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Abstract—AI explainability improves the transparency and
trustworthiness of models. However, in the domain of images,
where deep learning has succeeded the most, explainability is still
poorly assessed. In the field of image recognition many feature
attribution methods have been proposed with the purpose of
explaining a model’s behavior using visual cues. However, no met-
rics have been established so far to assess and select these methods
objectively. In this paper we propose a consistent evaluation score
for feature attribution methods—the Focus—designed to quantify
their coherency to the task. While most previous work adds out-
of-distribution noise to samples, we introduce a methodology to
add noise from within the distribution. This is done through
mosaics of instances from different classes, and the explanations
these generate. On those, we compute a visual pseudo-precision
metric, Focus. First, we show the robustness of the approach
through a set of randomization experiments. Then we use Focus
to compare six popular explainability techniques across several
CNN architectures and classification datasets. Our results find
some methods to be consistently reliable (LRP, GradCAM), while
others produce class-agnostic explanations (SmoothGrad, IG).
Finally we introduce another application of Focus, using it for
the identification and characterization of biases found in models.
This empowers bias-management tools, in another small step
towards trustworthy AI.

I. INTRODUCTION

Explainability has become a major topic of research in
Artificial Intelligence (AI), aimed at increasing trust in models
such as Deep Learning (DL) networks. However, trustworthy
models cannot be achieved with explainable AI (XAI) methods
unless the XAI methods themselves can be trusted. This
necessity gave rise to the assessment of XAI methods.

To evaluate XAI methods one may assess interpretability, a
qualitative measure of how understandable an explanation is
to humans [1]. While this is important to guarantee the proper
interaction between humans and the model, interpretability
generally involves end-users in the process [2], inducing
strong biases. In fact, a qualitative evaluation alone cannot
guarantee coherency to reality (i.e., model behavior), as false
explanations can be more interpretable than accurate ones.
To enable trust on XAI methods, we also need quantitative
and objective evaluation metrics, which validate the relation
between the explanations produced by the XAI method and the
behavior of the trained model under assessment. The challenge
of quantitatively evaluating XAI methods lies in the absence

(a) MIT67 (b) ILSVRC2012 (c) MAMe

(d) Dogs vs. Cats (e) GradCAM (f) LRP
Fig. 1. First row: sample of mosaics used by the evaluation methodology,
obtained for: (a) MIT67 (b) ImageNet (ILSVRC2012) (c) MAMe. Second
row: example of input mosaic from Dogs vs. Cats (d), and the explanations
obtained by GradCAM (e) and LRP (f) for the target class cat.

of a ground truth: we cannot be sure of what a DL method
is doing unless we understand the model parametrization
itself (at which point we would not need a XAI method).
Nonetheless, we still want to approximate the faithfulness [3]
of XAI methods w.r.t. the underlying model, as this allows us
to discern between accurate and misleading explanations. In
this paper we propose a metric for that purpose, demonstrating
its use on the evaluation of feature attribution methods when
applied on image classification models.

The evaluation of XAI faithfulness is typically done by
quantifying the change produced in the explanation when noise
is added to the explained sample. This is necessary because
no assumptions can be made regarding the faithfulness of
samples without noise: explanations apparently inappropriate
(e.g., the background of a central object instead of object
itself) may be an accurate portrait of the model’s behavior,
following a bias found and learnt from the data. The most
popular approach to add noise is to visually alter samples [4],
[5]. However, disturbed images become images outside of the
original data distribution, which reduces the reliability of the
analysis because of the effect it may cause on the activations of

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works. DOI 10.1109/FUZZ-IEEE55066.2022.9882821



the model (i.e., are bad explanations caused by a bad method
or by the corruption inserted into the samples?).

In this paper we propose a novel evaluation score for feature
attribution methods, described in §III. Our input alteration
approach induces in-distribution noise into samples, that is,
alterations on the input which correspond to visual patterns
found within the original data distribution. To do so we modify
the context of the sample instead of the content, leaving the
original pixels values untouched. In practice, we create a new
sample, composed of samples of different classes, which we
call a mosaic image (see Figure 1). Using mosaics as input
has a major benefit: each input quadrant is an image from the
original distribution, producing blobs of activations in each
quadrant which are consequently coherent. Only the pixels
forming the borders between images, and the few correspond-
ing activations, may be considered out of distribution.

