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Abstract 

 

Echocardiography is a non-invasive image diagnosis technique where ultrasound waves are 

used to obtain an image or sequence of the structure and function of the heart. The 

segmentation of the heart chambers on ultrasound images is a task usually performed by 

experienced cardiologists, in which they delineate and extract the shape of both atriums and 

ventricles to obtain important indexes of a patient’s heart condition.  

However, this task is usually hard to perform accurately due to the poor image quality caused 

by the equipment and techniques used and due to the variability across different patients and 

pathologies. Therefore, medical image processing is needed in this particular case to avoid 

inaccuracy and obtain proper results.  

Over the last decade, several studies have proved that deep learning techniques are a 

possible solution to this problem, obtaining good results in automatic segmentation. The major 

problem with deep learning techniques in medical image processing is the lack of available 

data to train and test these architectures. 

In this work we have trained, validated, and tested a convolutional neural network based on 

the architecture of U-Net for 2D echocardiogram chamber segmentation. The data used for 

the training of the convolutional neural network was the B-Mode 4-chamber apical view 

Echogan dataset with data augmentation techniques applied. The novelty of this work is the 

hyperparameter and architecture optimizations to reduce the computation time while 

obtaining significant training and testing accuracies. 
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1.  Introduction 

In this chapter, the theoretical fundamentals of the work are presented to the reader to 

understand the purpose of the work. These concepts come from two different areas: the 

medical area and the engineering area.  

In the first place, the medical context consists of a brief introduction to the heart anatomy to 

understand which are the different parts of the heart. This section is followed by an explanation 

of the most used echocardiography modalities and the parts of the heart that can be seen in 

each of them. In the final part of the medical context, the most common heart diseases will be 

enumerated and related to each part of the heart. 

Once the medical area is approached, the focus will be on the engineering area: Deep 

Learning. The basic concepts such as layers, activation function, weights, and others will be 

presented. Subsequently, convolutional neural networks will be explained briefly, and finally, 

the most used architectures for echocardiogram segmentation will be analyzed. 

1.1. Medical Context 

In this section, a medical approach to the heart anatomy and ultrasound diagnosis will be 

presented to further understand the purpose, objectives, methodology, and results of this work. 

1.1.1. Heart Anatomy 

The heart is one of the most important parts of a living being. This organ is the one in charge 

to pump the blood to all parts of the body through the circulatory system. Blood contains 

oxygen and other vital nutrients to live. Blood also carries metabolic waste such as carbon 

dioxide to the lungs. In humans, the heart is approximately the size of a closed fist and is 

located between the lungs, in the middle compartment of the chest [1] [2]. 

The human heart has four chambers (see Figure 1): two superior atria and two inferior 

ventricles. The atria are the blood receiving chambers, and the ventricles are the blood 

discharging chambers. A wall of muscle called the septum separates the left and right atria 

and the left and right ventricles. Each chamber (atriums and ventricles) is connected through 

a valve to the next cavity the blood flows into. These valves are: Tricuspid valve or right 

atrioventricular valve, between the right atrium and right ventricle; Mitral valve or bicuspid 

valve, between the left atrium and left ventricle; Pulmonary valve, located at the opening 
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between the right ventricle and the pulmonary trunk; Aortic valve, located at the opening 

between the left ventricle and the aorta. 

The heart is enclosed in a triple-walled sac called the pericardium. The pericardium is 

composed of three layers. The outer layer is called the epicardium, the outermost protective 

layer of the heart. The epicardium is composed of mesothelium, a cell type that covers and 

protects the heart. The middle layer is called the myocardium and is composed of contractile 

cardiac muscle. The inner layer is called the endocardium and is in contact with the blood 

that the heart pumps. 

 
 
 

Figure 1. Heart Anatomy.  

Source: Stocktrek Images/Getty Images 

 

1.1.2. Echocardiography 

An echocardiogram, cardiac echo, or simply an echo, is a type of medical imaging of the 

heart, using standard ultrasound technique or Doppler ultrasound technique. Ultrasound 

waves produced by piezoelectric crystals travel from the transducer through the inside of the 

body to the inside of the heart, and they return to the transducer, where these waves are 
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converted into electrical signals that will eventually result in the ultrasound image or sequence 

(see Figures 2). 

 

 

Figures 2. Ultrasound waves are sent by the transducer to the heart to obtain the echocardiogram. 

Source: Diaz-Gomez, Jose & Via, Gabriele & Ramakrishna, Harish. (2016). Focused cardiac and lung 

ultrasonography: Implications and applicability in the perioperative period. 

Echocardiography can provide a wealth of helpful information, including the size and shape 

of the heart (internal chamber size quantification), pumping capacity, the location and extent 

of any tissue damage, and assessment of valves and cardiac masses. An echocardiogram 

can also give physicians other estimates of heart function, such as a calculation of the cardiac 

output, ejection fraction, and diastolic function (how well the heart relaxes). 

Echocardiography can be classified into two different classes: types and modes. Types 

depend on where the transducer obtains the images or sequences from. Modes depend on 

the characteristics of the results obtained [3]. The four types are:  
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• Transthoracic echocardiogram, which is the most common type of echocardiogram 

and is non-invasive, taking place entirely outside the body. The gel is applied to the 

patient and a handheld transducer is used to scan the heart.  

• Intracardiac echocardiography represents a newer form of testing, with images 

taken inside the heart. It involves the placement of thin tubes called catheters inside 

the patient’s arteries.  

• Stress echocardiogram uses ultrasound imaging of the heart to assess the wall 

motion in response to physical stress. First, images of the heart are taken "at rest" to 

acquire a baseline of the patient's wall motion at a resting heart rate. The patient then 

exercises to increase the heart rate. Finally, images of the heart are taken "at stress" 

to assess wall motion at the peak heart rate. 

• Transesophageal echocardiogram is an alternative way to perform an 

echocardiogram. A specialized probe containing an ultrasound transducer at its tip is 

passed into the patient's esophagus. This allows image and Doppler evaluation from 

a location directly behind the heart. 

Depending on the mode: 

• B-mode / 2D: Brightness mode is often synonymous with "2-D" and is very commonly 

used in echocardiography. 

• M-mode: Motion mode is infrequently used in modern echocardiography. It has 

specific uses and has the benefit of very high temporal fidelity (e.g., measuring LV size 

at end-diastole). 

• Doppler echocardiogram: This technique is used to measure and assess the flow of 

blood through the heart's chambers and valves. Also, Doppler can detect abnormal 

blood flow within the heart, which can indicate a problem with one or more of the heart's 

four valves, or with the heart's walls.  

• 3-D echo: Echocardiography typically shows a flat picture, but our machines can also 

create 3-D imaging. This technology is particularly helpful for identifying problems with 

heart valves, replacement heart valves, and the heart’s lower left chamber (left 

ventricle). 
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In our study, B-Mode/2D transthoracic echocardiogram images will be used. In this type of 

image, the most common cross-sectional views are the parasternal long axis, the parasternal 

short axis, and the apical view (see Figure 3). 

 

 
 

 

Figure 3. Standard Echocardiographic view types. 

Source: https://radiologykey.com/echocardiography-2 

In this study, we will focus on the Four Chamber Apical View (window B.I above), which gives 

general information about the four chambers of the heart. This is a good view to assess the 

chamber’s size and function. It also can assess valve morphology (see Figure 4). 

https://radiologykey.com/echocardiography-
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Figure 4. Typical image of an Apical 4-Chamber View with its parts. 

Source: https://www.pinterest.es/pin/130534089180243360/ 

 

1.1.3. Heart Diseases 

Echocardiography is an important tool in assessing abnormalities and reaching an early 

diagnosis of some heart diseases. Also, it is important in treatment and follow-up in patients 

with heart failure, by assessing ejection fraction for example [4]. Echocardiography can help 

detect cardiomyopathies, such as hypertrophic cardiomyopathy and many others. The 

approximate normal values for various cardiac structures are described in Table 1. 

https://www.pinterest.es/pin/130534089180243360/
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Table 1. The approximate normal values for various cardiac structures.  
IV: interventricular; LV: left ventricular. 

