]. Here, the SCF is represented within two

functions, one depending on the in-plane distance δ and the other which de-

pends on the plane position along the ineffective length λ.

The first option adopted in this work is the model developed by Swolfs et

al. [27]. This model is based on a micro-mechanical finite element simulation

assuming an elastic matrix. The SCF functions for an intact fibre element p, q,

around a single broken element i, j are

δ(q−j) = −6.12 ln

(
dcq−j − 2Rf

Rf

)
+ 7.74

λ(p−i) = exp−|i− p| l
z

Hp,cRf

√
2GmRf

Ef (s− 2Rf )
∀(i, j) : lz |i− p| < Lin

i,j

, (13)

where dcq−j is the centre-to-centre distance between fibres q and j.

Similarly, Zhou et al [37] developed a model where the broken fibre contains

a debonded and a non-debonded region. The model is used here assuming that

no debonding exists. Thus, the functions around a single break are simplified
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as

δ(q−j) =
2ϕq−j
π

λ(p−i) =
sinhβj

(
Lin
i,j − lz |i− p|

)
sinhβjLin

i,j

∀(i, j) : lz |i− p| < Lin
i,j

β2
j =

2

R2
fEfEm

 Ef
R2

f

s2 + Em

(
1− R2

f

s2

)
1

4Gf

(
1− R2

f

s2

)
+

1

2Gm

(
s2

s2−R2
f

ln
(
s2

R2
f

)
− 1

2

(
3− R2

f

s2

))

,

(14)

where Gf is the broken fibre shear modulus and ϕq−j = arcsin
(
rj/d

c
q−j
)
. This150

model also assumes that the matrix is elastic. This model was developed for a

2D composite, however, it is used in a 3D RVE with a random fibre distribution

within the PFM framework. This fact may lead to an overestimation of the

SCFs, which is further explored in the following sections.

An alternative model was developed by St-Pierre et al. [23] where the SCFp,q

of an intact fibre around cluster c, located at plane i, is given by:

δ(q−c) = Ii,c

(
Ri,c
dcq−c

)α

λ(p−i) =


exp− |i−p|l

z

Hp,cRf

√
2GmRf

Ef (s−2Rf )
Elastic matrix

Lin
i,c − lz |i− p|

Lin
i,c

Plastic matrix
∀(i, c) : lz |i− p| < Lin

i,c

,

(15)

where

Ii,c =


1

2 ln(Rt/Ri,c)
for α = 2

(2− α)R2−α
i,c

2(R2−α
t −R2−α

i,c )
otherwise.

, (16)

and Ri,c = s
√
ni,c/π, Rt = s

√
Nq/π and dcq−c is the in-plane distance between155

the centre of the intact fibre p, q and the centre of coordinates of the cluster i, c,

whilst Lin
i,c is the ineffective length of the cluster, which is equal to the ineffective

length of any of the broken elements belonging to the cluster. The value of α is

an input parameter of the model, however, according to St-Pierre et al. [23], a

value of 2 leads to an excellent agreement between the predicted SCF and finite160

elements when using a plastic matrix.
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As there can be multiple breaks or clusters in the model, a superposition

rule is considered. The total SCF for an intact fibre is obtained by linear

superposition of all broken elements when using the Swolfs and Zhou models,

or by linear superposition of the contribution of all clusters when using the St-

Pierre model. However, the SCF in a fibre element is bounded according to the

capacity of transferring load to the fibre by shear-lag. This limitation enforces a

stress continuity between elements inside any ineffective length (elements where

0 < Dp,q < 1) that are not affected by the SCF, and subsequent intact element

(Dp,q = 0) which can be over loaded by the SCF. Thus, the total SCF of an

intact element is

SCF p,q =

 min
(
SCF 0

p,q,SCFL
p,q

)
∀p, q : Dp,q = 0

1 otherwise,
, (17)

where SCF 0
p,q is the SCF predicted by the linear superposition of the contribu-

tion of all breaks using the interacting functions as

SCF 0
p,q = 1 +

Np∑
i=1

Nq∑
j=1

δ(q−j) λ(p−i) [Di,j = 1] Swolfs or Zhou models

SCF 0
p,q = 1 +

Np∑
i=1

Nc
i∑

c=1

δ(q−c) λ(p−i) Pierre model

, (18)

where here [•] are the Iverson brackets and define 1 if • is true, and 0 if it is false.

SCFL
p,q is the SCF limit calculated as the slope defined by the stress gradient

of the nearest ineffective length:

SCFL
p,q = min

(
1
Lin

i,q
|i− p| l

)
∀i : Di,q = 1 . (19)

3. Methodology

In this study, both the SEM and the PFM use the same representative

volume element (RVE) when computing the same problem. The RVE has a

dimension of 75× 75× 300 fibre radius and considers a random distribution of165

fibres. A fibre element size of two times the fibre radius was considered in all

cases.
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For the SEM all the material properties in study are input directly into the

model, making it a robust tool, although more computationally expensive.