By inducing in-distribution noise, mosaic images introduce
a problem in which XAI methods may objectively err (i.e.,
focus on something it should not be focusing on). On those
composed mosaics we ask a XAI method to provide expla-
nation for just one of the contained classes, and follow its
response. In a sort of eye-tracking game, we measure how
much of the explanation generated by the XAI is located on the
areas corresponding to the target class, quantifying it through
the Focus score. This score allows us to compare methods
in terms of explanation precision, evaluating the capability of
XAI methods to provide explanations related to the requested
class (see §V for the comparison of six XAI methods). Using
mosaics has another benefit. Since the noise introduced is
in-distribution, the explanation errors identify and exemplify
biases of the model. This facilitates the elimination of biases
in models and datasets, potentially resulting in more reliable
solutions. We illustrate how to do so in §VI.

II. RELATED WORK

The evaluation of XAI faithfulness in current literature can
be divided into two broad groups: qualitative and quantitative
methods. On one side, qualitative evaluations are based on
assumptions induced by the human understanding of per-
ception [3], [6], hence an evaluation built on top of human
cognitive biases, may not be necessarily aligned with the
learning paradigm of DL. In contrast, quantitative evalua-
tions avoid such human biases by excluding the human from
the XAI assessment process. Quantitative evaluations have
a primary barrier to overcome: the lack of a ground truth
specifying what defines a correct explanation. Instead, these
methods introduce noise to evaluate the output, assuming
certain properties on their expected response. Such noise
can be introduced both on data and model parametrization.
We can separate noise inducing evaluation methods based
on their generated response. While some produce categorical
evaluation, others generate numerical ones. Works proposing
categorical evaluations define axioms or tests that XAI meth-
ods must satisfy or fulfill. One of these works [7] discusses
three axioms for XAI methods: Sensitivity, Implementation

invariance and Completeness. Sensitivity checks that irrele-
vant features have no explanation attributed, Implementation
invariance checks that functionally similar models produce
equivalent attributions, and Completeness is satisfied when the
difference between the sum of the attributions of an input and a
baseline is equal to the change of the output. In [8], two types
of tests are proposed: the model parameter randomization test
and the data randomization test. The first aims to prove that
if an explanation depends on the model, a randomized model
should produce a different explanation. The second test checks
if there exists a relation between the explanation and the labels,
that is, if a regular dataset produces different results than one
with randomly permuted labels.

While categorical evaluations can validate whether the XAI
methods fulfill or not certain properties, they are limited in
terms of comparison and ranking purposes. Numeric evalua-
tions are more informative to that end, providing comparable
scores that can be easily ranked. Examples of numeric evalua-
tions are the Pixel Flipping algorithm [4] and the Average Drop
% metric [5]. The first performs a semi-quantitative analysis by
perturbing pixels from patches with the greatest relevance, and
then assessing the impact on the prediction score. The second
measures the drop percentage of the score when only the part
of the image with attribution is shown w.r.t. the score with
the full image. These numeric evaluations rely on disturbing
input images. As said before, disturbed images fall out of the
original distribution, reducing the reliability of the following
analysis due to its effect on produced model activations.

A few XAI assessment methods use images from the origi-
nal distribution without any perturbation on them. Since these
methods lack a source of noise, they require of an assumption
to numerically evaluate the produced explanations. Examples
of these methods are those working with manually generated
ground truth regions, assuming that the relevance produced
by XAI methods should fall inside regions corresponding
to a target class. In the work of Zhang et al. [9], authors
introduce the pointing game technique to evaluate if the point
of maximum relevance lies on the object of the target class.
Similarly, Selvaraju et al. evaluate the localization capacity
of methods by drawing bounding boxes from the explanation
heatmap and calculating the error w.r.t. the correct bounding
box [3]. However, as pointed out by different works [7], [10],
the premise that objects, or any other part of the input, are the
only relevant feature for the prediction cannot be presumed.

