

FINAL DEGREE PROJECT

TITLE: Aircraft-to-Aircraft separation based on Reinforcement Learning

DEGREE: Aeronavigation Engineering

AUTHOR: Weronika Prawda

ADVISOR: Cristina Barrado Muxí

DATE: September 5th, 2022

Title: Aircraft-to-Aircraft separation based on Reinforcement Learning

Author: Weronika Prawda

Advisor: Cristina Barrado Muxí

Date: September 5th, 2022

Abstract

Air traffic has been increasing and with it the workload of air traffic controllers.
Despite the pandemic, the latest figures show a rapid recovery and forecast
exponential growth. This indicates the need to modernise air traffic control and
the technology used, which is already being developed and implemented by
organisations like SESAR, like applying AI to air traffic control (DART). A
support tool with automatic conflict avoidance would be a great step to address
the problem of possible overcapacity of air traffic controllers.

This document describes two possible implementations of a conflict avoidance
tool. The approach is to use Deep Reinforcement Learning to select actions
that avoid conflict and help the air traffic controllers to take faster and better
decisions. The basis for both approaches is a simple 2D airspace simulator
and the same policy applied to all the aircraft.

The first proposal is a stand-alone DQN algorithm (DRL) that has a 7.06%
improvement in the number of simultaneous conflicts compared to the original
environment without applying a policy.

The second approach is a DQN algorithm that incorporates transfer learning of
the rules of the air, and it is called by the acronym DRLT. It resulted in a
degradation compared to the original environment, with a 6% increase in
unremembered conflicts.

Nevertheless, Deep Reinforcement Learning has shown a decrease in decision
time and the idea of reusing the same strategy for all aircraft has solved the
problem of unpredictability issue that some reinforcement learning solutions
had. The proposal could be a good start for a self-separation tool for
unmanned aircraft but still needs future improvements in results. It is not
suitable for air traffic controllers or piloted vehicles due to the increased
workload it would suppose.

Título: Separación de aeronave a aeronave basada en el aprendizaje por
refuerzo

Autor: Weronika Prawda

Tutor: Cristina Barrado Muxí

Fecha: 5 de Septiembre 2022

Abstract

El tráfico aéreo ha ido en aumento y con él la carga de trabajo de los
controladores aéreos. A pesar de la pandemia, las últimas cifras muestran una
rápida recuperación y pronostican un crecimiento exponencial. Esto indica la
necesidad de modernizar el control del tráfico aéreo y la tecnología utilizada,
que ya está siendo desarrollada e implementada por organizaciones como
SESAR, por ejemplo, la aplicación de IA al control del tráfico aéreo (DART).
Una herramienta de apoyo con prevención automática de conflictos sería un
gran paso para abordar el problema de la posible sobrecapacidad de los
controladores de tránsito aéreo.

Este documento describe dos posibles implementaciones de una herramienta
para evitar conflictos. El enfoque es utilizar el aprendizaje por refuerzo
profundo para seleccionar acciones que eviten conflictos y ayuden a los
controladores de tránsito aéreo a tomar mejores y más rápidas decisiones. La
base para ambos enfoques es un simple simulador de espacio aéreo 2D y la
misma política aplicada a todas las aeronaves.

La primera propuesta es un algoritmo DQN (DRL) autónomo que tiene una
mejora del 7,06 % en el número de conflictos simultáneos en comparación con
el entorno original sin aplicar ninguna política.

El segundo enfoque es un algoritmo DQN que incorpora transferencia de
aprendizaje de las reglas del aire, y se denomina por el acrónimo DRLT.
Resultó en una degradación en comparación con el entorno original, con un
aumento del 6% en los conflictos no recordados.

Sin embargo, el aprendizaje por refuerzo profundo ha mostrado una
disminución en el tiempo de decisión y la idea de reutilizar la misma estrategia
para todas las aeronaves ha resuelto el problema de imprevisibilidad que
tenían algunas soluciones de aprendizaje por refuerzo. La solución podría ser
un buen comienzo para una herramienta de autoseparación para aeronaves
no tripuladas, pero aún necesita futuras mejoras en los resultados. No es apta
para controladores aéreos ni para vehículos pilotados por el aumento de carga
de trabajo que supondría.

CONTENTS

INTRODUCTION .. 1

CHAPTER 1. REINFORCEMENT LEARNING .. 3

1.1. Introduction .. 3

1.2. Agent-Environment Dynamics ... 3

1.3. Markov Decision Processes ... 4

1.4. Value Functions ... 5

1.5. Bellman’s Equation ... 6

1.6. Q-learning ... 7
1.6.1. Temporal Difference Methods .. 7
1.6.2. The Epsilon-greedy .. 9
1.6.3. Pseudo Algorithm ... 10

CHAPTER 2. DEEP REINFORCEMENT LEARNING 11

2.1. Use of Neural Networks in Reinforcement Learning ... 11

2.2. Deep Q-learning ... 12

CHAPTER 3. TOOLS, METHODS AND METRICS ... 16

3.1. Tools ... 16
3.1.1. OpenAI Gym ... 16
3.1.2. Pytorch .. 16
3.1.3. Weights and Biases .. 17

3.2. Methods .. 17
3.2.1. The Environment .. 17
3.2.2. DQN .. 19
3.2.3. States .. 22
3.2.4. Reward ... 25
3.2.5. Actions .. 26
3.2.6. Rules of the Air ... 26

3.3. Metrics .. 27
3.3.1. Metrics Used for the Evaluation of the Training ... 28
3.3.2. Metrics Used to Understand the Evolution of the Training 29

CHAPTER 4. RESULTS. ... 32

4.1. Simulation Setup ... 32

4.2. Hyperparameter Tuning .. 32
4.2.1. Gamma ... 33
4.2.2. Tau .. 34
4.2.3 Hidden neurons .. 35

4.2.4 Learning Rate ... 36
4.1.5 Batch Size ... 37

4.3. Deep Reinforcement Learning Results .. 38

4.4. Deep Reinforcement Learning with Transfer Learning Results 40

4.3 Comparison of DRL, DRLT, RoA and the baseline simulations…………………...…..42

CHAPTER 5. CONCLUSIONS ... 44

BIBLIOGRAPHY…………………………………….……………………………….45

APPENDIX A………………………………………………………..………...………..…..49

APPENDIX B…………………………………………………………..……………..……..53

APPENDIX C…………………………………………………..……………………..55

LIST OF FIGURES

Fig. 1.1 Agent and environment interaction. ... 3

Fig. 1.2 Diagram representing the epsilon greedy strategy. 9

Fig. 1.3 Q-learning algorithm. ... 10

Fig. 2.1 Diagram of a feed-forward neural network with backpropagation.
 .. 11

Fig. 2.2 Diagram of a simple deep reinforcement learning architecture. 12

Fig. 2.3 DQN algorithm diagram. .. 14

Fig. 2.4 Deep Q-learning with Experience Replay algorithm [16]......................15

Fig. 3.1 Alert zone and conflict zone with its respective radiuses. 18

Fig. 3.2 Environment rendering with the airspace sector and the flights on the
right and an individual sector with the components of the
representation named. ... 19

Fig. 3.3 Sector graphic representation. .. 23

Fig. 3.4 Situational example of an ownship and 4 intruders penetrating
different sectors from the observations. ... 24

Fig. 3.5 The observation matrix with the intruders’ rows highlighted in the
corresponding colour. .. 25

Fig. 3.6 Graph setup interface in WandB with a sample graph. 28

Fig. 3.7 Parallel graph example from WandB. .. 29

Fig. 4.1 Reward per episode graph comparison depending on gamma. 33

Fig. 4.2 Parallel graph of gamma, success rate, average reward, average
number of turns and average real conflicts per episode. 34

Fig. 4.3 Reward per episode graph comparison depending on tau. 34

Fig. 4.4 Parallel graph of tau, success rate, average reward, average number
of turns and average real conflicts per episode. 35

Fig. 4.5 Reward per episode graph comparison depending on the hidden
neurons. .. 35

Fig. 4.6 Parallel graph of the hidden neurons, success rate, average reward,
average number of turns and average real conflicts per episode. ... 36

Fig. 4.7 Reward per episode graph comparison depending on the learning
rate. ... 36

Fig. 4.8 Parallel graph of the learning rate, success rate, average reward,
average number of turns and average real conflicts per episode. ... 37

Fig. 4.9 Reward per episode graph comparison depending on the batch size.
 .. 37

Fig. 4.10 Parallel graph of the batch size, success rate, average reward,
average number of turns and average real conflicts per episode. ... 38

Fig. 4.11 Average reward per episode. DRL. ... 39

Fig. 4.12 Simultaneous conflicts per episode. DRL. 39

Fig. 4.13 Min. separation distance per episode. DRL. 39

Fig. 4.14 Aircraft conflicts per episode. DRL. ... 39

Fig. 4.15 Average distance left to reach target per episode. DRL. 39

Fig. 4.16 Extra distance per episode. DRL. .. 39

Fig. 4.17 Number of turns per episode. DRL. ... 40

Fig. 4.18 Exploration rate. DRL. ... 40

Fig. 4.19 Average reward per episode. DRLT. .. 40

Fig. 4.20 Simultaneous conflicts per episode. DRLT. 40

Fig. 4.21 Min. separation distance per episode. DRLT. 41

Fig. 4.22 Aircraft conflicts per episode. DRLT. ... 41

Fig. 4.23 Average distance left to reach target per episode. DRLT. 41

Fig. 4.24 Extra distance per episode. DRLT. .. 41

Fig. 4.25 Number of turns per episode. DRLT. ... 41

Fig. 4.26 Exploration rate. DRLT .. 41

Fig. 4.27 Average reward per episode comparison between DRLT, DRL, RoA

and the baseline environment...42

Fig. 4.28 Percentage of actions chosen using DRL, DRLT and RoA with the

legend of action resolutions corresponding to the action
numbers..43

LIST OF TABLES

Table 3.1. Equivalence of the action number in the code and the resolution.

 .. 26

Table 4.1. Simulation Parameters. ... 32

Table 4.2. Parameters for hyperparameter tuning simulations. 32

Table 4.3. Parameters after hyperparameter tuning. 38

Table 4.4. Evaluation results and comparison with the baseline environment
without applying any policy, with green representing an
improvement and red a worse result than the baseline
environment. ... 43

NOMENCLATURE

𝒂 action

𝒂
joint action: array or tensor of actions from all the agents in a multi-
agent environment.

𝑨, 𝑨(𝒔) action space: set of actions that an agent can take

𝒅𝒂𝒍𝒆𝒓𝒕 alert detection range

𝒅𝑪𝑷𝑨
distance in the closest point. Distance between two aircraft when they
reach the closest point of approach

𝒅𝒊𝒋 distance between two flights

𝒅𝒎𝒊𝒏 conflict detection range

𝒅𝒕𝒂𝒓𝒈𝒆𝒕 distance to the target

𝒆 experience: a tuple of state, reward, next state and done

𝑮 goal function. also called cumulative reward

𝑶
probability of an observation in a Partially Observable Markovian
Decision Process

𝑷 matrix of transition probabilities

𝒑 probability

𝒓 reward

𝑹 reward function

𝒔 state

𝒔′ next state

𝒔𝒕
joint state: array or tensor of states from all the agents in a multi-agent
environment.

𝑺 observation space: set of all the states an environment can have.

𝒕 time step

𝒕𝑪𝑷𝑨
time to the closest point. Time left to reach the closest point between
two aircraft.

𝑻 maximum number of time steps in an episode.

𝑽 value function

𝒗𝒊 Airspeed of flight i.

𝒗𝒓𝒊𝒋
 relative airspeed between two aircraft, normalised with maximum

airspeed in the environment.

(𝒙𝑬, 𝒚𝑬) entry point of the aircraft

(𝒙𝒊, 𝒚𝒊) position of the aircraft in a 2D Euclidean space.

(𝒙𝑻, 𝒚𝑻) exit point of the aircraft

𝛼 learning rate

𝛽𝒊𝒋 relative angle between the heading of the ownship and the intruder

𝛾 discount rate

𝛿 drift

𝜀
epsilon or exploration rate. Controls the balance between exploration
and exploitation probability during the training of a model.

