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Abstract 
 

 
Air traffic has been increasing and with it the workload of air traffic controllers. 
Despite the pandemic, the latest figures show a rapid recovery and forecast 
exponential growth. This indicates the need to modernise air traffic control and 
the technology used, which is already being developed and implemented by 
organisations like SESAR, like applying AI to air traffic control (DART). A 
support tool with automatic conflict avoidance would be a great step to address 
the problem of possible overcapacity of air traffic controllers. 
 
This document describes two possible implementations of a conflict avoidance 
tool. The approach is to use Deep Reinforcement Learning to select actions 
that avoid conflict and help the air traffic controllers to take faster and better 
decisions. The basis for both approaches is a simple 2D airspace simulator 
and the same policy applied to all the aircraft. 
 
The first proposal is a stand-alone DQN algorithm (DRL) that has a 7.06% 
improvement in the number of simultaneous conflicts compared to the original 
environment without applying a policy. 
 
The second approach is a DQN algorithm that incorporates transfer learning of 
the rules of the air, and it is called by the acronym DRLT. It resulted in a 
degradation compared to the original environment, with a 6% increase in 
unremembered conflicts. 
 
Nevertheless, Deep Reinforcement Learning has shown a decrease in decision 
time and the idea of reusing the same strategy for all aircraft has solved the 
problem of unpredictability issue that some reinforcement learning solutions 
had. The proposal could be a good start for a self-separation tool for 
unmanned aircraft but still needs future improvements in results. It is not 
suitable for air traffic controllers or piloted vehicles due to the increased 
workload it would suppose. 
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Abstract 
 
 

El tráfico aéreo ha ido en aumento y con él la carga de trabajo de los 
controladores aéreos. A pesar de la pandemia, las últimas cifras muestran una 
rápida recuperación y pronostican un crecimiento exponencial. Esto indica la 
necesidad de modernizar el control del tráfico aéreo y la tecnología utilizada, 
que ya está siendo desarrollada e implementada por organizaciones como 
SESAR, por ejemplo, la aplicación de IA al control del tráfico aéreo (DART). 
Una herramienta de apoyo con prevención automática de conflictos sería un 
gran paso para abordar el problema de la posible sobrecapacidad de los 
controladores de tránsito aéreo. 
 

Este documento describe dos posibles implementaciones de una herramienta 
para evitar conflictos. El enfoque es utilizar el aprendizaje por refuerzo 
profundo para seleccionar acciones que eviten conflictos y ayuden a los 
controladores de tránsito aéreo a tomar mejores y más rápidas decisiones. La 
base para ambos enfoques es un simple simulador de espacio aéreo 2D y la 
misma política aplicada a todas las aeronaves. 
 
La primera propuesta es un algoritmo DQN (DRL) autónomo que tiene una 
mejora del 7,06 % en el número de conflictos simultáneos en comparación con 
el entorno original sin aplicar ninguna política. 
 
El segundo enfoque es un algoritmo DQN que incorpora transferencia de 
aprendizaje de las reglas del aire, y se denomina por el acrónimo DRLT. 
Resultó en una degradación en comparación con el entorno original, con un 
aumento del 6% en los conflictos no recordados. 
 
Sin embargo, el aprendizaje por refuerzo profundo ha mostrado una 
disminución en el tiempo de decisión y la idea de reutilizar la misma estrategia 
para todas las aeronaves ha resuelto el problema de imprevisibilidad que 
tenían algunas soluciones de aprendizaje por refuerzo. La solución podría ser 
un buen comienzo para una herramienta de autoseparación para aeronaves 
no tripuladas, pero aún necesita futuras mejoras en los resultados. No es apta 
para controladores aéreos ni para vehículos pilotados por el aumento de carga 
de trabajo que supondría. 
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NOMENCLATURE 
 

𝒂 action 

𝒂 
joint action: array or tensor of actions from all the agents in a multi-
agent environment. 

𝑨, 𝑨(𝒔) action space: set of actions that an agent can take 

𝒅𝒂𝒍𝒆𝒓𝒕 alert detection range  

𝒅𝑪𝑷𝑨 
distance in the closest point. Distance between two aircraft when they 
reach the closest point of approach 

𝒅𝒊𝒋 distance between two flights 

𝒅𝒎𝒊𝒏 conflict detection range  

𝒅𝒕𝒂𝒓𝒈𝒆𝒕 distance to the target 

𝒆 experience: a tuple of state, reward, next state and done  

𝑮 goal function. also called cumulative reward 

𝑶 
probability of an observation in a Partially Observable Markovian 
Decision Process 

𝑷 matrix of transition probabilities 

𝒑 probability 

𝒓 reward 

𝑹 reward function 

𝒔 state 

𝒔′ next state 

𝒔𝒕 
joint state: array or tensor of states from all the agents in a multi-agent 
environment.  

𝑺 observation space: set of all the states an environment can have. 

𝒕 time step 

𝒕𝑪𝑷𝑨 
time to the closest point. Time left to reach the closest point between 
two aircraft. 

𝑻 maximum number of time steps in an episode. 

𝑽 value function 

𝒗𝒊 Airspeed of flight i. 

𝒗𝒓𝒊𝒋
 relative airspeed between two aircraft, normalised with maximum 

airspeed in the environment. 

(𝒙𝑬, 𝒚𝑬) entry point of the aircraft 

(𝒙𝒊, 𝒚𝒊) position of the aircraft in a 2D Euclidean space. 

(𝒙𝑻, 𝒚𝑻) exit point of the aircraft 

𝛼  learning rate 

𝛽𝒊𝒋 relative angle between the heading of the ownship and the intruder 



 

𝛾 discount rate 

𝛿 drift  

𝜀 
epsilon or exploration rate. Controls the balance between exploration 
and exploitation probability during the training of a model. 

𝜃 weights of the neural network 

𝜇 behavioural policy 

𝜈 Value added to the airspeed in the corresponding action. 

𝛱 target policy 

𝜋 policy 

𝜋∗ optimal policy 

𝜒𝒊 track 

𝝍 bearing 

AI Artificial Intelligence 

ATC Air Traffic Control 

ATCO Air Traffic Controller 

ATM Air Traffic Management 

CPA Closest Point of Approach 

CUDA Compute Unified Device Architecture 

DART Data-Driven Aircraft Trajectory Prediction Research 

DRL Deep Reinforcement Learning 

DRLTL Deep Reinforcement Learning with Transfer Learning 

DQN Deep Q Networks 

GPU Graphics Processing Unit 

MARL Multi-Agent Reinforcement Learning 

MDP Markov Decision Process 

ML Machine Learning 

MRP Markov Reward Process 

RL Reinforcement Learning 

RoA Rules of the Air 

SESAR Single European Sky ATM Research 

SI International System of Units 

TD Temporal Difference 

TL Transfer Learning 

UAV Unmanned Aerial Vehicle 
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INTRODUCTION 
 
 
The air traffic is slowly but surely recovering from the 2019 health crisis impact 
[3] that interrupted its exponential growth. Its serious increase not only creates a 
challenge for the airports, like recently where airports were forced to implement 
capacity restrictions and demand to the airlines to stop selling tickets [13], but 
also puts pressure on the Air Traffic Management (ATM) and Air Traffic Control 
(ATC), with excessive concentration of traffic in some sectors.  
 
Moreover, aviation is expected to change into a more sustainable model, which 
is hard when the traffic increases and the emissions also increase. That is why 
there’s a need for a more efficient air traffic control system that could optimise 
the trajectories of the aircraft while dealing with risen demand.  
 
That leads to the necessity of a modernisation of the ATC systems to be 
prepared for what the future holds. SESAR Joint Undertaking was established 
with this goal, and by uniting the most important European organisations 
intends to integrate the EU ATM systems. It is a complete pipeline of research, 
development and implementation of the newest technology for traffic 
management.  
 
SESAR has proposed many solutions to be able to lead with this overwhelming 
forecast, focusing on complexity management, automation and enhanced 
airspace management [21]. For example, the DART project that started in 2017 
and applied machine learning methods for aircraft trajectory prediction to 
increase predictability and faster decision making. 
 
The response to the limited cognitive capacity of humans when processing 
copious amounts of information related to ATC could be artificial intelligence 
(AI), like the DART project proved.  
 
From the field of Artificial Intelligence and Machine Learning, 3 types of learning 
are available. The first one is supervised learning, which learns from a given 
dataset and can predict these same variables later. The second one is 
unsupervised learning, used to segment and group data, detecting similarities 
and differences. And lastly, reinforcement learning (RL) which works with no 
previous data and by a punishment-reward system learns a policy [26].  
 
What got reinforcement learning its popularity was a paper by a company called 

Deepmind [16], that together with the increase in computational power and 
appearance of open-source software, RL achieved extraordinary results in 
many fields. 
 
Artificial intelligence methods have been making its way to the aviation industry, 
with organisations like Eurocontrol organising challenges to implement RL to 
aircraft conflict avoidance, which is the origin of this final degree project. The 
use of RL for aircraft separation is a widely studied subject, but it comes with a 
lot of challenges: complexity of the traffic, scalability, reliability, safety... To add 

https://www.sesarju.eu/approach/cost#:~:text=SESAR%E2%80%99s%20solutions%20aim%20to%20help%20air%20traffic%20controllers,on%20complexity%20management%2C%20automation%20and%20enhanced%20airspace%20management.
https://www.sesarju.eu/approach/cost#:~:text=SESAR%E2%80%99s%20solutions%20aim%20to%20help%20air%20traffic%20controllers,on%20complexity%20management%2C%20automation%20and%20enhanced%20airspace%20management.
https://www.sesarju.eu/approach/cost#:~:text=SESAR%E2%80%99s%20solutions%20aim%20to%20help%20air%20traffic%20controllers,on%20complexity%20management%2C%20automation%20and%20enhanced%20airspace%20management.
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up, most of the papers are simplified scenarios so there is no real applicable 
solution that exists nowadays. 
 
The aim of this project is to develop a RL model for in-cruise aircraft conflict 
avoidance in an airspace sector. This tool, which would ideally be used as an 
auxiliary tool for ATCs or as a self-separation system, would assess the best 
decisions needed to be taken in order to preserve the safe separation distance 
with other aircraft. 
 
This project has two parts, the first one being the development of a policy that 
would direct the aircraft with conditional statements following the Rules of the 
Air, developed by Lidia Fuentes Coll [6], and a second part where this 
experience is taken to train a neural network in an intent to further improve the 
results. 
 
The project is divided into six chapters that describe the concepts necessary to 
understand the process and the results of this work. The outline of the 
document goes as follows: 
 

• Chapter 1: Reinforcement Learning 
 
This section introduces the mathematical and conceptual basics to 
understand the principles of reinforcement learning mentioned and used 
in this project. 

 

• Chapter 2: Deep Reinforcement Learning 
 
This chapter explains how neural networks fit into reinforcement learning 
and describes the DQN algorithm. 