For the PFM different functions for SCF and ineffective length are used de-170

pending on the model properties. Two methods to determine the ineffective

length and fibre damage variables are available, depending if the matrix be-

haviour is plastic or elastic. In the case where a plastic matrix is considered

Equations (8) and (9) are used, while for the elastic case Equations (11) and

(12) are used. In any of the cases, Hp,c can be a function of the cluster size or175

equal to 1 if this effect is to be ignored. When Hp,c is different than 1, the inef-

fective length scales with the cluster size. Thus, the larger the cluster the larger

the ineffective length. However, when Hp,c = 1, the ineffective length does not

scale with the cluster size. This leads to four possible combinations: plastic

matrix (τu 6= ∞) with cluster scaling (Hp,c 6= 1) and without cluster scaling180

(Hp,c = 1), and elastic matrix (τu =∞) with and without cluster scaling.

Regarding the SCF, three analytical formulations were presented in Section

2.2.2. Zhou’s and Swolf’s formulations for the SCF consider the matrix to be

elastic and are, therefore, used only with the elastic formulation for ineffective

length, i.e. with Equations (11) and (12). With St-Pierre’s model it is possible185

to change the SCF function by changing the parameter α. The original authors

of the model [23] found a good agreement between the formulation and FEM

simulations with a plastic matrix for α = 2. This value of α is used in this work

for the cases where τu 6=∞, in combination with the plastic formulation for the

ineffective length (with or without cluster scaling). To be able to use the latter190

model with an elastic matrix, the authors adjusted the α parameter to obtain a

similar stress redistribution profile to the one obtained with SEM with an elastic

matrix. For this case, α = 3.8 was found to be a good approximation for an

elastic matrix. In the cases where α = 3.8 is considered, the elastic formulation

for the ineffective length is always used.195

To understand the properties that affect the stress redistribution around a

broken fibre, an in-depth study is done. This study focuses on the effects of

material properties, such as fibre elastic modulus and matrix shear modulus,
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on the stress fields around broken fibres. To quantify the stress redistribution

profile three metrics are studied. Firstly, the SCFs in the intact fibres that200

surround a broken one are analysed. The SCF is defined here as the ratio of the

actual stress in an intact fibre over the stress if there were no breaks, given by

Efε, where ε is the applied strain. To have a comparable metric between the

cases in study, the maximum SCF (SCFmax) is analysed, which is the maximum

of the SCFs in all the intact fibres that surround the broken one. Secondly, the205

ineffective length (Lin), which is the region of the broken fibre that looses stress

carrying capacity after that fibre breaks, is also analysed. The ineffective length

is here considered to be the distance from the break plane that the broken

fibre regains 90% of its stress carrying capacity. Lastly, the radial influence

length (Rinf ) is also analysed. This is defined as the maximum distance in210

the break plane between the broken fibre and an intact fibre that has a stress

concentration higher than 1% (SCF> 1.01). In the presented results, both the

ineffective length and radial influence length are normalized by the fibre radius

Rf .

To understand the influence of the different parameters on the tensile be-215

haviour of the material, different cases are simulated under fibre tensile loading.

For this purpose, randomly generated strength, based on the Weibull distribu-

tion [31], is assigned to each fibre element, using the element size for length

scaling. This is done by generating a random failure probability for each el-

ement, which is then converted into a respective element strength. Different220

metrics are proposed to compare the results between cases and models. These

metrics are the strength (defined as the maximum stress reached by the mate-

rial), the cluster size at maximum stress and the fibre break density at maximum

stress.

The following sections are organized as follows. Firstly the stress fields225

around a single break are analysed. The SEM is used to understand what

are the main properties affecting the stress redistribution and these results are

then compared with the analytical formulations presented. Afterwards, cluster

growth is analysed and its effect on the stress redistribution metrics is studied.
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Finally, the material’s tensile behaviour is analysed for the different models and230

the results are correlated with the different stress redistribution profiles.

4. Stress fields around a single broken fibre

In this section the stress fields around a single broken fibre are analysed,

with focus in understanding the material properties that affect the stress redis-

tribution and how the analytical formulations accurately capture these fields.235

4.1. Factorial design definition

In the spring element model, the stress redistribution depends not only on

the elastic and strength properties of the constituents, but also on the actual

random arrangement of fibres. To study the effect of each individual property

on the stress redistribution, as well as eventual interactions between them, a240

factorial design of experiments is made.

After a preliminary analysis on the main influencing factors on the stress

redistribution, the factors that are considered in this study are the fibre elastic

modulus (Ef ), the matrix shear modulus (Gm) and strength (τu), the fibre

volume fraction (Vf ) and the fibre radius (Rf ). As the SEM is able to take245

into account all these factors, the factorial analysis will be done in that model

and later compared with the analytical stress distribution functions used in the

PFM.

To study the effects of the different parameters it is necessary to define levels

for these parameters. For all the parameters, with exception of the matrix shear250

strength, it was decided that two levels are enough for this study. For the matrix

shear strength it was decided that three levels would be used, two finite levels

and a third considering the matrix to be elastic (τu = ∞). Table 1 shows the

different parameters and the levels that were assigned to them.

