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Abstract

This project will be centered in the study of rings of differential operators on singular
varieties and the theory of D-modules. A D-module is defined as a module over the ring of
differential operators on a k-algebra.

We will start with the case of Weyl algebras which coincide with the ring of k-linear dif-
ferential operators on a polynomial ring k[xy, ..., z,]. We are going to prove that this ring of
differential operators is a simple Noetherian domain whose dimension is two times the dimen-
sion of the polynomial ring. Also, considering modules over this ring we will show Bernstein’s
inequality that give us a lower bound to the dimension of the module and, using this result, we
will define holonomic D-modules.

Our goal is to study what good structural properties of the regular case can be extended
in the singular one. We will use the results proved in the case of Weyl algebras to give a
description of the ring of k-linear differential operators on a finitely generated k-algebra that
can always be presented as a quotient S = R/I of a polynomial ring R = k[zy,...,z,]| by
an ideal I. We will prove that those differential operators can be obtained in terms of the
differential operators that preserve the ideal and differential operators on the Weyl algebra.
And show that the ring of differential operators of a finitely generated k-algebra do not have as
much as good properties as Weyl algebras, however we will obtain some of them under several
conditions. We will study modules over this kind of rings of differential operators and their
dimension, proving a generalized Bernstein’s inequality under some conditions.

Finally, we will apply these results to study the case of the ring of differential operators on
a hyperplane arrangement and explain several methods to obtain a system of generators of this
ring.

Keywords

Gelfand-Kirillov dimension, filtrations, Weyl Algebras, Differential Operators, Hyperplane Ar-
rangements
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Introduction

The main objects of this project are D-modules. We will denote by D 4 the ring of k-linear
differential operators on a k-algebra A. The simplest and most familiar example is given by the
ring of k-linear differential operators on the polynomial ring A = k[xy,...,z,] and is known
as the n-th Weyl algebra. It consists of the endomorphisms of A generated by multiplication
by the coordinates x; and taking partial derivatives 0,,. Also in the case of Weyl algebras, we
can think of D-modules as A-modules on which we can differentiate, in the sense that partial
derivatives act on the modules. We will introduce Weyl algebras as our first example of the
theory, but their study will also be useful later on to describe more abstract rings of differential
operators.

More generally, there is a notion of ring of differential operators on any Noetherian ring A
given by Grothendieck [Grothendieck, 1967]. Such ring is always, by definition, a subring of
the endomorphisms of A. The key idea of this generalization is that one can define the order
of a differential operator inductively using the commutator. A D-module is then defined as a
module over the ring of differential operators on A.

Despite the advantage of Grothendieck’s definition, working in such a general setting be-
comes impracticable. For example, one cannot obtain a good theory of D-modules neither an
explicit description of Dy in such generality. In order to improve this situation it is wise
to focus on a smaller class of rings. This was done by McConnell and Robson in the book
[McConnell and Robson, 1988], where they gave a more concrete description of the ring of dif-
ferential operators for the case of finitely generated k-algebras. We will follow this advice in
our study, and later further specialize to the case of hyperplane arrangements.

The origin of the theory of D-modules can be found in the independent works of Kashi-
wara [Kashiwara, 1970] and Bernstein [Bernstein, 1971]. The motivation behind Bernstein’s
approach was to solve a question proposed by I. M. Gelfand at the 1954 edition of the ICM
regarding the analytic continuation of the complex zeta function. His solution is based on the
existence of what is now known as Bernstein-Sato polynomials. This existence result is based
on Bernstein’s inequality which which give us a lower bound of the dimension of a module in
terms of the dimension of the ring of differential operators on a polynomial ring. However,
this inequality can be generalized to other k-algebras such as the ring of holomorphic functions
[Sato et al., 1972] and the ring of formal series [Bjork, 1979]. Linked to this result one can
define a central object of the theory of D-modules: the class of holonomic modules. This class
of D-modules have the property that are of finite length as D-modules and finite-dimensional
de Rham cohomology.

The theory of D-modules over singular rings has not been developed yet. Indeed, only a few
examples of rings of differential operators can be found in the literature. For example, Stanley-
Reisner rings [Eriksson, 1998, Tripp, 1997], semigroups algebras [Saito and Traves, 2004], the
cubic curve

§=Clz,y,2/(=" +v° +2%),

which was studied by Bernstein, .M. Gelfand and S.I. Gelfand in [Bernstein et al., 1972], the
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ring of invariants of finite groups in characteristic zero [Levasseur and Stafford, 1989] and the
case of hyperplane arrangements [Holm, 2002].

To conclude this introduction, we summarize the contents of this project. In Section 1, we
will review several concepts of commutative algebra such as filtrations, gradings and different
equivalent definitions of dimension of a k-algebra or a module. We will also define the ring of
k-linear differential operators over a k-algebra A in Section 1.3 and describe the differential
operators of order zero and one over A.

In Section 2, we will center on studying Weyl algebras which is the k-algebra generated by

the variables x4, ..., z, and the partial derivatives ai’ e %. We will prove in Section 2.1 that
xT1 rn,
they coincide with the ring of differential operators over a polynomial ring R = k[z,...,x,].

We will present in Section 2.2 two different filtrations on the Weyl algebra, one given by the
order of the differential operators and another given by the total order known as Bernstein’s
filtration. Also, using this last filtration we will show in Section 2.3 some structural properties
satisfied by the Weyl algebra. Finally, we will consider modules over the Weyl algebra in
Section 2.4 and prove in Section 2.5 the Bernstein’s inequality that give us a lower bound to
the dimension of the module and using this result we will define holonomic D-modules.

In Section 3, we will use the results proved in Sections 1.3 and 2 to give a description of the
ring Dgyi of k-linear differential operators on a finitely generated k-algebra that can always be
presented as a quotient S = R/I of a polynomial ring R = k|[xy, ..., z,] by an ideal I. We will
prove in Section 3.2 that those differential operators can be obtained in terms of the differential
operators that preserve the ideal and the differential operators on the Weyl algebra. Similarly
as in Section 2 we will give two filtrations on the ring of diffferential operators, one given by
the order and the second one is a generalized Bernstein’s filtration. We will see that the case
of rings of differential operators on finitely generated k-algebras will not have as much as good
properties as Weyl algebras, however we will prove some of them under several conditions in
Section 3.4. We will end this section studying modules over this ring of differential operators
and its dimension in Sections 3.5 and 3.6.

In Section 4 we are going to focus on the case of hyperplane arrangements. In Section 4.1
we fix the basics of hyperplane arrangements. In Section 4.2 will study the ring of differential
operators in this setting and in Section 4.3 we will explain several methods to obtain a system
of generators of the ring of differential operators.

Finally, in Section 5 we give the conclusions of this work and some ideas for future work in
the theory of D-modules.

i



1. Background in Commutative Algebra

The purpose of this project is to study (non-commutative) rings of differential operators
over certain k-algebras, such as polynomial rings or quotients of these. In this section we are
going to review some definitions and results from commutative algebra that we will need in the
rest of the project. All the results of this section are well known and can be found in full detail
in [Atiyah and MacDonald, 1969], [Bourbaki, 1998] and [Eisenbud, 1995].

In Sections 1.1 and 1.2 we introduce, and sometimes generalize, concepts which are well-
known in the commutative setting. More concretely, in Section 1.1 we introduce filtrations and
gradings. Filtrations and gradings can be thought of as decompositions of a ring into smaller
parts which are easier to understand. In particular, filtrations are useful to define the notion
of dimension, which is the purpose of Section 1.2.

After that, we introduce rings of differential operators with examples in Sections 1.3 and 1.4.
The simplest and best understood example of ring of differential operators is the Weyl alge-
bra, see Definition 2.1, which consists of the usual differential operators on a polynomial ring
k[x1,...,2,]. We will introduce a more general version for k-algebras due to Grothendieck in
Section 1.3.

1.1 Filtrations and gradings

We start with the following setting: let k be a field and let A be an associative ring with
unit, although it might not be commutative. We are going to give in this section a way to
“decompose” a ring or a module via filtrations and gradings.

Definition 1.1. The centre of A is the subring Z(A) of elements of A which commute with
all the elements of A. In other words, a € Z(A) if and only if for every b € A we have that
ab = ba.

Definition 1.2. A k-algebra is a pair (A, v) where A is aring and ¢ : k — A is a ring morphism
such that p(k) € Z(A). We can think of A as a left vector space over k, and we shall define
the dimension of A over k, dimy(A), to be the dimension of A as a k-vector space.

Definition 1.3. Let A and B be k-algebras, f : A — B is a morphism of k-algebras if
fla-a') = f(a)- f(d), fla+d) = f(a)+ f(a') and f(Aa) = Af(a) for all a,a’ € A and X € k.

Definition 1.4. An endomorphism of a k-algebra A is a homomorphism f: A — A. We will
denote by Endy(A) :={f: A — A homomorphism of k-algebras}.

Definition 1.5. A filtration F = (F,)nez., of a k-algebra A is a sequence of abelian groups
FpCFH CHC...

indexed by the non-negative integers, such that
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1. 1€ F,.
2. FyF; C Fiy; for each 4,7 € Z>o.
3. Unezoy Fn = A.
If F is a filtration on A, we say that (A, F) is a filtered k-algebra.

Remark 1.6. In this work we are going to be interested in filtrations given either by a sequence
of finitely dimensional k-vector spaces or a sequence of finitely generated A-modules.

In the case of finitely generated k-algebras we can consider a special filtration:

Definition 1.7. Let A be a finitely generated k-algebra. We say that a filtration F on A is
standard if there exists a generating set vy, ..., v; of A such that Fy = k(vy,...,v;) and for each
i € Z>o, F; = (F1)", the k-subspace generated by monomials in vy, ..., v; of degree < i.

Definition 1.8. Given a filtered k-algebra (A, F) and a left A-module M, a filtration G =
(Gm)mezs, o1 M compatible with F is a sequence of abelian groups

GoCGi1CGyC...
indexed by the non-negative integers, and such that
1. F,G; C Gy, for every i, j € Z>o.
2. Unezo, Gn =M.
If G is a filtration on M compatible with F, we say that (M, G) is an (A, F)-module.

Remark 1.9. As before, we are going to consider the case that we have a sequence of finitely
dimensional k-vector subspaces of M or finitely generated A-submodules of M, depending on
the situation.

Definition 1.10. Let (A, F) be a filtered k-algebra and M a finitely generated left A-module.
We say that a filtration G on M compatible with F is standard if there exists a generating set
my,...,my of M such that G; = F;(my,...,my) for all i € N.

By simplicity we are going to write A = (A, F) and M = (M, G) when there is no risk of
confusion.

Definition 1.11. If M is a filtered A-module and N C M is a submodule then

e N, = M, NN defines a filtration that we call the submodule filtration on N.
e (M/N), = (M, + N)/N defines a filtration that we call the quotient filtration on M/N.

Definition 1.12. A grading on a ring A is a sequence of additive subgroups A = (A, )nez.,
such that A = @,,cz., An and A, A, C Apyy for all myn € Zso. When such a grading has
been chosen we say that the ring A is graded, often without mentioning the grading A.



Example 1.13. A polynomial ring A = k[xy,...,z,] is graded by taking the grading A =
(Am)mEZZO as the k-submodules generated by the monomials of degree m:

Definition 1.14. Given a graded ring (A, A) and an A-module M, we say that M is (compat-
ibly) graded if there is a sequence of additive subgroups M = (M, )nez., With M = @®,,cz. M,
and A,, M, C M+, for all m,n € Z>ot. We call M, the n-th homogeneous component and we
say its elements are homogeneous of degree n. Obviously, M, is an Ag-module.

Definition 1.15. Let A be a ring and F = (F},)nen be a filtration. We define the graded ring
associated to the pair (A, F) as

gr5(A) = @ Fu/Fus.

n>0

It is graded by A = (An)nezs, = (Fu/Fu-1)nezs, and it has a natural multiplication. Namely,
the product of =, + A,+1 and x,, + A1 With n,m € N is

(xn + An—i—l)(xm + Am-l—l) = TpTm + An-{—m—l—l'

Note that grz(A) is an A-module because every homogeneous piece is.

Analogously, we can define the graded module grg(M) associated to an A-module M and
a compatible filtration G = (G}, )nen as

QTQ(M) = @ Gn/Gn—H'

n>0

Note that grg(M) is naturally a grz(A)-module.

1.2 Dimension Theory

Classically, one can study the dimension of a ring from two different points of view, com-
puting its Krull dimension or using Hilbert functions (see [Atiyah and MacDonald, 1969] and
[Eisenbud, 1995]). During this section we are going to review these two concepts and also
introduce the Gelfand-Kirillov dimension of a k-algebra, see [McConnell and Robson, 1988],
which coincides with the Krull dimension when the k-algebra is finitely generated. Finally, we
will present a new notion of dimension which generalizes the previous ones but which makes
sense for non finitely generated k-algebras. It can be found in the work of [Bavula, 2009] and
[Alvarez Montaner et al., 2021].

Definition 1.16. Let A be a ring and M an A-module. We call M simple if it is nonzero and
its only proper submodule is 0. We call a chain of submodules,
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a composition series of length m if each successive quotient M;_,/M; is simple. Finally, we
define the length ¢(M) to be the infimum of all those lengths:

((M) = inf{m | M has a composition series of length m}.

By convention, if M has no composition series, then ¢(M) := co. Note that ¢(M) = 0 if and
only if M =0 and that /(M) = 1 if and only if M is simple.

Definition 1.17. Let A be a commutative ring, its Krull dimension, dim(A), is the supremum

of the lengths of all strictly ascending chains of prime ideals, if it exists, or otherwise infinite.
This is
dim(A) = sup{r | there is a chain of prime ideals po C --- C p, in A}.

Generally, during this project we will consider gradings on modules given by sequences of
k-vector spaces of finite dimension.

Definition 1.18. Let A be a commutative graded ring, with Ay = k a field, and assume that
A is finitely generated as a k-algebra. Let M be a finitely generated graded A-module with
grading M = (M, )nez.,. We define the Hilbert function of M as

HM . ZZO e Zzo.

n — dimy (M,,)
We define the Hilbert series of M to be

S(M,t) =Y Hu(n)t"

n>0

It is well known (see [Atiyah and MacDonald, 1969]) that there exists a unique polynomial
H(M,t) which agrees with Hy;(n) for n > 0. We call H(M,t) the Hilbert polynomial of M.

Remark 1.19. It may happen that choosing a different grading on M produces a different Hilbert
function and thus a different Hilbert polynomial. However, the degree of the Hilbert polynomial
of M is an intrinsic value which does not depend on the chosen grading.