Source: https://www.ncbi.nlm.nih.gov/books/NBK2215/ 

 

One of the most important parameters in echocardiography to assess the heart is the ejection 

fraction. The ejection fraction (EF) is a measurement, expressed as a percentage, of how 

much blood the left ventricle pumps out with each contraction. An ejection fraction of 60 percent 

means that 60 percent of the total amount of blood in the left ventricle is pushed out with each 

heartbeat. A normal heart’s ejection fraction may be between 50 and 70 percent [5] 

Abnormal parameters in an echocardiogram can be caused by a range of heart diseases. The 

most common and important ones are enumerated below (see Table 2). In addition, the 

following features that can be seen in an echocardiogram can give information for the doctor 

to determine which diseases are affecting the heart performance: 

https://www.ncbi.nlm.nih.gov/books/NBK2215/
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• Systolic dysfunction: LV systolic dysfunction is assessed using the ejection fraction 

(the percentage of the end-diastolic volume ejected during systole). In most cases, this 

is estimated by eye from all the available echo views. A normal ejection fraction is 

50%–80%, but values as low as 5% are compatible with life (end-stage heart failure). 

 

• Diastolic dysfunction: a normal LV ejection fraction in the presence of heart failure 

syndrome leads to a search for diastolic dysfunction. Typical echo findings in diastolic 

dysfunction are normal LV cavity size, thickened ventricle, and reversed E/A ratio. 

 

• Wall-motion abnormality: When ischemia occurs, contractile abnormalities of 

segments of the myocardium can be detected by echo before the appearance of 

electrocardiogram (ECG) changes or symptoms. Therefore, echo can be a valuable 

tool in the diagnosis of acute myocardial infarction. In this situation, it offers some 

measure of the extent of the infarct and a screen for complications, such as ventricular 

septal defect (VSD). 

 

• Valve assessment: Echo is the tool of choice for the assessment of valvular 

abnormalities. Different related types of diseases can be diagnosed. 

 

• Embolic sources: The primary cardiac sources for embolism are: an akinetic 

ventricular segment, an LV aneurysm, and the atrial appendage. These are best 

visualized with Transesophageal Echocardiogram. 

 

In this work, as mentioned before, we focus on the 2D apical four-chamber view. Common 

measurements in this type of view are the Left Ventricle ejection fraction and Left Atrial 

dimensions [6]. This is the reason why most databases and articles (explained in section 1.2.3) 

only focus on the segmentation of the Left Ventricle and Left Atrium. 

However, doctors need to have a view of all four chambers and two valves instead of only 

the Left Ventricle and Atrium because sometimes the disease affects the other parts of the 

heart. Some examples are shown below (see Figure 5 and Figure 6). This is the reason why 

in the current work we will focus on obtaining labeled four-chamber datasets. 
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Figure 5. A four-chamber apical view echocardiogram showing biatrial dilatation, valve thickening, thick ventricular 

walls, and interventricular septum with a speckled appearance, which suggests amyloid infiltrate. 

Source: Xu, Zhan-Wen & Li, Ya-Qin & Liu, Li-Xia & Zhou, Bing-Juan. (2015). Light-chain cardiac amyloidosis with 

neuropathy: A case report. Clinical interventions in aging. 10. 1219-22. 10.2147/CIA.S87540. 

 
 

Figure 6. Transthoracic apical four-chamber view showing the thickened pericardium with calcium plaques 

obscuring the full view of the right atrium. 

Source: Ganesan, Rajarajan & Kumar, Bhupesh & Munirathinam, Ganesh & Bhat, Imran & Mahajan, Sachin. 

(2017). Modification in Surgical Plan following Intraoperative Detection of Co-existent Right Atrial Thrombus by 

Transesophageal Echocardiography in Chronic Constrictive Pericarditis. Journal of Perioperative 

Echocardiography. 5. 34-37. 10.5005/jp-journals-10034-1068. 
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It is important to mention that diseases in the heart can affect multiple parts of it, as we have 

seen in the examples before. The heart can have multiple chambers or valves affected 

especially when the disease is in an advanced stage. For this reason, it is important to analyze 

as many parts of the heart as the ultrasound lets. This way, early diseases can be detected in 

the part of the heart where they originated, so the causes are easier to distinguish than in the 

case where all of the heart is already affected. Table 2 below shows the most common heart 

diseases that can be detected by the chosen echocardiography modality. 

These diseases put at very risk the health of the patients. Therefore, heart diseases need to 

be detected at a very early stage to prevent them from evolving into a worse diagnostic. This 

is why echocardiograms have to be accurately segmented. As will be explained in section 

1.2.3, Deep Learning methods applied to echocardiogram segmentation are used to help the 

experts to analyze heart diseases at a very early stage. 
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Table 2. Common diseases and features in heart ultrasound investigation. 

·Green: Features that can be seen in 4-chamber apical view images. 

 ·Blue: Diseases related to the features. 

·Yellow: Parts affected by the diseases related to the features.
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1.2. Deep Learning 

Once the medical context is explained, the focus is now on the engineering area. Deep 

learning is part of a broader family of machine learning methods based on artificial neural 

networks with representation learning (see Figure 7). 

 
 

Figure 7. Definitions of AI, ML, and DL. 

Source: https://levity.ai/blog/difference-machine-learning-deep-learning 

 

Deep learning techniques use multiple layers to progressively extract higher-level features 

from the raw input. The major part of modern deep learning models is based on artificial neural 

networks [7]. 

  

https://levity.ai/blog/difference-machine-learning-deep-learning
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1.2.1. Basic Concepts 

Artificial Neural Networks are computing systems inspired by the brain’s biological neural 

network [8] [9]. An ANN contains nodes called neurons, which are the simile to a biological 

neuron in the brain. Nodes are connected by edges just as neurons in the brain connect each 

other by synapses. Each node sends information through an edge that will be computed in the 

next node. One neuron can be connected to multiple neurons. The neurons in the architecture 

of an ANN are commonly grouped by layers (see Figure 8).  

First is the input layer. This layer will accept the data and pass it to the rest of the network. 

The second type of layer is called the hidden layer. Hidden layers are either one or more in 

number for a neural network. Hidden layers are the ones that are responsible for the excellent 

performance and complexity of neural networks. They perform multiple functions at the same 

time, such as data transformation, automatic feature creation, etc. The last type of layer is the 

output layer, which holds the result or the output of the problem. Raw images get passed to 

the input layer and output is received in the output layer. 

 
 

Figure 8. Common structure of an ANN, containing  

input and output layers with multiple hidden layers between. Under, weights and activations functions. 

Source: https://www.datasciencecentral.com/the-artificial-neural-networks-handbook-part-1/ 

https://www.datasciencecentral.com/the-artificial-neural-networks-handbook-part-1/
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An Artificial Neural Network is designed to learn to do a task just as the brain learns to do so. 

The ANN architecture has weights related to the edges, which are constantly being updated 

as the training of the network is performed. Weights convey the importance of each feature in 

predicting the output value. Features with weights that are close to zero are said to have less 

importance in the prediction process compared to the features with larger weights. 

Another variable inside the network is bias. Bias allows the network to shift the activation 

function by adding a constant (the given bias) to the input. Bias in Neural Networks can be 

thought of as analogous to the role of a constant in a linear function, whereby the line is 

effectively transposed by the constant value [10]. 

On the other hand, the one in charge to define the output of a given neuron inside the network 

is the activation function [11]. An Activation Function decides whether a neuron should be 

activated or not. This means that it will decide whether the neuron’s input to the network is 

important or not in the process of prediction using simple mathematical operations (see Figure 

9). The purpose of an activation function is to add non-linearity to the neural network. 

 

 
 

Figure 9. A comparison of a biological network with a neuron in an ANN. The output value of a neuron is the 

outcome of applying the activation function to the sum of the weighted inputs plus the biases. 

Source: cs231n by Stanford 

 

All the explained variables determine the structure or architecture of a Neural Network, but 

how do these systems learn to do a task? By an optimizer and a loss function. 

An optimizer is a function or an algorithm that modifies the attributes of the neural network, 

such as weights and learning rate. Thus, it helps in reducing the overall loss and improving the 

accuracy. The problem of choosing the right weights for the model is a daunting task, as a 
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deep learning model generally consists of millions of parameters. It raises the need to choose 

a suitable optimization algorithm for each application. 

On the other hand, the loss function in a neural network quantifies the difference between 

the expected outcome and the outcome produced by the machine learning model. From the 

loss function, we can derive the gradients which are used by the optimizer to update the 

weights. The average of all losses constitutes the cost. 

There are many types of neural networks available. They can be classified depending on 

their: Structure, Data flow, Neurons used and their density, Layers and their depth activation 

filters, etc. [12] 

Here is a list of different types of neural networks that exist: Perceptron, Feed Forward Neural 

Network, Multilayer Perceptron, Convolutional Neural Network, Radial Basis Functional Neural 

Network, Recurrent Neural Network, etc.  