In this context, we define the Focus score. A quantitative,
numerical, in-distribution noise inducing method to assess XAI
methods and AI models (see §V and §VI). It is based on
compositions of images from the dataset as a source of noise.
Since each quadrant of the mosaic contains an undisturbed
image, the network activations in each quadrant will fall inside
the original distribution. Additionally, the Focus score does not
expect relevance to be only centered on a pre-defined region,
avoiding assumptions regarding the localization of explanation
within each quadrant.



III. METHODOLOGY

In this section we define a metric—the Focus—intended
to assess the explanations produced by feature attribution
methods. This score involves three elements: an explainability
method (§III-A), a trained model (§III-B), and a set of mosaic
samples (§III-C). In the following subsections we discuss these
in detail, before defining the Focus itself (§III-D).

A. Explainability methods

Throughout the paper we use and evaluate six feature
attribution methods:

• Gradient-weighted Class Activation Mapping (Grad-
CAM) [3], based on the implementation of Gildenblat et
al.1. We compute the gradients of the logits of the class
w.r.t. the feature maps of the final convolutional layer.
That is, the 5th layer for AlexNet, the 13th for VGG16
and the last layer from the 5th block for ResNet-18 (also
known as block E).

• Layer-wise Relevance Propagation (LRP) [4], based on
the implementation of Nam et al. [11]. On the first layer
we use the zB-rule [12], on fully connected layers the
LRP-ϵ [4], and on convolutional layers the LRP-αβ [4]
with α = 1 and β = 0.

• SmoothGrad [13], based on the implementation of
Nakashima et al. 2. Explanations are obtained computing
the gradient of the specific class score w.r.t. the input
pixels and adding small perturbations on the input image
(in our case Gaussian Noise).

• LIME [6], based on the implementation of Tulio et
al.3. Each explanation is computed considering 1,000
samples and the final explanation only includes the five
top features, that is, the five most relevant superpixels.

• GradCAM++ [5], based on the implementation of Gilden-
blat et al.1. We use the last convolutional layer to compute
the GradCAM++ explanations.

• Integrated Gradients (IG) [7], based on the implementa-
tion of Kokhlikyan et al. [14]. We use the black image
as the baseline image and 30 steps to approximate the
integral.

For all feature attribution methods we skip their custom
post-processing for visualization purposes.

B. Models

To run a XAI method we need a model to explain, generated
from an architecture, trained on a dataset, with a training
configuration. In our experiments, we use the following:

• Architectures: AlexNet [15], VGG16 [16] and ResNet-
18 [17].

• Datasets: the Dogs vs. Cats4, the Museum Artworks
Medium dataset (MAMe) [18], the MIT67 [19] and the
ILSVRC 2012 [20] (hereafter ImageNet).

1https://github.com/jacobgil/pytorch-grad-cam
2https://github.com/kazuto1011/grad-cam-pytorch
3https://github.com/marcotcr/lime
4https://www.kaggle.com/c/dogs-vs-cats/overview

Training configurations: During training, AMSGrad [21]
is used for optimizing weights and data augmentation is
performed. Code needed to replicate trainings and experiments
of this paper can be found in 5. For the ImageNet dataset,
we use the pre-trained models in the subpackage torchvi-
sion.models6,7,8. For Dogs vs. Cats and MAMe datasets, we
take the ImageNet pre-trained models and perform training
on top of them. Finally, in the case of the MIT67 dataset,
we train the model on top of pre-trained Places365-Standard
dataset [22] (models available in the official repository 9).

C. Mosaic construction

The last element required to compute the Focus metric is
the mosaic, an image composed by four different samples
disposed in a two by two grid. Samples from the training
set are never used for mosaics. To formalize mosaics, and
later Focus, let us define a dataset D composed by a set
of images I = {img1, img2, ..., imgN} and a set of classes
C = {c1, c2, ..., cK}, where N is the number of total images
and K is the number of total classes. Every image in I has
assigned a unique class from C: c(img). From here we build
a set of mosaics M = {m1,m2, ...,mJ} where J is the total
number of mosaics in M. A mosaic m is composed by four
images m = {img1, img2, img3, img4} and characterized
by a target class tc = c(m), the specific class the XAI
method is expected to explain. While two images of the mosaic
belong to the target class c(img1) = c(img2) = c(m), the
other two are randomly chosen among the rest of classes
c(img3) ̸= c(m); c(img4) ̸= c(m). Mosaics are implemented
as two by two, non-overlapping grid, with the position of
each image being random. Samples of mosaics from different
datasets can be seen in Figure 1.