Definition 1.20. Let M be a finitely generated A-module. The dimension dim(M) of M is
the degree of H(M,t). Let a4 be the leading coefficient of H(M,t), where d = dim(M). The
multiplicity of M is defined as

e(M) = lim —5— = lim —
Remark 1.21. Observe that this definition of multiplicity of a module M differs from the classical

one, e(M) = aq-d!, which is always an integer. This is only a convention and it is in our interest
to consider e(M) = a4 in order to compare it with the next equivalent definitions of multiplicity.



Example 1.22. Let R = k[z1, ..., x,] be a polynomial ring, graded as in Example 1.13. Since
Ry is the k-vector space generated by the monomials of degree d, it has rank (”;_Jlrd). Note
that Ry = k, so the factor dimy Ry equals 1.

The Hilbert function of M = R has value dimy(R;) = dimg(k) (”;jd) at d > 0. It is
therefore a polynomial itself, so it agrees with the Hilbert polynomial:

n—1

H(R,t) = (n_1+t> _(t+1)..(t+n—1)

(n—1)!

Using the binomial identity (";:“d) = (—l)d(_d") we can compute the Hilbert Series of R:

S(R,1) = Y dimy (k) (” —h d)td = 1@”) ("= 5 _1t)n.

d>0 n—1 d>0

Now, we are going to introduce the Gelfand-Kirillov dimension, which works for non neces-
sarily commutative rings.

Definition 1.23. Let A be a finitely generated k-algebra, let V' C A be a subspace containing
a set of generators of A. Consider the filtration F = (F,)nez,, With F, = 3L, Vi C A and
V0 = k. The Gelfand-Kirillov dimension of A is defined as

GK(A) = inf{v | dimy F,, < n” for n > 0}.
For a non finitely generated k-algebra A, the Gelfand-Kirillov dimension of A is defined as

GK(A) =sup{GK(A") | A’ is a finitely generated subalgebra of A}.

For a left finitely generated A-module M with a standard filtration G = (Gy)nez.,, the
Gelfand Kirillov dimension of M is given by

GK (M) = inf{v | dimy G,, < n" for n > 0}.
We can also define the multiplicity of M as

e(M) = lim dimy Gy,

€ Rog U {oo}, where d = GK(M).

In the case when the k-algebra A is not finitely generated and we have a filtration (A, F)
of finite-dimensional vector spaces we have another kind of dimension that coincide with the
Gelfand-Kirillov dimension in the finite case. Observe that we will not consider generally in
this case a standard filtration on the k-algebra neither on the module. The definition can be
found on [Bavula, 2009] and [Alvarez Montaner et al., 2021]:

Definition 1.24. Let G be an ascending sequence of finite-dimensional k-vector spaces. We
define

Dim(G) = inf {t € Ry | dimy G; <4' Vi> 0}



Rings of differential operators on singular varieties

If d = Dim(G) is finite, then the multiplicity of G is the extended real number:

dimy G;
e(G) = limsup lmiii{ € Ryo U {o0}.

By convention, if Dim(G) is infinite, then we set ¢(G) = oo.

Remark 1.25. In fact, in the case when we are computing the dimension of a finitely generated
k-algebra we do not need the limit superior only the limit. One example that illustrate that
the limit does not exist can be found in detail in Section 4 of [Katzman et al., 2012].

1.3 Rings of Differential Operators

The origin of the definition of differential operator over a Noetherian ring can be found in
the work of Groethendieck [Grothendieck, 1967], however the modern theory of D-modules
was developed at the same time by Kashiwara in his master thesis on algebraic analysis
[Kashiwara, 1970] and by J. Bernstein who developed a very similar theory in the algebraic
setting on [Bernstein, 1971}, where he introduced the concept of holonomic modules.

Let k be a field and A a commutative k-algebra. Most of the results from this section are
well known and can be found in [Coutinho, 1995] and [McConnell and Robson, 1988].

Definition 1.26. Let D be an extension of the ring A (or a k-algebra), the commutator of two
elements a,b of D is defined by [a,b] =aob—boa.

Proposition 1.27. Let D be an extension of the ring A, «, 8,7 operators in D, and A € A.
Some useful results on the commutator are:

(1) [aB,~] = a[B,7] + [a,7]B.
(2) M, B] = [, AB] = Ae, B].

Proof. (1) a[f, "] + [a,7]8 = a(By —vB) + (ay — ya)B = afy — yaf = [af, 7]

(2) For the first identity: [Aa, 5] = Aaf — fAa = aAS — Afa = [a, Af]. The other identity can
be proven similarly from the first term: (Ao, 8] = Aaf — fAa = A(af — fa) = Mo, 5]. O

Clearly, the commutator of any two commuting elements is zero. In general, it is a measure of
the non-commutativity of a ring. For us, the commutator is key to define differential operators.

Definition 1.28. The ring of k-linear differential operators of a k-algebra A is defined, induc-
tively, as a subring of Endy(A). We say that a differential operator

e § € Endy(A) has order zero if [0, a] = 0 for every a € A.

e § € Endy(A) has order n if [0, a] has order < n — 1 for every a € A.



We are going to denote by D’ the set of all differential operators of order < n of the
k-algebra A. The ring of k-linear differential operators is defined as

DA|Ik = UDZXUR Q Endﬂ{(A)

Notation 1.29. In order to have a clearer notation we do not distinguish between a € A and
the endomorphism multiplication by a: L, € EndiA defined as L, : A — A: b~ a-b. Also,
when we write the commutator we are going to leave the symbol o out.

Let us study the first two pieces of Dy = U, Dy

Proposition 1.30. Let A be a k-algebra. The set of differential operators of order zero coin-
cides with the k-algebra A, this is, ngk =A.

Proof. We have that A C DY, because A is a commutative ring and A is a subset of Endy(A).
On the other hand, if § € ngk and a,b € A, then

[0,a] (b) = (0oa—aod)(b) =d(ab) —ad(b) = 0.
Therefore § € Ends(A) = A. O

Remark 1.31. Observe that it is tautological that Ends(A) = A : L, — a. Because if § €
End4A then §(a) = ad(1) is determined by §(1).

The second term D]l%“k can be understood in terms of derivations.

Definition 1.32. A derivation of A over k is a k-linear differential operator § € Endy(A)
which satisfies Leibniz’s rule:
d(rs) =1d(s) + so(r)

for every r,s € A. We denote the set of derivations of A over the field k as Dery(A).

Let 0 € Derg(A) and a € A, we can define the derivation ad by (ad)(b) = ad(b) for every
b € A therefore by this action Dery(A) is a left A-module.

Proposition 1.33. Let Dy be the ring of k-linear differential operators of a k-algebra A.
Any differential operator of order one can be expressed in terms of derivations and elements of
the k-algebra, i.e., Dy = Dery(A) + A.

Proof. Clearly Dery(A)+A C Dj,. To prove the other inclusion, let v € D}, and § = y—~(1).
Note that §(1) = 0 and § € D};,. Then, for any a,b € A we have that [[0,a] ,b] = 0. Indeed,

d(ab) — ao(b) = (da — ad)(b) = (da — ad)(bl) = b(da — ad)(1) = bé(a),

so it satisfies Leibniz’s rule and we have that 6 € Dery(A). Therefore, we have that v =
9 — (1) € Dery(A) + A. O
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Let us prove that we have a filtration given by the order of the differential operators in
D .

Proposition 1.34. For all n € N, the set of k-linear differential operators of order n, D
is an A-module.

Proof. By induction on n. For n = 0, as we have that DB\IJk = A, then D,qu is an A-module.
Now, assume that the result holds for n and lets prove it for n + 1. Let 61,9, € Dlﬁﬂ} and
a,b € A, so by definition of differential operator of order n, we have that [01,a], [02,a] € Dl

Observe that [bd1, a] = b[d1, a] and [61 + da, a] = [d1, a] +[d2, a] by Proposition 1.27. As D7,
is an A-module by induction hypothesis, we have finished. m

Proposition 1.35. Let n,m € N, §; € D and 6, € DlAUk be two differential operators. Then
0109 € D%f.

Proof. We are going to prove it by induction on m +{. If m + [ = 0, it is obvious. Suppose it
is true whenever m + 1 < k. If m+ 1=k and a € A, we have by Proposition 1.27 that

[5152,&] = 51 [62,&] + [51,&] 52.

By the definition of the order of a differential operator we have that [07, a] € D%il and [0y, a] €
Dzﬂl{. Thus, by the induction hypothesis [0, a] d2, 01 [02,a] € Dgﬁgl’l, therefore [d109,a] €
Dyt D

By Definition 1.28 we have that D 4, = Unez., Dij and by Proposition 1.30, we get that
1 e ngk = A. Using also Propositions 1.34 and 1.35, it follows that 7 = (D%, )nez., 18 @

filtration given by a sequence of A-modules of the ring D 4 because Dlﬁﬂ{Dixm{ C Dgﬁ‘lﬁﬂl and the

induction in the definition of the ring of differential operators give us that D © Dfﬁﬁﬂl for all
m and [.

1.4 Examples of rings of differential operators

In the literature one can find two main examples of rings of differential operators over a
k-algebra. Those are

The Weyl algebra

The ring Dpx of differential operators over a polynomial ring R = k|1, ..., x,] also known
as the n-th Weyl algebra. In this case, we will see in Section 2 that Dpgyy has a lot of good
properties, for example, it is Noetherian, finitely generated as a k-algebra and, considering a
certain filtration on Dpgjx known as Bernstein’s filtration, one can prove that



Also, one can study Dpgj-modules M in this setting and obtain the well known Bernstein’s
inequality that tell us, considering a special kind of filtrations on M compatible with the
filtration on Dpgyy, that

1
dim(M) > §dim(DR|]k).

The ring of differential operators of finitely generated k-algebras

We can go one step beyond and consider the quotient of a polynomial ring R = k[z1, ..., x,]
by an ideal I, this is S = R/I, which in general is a non-regular ring, and study the ring of
differential operators over S. The main result in this setting is that we can obtain the differential
operators over S in terms of the differential operators in R that preserve the ideal I, this is,
there is the following correspondence

_ {9 € Dppe | 8() S 1
IDpgpx '

Dgyx

We will prove this result in Section 3.

This ring may not be Noetherian or finitely generated as a k-algebra (see examples in
Section 3.4). However, under certain assumptions we will see that GK (Dgj) = 2dim S. This
will be one of our main results in Section 3.

When S is a graded ring we can endow Dgj with a generalized version of the Bernstein’s
filtration. Under certain circumstances (see Section 3.5) we can obtain a Bernstein’s type
inequality. Namely, let M be a finitely generated Dgji-module with a filtration compatible
with the generalized Bernstein filtration Bg. If By is linearly simple (see Definition 3.16) then

1
Dim(M) > §Dim(DS|]k).



Rings of differential operators on singular varieties

2. The ring of differential operators of a
polynomial ring

Historically, the first example of a ring of differential operators is the Weyl algebra which,
as we will see, coincides with the ring of differential operators Dpgp (see Definition 1.28) of
a polynomial ring R = k[zy,...,x,]. The Weyl algebra was presented as the subalgebra of
endomorphisms of R generated by multiplication by the variables z; and partial derivatives 0,,.
We will show that both presentations are equivalent in Theorem 2.6.

The Weyl algebra first appeared in quantum mechanics in 1925 as an algebra generated
by position and momentum operators. Littlewood [Littlewood, 1933] introduced the canonical
form of a differential operator, which we will see in Section 2.1 and proved that the Weyl algebra
is a domain, see Section 2.3. The name “Weyl algebra” comes from the book [Weyl, 1950] where
all these ideas were presented.

Later work in this setting can be found in the works of Kashiwara [Kashiwara, 1970] and
[.N. Bernstein [Bernstein, 1971]. In particular, the last author studied the dimension of finitely
generated modules over the Weyl algebra and proved the so-called Bernstein’s inequality. We
will show this result in Section 2.5.

All these results (among others) will be useful in Sections 3 and 4, where we focus on the
ring Dgy of differential operators on a quotient S of a polynomial ring by an ideal.

2.1 The Weyl algebra

Throughout this section, let k be a field of characteristic zero and R = k[z1, ..., x,] be the
ring of polynomials in n variables with coefficients in k.

Let Endyg(R) be the k-algebra of endomorphisms of the k-vector space R. As the product
in this algebra is just the composition of endomorphisms then Endy(R) is a noncommutative
ring with unit. The Weyl algebra will be defined as a subalgebra of Endy(R).

Each of the variables z; in R defines two elements of Endy(R). The first one, also denoted
x;, is “multiplication by x;”: x;(f) = x; - f. The second one is taking partial derivative with
respect to z;: 9;(f) = 2L

T Ox;

Definition 2.1. The n-th Weyl algebra is the k-algebra generated by the variables x4, ..., x,
and the partial derivatives 01, ..., d,, this is,

An(lk) = Ik<l‘17 cee ,l’n,al, ce ,(9n)

Notation 2.2. By convention ) =1 and 9 =1 fori=1,...,n.

By definition, any element in the n-th Weyl algebra can be written as a linear combination
with coefficients in k of products of x1,...,x,,0,...,0,. However, we will see next that there
are relations among these generators, meaning that one element of the Weyl algebra may me

10



written in terms of the generators in several different ways. Below we introduce the canonical
form to avoid this ambiguity.

For every f € R, we have

(G0 xi)(f) = 0i(wi - f) = Os(@i) f + 2:0;(f) = f + 2:0i(f) = (1 + 20 0)(f)
So, the identity 0; o x; — x; 0 9; = 1 holds in Endy(R) and therefore in the n-th Weyl algebra.
This shows that Dgpy is a noncommutative ring.

More generally, for any f,g € R we have

(G0 9)(f) = 0i(g- f) = 0i(9)f + g0i(f) = 9i(g) - (f) + g ([)
so the identity d; o g + g 0 9; = 0;(g) holds for every g € R. This is known as Leibniz’s rule.

However, there are some cases where these elements commute:
(].) 8ioxj :xjoai for 8,1117&']
(2) xjox; = ;0w for all 4,7.

(3) 81 9] 8J = aj o 81 for all ’l,j

Canonical form

We are going to construct a basis for the Weyl algebra as a k-vector space, known as the
canonical basis. An element of A, (k) written in this basis is said to be in canonical form. Of
course, comparing two elements is the same as comparing their coefficients of their canonical
forms, and that is easily done.