As will be seen in section 1.2.3, Convolutional Neural Networks are claimed to obtain good 

results in echocardiogram segmentation [24]. Therefore, in the current work, we will focus on 

a Convolutional Neural Network. 

 

1.2.2. Convolutional Neural Networks 

Once the basics of neural networks are explained, let’s focus on Convolutional Neural 

Networks. In Deep Learning (DL), a Convolutional Neural Network (ConvNet/CNN) is a 

Deep Learning algorithm that can take in an input image and assign importance (learnable 

weights and biases) to various aspects/objects in the image and be able to differentiate one 

from the other. [13] 

Convolutional neural networks are a specialized type of artificial neural network that uses a 

mathematical operation called convolution in at least one of their layers. They are specifically 

designed to process pixel data and are used in image recognition and processing. 
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But what exactly is a convolutional layer? In Figure 10 the operation of a convolution layer is 

represented: 

 
 

Figure 10. Example of a convolution layer in a CNN followed by a ReLU activation function. 

Source: https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/ 

Convolutional layers apply a convolution operation to the input, passing the result to the next 

layer. A convolution converts all the pixels in its receptive field into a single value (see Figure 

11). For example, if you would apply convolution to an image, you will be decreasing the image 

size as well as bringing all the information in the field together into a single pixel. The final 

output of the convolutional layer is a matrix. 

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
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Figure 11. Each cell in the output matrix is the sum of the products of each cell in the orange matrix and their 

related weights (x1; x0; x1; etc., also called kernel) passing by all cells in the green matrix. 

Source: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-

3bd2b1164a53 

Convolutional layers convolve the input and pass its result to the next layer. This is similar to 

the response of a neuron in the visual cortex to a specific stimulus. Each convolutional neuron 

processes data only for its receptive field. 

The objective of the Convolution Operation is to extract the high-level features such as objects 

or complex patterns, from the input image. Conventionally, lower or earlier layers identify Low-

level features like edges and colors, while higher layers identify High-level features such as 

concepts or complex patterns, i.e., digits, letters, or faces. 

The other type of layer commonly used in CNN is the Pooling layer. Similar to the 

Convolutional Layer, the Pooling layer is responsible for reducing the spatial size of the 

Convolved Feature. This is to decrease the computational power required to process the data 

through dimensionality reduction. Furthermore, it is useful for extracting dominant features 

which are rotational and positional invariant, thus maintaining the process of effectively training 

the model. 

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53


Pág. 22 Thesis 

 

There are two types of Pooling: Max Pooling and Average Pooling (see Figure 12). Max 

Pooling returns the maximum value from the portion of the image covered by the Kernel. On 

the other hand, Average Pooling returns the average of all the values from the portion of the 

image covered by the Kernel. Max Pooling also performs as a Noise Suppressant. It discards 

the noisy activations altogether and also performs de-noising along with dimensionality 

reduction. On the other hand, Average Pooling simply performs dimensionality reduction as a 

noise suppressing mechanism. Hence, we can say that Max Pooling performs a lot better 

than Average Pooling [13]. 

 
 

Figure 12. Each type of pooling. 

Source: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-

3bd2b1164a53 

There are various architectures of CNNs available which have been key in building algorithms 

that power and shall power AI as a whole in the foreseeable future. Some of them have been 

listed: LeNet, AlexNet, VGGNet, GoogLeNet, ResNet, ZFNet, U-Net, etc. 

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
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The following section will present a general review of articles where CNNs have been used for 

the task of echocardiogram segmentation. 

1.2.3. Convolutional Neural Networks in Echocardiogram Segmentation 

Once the theoretical concepts of both medical and engineering areas have been presented, 

we have reached the topic of this work: echocardiogram segmentation. As explained in 

section 1.1.2, echocardiograms generally need to be segmented to obtain measurements and 

indexes of the shape and performance of the chambers, valves, and walls of the heart. 

Segmenting means creating a ground-truth or mask delineating the regions of interest (ROI), 

as can be seen in Figure 13 below: 

   

 

Figure 13. Typical images extracted from a segmented echocardiogram labeled dataset. At left is the original 

ultrasound image and at right is its related ground-truth image. 

Source: [18]  

 

Cardiologists have traditionally performed this task, but several studies showed that this 

manual segmentation suffered from subjective interpretation and inter- and intra-cardiologist 

variability [14][15]. The inherent causes of this variability are well documented [16]:  

 

• Poor contrast between the myocardium and the blood pool. 

• Brightness inhomogeneities. 

• Variation in the speckle pattern along the myocardium. 

• Presence of papillary muscles with intensities similar to the myocardium. 

• Significant tissue echogenicity variability within the population. 

• Shape, intensity, and motion variability across patients and pathologies. 
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All these difficulties led echocardiography to search for new techniques for accurately 

segmenting the ultrasound images and sequences. This is when deep learning techniques 

take action. Figure 14 shows several studies related to Deep Learning techniques in 

echocardiogram segmentation that have been published until 2019. We also have listed the 

most recent papers on CNN’s focused on echocardiogram segmentation from 2019 to 2022 

(see Table 3).  

 

 
 

 

Figure 14. Overview of numbers of papers in the last decade regarding deep learning-based methods for cardiac 

image segmentation. CT, computed tomography; MR, magnetic resonance. 

Source: https://www.frontiersin.org/articles/10.3389/fcvm.2020.00025/full  

 

As can be seen in Figure 14, the number of published articles on cardiac segmentation has 

been increasing over the past years. The amount of ultrasound public data for cardiac 

segmentation has been the lowest over the last years until the CAMUS dataset arrived in 2019, 

as will be seen on the next page.  

In Table 3 below, the most recent articles on echocardiogram segmentation are listed. The 

datasets used are CAMUS and EchoNet public datasets and other private datasets. The 

Region of Interest is mainly focused on the Left Ventricle, and the architectures used are mainly 

CNN-based architectures. 

 

  

https://www.frontiersin.org/articles/10.3389/fcvm.2020.00025/full
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Reference Year Method Region of Interest (ROI) Data 

[16] 2019 
U-Net 1, U-Net 2, 

ACNN, SHG, U-Net ++ 
Left Ventricle CAMUS dataset 

[17] 2018 U-Net 
Left Atrium, Right Atrium, Left 

Ventricle, Right Ventricle 

Private dataset of Radiological Society of 

North America Clinical Trials 

[18] 2020 VGG-based FCN 
Left Atrium, Right Atrium, Left 

Ventricle, Right Ventricle 

Dataset from the Loma Linda University 

Medical Center 

[25] 2021 U-Net 
Left Ventricle, Left Atrium, and 

LV pericardium 

CAMUS, EchoNet and private Hospital 

Sant Pau dataset 

[35] 2021 MTC-Net Left Ventricle myocardium 
Private dataset from Xijing Hypertrophic 

Cardiomyopathy Center 

[36] 2020 DW-Net 

Left Atrium, Right Atrium, Left 

Ventricle, Right Ventricle, 

Epicardium, descending aorta, 

and the thorax. 

A private dataset of the 

echocardiography department in Anzhen 

Hospital. 

[37] 2019 MFP-Unet Left Ventricle 

CAMUS and private dataset from Rajaie 

Cardiovascular Medical and Research 

Center 

[38] 2021 PLANet Left Ventricle myocardium CAMUS and EchoNet datasets 

 

Table 3. Recent articles on Convolutional Neural Networks applied to echocardiogram segmentation. 

 

However, if we look at all Deep Learning-based recent articles for cardiac segmentation, the 

majority only focus on the Left Ventricle area [24]. There are only 3 studies that pursue four-

chamber segmentation [17][18][36]. In section 1.1.3 the importance of not forgetting the other 

chambers than the LV has been established, so in our work, we will focus on the 

segmentation of the four chambers of the heart. 

One of the major difficulties in automatic echocardiography segmentation is obtaining enough 

labeled data to train, validate and test the neural network. As we will see in section 2.1, there 

are very few public datasets available for training and validating deep learning architectures 

due to patients’ privacy and lack of law agreement on this subject [16]. In this project, we will 

focus on solving this issue by searching for very recent public data. 
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Then, the next difficulty when working in echocardiogram segmentation is choosing which 

deep learning technique to work with. In our work, as explained in section 1.2.2 we will work 

with CNN as this type of neural network is claimed to achieve good results in echocardiogram 

segmentation [24], but the specific architecture still has to be chosen.  