For the sake of keeping the same resolution of the visual
patterns seen by models during their training, and thus keeping
most of the noise added within the training distribution, all
XAI evaluation experiments use 448×448 mosaics. That is,
four times the size of the inputs the models were trained with.
AlexNet and VGG16 architectures were not input-agnostic
when originally proposed, being limited by design to an input
size of 224×224 pixels. Nowadays, these architectures employ
an Adaptive Pooling Layer to circumvent this problem.

D. The Focus metric

Before starting with the Focus, let us introduce its foun-
dations as well as its motivation. When a feature attribution
method is applied to an image to explain the model’s pre-
diction regarding a chosen class, it typically produces a map
from pixels to real values, referred to as relevance. While some
feature attribution methods also provide negative relevance,
this is not generalized. For the scope of this paper we focus
on positive relevance only. For XAI methods providing both

5https://github.com/HPAI-BSC/Focus-Metric
6https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth
7https://download.pytorch.org/models/vgg16-397923af.pth
8https://download.pytorch.org/models/resnet18-5c106cde.pth
9https://github.com/CSAILVision/places365



positive and negative relevance, only the positive relevance is
used, while negative values are treated as 0.

Intuitively, the output of a method is reliable (not necessarily
understandable) when higher values of relevance lie on pixels
of the image that are evidence of the chosen class. We
consider visual evidence any set of pixels used by the model
to distinguish the chosen class from other classes of the task.
Formally, we introduce a probability distribution Ptc over all
pixels given a target class tc. The probability of sampling a
pixel from Ptc is proportional to the pixel’s relevance toward
tc attributed by an explainability method A and a model
θ. Then, we define the formal reliability Re(A, θ, tc) as the
probability that a pixel sampled from the distribution Ptc lies
within visual evidence corresponding to tc.

The definition of Re(A, θ, tc) over a method-model-class
triplet can be extended to evaluate a method-model pair as
Re(A, θ). To do so, we take the expectancy of reliability over
all classes C: Re(A, θ) = Etc∈C[Re(A, θ, tc)]. More accurate
models and better feature attribution methods will result in
Re(A, θ) values closer to 1. The lower bound of Re(A, θ) is
the probability that any pixel lies within evidence, which is
proportional to the number of pixels lying on visual evidence.

In order to obtain the Re(A, θ) metric, we would require
a ground truth of which pixels are evidence toward a class.
A way to bypass this limitation is to take the assumption that
evidence toward a class is more prevalent in images labelled
with that class, this being the main assumption of the proposed
approach. We thus define the Focus as an estimator of the
reliability computed over a dataset. The Focus evaluates the
expected probability that a pixel sampled from Ptc lies on an
image of tc. Notice the Focus underestimates the reliability,
as evidence toward a class can be present on samples of a
different class of the dataset. We leverage this to our advantage
in §VI, using it to detect biases in models and dataset (be it
desirable or undesirable biases).

Since this new score only requires image labelling instead of
pixel labelling, we transform the dataset into a set of mosaics
as introduced in §III-C. The number of samples composing
each mosaic could be altered. In this case we use four, as it
provides a good balance between robustness (small mosaics
are more noisy) and complexity (large mosaics are more
computationally expensive). Therefore, we compute Focus on
subsets of four images (i.e., each image composing the mosaic
is labeled) to estimate the Focus of a method and a model on
the whole dataset. In this context, the Focus metric estimates
the reliability of XAI method’s output as the probability of
the sampled pixels lying on an image of the target class of the
mosaic c(m). This is equivalent to the proportion of positive
relevance lying on those images:

FA,θ(m) =
Rc(m)(img1) +Rc(m)(img2)

Rc(m)(m)
(1)

where Rc(r) is the sum of positive relevance toward class c
on the region of the mosaic r.

This probability can be interpreted as a precision of the
relevance. In an sort of eye-tracking game, the Focus metric

asks to the XAI method “Why does mosaic m belong to
class c(m)?” on a mosaic m which contains both samples
belonging and not belonging to the target class c(m). Given
the previous question and a good underlying model, a reliable
feature attribution method should be able to concentrate most
of its explanation relevance on the two appropriated images
of the mosaic (i.e., img1 and img2).