𝜃 weights of the neural network

𝜇 behavioural policy

𝜈 Value added to the airspeed in the corresponding action.

𝛱 target policy

𝜋 policy

𝜋∗ optimal policy

𝜒𝒊 track

𝝍 bearing

AI Artificial Intelligence

ATC Air Traffic Control

ATCO Air Traffic Controller

ATM Air Traffic Management

CPA Closest Point of Approach

CUDA Compute Unified Device Architecture

DART Data-Driven Aircraft Trajectory Prediction Research

DRL Deep Reinforcement Learning

DRLTL Deep Reinforcement Learning with Transfer Learning

DQN Deep Q Networks

GPU Graphics Processing Unit

MARL Multi-Agent Reinforcement Learning

MDP Markov Decision Process

ML Machine Learning

MRP Markov Reward Process

RL Reinforcement Learning

RoA Rules of the Air

SESAR Single European Sky ATM Research

SI International System of Units

TD Temporal Difference

TL Transfer Learning

UAV Unmanned Aerial Vehicle

Introduction 1

INTRODUCTION

The air traffic is slowly but surely recovering from the 2019 health crisis impact
[3] that interrupted its exponential growth. Its serious increase not only creates a
challenge for the airports, like recently where airports were forced to implement
capacity restrictions and demand to the airlines to stop selling tickets [13], but
also puts pressure on the Air Traffic Management (ATM) and Air Traffic Control
(ATC), with excessive concentration of traffic in some sectors.

Moreover, aviation is expected to change into a more sustainable model, which
is hard when the traffic increases and the emissions also increase. That is why
there’s a need for a more efficient air traffic control system that could optimise
the trajectories of the aircraft while dealing with risen demand.

That leads to the necessity of a modernisation of the ATC systems to be
prepared for what the future holds. SESAR Joint Undertaking was established
with this goal, and by uniting the most important European organisations
intends to integrate the EU ATM systems. It is a complete pipeline of research,
development and implementation of the newest technology for traffic
management.

SESAR has proposed many solutions to be able to lead with this overwhelming
forecast, focusing on complexity management, automation and enhanced
airspace management [21]. For example, the DART project that started in 2017
and applied machine learning methods for aircraft trajectory prediction to
increase predictability and faster decision making.

The response to the limited cognitive capacity of humans when processing
copious amounts of information related to ATC could be artificial intelligence
(AI), like the DART project proved.

From the field of Artificial Intelligence and Machine Learning, 3 types of learning
are available. The first one is supervised learning, which learns from a given
dataset and can predict these same variables later. The second one is
unsupervised learning, used to segment and group data, detecting similarities
and differences. And lastly, reinforcement learning (RL) which works with no
previous data and by a punishment-reward system learns a policy [26].

What got reinforcement learning its popularity was a paper by a company called

Deepmind [16], that together with the increase in computational power and
appearance of open-source software, RL achieved extraordinary results in
many fields.

Artificial intelligence methods have been making its way to the aviation industry,
with organisations like Eurocontrol organising challenges to implement RL to
aircraft conflict avoidance, which is the origin of this final degree project. The
use of RL for aircraft separation is a widely studied subject, but it comes with a
lot of challenges: complexity of the traffic, scalability, reliability, safety... To add

https://www.sesarju.eu/approach/cost#:~:text=SESAR%E2%80%99s%20solutions%20aim%20to%20help%20air%20traffic%20controllers,on%20complexity%20management%2C%20automation%20and%20enhanced%20airspace%20management.
https://www.sesarju.eu/approach/cost#:~:text=SESAR%E2%80%99s%20solutions%20aim%20to%20help%20air%20traffic%20controllers,on%20complexity%20management%2C%20automation%20and%20enhanced%20airspace%20management.
https://www.sesarju.eu/approach/cost#:~:text=SESAR%E2%80%99s%20solutions%20aim%20to%20help%20air%20traffic%20controllers,on%20complexity%20management%2C%20automation%20and%20enhanced%20airspace%20management.

2 Aircraft-to-Aircraft separation based on Reinforcement Learning

up, most of the papers are simplified scenarios so there is no real applicable
solution that exists nowadays.

The aim of this project is to develop a RL model for in-cruise aircraft conflict
avoidance in an airspace sector. This tool, which would ideally be used as an
auxiliary tool for ATCs or as a self-separation system, would assess the best
decisions needed to be taken in order to preserve the safe separation distance
with other aircraft.

This project has two parts, the first one being the development of a policy that
would direct the aircraft with conditional statements following the Rules of the
Air, developed by Lidia Fuentes Coll [6], and a second part where this
experience is taken to train a neural network in an intent to further improve the
results.

The project is divided into six chapters that describe the concepts necessary to
understand the process and the results of this work. The outline of the
document goes as follows:

• Chapter 1: Reinforcement Learning

This section introduces the mathematical and conceptual basics to
understand the principles of reinforcement learning mentioned and used
in this project.

• Chapter 2: Deep Reinforcement Learning

This chapter explains how neural networks fit into reinforcement learning
and describes the DQN algorithm.

• Chapter 3: Tools, Methods, and Metrics

The programs, framework and tools used to develop the projects are
stated, in addition to the details of the code and the metrics used to
monitor and measure success in this project.

• Chapter 4: Results

The final simulation parameters that were used and the results of the
project accompanied by graphs and comparisons are described in this
part of the document.

• Chapter 5: Conclusions

The final evaluation of the project is done while revisiting the initial
objectives as closure of the document.

Reinforcement Learning 3

CHAPTER 1. REINFORCEMENT LEARNING

1. fig

1.1. Introduction

Reinforcement learning is an extensive subject, thus in this document only the
most important concepts to understand the development of the project are
described. However, for a more in-detail introduction to reinforcement learning,
books like [14] or [22] are recommended to the reader as a good starting point.

1.2. Agent-Environment Dynamics

Reinforcement learning consists of an interaction between two elements: the
agent and the environment. An agent is the component that makes the
decisions whereas the environment is the domain that the agent interacts with.
The environment has a set of rules or kinematics that the agent cannot control,
but it can act in the environment and change its status. The main goal is for the
agent to learn how to take good actions and reach an objective.

Fig. 1.1 Agent and environment interaction.

The state 𝑠𝑡 or observation is a parameter about the status of the environment
and the agent itself. The agent bases its decisions on the current state,
contained in a state space 𝑆, and chooses an action from a set of actions
allowed, called the action space 𝐴(𝑠𝑡). After acting on the action chosen in the
current timestep t, a transition takes place, which makes the timestep increase

to t + 1. The response of the environment is a next state 𝑠𝑡+1 , caused after

taking the action, and a reward 𝑟𝑡+1, which is telling the agent the quality of the
decision that was just taken. The objective is to maximise the reward.

The choices taken are based on a policy 𝜋𝑡, which is a strategy to reach the
goal. It ties the elements together and gives the agent a probability to choose a

4 Aircraft-to-Aircraft separation based on Reinforcement Learning

certain action, based on the state and the next state provided 𝑝𝑠𝑠′(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)
[15].

This process of interaction is represented in figure 1.1 where given a state an
agent takes an action, and the environment sends the reward and the next state
as feedback. All the process takes place in a timestep 𝑡 and is repeated until a
certain number of steps or a determined threshold is reached.

In multi-agent systems, where the environment interacts with more than one
agent, there are different approaches to this interaction, which are going to be
addressed in appendix A.

1.3. Markov Decision Processes

Decisions in stochastic learning environments can be formalised using Markov
Decision Processes (MDP) [22].

MDP are based on the Markov Property, which states that the future states
cannot depend on the past given the present observations.

Then, random states that satisfy the Markov property can be chained together
into a sequence, called a Markov Process. Each state has a probability of
transitioning into another state. The matrix of probabilities and the states can
describe the dynamics of the environment in its entirety. Formally, a Markovian
Process is a tuple with a finite set of states 𝑆 and a matrix of transition
probabilities. In equation 1.1 the state transition probability is formalised, and
when computed for every combination of states can be joint into a matrix of
transition probabilities (see equation 1.2).

 𝑝𝑠𝑠′ = ℙ[𝑆𝑡+1 = 𝑠′ | 𝑆𝑡 = 𝑠] (1.1)

(1.2)

In order to get closer to reinforcement learning, it is necessary to define the
reward in these processes. That’s where the Markovian Reward Processes
(MRPs) [22] come in. To add a value judgement to the Markovian Process, a
reward function and a discount factor are added to the tuple. For each state of
the agent, a reward function defines a numeric reward value, and the discount
factor determines the importance of the immediate or future reward. Its value
ranges from 0 to 1, with 0 caring only for the immediate reward and 1 caring
only for the future reward. The discount factor varies according to the final goal
of the reinforcement learning model.

Reinforcement Learning 5

The discount factor and the immediate reward function are related as seen in
equation 1.4.

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3+. .. = ∑ 𝛾𝑘𝑅𝑡+𝑘+1

∞

𝑘=0

 (1.4)

Where G is the goal function, also known as the cumulative reward, R is the

reward function and 𝛾 is the discount factor. In the final expression, 𝑅𝑡+𝑘+1 is
the reward received by the agent at timestep k by moving to the next state.

To go one step further, there is a need to define the agent that takes the
decisions. The Markovian Decision Processes [22] adds a set of actions 𝐴 for
the agent to choose from, to the Markovian Reward Process. For this reason,
the transition probability (1.5) and the reward function (1.6) have a slight
change, as the actions are added to the equation.

 𝑝𝑠𝑠′

𝑎 = ℙ[𝑆𝑡+1 = 𝑠′ | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (1.5)

 𝑟𝑠
𝑎 = 𝔼[𝑅𝑡+1 | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (1.6)

Depending on the current state, a policy will dictate what actions the agent
takes.

1.4. Value Functions

The grand majority of RL algorithms help to determine the next best action by
an estimated value function. A value function relates the actions and the state
an agent is in, to approximate the return that the agent will get in the future.
Each policy has its own value function. As mentioned before, the policy gives a
probability of choosing an action for each state.

A value function determines how good the state is, given the policy.
Mathematically, the expression looks like the one in equation 1.7.

(1.7)

This is also called the state-value function.

6 Aircraft-to-Aircraft separation based on Reinforcement Learning

Similarly, an action-value function (see equation 1.8) can be defined, where the
output is the value of an action taken under a policy, in a state 𝑠.

(1.8)

1.5. Bellman’s Equation

Richard Bellman took the sum of future rewards and broke it into the immediate
current reward and the future rewards, pointing out the recursion of the value
function and summed this property in the famous Bellman’s equation [1]. The
Bellman’s optimality equation expresses that for a policy 𝜋, the value of a state
can be determined by the expected reward of the next state and the value of the
next state with a discounted factor, and all of that summed over the policy
probabilities.

This concedes to optimising the value functions locally, putting it together and
still have an optimal result. Once the function is optimised, a maximised policy
can be extracted from the values. The objective was to have all the sub-
problems and its value functions in order to reach the best policy. This concept
gave way to dynamic programming and lastly to reinforcement learning.

Ultimately, there’s a need of approximating this value function from the
experience of the agent. That’s when Monte Carlo methods are used to
determine the average value functions for each state and each action, by taking
random actions for each state and memorising the return. However, this
approach is only good for simple problems, and the functions are parametrized
and adjusted in order to match the output. That’s why Temporal Difference
methods are used instead, which will be explained in detail in section 1.6.1.

The final goal is to optimise the policy and to maximise the value function. The
value function for a policy 𝜋 at a given state 𝑠 is the expected cumulative

reward discounted by the factor gamma [22].

Assuming that the policy is the optimal policy, the value function is converted to
equation 1.9.

 𝑞∗(𝑠, 𝑎) = 𝐸[𝑅𝑡+1 + 𝛾𝑚𝑎𝑥𝑎′𝑞∗(𝑠′, 𝑎′)] (1.9)

To find the optimal policy two algorithms can be used. On the one hand exists
the value iteration algorithm, which consists of optimising by iterating on the
value function, maximising given an action 𝑎. The function needed to maximise
is the future reward. Value iteration assumes that the value of the next state is
known and relies on the Bellman’s optimality equation.

Reinforcement Learning 7

On the other hand, policy iteration is a two-step iteration process that locks in a
policy, and iteratively updates the value. Once the average value is fixed, the
policy is updated. Once the policy is improved, the steps are repeated.