We are going to use a multi-index notation. Given o = (v, ..., ;) € N we denote by
x® = 21" ... x¢" the corresponding monomial in R and the corresponding endomorphism in the
Weyl algebra. Similarly, we write 0° = 8{31 ...0% for B = (B1,...,B.) € N*. An element of
the form 229° € A, (k) for a, 8 € N" is also called a monomial.

(07

As we know, we can obtain any element of A, (k) as sums of compositions of z;’s and 0;’s
in more than one way. Our goal is to prove that we can write all such compositions in terms of
monomials.

Notation 2.3. Observe that 0° o f = 9°f is different than 9°(f), in this second case we are
applying the monomial &° to the polynomial f.

Proposition 2.4. Let R = k[xq,...,x,] be the polynomial ring and consider the Weyl algebra
An<]k) == ]k<$1, .. ,.Tn,al, . ,8n>.

(1) Let f € R and 3 € N*. The product O°f in the n-th Weyl algebra can be written as

1= % (Do

o<<p

where o << [ stands for o; < B; fori=1,...,n, (f) = U!(gia)! and B! = B! - Byl.

11
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(2) Let B,y € N" then we have that 0°(z7) = ﬁ!(g)fkﬁ where (g) = 0 if the relation f << v
doesn’t hold.

(3) Let o, o, B, 3" € N" then we have

/
gjaaﬁxalaﬁ, _ gja—’_a/aﬁ_'_ﬁ/ i Z U,(ﬁ) <a>xo¢+a’—o‘8ﬁ+5’_o‘

o<<Bo<<al,0#£0 g g

Proof. (1) The sketch of this proof can be found in [Castro Jiménez, 2010], here we give a
complete one. It follows from the case n = 1 and the distributive property of the product
with respect to the sum in the Weyl algebra. If we do a change of variable: x = z; and
0, = 0;. We are going to prove that

. J ] .
of =3 (‘7>3§(f)3i"“
o \k
by induction on j. The case when j = 1 is the chain rule: d,f = f0, + 0.(f). Suppose it
is true for j > 1, lets prove it for j + 1:
. . ] 1 . ‘] 1 . .
0711 = 0,(001) = 0, (z () 8’;(f)8i"“> =3 (1) et o+ akeor ],
k=0 k=0
now, we are going to separate in two summations

e e

k=0

1

Z ( )akJrl ajfk_'_agjﬁﬂrl(f) _|_faj+1 + Z ( ) aj k+1

.

and do the change of variable m = k — 1 in the second summation:

S J J— J J
N AEEOER I URYCRS ol B

k=0

Yot

So, we have obtained that
(i j
j+1 ji+1 k41 j—k
o s X |(1) (1 )| oo

: L+ _
S o ks X (1) )t
k=0

Doing the change of variable m = k 4 1 and writing all in one summation we have what
we wanted:

s = 8 (7 apit

12



(2) The formula follows by induction on n. The case n = 1 can be proved by induction on Si:

o (31 = 1: Tts only the derivative of a polynomial, 9,(z%) = az®"! where a € N.

o 1 =/ > 1. Lets compute 9°(2) where o, 3 € N, supposing true the case 3 — 1, by

induction:
R Y (T Ry ) I CE I (R Xy
« o a! o a\ -
= (6—1)!(5_1>(a—6+1)x ﬂ:ﬁ!m:p ﬂ:5!<5>x s
Which is what we wanted.
(3) It follows from (1) and (2). O

Proposition 2.5. The set {z°0° : o, 3 € N} is a basis of the Weyl algebra A, (k) as a vector
space over k. Each nonzero element § € A, (k) can be written in an unique way as a finite sum

0= Zpagxaﬁﬂ
a,p

for some nonzero element pos € k. Moreover, § = 35 pg(x)9” with ps(x) = 3, Dasr®.

Proof. Every monomial z20°, where o, 3 € N", is a product of the elements 1, ..., 2,01, . .., On.
Also, we know by Proposition 2.4 (3) that any product z%19%220% with a1, ay, 81,3, € N*
can be written as a linear combination of monomials with coefficients in k. So the elements of
{220P : a, B € N} are a generating system of A, (k).

Let us prove that they are linearly independent. Suppose that § = -, 5 Papr®0” is a non
trivial differential operator. We need to see that if some p,p are different than zero then 0 # 0.
As ¢ is a linear differential operator of R, then § # 0 if and only if there exists a polynomial f
such that 6(f) # 0. We will construct such f.

Let 5 € N" such that p,s # 0 for some index «, but p,, = 0 for all indices o such that
lo| < |B|. Using Proposition 2.4 (2), we obtain §(z”) = 8!, pasz®, which is nonzero because
at least one of p,s is different that zero. So, taking f = 2” we finish the proof. m

We are going to see that the definition of the ring of differential operators Dpyy stated in
Section 1.3 coincides with the definition of the Weyl algebra:

Theorem 2.6. Let R be the polynomial ring in n variables with coefficients in a field k. The
ring Dgp of k-linear differential operators of R coincides with the n-th Weyl algebra A, (k).

Proof. Observe that f)}'{“k = @p, 4+ 18, <i R@fl ...0% is a filtration of A,(k). We are going to
prove that Di; = Dy

First, we show D}'ﬂ]k C Dy, For i =0, it is clear. We have that

05, v5] = i

13
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where 0;; denotes the Kronecker delta. So, to prove the inclusion when 7 > 1, it suffices to
check that any element of Dj}%“k hold the general definition of differential operator over the

generators of R only. As the IN)artial derivatives 0; € D}gl]k for each 7, then 815 Lok e Dﬁ%ﬂk by
Proposition 1.34. Therefore Dp; € Diyy.

For the other inclusion, we are going to prove that the map Déﬂ]k — Homy(R<;, R) is an
isomorphism.

We are going to show first that it is injective. By induction on 7:

o Case 1 = 0: D(I)%Uk is R and R<y = k. Given a polynomial p, we claim we can recover p
from the morphism k — R : a — p-a. Simply take a = 1.

o Case i = 1. We can write an element of D}%l]k in its canonical form as § = p(z) +
>i—1 pi(2)0;. We can recover p(x) as in case i = 0. To recover the polynomials p;(z),
evaluate 6 — p(z) at the monomial x;.

o Case i > 1. As before, since applying 0% for |a| = i vanishes on all monomials of degree
< 1, we can recover the coefficients (polynomials) of the components of order |a| < i — 1.
To recover the polynomials of the components of order |a| = 4, consider the morphisms
Rej— R:a” v §'(2”) for |B] = i, where &' = 3,(0 — Yaci1 Pa(2)0?).

As Digy, C Diyy, we have it is injective.

Let us prove now that it is surjective. As R<; is a finitely generated vector space with basis
the monomials of degree < i. Then, giving a morphism of Homy(R<;, R) is the same as freely
choosing for every monomial of degree < a polynomial to be its image. Thus, surjectivity is
equivalent to finding for any family of polynomials {s,}a,4ta,<i € Ra d € D}éuk such that
(™ ... a%) = s,.

This is similar to the proof of injectivity. In concrete terms, given {Sa}ay++an<i inductively
we can find §' € DH& with ¢'(z® ... 2%") = s, for |a| < i — 1. Take

_ S A0 Qn
F—5+ Y S — O/ (x™ .. x)

3{31 9Pn
|l <@ 6|

Now, for any 6 € Dy, there exist o€ Dj?\]k such that d|r_, = 5|R9~ By the injectivity, we
have § = 0. Thus Dﬁ%ﬂk C Dé{m{ O

2.2 Filtrations on the Weyl algebra

In this section we will introduce two different filtrations on Dpgy: the order filtration and
the so-called Bernstein’s filtration given by the total order. The associated graded rings with
respect to these filtrations are isomorphic to the polynomial ring in 2n variables and we will
use this fact to prove that Dpgjy is a Noetherian domain.

14



From now on we will denote by k(x,&] = k[z1,...,2,,&1, - .., &) the polynomial ring in the
set of variables z;’s and §;’s with coefficients in k. And, let us denote by |5| = ¥, f; for each
B eNg,

Definition 2.7. For an nonzero differential operator

0= Zpag:caaﬁ = Zpg 85 < DR\]k

We define the order of the differential operator § € Dp, ord(d), as the maximum of |3| for
ps(z) # 0. Similarly, we define the total order, ord” (§), as the maximum of |a|+]|3] for p,s # 0.
By convention, we say that ord” (0) = —cc.

Recall that (Dpgy, F) is a filtered ring with the filtration given by the order Fj, = {0 €
Dpgp | ord(6) < k} = D%Uk where each F is an R-module. In the polynomial ring case it is
sometimes more useful to consider the filtration given by the total order.

Definition 2.8. The filtration B = (B )rez., on Dgji defined by the total order
By = {6 € Dgy : ord"(6) < k}
is called the Bernstein’s filtration.

This is indeed a filtration on Dgp because B = (Bk)keZzo satisfies all the properties of the
definition:

e By C By for every k. This is straightforward from the definition of By.

o BB C By for k,1 € Z. It suffices to prove it in the case of monomials, let § = 229 €
By, and ¢ = 29 € By, the product of both differential operators is 68" = z*9°2* 9% and
expressing this product in canonical form we are going to prove later in Proposition 2.12
that ord” (60') = la+ B+ o' + | =k+1.

e Dpx= UkeZZO By, by definition.

2n+k
k

of elements in the canonical basis of ord’ < k. This agrees with the number of monomials
in 2n variables of degree less or equal than k. Homogenizing, this is the number of

monomials in 2n + 1 variables of degree equal to k, which is (2"; .

o Finally, each By is a k-vector space of dimension ( ): we need to compute the number

From the Bernstein’s filtration we can also construct its associated graded ring:

grs DR|Ik @ By /B_1.

neN
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Definition 2.9. The principal symbol of a differential operator § € Dpx is the polynomial

o(@)= > psla)¢’ € klz,¢g.

|Bl=ord(5)

Similarly, we define the total principal symbol of 6 € Dpgji as the polynomial

ol (0) = Z pagl’afﬁ € klz, &

|oe|+|B|=deg(5)
Remark 2.10. Observe that the polynomial o7 (§) is homogeneous of degree ord” (§). In general,
we have that o(8) # o7 (5). Also, in general o7 (6; + 83) # 07 (61) + 07 (d). However, we have

the following identities.

Proposition 2.11. Let Dgy be the ring of k-linear differential operators of the polynomial
ring R. For two differential operators 41,0y € Dgjx one has

1. ord(6102) = ord(01) + ord(ds) and o(d102) = o(d1)0(d2).

2. ord(0109 — 0201) < ord(dy) + ord(dy) — 1.

3. ord(d; + d2) < max{ord(dy),ord(d2)}.

4. If ord(81) = ord(d2) and (1) + c(d2) # 0 then o(01 + d2) = 0(01) + o(d2).
We have similar identities for the degree and the principal total symbol:

Proposition 2.12. Let Dpgy be the ring of k-linear differential operators of the polynomial
ring R. For two differential operators 01,02 € D one has

1. ord"(6:85) = ord®(8,) + ord™(85) and oT(8,85) = o7 (5,)07 ().

2. ord” (8,85 — 6281) < ord™ (8,) + ord” (5) — 2.

3. ord” (8, + &) < max{ord”(5,), ord" (5)}.

. If ord™(6,) = ord™(6) and o™(61) + 0T (85) # 0 then o7 (5, + 65) = o7 (81) + T(62).

Proof. The proofs of (1) and (2) follow from Proposition 2.4, it suffices to write both differential
operators in canonical form and do the computations. The proofs of (3) and (4) follow from
the definitions of total order and total principal symbol. O

2.3 Structural properties of the Weyl algebra

Let us now see which properties Dy has as a ring. But first, let us define:
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Definition 2.13. The total graded ideal associated with the left (or right) ideal I € Dpgy is
the ideal gr' (I) of k|x,£] generated by the family of principal total symbols of elements in [

gr’(I) = klz,]{o"(d) | 6 € I}.
Remark 2.14. In particular, if I = Dgpd then gr”(I) is generated by o7 (4).

Proposition 2.15. The ring Dgy of k-linear differential operators of R is a left and right
Noetherian domain.

Proof. 1f suffices to prove that any left ideal I C Dpyy is finitely generated (for right ideals
the proof is similar). We can assume I # (0). By definition of gr”(I) there are polynomials
oT(61),...,07(d,) with 6; € I generating gr” ().

Let us denote J the left ideal in Dgp generated by d1,...,6, . We will prove that J = I.

Assume there exists § € I\ J such that ¢ is of minimal total order. As o7 () € gr’(I) then
there are homogeneous polynomials Hy, ..., H, € k[z,£] such that

ol (8) = ZHi ol (8;).

We can also assume deg(H;) + ord” (6;) = ord” (). Denote by v; any element in Dpy; with
ol(v;) = H;. Then the differential operator

5/ = 5 — Z’}/Zéz

has total order strictly smaller than ord” (§) and then ¢’ should be in J. This implies § € J which
is a contradiction. This proves J = I. Finally, it is a domain because of Proposition 2.12. [

Proposition 2.16. The ring Dpgj. of k-linear differential operators of the polynomial ring
R =K(xy,...,x,] is simple.

Proof. Let I be a non-zero two-sided ideal of Dgj;. Choose an element ¢ # 0 of smallest total
order in /. If ¢ has total order 0, it is a constant, and I = Dpgjy.

Assume that 0 has total order m > 0 and let us get a contradiction. Suppose that («a, 3)
is a multi-index such that |a| + |3] = m. If 220” is a summand of § with non-zero coefficient
and f; # 0, then [x;,0] is non-zero and has total order m — 1, by Proposition 2.12 (2). Since
I is a two-sided ideal of Dpyx, we have that [z;,] € I. But this contradicts the minimality of
d. Thus 5 = (0,...,0). Since m > 0, we must have that «; # 0 for some ¢ = 1,...,n. Hence
[0;,0] is a non-zero element of I of total order m — 1 again by Proposition 2.12 (2), and once
again we have a contradiction. O]

Corollary 2.17. Let Dg be the ring of k-linear differential operators of a polynomial ring
R. Every ring homomorphism ¢ : Dy — S, where S is a possibly non-commutative ring, is
injective.

17



Rings of differential operators on singular varieties

Proof. This is because Ker(¢) C Dpgyx is a two-sided ideal (as ¢ is a ring morphism) and
because Dpyy is simple. O

Proposition 2.18. Consider the ring Dgy of k-linear differential operators of a polynomial
ring R with the Bernstein’s filtration B = (B;)icz.,- Then, the associated graded ring grz(Drx)
s a commutative ring with unit.