 

• Chapter 3: Tools, Methods, and Metrics 
 
The programs, framework and tools used to develop the projects are 
stated, in addition to the details of the code and the metrics used to 
monitor and measure success in this project. 

 

• Chapter 4: Results 
 
The final simulation parameters that were used and the results of the 
project accompanied by graphs and comparisons are described in this 
part of the document. 

 

• Chapter 5: Conclusions 
 
The final evaluation of the project is done while revisiting the initial 
objectives as closure of the document. 
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CHAPTER 1. REINFORCEMENT LEARNING 

1. fig 

1.1. Introduction 

 
Reinforcement learning is an extensive subject, thus in this document only the 
most important concepts to understand the development of the project are 
described. However, for a more in-detail introduction to reinforcement learning, 
books like [14] or [22] are recommended to the reader as a good starting point. 
 
 

1.2. Agent-Environment Dynamics 

 
Reinforcement learning consists of an interaction between two elements: the 
agent and the environment. An agent is the component that makes the 
decisions whereas the environment is the domain that the agent interacts with. 
The environment has a set of rules or kinematics that the agent cannot control, 
but it can act in the environment and change its status. The main goal is for the 
agent to learn how to take good actions and reach an objective. 
 
 

 

Fig. 1.1 Agent and environment interaction. 

 
The state 𝑠𝑡 or observation is a parameter about the status of the environment 
and the agent itself. The agent bases its decisions on the current state, 
contained in a state space 𝑆, and chooses an action from a set of actions 
allowed, called the action space 𝐴(𝑠𝑡). After acting on the action chosen in the 
current timestep t, a transition takes place, which makes the timestep increase 

to t + 1. The response of the environment is a next state 𝑠𝑡+1 , caused after 

taking the action, and a reward 𝑟𝑡+1, which is telling the agent the quality of the 
decision that was just taken. The objective is to maximise the reward.  

 
The choices taken are based on a policy 𝜋𝑡, which is a strategy to reach the 
goal. It ties the elements together and gives the agent a probability to choose a 
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certain action, based on the state and the next state provided 𝑝𝑠𝑠′(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) 
[15]. 

 
This process of interaction is represented in figure 1.1 where given a state an 
agent takes an action, and the environment sends the reward and the next state 
as feedback. All the process takes place in a timestep 𝑡 and is repeated until a 
certain number of steps or a determined threshold is reached. 
 
In multi-agent systems, where the environment interacts with more than one 
agent, there are different approaches to this interaction, which are going to be 
addressed in appendix A. 
 

1.3. Markov Decision Processes 

 
Decisions in stochastic learning environments can be formalised using Markov 
Decision Processes (MDP) [22]. 

 
MDP are based on the Markov Property, which states that the future states 
cannot depend on the past given the present observations.  

 
Then, random states that satisfy the Markov property can be chained together 
into a sequence, called a Markov Process. Each state has a probability of 
transitioning into another state. The matrix of probabilities and the states can 
describe the dynamics of the environment in its entirety. Formally, a Markovian 
Process is a tuple with a finite set of states 𝑆 and a matrix of transition 
probabilities. In equation 1.1 the state transition probability is formalised, and 
when computed for every combination of states can be joint into a matrix of 
transition probabilities (see equation 1.2). 
 
 
 𝑝𝑠𝑠′ = ℙ[𝑆𝑡+1 = 𝑠′ | 𝑆𝑡  =  𝑠] (1.1) 

 
 

 

 

(1.2) 

 
 

In order to get closer to reinforcement learning, it is necessary to define the 
reward in these processes. That’s where the Markovian Reward Processes 
(MRPs) [22] come in. To add a value judgement to the Markovian Process, a 
reward function and a discount factor are added to the tuple. For each state of 
the agent, a reward function defines a numeric reward value, and the discount 
factor determines the importance of the immediate or future reward. Its value 
ranges from 0 to 1, with 0 caring only for the immediate reward and 1 caring 
only for the future reward. The discount factor varies according to the final goal 
of the reinforcement learning model. 
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The discount factor and the immediate reward function are related as seen in 
equation 1.4. 
 
 
 

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3+. ..   = ∑ 𝛾𝑘𝑅𝑡+𝑘+1

∞

𝑘=0

 (1.4) 

 
 
Where G is the goal function, also known as the cumulative reward, R is the 

reward function and 𝛾 is the discount factor. In the final expression, 𝑅𝑡+𝑘+1 is 
the reward received by the agent at timestep k by moving to the next state. 

 
To go one step further, there is a need to define the agent that takes the 
decisions. The Markovian Decision Processes [22] adds a set of actions 𝐴 for 
the agent to choose from, to the Markovian Reward Process. For this reason, 
the transition probability (1.5) and the reward function (1.6) have a slight 
change, as the actions are added to the equation. 
 
 𝑝𝑠𝑠′

𝑎 = ℙ[𝑆𝑡+1 = 𝑠′ | 𝑆𝑡  =  𝑠, 𝐴𝑡  =  𝑎 ] (1.5) 

 
 

 𝑟𝑠
𝑎 = 𝔼[𝑅𝑡+1 | 𝑆𝑡  =  𝑠, 𝐴𝑡  =  𝑎 ] (1.6) 

 
 

  
Depending on the current state, a policy will dictate what actions the agent 
takes.  

 

1.4. Value Functions 

 
The grand majority of RL algorithms help to determine the next best action by 
an estimated value function. A value function relates the actions and the state 
an agent is in, to approximate the return that the agent will get in the future. 
Each policy has its own value function. As mentioned before, the policy gives a 
probability of choosing an action for each state.  
 
A value function determines how good the state is, given the policy. 
Mathematically, the expression looks like the one in equation 1.7.  
 
 

 

 
(1.7) 

 
 

This is also called the state-value function. 
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Similarly, an action-value function (see equation 1.8) can be defined, where the 
output is the value of an action taken under a policy, in a state 𝑠.  
 
 
 

 
(1.8) 

 

1.5. Bellman’s Equation 

 
Richard Bellman took the sum of future rewards and broke it into the immediate 
current reward and the future rewards, pointing out the recursion of the value 
function and summed this property in the famous Bellman’s equation [1]. The 
Bellman’s optimality equation expresses that for a policy 𝜋, the value of a state 
can be determined by the expected reward of the next state and the value of the 
next state with a discounted factor, and all of that summed over the policy 
probabilities. 
 
This concedes to optimising the value functions locally, putting it together and 
still have an optimal result. Once the function is optimised, a maximised policy 
can be extracted from the values. The objective was to have all the sub-
problems and its value functions in order to reach the best policy. This concept 
gave way to dynamic programming and lastly to reinforcement learning.  
 
Ultimately, there’s a need of approximating this value function from the 
experience of the agent. That’s when Monte Carlo methods are used to 
determine the average value functions for each state and each action, by taking 
random actions for each state and memorising the return. However, this 
approach is only good for simple problems, and the functions are parametrized 
and adjusted in order to match the output. That’s why Temporal Difference 
methods are used instead, which will be explained in detail in section 1.6.1. 
 
The final goal is to optimise the policy and to maximise the value function. The 
value function for a policy 𝜋 at a given state 𝑠  is the expected cumulative 

reward discounted by the factor gamma [22]. 
 
Assuming that the policy is the optimal policy, the value function is converted to 
equation 1.9. 
 
 
 𝑞∗(𝑠, 𝑎) = 𝐸[𝑅𝑡+1 + 𝛾𝑚𝑎𝑥𝑎′𝑞∗(𝑠′, 𝑎′)] (1.9) 
 
 
To find the optimal policy two algorithms can be used. On the one hand exists 
the value iteration algorithm, which consists of optimising by iterating on the 
value function, maximising given an action 𝑎. The function needed to maximise 
is the future reward. Value iteration assumes that the value of the next state is 
known and relies on the Bellman’s optimality equation. 
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On the other hand, policy iteration is a two-step iteration process that locks in a 
policy, and iteratively updates the value. Once the average value is fixed, the 
policy is updated. Once the policy is improved, the steps are repeated. 
 
As a result of combining the ideas of the state-value (equation 1.7) and the 
action-value (equation 1.8) functions, where the result is an expected return 
given an action 𝑎 and a state 𝑠, the equation in 1.10 is obtained.  
 
It is called the Quality function or Q-function [1]. This function has the next state 
return implicit in the function, so it allows a policy-free learning where these next 
states are unknown. The result values of this function are called Q-values. 
 
In this equation 𝑅𝑡+1 is the received reward and 𝑎𝑟𝑔𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎) finds the 

value of 𝑎 that gives the maximum value to the function 𝑄(𝑠′, 𝑎), and then this 
value is put into the 𝑄(𝑠′, 𝑎) function, discounted by a factor 𝛾. As pointed out 
before, there’s a clear recursion in the function. 

 
 

 𝑄(𝑠, 𝑎) = 𝑅𝑡+1 + 𝛾𝑄(𝑠′, 𝑎𝑟𝑔𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎)) (1.10) 

 
 

1.6. Q-learning 

 
Q-learning is a RL algorithm based on value iteration. The algorithm is 
implemented by creating a table that related the pairs of state and actions with a 
reward. Thus, when a Q-table is initialised, the agent chooses and performs the 
actions, the reward is computed and the cell corresponding to that state and 
action is updated with the new value of the reward. 
 
This algorithm is an off-policy method, meaning that the optimal policy is 
unknown, so two policies are used. 
 
The first policy, called the local policy 𝜇, is used to learn and explore, and the 

second one, called the target policy 𝜋, is updated less, based on the first one. In 
the end, the target policy becomes the optimal policy.  
 
Q-learning is based on the Q-function, and uses temporal difference to estimate 
the expected value of an action 𝑎 in a state 𝑠. As it is just a temporal difference 
method applied to the Q-function, first the work describes the TD method to 
better understand Q-learning. 
 
 

1.6.1. Temporal Difference Methods 

 
As the name suggests, temporal difference (TD) methods consider the time in 
which the agent takes the actions. Opposed to Monte Carlo methods, TD 
methods sustain that there is a correlation between the reward and the time in 
which an action was performed. 
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This procedure adds a correction term to the value function, which instead of 
averaging all the trajectory, giving the same importance to each step as in a 
Monte Carlo method, gives more weight to recent experiences. Using the 
temporal difference means that the value function can be approximated even if 
the sequence of events, also known as the episode, is not yet finished. 
 
Hence, to formulate the update of the value function using TD methods 
mathematically, the expression from equation 1.11 is used. 
 
 
 𝑉(𝑠𝑡) ← 𝑉(𝑠𝑡) + 𝛼[𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡)] (1.11) 
 
 
The part [𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡)] is what is known as the TD error, which is the 
difference between the discounted approximated value of the next state 
𝛾𝑉(𝑠𝑡+1) and the value of the current state 𝑉(𝑠𝑡), with the actual reward from 
the transition 𝑟𝑡+1added up [8]. The multiplying factor α is a part that determines 
the rate of learning.  
 