As a result of combining the ideas of the state-value (equation 1.7) and the
action-value (equation 1.8) functions, where the result is an expected return
given an action 𝑎 and a state 𝑠, the equation in 1.10 is obtained.

It is called the Quality function or Q-function [1]. This function has the next state
return implicit in the function, so it allows a policy-free learning where these next
states are unknown. The result values of this function are called Q-values.

In this equation 𝑅𝑡+1 is the received reward and 𝑎𝑟𝑔𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎) finds the

value of 𝑎 that gives the maximum value to the function 𝑄(𝑠′, 𝑎), and then this
value is put into the 𝑄(𝑠′, 𝑎) function, discounted by a factor 𝛾. As pointed out
before, there’s a clear recursion in the function.

 𝑄(𝑠, 𝑎) = 𝑅𝑡+1 + 𝛾𝑄(𝑠′, 𝑎𝑟𝑔𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎)) (1.10)

1.6. Q-learning

Q-learning is a RL algorithm based on value iteration. The algorithm is
implemented by creating a table that related the pairs of state and actions with a
reward. Thus, when a Q-table is initialised, the agent chooses and performs the
actions, the reward is computed and the cell corresponding to that state and
action is updated with the new value of the reward.

This algorithm is an off-policy method, meaning that the optimal policy is
unknown, so two policies are used.

The first policy, called the local policy 𝜇, is used to learn and explore, and the

second one, called the target policy 𝜋, is updated less, based on the first one. In
the end, the target policy becomes the optimal policy.

Q-learning is based on the Q-function, and uses temporal difference to estimate
the expected value of an action 𝑎 in a state 𝑠. As it is just a temporal difference
method applied to the Q-function, first the work describes the TD method to
better understand Q-learning.

1.6.1. Temporal Difference Methods

As the name suggests, temporal difference (TD) methods consider the time in
which the agent takes the actions. Opposed to Monte Carlo methods, TD
methods sustain that there is a correlation between the reward and the time in
which an action was performed.

8 Aircraft-to-Aircraft separation based on Reinforcement Learning

This procedure adds a correction term to the value function, which instead of
averaging all the trajectory, giving the same importance to each step as in a
Monte Carlo method, gives more weight to recent experiences. Using the
temporal difference means that the value function can be approximated even if
the sequence of events, also known as the episode, is not yet finished.

Hence, to formulate the update of the value function using TD methods
mathematically, the expression from equation 1.11 is used.

 𝑉(𝑠𝑡) ← 𝑉(𝑠𝑡) + 𝛼[𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡)] (1.11)

The part [𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡)] is what is known as the TD error, which is the
difference between the discounted approximated value of the next state
𝛾𝑉(𝑠𝑡+1) and the value of the current state 𝑉(𝑠𝑡), with the actual reward from
the transition 𝑟𝑡+1added up [8]. The multiplying factor α is a part that determines
the rate of learning.

Learning rate is a hyperparameter that needs to be tuned depending on the use
case. A small learning rate is helpful for convergence to one value, but it also
slows learning down as the value is not updated enough. It is essential to find
the right balance between a small and a large learning rate for every problem.

Q-learning takes this approach and applies TD to the Q-function as can be seen
in the equation 1.12.

 𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)] (1.12)

In this equation, the equivalent to the TD error would be the expression 𝑟𝑡+1 +
𝛾𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡) where the 𝑟𝑡+1 is the reward of the transition,

𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) is the best Q-value for the next pair of state and action and the
last component 𝑄(𝑠𝑡, 𝑎𝑡) is the Q-value for the current state and action. With
more and more iterations, the values get more accurate as they are based on
real observations.

The process of learning the best policy and discovering the Q-values for the
pairs of states and actions is guided by a trade-off between exploration and
exploitation. There are lots of exploration techniques such as Thompson
Sampling [20], Curiosity based [7], etc. but the Epsilon Greedy technique [16]
was used for this case as it is proved to work in diverse environments, including
multi-agent settings [23, 25].

Reinforcement Learning 9

1.6.2. The Epsilon-greedy

Epsilon greedy [16] consists of modelling the trade-off with a parameter named
epsilon that determines the probability of choosing random actions versus the
actions dictated by the Q-value function.

Fig. 1.2 Diagram representing the epsilon greedy strategy.

A random number between 0 and 1 is generated, and if it’s less than the
epsilon, a random action is chosen. On the contrary, if the random number
exceeds the epsilon value, the best-known action is selected. The decision
diagram of this process is represented in figure 1.2.

Usually, the epsilon value is updated and at first it is high as the agent needs to
explore the options by trial and error (exploration). Further onto the training the
policy needs to be adjusted, thus more actions are taken under the policy
(exploitation). In this case, rather than defining one epsilon, a maximum and
minimum probability of exploration is defined accompanied by an exploration
decay parameter 𝛥𝜀, to better control the trade-off between exploration and
exploitation. At the end, a value of the epsilon is computed each learning step
following the equation 1.13.

 𝜀 = 𝜀𝑚𝑖𝑛 + (𝜀𝑚𝑎𝑥 − 𝜀𝑚𝑖𝑛) ∗ 𝑒− 𝛥𝜀· 𝑁 (1.13)

In equation 1.13, the difference between 𝜀𝑚𝑎𝑥 and 𝜀𝑚𝑖𝑛 is multiplied by 𝑒− 𝛥𝜀· 𝑁,
with 𝛥𝜀 being the exploration decay, and 𝑁 being the current number of steps in
the training. This is all added to the minimum epsilon 𝜀𝑚𝑖𝑛. As the exponential is
negative, the exploration starts with 𝜀𝑚𝑎𝑥 and ends with 𝜀𝑚𝑖𝑛.

10 Aircraft-to-Aircraft separation based on Reinforcement Learning

1.6.3. Pseudo Algorithm

The steps described above can be summarised in the pseudo algorithm from
figure 1.3. The Q-function is initialized randomly and for each episode an action
is chosen based on the epsilon greedy strategy. Once the action is performed
and the new state and reward are obtained, the Q-function is updated. This
process lasts until the next state is the desired state, or for a maximum number
of steps T, like in figure 2.4.

Fig. 1.3 Q-learning algorithm [24].

Deep Reinforcement Learning 11

CHAPTER 2. DEEP REINFORCEMENT LEARNING

2. .

2.1. Use of Neural Networks in Reinforcement Learning

In complex systems, where the number of states is close to infinite, some
elements of RL cannot be approximated and saved in tables. That’s when
neural networks come in and deep reinforcement learning (DRL) starts. DRL is
the branch of RL that uses neural networks to approximate either the value
function, the policy function, the state transition function or the reward function
[14].

Neural networks are based on the human brain structure, with processing
nodes and connections that vary in intensity. To decide if a neuron is activated
or not, an activation function is needed. In simple words, it transforms the input
in the node to an output signal depending on the importance that is given to that
information. The node adds the inputs multiplied by the weights, and bias if
there is any, and puts it in the activation function to obtain an output that will be
sent to the next layer.

Neural networks are arranged in layers and weights (see 𝑤𝑗𝑚 and 𝑤𝑚𝑘 values in

figure 2.1) that control the connections between the neurons. Normally the
networks are feed-forward, which means that the connections only go from the
input layer to the next layers. The weights are updated using backward
propagation during training, when the error signal is sent from the output layer
to the input layer, passing through the hidden layers, to adjust and strengthen
the connections that worked and weaken the ones that did not. In figure 2.1 a
diagram of this process is represented, where input signals and error signals
are represented by purple arrows in opposite directions.

Fig. 2.1 Diagram of a feed-forward neural network with backpropagation.

12 Aircraft-to-Aircraft separation based on Reinforcement Learning

The idea of using neural networks for RL dates to 1955 when Farley and Clark
[5] adjusted the parameters of linear threshold functions representing policies
using early neural networks. Since then, neural networks have been appearing
now and then in literature in topics related to RL However, it was not until
Werbos [24] when the concept as we know today appeared, although much
simpler. Werbos used a backpropagation model to approximate the value of
the policy and value function through TD methods showing promising results.

Nevertheless, what made DRL explode in popularity was a paper published by
DeepMind in 2015 [16] that showed models that could beat humans in Atari
games. More about this paper is described in the following chapter.

Fig. 2.2 Diagram of a simple deep reinforcement learning architecture.

A simple diagram of a DRL architecture is shown in figure 2.2. Here the agent
inputs the states and gets an action through the neural network that follows the
policy 𝜋. The parameter 𝜃 represents the weights of the neural network.

In short, DRL allows to apply RL to much more complex environments, but
complexity is proportional to the computational power and time needed for the
training process. By now, uncountable algorithms have been developed to suit
many environments and a fair share of them is available in open-source
platforms.

2.2. Deep Q-learning

As mentioned above, Mnih et al. or popularly referred to as the name of the
company, Deepmind’s paper [16] about DRL in Atari games was ground-
breaking. In these games, the model learned its strategy through fully
connected convolutional neural networks and the pixels of the screen as an

Deep Reinforcement Learning 13

input. With a few hours of training, it could get scores comparable, if not better,
than the best players of the game. This kind of performance and stability was
never seen before and got the interest of many, which led to even more
advances in the field.

An essential contribution of the DeepMind’s paper was the storage of past
experiences in what’s called a Replay Buffer and updating the target network
less times than the behavioural one.

The replay buffer is a storage space where experiences 𝑒𝑡 = (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) are
saved in order to train the network with them. Instead of learning the current
information in the timestep, this information gets saved in the replay buffer, and
they are used for training in batches of random samples. What was highlighted
in the paper is that random sampling helps to avoid biases that may occur in
sequential environments, where the first few experiences may not be
representative of the actual situation.

To further explain the second innovation, it should be noted that the target
network and the policy network can lead to divergence when the same, as they
are used both for computing the target value and the predicted value and these
can differ. However, using two networks, one for the policy and one to update
the target, solves this issue, as the target value stays locked for some
timesteps. This locked interval is determined by a hyperparameter. The policy
neural network weights are then copied or averaged to the target network.

Deep Q-Networks algorithm, popularly known by its acronym DQN, was first
used by Mnih et al. [16]. It is a policy-free algorithm with a deep neural network
used to estimate the Q-value function 𝑄(𝑠, 𝑎, 𝜃). As a neural network is used,

the Q function depends also on the weight’s parameter 𝜃, like in equation 2.1.

 𝑄(𝑠, 𝑎, 𝜃) ≈ 𝑄𝜋(𝑠, 𝑎) (2.1)

In Deep Q-learning the error used for backpropagation is the loss function,
which is the sum of the squared differences of the Q-values and the target
values, which is expresses as in equation 2.2.

 𝐿(𝜃) = 𝐸[(𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′, 𝜃) − 𝑄(𝑠, 𝑎, 𝜃))2] (2.2)

The Q-function is represented by adding the weights parameter 𝜃. If the loss is
minimised, it means that the network predictions and the target match. In order
to minimise it, an optimization function is needed.

An optimization function’s goal is to reduce the error in training. Lots of
optimizers are available in open-source libraries, but the one that stands out the
most in the community is Adam [12]. It combines different techniques of
optimization into one method. It has been the most used one since its

14 Aircraft-to-Aircraft separation based on Reinforcement Learning

appearance in 2014, and although it may have some problems in some use
cases [19] there are improved versions of it that solve them [27].

The DQN algorithm is summarised in figure 2.3. It represents how the memory
is filled with transition tuples stored in the replay buffer. The neural network
learns by sampling this buffer randomly and getting batches that are used to
update the policy network by using backpropagation of the loss to adjust the
weights. Actions are selected through the epsilon greedy strategy, and they are
executed in the environment, which starts the sequence again. Throughout the
process, every determined period of steps, the weights from the target network
are updated by using a soft or a hard approach.

Fig. 2.3 DQN algorithm diagram.

The process is also summarised in the following pseudo algorithm from figure
2.3 used to code the learning function of this project.

Deep Reinforcement Learning 15

Fig. 2.4 Deep Q-learning with Experience Replay algorithm [16].