Proof. Consider the product of two differential operators §; € By and 6, € B;. We have that
0102 — 0201 € Byyy—1 by Proposition 2.12; therefore, 6102 = 9201 € Bgii/Bgii—1. This means
that in each graded piece, the product of the classes of two elements is commutative and this
is enough to prove commutativity in grz(Dpgjx). More concretely:

BHIBARSSI

where 0 € By/By_1 and v, € B;/B;_;. The unit is the class of 1 in By/B_; = B. O

Remark 2.19. The family of vector spaces (By/Bg11) is a grading on the ring grz(Dpgjx).

kJEZZO

Proposition 2.20. Let Dg be the ring of k-linear differential operators of a polynomial ring
R with the Bernstein’s filtration B = (B;)icz.,. Then, the associated graded ring grs(Drjx) is
isomorphic to the polinomial ring k|x,¢].

Proof. We only have to consider, for each k£ € N, the morphisms of vector spaces
Vg . Bk:/Bk—l e Ik[x,f]k
( Z paﬁxaaﬂ) + By — Z Papr®E”
la+B|=k |la+Bl=k

where k[z, £]; is the k-vector space of homogeneous polynomials of degree k.

This family of isomorphisms gives us the isomorphism v : grg(Dgx) — klz, €] of graded
rings. O
Given this identification we obtain:

Corollary 2.21. The dimension of the ring Dgu of k-linear differential operators over the
polynomial ring R = k[, ..., x,] is

dim(Dgjx) = 2n = dim(k|z, £]).

2.4 Modules over the Weyl algebra

As we have stated in the first section (see Definition 1.8), given a left finitely generated
Dpgji-module M, one can associate to M a filtration compatible with the filtration in Dpgy.
In particular, we are going to consider Bernstein’s filtration B = (By)ren of the ring Dpgpi of
differential operators on R = k[z1, ..., x,] and we are going to call B-filtrations the filtrations
G = (Gg)ren of M compatible with the Bernstein filtration.
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Example 2.22. Let us give three examples of Dgp-modules:

1. The ring R = k[zi,...,2,] is a Dgx-module. This is clear because a Dpgj-module
structure on R is the same as a ring homomorphism Dgy — Endy R, but since Dpy is
already a subalgebra of Endy R, we can take the natural inclusion. We spell the details
out for convenience. (R,+) is an abelian group and to prove that Dpgy-acts linearly on
R, consider the map

DR|Ik X R — R.
(6,p) = d(p)

Trivially, for all a,b € k, p,q € R and 6, 91,02 € Dgp C Endi(R) it holds that

o d(ap + bq) = ad(p) + bd(q),
o (61 +02)(p) = 01(p) + 02(p),
o (6102)(p) = 61(d2(p)) and

.« 1p) =p-
2. Consider k(z1,...,x,) the field of rational functions. We can extend the left action of
Dpg on R = k[zy,...,x,] to the field of rational functions. The x; continue to act by

multiplication and 0; act on p/q € k(z1,...,x,) as

5 <p> 0:(p)g — di(a)

— -

q

It can be shown easily that this left action of Dgp acts linearly on k(zy,...,x,) (this
is proving the four properties mentioned before for the extended action). Note that this
Dpji-module is not finitely generated.

3. The localization of the polynomial ring R = k[zy,...,z,]| at a nonzero element f € R,
generally denoted by Ry, i.e.

9
Rf:{fk | gERandkEO}.
Observe that 9;(g/f*) has denominator f?*. Hence these rational functions are preserved
by a partial differentiation and by multiplication by a polynomial. In other words, Ry is a

left Dpp-submodule of k(zy,...,2,). And it was proven by Bernstein that Ry is finitely
generated as Dpgj-module.

Remark 2.23. Consider the Bernstein filtration on the ring Dgjy of k-linear differential operators
on a polynomial ring R = Kk[z,...,x,]. Let I C Dppx be an ideal and denote By (/) = By N[
for k € Z>¢. The family (By(/ ))kezzo is a B-filtration on I considered as a left Dpji-module.
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Definition 2.24. Let G = (Gj)ren be a filtration on a Dpgp-module M. For each nonzero
m € M we call the G-order of m, ord?(m), the integer k such that m € G},/Gj_;. And given
the k-linear map

O'g . Gk e Gk/Gk—H

m— m + Gp_;

we call ag the k-th G-symbol map associated with the filtration G.

Remark 2.25. In the case when M = Dpgy and G = (By)gen is the Bernstein’s filtration on
Dpjx, the corresponding k-th G-symbol map will be also denoted by of. In this case, following
the notations of Proposition 2.20, if § € By/Byy1 then (v, 0 0f)(d) = o7 (§), which means that
this composition coincides with the total principal symbol of 9.

As we explained before, if there exists a filtration on a module M compatible with the
filtration on the ring, one can construct a graded ring associated to M. So, in this case: if M
is a Dgp-module with a B-filtration G = (Gy)g, then we can construct the abelian group

grg(M) = B Gi/G-1.

k>0

Proposition 2.26. Let M be a Dpjx-module and G = (Gy)ren a B-filtration on M. The abelian
group grg(M) has a natural structure of gru(Dgjx)-module.

Proof. The map
p s gra(Drp) x grg(M) — grg(M)
defined by the bilinearity of the maps

pr : Be/Br-1 X Gi/G—1 — Gii1/Grii-1

(Ok, ) > Oy
defines on grg(M) a structure of grp(Dp)k)-module. O

Theorem 2.27. Let M be a Dgy-module and G = (Gy)ren a B-filtration on M. If grg(M) is
a finitely generated k|x,&]-module then M is Noetherian.

Proof. As Dpgyi is Noetherian, it suffices to prove that M is finitely generated. As grg(M)
is a finitely generated k[z,&]-module, let myq, ..., m, be a homogeneous generating system of
grg(M) where m; € G, for some s; € Nand ¢ = 1,...,7. Let us prove that {my,...,m,}
generates M.

Let M’ = (my,...,m,), we will prove that M = M'. Let m € M’ by induction on ord9(m)
as defined in Definition 2.24.

o« Case ord?(m) = 0. It is nothing to prove.
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« Case ord9(m) > 0. Suppose that for any element m’ € M such that ord’(m’) < k we
have that m’ € M’ for some k € N. Let m € M be an element such that ord?(m) = k+1.
Then its equivalent class in grg(M) can be written as

for some homogeneous polynomials p; such that deg(p;) = k + 1 — s;. We can write now

m’:m—Z@mi
i

for some differential operators §; such that o7 (5;) = s;. As m/ = 0 in Gpy1 because
ord9(m/) < k, by induction hypothesis we have that m’ € M’. Thus, m € M'. H

Definition 2.28. Let M be a Dgy-module and G = (G},)ren be a B-filtration on M. We say
that G is a good filtration if grg(M) is a finitely generated grp(Dpgjx)-module.

A useful characterization of good filtrations is the following:

Proposition 2.29. Let M be a Dgy-module and G = (Gi)r be a B-filtration on M. The
following conditions are equivalent:

(i) G is a good B-filtration on M.
(ii) There exists kg € N such that Gy = B|Gy, for all 1 > 0 and for all k > k.

Proof. e i) = 1ii). Let my,...,m, be a homogeneous system of generators of grg(M).
Suppose that m; € Gy, \ Gy,—1 fori =1,...,7. Consider ko := maxk;.
We will prove by induction on [ that Gy, = B;Gj for all [ > 0 and all & > k.

— The case [ = 0 is trivial.
— Suppose the result is true for [ — 1 for some [ > 0. Consider m € Gy, for k > kg
and its equivalence class in Gy ;/Gri-1:
m=m+ Gry_1=Y_ [im;
J

for some homogeneous polynomial f; € k(z, ] of degree k + 1 — k;. Let us write
m'=m—>_ d§;m;
J

for some 5]‘ € BkJrl,kj such that O'T((Sj) = fj-

It is clear that m’ € Gy4;—1 and by induction m’ € B;_1Gy. As k — ko > 0 we also
have BkJrl,kj = Blkakj- Then

m=m'+Y_dm,.

J

Since 5]' € Bk+l—kj = BlBk’—kj then 5jm]~ € BlBk—ijkj Q Ble
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e i) = ). We only have to prove that grg(M) is generated by Go & G1/Go & --- &
G, /Gr,—1 because each G, is a vector space of finite dimension. To show this, if m € G,
and k > ko then write k = ko + ¢ for : = k — kg > 0. Since G, = B;Gj, we have

'
m=>_ d;m;
=0
where 0; € B; and my,...,m, is a basis of Gj,. Then, we can write

m+ Gy =m=3 6;mj+Gr1 =D (6; + Bio1)(mj + Gyy—1) = > ;m;. O
j=0

=0 =0

We show next that good filtrations are equivalent and thus the definition of dimension does
not depend on the choice of such a good filtration. Notice also that if M is a finitely generated
Dpji-module and G is the standard filtration, then G is good.

Proposition 2.30. Let M be an Dgy-module; G = (Gi)kez,, and G' = (G},)kezs, be two
B-filtrations on M. We have

i) If G is a good filtration then there exists ki € N such that
Gr C Gy,
for all k € N.
it) If G and G' are both good filtrations then there exists ko € N such that
Gty € Gr C Gl
for all k € N.

Proof. i) By the previous proposition there exists ky > 0 such that Gy, = B;Gy for all [ > 0
and for all k > ky. As Gy, is a k-vector space of finite dimension there exists k; € N such
that Gy, C G}, If k > ko we have

Gr = Gr—kotko = Br-ioGro € Brio Gy € Gh_ioins S Glony -
If 0 <k < ko then Gy, € Gy, € Gy, € Gy,
ii) It follows from 7). As there exists [; € N such that
G C G;c+ll
for all k¥ € N and there exists [, € N such that
G C Giu,

for all k£ € N. It suffices to define ky = max{l;, o} and this ks satisfies the condition. [
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2.5 Bernstein’s inequality and holonomic modules

Let R = k[zy,...,x,] be the polynomial ring in n variables with coefficients in a field k
of characteristic zero. A fundamental result in the theory of D-modules, known as Bernstein’s
inequality, establishes a lower bound on the dimension of a finitely generated Dgp-module M.

This result has been proven in different settings: Bernstein proved it for the case when R =

k[xy,...,z,] [Bernstein, 1971]; Sato, Kawai and Kashiwara proved the Bernstein’s inequality in
the case when R = C{xy,...,x,} is the ring of holomorphic functions [Sato et al., 1972]; Bjork
for the ring k[[xy, ..., x,]] of formal power series [Bjork, 1979]; and Gabber gave an algebraic

proof of this result also in the case when R is the polynomial ring in n variables [Gabber, 1981].

Let R = K[y, ..., x,], and consider the Bernstein’s filtration B = (B;)cz., in Dpgjk. Let M
be a left finitely generated Dgjx-module with the standard B-filtration G = (G})iez.,,, which in
this setting is good. We are going to do a reinterpretation of the proof given by Joseph that
can be found in [Coutinho, 1995] using the Bernstein’s filtration on Dpy, contrary to all the
cases cited before that used the filtration given by the order.

Let us first prove an upper bound:

Proposition 2.31. Let M be a finitely generated Dpj-module. Then dim (M) < 2n.

Proof. Suppose that M is generated by r elements. Then there exists a surjective homomor-
phism ¢ : Dy, — M. Thus, we can consider the exact sequence

0 —ker¢p — Dy — M — 0.

By dimension theory we have that dim(Dp; ) = max{dim(M),dim(ker ¢)} and dim(DZpy,) =
dim(Dpgjx @ - - - ® Dgjx) = dim(Dpgjx) = 2n, therefore dim (M) < 2n. O

We are going to use the next lemmas in order to prove the lower bound known as Bernstein’s
inequality:

Lemma 2.32. Let Dpgy. be the ring of differential operators over a polynomial ring R and
B = (Bj)icz., be the Bernstein filtration. Then, for each i € N and each nonzero differential
operator § € B;, we have

1 € B;6B;.

Proof. We are going to prove it by induction on the total order:

e For i =0 as By = k we have that the statement is true.

o Suppose that ¢ > 0 and suppose the statement is true for ¢ — 1, this is, for all ¢’ € B;_1,
we have B;_10’'B;_;. Now, consider a nonzero differential operator 6 € B;, and that
6 =0 Papr®d’. Since § # 0 there exists a monomial p, gz*d° # 0.

If ord™ () # 0 there exists an exponent a; # 0 or 8; # 0. We are going to suppose that
we have o # 0, the other case can be reasoned similarly.
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We have that the commutator [0,0;] € B;_y and, by hypothesis of induction, we have
that B;_1[0,0;]B;—1. On the other hand, [0, 0;] = §0; — 0;0 € B16By, therefore,

1e Bi—lBléBlBi—l Q BzéBZ

If ord"(6) = 0 then this monomial belongs to k, and the result follows. O

Lemma 2.33. Let M be a finitely generated left Dgyy-module with a B-filtration G = (Gp)nez., -
Suppose that G; # 0. The k-linear transformation

qb . Bl e Homk(Gi, GQZ)

00— ¢s: Gi — Go; - m+— 0m
18 1njective.

Proof. We are going to proof the contrapositive. Suppose that there exists a nonzero differential
operator 6 € B; such that ¢s5 = 0. Then 0B;G; C 0G9 = 0, and thus 0B;G; = 0. By
Lemma 2.32, we have 1 € B;0B;. Thus, multiplying by G; in each side of the containment, we
obtain G; C B;0B;G; = 0, and therefore GG; = 0. O

Theorem 2.34 (Bernstein’s inequality). Let M be a nonzero finitely generated D pgp.-module.
Then dim(M) > n.

Proof. ([Coutinho, 1995]) Let {my,...m,} be a set of generators of M and let G be a good
filtration obtained by giving each of this generators degree zero. Then Gy # 0. Let P(t) =
H(M,G,t) be the corresponding Hilbert polynomial.

By the Lemma 2.33, B; can be embedded in Homy (G, Go;). In particular,
dim]k Bz < dim]k(HOIIl]k(Gi, GQZ)> = dlm]k Gz . dlm]k GQZ'.

Thus, assuming that i >> 0, dimy B; < P(i) P(2i).

On the other hand, dimy B; = (Z;Z”) is a polynomial function in ¢ of degree 2n. Hence, as
a polynomial in i, P(i)P(2i) must have degree > 2n. But degree of P(:)P(2i) is 2dim(M).
Thus, dim(M) > n. O

Definition 2.35. A finitely generated Dgp-module M is said to be holonomic if either M = (0)
or dim(M) = n.