Learning rate is a hyperparameter that needs to be tuned depending on the use 
case. A small learning rate is helpful for convergence to one value, but it also 
slows learning down as the value is not updated enough. It is essential to find 
the right balance between a small and a large learning rate for every problem. 
 
Q-learning takes this approach and applies TD to the Q-function as can be seen 
in the equation 1.12. 
 
 
 𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)] (1.12) 

 
 

In this equation, the equivalent to the TD error would be the expression 𝑟𝑡+1 +
𝛾𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡) where the 𝑟𝑡+1 is the reward of the transition, 

𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) is the best Q-value for the next pair of state and action and the 
last component 𝑄(𝑠𝑡, 𝑎𝑡) is the Q-value for the current state and action. With 
more and more iterations, the values get more accurate as they are based on 
real observations. 
 
The process of learning the best policy and discovering the Q-values for the 
pairs of states and actions is guided by a trade-off between exploration and 
exploitation. There are lots of exploration techniques such as Thompson 
Sampling [20], Curiosity based [7], etc. but the Epsilon Greedy technique [16] 
was used for this case as it is proved to work in diverse environments, including 
multi-agent settings [23, 25]. 
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1.6.2. The Epsilon-greedy 

 
Epsilon greedy [16] consists of modelling the trade-off with a parameter named 
epsilon that determines the probability of choosing random actions versus the 
actions dictated by the Q-value function.  
 

 

 

Fig. 1.2 Diagram representing the epsilon greedy strategy. 

 
 
A random number between 0 and 1 is generated, and if it’s less than the 
epsilon, a random action is chosen. On the contrary, if the random number 
exceeds the epsilon value, the best-known action is selected. The decision 
diagram of this process is represented in figure 1.2. 
 
Usually, the epsilon value is updated and at first it is high as the agent needs to 
explore the options by trial and error (exploration). Further onto the training the 
policy needs to be adjusted, thus more actions are taken under the policy 
(exploitation). In this case, rather than defining one epsilon, a maximum and 
minimum probability of exploration is defined accompanied by an exploration 
decay parameter 𝛥𝜀, to better control the trade-off between exploration and 
exploitation. At the end, a value of the epsilon is computed each learning step 
following the equation 1.13. 
 
 
 𝜀 =  𝜀𝑚𝑖𝑛 + (𝜀𝑚𝑎𝑥 − 𝜀𝑚𝑖𝑛)  ∗  𝑒− 𝛥𝜀· 𝑁 (1.13) 
 
 

In equation 1.13, the difference between 𝜀𝑚𝑎𝑥 and 𝜀𝑚𝑖𝑛 is multiplied by  𝑒− 𝛥𝜀· 𝑁, 
with 𝛥𝜀 being the exploration decay, and 𝑁 being the current number of steps in 
the training. This is all added to the minimum epsilon 𝜀𝑚𝑖𝑛. As the exponential is 
negative, the exploration starts with 𝜀𝑚𝑎𝑥 and ends with 𝜀𝑚𝑖𝑛. 
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1.6.3. Pseudo Algorithm 
 
The steps described above can be summarised in the pseudo algorithm from 
figure 1.3. The Q-function is initialized randomly and for each episode an action 
is chosen based on the epsilon greedy strategy. Once the action is performed 
and the new state and reward are obtained, the Q-function is updated. This 
process lasts until the next state is the desired state, or for a maximum number 
of steps T, like in figure 2.4. 
 
 

 

Fig. 1.3 Q-learning algorithm [24]. 
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CHAPTER 2. DEEP REINFORCEMENT LEARNING 

2. . 

2.1. Use of Neural Networks in Reinforcement Learning 

 
In complex systems, where the number of states is close to infinite, some 
elements of RL cannot be approximated and saved in tables. That’s when 
neural networks come in and deep reinforcement learning (DRL) starts. DRL is 
the branch of RL that uses neural networks to approximate either the value 
function, the policy function, the state transition function or the reward function 
[14]. 
  
Neural networks are based on the human brain structure, with processing 
nodes and connections that vary in intensity. To decide if a neuron is activated 
or not, an activation function is needed. In simple words, it transforms the input 
in the node to an output signal depending on the importance that is given to that 
information. The node adds the inputs multiplied by the weights, and bias if 
there is any, and puts it in the activation function to obtain an output that will be 
sent to the next layer. 
 
Neural networks are arranged in layers and weights (see 𝑤𝑗𝑚 and 𝑤𝑚𝑘 values in 

figure 2.1) that control the connections between the neurons. Normally the 
networks are feed-forward, which means that the connections only go from the 
input layer to the next layers. The weights are updated using backward 
propagation during training, when the error signal is sent from the output layer 
to the input layer, passing through the hidden layers, to adjust and strengthen 
the connections that worked and weaken the ones that did not. In figure 2.1 a 
diagram of this process is represented, where input signals and error signals 
are represented by purple arrows in opposite directions.  
 
 

 

Fig. 2.1 Diagram of a feed-forward neural network with backpropagation. 
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The idea of using neural networks for RL dates to 1955 when Farley and Clark 
[5] adjusted the parameters of linear threshold functions representing policies 
using early neural networks. Since then, neural networks have been appearing 
now and then in literature in topics related to RL However, it was not until 
Werbos [24] when the concept as we know today appeared, although much 
simpler.  Werbos used a backpropagation model to approximate the value of 
the policy and value function through TD methods showing promising results.  
 
Nevertheless, what made DRL explode in popularity was a paper published by 
DeepMind in 2015 [16] that showed models that could beat humans in Atari 
games. More about this paper is described in the following chapter.  
 
 

 

Fig. 2.2 Diagram of a simple deep reinforcement learning architecture. 

 
 

A simple diagram of a DRL architecture is shown in figure 2.2. Here the agent 
inputs the states and gets an action through the neural network that follows the 
policy 𝜋. The parameter 𝜃 represents the weights of the neural network. 
 
In short, DRL allows to apply RL to much more complex environments, but 
complexity is proportional to the computational power and time needed for the 
training process. By now, uncountable algorithms have been developed to suit 
many environments and a fair share of them is available in open-source 
platforms. 
 
 

2.2. Deep Q-learning 

 
As mentioned above, Mnih et al. or popularly referred to as the name of the 
company, Deepmind’s paper [16] about DRL in Atari games was ground-
breaking. In these games, the model learned its strategy through fully 
connected convolutional neural networks and the pixels of the screen as an 
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input. With a few hours of training, it could get scores comparable, if not better, 
than the best players of the game. This kind of performance and stability was 
never seen before and got the interest of many, which led to even more 
advances in the field. 
 
An essential contribution of the DeepMind’s paper was the storage of past 
experiences in what’s called a Replay Buffer and updating the target network 
less times than the behavioural one. 
 
The replay buffer is a storage space where experiences 𝑒𝑡 = (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) are 
saved in order to train the network with them. Instead of learning the current 
information in the timestep, this information gets saved in the replay buffer, and 
they are used for training in batches of random samples. What was highlighted 
in the paper is that random sampling helps to avoid biases that may occur in 
sequential environments, where the first few experiences may not be 
representative of the actual situation. 
 
To further explain the second innovation, it should be noted that the target 
network and the policy network can lead to divergence when the same, as they 
are used both for computing the target value and the predicted value and these 
can differ. However, using two networks, one for the policy and one to update 
the target, solves this issue, as the target value stays locked for some 
timesteps. This locked interval is determined by a hyperparameter. The policy 
neural network weights are then copied or averaged to the target network. 
 
Deep Q-Networks algorithm, popularly known by its acronym DQN, was first 
used by Mnih et al. [16]. It is a policy-free algorithm with a deep neural network 
used to estimate the Q-value function 𝑄(𝑠, 𝑎, 𝜃). As a neural network is used, 

the Q function depends also on the weight’s parameter 𝜃, like in equation 2.1. 
 
 
 𝑄(𝑠, 𝑎, 𝜃) ≈ 𝑄𝜋(𝑠, 𝑎) (2.1) 

 
 

In Deep Q-learning the error used for backpropagation is the loss function, 
which is the sum of the squared differences of the Q-values and the target 
values, which is expresses as in equation 2.2. 
 
 
 𝐿(𝜃) = 𝐸[(𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′, 𝜃) − 𝑄(𝑠, 𝑎, 𝜃))2] (2.2) 

 
 

The Q-function is represented by adding the weights parameter 𝜃. If the loss is 
minimised, it means that the network predictions and the target match. In order 
to minimise it, an optimization function is needed.  
 
An optimization function’s goal is to reduce the error in training. Lots of 
optimizers are available in open-source libraries, but the one that stands out the 
most in the community is Adam [12]. It combines different techniques of 
optimization into one method. It has been the most used one since its 
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appearance in 2014, and although it may have some problems in some use 
cases [19] there are improved versions of it that solve them [27]. 
 
The DQN algorithm is summarised in figure 2.3. It represents how the memory 
is filled with transition tuples stored in the replay buffer. The neural network 
learns by sampling this buffer randomly and getting batches that are used to 
update the policy network by using backpropagation of the loss to adjust the 
weights. Actions are selected through the epsilon greedy strategy, and they are 
executed in the environment, which starts the sequence again. Throughout the 
process, every determined period of steps, the weights from the target network 
are updated by using a soft or a hard approach. 
 
 

 

Fig. 2.3 DQN algorithm diagram. 

 
 
The process is also summarised in the following pseudo algorithm from figure 
2.3 used to code the learning function of this project. 
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Fig. 2.4 Deep Q-learning with Experience Replay algorithm [16]. 
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CHAPTER 3. TOOLS, METHODS AND METRICS 

3. . 
In the last two chapters the RL basic concepts and the mathematical reasoning 
behind it has been introduced. Moreover, the neural networks paper in DRL has 
been explained, to finish off with the DQN algorithm, which is what is going to 
be used in this project. 
 
The DQN algorithm will be used to train a centralized ATC that will learn to 
manage the actions of each plane with the goal of minimising conflict. The 
environment used is a simple 2D airspace simulator. 
 
Since the Rules of the Air (RoA) are a set of rules all aircraft need to follow (see 
section 3.2.6) to avoid unpredictability in the airspace. To apply them to the RL 
training, transfer learning will be used. 
 
Transfer learning consists of reusing knowledge from related tasks to update 
the current model, to train the neural network with already proven to work 
decisions.  
 
Consequently, the RoA have been applied in the first part of the project by Lidia 
Fuentes Coll [6]. In this part of the work, a DRL policy has been developed and 
a comparison between the DRL policy on its own and the policy including 
transfer learning (DRLT) has been made. 
 
 

3.1. Tools 

 

3.1.1. OpenAI Gym 
 
OpenAI Gym is a developer’s environment for RL and contains lots of RL 
environments, like the Atari games from DeepMind's paper. The airspace 
simulator used in this project was created in this environment [2]. 
 
