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Abstract

Signed languages are complete and natural languages used as the first or preferred mode

of communication by millions of people worldwide. However, they, unfortunately, con-

tinue to be marginalized languages. Designing, building, and evaluating models that

work on sign languages presents compelling research challenges and requires interdisci-

plinary and collaborative efforts. The recent advances in Machine Learning (ML) and

Artificial Intelligence (AI) have the power to enable better accessibility to sign language

users and narrow down the existing communication barrier between the Deaf commu-

nity and non-sign language users. However, recent AI-powered technologies still do not

account for sign language in their pipelines. This is mainly because sign languages are

visual languages, that use manual and non-manual features to convey information, and

do not have a standard written form. Thus, the goal of this thesis is to contribute to the

development of new technologies that account for sign language by creating large-scale

multimodal resources suitable for training modern data-hungry machine learning models

and developing automatic systems that focus on computer vision tasks related to sign

language that aims at learning better visual understanding of sign languages.

Thus, in Part I we introduce the How2Sign dataset, which is a large-scale collection of

multimodal and multiview sign language videos in American Sign Language. In Part II,

we contribute to the development of technologies that account for sign languages by pre-

senting in Chapter 4 a framework called Spot-Align, based on sign spotting methods,

to automatic annotate sign instances in continuous sign language. We further present

the benefits of this framework and establish sign language recognition baselines on the

How2Sign dataset. In addition to that, in Chapter 5 we benefit from the different an-

notations and modalities of the How2Sign to explore sign language video retrieval by

learning cross-modal embeddings. Later in Chapter 6, we explore sign language video

generation by applying Generative Adversarial Networks to the sign language domain

and assess if and how well sign language users can understand automatically generated

sign language videos by proposing an evaluation protocol based on How2Sign topics and

English translation.
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Resum

Les llengües de signes són llengües completes i naturals que utilitzen milions de persones

de tot el món com mode de comunicació primer o preferit. Tanmateix, malauradament,

continuen essent llengües marginades. Dissenyar, construir i avaluar tecnologies que

funcionin amb les llengües de signes presenta reptes de recerca que requereixen d’esforços

interdisciplinaris i col·laboratius. Els avenços recents en l’aprenentatge automàtic i la

intel·ligència artificial (IA) poden millorar l’accessibilitat tecnologògica dels signants, i

alhora reduir la barrera de comunicació existent entre la comunitat sorda i les persones

no-signants. Tanmateix, les tecnologies més modernes en IA encara no consideren les

llengües de signes en les seves interfícies amb l’usuari. Això es deu principalment a que

les llengües de signes són llenguatges visuals, que utilitzen característiques manuals i no

manuals per transmetre informació, i no tenen una forma escrita estàndard. Els objectius

principals d’aquesta tesi són la creació de recursos multimodals a gran escala adequats

per entrenar models d’aprenentatge automàtic per a llengües de signes, i desenvolupar

sistemes de visió per computador adreçats a una millor comprensió automàtica de les

llengües de signes.

Així, a la Part I presentem la base de dades How2Sign, una gran collecció multimodal i

multivista de vídeos de la llengua de signes nord-americana. A la Part II, contribuïm al

desenvolupament de tecnologia per a llengües de signes, presentant al capítol 4 una solu-

ció per anotar signes automàticament anomenada Spot-Align, basada en mètodes de

localització de signes en seqüències contínues de signes. Després, presentem els avantat-

ges d’aquesta solució i proporcionem uns primers resultats per la tasca de reconeixement

de la llengua de signes a la base de dades How2Sign. A continuació, al capítol 5 aprof-

item de les anotacions i diverses modalitats de How2Sign per explorar la cerca de vídeos

en llengua de signes a partir de l’entrenament d’incrustacions multimodals. Finalmet,

al capítol 6, explorem la generació de vídeos en llengua de signes aplicant xarxes ad-

versàries generatives al domini de la llengua de signes. Avaluem fins a quin punt els

signants poden entendre els vídeos generats automàticament, proposant un nou protocol

d’avaluació basat en les categories dins de How2Sign i la traducció dels vídeos a l’anglès

escrit.
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Resumen

Las lenguas de signos son lenguas completas y naturales que utilizan millones de personas

de todo el mundo como modo de comunicación primero o preferido. Sin embargo, desgra-

ciadamente, siguen siendo lenguas marginadas. Diseñar, construir y evaluar tecnologías

que funcionen con las lenguas de signos presenta retos de investigación que requieren

esfuerzos interdisciplinares y colaborativos. Los avances recientes en el aprendizaje au-

tomático y la inteligencia artificial (IA) pueden mejorar la accesibilidad tecnológica de

los signantes, al tiempo que reducir la barrera de comunicación existente entre la comu-

nidad sorda y las personas no signantes. Sin embargo, las tecnologías más modernas en

IA todavía no consideran las lenguas de signos en sus interfaces con el usuario. Esto

se debe principalmente a que las lenguas de signos son lenguajes visuales, que utilizan

características manuales y no manuales para transmitir información, y carecen de una

forma escrita estándar. Los principales objetivos de esta tesis son la creación de recursos

multimodales a gran escala adecuados para entrenar modelos de aprendizaje automático

para lenguas de signos, y desarrollar sistemas de visión por computador dirigidos a una

mejor comprensión automática de las lenguas de signos.