The class of holonomic D gji-modules satisfy many good properties, for instance they have
finite length and play a central role in many aspects of the theory of D-modules.

Some examples of holonomic Dpgj-modules are the ring R and the localization of the ring
R in an nonzero element f € R, Ry. Let us prove it:

Proposition 2.36. The polynomial ring R = k[x, ..., x,)] is a holonomic Dpgpc-module.

24



Proof. Observe that R = k|xy, ..., z,] ~ %'

Recall the B-filtration on an ideal I of Dgyy explained in Remark 2.23, from (B (1))rezs,
we can construct the associated graded module grp(7).

Now, since I = Dgu(0h, .. .,0,) is an ideal of Dpy we can consider its graded ring grg(I)
which is contained in grg(Dgx) ~ klz,£]. It can be proved that grp(I) is generated by

&1y --,&n. Thus the Hilbert polynomial of the graded module k[x,&]/(&1, ..., &) ~ k[z] is
(t+n—1

o ) which is a polynomial function of degree n as we proved on Example 1.22. Therefore

k[x1,...,x,] is holonomic. O

Proposition 2.37. The localization Ry if the polynomial ring at an element f € R is a holo-
nomic Dgp-module.

Proof. Suppose that f has degree m. Consider the B-filtration G = (Gy)xrez., on Ry where
Gy ={g/f* | deg(g) < (m + 1)k}

First, let us check that G is indeed a B-filtration: Let g/f* be an element of R; and
suppose that g has degree s. Then g/f* = g- f*/f***. But gf* has degree s(m + 1), which is
< (m+1)(s+k). Then g/f* € Gyx. Thus, R; = Urezso G-

Now, suppose that g/ f* € Gy, then deg(g) < (m+1)k. Observe that for each i € {1,...,n}
we have deg(z;g) = deg(g) + 1 so

xl(g/fk) = 5171'!}][/JWrl € Gry1.

And now consider
P (i) _ foilg) — kgdi(f)
1 - fk+1 9

fk

as the numerator has degree < (m + 1)k + (m — 1), we have

9:(9/1") € Gry.

Therefore, B1Gj C Gy1. Since B; = B! we also have that B;Gy C Gy,

Finally, we have that dimy(Gy) is less than the dimension of polynomials of degree <
(m + 1)k. Hence, G, is finite dimensional, which shows that G is a filtration on Ry and

k™ 4+ terms of lower degree on k.

dimy, Gy, < <(m+1)k‘+n> < (m+1)

n n!

Therefore, dim(Ry) = n and Ry is a holonomic D gj-module. O
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Rings of differential operators on singular varieties

3. The ring of differential operators of
finitely generated k-algebras

In this section we will focus on rings Dgyi of differential operators on a finitely generated
k-algebra S which can always be presented as S = R/I for some ideal I C R = K[z, ..., x,].
In Section 3.1 we will see several results about differential operators that preserve the ideal
I. These reults will be used in Section 3.2, where we will write the ring Dgp of differential
operators of S in terms of the differential operators of R (the Weyl algebra) and the differential
operators that preserve I.

We will follow the same structure of Section 2: we will introduce two different filtrations on
Dgx, one using the order and a generalized Bernstein’s filtration, which we will use to describe
the structural properties of Dgy; under certain assumptions. Finally, we will prove a generalized
Bernstein’s inequality for modules over Dgji in some cases.

3.1 Ideal-preserving differential operators

Suppose that I = (fi,..., f;) is an ideal in R = k[xy,...,2,] and that 0 € Dpgy is a
differential operator.

Notation 3.1. In order to have a cleaner notation we are going to write
D(I) ={0 € Dgux | 6(I) C I}.
Observe that 6 € D(I) if and only if 6(z*f;) € I, forall v and j =1,...,7.

Lemma 3.2. Let [ = (f1,..., f;) be an ideal in R, and let 6 € Dpgyi be a differential operator.
Then § € D(I) if and only if

(i) [0,z;)(I) C 1 fori=1,...,n, and
(it) 6(f;) €1 forj=1,...,r.

Proof. 1f 6 € D(I), we trivially have (i) and (i7). To prove the converse, assume 6 € Dpyy is
such that (7) and (#¢) hold. Since any element f € I can be expressed as f = >.I_; a;fi, it
suffices to prove that 6(z®f;) € I for all @ and for j = 1,...,r. By induction on |af:

e If |o| = 0, § € D) by (ii).

o Assume that §(z“f;) € I for |o| =m, and let § = a + ¢; where e; = (0,. .., i, ..., 0), for
some ¢ € {1,...,n}. Then

8(z° f;) = 6(xsx® f;) = [0,z (x° f;) + (2:0) (2 f;) € I,

since the first term is in I by (i) and the second term is contained by hypothesis. O
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Proposition 3.3. Let I = (fi,..., f.) be an ideal in R, and let § € Dy be a differential
operator of order m > 1. Then § € D(I) if and only if §(x“f;) € I for o] < m —1 and
jg=1,...,7r.

Proof. 1t is clear that §(x*f;) € I if 6 € D(I). So, we only have to prove the other direction.

First, observe that any element in R preserves the ideal I, so we may assume without loss
of generality that the order zero component of ¢ is zero.

We will now proceed by induction on m:
o If m =1, then § € Der(R). By assumption, §(f;) € I for all j, thus
6(hf;) =0(h)f; +hi(f;) €1
for every h € R, so 6(I) C 1.

+ Assume the condition is true for some m > 1 and that § € Dgpx is of order m + 1 and
such that 6(z*f;) € I for |a|] <m and j =1,...,r. Then a = 0 shows §(f;) € I for all
j=1,...,r. For any § such that |3| <m — 1 we have |[f+e¢;| <m,i=1,...,n,so

57 f;) = 8z ;) = [0, 2:) (27 ;) + w6 (27 f;).

Observe that §(xz?T¢ f;) € I by hypothesis, then this equality shows that [§, z;](z° f;) € I
fori=1,....n, |f| <m—1,and j = 1,...,r. But [0, ;] is a differential operator of
order m, so [d,z;](I) C I for i = 1,...,n by the induction hypothesis. Thus §(/) C I by
Lemma 3.2. O

Lemma 3.4. Let {I;};c; be any family of ideals in R, and let I = Njc;1;. Then

(1 D(1;) € D).

jed

Proof. Suppose § € N;c; D(I;). Forall j € J we have I C I}, so §(I) C I;. Thus, in particular,

é(I)C 1. m
Theorem 3.5. Suppose f1,..., fr € R are nonconstant and pairwise relatively prime. Then
D({f1,---. ) = (1 D)
jeJ
Proof. If r = 1 there is nothing to prove, so let us assume that » > 1. As fi,...,f, € R are

pairwise relatively prime,
i=1
so, Lemma 3.4 shows that

N D) SD{ - ).

jed
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Rings of differential operators on singular varieties

Let us prove now the opposite inclusion by induction on r, observe that the polynomials

f=h-fr-1 and g= [,

are also nonconstant and pairwise relatively prime. So, if we prove the result for these two
polynomials we have the inclusion from induction hypothesis.

Therefore, assume that f, g € R are nonconstant and relatively prime, we must show that

D({f9)) € DU) N D((g))-

By induction on the order of § € D({fg)). If J is of order zero, i.e., § € R, then 0 preserves
any ideal in R.

Now, assume the inclusion is true for differential operators of some order m > 0, and let
6 € D™"((fg)). Then [4, g € Dgx, and for every h € R we have

[0, 9](hfg) = d(hfg®) — gd(hfg) € (fg).
Thus, [4, 9] € D™({fg)), and [d, g] € D™({f)) by the induction hypothesis. Thus, for any h € R,
6(hfg) — go(hf) =10, gl(hf) € (f).

Since d(hfg) € (fg) C (f), this implies that go(hf) € (f). But f and g are relatively
prime, so we must have §(hf) € (f).

If we repeat the argument changing the places of f and g, we obtain § € D({g)). O

3.2 The ring of differential operators

We will prove that if I C R is an ideal and S = R/I, then

The proof of this result can be found on [McConnell and Robson, 1988] (Theorem 5.3.).

However, in order to obtain this result we will have to prove several lemmas before:

Lemma 3.6. Let I C R be an ideal and S = R/I. Let w: R — S denote the quotient map. Let
0 € Dy and § € Dy, such that 0(z*) = 6(z*) for every o € N*, |a| <m. Thenfom =mod.

Proof. First, consider the map given by each differential operator § € D([):

6:5— S

T 0(r)

We are going to prove the result by induction on m.
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 In the case m = 0, we have that 5(1) = 5 and r(1) =7 for all s, € R.

e Assume the condition holds for k& < m. We have,

[0, 75)(2%) = 0(z;2%) — T;0(x*) = d(x;2*) — x;0(x*) = [0, x;] ()
forall j € {1,...,n} and for all @ € N" such that || < m. Since ord” ([0, 7;]), ord" (6, z;]) <
m, by the induction hypothesis [0, 7;] o m = 7o [0, 2] (%).

Then, for every j € {1,...,n} and o € N” such that |a| < m,
0755 = [0,75] o m(z™) + 730(7)

D o [5,,)(a) + T0(@)

— 7(8(wj2%) — 2;0(2%)) + T30()

d(x;z).

Therefore 0 o w(2?) = 7o §(2?) for every 8 € N*, |8] < m + 1. So, by induction this
holds for all g € N™. And by linearity of these differential operators, we conclude they
are equal. O

Lemma 3.7. Let I C R be an ideal, then
IDgpy = {6 € Dpi | 6(R) C I}
Proof. We are going to prove it by double inclusion:
o If ad € IDp, then (ad)(s) = ad(s) € I by definition of ideal. Thus,
IDgpp € {6 € Dy | 6(R) C I}

o Let 6 € {0 € Dgy | 6(R) C I}. By Proposition 2.5, Dpj is an R-module with basis
{07 | B € N"}. Then we can write any element as

0= Z pﬁé)ﬁ.

peNn
So, we only have to prove that pg € I, for all § € N*. By induction on |3]:
have that p,..0) 6[
— Assume that we have pg € I for all || < m, then
§ = Z pgaﬂ S IDRUk-

|Bl<m

Let ' € N" such that |3'| = n + 1. Therefore 0" = — ¢ € {0 € Dy | 6(R) C I},
and that way we cancel all the terms which has small order. By Proposition 2.4 (2)
we have pg = 0" (2%) € I. O
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Theorem 3.8. Let I C R an ideal and S = R/I, then

D(I)
Dgp = :
S|k IDrs
Proof. Consider the map
¢ :D(I) — Dgjx (1)

which is defined by the equation 1(8)(s) = d(s) (x*).
We have to prove that 7 is a surjective morphism of filtrated rings and ker (1)) = IDpjx.

Let us show first that the morphism is well defined, this is, if 6 € D(I) then ¥(0) € Dgx.
Note that, if 7 € S,

[£(0), 5](r) =(1(0)s — 51(0)) ()
(sr) - 5(60)
=0(sr) — 50(r)
=[0,s](r)
=([0, s])(7)
Therefore,
[10(0), 5] = ([0, 5]) (2)

By induction on the order of .

o dhasorder 0. Then [§,7] = 0 for every r € Rand ¢([6,7]) = 0 € Dgjx. From Equation (2),
[6(6), 7] = 0. Thus, $(6) € DY

o Let m > 0 and assume that 1) (D%Uk N D([)) C Dfy, for k < m. Let § € Dt NnD(I),
then we have, by Equation (2) and induction, that [¢(0),7] = ¥[0,7] € Dgj. Hence,
¥(8) € Dt

Thus, we have obtained that ¢ is well defined and, furthermore, viewing D(/) as a filtrated
ring by the order of its elements, 1 is a morphism of filtrated rings.

We will prove now that ker(¢) = I Dpj. Observe that,

d € keryp <= (9)(r) =0, for every 7 € S
<= §(r) =0, forevery r € R
< 0(R) C I.
Thus, from the previous lemma, it follows that ker(1)) = IDpj.
It only remains to prove that 1 is surjective. Let m € N and 0 € D, For every a € N*

such that |a| < m, we choose f, € R such that §(z%) = f,. We know that there is a differential
operator § € Dy, such that, if la| < m, §(x*) = fo (by the same reasoning as in the proof of
the surjectivity in Theorem 2.6). Since § o m = 7o ¢, then

mod(I)=0on(I)=06({0}) = {0}.
Therefore, 6(1) C I, i.e., § € D(I), furthermore 1(d) = 6. Thus, ¥ is surjective. O
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3.3 Filtrations on the ring of differential operators

Let Dgjx be the ring of k-linear differential operators of a finitely generated k-algebra S.
Using the general definition of differential operators we can consider on Dgjy the filtration given
by order. Moreover, if S is graded, we can consider a generalized Bernstein’s filtration.

If R is a polynomial ring, consider the standard grading R = (R;)iez., on R where

R, = { Z A Ay, € k and |04|:z'}.
aceN?

One can consider now a grading on Dpgji given by the degree. Let us recall that the degree of
an operator 0 = Y, 3 Papr®0” € Dy is defined as deg(d) = max{|a|—|8] | pas # 0}. Note that
under this grading the partial derivatives 9; are homogeneous of degree —1. As a consequence,
9 is homogeneous of degree d if and only if 6(R;) C R;;4. This is how we generalized the notion
of degree.

If S is a graded k-algebra with grading S = (5;)icz., we define the next grading on Dg.

Definition 3.9. A differential operator § : S — S is homogeneous of degree d it §(S;) C Siiq
for each 1.

Remark 3.10. Observe that the inclusion S C Dgji preserves the grading.

In particular, if S = R/I where [ is an homogeneous ideal, then Dgy is a graded algebra.

Filtration by order

Let R be a polynomial ring over a field k and S = R/I for some ideal I C R. We have
already seen that the ring of k-linear differential operators on S can be described in terms of
the k-linear differential operators in R in the following way

D(I)

Dgape =~ .
S|k D

So, as the order of the differential operators is preserved under this isomorphism, then the
order filtration on Dgjy is given by

PN G S RIURSTS|
i IDjg,

Generalized Bernstein filtration

From now on we assume that / C R is a homogeneous ideal so that S = R/ is a finitely gen-
erated graded k-algebra. A generalization of Bernstein filtration to this setting was introduced
by [Bavula, 2009].
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Definition 3.11. Let S be a commutative finitely generated graded k-algebra, let w = max{deg()\) |
A generator of S} and let a be a real number greater than w. The generalized Bernstein filtra-
tion B, s on Dgj with slope a is given by

(Ba,s)i = k{0 € Dgjc homogeneous | deg(d) + a ord(d) < i}.
If the slope is clear from the context, then we simply write Bg.