 

3.1.2. Pytorch 
 
Pytorch [18] is an open-source DRL framework in which the project is 
developed. Pytorch is a pythonic framework launched in 2016 by Facebook with 
the promise of a flexible, easy to use and fast tool. It kept its promise mainly by 
having two features, the first one being CUDA support, which takes advantage 
of the power of graphic processing units to train the RL models. The second 
one is by using dynamic computational graphs, that makes changing the order 
of operations possible at runtime.  
 
Pytorch provides the functions necessary to define custom deep neural network 
models, its activation functions and optimizers among other functionalities. The 
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base of the framework is a class called Tensor, a multidimensional array where 
input and output data of the neural networks are stored. It is similar to a NumPy 
array but is optimised for GPU processing. 
 
Although it is still a young competitor compared to other alternatives like Keras, 
its popularity arises among the research field. It was chosen for this project for 
its pythonic nature and thus simplicity in use. Even though it is simple to use, it 
has many useful functionalities implemented. 
 
 

3.1.3. Weights and Biases 
 
Weights and Biases (also known as WandB) is the platform used to visualise 
the progress of the training and save it. It is a cloud-based application that 
allows users to represent the desired parameters in graphs, group them in a 
dashboard, allows in-depth comparisons and report creation. Moreover, it has 
the capability to send a notification through Slack when the run is finished, it lets 
you save the console output and the last commit in GitHub that corresponds to 
the training run code.  
 
The first considered platform for graphical representation of the training was 
Tensorboard due to its popularity, but WandB has wider features. It facilitates 
the use of different PCs with cloud storage of the information, allows sharing 
projects with a team, the comparison of runs is much easier and has many 
graph types to choose from. 

 
 

3.2. Methods 

 

3.2.1. The Environment 
 
The environment for this project was provided by Eurocontrol as part of the 
Innovation Challenge 2022. As aforementioned, it was developed in OpenAI 
Gym, and it includes the initialization, and the step, reset, close and render 
functions as well as place to fill the observation, reward and resolution 
functions. 
 
The environment is a multi-agent 2D environment with the number of flights as 
an input. The size and shape of the airspace sector is variable, and the 
minimum and maximum area are constants that can be defined. The shape of 
the sector changes each episode, which finishes when all the flights get to an 
exit point of the sector, or the number of steps reaches its maximum. 
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Fig. 3.1 Alert zone and conflict zone with its respective radiuses. 

 
 

Two parameters defined for conflict detection and resolution are the minimum 
distance 𝑑𝑚𝑖𝑛 and the alert distance 𝑑𝑎𝑙𝑒𝑟𝑡. The minimum distance is the radius 
which determines the conflict area of a flight, this is, the area not to enter, and 
the alert distance is the same but for the alerts. Both areas are represented in 
figure 3.1. Note that 𝑑𝑚𝑖𝑛 < 𝑑𝑎𝑙𝑒𝑟𝑡. 
 
 
3.2.1.1. Flights 

 
The flights are the agents of the environment that are initialised with a random 
speed in a particular range and an arbitrary heading.  

 
Each flight is defined with the following parameters: 
 

• position: two-dimensional coordinates in Euclidean space (𝑥𝑖 , 𝑦𝑖) 

• speed 𝑣𝑖 

• track 𝜒𝑖 

 

And these parameters change every timestep following equation 3.1 for 
changes in x axis, 3.2 for changes in the y axis, 3.3 for the changes in speed 
and 3.4 for the change in track. In these equations 𝛥𝑡 is the timestep, 𝛥𝜒 is the 
track change and 𝛥𝑣 is the speed change. 
 
 
  

 

(3.1) 

  
 

(3.2) 

 
 

(3.3) 
 

  (3.4)                                                                                                                                                                                           
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 Moreover, there are several elements defined for each episode: the entry point 
(𝑥𝐸 , 𝑦𝐸), the exit point, also called the target (𝑥𝑇 , 𝑦𝑇), the bearing 𝜓, the drift 𝛿 
and the distance to the target 𝑑𝑡𝑎𝑟𝑔𝑒𝑡.  

 
The rendering function plots the environment simulation and represents the 
parameters in the way symbolised in figure 3.2 
 

                                                                                                                                                        

 

Fig. 3.2 Environment rendering with the airspace sector and the flights on the 
right and an individual sector with the components of the representation named. 

 
 
It is worth mentioning that the position of the aircraft is contained in the airspace 
sector, and they start and finish the simulation in its border. When the aircraft 
exits the sector, it is not considered anymore in the episode. 
 
The reinforcement learning model will be a cooperative environment that 
applies the same reward function for all the agents. Air traffic control is one of 
the most popular examples in cooperative multi-agent environments, since the 
flights need to cooperate in order to maintain separation between them. A DQN 
algorithm will be used, and the states, actions and reward will be shaped in a 
way that corresponds to the policy following the Rules of the Air to make the 
learning easier. 
 
The code has been developed in Python and is available on GitHub in this link: 
https://github.com/vera15380/conflict-avoidance-TFG-WP.git. The code is 
accompanied by an explanation of its architecture in appendix B. 

 
 
3.2.2. DQN 

 
The DQN algorithm has been implemented on top of the OpenAI Gym 
environment to reduce the number of conflicts through reinforcement learning. 

https://github.com/vera15380/conflict-avoidance-TFG-WP.git
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Although it is a multi-agent environment, the DQN algorithm is applied 
individually to each aircraft since the observations made it possible to use the 
same neural network for all the aircraft, because of using relative values. The 
actions are then joint into one tensor and passed to the environment. 
 

 
3.2.2.1. Replay Buffer 
 
The replay buffer is modelled as a double-ended queue with a maximum 
capacity as an input. The functions to append transitions to the buffer, to extract 
a sample batch of random indexes and to pop the last transition are written and 
available to use. 

 
In order to append a transition, a tuple containing the state, the action, the 
reward and the next state needs to be created first. 
 
 
3.2.2.2. Neural Network 
 
A full dense two-layered feedforward network is used with the input size equal 
to the observation space shape and the output size equal to one as it only has 
to output one action. The hidden neurons are an input of the function and can 
be adjusted to find better performance.  

 
class NeuralNetwork(nn.Module): 
   def __init__(self, n_obs_individual, n_output, n_hidden): 
       super().__init__() 
       self.input = nn.Linear(n_obs_individual, n_hidden) 
       self.hidden = nn.Linear(n_hidden, n_hidden) 

self.hidden_2 = nn.Linear(n_hidden, n_hidden) 
       self.output = nn.Linear(n_hidden, n_output) 
 
   def forward(self, x): 

x = self.input(x) 
x = self.hidden(x) 
x = self.hidden_2(x) 
x = self.output(x) 
x = F.relu(x) 
return x 

 

 
3.2.2.3. Action Selection 
 
The action selection function is based on the epsilon-greedy strategy, so the 
equation 1.13 is used to update the value of the exploration rate with the 
exploration range and decay. When a random number generated each step is 
more than the exploration rate, the policy action is chosen, but when it is less, a 
random action is chosen.  
 
def select_action(self, obs): 
   self.exploration_rate = self.exploration_min + (self.exploration_max - \   

self.exploration_min) * math.exp(-1. * self.n_steps * 
\self.exploration_decay) 
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   if random.random() > self.exploration_rate: 
       q_eval = self.policy_net.forward(torch.Tensor(obs)) 
       action = q_eval[0].max(0)[1].cpu().data.item() 
   else: 
       action = random.randint(0, self.action_size - 1) 
 
   self.n_steps += 1 
   return action 
 

 

The returned action is joined to actions from all the flights in a list and finally 
given to the environment to perform a step in the main.py file. 
 
 
3.2.2.4. Learning Function 
 
The learning function is based on the pseudo algorithm provided in section 
1.6.3. First a sample of the replay buffer is taken and divided into states, 
actions, rewards and next states. These arrays are converted to tensors, and 
the unsqueeze function is used to get the correct dimensions of the tensors, in 
order to be able to operate with them. 
 
Then, the expected Q-values are extracted from the local network and the Q-
values for the next states are taken from the target network. 
 
The Q-targets are computed with Bellman’s equation and then the loss is 
computed as the smooth L1 Loss [18]. The loss is minimised, and the backward 
propagation is made. The target network is updated every chosen number of 
steps self.target_update with a soft update. 

 
 
# Getting sample from replay buffer 
states, actions, rewards, next_states = 
self.replay_buffer.sample(self.memory_sample_size) 
 
# Convert the batches to torch tensors 
rew_s = torch.FloatTensor(rewards).unsqueeze(-1)   
obs_s = torch.FloatTensor(np.array(states))    
actions_s = torch.LongTensor(actions).unsqueeze(-1)  
next_obs_s = torch.FloatTensor(np.array(next_states))  
 
# Get expected Q values from local model 
q_policy = self.policy_net(obs_s).gather(1, actions_s) 
 
# Get max predicted Q values (for next states) from target model 
q_next = (self.target_net(next_obs_s).detach()).max(1)[0] 
 
# Compute Q targets for current states 
q_target=rew_s+self.gamma*q_next.view(self.memory_sample_size, 1) 
 
# Compute the loss and minimise it. 
loss = self.loss_func(q_policy, q_target) 
self.optimizer.zero_grad() 
loss.backward() 
self.optimizer.step() 
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# Update target network 
if self.n_steps % self.target_update == 0: 
     self.soft_update() 
return loss 
 
 
3.2.3. States 
 
In order to describe the situation of the flight, states in numeric form are 
needed, and preferably normalised for better performance of the neural 
network. Each flight will have its own states and the observations describing the 
status of other flights near it. 

 
The state of the ownship contains the distance to the target 𝑑𝐸, the distance to 

the closest flight 𝑑𝑐𝑙𝑜𝑠𝑒𝑠𝑡, both divided by the minimum distance 𝑑𝑚𝑖𝑛, the track 
𝜒𝑖, the bearing 𝜓𝑖, and the normalised airspeed 𝑣𝑖̅, which is defined by the 
expression in equation 3.5 as in [2]. 
 
 

 𝑣𝑖̅ =
𝑣𝑚𝑎𝑥 − 𝑣𝑖

𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛
 (3.5) 

 
 
The vector for these observations will result in equation number 3.6. 
 
 
 

 

(3.6) 

 

 
The observations implemented regarding other aircraft are local and relative 
observations. The idea behind it was to reflect the conflict classification by the 
Rules of the Air, which are explained more in detail in section 3.2.6. The 
representation is done through dividing a certain range around the aircraft into 6 
sectors, with 0º corresponding to the heading of the aircraft, and symmetrically 
from there: 

• 0º-15º range corresponding to the head-on conflicts. 

• 15º to 110º corresponding to the converging conflicts. 

• 110º to 180º corresponding to the overtaking conflicts. 

These sectors are represented in figure 3.3 where the flight is in the centre and 
the detection zone is painted depending on the type of the potential conflict 
sector. 
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Fig. 3.3 Sector graphic representation. 

 
 

Note that from now on the ownship will be the flight in the centre of the 
detection zone and intruders will be the ones that trespass this zone. 