As explainability becomes more reliable, the Focus will
grow. As with reliability, the theoretical upper-bound of the
Focus score is 1, but this is unrealistic: visual evidence of a
class appearing exclusively on images of that class is seldom
true. On the other hand, in the case of uninformed relevance
attribution (i.e., unreliable explanations), the expected value
of Focus is 0.5, since the probability of picking a pixel of the
correct class is just the prior probability of picking one of the
pixels of img1 or img2, which amount to half of the total
pixels in the mosaic.

IV. RANDOMIZATION TEST

Current evaluations of XAI methods frequently rely on
qualitative assessments. These include humans in the loop,
thus introducing a significant subjective bias. This is further
complicated by the fact that XAI methods are typically de-
signed to focus on prominent, central and/or high contrast
areas on the input. When this happens, a XAI method may
become more dependant on the input sample than on the
underlying model supposedly generating the explanations. To
verify this is not an issue for the Focus score, we run a set of
randomization tests.

First, we conduct a randomization experiment to assess
and decide the exact position of the target class (tc) images
within the two by two grid of the mosaic. This experiment
uses GradCAM on top of a VGG16 model trained for the
Dogs vs. Cats dataset (pre-trained on ImageNet). The six
possible configurations of the two by two grid were tested,
plus a seventh for random positioning. For each configura-
tion 2,812 mosaics were created, using cat class as tc. The
resulting Focus distributions are shown in Figure 2. Clearly,
the positioning of target samples has an effect on the Focus
distribution. Configurations where the two target class images
(img1 and img2) are arranged contiguously tend to be better.
While this may be partially the result of explanation relevance
spilling over samples, it happens more prominently when
correct samples are placed on top. Meanwhile, the left-right
configurations show a smaller gain when placing the correct
samples on the right. We hypothesize that such variance in
Focus performance is independent from the underlying XAI
method, and is instead caused by particularities of the dataset
and/or task. Since we cannot guarantee that these properties
will hold among target classes, datasets or models, we decide
to use a sampling approach hereafter. That is, the exact
position samples within the composed grid is chosen randomly
for every mosaic.

The second randomization test aims at evaluating the effect
of model randomization on the Focus score. For that, we
start using two different models. A VGG16 pre-trained on



Fig. 2. Focus obtained by GradCAM on a VGG16 trained for Dogs vs.
Cats dataset (pre-trained on ImageNet), using different mosaic configurations.
Each box plot shows the distribution of Focus obtained from evaluating 2,812
samples for each configuration (the cat being the target class).

ImageNet and then trained for Dogs vs. Cats, and a totally
randomized VGG16 model. The experiment computes the
Focus metric on the cat target class (tc = cat) for the
2,812 mosaics with random layout. The distribution of Focus
achieved by GradCAM on both models is shown as histograms
in Figure 3. While the mean of the Focus obtained with the
pre-trained model reach a remarkable 0.94, the random model
mean score is 0.49, that is roughly 50% of the relevance
lays on the wrong class quadrants. To take the randomization
analysis further, we replicate the experiment of Adebayo
et al. [8]. In it, the authors qualitatively pointed at how
visual explanations can be compelling to the eye even when
randomizing one or more layers of the underlying model. In
this experiment, layers are randomized in cascade, starting
with only the top layer, and increasingly randomizing more
layers one by one until obtaining a fully randomized model.
We use GradCAM on InceptionV3 [23] (like [8]) adding as
well VGG16 and ResNet-18. Our results are straight-forward:
simply randomizing the top layer (or any other set of layers)
makes the Focus drop to a 50% mean, the same score obtained
by a purely random XAI method. This illustrates how resistant
the Focus score is to misleading explanations.