Example 3.12. Let R = Kk|xy,...,z,]| be the polynomial ring in n variables with coefficients
in k. Then the generalized Bernstein filtration with slope 2 is just the usual Bernstein filtration
on the Weyl algebra. This is because deg(x;) = 1, deg(9;) = —1, ord(x;) = 0 and ord(9;) = 1.
Thus, for any differential operator 6 € Dgj we have

deg(0) + 2 - ord(8) = ord” (4).

3.4 Structural properties of the ring of differential oper-
ators

We would like to study in general the structure of the ring Dgp of differential operators
over a graded k-algebra S. However, we may not have good properties on this ring in general,
let us see two examples that illustrate how diverse our chances of obtaining good properties for
Dygyy are.

Example 3.13. Consider the second Veronese C-algebra

S =Cla,...,1,)? = C[2?, 129, ..., 2],

rrn

whose ring of k-linear differential operators of .S is
D5|(C = C(QTlal, 1'182, c. ,ZL’nan, 8%, 6182, Ce ,65)

In this case, Dgc is a finitely generated C-algebra and Noetherian. Dgc has differential
operators of negative degree. Also, the ring S is Dgjc-simple. And, if we consider the associated
graded ring with the order filtration F, we obtain that grz(Dg|c) is finitely generated as a C-
algebra.

Example 3.14. In [Bernstein et al., 1972], Bernstein, I.M. Gelfand and S.I. Gelfand proved
that the ring of differential operators Dgc of the cubic curve

S =Clz,y, 2]/ (2> +y° + 2°),

is not finitely generated as C-algebra and it is not Noetherian. Dgj; has no differential operators
of negative degree. In this case, S is not Dg|c-simple. And, finally, if we consider the associated
graded ring with the order filtration F, we obtain that grz(Dgc) is not finitely generated as a
C-algebra.
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3.5 Modules over the ring of differential operators

We saw in Section 2 that the Weyl algebra Dpgyy is finitely generated, but this is not true
in general. For a finitely generated graded k-algebra S the k-algebra Dg) may not be finitely
generated, therefore the generalized Bernstein’s filtration Bg is not standard as introduced
in Definition 1.7. In that case, the Krull dimension of Dgy is undefined. Instead one can
consider the dimension of Dgj as in Definition 1.24, introduced in the paper [Bavula, 2009].
By convention we will write Dim(Dgx) := Dim(Bg). It is not known whether the filtration Bg
is dominated by all other filtrations of Dgj.

In the case of Dgp-modules, we are going to follow the same convention: if M is a
finitely generated Dgp-module, M = (my,...,m,), we will consider the standard filtration
G = (Gi)iezs, With G; = (Bg)i(m1, ..., m,) and denote Dim(M) := Dim(G).

Example 3.15. The following are examples of Dgji-modules.

1. Any commutative finitely generated k-algebra S has a natural structure of Dgj-module.

2. Given a finitely generated k-algebra S and an element f € .S, the localization Sy is a left
Dgp-module. The action of Dgj on S is defined inductively as follows:

4(v)

* if 6 € Dgjx has order zero, then §(4) = 7,

o if 0 € Dgp,, we define

) () W) = 5. S(3)
)T

This action is well defined because [d, f"] has order at most n — 1.

Now, we are going to prove the Bernstein inequality on a more general setting, provided
that Dgji satisfies the following condition:

Definition 3.16. We say that (Dgx, Bg) is C-linearly simple for some C' € Z if for each
i € N and each nonzero § € (Bg);,

1 € (Bs)cid(Bs)ci-
We say that (Dgx, Bs) is linearly simple if it is C-simple for some C' € Zx,.

Lemma 3.17. Let Dgy be the ring of differential operators over a graded k-algebra S, Bs =
((Bs)i)iczs, a generalized Bernstein filtration, and M a left Dgy.-module with filtration G =
(Gi)iezs, compatible with Bs. Suppose that (Dg, Bs) is C-linearly simple. Let

V2 (Bs); — Homy(G(c41)i, Gic2)i)-
§— Ws(v) = dv

If G; # 0, then ¥ is injective.
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Proof. We are going to prove the contrapositive statement. Suppose that there exists a nonzero
element § € (Bg); such that W5 = 0. Then §(Bg)ciGi € 0G(c41y; = 0, and that implies that
d(Bs)ciG; = 0. Since 1 € (Bg)ci6(Bg)ci because (Dg, Bg) is C-linearly simple, multiplying
by G; in each side, we have G; C (Bgs)cid(Bs)ciG; = 0, and therefore G; = 0. O

Theorem 3.18 (Generalized Bernstein’s inequality). Let Dgj be the ring of differential op-
erators over a graded k-algebra S, Bs = ((Bs):)icz-, be a generalized Bernstein filtration and
assume Dim(Bs) < oo. Let M a nontrivial left D5|k-m0dule with filtration G = (G,)icz-,
compatible with Bg. Suppose that (Dg, Bs) is C-linearly simple. Then, B

1

Proof. 1f Dim(G) = oo, then the inequality holds trivially.
Suppose Dim(G) # oo. Let t > [ := Dim(G). By Definition 1.24, we have that

Dim(G) = inf {t € Ry | dimy G; <4' Vi> 0}

and by hypothesis G; # 0 because M is nontrivial. By Lemma 3.17, for sufficiently large 7, we
have that

dimy(Bg); < ((C+1)i)*((C +2)i)' = (C + D)'(C +2)%*,
and it follows that Dim(M) < 2¢. Since this holds for all ¢ > [, we conclude

;Dim(DSk) < | = Dim(M). m

Example 3.19. Some examples that satisfy the hypothesis of Theorem 3.18 are

o the ring of invariants of finite groups in characteristic zero and

o strongly F-regular finitely generated graded k-algebras with finite F-representation type.

Moreover, in both cases it holds that Dim(Dgj) = 2 Dim(S). The proof of these results can
be found in [Alvarez Montaner et al., 2021].

In general, proving that Dgy is C-linearly simple is very difficult.

We are now ready to give a more general definition of holonomic module using the condition
of being C-linearly simple:

Definition 3.20. Let (Dgx, Bg) be a linearly simple filtered k-algebra such that dim(Dgx) <
oo and 0 < e(Dgjx) < oo. A nonzero Dgp-module is holonomic if it admits a filtration G
of dimension %dim(DSM{) and with finite multiplicity; the zero module is also holonomic by
convention.
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3.6 Gelfand-Kirillov dimension of the ring of differential
operators

The generalized Bernstein’s inequality (Theorem 3.18) provides a lower bound on Dim(M).
An upper bound is given by Dim(Dg). In this section we will see an important result on
the Gelfand-Kirillov dimension of Dgjx when S is is a commutative, Noetherian and reduced
Ik-algebra. Observe that Dim(Dg)x) = GK(Dgx) if Dgjx is finitely generated.

In general, let A be a k-algebra and I C A an ideal. Consider now the quotient B = A/I.
Observe that a differential operator 6 € D 4 induces a well defined element 6 € Dp defined
by

0(a) = 0(a)
if and only if #(I) C I. This gives a map

D(I) ={0 € Dap | 0(I) C I} — Dpjx (3)

whose kernel is 1D 4. Observe that, in general, this map is not surjective.

Remark 3.21. If I is a left D 4jx-submodule of A, i.e., Dap(l) C I, then I is an ideal in A, and
we have the canonical embedding

Dape/ID g — D gy

In general, given k-algebras A C B, we will not have that Dy C Dpj. However, we have
the following result.

Lemma 3.22. If A C B are commutative k-algebras, then
{0 € Dpj | 0(A) C A} C Dap.
We have the equality when D a5 € Dpjx.
Proof. 1t suffices to show that
{6.€ D | 0(4) € 4} € Dy
for each m € N. We will prove it by induction on m.
e If m=0, then § € Bso6(A) C A.

e Suppose that the inclusion is true for some m > 0, and that 0 € Dg”ﬁ{{l satisfies 9(A) C A.
Then, ¢ € Endi(A). As A C B, we have that for any a € 4, [0, a] € D, and

6, a)(A) = (9 — at)(4) < A.
And now, we can apply the induction hypothesis,

0 € {6 € Endy(A) | [6,a] € DY)y for alla € A} = D%ﬁl.
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For the last part, if Dy C Dpji, the inclusion D € {0 € Dpx | 0(A) C A} is trivial. O

Let us recall the definition of I-torsion functor I'; and some results related to it whose proofs
can be found in [Mésson, 1985]. In our case, we are going to apply it to the ring A and denote
I = I ](A)

Definition 3.23. Let A be a commutative k-algebra and let I C A be an ideal, we define
I''={a€ A|I™a=0 for some m > 0}.

Lemma 3.24. Let A be a commutative k-algebra and let I be an ideal of A. The ideal I'; is a
left D apc-submodule of A. That is, D (T'y) C Ty

Proof. We claim that PHdDimk C DdAUk]” for all integers d > 0 and n > 0.

The lemma follows immediately: Let a € I'; . Then, by definition of I';, there is an integer
n > 0 such that I"a = 0. Hence if § € DY, the claim implies

I"4(0(a)) = (I"*0)(a) C (D4I")(a) = Dy(I"a) =0

so by definition 6(a) € I';.
Proof of the claim. Let us prove it by a double induction on n and d.

e In the case that n = 0 and d = 0 the statement is trivial.

o We prove the claim for a pair (n,d) € ZQZO. By induction, we may assume that the
statement is true for some (n,d) with n,d > 0.
Let z € I y € I and § € DYy,. We have to show that xyd € D% [". However,
by our induction hypothesis we have that xd € Dj‘fmk[ "1 and x[6,y] € Djl_]kll " (since
[0,y] € Di"kl), and then

2yl = wby — x[6,y] € D" 1 + DY " = DY 1" O

Remark 3.25. Let A be a commutative ring and let I be an ideal of A. From algebraic geometry
we can recall the definition of the variety corresponding to I, V/(I) := {p € Spec A | I C p}.
If A is Noetherian, then I'; is the ideal of regular functions on Spec A that are supported on
V(I).

Hence, in terms of geometry, this lemma says that differential operators preserve supports
of regular functions.

From now on, let us assume that A is Noetherian and reduced with minimal primes
p1,...,p,. Consider the quotients A; = A/p; for i = 1,...,r, and let us denote A’ =
Ay @ - @ A,.. We will denote by [a]; the equivalent class of @ € A in A;. Since A is re-
duced, i.e., N;_; p; = 0, we have a canonical embedding

A A=A DA, (4)

a— (la]y,...,[a],)
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and we can identify A with its image in A’. Let ¢; = (0,...,1,...,0) € A’ then we have that
any element of A can be written as a = Y, ae; and any element o’ € A" as @’ = Y, a;e;, with
a; € A.

Proposition 3.26. Let A be a commutative, Noetherian and reduced ring, and let py,...p, be
its minimal primes. Then

(1) Ty, = i P
(2) T'r,, = pi for each minimal prime p; of A.

Proof. (1) Let x € I'y,. Then pl'z = 0 for some n € Z. Since A is reduced, for all p; # p; for
i # j, we can find an element y € p; \ p;. Then y"x =0 € p;, so x € p;.

Conversely, if x is contained in (;; b;, then p;z is contained in N;_; p;. Since A is reduced,
it follows that p;z = 0. Hence x € I'y,.

(2) Since Mi_; p; = 0, part (1) implies immediately that p; C I'r, .

Conversely, assume that = € I'r, . Then for each p; # p; choose an element y; € p; \ pi
(possible since all the associated primes are minimal), and let y be the multiple of these
elements. Then by (1) we have that y € p;, and hence it follows that y"z = 0 € p; for some
integer n > 0. Since y ¢ p; and p; is a prime ideal, this implies that x € p;. O]

We will need the next proposition to prove several results that relates D4 and D 4. Its
proof can be found in [Muhasky, 1988].

Proposition 3.27. Let A and B be commutative k-algebras, then there is a k-algebra isomor-
phism D sgpix = Dajx © Dpjx.

Proposition 3.28. Suppose that A is commutative, Noetherian and reduced k-algebra, with
minimal primes p1,...p,. Let A" = A1 @ --- @ A,, where A; = A/yp;. Then D = Da,jx @
RN DA'r"]k7 and

DA|]k = {9 - DA’Uk | Q(A) C A}

Proof. We observe that if a € A, then a € p; if and only if ae; = 0. Thus a € Iy, if and only if
aej = 0 for all j # i. Since I'; is a D g-submodule of A for any ideal I, and since p; = I'r, , it
also follows that

Dyp(p;) Cp; fori=1,...,r

Thus each ¢ € D4 induces an operator, [6];, in D4,ji. So, by Proposition 3.27, we have
Dy = Daye ® -+ & Da,

as k-algebras. So, now, we can identify D 4/ with D4, @ - -@® Dy, i, this means that we have
the homomorphism of k-algebras

¢ : DA|]k I DA’|]k
0— ([01,...,[0])
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which is well defined.
We have that

ker ¢ = () (piDa) = (ﬂ Pi) Dajx = 0Dy =0,
=1

i=1
so ¢ is an injection, and the embedding given in Equation (4) extends to a canonical embedding
DA|]k — DA’Uk'
Thus we have D 4 € D 4 and the second part of the proposition follows from Lemma 3.22. [

Proposition 3.29. Assume that A is a commutative, Noetherian and reduced k-algebra, with
minimal primes py,...,p,. Let A=A @ --- D A,, where A; = A/p;, and let

D(A",A) ={0 € Dy | 0(A") C A}
Then D(A', A) C Daj. Furthermore, D(A’, A) is a right ideal in D and a two-sided ideal

m DA|]k-

Proof. Notice that D(A’, A) is a right ideal in D 4. Let us see the second part, if § € D(A’, A)
then, in particular we have that 6(A) C A because A C A’. So, from the previous proposition,
we have that D(A’, A) C D . O

The differential operators in D(A’, A) of order zero are
{a€eAlaA CA}=(A:4 A)

the conductor of A" into A.
Remark 3.30. The conductor of A" into A, (A :4 A’), is a measurement of how far apart a

commutative ring and an extension ring are.

Definition 3.31. For a commutative, Noetherian and reduced k-algebra A, with minimal
primes pq, ..., p,, we define

Ta=3S T,
=1

Then I'y = >77_; Nj4p; is a left D 4p-submodule of A by Lemma 3.24. In particular, it is
an ideal in A.