 
From each of these sectors, the closest intruder is chosen. The observations 
are a matrix where each row corresponds to one intruder per sector, starting 
from 0º and going clockwise. At the end, also some observations about the 
ownship are concatenated to this matrix. The observations for each row are 
formalised in equation 3.7. 
 
 

 

(3.7) 

 
 

Where dCPA is the minimum separation that will occur between two aircraft and 
tCPA is the time until the aircraft will be in that position. They are computed using 
the formulas found in [17]. 𝛽𝑖𝑗 is the relative angle between the heading of the 

ownship and the intruder, 𝑑𝑖𝑗 is the distance between both flights, 𝑑𝑚𝑖𝑛 is the 

conflict range and 𝑣𝑟𝑖𝑗
 is defined as in equation 3.8. 

 
 
 

 (3.8) 
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The observation matrix for all the sectors will be the one in equation 3.9. 
 
 
 

 

(3.9) 

 
 
For better understanding let’s follow with a situational example from figure 3.4. 
 
 

 

Fig. 3.4 Situational example of an ownship and 4 intruders penetrating different 
sectors from the observations. 

 
 

The distribution of aircraft found in figure 3.4 contains an ownship and 4 
intruders, intruder 1 and 2 in sector 2; intruder 3 in sector 4; and intruder 4 in 
sector 6. However, as 𝑑1 < 𝑑2, only intruder 1 will be considered in the 
observations for this particular ownship in that sector. The rows of the state 
matrix occupied by the intruders are highlighted in figure 3.5. The other rows will 
be filled with high numbers to give the sensation that the flight is far away.  
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Fig. 3.5 The observation matrix with the intruders’ rows highlighted in the 
corresponding colour. 

 
 

This matrix is joined with the ownship states. The overall matrix will then be 
flattened, converted to a tensor and passed to the neural network. 

 
 
3.2.4. Reward 
 
The reward function has been a real challenge as it could not deviate from the 
main goal of the project, but it must influence the behaviour of the aircraft so 
that they end up following a similar route to the one that was planned initially 
and get to the target. After many versions and attempts, a simple reward 
function was what worked best for this case. 
 
The reward function considers the current track of the aircraft and if it has any 
conflicts or alerts in a timestep.  
 
The overall function is formalised below, in equation 3.10. 
 
 
 
 

 

(3.10) 

 
 
If the track coincides with the bearing (so the aircraft is going to the target), 
there’s a bonus of 𝑘𝑡𝑟𝑎𝑐𝑘 = 0.1 . If the aircraft has a conflict or is on alert, there 
is a penalty. The penalty is divided into two factors: k and g. The k is the 

constant that determines what importance to give the alerts and the conflicts. in 
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this case the alerts have an importance of 1 and the conflicts of 10. The g is the 

gravity factor, that computes the penetration distance of each zone (alert or 
conflict) and divided by the radius of the respective zone (dalert or dmin). 

 

 
3.2.5. Actions 
 
The action space consists of 𝑁 discrete actions, which are: 

• Stay with the same configuration. 

• Point to target, so the track equals the bearing 𝜒𝑖 = 𝜓𝑖. 

• Change track with angle 𝛼, 𝛼 defined by the expression in equation 3.11. 

 

 

 𝛼 =  {𝑥|𝑥 𝜖 ± 𝐾 ·  𝛥𝛼} 𝑤ℎ𝑒𝑟𝑒 𝐾 = {𝑦 𝜖 ℕ|𝑦 ≤  𝑁 − 2} (3.11) 

 

 

• Where 𝑁 is the number of discrete actions and 𝛥𝛼 is the angle change 
interval allowed. If 𝛥𝛼 is equal to 15º for example, then the turns would 
be of [±15º, ±30º, . . . , 15º · 𝐾]     

• Change airspeed ±𝜈 knots. 

 
The number of its action and its resolution is presented in table 3.1. 

 
 

Table 3.1. Equivalence of the action number in the code and the resolution. 

 
 

Action number Resolution 

0 No change in speed or track. 
1 Change track to bearing 
2 Turn +15º 
3 Turn +30º 
4 Turn +45º 
5 Turn +15º 
6 Turn +30º 
7 Turn +45º 
8 Change speed +5 kt 
9 Change speed -5kt 

 
 
3.2.6. Rules of the Air Policy 
 
A policy was developed as part of another final degree project [6] with the use 
of solely conditionals and not RL. This policy follows the Rules of the Air, which 
classifies the conflicts in 3 categories and has different resolutions that must be 
followed in each case. Moreover, this policy also considers the right-of-way rule, 
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that gives preference to one of the aircraft so only one aircraft must manoeuvre 
in case of a potential conflict situation. 

 
The 3 categories and the actions that should be taken in each case are about to 
be specified, according to the general operating flight rules [4]. The 
classification depends on the relative angle from the ownship in which the 
conflict takes place, which can be seen in figure 3.3. 

 

• Head-on. Both aircraft should modify the heading to the right. 

• Converging. the aircraft on its right has the right-of-way. 

• Overtaking. The aircraft that is being overtaken has priority and 

the one overtaking should deviate its heading to the right. 

 
This policy uses a prediction of the area where the loss of well-clear will take 
place, computes the turn angle necessary for a safe avoidance manoeuvre both 
to the left and right and chooses the largest angle of the two in order to keep 
away from the conflict. The original policy had a continuous angle output, but 
this project adapted it to a discrete version with limited performance. 

 
In the beginning, the policy had no turn limitation, with the aircraft having the 
possibility to turn maximum 180º and with a continuous angle. In order to adapt 
it to a discrete algorithm, the actions have been limited to turns of 
±15º, ±30º  and ±45º. The conflict resolution capacity of the policy has not 
been affected much by it, as the aircraft that turned more than 45º before, now 
do it too, only in more steps. However, precision has been lost as the actions 
are now discrete and the angles must be rounded up. Moreover, the new action 
options also include airspeed changes, which is not considered in the RoA 
policy. 

 
 

3.3. Metrics 
 
Like in any project, it is necessary to establish the metrics in which the success 
of the DQN training will be measured. In this way, a glimpse of the status of the 
simulation and if the objectives established at the introduction are reached is 
going to be based on facts.  

 
The utmost important objective to measure the success of is the conflict 
resolution, so metrics for it will be the most relevant.  

 
Conflicts and other metrics will be displayed in plots. To see the evolution the 
graphs will have in the x-axis the number of steps and the y-axis is the metric 
mentioned in each section. A graph setup in WandB for each graph is similar 
and can be seen in figure 3.6, and most of the line plots are smoothened by 
applying an exponential moving average in order to get a better understanding 
of the evolution of the training even though some results may oscillate quite a 
bit at first. The original line appears as a faded-out colour and the smoothed-out 
version is a more vivid colour. 

 



28                                                                                      Aircraft-to-Aircraft separation based on Reinforcement Learning 

 

 

Fig. 3.6 Graph setup interface in WandB with a sample graph. 

 
Table 3.2 presents the metrics that will be commented in more detail in sections 
3.3.1 and 3.3.2 with its corresponding name in the code. 
 
 
Table 3.2. Metrics and their name in the code. 
 

Metric Name in the code 

Success rate (evaluation) Success_rate_eval 

Reward average avg_rew_ep 

Aircraft Conflicts n_real_conflicts_episode 

Simultaneous conflicts n_conflicts_ep 

Minimum separation distance critical_distance 

Number of turns n_turns_ep 

Distance left to target distance_left_to_target 

Extra distance flown extra_distance 

 
 
3.3.1. Metrics Used for the Evaluation of the Training 

3.3.1.1 Success rate of the evaluation 

The success rate of the evaluation will be the percentage of episodes that are 
successful (with no conflicts) after training the DQN network and giving no 
exploration options to the neural network. 

 

3.3.1.2 Averages 

Since in the evaluation the exploration process is gone, the metrics to measure 
its performance will be the averages of the metrics mentioned above related to 
the training. 

 
Moreover, these parameters will be compared between runs to tune the 
hyperparameters (see section 4.2) and obtain the simulation with the best 
results. The graph to compare these results will be a parallel representation of 
the most relevant parameters. For example, in figure 3.7 we can see a 
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comparison between the results of training with different learning rates, just two 
for the purpose of the example. 
 
The first vertical axis of the graph represents the hyperparameter that is 
currently being compared, in this case the learning rate. The following four 
vertical axes are the success rate of evaluation (%), the average reward per 
episode, the average number of turns per episode and the average aircraft 
conflicts per episode, correspondingly. The graph represents the relationship 
between the values and allows a quick evaluation of the quality of the simulation 
while varying a chosen hyperparameter.  
 
 

 
Fig. 3.7 Parallel graph example from WandB. 

 
 
The results of the tuning will be detailed in section 4.2.  

 
 
3.3.2. Metrics Used to Understand the Evolution of the Training 

3.3.2.1 Reward per episode 

 
The reward is one of the most important metrics in RL since it determines what 
are the good and bad decisions that an agent can take.  
 
To compute the reward per step, the equation 3.10 is used. Its average is the 
sum of all the rewards for the flights that are not done in the episode and 
dividing the sum by the number of these flights.  
 
The reward for one episode is the sum of the average reward obtained by the 
agents each step. 
 
The reward graph is essential as it tells if the agents are learning or not. Ideally, 
at first the reward has low values and rises until reaching a stable value. 
 
 
rew_without_nan = [x for x in rew if np.isnan(x) == False] 
 
    if len(rew_without_nan) != 0: 
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        rew_average = np.average(rew_without_nan) 

… 
rew_episode += rew_average 

 
 
Looking at the code, where rew is the array of rewards for each flight, first the 

empty reward from the flights that are already done are deleted, and then the 
average of the array is computed. At the end of each step, the reward average 
is added to the episode reward. 
 
 
3.3.2.2  Aircraft conflicts for episode 

 

The aircraft conflicts for one episode will be the number of the pairs of flights 
that violated each other’s conflict areas, without considering that this conflict 
may last more than one step, so if the conflict is not resolved in the next 
timestep, it does not add it to the number of aircraft conflicts, it just adds 
conflicts that are new and were not considered before. 
 
 
3.3.2.3 Simultaneous conflicts each episode 

 

This parameter measures the pairs of flights that are in conflict in each step and 
episode of the simulation.  

 
However, in contrast to the aircraft conflicts, this metric resets its memory each 
timestep, so a conflict that appeared in one step will be counted again if it is not 
solved in the next step. The conflicts each episode are the sum of the number 
of conflicts per step. 
 
To further explain the difference between the first and the second metric, the 
code snippet below is used as a guide. 