With the proposed factors and respective levels, there are forty-eight (48 =255

3124) cases to study. Due to the random nature of the fibre distribution, that

affects the stress redistribution around a broken fibre, ten calculations, with
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Table 1: Parameters and respective levels used in this study

Factor
Level

0 1 2

A Ef (GPa) 70 230 -

B Gm (MPa) 450 1050 -

C τu (MPa) 50 100 ∞

D Vf 0.4 0.6 -

E Rf (µm) 3.5 7.0 -

different geometries, were done for each case that were averaged to get the

necessary parameters for the sensitivity analysis. The results presented are

obtained considering a remote applied strain of 2%.260

4.2. Spring element model results

Table 2 shows the average results and coefficients of variation for the factors

and metrics in study. The values presented are the average of all the cases

at each level of the respective factor. This means that any effects of all other

factors on this average are disregarded. The coefficients of variation are also265

shown in this table. It should be noted that both the ineffective length (Lin)

and the radial influence length (Rinf ) are in the normalised form, as they are

divided by the fibre radius (Rf ).

23070
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1050450 10050 0.60.4 7.03.5

Fibre modulus

M
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u
m
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∞

Figure 1: Main effects plot for the maximum SCF.

Figures 1 and 2 show, respectively the influence of each parameter, at each
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Table 2: Average results obtained with the proposed factorial design.

Factor Level
SCFmax Lin Rinf

Avg.

(-)

CoV

(%)

Avg.

(-)

CoV

(%)

Avg.

(-)

CoV

(%)

Ef (GPa)
70 1.134 6.3 13.775 27.8 4.299 11.8

230 1.127 8.2 31.475 34.9 4.247 17.2

Gm (MPa)
450 1.141 7.2 24.742 49.8 4.204 14.0

1050 1.119 7.3 20.508 57.1 4.342 15.2

τu (MPa)

50 1.079 2.4 27.138 45.5 4.474 13.2

100 1.080 2.5 26.650 45.3 4.455 13.2

∞ 1.232 4.6 14.088 46.5 3.890 13.7

Vf
0.4 1.157 7.8 25.075 47.6 4.723 9.5

0.6 1.104 5.8 20.175 59.4 3.822 10.7

Rf (µm)
3.5 1.138 8.3 21.850 54.6 4.024 14.2

7 1.123 6.0 23.400 53.2 4.521 12.9

level, on the maximum SCF and the Pareto front for standardized effects on270

the maximum SCF. The Pareto chart shows the effect that each factor has on

the analysed property. The ones whose standardized effect is larger that 2.05

(red line) are statistically representative. From the analysis of the data it is

concluded that the main factors affecting the maximum SCF are the fibre volume

fraction (Vf ), the matrix shear strength (τu) and the matrix shear modulus275

(Gm). Similarly to what was shown in the work of Swolfs et al. [11] for an

elastic matrix, an increase in the fibre volume fraction leads to a reduction in

the maximum SCF. It is interesting to note that the fibre elastic modulus (Ef )

has a small effect on the maximum SCF. Another point to note is that the

matrix shear strength not only affects directly the SCF but also has a combined280

effect with other properties such as the fibre modulus (AC) and the fibre radius

(CE). This makes the matrix shear strength the most important factor affecting

the SCF. Analysing Figure 1 it is possible to see that changing the matrix shear

strength from 50 to 100 MPa doesn’t have an important effect on the SCF.
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On the other hand, considering the matrix to be linear elastic (τu = ∞) has285

a large effect on the maximum SCF: from SCFmax = 1.08 for τu = 50 MPa

to SCFmax = 1.23 for τu = ∞. This high difference between considering the

matrix elastic perfectly plastic and linear elastic also occurs in the combined

factors AC and CE, which underlines the importance of the matrix shear stress

on the predicted stress concentration factors.290
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Figure 2: Pareto chart of the standardized effects on the maximum SCF.

Regarding the ineffective length, the most influential factor is the fibre elastic

modulus. This can be explained by the fact that, with a higher fibre modulus,

the stress that needs to be transferred back to the fibre by shear in the matrix

is higher and, therefore, so will be the ineffective length. It should be noted

that for this analysis a constant applied strain of 2% was used and, therefore,295

different fibre stress depending on the fibre modulus. If a constant fibre stress

was considered, the higher fibre modulus would lead to higher shear stress in

the matrix and, therefore a reduced ineffective length[10]. The ineffective length

is affected by the ability of the matrix to transfer the stress back to the broken
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fibre. This means that it will also be affected by the matrix modulus and the300

matrix shear strength. The matrix shear modulus directly affects the ineffective

length, however, the matrix shear strength affects the ineffective length not

only directly but also as a combination with the fibre elastic modulus, similarly

to what occurred in the SCF analysis. The fibre volume fraction also has an

important effect on the ineffective length, being the second parameter that most305

affects this property. With a higher fibre volume fraction the ineffective length is

reduced, as the homogenized stiffness of the material that surrounds the broken

fibre is higher and, therefore, it is easier for the broken fibre to recover its load

carrying capacity. This is specially true if τu = ∞ as there is no limit in the

shear stress that the matrix can withstand. Nevertheless, it should be noted310

that fibre-matrix debonding was not considered in any of the presented models,

which has been shown to increase the ineffective length [38].
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Figure 3: Main effects plot for the ineffective length.