Remark 3.32. The geometry behind this element is that the variety corresponding to I'4 (this
is, the zeros of this ideal) is the closed subset of Spec A consisting of all points that lie in at
least two different irreducible components of Spec A.

Proposition 3.33. Let A be a commutative, Noetherian and reduced k-algebra, with minimal
primes pi, ..., p,. Let A=A & ---® A,, where A; = A/p;. Then

Fy=(A:a A)=DA A)(A) ={0(d)|d € A and 6 € D(A",; A)}

and
D(A/, A) = FADA/Uk = FADAUk'
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Proof. Suppose that a € Ty, and o' = 32, ae; € A" with a; € A for i =1,...,7. Then
da=)Y aea=ajae; =Y ajae; € A,
i i

so AT, C A. It follows that I'y C (A : A').

Conversely, let a € A such that aA’ C A. Then, in particular, ae; € A for i = 1,...,r. But
for each ¢, ae;e; = a0 =01if j #14,s0 ae; € I'y, fori =1,...,r. Hence

a:Zaei EZFPZ. =T4,

O (A ‘A A/> Q FA.
Since
(A:p A)y=(A:4 A1) CD(A A)(A),
we have that (A :4 A") C DA, A)(A).
Let us show the other containment: D(A’; A)(A") C (A :a A’). Observe that the differential

operators of D commute with the e;, ie., §(d'e;) = ( )( ") = ef(d) for « € A" and
0 € Dapi. Thus, if a' = Y2, aze; € A, Wltha,EAaIle—l ,r, then

(a'D(A, A))(A') = _(aieD(A", A))(A) = 3 (aD(A', A)e;)(A)

i

C ) (aD(A, A)(A) C D(A, A)(A) C A,

To prove the second part of the statement. Showing that I'yD 4 € D(A’, A) and T4 D 4 €
L aD 4 is trivial. That D(A’, A) C T'4D i follows since D(A’, A)(A’) = I'4 by the previous
part. To see that I'y D C TaD ., let 0 € TaDyp and o’ = 3, a;e; € A" as before. Then

= Ze(a@el) = Zeze(al) € ZQZ'FA g FA. ]

Now, with the same notations, we will show that GK (D AIJk) = 2dim A if each A; is regular.
For that we will need the following lemma, whose proof can be found in [Krause et al., 2000]
and [McConnell and Robson, 1988].

Lemma 3.34. Let S and S’ be any k-algebras, then
1. GK(S® 5') = max{GK(S),GK(S")},

2.4f S C 5, and if S is finitely generated as a right or left S-module, then GK(S) =
GK(S").

If a commutative k-algebra S is a reqular domain, then

3. Dgx is a simple domain.
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4. GK(Dgj) = 2dim S.
Lemma 3.35. There is an element in I' 4 which is nonzero in each direct summand.

Proof. For each i = 1,...,r, choose an element a;, € I'y, \ p;, so that a;e; = 0;;a;. Let a =
a; + -+ a,. Then
a=ae;+---+ae. =aje; + -+ aye. €Iy,

and a;e; # 0, for each i. O

Theorem 3.36. Suppose that A is a commutative, Noetherian and reduced k-algebra, with
minimal primes Py, ..., P, such that A/p; is reqgular for i =1,...,r. Then

GK(DAUk) = 2dim A.

Proof. Let A= A1 & ---® A,, where A, = A/p; fori=1,...,r. By Lemma 3.34 (4) it follows
that GK(Da,) = 2dim A;, so from Lemma 3.34 (1), we get

GK(Dak) =max{GK(Da,x),...,GK(Da, )}
=max{2dim A;,...,2dim A, }
=2max{dim A,,...,dim A, }
=2dim A.

By Lemma 3.34 (2), we only have to prove that D 4 is finitely generated as a right D 4p-
module.

By Proposition 3.29, D(A’, A) is a right ideal in D 4. Now, consider the set D4 D(A’, A).
This is a two sided ideal in D 4/, but I'y € D(A’, A) by Proposition 3.33 and I'4 contains an
element as in Lemma 3.35. By Lemma 3.34 (3), Da/x is a direct sum of simple domains, so
DaD(A', A) = D ari. Hence, there is a finite sum

i=1
with 0; € D and 9; € D(A’, A). By Proposition 3.28 and Proposition 3.29, it follows that

Dae =Y 0;:Dapc €Y 0;,D(A', A) C> 0;Dapc C Darpie,

i=1 =1 i=1
SO
m
Dape = 0;Dape. 0

i=1

Corollary 3.37. If A is a finitely generated k-algebra and its ring D s of k-linear differential
operators is also finitely generated, then
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4. Ring of differential operators of a hy-
perplane arrangement

In Section 4.1 we are going to introduce the notion of a hyperplane arrangement. Hyper-
plane arrangements correspond to finitely generated graded k-algebras of the form R/I with
I generated by a product of linear polynomials. In particular, there is a notion of differential
operators on them as we saw in Section 1.3. Interestingly, specializing to hyperplane arrange-
ments allows us to apply what we saw in Section 3. In particular, we will use all the results
from Section 3.1 about differential operators that preserve a given ideal. Later, in Section 4.2,
we will explain how to compute the ring of differential operators on a hyperplane arrangement.
In order to do this, we will follow the work of Holm in his thesis [Holm, 2002].

4.1 Hyperplane Arrangements

Let k be an algebraically closed field and let V' be a vector space of dimension n. All the
results and definitions in this section can be found in [Orlik and Terao, 2013] and [Holm, 2002].

Definition 4.1. A hyperplane H in V is an affine subspace of dimension n — 1. A hyperplane
arrangement A = (A, V) is a finite set of hyperplanes in V.

Remark 4.2. We call A an n-arrangement when we want to emphasize the dimension of V.

We are going to denote by V* the dual space of V, by S = S(V*) the symmetric algebra
of V*. We can choose a basis of vectors {ei,...,e,} in V which has an associated dual basis
{z1,...,2,} in V* such that z;(e;) = §; ;. We can identify S(V*) with the polynomial ring
S = K[z, ..., z,]. Each hyperplane H € A is the kernel of a polynomial py of degree 1 defined
up to a constant.

Definition 4.3. The product
Q(A) = H PH

HeA

is called a defining polynomial of A. We agree that Q(2,) = 1 is the defining polynomial of
the empty arrangement.

Definition 4.4. We say that A is centerless if NgesH = @. If T'= NgeaH # 9, we say that
A is centered with center T. If A is centered, then coordinates may be chosen so that each
hyperplane contains the origin. In this case we call A central.

4.2 Ring of differential operators

We already now that we can write any differential operator of the polynomial ring in n
variables R = k[z1,...,2,] as a sum of homogeneous differential operators, so if § € Dpgpy of
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order m we are going to denote by 6; its homogeneous component of order 7, thus

0 =0+ -+ 00, where 6; = 3 pa(2)0°.

|a|=1
Lemma 4.5. Suppose p € R is a polynomial of degree one, and that 0 € Dgy. Then
0 € D((p)) if and only if 0; € D({p)), fori=0,...,m,

where
0= O+ + b,

is the decomposition of 6 into components of homogeneous order.

Proof. 1f 0; € D((p)) for each i, then it is obvious that 8 € D((p)).
We are going to prove the other implication studying each homogeneous component of 6:

e For 2 = 0. Since 6§y € R, we have that it preserves any ideal.

e For i = 1. Since # € D({p)) by hypothesis and using the case i = 0, we have that
Om+---+ 60, € D((p)). Thus

(0 + -+ 01)(p) € (p),

but deg(p) =1, so
(O + - -+ 01)(p) = b1(p) € (p)-

By Proposition 3.3, this means that ¢, € D((p)).

« From the last step, we also have that 6, + - -+ 4 6y € D({p)). In particular,

(Om + -+ 62)(zp) € (p),

for each j = 1,...,n. In this case, deg(x;p) = 2, so

(O + - -+ 02)(2;p) = O2(;p) € (p),
and again by Proposition 3.3, we have that 02 € D((p)).
 Continuing like this, we see that §; € D((p)) for each i =1,...,m. O

Notation 4.6. If I is an ideal in R we will write D™ (R) and D™ (I) respectively to denote
the differential operators in Dpyx and D(I) of homogeneous order m. If A = R/I, we say that
a differential operator in D ,; if homogeneous of order m if it is induced by an element in
D™(T). Thus, writing D™ (A) for the differential operators in D 45 of homogeneous order m,
we have

D™ (A) ~ D"™(I)/ID™(R).
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Example 4.7. Consider I = (z") C k[z]. Then we have, for example, that
20?2 — (r — 1)0, € D((z"))
but neither z9? nor 9, belong to D((z")) if r > 1, so
DD1) ¢ DA(1)

s<2

in this case.

This kind of examples are what makes the following proposition important:

Proposition 4.8. Let I be an ideal of the polynomial ring R. If I = (p; ...p,) defines an affine

arrangement, then
D(I) = P D" (1)

m>0

as an R-module.

Proof. We only have to prove that D(I) C @,,>0 D™ (I). Suppose that 0 = 0,,,+- - -+, € D(I)
with the same notations as before. We have to show that each 6, € D(I).

By Theorem 3.5, § € D((p;)) for j = 1,...,r. Using Lemma 4.5, we have 6; € D((p,)) for
each 7 and j. Hence, by Theorem 3.5 again, 0; € D(I) for each i. m

Corollary 4.9. If A is the coordinate ring of an affine arrangement, then

D= @ D"™(4)

m>0
as an A-module.

Lemma 4.10. Let p € R be a polynomial of degree one. Then D™ ((p)) is generated, as an
R-module, by the homogeneous components of highest order of products of m derivations on
Der({(p)), together with the set {pd* | |a| = m}.

Proof. As A = R/(p) is regular. By Proposition 1.33, D4ji is generated as a k-algebra by A
and Der(A), i.e. Dy is generated by (Der(A)), 7 <m, as an A-module.

By Theorem 3.8, the isomorphism D4 ~ D({p))/{p) Drjx preserves the order filtration on
D 4, so
Der(A) ~ Der({p))/(p)Der(R).
Hence D™((p)) is generated by (Der({(p)))’ + (p)DFy, for j < m as an R-module. Using

now Proposition 4.8, we have that D™ ({p)) is generated, as we wanted, by the homogeneous
components of highest order of products of m derivations on Der((p)), together with the set
{p0* | laf = m}. a

Lemma 4.11. Let f be any polynomial in R such that there is an element 6 € Der(R) with
5(f) =af, for some a € k\ {0}. Let N be the R-module of derivations annihilating f. Then

Der({f)) = R0 + N.
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Proof. 1f 6 € Der(R), we know by Proposition 3.3 that § € Der((f)) if and only if 6(f) C (f).
Since this holds for §, we have that R§ + N C Der((f)).

Let us prove the opposite inclusion, assume that 6 € Der({f)) such that 0(f) = gf for some
g € R. Then

S0,
(9 - 95) eN
a
Which shows that § € RJ + N. O
Definition 4.12. Let V' be the k-vector space
i=1

and, if H is a hyperplane through the origin in k", define Vy C V' to be the (n —1)-dimensional
subspace

i=1
Lemma 4.13. Let p be any polynomial of degree one, and let N be the R-module of derivations
annthilating p. Let H be the hyperplane through the origin defined by p — p(0). Then

Proof. As p is a polynomial of degree one, we can write it as p = ag + > a;z; where a; € k
for each i. A vector (by,...,b,) € k™ lies in the hyperplane H if and only if 3 a;b; = 0, this
is, if and only if (by,...,b,) is a syzygy of (ai,...,a,). In fact, all the vectors contained in H

generate the whole R-module of syzygies of (aq,...,a,).
On the other hand, a derivation § = Y p;0; € Der(R) lies in N if and only if 0 = d(p) =
S piag, ie., if and only if (fi,..., f,) is a syzygy of (ay,...,a,). Hence N' = RVy. O]

Remark 4.14. We are going to use this result to construct a basis of V. Let p be a polynomial
of degree one, and H the hyperplane defined by p — p(0). We can choose a basis {d1,...,0,-1}
for Vi and extend this to a basis {d1,...,d,} for V.

As §, ¢ (01,...,0,_1), it cannot annihilate p. Therefore, pd, meets the requirements of
4.11, and it follows that Der((p)) is generated by {1, ..., d,_1,p0n}.

Lets do an improvement of this observation:

Proposition 4.15. Suppose p is a polynomial of degree one. Let H be the hyperplane through
the origin defined by p—p(0), and let M = {d1,...,0,} be a basis for V such that {d1,...,0n_1}
s a basis for the subspace Vi from Definition 4.12. Then

D) = X R6"+ S Rp”,

lor|=m lor|=m
an=0 an>0

as an R-module.
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Proof. We have already seen that Der((p)) is generated by {d1,...,0,_1,pd,}. Thus, by
Lemma 4.10, D™ ({p)) is generated by the homogeneous components of highest order of prod-
ucts of m of these derivations, together with the set {pd® | || = m}.

Observe that the homogeneous component of (pd,)" is p'd’. Since the derivations di, ..., d,
belong to V' they all commute with each other and since 6;(p) =0 fori =1,...,n—1, it follows
that 61,...,0,_1 commute with pd,. Thus the homogeneous component of highest order of a
product of the derivations dy,...,d,_1,pd, is of the form p*»§“. Therefore any such element is
clearly a multiple of one of the proposed generators.

Since {d1,...,0,} is a basis of V it follows that any 9” with |3| = m can be expressed as a
kk-linear combination of {6 | |a| = m}, so any element of the form pd®, |3| = m, is an R-linear
combination of the proposed generators. O

Theorem 4.16. If A is the coordinate ring of an affine arrangement,
GK(DAUk) = 2dim A.

Proof. This is a direct result applying Theorem 3.36, because A and D 4 hold all the hypothesis
of the theorem. O

However, if we have a module M over D 4x, we do not know if the generalized Bernstein’s
filtration in this setting is C-linearly simple, so neither we know if we can obtain a generalized
Bernstein’s inequality.

4.3 Computation of the ring of differential operators on a
generic hyperplane arrangement

Let R = k[zy,...,z,], A be an affine arrangement and A = R/I the coordinate ring of
of A, with the same notations as before, we are going to review some methods of calculating
generators of the R-module D™ (A), as the “Jacobian” method, the method of intersecting
modules and Holm’s method, all of them can be found in [Snellman, 2005] and [Holm, 2002].

4.3 The Jacobian Method

Let us first recall a result that we saw before:

Lemma 4.17. Let 0 = Y5, ps(2)0° € Dy be homogeneous of order m. Then 6 € Dy if
and only if §(x“p) € (p) for all |a] < m.