In Table 3, the architectures used in recent articles are shown. Most of them are modifications 

of U-net, which is a popular state-of-the-art encoder-decoder convolutional neural network 

claimed to be pretty accurate in segmenting the heart chambers [19]. These U-Net 

modifications are based on augmenting or combining U-Net architecture to achieve better 

accuracies at automatic segmentations.  

However, the training of neural networks is time-consuming and architecture-dependent [39], 

so in this project, we will try to optimize the architecture and its training hyperparameters to 

reduce the computation time. 
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1.3. Objectives and Planning 

Once all the introductory part has been explained, the purpose of this work and the objectives 

are specified in this section. Given the explained variability in echocardiogram segmentation 

and the necessity to assess all parts of the heart, the purpose of this work is: 

➢ Purpose: Provide an optimized and accurate Deep Learning architecture to 

automatically segment the four chambers of the heart. 

To achieve this main purpose, the following steps or objectives have to be achieved: 

1. Obtain echocardiographic labeled data of the four chambers of the heart. 

2. Choose an accurate Convolutional Neural Network to train with the obtained data. 

3. Optimize the chosen CNN architecture and parameters and analyze the results. 

 

This project takes place within the Bachelor’s degree in Industrial Technology Engineering and 

weights 12 ECTS credits. The duration of this work is from February 2022 until June 2022, i.e., 

5 months.  

The planning of this project, according to the thesis directors, is set in weekly online meetings 

via Google Meet where weekly objectives for the next week are established and the previous 

week’s objectives are revised. This type of planning allows the project development to adapt 

to the variability of the data acquisition and deep learning techniques implementation. Weekly 

objectives are registered in a Thesis Tracking document. 

The resources planned for this project are only obtaining a capable computer environment to 

implement Neural Network techniques with Matlab. No more economic resources are planned 

to be necessary. 
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2. Methodology 

In this section, the technical methods used to achieve the purpose are explained. The data 

acquisition and the deep learning architecture will be presented. 

2.1. Data Acquisition 

One of the biggest issues in echocardiogram segmentation is the lack of available public 

data to test the automatic segmentation methods. If the data used to train the architecture is 

not enough, the architecture won’t reach proper accuracy values. In addition, another problem 

presented is over-fitting, explained in section 2.1.4. To prevent training under-performance and 

over-fitting (i.e., having a trained network that only performs well in the training dataset but not 

in other datasets) a big heterogeneous dataset would be the solution. 

2.1.1. Publicly Available datasets 

After looking for open-access 2D heart ultrasound images, the following datasets were found 

(see Figure 15): 

• CAMUS dataset [16]: Dataset composed of 450 patients’ echocardiograms acquired 

at the University Hospital of St Etienne (France). For each patient, four echocardiogram 

images (2-Chamber End Diastole and End Systole and 4-Chamber ED and ES) with 

their respective ground-truth data from the Left Ventricle, Left Atrium, and Left 

Ventricle’s Myocardium are given, and two sequences of a cardiac cycle of the heart 

for each patient. In addition, a text file describing sex, age, image quality, and left 

ventricle volumes and ejection fraction for each patient is given. 

• EchoNet-Dynamic dataset [20]: Dataset composed of 10,030 apical-4-chamber 

echocardiography videos from individuals who underwent imaging between 2016 and 

2018 at Stanford University Hospital. In addition to the video itself, each study is linked 

to clinical measurements and calculations (ejection fraction and LV volumes) done by 

experts. No masks/ground-truth data are given in this dataset. 
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Figure 15. Left, EchoNet-Dynamic dataset image. Right, CAMUS dataset image. 

Source: EchoNet-Dynamic; CAMUS 

 

• Echogan Dataset [18]: Anonymized Multi-chamber Echocardiograms Database 

(AMED) is an anonymized dataset of 1395 annotated images from 100 patients from 

Loma Linda University Medical Centre. The study population included 73 female and 

27 male subjects, with a mean age of 36.5± 13.5, who underwent clinically indicated 

standard transthoracic echocardiography from 2014 to 2015. To address the existing 

challenges for the analysis of low-quality images, no clinically interpretable study was 

excluded. The study protocol was approved by the institutional review board of Loma 

Linda University. The studied images were apical four-chamber views without any 

contrast agent. Manual segmentations were performed by a cardiologist for one in 

every five frames of the cardiac cycle, in addition to the end-diastolic (ED) and end-

systolic (ES) images for each subject. 

 

2.1.2. Image Processing Software 

In the first dataset search performed, only CAMUS and EchoNet datasets were found, as they 

were published before the Echogan dataset and more used in all the reference articles found 

(see Table 3). However, none of them had ground-truth data for all the four chambers of the 

heart. Only CAMUS had Left Ventricle masks. Given the necessity to acquire four-chamber 

ground-truth segmentations, different medical segmentation programs were evaluated to 

obtain ground-truth data from EchoNet and CAMUS datasets. Three programmes were used: 

Ilsatik [21], Seg3D [22] and 3D Slicer [23]. 
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· Ilastik 

The first program used was Ilastik. To create ground-truth masks, different filters were applied 

to the imported data, and then labeling was performed for automatic segmentation. The batch 

processing option was used to apply determined filters to a full batch of images for 

automatically segmenting a big number of images.  

Filtering the image acts equally to all parts of it, so an option for locating those filters to the 

chambers had to be found for segmenting only the chambers. This option was the labeling 

stage, where the relevant parts are labeled to indicate to the program where the chambers are 

expected to be. Despite this, the results showed that the program needed a full-labeling 

process, i.e., labeling the whole image to acquire good segmentations: 

 

 

Figure 16. Original images, results, and their respective manual labels.  

1st row: fully-manually-labeled image 

2nd row: partially-manually-labeled image 

3rd row: non-labeled image 

Source: Ilastik 
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In Figure 16 above, the first row corresponds to an almost fully-manually-labeled image, where 

the results are visually pretty well-segmented (center image). In the second row, only the left 

ventricle and atriums are labeled, and thus the program segments also regions of the outer 

heart that are similar to the interior of the chambers.  

The last row corresponds to a non-labeled image, where only filtering and automatic 

segmentation of the program are applied. The resulting ground-truth of this non-labeled image 

is the 3rd-row center image, where the chambers are visually poorly segmented and the outer 

area of the heart is also segmented as if it was a chamber. Therefore, it can be seen that the 

program didn’t achieve good results when automatically segmenting the four chambers 

without manually labeling. 

Neither did when the number of manually labeled images increased. The results above were 

obtained by labeling 5 images in a group of 20 images (see Figure 17).  

 

 

Figure 17. Automatic segmentations in a batch with 20 manual labeled images. 

Source: File explorer. 

 

When the number of labeled images was increased up to 200 images, the automatic 

results remained poor. Therefore, increasing the number of labeled images was not 

the solution. 

·  
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· 3D Slicer and Seg 3D 

 

To ensure that the problem found in Ilastik wasn’t only related to this particular software, two 

other image processing environments were evaluated. 3D Slicer and Seg3D worked pretty 

similar to Ilastik: applying filters to segment the images. 

 

One useful filter found in seg3D was Confidence Connected, where seeds were manually 

located inside the chambers to tell the program where these chambers are (see Figures 18). 

This procedure was much easier and faster than labeling the whole image as in Ilastik, but 

results weren’t much better in general, only when four chambers were totally “closed”: 

 

  

  

 

Figures 18. Proper segmentations and poor segmentations with Confidence Connected filtering. 

Source: Seg 3D 
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In 3D Slicer, thresholding was also found to be useful to solve the poor-quality issue that 

happened with Ilastik, but the problem of having to manually label the chambers remained 

(see Figures 19). 

 

  

  

 

Figures 19. Results with 3D Slicer. 

Source: 3D Slicer 
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2.1.3. Echogan dataset 

After testing the medical image processing software and obtaining inaccurate results for our 

particular case (see Figure 16. Figures 18, and Figures 19), another research on public 

datasets was carried out. We found the article [18] where a brand-new dataset from the Loma 

Linda University Medical Center described in section 2.1.1 was proposed and available to 

download: 

 

 

Figures 20. Echogan dataset. 

Source: https://bitbucket.org/Aarafati/echogan/src/master/ 

This dataset had all four chambers with their ground-truth masks attached (see Figures 20) 

and had considerably better quality than the other datasets. 