16 Aircraft-to-Aircraft separation based on Reinforcement Learning

CHAPTER 3. TOOLS, METHODS AND METRICS

3. .
In the last two chapters the RL basic concepts and the mathematical reasoning
behind it has been introduced. Moreover, the neural networks paper in DRL has
been explained, to finish off with the DQN algorithm, which is what is going to
be used in this project.

The DQN algorithm will be used to train a centralized ATC that will learn to
manage the actions of each plane with the goal of minimising conflict. The
environment used is a simple 2D airspace simulator.

Since the Rules of the Air (RoA) are a set of rules all aircraft need to follow (see
section 3.2.6) to avoid unpredictability in the airspace. To apply them to the RL
training, transfer learning will be used.

Transfer learning consists of reusing knowledge from related tasks to update
the current model, to train the neural network with already proven to work
decisions.

Consequently, the RoA have been applied in the first part of the project by Lidia
Fuentes Coll [6]. In this part of the work, a DRL policy has been developed and
a comparison between the DRL policy on its own and the policy including
transfer learning (DRLT) has been made.

3.1. Tools

3.1.1. OpenAI Gym

OpenAI Gym is a developer’s environment for RL and contains lots of RL
environments, like the Atari games from DeepMind's paper. The airspace
simulator used in this project was created in this environment [2].

3.1.2. Pytorch

Pytorch [18] is an open-source DRL framework in which the project is
developed. Pytorch is a pythonic framework launched in 2016 by Facebook with
the promise of a flexible, easy to use and fast tool. It kept its promise mainly by
having two features, the first one being CUDA support, which takes advantage
of the power of graphic processing units to train the RL models. The second
one is by using dynamic computational graphs, that makes changing the order
of operations possible at runtime.

Pytorch provides the functions necessary to define custom deep neural network
models, its activation functions and optimizers among other functionalities. The

Tools, Methods and Metrics 17

base of the framework is a class called Tensor, a multidimensional array where
input and output data of the neural networks are stored. It is similar to a NumPy
array but is optimised for GPU processing.

Although it is still a young competitor compared to other alternatives like Keras,
its popularity arises among the research field. It was chosen for this project for
its pythonic nature and thus simplicity in use. Even though it is simple to use, it
has many useful functionalities implemented.

3.1.3. Weights and Biases

Weights and Biases (also known as WandB) is the platform used to visualise
the progress of the training and save it. It is a cloud-based application that
allows users to represent the desired parameters in graphs, group them in a
dashboard, allows in-depth comparisons and report creation. Moreover, it has
the capability to send a notification through Slack when the run is finished, it lets
you save the console output and the last commit in GitHub that corresponds to
the training run code.

The first considered platform for graphical representation of the training was
Tensorboard due to its popularity, but WandB has wider features. It facilitates
the use of different PCs with cloud storage of the information, allows sharing
projects with a team, the comparison of runs is much easier and has many
graph types to choose from.

3.2. Methods

3.2.1. The Environment

The environment for this project was provided by Eurocontrol as part of the
Innovation Challenge 2022. As aforementioned, it was developed in OpenAI
Gym, and it includes the initialization, and the step, reset, close and render
functions as well as place to fill the observation, reward and resolution
functions.

The environment is a multi-agent 2D environment with the number of flights as
an input. The size and shape of the airspace sector is variable, and the
minimum and maximum area are constants that can be defined. The shape of
the sector changes each episode, which finishes when all the flights get to an
exit point of the sector, or the number of steps reaches its maximum.

18 Aircraft-to-Aircraft separation based on Reinforcement Learning

Fig. 3.1 Alert zone and conflict zone with its respective radiuses.

Two parameters defined for conflict detection and resolution are the minimum
distance 𝑑𝑚𝑖𝑛 and the alert distance 𝑑𝑎𝑙𝑒𝑟𝑡. The minimum distance is the radius
which determines the conflict area of a flight, this is, the area not to enter, and
the alert distance is the same but for the alerts. Both areas are represented in
figure 3.1. Note that 𝑑𝑚𝑖𝑛 < 𝑑𝑎𝑙𝑒𝑟𝑡.

3.2.1.1. Flights

The flights are the agents of the environment that are initialised with a random
speed in a particular range and an arbitrary heading.

Each flight is defined with the following parameters:

• position: two-dimensional coordinates in Euclidean space (𝑥𝑖 , 𝑦𝑖)

• speed 𝑣𝑖

• track 𝜒𝑖

And these parameters change every timestep following equation 3.1 for
changes in x axis, 3.2 for changes in the y axis, 3.3 for the changes in speed
and 3.4 for the change in track. In these equations 𝛥𝑡 is the timestep, 𝛥𝜒 is the
track change and 𝛥𝑣 is the speed change.

(3.1)

(3.2)

(3.3)

 (3.4)

Tools, Methods and Metrics 19

 Moreover, there are several elements defined for each episode: the entry point
(𝑥𝐸 , 𝑦𝐸), the exit point, also called the target (𝑥𝑇 , 𝑦𝑇), the bearing 𝜓, the drift 𝛿
and the distance to the target 𝑑𝑡𝑎𝑟𝑔𝑒𝑡.

The rendering function plots the environment simulation and represents the
parameters in the way symbolised in figure 3.2

Fig. 3.2 Environment rendering with the airspace sector and the flights on the
right and an individual sector with the components of the representation named.

It is worth mentioning that the position of the aircraft is contained in the airspace
sector, and they start and finish the simulation in its border. When the aircraft
exits the sector, it is not considered anymore in the episode.

The reinforcement learning model will be a cooperative environment that
applies the same reward function for all the agents. Air traffic control is one of
the most popular examples in cooperative multi-agent environments, since the
flights need to cooperate in order to maintain separation between them. A DQN
algorithm will be used, and the states, actions and reward will be shaped in a
way that corresponds to the policy following the Rules of the Air to make the
learning easier.

The code has been developed in Python and is available on GitHub in this link:
https://github.com/vera15380/conflict-avoidance-TFG-WP.git. The code is
accompanied by an explanation of its architecture in appendix B.

3.2.2. DQN

The DQN algorithm has been implemented on top of the OpenAI Gym
environment to reduce the number of conflicts through reinforcement learning.

https://github.com/vera15380/conflict-avoidance-TFG-WP.git

20 Aircraft-to-Aircraft separation based on Reinforcement Learning

Although it is a multi-agent environment, the DQN algorithm is applied
individually to each aircraft since the observations made it possible to use the
same neural network for all the aircraft, because of using relative values. The
actions are then joint into one tensor and passed to the environment.

3.2.2.1. Replay Buffer

The replay buffer is modelled as a double-ended queue with a maximum
capacity as an input. The functions to append transitions to the buffer, to extract
a sample batch of random indexes and to pop the last transition are written and
available to use.

In order to append a transition, a tuple containing the state, the action, the
reward and the next state needs to be created first.

3.2.2.2. Neural Network

A full dense two-layered feedforward network is used with the input size equal
to the observation space shape and the output size equal to one as it only has
to output one action. The hidden neurons are an input of the function and can
be adjusted to find better performance.

class NeuralNetwork(nn.Module):
 def __init__(self, n_obs_individual, n_output, n_hidden):
 super().__init__()
 self.input = nn.Linear(n_obs_individual, n_hidden)
 self.hidden = nn.Linear(n_hidden, n_hidden)

self.hidden_2 = nn.Linear(n_hidden, n_hidden)
 self.output = nn.Linear(n_hidden, n_output)

 def forward(self, x):

x = self.input(x)
x = self.hidden(x)
x = self.hidden_2(x)
x = self.output(x)
x = F.relu(x)
return x

3.2.2.3. Action Selection

The action selection function is based on the epsilon-greedy strategy, so the
equation 1.13 is used to update the value of the exploration rate with the
exploration range and decay. When a random number generated each step is
more than the exploration rate, the policy action is chosen, but when it is less, a
random action is chosen.

def select_action(self, obs):
 self.exploration_rate = self.exploration_min + (self.exploration_max - \

self.exploration_min) * math.exp(-1. * self.n_steps *
\self.exploration_decay)

Tools, Methods and Metrics 21

 if random.random() > self.exploration_rate:
 q_eval = self.policy_net.forward(torch.Tensor(obs))
 action = q_eval[0].max(0)[1].cpu().data.item()
 else:
 action = random.randint(0, self.action_size - 1)

 self.n_steps += 1
 return action

The returned action is joined to actions from all the flights in a list and finally
given to the environment to perform a step in the main.py file.

3.2.2.4. Learning Function

The learning function is based on the pseudo algorithm provided in section
1.6.3. First a sample of the replay buffer is taken and divided into states,
actions, rewards and next states. These arrays are converted to tensors, and
the unsqueeze function is used to get the correct dimensions of the tensors, in
order to be able to operate with them.

Then, the expected Q-values are extracted from the local network and the Q-
values for the next states are taken from the target network.

The Q-targets are computed with Bellman’s equation and then the loss is
computed as the smooth L1 Loss [18]. The loss is minimised, and the backward
propagation is made. The target network is updated every chosen number of
steps self.target_update with a soft update.

Getting sample from replay buffer
states, actions, rewards, next_states =
self.replay_buffer.sample(self.memory_sample_size)

Convert the batches to torch tensors
rew_s = torch.FloatTensor(rewards).unsqueeze(-1)
obs_s = torch.FloatTensor(np.array(states))
actions_s = torch.LongTensor(actions).unsqueeze(-1)
next_obs_s = torch.FloatTensor(np.array(next_states))

Get expected Q values from local model
q_policy = self.policy_net(obs_s).gather(1, actions_s)

Get max predicted Q values (for next states) from target model
q_next = (self.target_net(next_obs_s).detach()).max(1)[0]

Compute Q targets for current states
q_target=rew_s+self.gamma*q_next.view(self.memory_sample_size, 1)

Compute the loss and minimise it.
loss = self.loss_func(q_policy, q_target)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()

22 Aircraft-to-Aircraft separation based on Reinforcement Learning

Update target network
if self.n_steps % self.target_update == 0:
 self.soft_update()
return loss

3.2.3. States

In order to describe the situation of the flight, states in numeric form are
needed, and preferably normalised for better performance of the neural
network. Each flight will have its own states and the observations describing the
status of other flights near it.

The state of the ownship contains the distance to the target 𝑑𝐸, the distance to

the closest flight 𝑑𝑐𝑙𝑜𝑠𝑒𝑠𝑡, both divided by the minimum distance 𝑑𝑚𝑖𝑛, the track
𝜒𝑖, the bearing 𝜓𝑖, and the normalised airspeed 𝑣𝑖̅, which is defined by the
expression in equation 3.5 as in [2].

 𝑣𝑖̅ =
𝑣𝑚𝑎𝑥 − 𝑣𝑖

𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛
 (3.5)

The vector for these observations will result in equation number 3.6.

(3.6)

The observations implemented regarding other aircraft are local and relative
observations. The idea behind it was to reflect the conflict classification by the
Rules of the Air, which are explained more in detail in section 3.2.6. The
representation is done through dividing a certain range around the aircraft into 6
sectors, with 0º corresponding to the heading of the aircraft, and symmetrically
from there:

• 0º-15º range corresponding to the head-on conflicts.

• 15º to 110º corresponding to the converging conflicts.

• 110º to 180º corresponding to the overtaking conflicts.

These sectors are represented in figure 3.3 where the flight is in the centre and
the detection zone is painted depending on the type of the potential conflict
sector.

Tools, Methods and Metrics 23

Fig. 3.3 Sector graphic representation.

Note that from now on the ownship will be the flight in the centre of the
detection zone and intruders will be the ones that trespass this zone.

From each of these sectors, the closest intruder is chosen. The observations
are a matrix where each row corresponds to one intruder per sector, starting
from 0º and going clockwise. At the end, also some observations about the
ownship are concatenated to this matrix. The observations for each row are
formalised in equation 3.7.

(3.7)

Where dCPA is the minimum separation that will occur between two aircraft and
tCPA is the time until the aircraft will be in that position. They are computed using
the formulas found in [17]. 𝛽𝑖𝑗 is the relative angle between the heading of the

ownship and the intruder, 𝑑𝑖𝑗 is the distance between both flights, 𝑑𝑚𝑖𝑛 is the

conflict range and 𝑣𝑟𝑖𝑗
 is defined as in equation 3.8.