Whose immediate consequence is

Corollary 4.18. Let m be a positive integer. Let G be a row matrix whose entries are

{07118l = m},
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let H be a column matrix whose entries are
{2 | la] < m},
and let A be the matriz indexed by G and H where the (0%, x®) entry is
9° (z°p).

Let B = [A|pl], where I is the identity matriz of appropiate dimension. Then, the syzygy
module of the columns of B correspond to D, . More precisely, if

(AlpI m _o,
w
then
Zuﬁﬁﬁ S D.A|Ik>
B

and this is an isomorphism.

4.3 The Method of Intersecting Modules

Now we are going to explain the method of intersection modules. It is based on these results
shown in Section 4.2:

Definition 4.19. Let V' be the k-vector space V = Y1 | kO; and define

=1

Then, Vg is a codimension-one subspace of V.

Lemma 4.20. Let N be the module of derivations annihilating a polynomial p of degree one.
Then, N' = SV, and if § is any derivation such that 6p = ap, a € k*, then DM (p) = N 4 S6.

Proposition 4.21. Suppose p is a polynomial of degree one. Let H be the hyperplane through
the origin defined by p—p(0), and let M = {d1,...,0,} be a basis for V such that {d1,...,0n_1}
is a basis for the subspace Vi from Definition 4.12. Then, N = {01,...,0,_1,pd,} generates
DO((p)), and

D™ ((p))= > R&*+ > Rps“.

|a|=m |a|=m
anp=0 an>0

Together with the next theorem proven in Section 3.1:

Theorem 4.22. D}, = Ni_y D™ (py).
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We will now translate this results to explain a method to compute the pieces D let us
introduce the notations and steps to follow:

Let ¢ be a polynomial of degree one, and denote by H € k" the hyperplane defined by gq.
With the same notations as in Proposition 4.21. Let A be the n x n coordinate matrix of N,
i.e., the matrix formed by the coordinate vectors of elements of N. And let S™A be the m-th
symmetric power of A. And finally, let B™ be the matrix which is a result of replacing any
occurrence of ¢* with ¢ > 1 in the matrix S™A, by q¢.

Let us translate it, as A is a matrix it can be seen as a matrix of an endomorphism
¢:R"— R",
then S™A is the matrix of the endomorphism
S"p: S"R" — S™R".

But as this is a symmetric product we will obtain a matrix with less entries. And B;" is the
matrix of the associated endomorphism on S™1" where

T =R/(q—q°).

Once we have computed the matrices B, for each p;, we can use them to compute DU (A)
for each j € N. The algorithm to do that is to construct a matrix M; for each j in the following
way

I, B, 0 - 0

I, 0 B, -~ 0
Mj: j : :p2 .. 0 ’

I, 0 0 --- B

where Iy, is the identity matrix of dimension dim(DV)(R)).

Then, compute the generators of the syzygies of this matrix, and from those we can obtain
the generators of DU (A) for each j € N from the truncations of the syzygies of the matrix.
This method of computing the intersection of submodules of free modules can be found in
[Loustaunau, 1994].

4.3 Holm’s Method

In the first paper of his thesis [Holm, 2002], Holm also gives another method for constructing
a (non necessarily minimal) generating set of D™ (A), when A is a generic n-arrangement. Let
us introduce some notations and results without proof in order to arrive to this method.

Suppose that » > 1 and that the polynomials of degree one pq,...,p, define a central
arrangement. Let H; be the hyperplane defined by p;, for i = 1,...,7, and let V; =V, CV
be the subspace generating module of derivations annihilating p;.

Lemma 4.23. Let pq,...,p, be linear forms defining a generic arrangement.
Choose a subset M of V' as follows.
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o Ifr <mn: choose a basis {0,41,...,0n} for Ni_y Vi. Then, for eachi =1,...,r, choose an
element 6; so that {0s,0,41,...,0n} is a basis for N Vj, and let M = {6y,...,0,}.

o If 1 > n: choose a basis element for each intersection of n — 1 of the V;’s, and let
M = {01,...,6:} be the set of all of these.

A set M chosen in this way contains a basis for each intersection of V;’s, including the whole

of V.

Definition 4.24. Suppose py, ..., p, be linear forms defining a generic arrangement. We define
a subset D of Der(R) as
D - {Pl(sl,...,Ps(Ss},

where {01,...,d5} is the set M from Lemma 4.23, and where each P, is the product of those
pi’s which are not annihilated by ¢;. If all p;’s are annihilated by d;, we put P, = 1.

Definition 4.25. Suppose I = (p;...p,) defines a generic arrangement and that {dq,...,d,}
is the set M associated to I according to Lemma 4.23.

For each o € N°, s > n if r > n, define P, as the product of those p;’s such that some 9;
with a; # 0 does not annihilate p;. If every d; with a; # 0 annihilate all p;’s, we define P, = 1.

Definition 4.26. The Euler derivation is defined as
i=1

This derivation preserves any homogeneous ideal and it is easily seen to have the property

if f is an homogeneous polynomial of degree r.

Once we have seen all this definitions and results, we are ready to understand all the
notations of the next theorem that give us a complete description of the generating set of D(1).

Theorem 4.27. Suppose that I = (p,...p,) defines a generic arrangement. Then D(I) is
finitely generated as a k-algebra. More precisely:

o Ifr <mn, then D(I) is generated by
{21, 0 T, Orgts - O Y U pids, 002, ps0s | i =1,...,1},
where D = {p161,...,pr0r,0r11,-..,0n} is the set from Definition 4.24.
o Ifr >n, then D(I) is generated by
{z1,.. ., 2, e} U{Py0" | ; <2(r—m)+3 fori=1,...,s},

with P, as in Definition 4.25 for each o € N°.
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In particular, he gave a concrete description of the generating set in the case of hyperplane
arrangements in k[z, y|:

Proposition 4.28. Let A be an arrangement in k2, with defining polynomial p = pips ... p, €
klx,y], and let m be a positive integer. Let P; = p/p; for 1 < i <r and define

5 — Oy, if pi = ax,a € k¥,
’ Oy + a0y, if pi =aly—a;x),a,a k"

Then, D™ (A) is free, minimally generated by

{€m, P17, ..., B0}, if 1 <m <r—2,
(P PO ifm=r— 1,
{P0], ..., PO, DGry ., DG}, if m > 1.

4.3 Example

We are going to compute D™ (A) and D?(A) when p = Q(A) = x(x — y) with the three
methods.

The Jacobian method

The Corollary 4.18 give us a straight forward method to compute each D™ (A). Let us first
start by computing DM (A), where p = z(z — y) = 2? — xy. Following the same notations of
the corollary the entries of the matrix A are

0x(1- (2% —zy)) =22 —y, 9,(1- (2* —xy)) = —x

So, our matrix A is this case is
A= (2:6 —y —Jc)

then, the system we have to solve is

Uy

[Alp]] lg] =[22-y -z 2%y ) = 0

Multiplying, we obtain
(27 — y)uy — zup + (2° — 2y)w = 0.

Therefore, we have that

DY(A) = (2(9: + 9y), (w — )9y).
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Let us compute now the generators of D,24|Ik' In this case we have:

oy
y p 1 0 22—xy 0 0 ZQ 0
[A|p[][ ]: 6r —2y —2ux 0 0 22— xy 0 5l =10
w 2y  2x—2y —2x 0 0 22— ay| | 0

Wa

W3

which give us the system of equations:

2uy — U = —(2? — zy)wy
(62 — 2y)u; — 22Uy = —(2? — zy)ws
2yur + (22 — 2y)ug — 2zu3 = — (22 — 2Y)ws

So, the generators of D (A) are

Y

DA (A) = (202 +230,0,+ (2x—y)0;, x°0;+ (=32 +1y)0,0,+(—32°+3xy—y*) 0., (x—y)0. ).

Method of intersecting modules
Let see how this method work on our example. Recall that our situation is R = k[z, y] and
p=Q(A) = z(x —y). We want to compute

DY) =DV ((2)) N DV ((z —y)) and DP(A) = DD ((2)) N DD ((z —y)).

Let us compute first the pieces for each linear polynomial and the compute the intersection
in each case:

o For ¢ = z. We have that Vj is spanned by 0,. Hence, we can take M = {0,,0,} a
base of V' = k0, + ko, and then N = {0,,x0,}. Where we have used the notations of

Proposition 4.21, then
DY ((z)) = 0,, 20 ).

Now, if we order the monomials of degree two as z2, zy, y?, then

0 2 00 o 00 o
A_L 01,5214_0:1: 0 and Bfy=0 = 0
10 0 100

Thus, we can use B?, to recover the generators of DA ((z)):

(02, 0,0, 2B, = (02, 20,0,, 07

Therefore,

DO ((z)) = ( 85, 10,0, 10%).
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o For ¢ = x —y. In this second case, Vj is spanned by 0, + d,. Thus, M = {0, + 0,,0,} is
a base of V and then N = {0, + 9,, (¢ —y)0,}. Therefore,

DY ((z —y)) = (0, + 0y, (v —19)d, ).

Now, if we order the monomials of degree two as 22, zy, y?, then

1 0 1 0 0 1 0 0
A:L o ],SQA: 2 x—vy 0 and B(zx_y): 2 z—y 0
Y L z—y (r—y)? L o—y 22—y

2

(z—y) tO Tecover the generators of DA ((z — y)):

Thus, using B
(03, 020y, O]BE, ) = [(0: +0,)°, (x —y)(0:0, + ), (v —y)J}]
Therefore,

D ((z —y)) = ( (0: +0,)%, (z —y)(0:0, +5), (x — )y ).

We are now ready to compute D™ (A) and D?(A). Let us start with DM (A4) = DO ((z))N
DW((x —1y)), to do so consider the matrices of both submodules in the basis [0,,d,] of DY (R):

0 =z 1 0
1 _ . pl _
By = [1 0] b By = [1 T — y] '

With these two matrices we are going to obtain the matrix

100 20 0
01100 O
M= 10001 O
01 001 xz—-y
The generators of the syzygies of the matrix M are
T 0
-y —r+y
Y r—Y
1]’ 0
x 0
__1_ L 1 -

Hence, the intersection of DM ((x — y)) and DM ((z)) is generated by
—x 0
—y| ' |—r+y
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Therefore, the generators of D (A) are precisely

D(l)(A) = (20, + Y0y, (z

_?J)ay >

Now, let us compute the intersection of D ({(x—y)) and D@ ((x)). In the basis [0?, 0,0,, 0]

Yy

for D@ (R), the matrices of D@ ({x — 7)) and D® ({x)) are
0 0 z 1 0 0
2« . 2 _
B(m) =10 = 0f; B(w_y) =12 z—vy 0
1 00 1l 22—y z—vy
The zyzygies of the matrix:
1 0 00 0 « 0 O 0 ]
0100200 0 0
00110O0O0 O 0
1000001 O 0
0100002 x—y 0
0010001 xz—y z—y]
are generated by
(=21 [ 0 717 [ 0 ]
—2x 0 % —xy
—T % —xy 0
1 -4y 0
2 1, 0 —T+y
1 0 0
x 0 0
0 0 —T
L0 [ -2 ] [ = |
so the intersection of the two modules is generated by
[—x] [ 0 1 [ 0 ]
—2x |, 0 2 — zy
|~z | |2*—azy| | O |

and D (A) is generated by

D(z)(A) = (x(0; + ay)2, (2% — xy)@j, (2% — 2y)0,0y ).

Holm’s Method

In the case where p = Q(A) = z(x —
):

the generators of DM (A) and D@ (A
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In the first case, we have that m =1 and r = 2:

In the second case, as m =2 and r = 2:

DP(A) = ( (z —y)dy, 2(9: +9,)" ).

4.3 Comparison between the different computations

Our aim is to compare the different systems of generators of DY)(A) and D (A) previously
obtained:

o Jacobian method:

DW(A) =( (z - Y)0y, (0 + 0y) ),
DP(A) =(202 + 220,0, + (2 — y)0;, 202 + (—32” + 2y) 0,0, + (—32° + 3zy — y*)0L, (x — y)I2).

e The method of intersecting modules:

D(l)(A)
D) (A)

<xaa: + yaya (.CE - y)&y >7
(2(0, +0,)%, (2* — xy)@j, (2° — 29)0,0, ).

e Holm’s method:

S
e
I

((x =)0y, 20, +y0y ),
((x—y)0;, x02+ 220,0, +yI ).

S
=
[

Seemingly there are discrepancies in the set of generators obtained in each method, but
recall that
D(A) ~ D™ (1)/ID™(R).

so these are classes of differential operators. It is quite difficult to compare them by hand and,
to the best of our knowledge, this has not been implemented in computer algebra systems such
as Macaulay?2.

58



Rings of differential operators on singular varieties

5. Conclusions

Over regular rings, the theory of D-modules has been an active area of research over the last
fifty years since the works [Bernstein, 1971, Kashiwara, 1970]. It has motivated the development
of many techniques and it has been applied to several other areas of mathematics such as
Algebraic Geometry, Singularity Theory, Representation Theory and Commutative algebra.

A natural question is: what parts of the theory of D-modules extend to the case of singular
rings? Answering this question requires tackling several issues. We mention some of them and
some interesting approaches in the following.

For a non-regular ring S, describing the ring Dgji of k-linear differential operators is difficult,
even in the particular case of hyperplane arrangements. For example, we saw in Section 4.3 that,
even in a simple example, computing the generators of D% (A) for small 4 may require some
computational power. Few non-regular examples have been studied so far. The development
of computational algebra systems such as Macaulay2 and Singular would be useful to grasp a
better understanding of the area.

It is not known in what cases Bernstein’s inequality holds. We have seen in Section 3.5
that linear simplicity is a fundamental tool to prove it. However, there are cases which are not
linearly simple. For example the ring of differential operators on the cubic curve described in
Example 3.14 does not contain elements of negative degree, therefore it is not linearly simple.
So one can ask whether linear simplicity is related to the type of the singularity and, if so, what
kind of singularities it holds on.

Back to the question on Bernstein’s inequality, in the case of hyperplane arrangements we
have seen that the D4i-submodule I'y of A from Definition 3.31 is non trivial. Therefore,
Bernstein’s inequality does not hold for hyperplane arrangements. It may be interesting to
investigate whether Bernstein’s inequality holds if we consider a generalized version of rings of
differential operators.

Finally, another approach to prove Bernstein’s inequality is using characteristic varieties,
which we have not defined, as in the reference [Castro Jiménez, 2010] on the regular case.
Further work is needed to generalize this approach for singular rings.
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