 

2.1.4. Data Augmentation and Preparation 

As most articles state [24], preventing and reducing over-fitting is one of the biggest challenges 

in neural network training. Over-fitting happens when the trained neural network only 

achieves good results in the training dataset but not in other datasets and environments. To 

try to generalize the neural network learning to multiple and different environments, experts 

use different techniques. 

Data augmentation is a training strategy that artificially generates more training samples to 

increase the diversity of the training data. This can be done via applying affine transformations 

(e.g., rotation, scaling), flipping, or cropping to original labeled samples. 

In this study, we applied the following data augmentation variations to our dataset: horizontal 

and vertical flips, random rotation with an angle α between α ⊆ [-20º; 20º], random zooming 

https://bitbucket.org/Aarafati/echogan/src/master/
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with a factor x between x ⊆ [x1; x1,25], adding Gaussian noise and random brightness 

augmentation. This way, we obtained an augmented dataset of 9765 images, i.e., the original 

dataset multiplied by a factor of 7 (see Figure 21). 

 

Figure 21. Data augmentation. Left, original Echogan dataset; right, augmented dataset. 

Source: Powerpoint 

All these techniques were executed using MATLAB R2022a. The augmented dataset was split 

into three sub-sets: 6251 images for Training (64%), 1561 for Validation (16%), and 1953 for 

Testing (20%). Thus, the 1st objective of the work (obtaining labeled data of the four chambers) 

was achieved. 
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2.2. Deep Learning Architecture 

As explained in section 1.2.3, Convolutional Neural Networks are recently shown to be 

accurate in the task of echocardiogram segmentation [16] [25]. In this section, we will present 

the chosen architecture for this work and the optimizations that will be applied to it. 

2.2.1. U-Net 

Given the limited duration of the project, the architecture had to be relatively suitable to be 

understood and optimized. In Table 3, we saw that the major part of recent articles worked 

with U-Net-based architectures. Therefore, we chose to work with U-Net, proposed by 

Ronneberger et. al. [19], which is popularly used for echocardiogram segmentation.  

Its architecture, shown in Figure 22 below, is symmetrical. This makes optimization an easier 

task as the two symmetrical parts are complementary to each other and modifications have to 

be applied to both parts at the same time. 

 

 

Figure 22. U-net architecture. Each blue box corresponds to a multi-channel feature map with dimensions and 

channels annotated. The arrows denote the different operations. 

Source: https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/  

This network contains multiple convolutions and max-pooling operations, explained in section 

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
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1.2.2. The activation function of this network is Rectifier Linear Unit (ReLU) (see Figure 23): 

𝑅𝑒𝐿𝑈(𝑥) = max⁡(0, 𝑥) 

 

 

Figure 23. ReLU function. 

Source: Pauly, Leo & Peel, Harriet & Luo, Shan & Hogg, David & Fuentes, Raul. (2017).  

Deeper Networks for Pavement Crack Detection. 10.22260/ISARC2017/0066. 

 

On the other hand, the loss function for our U-Net implementation is cross-entropy. To 

understand this loss function’s nature, let’s explain the output layers: the softmax layer and the 

classification layer (loss function) [33].  

A softmax layer applies a softmax function to the input. A classification layer computes the 

cross-entropy loss for classification and weighted classification tasks with mutually exclusive 

classes. For classification problems, a softmax layer and then a classification layer usually 

follow the final fully connected layer. 
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The output unit activation function is the softmax function: 

𝑦𝑟(𝑥) =
exp(𝑎𝑟(𝑥))

∑ exp⁡(𝑎𝑗
𝑘
𝑗=𝑖 (𝑥))

, 

Where 0 ≤ 𝑦𝑟 ≤ 1 and ∑ 𝑦𝑗
𝑘
𝑗=1 = 1 

In the classification layer, the trainNetwork function takes the values from the softmax 

function and assigns each input to one of the K mutually exclusive classes using the cross-

entropy function for a 1-of-K coding scheme: 

𝑙𝑜𝑠𝑠 = −
1

𝑁
∑∑𝑤𝑖𝑡𝑛𝑖ln⁡ 𝑦𝑛𝑖

𝐾

𝑖=1

𝑁

𝑛=1

 

where N is the number of samples, K is the number of classes, wi is the weight for class i, tni is 

the indicator that the nth sample belongs to the ith class, and yni is the output for sample n for 

class i, which in this case, is the value from the softmax function. In other words, yni is the 

probability that the network associates the nth input with class i. 

In this U-Net implementation, weights are initialized with the He weight initialization method 

[34]. He Initialization is an initialization method for neural networks that takes into account the 

non-linearity of activation functions, such as ReLU activations. It consists of initializing weights 

with random values coming from a zero-mean Gaussian distribution whose standard deviation 

is √2/𝑛𝑙 This is our way of initialization. Biases are initialized at 0. 

The network architecture consists of a contracting path (left side) and an expansive path 

(right side). The contracting path follows the typical architecture of a convolutional network. It 

consists of the repeated application of two 3x3 convolutions, each followed by a rectified linear 

unit (ReLU) and a 2x2 max pooling operation with stride 2 for downsampling. At each 

downsampling step, we double the number of feature channels (number above blue boxes).  

Every step in the expansive path consists of an upsampling of the feature map followed by a 

2x2 convolution (“up-convolution”) that halves the number of feature channels, a concatenation 

with the correspondingly cropped feature map from the contracting path, and two 3x3 

convolutions, each followed by a ReLU. The cropping is necessary due to the loss of border 

pixels in every convolution. At the final layer, a 1x1 convolution is used to map each 64-

component feature vector to the desired number of classes. In total the network has 23 
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convolutional layers. This way, the 2nd objective of the work was achieved. 

The implementation of U-Net in this work was carried out in MATLAB R2022a for Windows 

10 with Computer Vision, Deep Learning, and Parallel Computing toolboxes.  

U-Net layers were created by function unetLayers [26]. In our case, the image size was 

256x256 and there were 5 classes with respective values 0, 1, 2, 3, and 4: background, Left 

Ventricle, Right Ventricle, Left Atrium, and Right Atrium. The neural network training was 

performed using the function trainNetwork [27]. Within these options, multiple training 

hyperparameters in section 2.2.2 can be determined. 

The environment used to carry out all the experiments was Intel(R) Core (TM) i7-6800K CPU 

@ 3.40GHz with 32 GB RAM and NVIDIA TITAN Xp GPU with Computing Capability 6.1 

 

2.2.2. Hyperparameter Optimization 

Once the U-Net architecture was implemented, the following training hyperparameters were 

tested to see how the neural network could be optimized These parameters were chosen given 

their importance on the network training’s performance [29]. 

• Optimizer (explained in section 1.2.1): In training options, the available optimizers 

were stochastic gradient descent with momentum (sgdm), the rate of the squared 

gradient moving average (rmsprop), and Adam optimizer: 

o The stochastic gradient descent algorithm can oscillate along the path of 

steepest descent towards the optimum. Adding a momentum term to the 

parameter update is one way to reduce this oscillation. The stochastic gradient 

descent with momentum (SGDM) update is 

𝜃𝜑+1 = 𝜃𝜑 − 𝛼∇𝐸(𝜃𝜑) + 𝛾(𝜃𝜑 − 𝜃𝜑−1) 

where γ determines the contribution of the previous gradient step to the current 

iteration. 

o The RMSProp (root mean square propagation) seeks to improve network 

training by using learning rates that differ by parameter and can automatically 
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adapt to the loss function being optimized. It keeps a moving average of the 

element-wise squares of the parameter gradients, 

𝑣ℓ = 𝛽2𝑣ℓ − 1+ (1 − 𝛽2)[∇𝐸(𝜃ℓ)]
2 

o Finally, Adam (derived from adaptive moment estimation) uses a parameter 

update that is similar to RMSProp, but with an added momentum term. It keeps 

an element-wise moving average of both the parameter gradients and their 

squared values, 

𝑚ℓ = 𝛽1𝑚ℓ − 1+ (1 − 𝛽1)∇𝐸(𝜃ℓ) 

𝑣ℓ = 𝛽2𝑣ℓ − 1+ (1 − 𝛽2)[∇𝐸(𝜃ℓ)]
2 

• The next hyperparameter to be optimized is the Initial learning rate used for training, 

specified as a positive scalar. The default value is 0.01 for the 'sgdm' solver and 0.001 

for the 'rmsprop' and 'adam' solvers. If the learning rate is too low, then training can 

take a long time. If the learning rate is too high, then training might reach a suboptimal 

result or diverge. 