 (3.8)

24 Aircraft-to-Aircraft separation based on Reinforcement Learning

The observation matrix for all the sectors will be the one in equation 3.9.

(3.9)

For better understanding let’s follow with a situational example from figure 3.4.

Fig. 3.4 Situational example of an ownship and 4 intruders penetrating different
sectors from the observations.

The distribution of aircraft found in figure 3.4 contains an ownship and 4
intruders, intruder 1 and 2 in sector 2; intruder 3 in sector 4; and intruder 4 in
sector 6. However, as 𝑑1 < 𝑑2, only intruder 1 will be considered in the
observations for this particular ownship in that sector. The rows of the state
matrix occupied by the intruders are highlighted in figure 3.5. The other rows will
be filled with high numbers to give the sensation that the flight is far away.

Tools, Methods and Metrics 25

Fig. 3.5 The observation matrix with the intruders’ rows highlighted in the
corresponding colour.

This matrix is joined with the ownship states. The overall matrix will then be
flattened, converted to a tensor and passed to the neural network.

3.2.4. Reward

The reward function has been a real challenge as it could not deviate from the
main goal of the project, but it must influence the behaviour of the aircraft so
that they end up following a similar route to the one that was planned initially
and get to the target. After many versions and attempts, a simple reward
function was what worked best for this case.

The reward function considers the current track of the aircraft and if it has any
conflicts or alerts in a timestep.

The overall function is formalised below, in equation 3.10.

(3.10)

If the track coincides with the bearing (so the aircraft is going to the target),
there’s a bonus of 𝑘𝑡𝑟𝑎𝑐𝑘 = 0.1 . If the aircraft has a conflict or is on alert, there
is a penalty. The penalty is divided into two factors: k and g. The k is the

constant that determines what importance to give the alerts and the conflicts. in

26 Aircraft-to-Aircraft separation based on Reinforcement Learning

this case the alerts have an importance of 1 and the conflicts of 10. The g is the

gravity factor, that computes the penetration distance of each zone (alert or
conflict) and divided by the radius of the respective zone (dalert or dmin).

3.2.5. Actions

The action space consists of 𝑁 discrete actions, which are:

• Stay with the same configuration.

• Point to target, so the track equals the bearing 𝜒𝑖 = 𝜓𝑖.

• Change track with angle 𝛼, 𝛼 defined by the expression in equation 3.11.

 𝛼 = {𝑥|𝑥 𝜖 ± 𝐾 · 𝛥𝛼} 𝑤ℎ𝑒𝑟𝑒 𝐾 = {𝑦 𝜖 ℕ|𝑦 ≤ 𝑁 − 2} (3.11)

• Where 𝑁 is the number of discrete actions and 𝛥𝛼 is the angle change
interval allowed. If 𝛥𝛼 is equal to 15º for example, then the turns would
be of [±15º, ±30º, . . . , 15º · 𝐾]

• Change airspeed ±𝜈 knots.

The number of its action and its resolution is presented in table 3.1.

Table 3.1. Equivalence of the action number in the code and the resolution.

Action number Resolution

0 No change in speed or track.
1 Change track to bearing
2 Turn +15º
3 Turn +30º
4 Turn +45º
5 Turn +15º
6 Turn +30º
7 Turn +45º
8 Change speed +5 kt
9 Change speed -5kt

3.2.6. Rules of the Air Policy

A policy was developed as part of another final degree project [6] with the use
of solely conditionals and not RL. This policy follows the Rules of the Air, which
classifies the conflicts in 3 categories and has different resolutions that must be
followed in each case. Moreover, this policy also considers the right-of-way rule,

Tools, Methods and Metrics 27

that gives preference to one of the aircraft so only one aircraft must manoeuvre
in case of a potential conflict situation.

The 3 categories and the actions that should be taken in each case are about to
be specified, according to the general operating flight rules [4]. The
classification depends on the relative angle from the ownship in which the
conflict takes place, which can be seen in figure 3.3.

• Head-on. Both aircraft should modify the heading to the right.

• Converging. the aircraft on its right has the right-of-way.

• Overtaking. The aircraft that is being overtaken has priority and

the one overtaking should deviate its heading to the right.

This policy uses a prediction of the area where the loss of well-clear will take
place, computes the turn angle necessary for a safe avoidance manoeuvre both
to the left and right and chooses the largest angle of the two in order to keep
away from the conflict. The original policy had a continuous angle output, but
this project adapted it to a discrete version with limited performance.

In the beginning, the policy had no turn limitation, with the aircraft having the
possibility to turn maximum 180º and with a continuous angle. In order to adapt
it to a discrete algorithm, the actions have been limited to turns of
±15º, ±30º and ±45º. The conflict resolution capacity of the policy has not
been affected much by it, as the aircraft that turned more than 45º before, now
do it too, only in more steps. However, precision has been lost as the actions
are now discrete and the angles must be rounded up. Moreover, the new action
options also include airspeed changes, which is not considered in the RoA
policy.

3.3. Metrics

Like in any project, it is necessary to establish the metrics in which the success
of the DQN training will be measured. In this way, a glimpse of the status of the
simulation and if the objectives established at the introduction are reached is
going to be based on facts.

The utmost important objective to measure the success of is the conflict
resolution, so metrics for it will be the most relevant.

Conflicts and other metrics will be displayed in plots. To see the evolution the
graphs will have in the x-axis the number of steps and the y-axis is the metric
mentioned in each section. A graph setup in WandB for each graph is similar
and can be seen in figure 3.6, and most of the line plots are smoothened by
applying an exponential moving average in order to get a better understanding
of the evolution of the training even though some results may oscillate quite a
bit at first. The original line appears as a faded-out colour and the smoothed-out
version is a more vivid colour.

28 Aircraft-to-Aircraft separation based on Reinforcement Learning

Fig. 3.6 Graph setup interface in WandB with a sample graph.

Table 3.2 presents the metrics that will be commented in more detail in sections
3.3.1 and 3.3.2 with its corresponding name in the code.

Table 3.2. Metrics and their name in the code.

Metric Name in the code

Success rate (evaluation) Success_rate_eval

Reward average avg_rew_ep

Aircraft Conflicts n_real_conflicts_episode

Simultaneous conflicts n_conflicts_ep

Minimum separation distance critical_distance

Number of turns n_turns_ep

Distance left to target distance_left_to_target

Extra distance flown extra_distance

3.3.1. Metrics Used for the Evaluation of the Training

3.3.1.1 Success rate of the evaluation

The success rate of the evaluation will be the percentage of episodes that are
successful (with no conflicts) after training the DQN network and giving no
exploration options to the neural network.

3.3.1.2 Averages

Since in the evaluation the exploration process is gone, the metrics to measure
its performance will be the averages of the metrics mentioned above related to
the training.

Moreover, these parameters will be compared between runs to tune the
hyperparameters (see section 4.2) and obtain the simulation with the best
results. The graph to compare these results will be a parallel representation of
the most relevant parameters. For example, in figure 3.7 we can see a

Tools, Methods and Metrics 29

comparison between the results of training with different learning rates, just two
for the purpose of the example.

The first vertical axis of the graph represents the hyperparameter that is
currently being compared, in this case the learning rate. The following four
vertical axes are the success rate of evaluation (%), the average reward per
episode, the average number of turns per episode and the average aircraft
conflicts per episode, correspondingly. The graph represents the relationship
between the values and allows a quick evaluation of the quality of the simulation
while varying a chosen hyperparameter.

Fig. 3.7 Parallel graph example from WandB.

The results of the tuning will be detailed in section 4.2.

3.3.2. Metrics Used to Understand the Evolution of the Training

3.3.2.1 Reward per episode

The reward is one of the most important metrics in RL since it determines what
are the good and bad decisions that an agent can take.

To compute the reward per step, the equation 3.10 is used. Its average is the
sum of all the rewards for the flights that are not done in the episode and
dividing the sum by the number of these flights.

The reward for one episode is the sum of the average reward obtained by the
agents each step.

The reward graph is essential as it tells if the agents are learning or not. Ideally,
at first the reward has low values and rises until reaching a stable value.

rew_without_nan = [x for x in rew if np.isnan(x) == False]

 if len(rew_without_nan) != 0:

30 Aircraft-to-Aircraft separation based on Reinforcement Learning

 rew_average = np.average(rew_without_nan)

…
rew_episode += rew_average

Looking at the code, where rew is the array of rewards for each flight, first the

empty reward from the flights that are already done are deleted, and then the
average of the array is computed. At the end of each step, the reward average
is added to the episode reward.

3.3.2.2 Aircraft conflicts for episode

The aircraft conflicts for one episode will be the number of the pairs of flights
that violated each other’s conflict areas, without considering that this conflict
may last more than one step, so if the conflict is not resolved in the next
timestep, it does not add it to the number of aircraft conflicts, it just adds
conflicts that are new and were not considered before.

3.3.2.3 Simultaneous conflicts each episode

This parameter measures the pairs of flights that are in conflict in each step and
episode of the simulation.

However, in contrast to the aircraft conflicts, this metric resets its memory each
timestep, so a conflict that appeared in one step will be counted again if it is not
solved in the next step. The conflicts each episode are the sum of the number
of conflicts per step.

To further explain the difference between the first and the second metric, the
code snippet below is used as a guide.

for i in range(self.num_flights - 1):
 if i not in self.done:
 for j in range(i + 1, self.num_flights):
 if j not in self.done:
 distance=self.flights[i].position.distance(self.flights[j].position)
 distance_NM = distance * u.m
 if distance < self.min_distance:
 self.conflicts.update((i, j))
 self.n_conflicts_step += 1
 self.n_conflicts_episode += 1
 self.matrix_real_conflicts_episode[i, j] = True

Several conflict metrics are defined: n_conflicts_step,
n_conflicts_episode and matrix_real_conflicts_episode. The first two

correspond to the metric described in this subsection, adding up 1 when a
conflict appears, without caring what flights are in conflict and if it was there

Tools, Methods and Metrics 31

before. The loop for detecting the conflicts does not run along the pairs of flights
twice, so conflicts between aircraft 𝑖 and 𝑗 are not being repeated.

In contrast to this method of counting conflicts,
matrix_real_conflicts_episode, that corresponds to the first metric, is a

boolean quadratic matrix with a size equal to the number of flights. At first the
whole matrix is False, and if a conflict is detected between flight 𝑖 and flight 𝑗,
the cell matrix_real_conflicts_episode[i,j] turns True. So, during an

episode only one conflict between a pair of flights can be counted, even if it
repeats itself over many steps. At the end of the episode the True values are
counted, and it gives the number of aircraft conflicts during that period.

3.3.2.4 Minimum separation distance for episode

The minimum distance for an episode will be the lowest distance between two
aircraft detected during an episode and it will be measured in nautical miles
(NM).

3.3.2.5 Number of turns taken per episode

The number of turns appears as an attribute of the class flight. It is updated
every step, so if a flight has turns it turns the parameter to 1. Then the attributes
are summed up to obtain the number of turns each step, and at the end of the
episode, the number of turns each episode.

It is an important factor as if it’s too high it gives us the alert that the aircraft may
be spinning around and not advancing to the target.

3.3.2.6 Distance left to target per flight for episode ending

After each episode, if there are any aircraft left that are yet to arrive at the
target, the distance left for them to finish is added and saved. This informs if the
aircraft are finishing the episodes and advancing to the target, and it is useful to
detect spinning aircraft in the same place during all the steps of the episode.

3.3.2.7 Extra distance per flight for episode ending

This parameter tells if the deviation of the original route was significant or not. It
is the difference between the distance from the entry point to the exit point in a
straight line and the distance made by the flight.

32 Aircraft-to-Aircraft separation based on Reinforcement Learning

CHAPTER 4. RESULTS.

4

4.1. Simulation Setup

The simulation parameters chosen for the simulations are the ones presented in
table 4.1. The number of flights is 10 as it represents a high workload for an air
traffic controller (ATCO). Several values of the other parameters have been
tried and the ones that optimised the results appear in the table and will be used
during all the training.

Table 4.1. Simulation parameters.