V. EVALUATION OF XAI METHODS

Let us now put Focus into practice. We evaluate GradCAM,
LRP, SmoothGrad, LIME, GradCAM++ and IG, using three
architectures (AlexNet, VGG16 and ResNet-18) and four
target datasets (Dogs vs. Cats, MAMe, MIT67 and ImageNet).
For the Dogs vs. Cats dataset, the MAMe dataset and the
MIT67 dataset we use 100 mosaics per target class, a total of
200, 2,900 and 6,700 mosaics respectively. In the ImageNet
experiments a total of 10,000 mosaics are used (10 per target
class). Since the LIME method is computationally expensive,
the experiments with this method have been restricted to
the Dogs vs. Cats (200 mosaics) and MAMe datasets (2,900
mosaics). For each experiment, Table I depicts the mean and
the standard deviation of the Focus distribution. For further in-
sides, Figure 4 shows these distributions as box plots. Overall,
Focus seems to be correlated with model accuracy. As models
get better, the mean Focus goes up and the standard deviation

Fig. 3. Histogram of Focus scores obtained by GradCAM from 2,812 mosaics,
using a VGG16 trained on Dogs vs. Cats and a randomized VGG16 model.
The corresponding PDF estimation is represented by a contour line on top.

goes down. However, there are exceptions to this rule, as
the ResNet-18 outperforms the Focus of others consistently.
This indicates that certain architectures produce more precise
explanations than others.

GradCAM results are the best in average. Reaching a
mean Focus above 81% in all experiments but one, it is best
in 2/3 of the experiments conducted. This XAI method is
particularly robust to noisy models, performing competitively
even with 36% accuracy models (AlexNet on ImageNet).
GradCAM++ scores significantly lower in every experiment
we conducted, being the 3rd or 4th in the overall ranking.
Still, its explanations are well above random behavior.

LRP gets the second best Focus in 8 of 12 experiments, and
wins in 3 of the remaining 4. As LIME, performs very well
on the high accuracy models of Dogs vs. Cats, outperforming
GradCAM. But on the other models it is able to beat the
mean of GradCAM only once, while variance grows signifi-
cantly. The worst results of LRP are produced in the MIT67
experiment, for the AlexNet and VGG16 models. Notice these
models where pre-trained on the Places365-Standard dataset
[22], which is noticeably narrower than ImageNet (434 vs
1,000 classes). According to these results, LRP is a very good
methodology for XAI, when applied to very accurate models.

LIME performs remarkably well for the Dogs vs. Cats
models, the ones with the highest accuracy (pre-trained with
ImageNet), and the only two-class classification task. For
lower accuracy models (AlexNet in this task, and all in MAMe
task), LIME becomes less reliable. Its mean Focus drops, and
its standard deviation becomes the largest of all XAI methods.
The lack of hyperparameter tuning (which is impractical) may
have penalized the results for MAMe.

SmoothGrad generally obtains a Focus around 50%, show-
ing close to random precision in all experiments. Since this
method uses the gradient of the output w.r.t. to the input pixels,
misleading attribution scores could be caused by discontinuous
gradients or by saturation of gradients, as previously suggested
[24]. The IG method tries to overcome these drawbacks and,
while its mean score is always better than the SmoothGrad, it
remains quasi random in general. The cause behind these noisy
explanations may be the domination of gradients in saturated
areas, as shown by Miglani et al. [25].



TABLE I
MEAN AND STANDARD DEVIATION (IN PARENTHESIS) OF THE FOCUS DISTRIBUTION OBTAINED BY DIFFERENT XAI METHODS (COLUMNS) ON

ARCHITECTURES TRAINED FOR DIFFERENT DATASETS (ROWS). THE ACCURACY SHOWN BESIDES EACH MODEL (acc) CORRESPONDS TO THE MEAN PER
CLASS ACCURACY ON THE VALIDATION SET. BEST MEAN FOCUS PER ROW IN BOLD.

GradCAM LRP SmoothGrad GradCAM++ IntGrad LIME

Dogs vs. Cats
AlexNet - acc: 0.9644 0.9101 (± 0.0903) 0.9230 (± 0.1018) 0.5092 (± 0.0840) 0.7041 (± 0.0872) 0.5113 (± 0.0858) 0.8883 (± 0.1797)
VGG16 - acc: 0.9893 0.9446 (± 0.0577) 0.9526 (± 0.0877) 0.5035 (± 0.0854) 0.7574 (± 0.0777) 0.5108 (± 0.0849) 0.9724 (± 0.1024)
ResNet-18 acc: 0.9878 0.9725 (± 0.0320) 0.9741 (± 0.1018) 0.4970 (± 0.0677) 0.7484 (± 0.0456) 0.5037 (± 0.0976) 0.9735 (± 0.0809)