• Finally, two values for Mini-Batch Size were tested. This is the size of the mini-batch 

to use for each training iteration, specified as a positive integer. A mini-batch is a subset 

of the training set that is used to evaluate the gradient of the loss function and update 

the weights. 

One training on the full augmented dataset was carried out for each combination of the 

hyperparameters mentioned above. This was done by taking advantage of Experiment 

Manager in MATLAB [28].  

The other training parameters were fixed at the following values [27]: 

• Shuffle = “every-epoch” Shuffle the training data before each training epoch, and 

shuffle the validation data before each network validation. 

• MaxEpochs = 10 Maximum number of epochs to use for training, specified as a positive 

integer. An iteration is one step taken in the gradient descent algorithm towards 

minimizing the loss function using a mini-batch. An epoch is the full pass of the training 

algorithm over the entire training set. 
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• Validationdata = “dsval” Data to use for validation during training 

• ValidationFrequency = 10 Frequency of network validation in number of iterations, 

specified as a positive integer. 

• Plots = “training-progress” The plot shows mini-batch loss and accuracy, validation loss 

and accuracy, and additional information on the training progress. 

• OutputNetwork = “best-validation loss” Return the network corresponding to the 

training iteration with the lowest validation loss. 

The results of this experiment are shown in Table 4. 
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2.2.3. Architecture Optimization 

Once the best hyperparameter combination was obtained, the following optimization was 

performed on the U-Net architecture itself. As seen in the first results in section 3.1, the 

training of the architecture took a lot of computation time and effort. Therefore, optimizing the 

architecture to reduce this computational time and still being able to achieve good results would 

be a major advance. 

For this purpose, gradient-weighted class activation mapping (Grad-CAM) [32] methods 

were used to analyze the architecture and decide which layers could be removed or replaced. 

This technique was invented to understand why a deep learning network makes its 

classification decisions. Grad-CAM uses the gradient of the classification score related to the 

convolutional features determined by the network to understand which parts of the image are 

more important for classification (see Figures 24, 25, and 26 below). Taking advantage of 

Matlab’s in-built function gradCam all activation maps were visualized for each ReLU layer 

(activation function) to see which part of the images the architecture was focusing on: 

 

 

 

 

 

Figures 24. Test image above  

and activation CAM heat maps for each layer (rows) and class in the next two pages 

(columns: background, Left Ventricle [LV], Right Ventricle [RV, Left Atrium [LA], Right Atrium [RA]). 

Source: Matlab 
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Figures 25. Activation CAM heat maps in the Encoder for each layer (rows) and for each class 

(columns: background, Left Ventricle [LV], Right Ventricle [RV, Left Atrium [LA], Right Atrium [RA]). 

Source: Matlab
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Figures 26. Activation CAM heat maps in the Decoder for each layer (rows) and for each class 

(columns: background, Left Ventricle [LV], Right Ventricle [RV, Left Atrium [LA], Right Atrium [RA]). 

Source: Matlab
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As can be seen in Figures 25 and Figures 26, later layers (the ones in the decoder) within the 

architecture produced maps very similar to the classified outcome, i.e., the predicted 

segmentation. However, earlier layers (encoder) in the network produced more abstract 

results that are typically more related to lower-level features like edges, with less awareness 

of semantic classes.  

 

In maps at encoder layers, background and chambers classes were almost no different from 

each other apart from the contours of the heart. This fact suggested that earlier layers focused 

on common basic features of all five classes like edges and colors. The network started 

classifying the background and the chambers at bridge layers. Until the last layer of the 

architecture, it didn’t completely differentiate all the chambers. 

 

After analyzing all layers within the architecture and seeing that there was a significant 

difference between early and later layers in the network, the architecture modification applied 

was modifying the Encoder-Decoder depth. As explained in section 2.2.1, U-Net is 

composed of an encoder subnetwork and a corresponding decoder subnetwork (see Figure 

22). The depth of these subnetworks determines the number of times the input image is 

downsampled or upsampled during processing. The encoder network downsamples the input 

image by a factor of 2, where D is the value of EncoderDepth. The decoder network upsamples 

the encoder network output by a factor of 2D (see Figure 27).  
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Therefore, the Encoder-Decoder depth is the number of bridge layers between the Encoder 

and the Decoder: 

 

 

 

Figure 27. U-Net networks with different Encoder-Decoder depth. 

Source: Powerpoint 

 

U-Net default Encoder-Decoder value is 4. To analyze how optimal this value is, U-Nets with 

Encoder-Decoder depths of 2, 3, 4, and 5 were tested with the best hyperparameter 

combination obtained in the previous optimization. The Initial Learning Rate was set at 0,0001 

after showing less computation time than with 0,001 (see section 4.2). The computation time 

and test accuracy were the responses for this experiment. Results are shown in section 3.3. 
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3. Results 

In this section the results of each optimization explained in the methodology section will be 

presented. Results will be grouped by tables to summarize the experiments done, and training 

accuracies will be represented in plots. 

3.1. Hyperparameter Optimization  

As explained in section 2.2.2, training trials were executed for each hyperparameter 

combination. For each trial, we calculated the training and validation accuracy and loss, 

respectively. Results from the first hyperparameter optimization are shown in Table 4: 

 

TRIAL 
ELAPSED 

TIME (h) 
INITIAL LEARN RATE SOLVER MINI BATCH SIZE 

TRAINING 

ACCURACY 

(%) 

TRAINING 

LOSS 

VALIDATION 

ACCURACY 

(%) 

VALIDATION 

LOSS 

1 13:02:53 0,01 adam 8 80,55 0,48 79,16 0,50 

2 08:28:26 0,01 adam 32 82,31 0,47 79,16 0,51 

3* 00:11:10 0,01 sgdm 8 79,17 2,97 20,84 12,62 

4 08:23:32 0,01 sgdm 32 79,10 0,51 79,16 0,51 

5 16:15:41 0,01 rmsprop 8 19,90 12,77 20,84 12,62 

6 08:20:24 0,01 rmsprop 32 17,92 13,09 20,88 12,61 

7 16:20:31 0,001 adam 8 96,74 0,08 96,25 0,09 

8 09:52:35 0,001 adam 32 94,87 0,13 95,30 0,12 

9 13:09:06 0,001 sgdm 8 90,41 0,21 87,49 0,28 

10 08:34:00 0,001 sgdm 32 89,28 0,25 86,37 0,32 

11 13:26:03 0,001 rmsprop 8 95,07 0,12 95,45 0,11 

12 08:36:27 0,001 rmsprop 32 94,20 0,15 93,32 0,19 

 

Table 4. Results from hyperparameter optimization. 

Source: Matlab 
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Where training and validation accuracy is measured by first predicting the mini-batch images 

with and the validation set images respectively, and then calculating the logical comparative 

mean of these predicted masks with their respective ground-truth: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ (𝑀𝑎𝑠𝑘𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑖 == 𝑀𝑎𝑠𝑘𝑔𝑟𝑜𝑢𝑛𝑑−𝑡𝑟𝑢𝑡ℎ_𝑖)
𝑛
𝑖=1

𝑛
 

 

Training and validation losses are the loss function (explained in section 2.2.1) mean values 

on each mini-batch size and validation set.  

 

As can be seen in the table above, the best hyperparameter combination for training the neural 

network was Mini Batch Size of 8, Adam solver, and 0,001 of Initial Learn Rate. The worst 

trial with a lower Initial Learn Rate value, the root mean square optimizer, and high Mini Batch 

Size. To see which range of accuracies was covered between these trials, the training plot of 

each case was obtained. 
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This training plot was automatically generated by the Experiment Manager (see Figures 28). 

The plot shows the training accuracy (blue line) calculated with the mini-batch, and 

validation accuracy (black points) calculated with the validation set at each validation period 

(see validation frequency in section 2.2.2): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 28. Training (blue) and validation (black points) accuracies over the iterations for the best and worst trials. 

Source: Matlab 

 

Finally, trial number 3 shown in Table 4 resulted in an error. The cause was that Initial Learning 

Rate was too low for this optimizer and the Mini Batch Size of this combination [29]. Therefore, 

this trial was determined to be removed from the discussion and analysis. Discussion of these 

results is presented in section 4.1. 
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3.2. Further Hyperparameter Testing 

Given the importance of the Initial Learning Rate parameter explained in the previous results’ 

discussion in section 4.1, an extra experiment was performed. This extra experiment, 

consisted in training the network with an Initial Learning Rate of 0,0001 to see if a reduction 

in the Initial Learning Rate value would increment the computation time and training accuracy. 