Number of flights 10

Area range [15625, 40000] NM²

Speed range [400, 500] kt

Maximum episode length 350 steps

Minimum distance 5 NM

Alert distance 15 NM

Detection radius 30 NM

Angle change 𝛥𝛼 15º

Speed change 𝛥𝜈 5 kt

Discrete actions number 10

Exploration range [𝜀𝑚𝑖𝑛 , 𝜀𝑚𝑎𝑥] [0.1, 1]

Target update 10

4.2. Hyperparameter Tuning

With the parameters from table 4.1 steady, in addition to the ones that can be
seen in table 4.2. the hyperparameters of the DQN have been tuned. In order to
do this, the hyperparameter tuned in that moment was the only variable
parameter. The other ones stayed constant during the different runs of the
code. The value with the best results from each hyperparameter is selected and
they are put together in one simulation to validate if they work altogether.

Table 4.2. Parameters for hyperparameter tuning simulations.

Episodes 1000

Maximum replay buffer capacity 100

Results 33

Batch size 64

Gamma 𝛾 0.75

Tau 𝜏 0.1

Learning rate 𝛼 0.001

Exploration decay 𝛥𝜀 0.00001

Hidden neurons 128

Hyperparameter tuning can be tricky as oftentimes parameters depend on each
other and work better in certain combinations. There is software that facilitates
parameter tuning, however, open-source alternatives have not been found for
this project, so the decision of doing it by this type of comparison has been
made. While evaluating the results different aspects apart from the average
reward must be considered.

Tables with average results from the evaluation of each parameter appear in
appendix C.

4.2.1. Gamma

Although gamma is not considered a parameter in some research works, but
more as a parameter that depends on the purpose of the project, its impact on
the training has been checked. As mentioned before, it sets the importance of
the long-term reward rather than the instant reward, with 0 being only caring
about the immediate reward and 1 only caring about the long-term outcome.

Fig. 4.1 Reward per episode graph comparison depending on gamma.

Reward

34 Aircraft-to-Aircraft separation based on Reinforcement Learning

Fig. 4.2 Parallel graph of gamma, success rate, average reward, average
number of turns and average real conflicts per episode.

From figure 4.2, it can be seen that the success rate was the highest for 𝛾=1.00,
but looking at the other columns, the number of turns taken is an abnormally
high value, which indicates that the aircraft were just spinning in place. In figure
4.1 the two gamma values that outperform the rest in terms of reward are
𝛾=0.98 and 𝛾=0.99. However, looking at the next graph 𝛾=0.98 stands out the
most if 𝛾=1.00 is discarded: with a higher success rate, less conflicts and a
better reward.

4.2.2. Tau

Tau is the soft update coefficient that indicates the intensity of the update of the
target network. A 𝜏=0 would mean that no update is done, 𝜏=0.5 would mean an
average between the values of the policy and target nets, and 𝜏=1 equals to a
hard update, so copying the weight averages from the policy to the target neural
network.

Fig. 4.3 Reward per episode graph comparison depending on tau.

Results 35

Fig. 4.4 Parallel graph of tau, success rate, average reward, average number of
turns and average real conflicts per episode.

Without so much difference as gamma, tau values 𝜏=1.0 and 𝜏=0.8 are the most
promising referring to figure 4.3. Looking at figure 4.4, the decision to make a
hard update is taken, as it leaves fewer real conflicts and a better learning curve
than 𝜏=0.8, while having nearly the same success rate and average reward.

4.2.3 Hidden neurons

The hidden neurons are the number of nodes that each hidden layer of the
neural network will have. Contrary to the input and the output layers, this one
can be adjusted. If the neurons are overestimated, the network will act from
memory and not by generalising. On the other hand, if the number chosen is too
small. it will not be able to learn the patterns of the resolution as it will be too
complex [10].

Fig. 4.5 Reward per episode graph comparison depending on the hidden
neurons.

36 Aircraft-to-Aircraft separation based on Reinforcement Learning

Fig. 4.6 Parallel graph of the hidden neurons, success rate, average reward,
average number of turns and average real conflicts per episode.

With the results in hand, considering the graph of the reward during training in
figure 4.5 and the averages of the evaluation from figure 4.6, 64 hidden neurons
have been selected as the number of nodes of the hidden layers of the neural
network. The reward was the highest in evaluation, the curve of the reward
during training was correct and the number of conflicts diminished better than in
other simulations.

4.2.4 Learning Rate

The learning rate defines how quickly the model stops learning and is
considered adapted to the problem: if it takes big or slow steps to optimise the
loss function. If the learning rate is too small, it will take lots of time to find the
optimal solution. If it’s too big, it can lead to sudden changes and disruption in
the learning process, and the neural network to diverge.

Fig. 4.7 Reward per episode graph comparison depending on the learning rate.

Results 37

Fig. 4.8 Parallel graph of the learning rate, success rate, average reward,
average number of turns and average real conflicts per episode.

The value of the learning rate with the best results without being too small is
α=0.0001. Other good results are α=0.1 and α=1e-10 according to figure 4.7Fig.
4.7, as they stabilise at a higher reward value. The second value is discarded
as the learning would be too slow, and between α=0.1 and α=0.0001, the latter
gets better results in evaluation according to figure 4.8.

4.2.5 Batch Size

The batch size is the number of samples taken from the replay buffer and
trained to the neural network at once. Smaller batch sizes could lead to
instabilities in the model, but the larger ones tend to generalise poorly [11].

Fig. 4.9 Reward per episode graph comparison depending on the batch size.

38 Aircraft-to-Aircraft separation based on Reinforcement Learning

Fig. 4.10 Parallel graph of the batch size, success rate, average reward,
average number of turns and average real conflicts per episode.

The batch size maximum number that could be tested is 64 as the memory size
and the maximum episodes of the simulation limit it. From these runs, a batch
size of 64 was the one with the best results overall. From figure 4.9 it can be
told that it is the one with the highest reward throughout training, and from figure
4.10 the results

After the parameter tuning the results have been wrapped up in table 4.3, which
collects the parameters that wil be used in the simulations described next.

Table 4.3. Parameters after hyperparameter tuning.

Episodes 50000

Maximum replay buffer capacity 10000

Batch size 64

Gamma 𝛾 0.98

Tau 𝜏 1

Learning rate 𝛼 0.0001

Exploration range [𝜀𝑚𝑖𝑛 , 𝜀𝑚𝑎𝑥] [0.1, 1]

Exploration decay 𝛥𝜀 0.0001

Hidden neurons 64

Target update 10

4.3. Deep Reinforcement Learning Results

The DRL approach is the one only using a DQN algorithm. The results of the
training and the test are going to be presented below.

In figure 4.11 the reward evolution throughout the training can be seen, that
stabilises at -10. The simultaneous conflicts graph seen in figure 4.12 shows a
decrease in conflicts oscillating between 10 and 20 conflicts. The minimum

Results 39

separation seen in figure 4.13 distance has variable values, but the average
does not meet the requirement of conflict avoidance of a minimum separation
distance of 5 NM.

Fig. 4.11 Average reward per episode.
DRL.

Fig. 4.12 Simultaneous conflicts per
episode. DRL.

Fig. 4.13 Min. separation distance per

episode. DRL.

Fig. 4.14 Aircraft conflicts per episode.

DRL.

Fig. 4.15 Average distance left to
reach target per episode. DRL.

Fig. 4.16 Extra distance per episode.

DRL.

40 Aircraft-to-Aircraft separation based on Reinforcement Learning

Fig. 4.17 Number of turns per episode.

DRL.

Fig. 4.18 Exploration rate. DRL.

The aircraft conflicts in figure 4.14 do not decrease notably, but the resulting
average is of 1.78. As for the distance left to the target by the flights that did not
finish the episode (see figure 4.15), it reaches a peak that decreases once the
learning rate stabilizes (see figure 4.18). The same happens with the extra
distance seen in figure 4.16, it follows the shape of the exploration rate graph
from figure 4.18 except for the peak from the start.

The turns per episode diminish during training but are variable depending on
the situation. However, the value is not too high to discard this evaluation from
possible aircraft turning too much and spinning around, an issue that has been
found in some simulations.

4.4. Reinforcement Learning with Transfer Learning Results

In all the graphs below related to Deep Reinforcement Learning with Transfer
Learning (from now on referred to as DRLT policy) there is a clear separation
from where the policy stopped applying the RoA to when only DQN decisions
were applied. In figure 4.19 the reward had positive values of 10 until reaching
the point of change that diminishes the reward to -20.

Fig. 4.19 Average reward per episode.

DRLT.

Fig. 4.20 Simultaneous conflicts per

episode. DRLT.

Results 41

Fig. 4.21 Min. separation distance per

episode. DRLT.

Fig. 4.22 Aircraft conflicts per episode.

DRLT.

Fig. 4.23 Average distance left to
reach target per episode. DRLT.

Fig. 4.24 Extra distance per episode.

DRLT.

Fig. 4.25 Number of turns per episode.

DRLT.

Fig. 4.26 Exploration rate. DRLT.

The simultaneous conflicts graph seen in figure 4.20 shows nearly no conflict
until DQN is applied, which makes the conflicts rapidly increase conflicts. The
minimum separation seen in figure 4.21 exceeds the average of 5 NM for
conflict avoidance but it is quickly lost.

The aircraft conflicts in figure 4.22 do not inherit the values of the RoA policy.
As for the distance left to the target by the flights that did not finish the episode
(see figure 4.23), the extra distance from figure 4.24 and the number of turns in

42 Aircraft-to-Aircraft separation based on Reinforcement Learning

figure 4.25, they are increased abruptly when the DQN point is reached. The
exploration rate is only used once the TL starts and decreases fast to avoid the
loss of learning with random choices (see figure 4.26) but it is not achieved.

To sum up, the transfer learning of the RoA did not improve the results of the
DRL solution.

4.3 Comparison of DRL, DRLT, RoA and the baseline
simulations

The two approaches studied, DRL and DRLT, are going to be compared to the
RoA policy developed in [6] and the baseline environment which has no policy
applied.

In figure 4.27 the average reward per episode for the 4 policies is represented,
where it can be clearly seen that the RoA has the best results. The DRL is the
second-best reward at the end of the simulations, and DRLT had good results
at first that decay with the DQN application and ends up at the same level as
the baseline environment.

Fig. 4.27 Average reward per episode comparison between DRLT, DRL, RoA
and the baseline environment.

As for the evaluation of DRL, the values in table 4.4 show an increase in reward
and the conflict avoidance compared to the baseline. Nonetheless, these results
are not an extreme enhancement and could not be applied to a real ATC
problem. As for a visual evaluation, in some episodes the aircraft avoid conflict
perfectly but oftentimes the turns that they make generate conflict that did not
exist at first. When the aircraft are in conflict, they show that they can get out of
it quickly.

Results 43

Table 4.4. Evaluation results and comparison with the baseline environment
without applying any policy, with green representing an improvement and red a
worse result than the baseline environment.

Metrics (avg/episode) Baseline DRL Baseline

Difference
DRLT Baseline

Difference

Reward -17.026 -11.565 ↑ 32.07% -24.935 ↓ 46.45%
Dist. left to target (NM) 7.78·103 1.80·105 ↑ 2222.01% 7.05·105 ↑ 8973.79%
Extra dist. (NM) 0.000 71.895 ↑ 71.895 163.254 ↑ 163.25
Min. separation dist. (NM) 3.176 3.186 ↑ 0.03% 2.814 ↓ 11.40%
Nº of turns 0.00 1299 ↑ 1299 217.01 ↑ 217.01
Aircraft conflicts 1.81 1.78 ↓ -1.66% 1.73 ↓ -4.42%
Simult.conflicts 15.73 14.62 ↓ -7.06% 16.68 ↑ 6.04%
Success rate (%) 19 19 0% 15 ↓ 21%

As for the evaluation of DRLT, the values in table 4.4 show a decrease in
reward and the conflict avoidance compared to the environment without
applying any policy. As for a visual evaluation, in some episodes the aircraft
avoid conflict however most of the times conflict is not avoided and even more
conflicts are generated by the actions of the aircraft.

Fig. 4.28 Percentage of actions chosen using DRL, DRLT and RoA with the
legend of action resolutions corresponding to the action numbers.

The difference in results is traduced to a difference in the actions taken by the
agents. Whilst RoA uses “action 0” 86.1% of the time, followed by “action 1”
with 11.3%, DRLT prioritises “action 0” above all and the rest of the actions are
chosen with equal probability, and DRL choses “action 0” and “action 1” with
nearly the same probability.