The radial influence length (Rinf ) is a factor that measures the radial dis-

tance in the break plane that is affected by the broken fibre. This distance is

highly dependent on the actual fibre arrangement that surrounds the broken315

fibre. The radial influence length is a parameter that strongly depends on the

local fibre arrangement. It was seen that for the same case there was a very

high variability of this metric, which makes it difficult to conclude about the

most influencing factors. Nonetheless, it is seen that the radial influence length

depends more on the volume fraction and on the matrix shear strength, being320

higher when the matrix is considered linear elastic (τu =∞), as the maximum
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SCF is also higher.

4.3. Model comparison

In Section 2.2 different analytical models for the stress concentration factor

and ineffective length have been presented. In this section the results from the325

SEM are compared with the analytical formulations and the validity of each

approach is discussed. The RVEs used in the SEM and PFM are the same as

in the previous study. The values shown are for a fibre volume fraction of 60%,

a fibre radius equal to 3.5 µm and an applied strain equal to 2%.

4.3.1. Ineffective length330

Table 3 shows a comparison between the results obtained using the SEM and

the respective analytical formulations. Regarding the analytical formulations,

when τu = ∞, the ineffective length is computed using Equation 11, else it is

done so using Equation 8. Note however, that Equation 8 returns the ineffective

length at 100% of load recovery while Equation 11 returns the ineffective length335

at 99.9% of load recovery. Here the results shown are for 90% of load recovery.

If cluster scaling is considered, the ineffective length is multiplied by the factor

Hp,c that, for a single fibre break, Vf = 60% and Rf = 3.5 µm, is equal to

0.7625. The results for the ineffective length are shown in the normalized form,

therefore, the ineffective length is divided by the fibre radius.340

The analytical formulations overall capture similar ineffective lengths as the

SEM, if no cluster scaling is considered (Hp,c = 1). However, if τu 6= ∞ is

considered, while the SEM results depend on the matrix shear modulus, the

analytical formulations do not. In the case of an elastic matrix (τu = ∞) this

dependency is well captured, being the results from the SEM very similar to345

the analytical formulation. If cluster scaling is considered, then the ineffective

length is reduced, but the variances are the same as if no scaling is considered.

It is interesting to note that for Ef = 70 GPa and τu = 50 and 100 MPa, the

ineffective length for the SEM does not change, while it changes using the ana-

lytical formulations. This difference is attributed to the fact that the analytical350
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Table 3: Ineffective length comparison of the SEM and the various PFM analytical formula-

tions. The average of 10 realisations is shown.

Ef

(GPa)

Gm

(MPa)

τu

(MPa)
SEM

PFM

Hp,c=1 Hp,c 6=1

70

450

50 15.0 12.6 8.6

100 15.0 6.3 4.3

∞ 9.6 10.9 7.5

1050

50 13.0 12.6 8.6

100 12.4 6.3 4.3

∞ 6.8 7.1 4.9

230

450

50 38.4 41.4 28.4

100 37.4 20.7 14.2

∞ 16.4 19.8 13.6

1050

50 35.2 41.4 28.4

100 34.8 20.7 14.2

∞ 11.2 12.9 8.9

models considered the matrix to be perfectly plastic, while the SEM considered

the matrix elastic perfectly plastic. Similar results were found for a fibre radius

of 7.0 µm and are not shown here.

4.3.2. Stress concentration factor

In Section 2.2.2 different analytical formulations for the SCF in the intact355

fibres that surround a broken one were presented. These formulations are based

on different assumptions and, therefore, will result in different SCFs. Table 4

shows the maximum SCF results of the different analytical formulations as well

as results using SEM for different cases. These cases were formulated taking into

account the most influencing factors in Section 4.2. For the SEM, results are360

shown for different matrix shear strengths. Similarly, using St-Pierre’s model,

different values for α are used. α = 2 for a plastic matrix [23], while α = 3.8

was chosen for an elastic matrix as the SCF distribution function has a good

agreement with the SEM with τu =∞.
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Table 4: Maximum stress concentration factor of the SEM and the various PFM analytical

formulations. The average of 10 realisations is shown.

Vf
Ef

(GPa)

Gm

(MPa)

SEM PFM

τu =
Swolfs Zhou

St-Pierre α =

50 100 ∞ 2 3.8

0.4

70
450 1.127 1.127 1.315 1.205 1.309 1.082 1.287

1050 1.095 1.096 1.285 1.205 1.309 1.082 1.287

230
450 1.093 1.093 1.341 1.237 1.319 1.087 1.319

1050 1.071 1.072 1.324 1.237 1.319 1.087 1.319

0.6

70
450 1.083 1.083 1.193 1.26 1.324 1.056 1.155

1050 1.061 1.061 1.168 1.26 1.324 1.056 1.155

230
450 1.060 1.061 1.218 1.252 1.322 1.0558 1.152

1050 1.044 1.044 1.202 1.252 1.322 1.0558 1.152

The SEM captures the changes in stress redistribution from all the param-365

eters that affect the model. On the contrary, the analytical formulations are

not able to do so. For instance, none of the models captures the changes in the

SCF with the matrix shear modulus. Regarding the effect of the fibre volume

fraction on the SCF, all models capture some change with this parameter. In

the case of Swolfs and Zhou’s models, this effect is captured due to a change in370