 
 

for i in range(self.num_flights - 1): 
  if i not in self.done: 
     for j in range(i + 1, self.num_flights): 
        if j not in self.done: 
   distance=self.flights[i].position.distance(self.flights[j].position) 
   distance_NM = distance * u.m 
              if distance < self.min_distance: 
                 self.conflicts.update((i, j)) 
                 self.n_conflicts_step += 1 
                 self.n_conflicts_episode += 1 
                 self.matrix_real_conflicts_episode[i, j] = True 
 

 
Several conflict metrics are defined: n_conflicts_step, 
n_conflicts_episode and matrix_real_conflicts_episode. The first two 

correspond to the metric described in this subsection, adding up 1 when a 
conflict appears, without caring what flights are in conflict and if it was there 
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before. The loop for detecting the conflicts does not run along the pairs of flights 
twice, so conflicts between aircraft 𝑖 and 𝑗 are not being repeated. 

 
In contrast to this method of counting conflicts, 
matrix_real_conflicts_episode, that corresponds to the first metric, is a 

boolean quadratic matrix with a size equal to the number of flights. At first the 
whole matrix is False, and if a conflict is detected between flight 𝑖 and flight 𝑗, 
the cell matrix_real_conflicts_episode[i,j] turns True. So, during an 

episode only one conflict between a pair of flights can be counted, even if it 
repeats itself over many steps. At the end of the episode the True values are 
counted, and it gives the number of aircraft conflicts during that period. 
 
 

3.3.2.4 Minimum separation distance for episode 

 
The minimum distance for an episode will be the lowest distance between two 
aircraft detected during an episode and it will be measured in nautical miles 
(NM).  
 
 

3.3.2.5 Number of turns taken per episode 

 
The number of turns appears as an attribute of the class flight. It is updated 
every step, so if a flight has turns it turns the parameter to 1. Then the attributes 
are summed up to obtain the number of turns each step, and at the end of the 
episode, the number of turns each episode. 
 
It is an important factor as if it’s too high it gives us the alert that the aircraft may 
be spinning around and not advancing to the target. 

 
 
3.3.2.6 Distance left to target per flight for episode ending 

 

After each episode, if there are any aircraft left that are yet to arrive at the 
target, the distance left for them to finish is added and saved. This informs if the 
aircraft are finishing the episodes and advancing to the target, and it is useful to 
detect spinning aircraft in the same place during all the steps of the episode. 

 
 

3.3.2.7 Extra distance per flight for episode ending 

 

This parameter tells if the deviation of the original route was significant or not. It 
is the difference between the distance from the entry point to the exit point in a 
straight line and the distance made by the flight. 
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CHAPTER 4. RESULTS. 

4  

4.1. Simulation Setup 
 
The simulation parameters chosen for the simulations are the ones presented in 
table 4.1. The number of flights is 10 as it represents a high workload for an air 
traffic controller (ATCO). Several values of the other parameters have been 
tried and the ones that optimised the results appear in the table and will be used 
during all the training. 

 
 

Table 4.1. Simulation parameters. 

 
Number of flights 10 

Area range [15625, 40000] NM² 

Speed range [400, 500] kt 

Maximum episode length 350 steps 

Minimum distance 5 NM 

Alert distance 15 NM 

Detection radius 30 NM 

Angle change 𝛥𝛼 15º 

Speed change 𝛥𝜈 5 kt 

Discrete actions number 10 

Exploration range [𝜀𝑚𝑖𝑛 , 𝜀𝑚𝑎𝑥 ] [0.1, 1] 

Target update 10 

 
 

4.2. Hyperparameter Tuning 
 

With the parameters from table 4.1 steady, in addition to the ones that can be 
seen in table 4.2. the hyperparameters of the DQN have been tuned. In order to 
do this, the hyperparameter tuned in that moment was the only variable 
parameter. The other ones stayed constant during the different runs of the 
code. The value with the best results from each hyperparameter is selected and 
they are put together in one simulation to validate if they work altogether.  
 
 

Table 4.2. Parameters for hyperparameter tuning simulations. 

 

Episodes 1000 

Maximum replay buffer capacity 100 
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Batch size 64 

Gamma 𝛾 0.75 

Tau 𝜏 0.1 

Learning rate 𝛼 0.001 

Exploration decay 𝛥𝜀 0.00001 

Hidden neurons 128 

 
 
Hyperparameter tuning can be tricky as oftentimes parameters depend on each 
other and work better in certain combinations. There is software that facilitates 
parameter tuning, however, open-source alternatives have not been found for 
this project, so the decision of doing it by this type of comparison has been 
made. While evaluating the results different aspects apart from the average 
reward must be considered. 
 
Tables with average results from the evaluation of each parameter appear in 
appendix C. 

 
 

4.2.1. Gamma 
 
Although gamma is not considered a parameter in some research works, but 
more as a parameter that depends on the purpose of the project, its impact on 
the training has been checked. As mentioned before, it sets the importance of 
the long-term reward rather than the instant reward, with 0 being only caring 
about the immediate reward and 1 only caring about the long-term outcome. 
 
 

 

Fig. 4.1 Reward per episode graph comparison depending on gamma. 

 
 

Reward 



34                                                                                      Aircraft-to-Aircraft separation based on Reinforcement Learning 

 

Fig. 4.2 Parallel graph of gamma, success rate, average reward, average 
number of turns and average real conflicts per episode. 

 
 
From figure 4.2, it can be seen that the success rate was the highest for 𝛾=1.00, 
but looking at the other columns, the number of turns taken is an abnormally 
high value, which indicates that the aircraft were just spinning in place. In figure 
4.1 the two gamma values that outperform the rest in terms of reward are 
𝛾=0.98 and 𝛾=0.99. However, looking at the next graph 𝛾=0.98 stands out the 
most if 𝛾=1.00 is discarded: with a higher success rate, less conflicts and a 
better reward. 

 
 
4.2.2. Tau 
 
Tau is the soft update coefficient that indicates the intensity of the update of the 
target network. A 𝜏=0 would mean that no update is done, 𝜏=0.5 would mean an 
average between the values of the policy and target nets, and 𝜏=1 equals to a 
hard update, so copying the weight averages from the policy to the target neural 
network. 
 
 

 

Fig. 4.3 Reward per episode graph comparison depending on tau. 
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Fig. 4.4 Parallel graph of tau, success rate, average reward, average number of 
turns and average real conflicts per episode. 

 

 
Without so much difference as gamma, tau values 𝜏=1.0 and 𝜏=0.8 are the most 
promising referring to figure 4.3. Looking at figure 4.4, the decision to make a 
hard update is taken, as it leaves fewer real conflicts and a better learning curve 
than 𝜏=0.8, while having nearly the same success rate and average reward. 
 
 

4.2.3 Hidden neurons 

 
The hidden neurons are the number of nodes that each hidden layer of the 
neural network will have. Contrary to the input and the output layers, this one 
can be adjusted. If the neurons are overestimated, the network will act from 
memory and not by generalising. On the other hand, if the number chosen is too 
small. it will not be able to learn the patterns of the resolution as it will be too 
complex [10]. 
 

 

Fig. 4.5 Reward per episode graph comparison depending on the hidden 
neurons. 
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Fig. 4.6 Parallel graph of the hidden neurons, success rate, average reward, 
average number of turns and average real conflicts per episode. 

 
 
With the results in hand, considering the graph of the reward during training in 
figure 4.5 and the averages of the evaluation from figure 4.6, 64 hidden neurons 
have been selected as the number of nodes of the hidden layers of the neural 
network. The reward was the highest in evaluation, the curve of the reward 
during training was correct and the number of conflicts diminished better than in 
other simulations. 
 
 

4.2.4   Learning Rate 

 
The learning rate defines how quickly the model stops learning and is 
considered adapted to the problem: if it takes big or slow steps to optimise the 
loss function. If the learning rate is too small, it will take lots of time to find the 
optimal solution. If it’s too big, it can lead to sudden changes and disruption in 
the learning process, and the neural network to diverge.  
 
 

 

Fig. 4.7 Reward per episode graph comparison depending on the learning rate. 
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Fig. 4.8 Parallel graph of the learning rate, success rate, average reward, 
average number of turns and average real conflicts per episode. 

 
 
The value of the learning rate with the best results without being too small is 
α=0.0001. Other good results are α=0.1 and α=1e-10 according to figure 4.7Fig. 
4.7, as they stabilise at a higher reward value. The second value is discarded 
as the learning would be too slow, and between α=0.1 and α=0.0001, the latter 
gets better results in evaluation according to figure 4.8. 
 

4.2.5  Batch Size 

 
The batch size is the number of samples taken from the replay buffer and 
trained to the neural network at once. Smaller batch sizes could lead to 
instabilities in the model, but the larger ones tend to generalise poorly [11]. 
 
 

 

Fig. 4.9 Reward per episode graph comparison depending on the batch size. 
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Fig. 4.10 Parallel graph of the batch size, success rate, average reward, 
average number of turns and average real conflicts per episode. 

 
The batch size maximum number that could be tested is 64 as the memory size 
and the maximum episodes of the simulation limit it. From these runs, a batch 
size of 64 was the one with the best results overall. From figure 4.9 it can be 
told that it is the one with the highest reward throughout training, and from figure 
4.10 the results 

 
After the parameter tuning the results have been wrapped up in table 4.3, which 
collects the parameters that wil be used in the simulations described next. 
 
 

Table 4.3. Parameters after hyperparameter tuning. 

 

Episodes 50000 

Maximum replay buffer capacity 10000 

Batch size 64 

Gamma 𝛾 0.98 

Tau 𝜏 1 

Learning rate 𝛼 0.0001 

Exploration range [𝜀𝑚𝑖𝑛 , 𝜀𝑚𝑎𝑥 ] [0.1, 1] 

Exploration decay 𝛥𝜀 0.0001 

Hidden neurons 64 

Target update 10 

 
 

4.3. Deep Reinforcement Learning Results 
 
The DRL approach is the one only using a DQN algorithm. The results of the 
training and the test are going to be presented below. 
 
In figure 4.11 the reward evolution throughout the training can be seen, that 
stabilises at -10. The simultaneous conflicts graph seen in figure 4.12 shows a 
decrease in conflicts oscillating between 10 and 20 conflicts. The minimum 
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separation seen in figure 4.13 distance has variable values, but the average 
does not meet the requirement of conflict avoidance of a minimum separation 
distance of 5 NM. 

 
 

 
Fig. 4.11 Average reward per episode. 
DRL. 

 

Fig. 4.12 Simultaneous conflicts per 
episode. DRL. 

 

 
Fig. 4.13 Min. separation distance per 

episode. DRL. 

 
Fig. 4.14 Aircraft conflicts per episode. 

DRL. 
 

 
Fig. 4.15 Average distance left to 
reach target per episode. DRL. 

 
Fig. 4.16 Extra distance per episode. 

DRL. 
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Fig. 4.17 Number of turns per episode. 

DRL. 

 
Fig. 4.18 Exploration rate. DRL. 

 
 
 
The aircraft conflicts in figure 4.14 do not decrease notably, but the resulting 
average is of 1.78. As for the distance left to the target by the flights that did not 
finish the episode (see figure 4.15), it reaches a peak that decreases once the 
learning rate stabilizes (see figure 4.18). The same happens with the extra 
distance seen in figure 4.16, it follows the shape of the exploration rate graph 
from figure 4.18 except for the peak from the start. 
 