44 Aircraft-to-Aircraft separation based on Reinforcement Learning

5 CHAPTER 5. CONCLUSIONS

6
The project has demonstrated the possibility of conflict reduction by DRL,
concretely a DQN algorithm applied to a flight simulator. The implementation is
a shared policy that uses the same neural network for all flights. The airspace
simulator represented a high-capacity sector with flights in cruise.

DRL alone reduced simultaneous conflicts by an average of 7.06% compared to
the original environment without a conflict avoidance strategy. The reward was
32.07% higher. However, the success rate and the minimum separation
distance did not change significantly compared to the baseline environment.

DRLT was developed to improve these results and apply the RoA to the DRL
policy. The RoA policy showed an improvement of 99.41%. This run
corresponds to the RoA policy by Lidia Fuentes with two modifications: turns
limited to ±15º, ±30º and ±45º and speed changes were included in the actions.
Despite the promising results of the RoA, transferred learning did not improve
them; on the contrary, they were worse than with DRL, where the simultaneous
conflicts increased by 6.04% and reward decreased by 46.45% with respect to
the baseline.

The execution of the DRL policy was much faster than using RoA, at 1 second
per iteration versus 12 seconds per iteration, thus it can be concluded that DRL
improves the decision time. As for the feasibility of the solution, the DRL
decision model is not suitable to be applied to piloted aircraft or as a
complementary tool for the ATCOs. In the comparison between the actions
taken by different policies, the case of DRLT, almost 90% of aircraft take no
action (action 0). However, in the case of DRL, these actions are more spread
over different turns, so that only in 45% of the cases action 0 is taken. This
would lead to an impossible workload for the controller and for the pilot.

In contrast, this could be a good solution for unmanned aerial vehicles (UAVs),
where fully autonomous conflict avoidance could be implemented, and self-
separation would be possible. Furthermore, since only one neural network is
used for all aircraft, exactly the same strategy is used for all flights, reducing the
unpredictability of using a different policy for each flight, a very important aspect
in aviation.

Nevertheless, further improvements need to be made to achieve full conflict
avoidance (100% conflict resolution) and a possible implementation proposal.
This could be the implementation of different algorithms, such as the actor-critic
algorithms, or increasing the complexity of the neural network by adding more
layers (currently set to a minimum of 2). In addition, a more realistic model of
the environment could be developed by adding the wind component, making the
environment a 3D model, or gradual turns that takes more than one step.
Finally, a supercomputer would have improved the results by allowing more
training.

Conclusions 45

1. BIBLIOGRAPHY
2.

[1] Bellman, R. and Stuart E. D. Applied Dynamic Programming. Princeton
University Press, Princeton (1962)

[2] Dalmau Codina, R. and Allard, E. “Air Traffic Control Using Message
Passing Neural Networks and Multi-Agent Reinforcement Learning.” 10th
SESAR Innovation Days (SID). Ed. Network (NET) Research Unit. 1-8
Bretigny-Sur-Orge (2020).

[3] EUROCONTROL. Aviation Intelligence. 20 August 2022:
<https://www.eurocontrol.int/Economics/DailyTrafficVariation-ACCs.html>
accessed 20 August 2022.

[4] FAA. “Legal Information Institute.” 27 July 2004. Part 91 - General
operating and flight rules:
<https://www.law.cornell.edu/cfr/text/14/91.113> accessed on 10 August
2022.

[5] Farley, B. and Wesley C. “Simulation of Self-Organizing Systems by
Digital Computer.” Transactions of the IRE Professional Group on
Information Theory. 76-84 (1954): <https://ieeexplore-ieee-
org.recursos.biblioteca.upc.edu/stamp/stamp.jsp?tp=&arnumber=105746
8> accessed 1 August 2022.

[6] Fuentes, L. “Air Traffic Control using separation algorithm based on
Rules of the Air.” Universitat Politècnica de Catalunya, EETAC, 29 June
2022.

[7] Girdhar, Y., Whitney D. and Dudek G. “Curiosity Based Exploration for
Learning Terrain Models.” 2014 IEEE International Conference on
Robotics & Automation (ICRA). Hong Kong: Hong Kong Convention and
Exhibition Center, 578-584 (2014): <https://ieeexplore-ieee-
org.recursos.biblioteca.upc.edu/stamp/stamp.jsp?tp=&arnumber=690691
3> accessed 10 August 2022.

[8] J Hood, J. Reinforcement Learning: Temporal Difference (TD) Learning
(2021): <https://www.lancaster.ac.uk/stor-i-student-sites/jordan-j-
hood/2021/04/12/reinforcement-learning-temporal-difference-td-
learning/> accessed 24 July 2022.

[9] Jang, K, et al. “Simulation to scaled city: zero-shot policy transfer for
traffic control via autonomous vehicles.” the 10th ACM/IEEE International
Conference. Montreal, 291-300, (2019).

[10] Kalagirou, S. A. “Designing and Modeling Solar Energy Systems.” Solar
Energy Engineering. 1-14 (2014).

[11] Keskar, N. S., et al., “On Large-Batch Training for Deep Learning:
Generalization Gap and Sharp Minima.” International Conference on
Learning Representations (ICLR). San Juan, 1-16 (2016).

46 Aircraft-to-Aircraft separation based on Reinforcement Learning

[12] Kingma, D. P. and Ba, J. “Adam: A Method for Stochastic Optimization.”
ArXiv , 1-15 (2014): <https://arxiv.org/pdf/1412.6980.pdf> accessed on
20 June 2022.

[13] Leffer, L. “One of the World's Busiest Airports Will Cap Passenger
Numbers at 100,000 Per Day.” Gizmondo (2022):
<https://www.msn.com/en-us/travel/news/one-of-the-worlds-busiest-
airports-will-cap-passenger-numbers-at-100000-per-day/ar-AAZuIdw>
accessed on 20 July 2022.

[14] Li, Y. “Deep Reinforcement Learning.” ArXiv. 1-150 (2018):
<https://arxiv.org/pdf/1810.06339.pdf> accessed on 22 July 2022.

[15] de Luca, G. ML Policy Reinforcement Learning (2020):
<https://www.baeldung.com/cs/ml-policy-reinforcement-learning>
accessed on 12 June 2022.

[16] Mnih, V., et al. “Human-level Control through Deep Reinforcement
Learning.” Nature. issue 518, 529-533 (2015):
<https://www.nature.com/articles/nature14236> accessed on 14 July
2022.

[17] Pham, D., et al. “A Machine Learning Approach for Conflict Resolution in
Dense Traffic Scenarios with Uncertainties.” Thirteenth USA/Europe Air
Traffic Management Research and Development Seminar (ATM2019).
Vienna: AI Team, 1-12, (2019):
<https://dr.ntu.edu.sg/bitstream/10356/146568/2/ATM_Seminar.pdf>
accessed on 20 March 2022.

[18] PyTorch Contributors. Smooth L1 Loss. (2020):
<https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html>
accessed on 10 June 2022.

[19] Reddi, S. J., Kale S. and Kumar, S. “On the Convergence of Adam and
Beyond.” ArXiv , 1-23. (2019): <https://arxiv.org/pdf/1904.09237.pdf>
accessed on 21 June 2022.

[20] Russo, S. and Van Roy, B. “An Information-Theoretic Analysis of
Thompson Sampling.” Journal of Machine Learning Research, 1-30
(2016): <https://www.jmlr.org/papers/volume17/14-087/14-087.pdf>
accessed on 10 August 2022.

[21] SESAR JU. SESAR Joint Undertaking. (2018).
<https://www.sesarju.eu/index.php/projects/dart> accessed on 20 July
2022.

[22] Sutton, R. S. and Barto, A.G. Reinforcement Learning: An Introduction.
The MIT Press, Bradford (2015).

[23] Tse, H- T. and Leung, H. “Exploiting Semantic Epsilon Greedy
Exploration Strategy in Multi-Agent Reinforcement Learning.” ArXiv, 1-8

Conclusions 47

(2022): <https://arxiv.org/pdf/2201.10803v2.pdf> accessed on 10 August
2022.

[24] Werbos, P. J. “Generalization of Backpropagation with Application to a
Recurrent Gas Market Model.” Neural Networks: the official journal of the
International Neural Network Society 1.4, 339-356 (1988):
<https://www.researchgate.net/publication/223074905_Generalization_of
_Backpropagation_with_Application_to_a_Recurrent_Gas_Market_Mode
l> accessed on 16 July 2022.

[25] Wunder, M., Littman, M. L. and Babes, M. “Classes of Multiagent Q-
Learning Dynamics with epsilon-greedy Exploration.” International
Conference on Machine Learning. Haifa, 1167-1174 (2010).

[26] z_ai. The Good, the Bad, and the Ugly: Supervised, Unsupervised and
Reinforcement Learning. (2020): <https://towardsdatascience.com/the-
good-the-bad-and-the-ugly-supervised-unsupervised-and-reinforcement-
learning-2ccf814c6bab> accessed on 22 August 2022.

[27] Zaheer, M., et al. “Adaptive Methods for Nonconvex Optimization.”
Advances in Neural Information Processing Systems, 31, 9793–9803
(2018).

ANNEX

TITLE: Aircraft-to-Aircraft separation based on Reinforcement Learning

DEGREE: Aeronavigation Engineering

AUTHOR: Weronika Prawda

ADVISOR: Cristina Barrado Muxí

DATE: September 5th, 2022

Appendix A 49

APPENDIX A. MULTI-AGENT REINFORCEMENT
LEARNING

Multi-agent reinforcement learning (MARL) takes place when the environment is
shared between two or more agents. This adds a difficulty to the training as the
actions of one of the agents can influence the decisions of the other ones.

In a multiagent setup, several agents share the environment in which they are
in. So, for this case the diagram shown before could look like the one in figure
A.2, where the actions of each agent form a joint action 𝑎𝑡 and the environment

returns a joint 𝑠𝑡 state and reward 𝑟𝑡 to the agents. These joint elements

normally are in the form of an array where each element corresponds to each
agent. Another type of system would be an extensive-form approach where
agents take decisions alternately and receive their individual reward at the end,
like in figure A.2.

If the setup is multi-agent, MDPs (see section 1.3 of the document) are called
Markov Games [3] that are represented by states’ set S, action sets for each

agent Ai, an associated reward function and with the goal to maximise the sum

of discounted rewards (see equation A.1).

𝐺𝑡 = 𝐸 {∑ 𝛾𝑘𝑅𝑡+𝑘+1

∞

𝑘=0

} (A.1)

The agents can interact with each other and with the environment in various
ways in line with the tasks that they are supposed to do. They may compete for
the reward, collaborate to maximise it, or a mix of the two, generally in teams.

Fig. A.2 Multi-agent interaction with
the environment, extensive-form
approach.

Fig. A.1 Multi-agent interaction with
the environment, where the actions,
the states and the reward are joint.

50 Aircraft-to-Aircraft separation based on Reinforcement Learning

To better understand these three approaches, let’s dive into more specific
examples.

- Cooperative environments

Cooperative situations are also called multi-agent MDPs or Markov
games [3]. In these environments the agents usually share the same
reward function and goal, so formally: 𝑅1 = 𝑅2 = · · · = 𝑅𝑁 = 𝑅.

The Q-value function for the agents is identical, so there are ways to
approach it in a centralised manner, where all the agents are engulfed as
one decision maker and all the actions are taken simultaneously.
However, normally this approach leads to not considering the impact of
the actions of the other agents in the environment.

Another viewpoint would be to have agents with different reward
functions and considering a team-average reward [1], where the final
goal is to optimise the average of the reward functions as the long-term
goal, where its function would look like the following equation.

 𝑅(𝑠, 𝑎, 𝑠′) ∶= 𝑁 − 1 · ∑𝑖𝜖𝑁 𝑅𝑖(𝑠, 𝑎, 𝑠′) 𝑓𝑜𝑟 𝑎𝑛𝑦 (𝑠, 𝑎, 𝑠′)

∈ 𝑆 × 𝐴 × 𝑆
(A.2)

This helps with the decentralisation of the processes and brings certain
individuality to the agents.