the distance between the fibres, however, St-Pierre’s model directly depends on

the fibre volume fraction. On average, the lower the volume fraction, the higher

the SCF should be [11]. This is captured by the SEM as well as St-Pierre’s

formulation. However, with Swolfs and Zhou’s models the SCF increases with

increasing the volume fraction, as the fibres are closer together and, therefore,375

the distance between them is smaller. This difference in trend can be explained

by the fact that Zhou’s and Swolfs’ models consider that there is a direct de-

pendency between the inter fibre distance with the volume fraction, which is

not the case in randomly distributed fibres. For lower volume fractions, the

stress from the broken fibre is redistributed mainly to the closest fibre, as the380

fibres are further apart, while for higher volume fractions the stress is more
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evenly redistributed among the neighbouring intact fibres. Regarding the effect

of the fibre elastic modulus, it was shown in Section 4.2 that this parameter did

not highly influence the SCF, but did so when combined with the matrix shear

strength. None of the analytical formulations capture directly this effect. From385

the results, it is possible to see that Swolfs and Zhou’s formulations give similar

results to the SEM with τu = ∞ and St-Pierre’s model with α = 3.8, which

represent an elastic matrix. For the case of a plastic matrix, the results from

SEM and St-Pierre’s model are in good agreement, disregarding the changes in

the SCF with the value of the matrix shear modulus. It should be noted that,390

although Swolfs’ and St-Pierre’s models do not capture directly the effects of

several parameters, finite element simulations can be used to calibrate the SCF

functions for each material.

The radial influence length was not included in this study as it was similar

in all the presented models.395

5. Multiple fibre break analysis

In this section, the effects of fibre break clustering on the stress redistribution

are studied. As the interaction between the fibre breaks and cluster formation is

considered to be the basis of the failure of composite materials, it is important to

understand how the stress redistribution changes with an increase in cluster size.400

To understand this effect, the models presented were used to study the effects of

cluster size on the maximum SCF, ineffective length and radial influence length.

To do so, a RVE with a random distribution of fibres with radius equal to 3.5 µm

and a fibre volume fraction of 60% was considered. The fibres were considered to

have a modulus equal to 230 GPa, which is representative of carbon fibres. From405

this RVE 10 fibres were selected randomly to initialize the cluster formation.

A remote tensile strain of 2% is applied. To simulate the cluster formation,

after each break, the next fibre with the higher SCF is broken, leading to an

increase in the number of broken fibres in the cluster and changes in the stress

redistribution. It should be noted that the path of cluster growth is not known410
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a priori and different models may lead to different cluster shapes with the same

number of broken fibres.

The ineffective length of a cluster was considered to be the largest ineffec-

tive length of the individual broken fibres that are part of that cluster, being

here considered the length at which the fibre recovers 90% of its load carrying415

capacity. The analytical formulations presented in section 2.2.1 were used in

the PFM, and are independent on the model for SCF used. The results for

the ineffective length are shown in the normalized form the ineffective length is

divided by the fibre radius.
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Figure 4: Effect of the cluster size on the ineffective length. The average of 10 realisations is

shown.

As shown in Figure 4, the formulations for the ineffective length that use420

the base Kelly-Tyson (plastic Hp,c = 1) and Cox (elastic Hp,c = 1) models do

not scale with the number of broken fibres. This drawback can, however, be

solved by using the size cluster scaling proposed by St-Pierre et al. [23, 24], i.e.
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Hp,c 6= 1. For both cases, elastic and plastic matrix, the scaling trend is similar

to that obtained with the SEM. The ineffective lengths obtained with the SEM425

are, however, always larger than those predicted by the analytical simulations,

being the difference larger for larger cluster sizes. Nonetheless, it should be

noted that some differences in the ineffective length may be due to the different

cluster shapes formed with the different models.

Figure 5 shows the scaling of the maximum SCF as a function of the number430

of broken fibres within a cluster. In addition to the results from the SEM and

PFM models, the analytical solutions proposed by Hedgepeth [10] for 2D and

Hedgepeth and Van Dyke [25] for a 3D hexagonal fibre arrangement are also

shown.
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Figure 5: Effect of the cluster size on the maximum SCF. The average of 10 realisations is

shown.

As expected, all models are able to capture the increase in SCF due to435

the increase in the number of broken fibres. This can be expected as there
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is additional stress that needs to be redistributed due to the increase in the

number of broken fibres. Nonetheless, the different models have different trends.

Zhou’s model predicts the highest SCF for a single break, a trend that scales

with the increase in broken fibres, reaching values of maximum SCF over 3.440

This value is considered too high as unstable propagation of the cluster should

occur before this SCF level is reached. Nonetheless, it should be noted that

this model is based on a 2D planar fibre arrangement and, therefore, leads

to an overestimation of the SCFs in a 3D composite. The remaining models

have a much lower scaling with the number of broken fibres, being that for445

St-Pierre’s model, the SCF functions directly depend on the number of broken

fibres. Comparing the models that consider the matrix plastic (SEM τu = 50,

SEM τu = 100 and St-Pierre α = 2), it is possible to see that all the models

give very similar results, with a low scaling of the maximum SCF. The moderate

increase in the maximum SCF is due to the fact that the matrix is not able to450

transfer more stress to the closest fibres, due to the shear stress limit, therefore,