The turns per episode diminish during training but are variable depending on 
the situation. However, the value is not too high to discard this evaluation from 
possible aircraft turning too much and spinning around, an issue that has been 
found in some simulations. 

 
 
4.4. Reinforcement Learning with Transfer Learning Results 
 

In all the graphs below related to Deep Reinforcement Learning with Transfer 
Learning (from now on referred to as DRLT policy) there is a clear separation 
from where the policy stopped applying the RoA to when only DQN decisions 
were applied. In figure 4.19 the reward had positive values of 10 until reaching 
the point of change that diminishes the reward to -20.  

 
 

 
Fig. 4.19 Average reward per episode. 

DRLT. 

 
Fig. 4.20 Simultaneous conflicts per 

episode. DRLT. 
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Fig. 4.21 Min. separation distance per 

episode. DRLT. 

 

 
Fig. 4.22 Aircraft conflicts per episode. 

DRLT. 
 

 
Fig. 4.23 Average distance left to 
reach target per episode. DRLT. 

 

 
Fig. 4.24 Extra distance per episode. 

DRLT. 

 

 
Fig. 4.25 Number of turns per episode. 

DRLT. 

 
Fig. 4.26 Exploration rate. DRLT. 

 
 

The simultaneous conflicts graph seen in figure 4.20 shows nearly no conflict 
until DQN is applied, which makes the conflicts rapidly increase conflicts. The 
minimum separation seen in figure 4.21 exceeds the average of 5 NM for 
conflict avoidance but it is quickly lost.  

The aircraft conflicts in figure 4.22 do not inherit the values of the RoA policy. 
As for the distance left to the target by the flights that did not finish the episode 
(see figure 4.23), the extra distance from figure 4.24 and the number of turns in 
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figure 4.25, they are increased abruptly when the DQN point is reached. The 
exploration rate is only used once the TL starts and decreases fast to avoid the 
loss of learning with random choices (see figure 4.26) but it is not achieved. 

To sum up, the transfer learning of the RoA did not improve the results of the 
DRL solution. 
 
 

4.3 Comparison of DRL, DRLT, RoA and the baseline 
simulations 

 
The two approaches studied, DRL and DRLT, are going to be compared to the 
RoA policy developed in [6] and the baseline environment which has no policy 
applied. 
 
In figure 4.27 the average reward per episode for the 4 policies is represented, 
where it can be clearly seen that the RoA has the best results. The DRL is the 
second-best reward at the end of the simulations, and DRLT had good results 
at first that decay with the DQN application and ends up at the same level as 
the baseline environment. 
 
 

 

Fig. 4.27 Average reward per episode comparison between DRLT, DRL, RoA 
and the baseline environment. 

 
 
As for the evaluation of DRL, the values in table 4.4 show an increase in reward 
and the conflict avoidance compared to the baseline. Nonetheless, these results 
are not an extreme enhancement and could not be applied to a real ATC 
problem. As for a visual evaluation, in some episodes the aircraft avoid conflict 
perfectly but oftentimes the turns that they make generate conflict that did not 
exist at first. When the aircraft are in conflict, they show that they can get out of 
it quickly. 
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Table 4.4. Evaluation results and comparison with the baseline environment 
without applying any policy, with green representing an improvement and red a 
worse result than the baseline environment. 

 
Metrics (avg/episode) Baseline DRL Baseline 

Difference  
DRLT Baseline 

Difference 

Reward -17.026 -11.565 ↑ 32.07%  -24.935 ↓ 46.45% 
Dist. left to target (NM) 7.78·103 1.80·105 ↑ 2222.01% 7.05·105 ↑ 8973.79% 
Extra dist. (NM) 0.000 71.895 ↑ 71.895 163.254 ↑ 163.25 
Min. separation dist. (NM)  3.176 3.186 ↑ 0.03% 2.814 ↓ 11.40% 
Nº of turns 0.00 1299 ↑ 1299 217.01 ↑ 217.01 
Aircraft conflicts 1.81 1.78 ↓ -1.66% 1.73 ↓ -4.42% 
Simult.conflicts 15.73 14.62 ↓ -7.06% 16.68 ↑ 6.04% 
Success rate (%) 19 19 0% 15 ↓ 21% 

 
 
As for the evaluation of DRLT, the values in table 4.4 show a decrease in 
reward and the conflict avoidance compared to the environment without 
applying any policy. As for a visual evaluation, in some episodes the aircraft 
avoid conflict however most of the times conflict is not avoided and even more 
conflicts are generated by the actions of the aircraft. 
 

 

 

Fig. 4.28 Percentage of actions chosen using DRL, DRLT and RoA with the 
legend of action resolutions corresponding to the action numbers. 

 
 
The difference in results is traduced to a difference in the actions taken by the 
agents. Whilst RoA uses “action 0” 86.1% of the time, followed by “action 1” 
with 11.3%, DRLT prioritises “action 0” above all and the rest of the actions are 
chosen with equal probability, and DRL choses “action 0” and “action 1” with 
nearly the same probability. 
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5 CHAPTER 5. CONCLUSIONS 

6  
The project has demonstrated the possibility of conflict reduction by DRL, 
concretely a DQN algorithm applied to a flight simulator. The implementation is 
a shared policy that uses the same neural network for all flights. The airspace 
simulator represented a high-capacity sector with flights in cruise. 
 
DRL alone reduced simultaneous conflicts by an average of 7.06% compared to 
the original environment without a conflict avoidance strategy. The reward was 
32.07% higher. However, the success rate and the minimum separation 
distance did not change significantly compared to the baseline environment. 
 
DRLT was developed to improve these results and apply the RoA to the DRL 
policy. The RoA policy showed an improvement of 99.41%. This run 
corresponds to the RoA policy by Lidia Fuentes with two modifications: turns 
limited to ±15º, ±30º and ±45º and speed changes were included in the actions. 
Despite the promising results of the RoA, transferred learning did not improve 
them; on the contrary, they were worse than with DRL, where the simultaneous 
conflicts increased by 6.04% and reward decreased by 46.45% with respect to 
the baseline. 
  
The execution of the DRL policy was much faster than using RoA, at 1 second 
per iteration versus 12 seconds per iteration, thus it can be concluded that DRL 
improves the decision time. As for the feasibility of the solution, the DRL 
decision model is not suitable to be applied to piloted aircraft or as a 
complementary tool for the ATCOs. In the comparison between the actions 
taken by different policies, the case of DRLT, almost 90% of aircraft take no 
action (action 0). However, in the case of DRL, these actions are more spread 
over different turns, so that only in 45% of the cases action 0 is taken. This 
would lead to an impossible workload for the controller and for the pilot.  
 
In contrast, this could be a good solution for unmanned aerial vehicles (UAVs), 
where fully autonomous conflict avoidance could be implemented, and self-
separation would be possible. Furthermore, since only one neural network is 
used for all aircraft, exactly the same strategy is used for all flights, reducing the 
unpredictability of using a different policy for each flight, a very important aspect 
in aviation. 
 
Nevertheless, further improvements need to be made to achieve full conflict 
avoidance (100% conflict resolution) and a possible implementation proposal. 
This could be the implementation of different algorithms, such as the actor-critic 
algorithms, or increasing the complexity of the neural network by adding more 
layers (currently set to a minimum of 2). In addition, a more realistic model of 
the environment could be developed by adding the wind component, making the 
environment a 3D model, or gradual turns that takes more than one step. 
Finally, a supercomputer would have improved the results by allowing more 
training.  
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APPENDIX A. MULTI-AGENT REINFORCEMENT 
LEARNING 

 
Multi-agent reinforcement learning (MARL) takes place when the environment is 
shared between two or more agents. This adds a difficulty to the training as the 
actions of one of the agents can influence the decisions of the other ones. 
 

 

  
 

 
In a multiagent setup, several agents share the environment in which they are 
in. So, for this case the diagram shown before could look like the one in figure 
A.2, where the actions of each agent form a joint action 𝑎𝑡 and the environment 

returns a joint 𝑠𝑡 state and reward 𝑟𝑡 to the agents. These joint elements 

normally are in the form of an array where each element corresponds to each 
agent. Another type of system would be an extensive-form approach where 
agents take decisions alternately and receive their individual reward at the end, 
like in figure A.2.  
 
If the setup is multi-agent, MDPs (see section 1.3 of the document) are called 
Markov Games [3] that are represented by states’ set S, action sets for each 

agent Ai, an associated reward function and with the goal to maximise the sum 

of discounted rewards (see equation A.1). 
 
 
 

𝐺𝑡 = 𝐸 {∑ 𝛾𝑘𝑅𝑡+𝑘+1

∞

𝑘=0

} (A.1) 

 
 
The agents can interact with each other and with the environment in various 
ways in line with the tasks that they are supposed to do. They may compete for 
the reward, collaborate to maximise it, or a mix of the two, generally in teams. 

Fig. A.2 Multi-agent interaction with 
the environment, extensive-form 
approach. 

 

Fig. A.1 Multi-agent interaction with 
the environment, where the actions, 
the states and the reward are joint. 
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To better understand these three approaches, let’s dive into more specific 
examples. 
 

- Cooperative environments 

Cooperative situations are also called multi-agent MDPs or Markov 
games [3]. In these environments the agents usually share the same 
reward function and goal, so formally: 𝑅1 =  𝑅2  = · · · =  𝑅𝑁  =  𝑅.  
 
The Q-value function for the agents is identical, so there are ways to 
approach it in a centralised manner, where all the agents are engulfed as 
one decision maker and all the actions are taken simultaneously. 
However, normally this approach leads to not considering the impact of 
the actions of the other agents in the environment. 
 
Another viewpoint would be to have agents with different reward 
functions and considering a team-average reward [1], where the final 
goal is to optimise the average of the reward functions as the long-term 
goal, where its function would look like the following equation. 
 
 
 𝑅(𝑠, 𝑎, 𝑠′) ∶=  𝑁 − 1 ·  ∑𝑖𝜖𝑁 𝑅𝑖(𝑠, 𝑎, 𝑠′) 𝑓𝑜𝑟 𝑎𝑛𝑦 (𝑠, 𝑎, 𝑠′)  

∈  𝑆 ×  𝐴 ×  𝑆 
(A.2) 

 
 

 
This helps with the decentralisation of the processes and brings certain 
individuality to the agents.  
 
This individuality brings the need for communication between agents, as 
they no longer take decisions as one, so they no longer have the state of 
each agent being considered while choosing the actions. On one hand, 
the communication can be very simple, in the form of sharing information 
from other agents or sharing the reward. On the other hand, it can reach 
more complexity, such as the prediction of the moves of each agent in 
order to decide, called Intention sharing [5] or using meta-learning to do 
so [4]. 
 
These setups have several broad examples, from air traffic control to the 
game Overcooked. 
 