This individuality brings the need for communication between agents, as
they no longer take decisions as one, so they no longer have the state of
each agent being considered while choosing the actions. On one hand,
the communication can be very simple, in the form of sharing information
from other agents or sharing the reward. On the other hand, it can reach
more complexity, such as the prediction of the moves of each agent in
order to decide, called Intention sharing [5] or using meta-learning to do
so [4].

These setups have several broad examples, from air traffic control to the
game Overcooked.

- Competitive environments

In competitive environments agents compete for a goal. Normally they
are formalised as a zero-sum game, where the reward should be 0 for
any state, ∑𝑖𝜖𝑁 𝑅𝑖(𝑠, 𝑎, 𝑠′) = 0 𝑓𝑜𝑟 𝑎𝑛𝑦 (𝑠, 𝑎, 𝑠′). Oftentimes these games
are associated with one-vs-one games, where the reward of one agent is
donated to the other, so when one loses, the other one wins the same
number of points.

- Cooperative-competitive environments

Appendix A 51

These environments are a mix of both cooperative and competitive
strategies, normally associated with team versus team setups. In this
case there are no restrictions to the goal or a typical modelling of the
reward, It could be just two cooperative environments competing with
each other or something more entangled. One example of this setting
could be a predator-prey ecosystem.

There are many algorithms to choose from in the case of multi-agent
reinforcement learning, but they are difficult to use, and the available codes are
specific to one environment. However, they can be adapted if understood well.

In contrast to a single-agent problem, there are a few challenges that these
algorithms face, the first one being scalability.

When the agent number increases, the action and observation spaces also
increase, which leads to a need of more computational resources and memory
in order to perform the training and use the reinforcement learning model. This
is especially notable for centralised systems, where all the information from all
the agents must be processed at once. Decentralised systems could be the
response to that problem, but they have other issues.

The second challenge is the non-stationarity of the environment. Opposed to a
single-agent setup where the agent is only concerned with its actions, now the
agents must consider their actions and the actions of the other agents, which
constantly reshape the environment and make it non-stationary. This leads to
problems regarding the inaccuracy of the policy where the outcome is very
much dependent on the other agents’ states. This issue is typical of
decentralised environments without good communication.

The last issue is the partial observability. Most of the algorithms that exist
assume the possibility of having a complete image of the environment, which is
not always the case in real life.

This problem can be avoided by modelling a partial observation Markov
decision process, where the probability of the observations 𝑂 is added to an
MDP tuple (𝑆, 𝐴, 𝑇, 𝑅, 𝛺, 𝑂, 𝛾).

52 Aircraft-to-Aircraft separation based on Reinforcement Learning

REFERENCES

[1] Kar, S., Moura, J.M., Poor, H.V.: “QD-learning: A collaborative distributed strategy for multi-agent
reinforcement learning through consensus + innovation”s. IEEE Transactions on Signal
Processing 61(7), pp. 1848–1862 (2013

[2] Kim, Woojun, Jongeui Park and Youngchul Sung. «Communication in
Multi-Agent Reinforcement Learning: Intention Sharing.» International
Conference on Learning Representations (ICLR). (2021).

[3] Owen, Guillermo. Game Theory. 2nd. New York: Academic Press,
(1982). Online.
<https://openlibrary.org/books/OL3484527M/Game_theory#details>.

[4] Raileanu,R., Denton, E., Szlam, A. and Fergus, R.. Modeling others using oneself in multi-agent
reinforcement learning. ArXiv preprint, ArXiv:1802.09640 (2018)

[5] Zhang, Kaiquing, Zhuoran Yang and Tamer Basar. «Multi-Agent
Reinforcement Learning: A Selective Overview of Theories and
Algorithms.» ArXiv (2021).

Appendix B 53

APPENDIX B. CODE ARCHITECTURE

The entire code can be found in vera15380/conflict-avoidance-TFG-WP
(github.com).

The code is divided into different files depending on the functionality.

● Calcs.py is where the auxiliary functions that are used in more than

one file are stored, for example the tCPA function.

● Definitions.py is where the airspace and flight classes are defined.

● In env.py the reward, the resolution of the actions and the observation

functions can be found, aside from the update, step and render

functions.

● In the rl.py file all the classes related to reinforcement learning are

saved. This includes the replay buffer class, neural network class and

the DQN algorithm with the action selection, update, and learning

functions.

● The units.py file contains the conversions from the International

System of Units (SI) to units used in aviation.

● In the wandb_graphs.py there are functions to represent graphically

and store information about the training and evaluation, in Wandb and

in Tensorboard in case of failure of one of the two.

● The main.py file contains the setup of constants for the training and

the loops to train with the Rules of the Air and DQN.

Figure B.1 explains the content of the different files found in Github and figure

B.2 goes into detail of what can be found in the file atcenv.py.

https://github.com/vera15380/conflict-avoidance-TFG-WP
https://github.com/vera15380/conflict-avoidance-TFG-WP

54 Aircraft-to-Aircraft separation based on Reinforcement Learning

Fig. B.1. Diagram of the content of the code (first layer).

Fig. B.2 Diagram of the content of the atcenv folder and its code.

Appendix C 55

APPENDIX C. HYPERPARAMETER TUNING RESULTS

Fig. C.1 Graphs of hyperparameter tuning gamma.

56 Aircraft-to-Aircraft separation based on Reinforcement Learning

Table C.1. Average results of the evaluation depending on gamma.

Gamma

value

Conflict/epi

sode

Distance to

target/ep

(NM)

Extra

distance/ep

(NM)

Min.

Separation/

ep (NM)

N. turns/ep
Real

conflicts/ep
Reward/ep

Success

rate eval

𝛾=0.10 15.80 705764.6 183.88 2.82 221.22 1.69 -21.7443 19

𝛾=0.20 15.45 714396.2 185.36 2.92 220.42 1.83 -20.2489 18

𝛾=0.30 13.73 736444 178.69 3.31 217.54 1.66 -17.8747 21

𝛾=0.40 12.63 733071.3 157.71 3.62 221.27 1.54 -15.7749 22

𝛾=0.50 15.15 753911.2 150.74 3.29 217.46 1.74 -21.8553 24

𝛾=0.60 13.17 718265.7 182.08 3.05 224.9 1.64 -18.3068 18

𝛾=0.70 13.44 744588 136.44 3.66 214.98 1.59 -19.7417 27

𝛾=0.75 16.26 679347.8 179.68 3.18 219.94 1.76 -20.6940 19

𝛾 =0.80 16.41 756728.5 162.84 2.84 219.84 1.72 -21.5975 19

𝛾=0.85 16.87 707665.7 162.00 2.83 218.72 1.89 -21.5066 17

𝛾=0.90 17.25 726309.1 197.92 2.73 225.10 1.96 -21.7886 14

𝛾=0.95 17.27 710292.6 192.44 2.91 220.02 1.82 -23.8251 18

𝛾=0.96 18.49 726481.3 186.01 2.89 223.03 1.92 -24.4192 22

𝛾=0.97 15.95 727029.6 178.26 2.69 220.29 1.80 -21.7772 16

𝛾=0.98 14.87 679847.3 144.50 3.62 207.46 1.68 -19.7779 23

𝛾=0.99 12.99 164353.2 59.42 2.82 1394.95 1.64 -7.85734 19

𝛾=1.00 0.72 1562465 1059.36 15.52 2912.11 0.11 -1.58261 93

Appendix C 57

Fig. C.2 Graphs of hyperparameter tuning tau.

58 Aircraft-to-Aircraft separation based on Reinforcement Learning

Table 4.2. Average results of the evaluation depending on tau.

Tau value
Conflict/epi

sode

Distance to

target/ep

(NM)

Extra

distance/ep

(NM)

Min.

Separation/

ep (NM)

N. turns/ep
Real

conflicts/ep
Reward/ep

Success

rate eval

𝜏=0.1 15.8 705764.6 183.8888 2.820306 221.22 1.69 -21.7443 19

𝜏=0.2 15.45 714396.2 185.3639 2.926843 220.42 1.83 -20.2489 18

𝜏=0.3 15.98 739725.0 182.8851 2.845074 222.47 1.71 -18.9995 16

𝜏=0.4 19.41 746403.7 169.4548 2.853679 223.60 2.12 -23.5515 16

𝜏=0.5 17.07 712537.6 156.8700 2.958805 220.28 1.83 -22.9872 14

𝜏=0.6 15.01 715991.9 237.5440 2.894260 224.14 1.87 -21.2840 16

𝜏=0.7 16.10 729329.1 193.1994 3.012887 219.21 1.79 -22.7135 22

𝜏=0.8 14.54 766096.3 203.3953 3.331865 228.40 1.65 -20.5196 27

𝜏=0.9 17.55 728369.9 179.1316 2.971296 219.88 1.78 -23.8385 16

𝜏=1.0 15.16 744628.8 183.0338 3.573278 222.39 1.54 -21.1014 25

Appendix C 59

Fig. C.3 Graphs of hyperparameter tuning the hidden neurons.

60 Aircraft-to-Aircraft separation based on Reinforcement Learning

Table C.3. Average results of the evaluation depending on the number of
hidden neurons.

Hidden

neurons

value

Conflict/epi

sode

Distance to

target/ep

(NM)

Extra

distance/ep

(NM)

Min.

Separation/

ep (NM)

N. turns/ep
Real

conflicts/ep
Reward/ep

Success

rate eval

hn=32 16.41 693290.7 181.7419 2.631968 221.33 1.79 -22.4604 15

hn=64 14.1 726214.9 180.9207 3.246031 220.26 1.72 -18.0490 21

hn=128 17.47 751845.7 200.83 2.78099 224.54 2.05 -22.6656 16

hn =256 16.28 741141.4 182.8497 2.861823 221.66 1.76 -24.0137 22

hn=512 19.38 705955.2 178.4158 2.868479 224.86 2.08 -23.2801 17

hn=1024 14.38 702727.9 181.5375 3.322088 227.17 1.68 -20.2692 23

Appendix C 61

Fig. C.4 Graphs of hyperparameter tuning the learning rate.

62 Aircraft-to-Aircraft separation based on Reinforcement Learning

Table C.4. Average results of the evaluation depending on the learning
rate.

Learning

rate value

Conflict/epi

sode

Distance to

target/ep

(NM)

Extra

distance/ep

(NM)

Min.

Separation/

ep (NM)

N. turns/ep
Real

conflicts/ep
Reward/ep

Success

rate eval

lr =1 15.8 705764.6 183.8888 2.820306 221.22 1.69 -21.7443 19

lr = 0.1 15.45 714396.2 185.3639 2.926843 220.42 1.83 -20.2489 18

lr = 0.01 15.98 739725 182.8851 2.845074 222.47 1.71 -18.9995 16

lr = 0.001 14.92 762505.3 162.1336 3.643531 223.52 1.55 -22.728 27

lr =

0.0001

14.06 704054.9 162.0858 3.706851 218.69 1.53 -18.4025 25

lr = 1e-05 15.38 735892.8 176.3586 3.108465 222.65 1.69 -20.1481 21

lr = 1e-06 17.16 694668 174.356 2.886834 219.15 1.95 -23.2004 16

lr = 1e-07 17.9 818672.5 194.1866 3.264188 259.94 1.96 -23.3391 18

lr = 1e-09 14.62 1223299 162.2595 4.118106 323.69 1.51 -22.1512 28

lr = 1e-10 15.72 617504 178.5235 3.042452 606.47 1.84 -18.3367 19

Appendix C 63

Fig. C.5 Graphs of hyperparameter tuning the batch size.

64 Aircraft-to-Aircraft separation based on Reinforcement Learning

Table C.5. Average results of the evaluation depending on the batch size.

Batch size

value

Conflict/epi

sode

Distance to

target/ep

(NM)

Extra

distance/ep

(NM)

Min.

Separation/

ep (NM)

N. turns/ep
Real

conflicts/ep
Reward/ep

Success

rate eval

batch

size=16

15.8 705764.6 183.8888 2.820306 221.22 1.69 -21.7443 19

batch

size=32

20.39 686766.1 183.1232 2.935089 215.22 2.11 -25.5489 18

batch

size=64

13.92 699969.7 162.0731 3.797281 217.3 1.51 -19.058 29