MAMe
AlexNet - acc: 0.7676 0.8292 (± 0.1346) 0.7237 (± 0.2359) 0.4962 (± 0.0515) 0.6117 (± 0.0879) 0.5138 (± 0.0825) 0.6695 (± 0.2819)
VGG16 - acc: 0.8069 0.8556 (± 0.1123) 0.7827 (± 0.2015) 0.4957 (± 0.0626) 0.6401 (± 0.0932) 0.5354 (± 0.1050) 0.7951 (± 0.2459)

ResNet-18 - acc: 0.8220 0.8941 (± 0.0938) 0.8864 (± 0.1268) 0.5257 (± 0.0521) 0.6874 (± 0.0665) 0.6076 (± 0.1213) 0.7937 (± 0.2533)

MIT67
AlexNet - acc: 0.5806 0.8133 (± 0.1401) 0.6864 (± 0.2545) 0.5017 (± 0.0415) 0.6037 (± 0.0773) 0.5121 (± 0.0736) —
VGG16 - acc: 0.6948 0.8230 (± 0.1088) 0.6033 (± 0.1978) 0.5079 (± 0.0522) 0.6441 (± 0.0776) 0.5340 (± 0.0809) —

ResNet-18 - acc: 0.7619 0.9248 (± 0.0818) 0.9162 (± 0.1265) 0.5682 (± 0.0807) 0.7027 (± 0.0702) 0.6892 (± 0.0865) —

ImageNet
AlexNet - acc: 0.3618 0.7866 (± 0.1179) 0.7345 (± 0.1442) 0.5194 (± 0.0644) 0.6018 (± 0.0797) 0.5342 (±0.0867) —
VGG16 - acc: 0.6350 0.8426 (± 0.0881) 0.7914 (± 0.1140) 0.5425 (± 0.0566) 0.6279 (± 0.0814) 0.5637 (± 0.0924) —

ResNet-18 - acc: 0.6072 0.8792 (± 0.0849) 0.8814 (± 0.1068) 0.5827 (± 0.0608) 0.6885 (± 0.0711) 0.6081 (± 0.0897) —

(a) (b)

(c) (d)

Fig. 4. Focus distribution boxplot for different XAI methods applied to models trained for different datasets. The accuracy (acc) shown under each model
corresponds to the mean per class accuracy on the validation set of the corresponding dataset. These datasets are: (a) Dogs vs. Cats dataset, (b) MAMe dataset,
(c) MIT67 dataset and (d) ImageNet dataset. LIME is only present in (a) and (b).



(a) (b)
Fig. 5. GradCAM explanations obtained on the ResNet-18 trained with (a) ImageNet and (b) MIT67. Two examples of mosaics are shown in the first column.
The second column shows the corresponding GradCAM explanations for the target class. The third column specifies the positions of the classes within the
mosaic.(a) The target class is the Peacock class and the outer class is the Common iguana class. The example above obtains a high Focus (0.818) and the one
below a lower one (0.494).(b) The target class is the Classroom class and the outer class the Kindergarden. The Focus scores are 0.847 and 0.596 respectively.

VI. BIAS DETECTION

Explainability has been used to validate biases in models
before. For example, the GradCAM authors use their method
to visually validate the existence of gender bias in a model [3].
However, this approach typically relies on a human identifying
the bias beforehand. With Focus we can go beyond, automating
the bias identification process as well, while providing visual
validation to the user. This is possible because mosaics induce
in-distribution noise, where Focus errors directly correspond
to visual biases of the model.

In this section we illustrate how mosaics and Focus together
can be used to identify sources of bias in a model. The
proposed procedure is as follows. First, for a better detection
of biases between pairs of classes, we use mosaics with
two classes. Therefore, in the mosaics used for this section,
samples different from the target class actually belong to the
same class: c(img3) = c(img4) ̸= c(m). We concentrate
on the most relevant biases by finding the pairs of classes
obtaining the lowest mean Focus in their joint mosaics. For
each of these pairs we extract the mosaics with highest and
lowest Focus, and present them to a human evaluator who must
review the explanations produced. The role of the evaluator
is to interpret the rationale behind the explanations (both
correct and incorrect) and its degree of generalization for the
task. Based on that assessment, corrective measures can be
implemented, as later discussed.