- Competitive environments 

In competitive environments agents compete for a goal. Normally they 
are formalised as a zero-sum game, where the reward should be 0 for 
any state, ∑𝑖𝜖𝑁  𝑅𝑖(𝑠, 𝑎, 𝑠′) = 0 𝑓𝑜𝑟 𝑎𝑛𝑦 (𝑠, 𝑎, 𝑠′). Oftentimes these games 
are associated with one-vs-one games, where the reward of one agent is 
donated to the other, so when one loses, the other one wins the same 
number of points.  
 

- Cooperative-competitive environments 
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These environments are a mix of both cooperative and competitive 
strategies, normally associated with team versus team setups. In this 
case there are no restrictions to the goal or a typical modelling of the 
reward, It could be just two cooperative environments competing with 
each other or something more entangled. One example of this setting 
could be a predator-prey ecosystem. 
 

There are many algorithms to choose from in the case of multi-agent 
reinforcement learning, but they are difficult to use, and the available codes are 
specific to one environment. However, they can be adapted if understood well.  
 
In contrast to a single-agent problem, there are a few challenges that these 
algorithms face, the first one being scalability. 
 
When the agent number increases, the action and observation spaces also 
increase, which leads to a need of more computational resources and memory 
in order to perform the training and use the reinforcement learning model. This 
is especially notable for centralised systems, where all the information from all 
the agents must be processed at once. Decentralised systems could be the 
response to that problem, but they have other issues. 
 
The second challenge is the non-stationarity of the environment. Opposed to a 
single-agent setup where the agent is only concerned with its actions, now the 
agents must consider their actions and the actions of the other agents, which 
constantly reshape the environment and make it non-stationary. This leads to 
problems regarding the inaccuracy of the policy where the outcome is very 
much dependent on the other agents’ states.  This issue is typical of 
decentralised environments without good communication. 
 
The last issue is the partial observability. Most of the algorithms that exist 
assume the possibility of having a complete image of the environment, which is 
not always the case in real life.  
 
This problem can be avoided by modelling a partial observation Markov 
decision process, where the probability of the observations 𝑂 is added to an 
MDP tuple (𝑆, 𝐴, 𝑇, 𝑅, 𝛺, 𝑂, 𝛾). 
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APPENDIX B. CODE ARCHITECTURE 
 
The entire code can be found in vera15380/conflict-avoidance-TFG-WP 
(github.com). 
 
The code is divided into different files depending on the functionality.  

● Calcs.py is where the auxiliary functions that are used in more than 

one file are stored, for example the tCPA function. 

● Definitions.py is where the airspace and flight classes are defined. 

● In env.py the reward, the resolution of the actions and the observation 

functions can be found, aside from the update, step and render 

functions. 

● In the rl.py file all the classes related to reinforcement learning are 

saved. This includes the replay buffer class, neural network class and 

the DQN algorithm with the action selection, update, and learning 

functions. 

● The units.py file contains the conversions from the International 

System of Units (SI) to units used in aviation. 

● In the wandb_graphs.py there are functions to represent graphically 

and store information about the training and evaluation, in Wandb and 

in Tensorboard in case of failure of one of the two. 

● The main.py file contains the setup of constants for the training and 

the loops to train with the Rules of the Air and DQN. 

Figure B.1 explains the content of the different files found in Github and figure 

B.2 goes into detail of what can be found in the file atcenv.py. 

 
 
 
 

https://github.com/vera15380/conflict-avoidance-TFG-WP
https://github.com/vera15380/conflict-avoidance-TFG-WP
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Fig. B.1. Diagram of the content of the code (first layer). 

 
 

 

 

Fig. B.2 Diagram of the content of the atcenv folder and its code. 
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APPENDIX C. HYPERPARAMETER TUNING RESULTS 

 

Fig. C.1 Graphs of hyperparameter tuning gamma. 
 
  



56                                                                                      Aircraft-to-Aircraft separation based on Reinforcement Learning 

 
 
Table C.1. Average results of the evaluation depending on gamma. 
 

Gamma 

value 

Conflict/epi

sode 

Distance to 

target/ep 

(NM) 

Extra 

distance/ep 

(NM) 

Min. 

Separation/

ep (NM) 

N. turns/ep 
Real 

conflicts/ep 
Reward/ep 

Success 

rate eval 

𝛾=0.10 15.80 705764.6 183.88 2.82 221.22 1.69 -21.7443 19 

𝛾=0.20 15.45 714396.2 185.36 2.92 220.42 1.83 -20.2489 18 

𝛾=0.30 13.73 736444 178.69 3.31 217.54 1.66 -17.8747 21 

𝛾=0.40 12.63 733071.3 157.71 3.62 221.27 1.54 -15.7749 22 

𝛾=0.50 15.15 753911.2 150.74 3.29 217.46 1.74 -21.8553 24 

𝛾=0.60 13.17 718265.7 182.08 3.05 224.9 1.64 -18.3068 18 

𝛾=0.70 13.44 744588 136.44 3.66 214.98 1.59 -19.7417 27 

𝛾=0.75 16.26 679347.8 179.68 3.18 219.94 1.76 -20.6940 19 

𝛾 =0.80 16.41 756728.5 162.84 2.84 219.84 1.72 -21.5975 19 

𝛾=0.85 16.87 707665.7 162.00 2.83 218.72 1.89 -21.5066 17 

𝛾=0.90 17.25 726309.1 197.92 2.73 225.10 1.96 -21.7886 14 

𝛾=0.95 17.27 710292.6 192.44 2.91 220.02 1.82 -23.8251 18 

𝛾=0.96 18.49 726481.3 186.01 2.89 223.03 1.92 -24.4192 22 

𝛾=0.97 15.95 727029.6 178.26 2.69 220.29 1.80 -21.7772 16 

𝛾=0.98 14.87 679847.3 144.50 3.62 207.46 1.68 -19.7779 23 

𝛾=0.99 12.99 164353.2 59.42 2.82 1394.95 1.64 -7.85734 19 

𝛾=1.00 0.72 1562465 1059.36 15.52 2912.11 0.11 -1.58261 93 
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Fig. C.2 Graphs of hyperparameter tuning tau. 
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Table 4.2. Average results of the evaluation depending on tau. 
 

Tau value 
Conflict/epi

sode 

Distance to 

target/ep 

(NM) 

Extra 

distance/ep 

(NM) 

Min. 

Separation/

ep (NM) 

N. turns/ep 
Real 

conflicts/ep 
Reward/ep 

Success 

rate eval 

𝜏=0.1 15.8 705764.6 183.8888 2.820306 221.22 1.69 -21.7443 19 

𝜏=0.2 15.45 714396.2 185.3639 2.926843 220.42 1.83 -20.2489 18 

𝜏=0.3 15.98 739725.0 182.8851 2.845074 222.47 1.71 -18.9995 16 

𝜏=0.4 19.41 746403.7 169.4548 2.853679 223.60 2.12 -23.5515 16 

𝜏=0.5 17.07 712537.6 156.8700 2.958805 220.28 1.83 -22.9872 14 

𝜏=0.6 15.01 715991.9 237.5440 2.894260 224.14 1.87 -21.2840 16 

𝜏=0.7 16.10 729329.1 193.1994 3.012887 219.21 1.79 -22.7135 22 

𝜏=0.8 14.54 766096.3 203.3953 3.331865 228.40 1.65 -20.5196 27 

𝜏=0.9 17.55 728369.9 179.1316 2.971296 219.88 1.78 -23.8385 16 

𝜏=1.0 15.16 744628.8 183.0338 3.573278 222.39 1.54 -21.1014 25 
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Fig. C.3 Graphs of hyperparameter tuning the hidden neurons. 
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Table C.3. Average results of the evaluation depending on the number of 
hidden neurons. 
 
Hidden 

neurons 

value 

Conflict/epi

sode 

Distance to 

target/ep 

(NM) 

Extra 

distance/ep 

(NM) 

Min. 

Separation/

ep (NM) 

N. turns/ep 
Real 

conflicts/ep 
Reward/ep 

Success 

rate eval 

hn=32 16.41 693290.7 181.7419 2.631968 221.33 1.79 -22.4604 15 

hn=64 14.1 726214.9 180.9207 3.246031 220.26 1.72 -18.0490 21 

hn=128 17.47 751845.7 200.83 2.78099 224.54 2.05 -22.6656 16 

hn =256 16.28 741141.4 182.8497 2.861823 221.66 1.76 -24.0137 22 

hn=512 19.38 705955.2 178.4158 2.868479 224.86 2.08 -23.2801 17 

hn=1024 14.38 702727.9 181.5375 3.322088 227.17 1.68 -20.2692 23 
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Fig. C.4 Graphs of hyperparameter tuning the learning rate. 
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Table C.4. Average results of the evaluation depending on the learning 
rate. 
 

Learning 

rate value 

Conflict/epi

sode 

Distance to 

target/ep 

(NM) 

Extra 

distance/ep 

(NM) 

Min. 

Separation/

ep (NM) 

N. turns/ep 
Real 

conflicts/ep 
Reward/ep 

Success 

rate eval 

lr =1 15.8 705764.6 183.8888 2.820306 221.22 1.69 -21.7443 19 

lr  = 0.1 15.45 714396.2 185.3639 2.926843 220.42 1.83 -20.2489 18 

lr  = 0.01 15.98 739725 182.8851 2.845074 222.47 1.71 -18.9995 16 

lr  = 0.001 14.92 762505.3 162.1336 3.643531 223.52 1.55 -22.728 27 

lr = 

0.0001 

14.06 704054.9 162.0858 3.706851 218.69 1.53 -18.4025 25 

lr = 1e-05 15.38 735892.8 176.3586 3.108465 222.65 1.69 -20.1481 21 

lr = 1e-06 17.16 694668 174.356 2.886834 219.15 1.95 -23.2004 16 

lr = 1e-07 17.9 818672.5 194.1866 3.264188 259.94 1.96 -23.3391 18 

lr = 1e-09 14.62 1223299 162.2595 4.118106 323.69 1.51 -22.1512 28 

lr = 1e-10 15.72 617504 178.5235 3.042452 606.47 1.84 -18.3367 19 
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Fig. C.5 Graphs of hyperparameter tuning the batch size. 
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Table C.5. Average results of the evaluation depending on the batch size. 
 

Batch size 

value 

Conflict/epi

sode 

Distance to 

target/ep 

(NM) 

Extra 

distance/ep 

(NM) 

Min. 

Separation/

ep (NM) 

N. turns/ep 
Real 

conflicts/ep 
Reward/ep 

Success 

rate eval 

batch 

size=16 

15.8 705764.6 183.8888 2.820306 221.22 1.69 -21.7443 19 

batch 

size=32 

20.39 686766.1 183.1232 2.935089 215.22 2.11 -25.5489 18 

batch 

size=64 

13.92 699969.7 162.0731 3.797281 217.3 1.51 -19.058 29 

 

 