this stress needs to be redistributed to fibres further away from the cluster,

not affecting the maximum SCF. When the matrix is considered elastic (SEM

τu =∞, Swolfs, Zhou and St-Pierre α = 3.8), the stress redistribution is more

local and, therefore, the maximum SCF has a more pronounced increase with455

the number of broken fibres. In this case, the SEM has a similar trend as

Swolfs’ model, being that the SEM has lower SCF for small clusters and higher

for the larger clusters (see Figure 5). St-Pierre’s model, in this case, predicts a

large increase on the SCF from a single broken fibre to a cluster of two broken

fibres, being the increase in SCF with each additional fibre reduced for larger460

clusters. Interestingly, there is a decrease in the maximum SCF for a cluster of

11 fibres. For different models, it is possible to see that there is a decrease in

SCF when the number of broken fibres increases. This should be a consequence

of the random fibre arrangement. Comparing the results from the SEM and

PFM with the analytical solutions by Hedgepeth [10, 25], it is possible to see465

that Zhou’s model is in good agreement with Hedgepeth as both are based in

a 2D planar arrangement of fibres. The 3D solution shows a similar scaling
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as the remaining models, however, it should be noted that while the analytical

formulation is for a periodical hexagonal arrangement of fibres, the results from

the SEM and PFM are for a random distribution of fibres.470
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Figure 6: Effect of the cluster size on the radial influence length. The average of 10 realisations

is shown.

The radial influence length is the distance in the failure plane that is affected

by more than 1% of stress concentration. This distance, for the cases with more

than one broken fibre, was measured to the geometrical centre of the cluster.

Figure 6 shows the scaling of the radial influence length with the number of

broken fibres within a cluster. All models predict an increase in the radial475

influence length with an increase in cluster size, as expected. Zhou’s model has

a much higher radial influence length that scales less with the cluster size. This

is due to the nature of the SCF function, whose shape causes a large region

surrounding the broken fibres to have a SCF higher than 1%, which was the

value used to limit the radial influence length. The other models have a very480

26



similar radial influence length for a single broken fibre, between 3.8 and 4.8

times the fibre radius. However, the models scale different with the increased

cluster size. Swolfs’ model predicts a lower scaling in radial influence length

as the matrix is considered elastic. Similarly, the SEM and St-Pierre models

show a lower increase in radial influence length for the elastic case (τu = ∞485

and α = 3.8). Both the SEM and St-Pierre models show very similar scaling of

the radial influence length with the cluster size for both the elastic and plastic

cases. The similarity between these two models can also be observed for the

other parameters studied, namely the maximum SCF.

6. Tensile behaviour490

In this section, a comparison between the several models is done at the RVE

scale with the objective of understanding how the differences in the local stress

fields affect the tensile behaviour and cluster formation.

To understand these effects, the same study was done in two types of fibres,

one carbon fibre and one glass fibre. The variance of three factors was studied495

for each type of fibre. The factors selected are the matrix shear modulus (Gm),

the matrix shear strength (τu) and the fibre volume fraction (Vf ), as they affect

the stress redistribution the most (Section 4.2). For the matrix shear modulus

and volume fraction the same levels as in Section 4.2 were explored, however,

for the matrix shear strength only two levels were considered: τu = 50 MPa500

and τu = ∞. The third level was removed as the effects of changing the shear

strength from 50 to 100 MPa were reduced. A full factorial study was performed

with a total of eight cases for each type of fibre. For each case five simulations

were performed. The fibre strength is assigned to each fibre element randomly

with a Weibull distribution. The Weibull properties (σm, m and L0) and the505

remaining material parameters are shown in Table 5.

Table 6 shows the summary of the average results of 10 simulations for the

different models with distinct input parameters. In this section, and similarly

to other works in the literature [19, 21], two fibres are considered to be in the
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Table 5: Fibre properties used for RVE study [17, 39].

Fibre
Rf

(µm)

Ef

(GPa)

σ0

(MPa)
m

L0

(mm)

Carbon 3.5 234 4275 10.7 12.7

Glass 7.0 70 1550 6.34 24

same cluster if their centres are within four times the fibre radius and the fibre510

break planes are within ten times the fibre radius in the longitudinal direction.

The tensile strength (Xt) is calculated by means of the rule of mixtures.

Table 6: Carbon RVE simulation results for different models and parameters. The average

of 10 realisations is shown.

SEM St-Pierre Swolfs Zhou

Vf
τu

(MPa)

Gm

(MPa)

Xt

(MPa)

Max.

cluster

Break

density

(/mm3)

Xt

(MPa)

Max.

cluster

Break

density

(/mm3)

Xt

(MPa)

Max.

cluster

Break

density

(/mm3)

Xt

(MPa)

Max.

cluster

Break

density

(/mm3)