The same hyperparameters obtained before were used but with the Initial Learning Rate set 

to 0,0001.  

To see the performance of the training, we obtained the training plot automatically generated 

by the Experiment Manager on Matlab (see Figures 29) as we did before. Training accuracy 

(blue line) and loss (orange) and validation accuracy and loss (black points above and below, 

respectively) were plotted during the training: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 29. Training and validation accuracies and losses for ILR=0,0001. 

Source: Matlab 

 

Results showed that neither the accuracy nor computation time seemed to vary from the 

best trial of the first results. With an Initial Learning Rate of 0,001, it took 16 hours and 20 
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minutes, and the validation accuracy was 96,25%. Now, with an Initial Learning Rate of 0,0001, 

it took 16 hours and validation accuracy was 96,05%. The same test was repeated to see if 

the initialization’s variability affects the results. The training plot is shown in Figures 30: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 30. Training and validation accuracies and losses of repeated trials with ILR=0,0001. 

Source: Matlab 

 

Surprisingly, the training accuracy was almost the same as before but the computation time 

was 35 min less this time. Discussion on these results is presented in section 4.2. 

 

  



Pàg. 52  Thesis 

 

3.3. Architecture Optimization and Testing 

 

After optimizing the hyperparameters, in this section, the focus will be on the architecture. For 

this purpose, five training trials of U-Net on the full training subset were carried out with 

Encoder-Decoder depth values of 2, 3, 4, and 5 as explained in section 3.3. For each trial, 

we calculated the final training and validation accuracies and losses, just as in hyperparameter 

optimization. In addition, we looked at the computation time, the number of layers, and the 

parameters of each modified architecture. Results are summarized in Table 5: 

 

Encoder-

Decoder depth 

Elapsed 

Time (min) 
Layers 

Parameters 

(millions) 

Training 

Accuracy (%) 

Training 

Loss 

Validation 

Accuracy 

(%) 

Validation 

Loss 

2 459 34 1,8 93,43 0,18 90,67 0,27 

3 726 46 7,6 96,73 0,08 95,36 0,13 

4 855 58 31 96,99 0,07 95,72 0,11 

5 1114 70 124,3 95,73 0,10 96,10 0,10 

 

Table 5. Training results of the architecture modifications 

Source: Matlab 

 

No higher Encoder-Decoder depths were tested given the purpose of reducing the 

computation time, i.e., reducing the number of layers and therefore the depth of the 

architecture. Trial of depth 5 only was performed to see how the results changed when 

augmenting the architecture vs when reducing it. The discussion on these results is presented 

in section 4.3. 
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After obtaining the training results, the accuracy of the trained networks had to be analyzed. 

For this reason, we used the 4 architectures to make predictions at the testing subset defined 

in section 2.1.4. Testing accuracy results are shown in Table 6. The accuracy mean value was 

calculated for each class, comparing the networks’ predictions and the ground-truth data. 

 

Encoder-Decoder 

depth 
Background LV RV LA RA Average 

2 92,92% 96,00% 96,48% 97,61% 97,17% 96,04% 

3 95,73% 98,20% 98,08% 98,72% 98,89% 97,92% 

4 96,06% 98,34% 98,54% 99,13% 99,20% 98,25% 

5 96,21% 98,40% 98,61% 99,05% 99,21% 98,30% 

 

Table 6. Testing accuracies for the modified architectures for each class 

(Left Ventricle [LV], Right Ventricle [RV, Left Atrium [LA], Right Atrium [RA]). 

Source: Matlab 

 

The discussion on these results is presented in section 4.3. To represent more visually the 

results shown in the table above, a random image from the testing subset was selected (see 

Figure 31) to show the networks’ predictions depending on the Encoder-Decoder depth and 

the different classes. Results are shown in Figures 32. 

 

 

 

Figure 31. Image from patient 1288 from the testing dataset. 

Source: augmented Echogan dataset. 
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Figures 32. Predictions for each class (columns) and depth (rows) compared to the ground-truth (1st row above)  

(Left Ventricle [LV], Right Ventricle [RV, Left Atrium [LA], Right Atrium [RA]). 

Source: Matlab  
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Furthermore, to see whether the obtained architectures were robust, all four modified U-Nets 

were tested on the annotated CAMUS dataset (see section 2.1.1) and the mean accuracy 

was computed for each case. As the CAMUS dataset only has annotations for Left Ventricle 

and Left Atrium, only these two classes were tested for End-Diastole and End-Systole 

moments, which are moments of relaxation and contraction of the Left Ventricle, respectively. 

Results are shown in Table 7: 

E-D depth LV ES LV ED LA ES LA ED 

2 94,37 % 95,15 % 95,07 % 96,69 % 

3 96,79 % 96,94 % 97,05 % 97,63 % 

4 97,07% 96,82 % 98,00 % 98,07 % 

5 97,20 % 96,92 % 98,27 % 98,27 % 

 

Table 7. Average accuracies of the architectures’ predictions on CAMUS dataset. 

LV = Left Venticle, LA = Left Atrium, ES = End-Systole, ED = End-Diastole, E-D = Encoder-Decoder. 

Source: Matlab 

 

Finally, to further visualize the results in Table 7, in Figures 33 below we showed the Left 

Ventricle and Left Atrium predictions of one selected patient for each U-Net architectures 

compared to the ground-truth reference. The discussion on these results is presented in 

section 4.3.  
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Figures 33. Predictions of each architecture for Left Ventricle (left) and Atrium (right) of  

patient 0037 at End-Systole moment from CAMUS dataset. 

Source: Matlab 
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4. Discussion 

Once the results have been presented, this section will consist of a detailed analysis of these 

results. Statistical plots will help to visualize the obtained information and extract conclusions 

from it. Each subsection consists of a discussion on each of the optimizations performed. 

4.1. Hyperparameter Optimization 

As can be seen in Table 4, the experiment carried out can be considered a factorial 

experiment with 3 variables and 4 responses. Each variable (Initial Learn rate, solver, and 

Mini Batch Size) has 2, 3, and 2 values respectively. First of all, the responses are going to be 

analyzed to see whether each one of them gives the same information or not, i.e., they are 

dependent on each other.  

 

The scattered plot of the accuracies and losses (Figure 34) can provide this information by 

calculating the regression coefficient, which gives information about the regression line’s 

accuracy of the analyzed variables. First, the training and validation accuracies are plotted 

(training accuracy on the x-axis and validation accuracy on the y-axis): 

 

 

 

Figure 34. Training vs validation accuracies. Regression coefficient of 0,9972. 

Source: Excel 
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Then, we can plot training loss and accuracy to see if they are dependent (see Figure 35). 

Training accuracy is plotted on the x-axis and training loss is plotted on the y-axis. This time 

the regression is exponential as the loss function is logarithmic:   

 

 

 

Figure 35. Training loss vs accuracy. Regression coefficient of 0,9971. 

Source: Excel 

 

The dependency between responses is very clear (regression coefficients of almost 1) as 

thought, therefore it can be established that all responses give the same information about the 

variables.  

 

To measure the dependency and variability of the response (training accuracy) with each 

one of the variables, the main effects and Pareto plots can be shown (see Figures 36).  
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The Main effect plot represents the mean value of the response for each variable value. This 

way the variables that influence the response the most can be identified: 

 

 

 

 

Figures 36. Main effects and interaction plots of the hyperparameters  

and the training accuracy as the response. 

Source: Minitab 
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As seen in the Pareto chart in Figures 36, the hyperparameter that affects the response the 

most is the Initial Learn Rate followed by the Optimizer. Mini Batch Size almost doesn’t affect 

the responses, probably because the difference between the 2 chosen values is not very 

considerable. The election of Mini-Batch Size was conditioned by the fact that increasing its 

size affects the computation capability, and trials with values higher than 32 didn’t run due 

to lack of memory. 

The reasoning behind the other hyperparameter influence over the responses is that Initial 

Learn Rate is known to be related to accuracy [30]. If the value is too high, the architecture 

ends up obtaining a sub-optimal result.  

However, reducing Initial Learning Rate also increments the computation time and it doesn’t 

ensure that the result would be better, so an optimal Initial Learning Rate Value has to be 

figured out for every case. A default value of Initial Learning Rate of 0.01 typically works for 

standard multi-layer neural networks but it doesn’t mean that it is always necessary to rely 

exclusively on this default value. Matlab’s website suggests using an Initial Learning Rate 

value of 0,01 for the sgdm solver and 0,001 for rmsprop and adam solvers [27]. To validate 

this hypothesis, an Initial Learning Rate of 0,0001 will be tested in section 3.2. 