For this experiment we use the GradCAM method and the
ResNet-18 architecture, a particularly robust configuration in
our experiments. A few samples are shown in Figure 5, top
ones corresponding to high Focus and the bottom ones to low
Focus. For the example from the ImageNet dataset (see Figure
5 (a)), the model is able to correctly attribute relevance to the
Peacock images on the upper mosaic, while, for the bottom
mosaic, some of the relevance incorrectly fall on the head
of the Common iguana. The fact that most of the incorrect

relevance in the Common iguana falls in the subtympanic
shield (i.e., the characteristic circle in its jowl) seems to be
related with its visual similarity with the ocellus of the Peacock
(i.e., the circular spot in the feathers). Notice the iguana’s
subtympanic shield is hardly visible in the top mosaic. For the
example from the MIT67 dataset (see Figure 5 (b)), the model
correctly attributes the relevance to the two target class images
on the top mosaic, both belonging to the Classroom class. For
the lower mosaic, the model struggles to find the evidence
in the Classroom image when no tables are present. These
patterns are consistent found in several mosaics for the classes
studied. After reviewing several cases as the ones described
above, one can identify at least two types of biases responsible
for decreasing the Focus score. These are:

1) Shared bias: A visual evidence of the target class is
found in an outer class image (e.g., the ocellus shape
found in the Common iguana class).

2) Missing bias: A visual evidence of the target class is
not found in an image of the same target class (e.g., the
tables in the Classroom class).

After the identification of biases, and an assessment of their
impact, one could try to mitigate their relevance for the model.
For casuistry (1), shared bias, more images of the target class
without the characteristic pattern found in the outer class could
be added to the training set (e.g., Peacocks images where the
ocellus is not visible). Similarly, more images of the outer
class where the characteristic pattern is present (e.g., Com-
mon iguana images where the subtympanic shield is visible)
could be added. In either case, the dependency of the target
class w.r.t. the shared bias would be reduced, increasing the
robustness of the model. For casuistry (2), missing bias, more
samples without the identified visual patterns of the target class
could be added to the training set (e.g., Classrooms samples
without tables). Again, this would reduce the dependency of
the target class w.r.t. the missing bias.



VII. CONCLUSION

For the quantitative evaluation of XAI methods, we intro-
duce a novel metric—the Focus—to assess the consistency of
the method under the existence of in-distribution noise. First,
we show the methodology to be consistent and resilient to
misleading explanations. When applied to SmoothGrad or IG,
Focus finds quasi-random explanations w.r.t. the model. In con-
trast, LRP and GradCAM are both found consistently reliable.
GradCAM performs well on all experiments conducted, even
when the underlying model is not particularly well fit to the
task. LRP performs very well for high performing models,
but it becomes more unreliable on less accurate models. This
also seems to be the case of LIME, which suffers from an even
larger variance. Furthermore, LIME computational complexity
and need for hyperparameter tuning limits its practical appli-
cation. GradCAM++ performs better than random, but not as
well as GradCAM and LRP. Remarkably, the Focus results
are rather consistent across tasks and architectures, providing
strong empirical evidence of their performance.

The consistency of Focus is likely related with the type of
noise it induces. By altering the context and not the content
of samples, Focus adds and exploits in-distribution noise.
Unlike out-distribution noise, this is less prone to arbitrary
model behavior. Through in-distribution noise mosaics and
the Focus score visually characterize bias in the model, and
can be directly used as an automated bias identification and
exemplification tool. This opens the door to use mosaics and
Focus to improve models, datasets and explanations.

Focus is related with the precision metric (i.e., TP
TP+FP ).

While Focus is not precision (it lacks the ground truth needed
to specify TP from FP), it approximates it by implicit labeling
of mosaic quadrants. That is, that all positive lays somewhere
within the target quadrants, and all negative somewhere within
the other two quadrants. A similar assumption could be made
to define an analogous recall metric (i.e., TP

TP+FN ) using,
for example, the negative relevance provided by some feature
attribution methods. This remains as future work.
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