0.4

50
450 1784 5.4 2228 1923 11.2 5045 - - - - - -

1050 1802 6.0 2809 1954 18.4 5169 - - - - - -

∞
450 1844 9.8 3184 1646 2.4 586 1963 20.0 7151 1810 4.4 1833

1050 1921 11.2 4708 1778 4.0 1200 2050 43.2 9291 1834 3.6 1706

0.6

50
450 2698 4.4 3696 2843 8.2 6925 - - - - - -

1050 2718 5.8 4600 2856 18.4 7328 - - - - - -

∞
450 2911 11.4 6994 2695 7.8 2482 2859 14.2 5440 2585 2.8 1526

1050 2952 6.6 7331 2828 13.6 3630 2978 20.6 8229 2598 3.2 1446

Figure 7 shows the results for the different models and cases where the matrix

is considered linear elastic (τu = ∞). For a constant fibre volume fraction

the difference in strength predicted by the different models is small and all of515

them predict accurately the increase in strength (Xt) with the increase in fibre

content. The change in the matrix shear modulus has only a small effect in the

predicted strength, but all models predict an increase in the strength with the

increase in matrix shear stiffness. It should be noted that all predicted strengths

are high, compared to typical composite material strengths. This is due to the520

fact that the Weibull distribution is scaled to very small lengths (7 µm) which
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Figure 7: Tensile strength and maximum cluster size for the elastic matrix cases (τu = ∞)

for carbon fibre. The average of 10 realisations is shown.

leads to very high element strengths. This leads to an overprediction of the

strengths [21, 27, 38, 39]. Additionally, the RVE analysed has a small volume

compared to that of a typical specimen used to characterize composite material

strengths. Due to the size effects present in composite materials [38, 40], care525

must be taken when comparing the numerical results with experimental ones.

Nonetheless, the comparison between the results of the different models should

not be affected by this fact, as similar strategies to generate the strength of the

elements were used.

Regarding the maximum cluster size, with exception of Swolfs’ model, all530

models predict similar critical cluster sizes in all cases. In Swolfs’ model, the

maximum predicted cluster size is 43 fibres, which is a very high value compared

with the data available in the literature [4, 19, 21]. Similarly, the models predict

a very high fibre break density at peak stress, which is not seen in the available
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experimental data [4, 19].535

Figure 8: Tensile strength and maximum cluster size for the plastic matrix cases (τu = 50 )

for carbon fibre. The average of 10 realisations is shown.

Figure 8 shows the predicted strength and maximum cluster size for the

cases where the matrix is considered plastic. These results are only available for

the SEM and St-Pierre’s model. Both the SEM and the PFM with St-Pierre’s

SCFs have the same trends, being the predicted cluster size higher for St-Pierre’s

model.540

It is interesting to note that the trends observed, in moving from an elastic to

a plastic matrix, with the SEM and St-Pierre’s models are very distinct (Table

6). While for the SEM the maximum cluster size and the strength are lower

when the matrix is considered plastic (τu = 50 MPa), with the other model the

opposite happens. With PFM it is seen that the material strength obtained is545

lower in the elastic case than in the plastic case and so is the predicted maximum

cluster size. Similarly, the fibre break density at peak stress is lower in the elastic
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cases for St-Pierre’s model, while it is lower in the plastic cases for the SEM.

Analysing the evolution of the SCFs as a function of the cluster size (Figure

5) it is possible to see that for St-Pierre’s model the SCF increases rapidly for550

a small cluster size when the matrix is considered elastic. This rapid increase

leads to the earlier formation of clusters of higher dimensions. In addition the

authors observed that the formation of cluster of 3-4 fibres leads to the failure

of the material, therefore, resulting in a lower strength and failure strain. With

the SEM this increase is more gradual and always with lower SCF, for clusters555

with more than a broken fibre. This explain the premature failure predicted

by St-Pierre’s formulation when α = 3.8, e.g. elastic matrix, is considered.

Nonetheless, it should be noted that this can be avoided by adjusting the α for

several cluster sizes instead of adjusting it to accurately capture the stress fields

around a single break, as was done for α = 3.8.560

Similarly to what was done for carbon fibre, Table 7 shows the influence of

several material parameters on the tensile behaviour of composite materials. In

this case glass fibres are used, whose properties are shown in Table 5. Similar

trends are found between the glass and carbon cases. All modelling strategies

are able to capture the increase in tensile strength with the volume fraction.565

For the SEM there is also a increase in the tensile strength if the matrix is

considered elastic and if the matrix shear modulus is increased. The same effect

of the matrix shear modulus is seen in the remaining models. However, similarly

to what occurred for the carbon cases, with St-Pierre’s model, there is a decrease

in the strength in the cases where the matrix is considered linear elastic. Again570

this is in contrast with the results obtained with the SEM. However, in this case

the maximum cluster size predicted with St-Pierre formulation is higher in the

elastic cases than in the plastic cases.

Regarding the maximum cluster size it is seen that the predicted cluster size

is overall higher than for the carbon cases, which is expected as there is a higher575

dispersion in the strength of glass fibres (lower Weibull modulus m). However,

for the cases where the matrix is elastic the values for the maximum cluster size

are very high, sometimes higher than the total number of fibres in the RVE. In
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Table 7: Glass RVE simulation results for different models and parameters. The average of

10 realisations is shown.