On the other hand, the Adam optimizer was supposed to be the best for this experiment. As 

said in its original article [31], this solver is aimed toward machine learning problems with large 

datasets and/or high-dimensional parameter spaces. It combines the advantages of two 

recently popular optimization methods: the ability of AdaGrad to deal with sparse gradients, 

and the ability of RMSProp to deal with non-stationary objectives. For this reason, adam 

optimizer works well in classification deep learning problems. 
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4.2. Further Hyperparameter Testing 

The extra test, presented in section 3.2, showed that there is not a significant difference 

between the Initial Learning Rates of 0,001 and 0,0001. In general, this hyperparameter is 

known to be related to training computation time and accuracy: 

 

Figures 37. The influence of different initial learning-rate values on network performance,  

namely pixel accuracy (PA), mean pixel accuracy (MPA), and defect-class accuracy (DCA). 

Source: Stern, Maike. (2020). Development of a Fully-Convolutional-Network Architecture for the Detection of 

Defective LED Chips in Photoluminescence Images. 

In Figures 37 above we see that the best accuracies are obtained for values between 0,01 and 

0,0001. These values strongly depend on the network and the problem to be solved.  

Given the results in section 3.2, we can conclude that there’s no significant difference in 

accuracy between choosing 0,001 and 0,0001 as Initial Learning Rates with this combination 

of hyperparameters specified. However, in the architecture optimization, an Initial Learn Value 

of 0,0001 will be used given the reduction in the computation time. 
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4.3. Architecture Optimization and Testing 

 

After concluding the hyperparameter optimization, the focus is now on the architecture and the 

results presented in section 3.3. As can be seen in Table 5, the trial with the highest training 

accuracy was the one with depth 4. However, to analyze the dependency of accuracy vs 

computation time, we can focus on the scattered plot as we did in the previous hyperparameter 

optimization to analyze the dependency on the response and variables: 

 

 

 

 

Figures 38. Scattered plot of Training and Validation Accuracies (%) on the y-axis and Elapsed Time in minutes 

on the x-axis. Regression equation and coefficient are shown. 

Source: Excel 
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As shown in Figures 38 above, architectures with Encoder-Decoder depths of 3 and 4 

outperformed the ones with depths of 2 and 5 in terms of training accuracy. It is interesting to 

notice that the trial with an Encoder-Decoder depth of 5 was less accurate in training than the 

one with a depth of 4. This fact is opposite to what other articles suggest [25], stating that 

CNNs with few layers perform better at segmenting small objects, and CNNs with a high 

number of layers are more effective at segmenting large objects. However, the difference 

between accuracies was so low that these two trials can be considered almost equally 

accurate. 

Despite having few trials, the accuracies seem to be related to a polynomial equation with a 

regression coefficient of 0,998. Architectures with a higher number of Encoder-Decoder depths 

must be evaluated to see if the training accuracy keeps decreasing as the depth increases. 

For the two best trials (the architectures with 3 and 4 Encoder-Decoder depths) we see that 

the time difference in the training duration is considerable: 2 hours and 9 minutes which is a 

15,1 % reduction from depth 4 (default value) trial to depth 3 trial. The accuracy only 

decrements by a factor of 0,28%. Therefore, here can be seen that choosing an Encoder-

Decoder depth of 3 can be a good option for still acquiring high training accuracies and 

considerably less computation time, especially when an important amount of data is available.  
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In Table 6, the accuracies of each class for each depth on the testing subset were calculated. 

We can represent these results in line charts to further analyze the dependency between 

classes and the accuracy of these networks:  

 

Figure 39. Accuracies (y-axis) on testing for each architecture’s depth (x-axis) and class.  

(Left Ventricle [LV], Right Ventricle [RV, Left Atrium [LA], Right Atrium [RA]). 

Source: Excel 

 

 

 

Figure 40. Average accuracies (y-axis) on testing for each architecture’s depth (x-axis).  

Source: Excel 
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As can be seen in Figure 39 and Figure 40, the background accuracy is significantly lower 

than the rest of the classes’ accuracies. This is explained by the fact that the background 

contains the weighted product of inaccuracies of the rest of the classes, as it is the negative 

image of the four chambers silhouette (see Figures 32).  

The rest of the classes’ accuracies go according to the dimension of their shape. For example, 

the Left Ventricle’s predictions are less accurate than the Right Ventricle’s predictions because 

the Left Ventricle is bigger in the image and therefore contains more inaccuracies. 

However, if we analyze the testing accuracy differences between 3, 4, and 5 depths, we can 

see that are relatively low. Taking depth 4 (default U-Net’s value) as a reference, changing 

the depth to 5 increments accuracy by a factor of 0,04% and changing to 3 decrements 

accuracy by a 0,34%. Changing to depth 2 decrements by a factor of 2,26%.  

Although this might not seem very much, the accuracy (defined in section 3.1) computes the 

mean difference between predictions and ground-truth masks of all parts of the image. 

The inaccuracies in the predictions, as seen in Figures 32, are located in the chamber’s 

boundaries, so the accuracy might seem very high because the chamber is correctly predicted, 

but the edges of the chamber might not be that accurate. This inaccuracy is very visible for 

depth 2, but predictions at depths 3, 4, and 5 have very similar aspects. 
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To further explore the influence of the Encoder-Decoder depth, and also to test the robustness 

of the modified architectures, we tested them with the CAMUS annotated dataset, as 

explained in section 3.3. Results of this testing are presented in Table 7. In Figure 41, we can 

visualize these results more clearly with a line chart to see the dependence on the Encoder-

Decoder depth. 

 

Figure 41. Accuracy (y-axis) on CAMUS dataset for each architecture’s depth (x-axis) and part and moment.  

LV = Left Venticle, LA = Left Atrium, ES = End-Systole, ED = End-Diastole. 

Source: Excel 
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5. Conclusions 

After presenting and analyzing the results of both optimizations, in this section the main 

achievements of this work are summarized and the work for future papers is established. 

5.1. Thesis summary 

In this study, we have obtained, implemented, and optimized a Convolutional Neural Network, 

U-Net, for automatically segmenting the four chambers of the Heart in B-Mode Four Chamber 

Apical View echocardiography images.  

The first objective, explained in section 1.3, was obtaining echocardiographic labeled data 

(with the ground-truth attached) of the four chambers of the Heart. In section 2.1.3  we 

achieved this objective by obtaining and augmenting a four-chamber labeled dataset.  

The second objective was choosing an accurate Deep Learning architecture. In section 2.2.1 

we proposed U-Net architecture, known to achieve good results for semantic segmentation 

purposes in recent articles. 

The third objective was to optimize the architecture to achieve good performance and less 

computation time. We explored two optimization paths in sections 2.2.2 and 2.2.3 respectively, 

the first one optimizing the training hyperparameters and the second one modifying the 

Encoder-Decoder depth of the network. Results of these optimizations were presented in 

section 3. 

Therefore, the purpose of providing an optimized and accurate Deep Learning architecture to 

automatically segment the four chambers of the heart has been achieved. 

5.2. Future Work 

As explained in section 2.1, the lack of labeled data is one of the biggest challenges in this 

area. Re-training the optimized networks with new datasets from different patients and 

ultrasound equipment would increase the accuracy of automatic segmentations. Also, we used 

data from the 4 inner chambers of the heart, but creating new classes for the heart pericardium, 

valves, etc. and training the network with labeled data would improve the network value for 
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doctors. 

For the proposed optimizations, future work on hyperparameters and the architecture has to 

be made. This work had a limited duration and we had to limit the number of experiments, but 

hyperparameters like loss function and max epochs have to be further optimized to achieve 

better accuracies while maintaining a low training computation time. Mini-batch values can be 

further explored with a more capable computing system. 

In addition, further architecture modifications like removing and adding new types of layers 

have to be made to achieve more optimal results. Encoder-Decoder depths of 6 or higher 

values have to be evaluated. 

Finally, in this work, we only focused on the specific task of semantic segmentation with Deep 

Learning. Image accuracies were computed to compare the results, but other indicators like 

Ejection Fraction or other indexes extractions have to be explored, as same as other medical 

tasks like pose classification for other types of echocardiography view modalities.  
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