SEM St-Pierre Swolfs Zhou

Gm

(MPa)

τu

(MPa)
Vf

Xt

(MPa)

Max.

cluster

Break

density

(/mm3)

Xt

(MPa)

Max.

cluster

Break

density

(/mm3)

Xt

(MPa)

Max.

cluster

Break

density

(/mm3)

Xt

(MPa)

Max.

cluster

Break

density

(/mm3)

0.4

50
450 810 14.8 2387.0 938 24.4 2550.1 - - - - - -

1050 817 29.8 2637.8 974 61.8 2590.8 - - - - - -

∞
450 917 517.2 7694.4 909 291.2 3503.0 1010 247.0 5329.5 870 11.4 1344.8

1050 964 1311.2 10240.3 968 450.4 4529.3 1108 1018.6 7631.5 921 17.0 1444.3

0.6

50
450 1233 57.6 3566.6 1350 103.0 3598.4 - - - - - -

1050 1241 56.0 3479.5 1375 78.0 3436.0 - - - - - -

∞

450 1471 62.5 4870.7 1462 585.6 7004.0 1507 733 7294 1280 23.8 1744.3

1050 1524 70.0 5477.6 1549 1017.6 9252.1 1616 2109 10223 1329 20.0 1734.6

these simulations two fibres were considered to be in the same cluster if their

in-plane distance was lower than four times the fibre radius and the break plane580

distance lower than ten times the fibre radius. As the fibre radius of the glass

fibres was considered twice the one from carbon, the volume considered for two

fibres to belong in the same cluster is larger. On the contrary, the ineffective

length of the glass fibres are lower due to the lower fibre elastic modulus. This

makes it possible for the same fibre to break more than once in the region585

considered for the cluster and, therefore, overpredicting the cluster size. This

factor makes it necessary to have a better definition of a cluster of broken fibres,

as in some cases, the current definition [4, 19, 21] leads to erroneous results.

7. Conclusions

In this work an extensive analysis on the stress fields and stress redistribution590

due to fibre failure in fibre reinforced composites under longitudinal tension was

performed. The results from a spring element model were compared with the

results from a progressive damage model, also with a random fibre distribution,

with different ineffective length and stress concentration factor formulations.

An analysis of the effects of the main model input parameters on the stress595
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fields around a broken fibre was performed using the SEM. From this study it

was possible to conclude that different materials with different input parameters,

such as fibre modulus, matrix shear stiffness and matrix yield strength, leads to

very distinct stress redistribution profiles. In this study three parameters were

analysed: maximum stress concentration factor, ineffective length and radial600

influence length. These parameters were considered to define the stress field

surrounding a broken fibre. It was observed that the maximum SCF depends

on different input parameters, the most critical being the fibre volume fraction.

In addition, it was observed that the matrix yield strength has a large influence

on the maximum SCF, mainly when the matrix is considered elastic or plastic.605

Interestingly, it was seen that the fibre modulus did not have a high effect on

the SCF, however, the combination between the fibre modulus and the matrix

yield strength affects the SCF. As for the ineffective length, it was seen that

the fibre modulus as well as the matrix yield strength were the most influencing

factors on this property. Regarding the radial influence length, it was observed610

that there was a small variation with different input parameters, however, it was

found that there was a large variation depending on the local fibre arrangement.

Comparing the results from the SEM with the results from the analytical for-

mulations used within the progressive failure model framework, it is concluded

that most models do not capture the dependency of the input parameters on615

the stress redistribution profile. In most cases, fitting is necessary to obtain

accurate stress redistribution functions and, therefore, care must be taken when

considering the same SCF function for different materials. It was also seen

that there is a large difference between considering the matrix linear elastic or

elasto-plastic.620

The stress fields that surround a cluster of broken fibres were also analysed.

The different models have different evolutions of the maximum SCF, ineffective

length and radial influence length as a function of the cluster size. In general,

in the models where the matrix was considered linear elastic, the maximum

SCF increases more rapidly with the number of broken fibres and the ineffective625

length has a smaller increase, when compared with the models that consider
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the matrix plastic. It should be noted that several models do not consider the

increase in ineffective length with the cluster size, however, it was seen that the

cluster size has a large effect on the ineffective length, as previously shown in

St-Pierre et al. [23, 24]. Adding a factor that scales with the cluster size leads630

to similar results between the analytical formulations and SEM.

For the representative volume element simulations it was shown that the

different presented models predicted different strengths. The main difference

is between models considering the matrix elastic or elasto-plastic. Using St-

Pierre’s model for the SCF functions when the matrix was considered elastic635

(α = 3.8) the predicted strength was lower than when the matrix was considered

plastic (α = 2). However, the results predicted by the spring element model

showed the opposite trend. Regarding cluster formation, it was shown that the

maximum cluster size is highly dependent on the input properties of the models.

Furthermore, it was seen the current used definition for cluster [21, 41] can lead640

to erroneous results. In the glass cases, there were clusters with more breaks

than the number of fibres in the RVE, meaning that the same fibre was broken

more than once in the same cluster.

This work aimed at further developing the understanding of the damage

propagation and cluster formation in unidirectional composites. It was shown645

that more understanding on the phenomena that control failure of unidirectional

composites under longitudinal tension and more experimental data are needed.

Nonetheless, it is important that the models take into account the real material

input parameters as well as an accurate representation of the microstructure to

better capture the material behaviour. Therefore, care should be taken when650

using stress concentration factor functions from a different material system.
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