Así, en la Parte I presentamos la base de datos How2Sign, una gran colección multimodal

y multivista de vídeos de lenguaje la lengua de signos estadounidense. En la Part II,

contribuimos al desarrollo de tecnología para lenguas de signos, presentando en el capí-

tulo 4 una solución para anotar signos automáticamente llamada Spot-Align, basada en

métodos de localización de signos en secuencias continuas de signos. Después, presenta-

mos las ventajas de esta solución y proporcionamos unos primeros resultados por la tarea

de reconocimiento de la lengua de signos en la base de datos How2Sign. A continuación,

en el capítulo 5 aprovechamos de las anotaciones y diversas modalidades de How2Sign

para explorar la búsqueda de vídeos en lengua de signos a partir del entrenamiento de

incrustaciones multimodales. Finalmente, en el capítulo 6, exploramos la generación

de vídeos en lengua de signos aplicando redes adversarias generativas al dominio de la

lengua de signos. Evaluamos hasta qué punto los signantes pueden entender los vídeos

generados automáticamente, proponiendo un nuevo protocolo de evaluación basado en

las categorías dentro de How2Sign y la traducción de los vídeos al inglés escrito.
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Glossary

Annotations: Data annotation is the process of labeling different aspects of a data

structure (it can be text, image, video, etc.) of a dataset.

Audism: It is an attitude based on pathological thinking that results in a negative

stigma toward anyone who does not hear.

Bilingual Evaluation Understudy (BLEU) is an algorithm for evaluating the quality

of text which has been machine-translated from one natural language to another.

Dataset: Refers to a collection of related sets of information that is composed of separate

elements but can be manipulated as a unit by a computer.

Co-articulation: is a naturally occurring situation in which a word (in the form of a

speech sound or a sign) is influenced by and becomes more like the preceding or the

following word.

Continuous signing: Specifies the nature of sign language datasets that contain long

phrases or full sentences as opposed to single, isolated signs.

deaf: Refers the hearing status of a person. They have profound hearing loss, which

implies very little or no hearing.

Deaf: Refers to members of any Deaf community.

Fingerspelling: Refers to the representation of an alphabet of a spoken language, where

every letter in the alphabet has a corresponding (static or dynamic) sign.

Gloss: It is used in linguistics to transcribe signs using spoken language words.

Hard-of-hearing: Refers to people with hearing loss ranging from mild to severe.

Hearing loss: A person with hearing loss is not able to hear as well as someone with

normal hearing (hearing thresholds of 20 decibels or better in both ears). It can affect one

ear or both ears and leads to difficulty in hearing conversational speech or loud sounds.

xx
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Isolated signs: Specifies the nature of sign language datasets that only contains single

signs as opposed to long phrases or full sentences.

Keypoints: Refers to the human joints represented by 2D or 3D coordinates. They can

be captured using special equipment attached to a person or automatically from a video

recording. In this thesis, we refer to skeleton the representation that was automatically

extracted from the video recordings.

Lexicon: The complete set of meaningful units in a language.

MedR: Median Rank, lower is better

Pose: Refers to human pose information automatically extracted using computational

systems. It is usually represented by 2D or 3D coordinates that refer to the human body

joints.

R@K: Recall at rank K, higher is better

Sign language features/articulators: Each sign consists of a set of articulators or

features. It consists of manual and non-manual features, e.g. Handshape, orientation,

location and movement are the four manual parameters, while non-manual articulators

include head and body posture, facial expression, eye gaze, and mouth patterns.

Signers: Refers to sign language users.

Skeleton: Refers to the wired visualization of the human body representation. This

representation can be via 2D or 3D coordinates (or also called Keypoints) and can be

captured using special equipment attached to a person or automatically from a video

recording. In this thesis, we refer to the skeleton the representation that was automati-

cally extracted from the video recordings.

Syntax: The arrangement of words and phrases to create well-formed sentences in a

language.

Utterance: Refers to an uninterrupted sequence of a language.

Vocabulary: The set of unique signs (or words) that occur in a dataset.



1
Introduction

Hearing loss is the most common communication disorder affecting about 360 million

people worldwide to different degrees, according to the World Health Organization [10].

A substantial part of these individuals use sign language (SL) to communicate. Although

recent advancements like the internet, smartphones, and social networks have enabled

people to instantly communicate and share knowledge at a global scale, deaf and blind

people still have very limited access to large parts of the digital world. This thesis

aims to contribute to the research field of sign language understanding by collecting and

curating sign language data resources and employing it in the development of different

computer vision tasks with such focus. We believe that new resources and technologies

that focus on sign language understanding have the potential of removing or reducing the

difficulties and barriers that deaf people encounter in their daily lives when interacting

with non-sign language users.

In this thesis, we refer to “sign language understanding” as the semantic understanding

of signing videos at the level required for solving basic vision and language tasks. We

therefore use the term to refer to methods that are able to extract the linguistic cues nec-

essary and sufficient to successfully perform tasks such as sign language video retrieval,

sign spotting, sign language recognition, translation or production. This is a narrow use

of the term “understanding” that of course does not reflect the richness and breadth of a

highly complex visual languages such as sign languages.

Throughout the text, we use terminologies such as hearing loss, hard-of-hearing and, deaf

that need to be defined and clarified for better understanding. The following definitions

are established by the World Health Organization [10]. A person with hearing loss is not

able to hear as well as someone with normal hearing (hearing thresholds of 20 decibels

1
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or better in both ears). Hearing loss may be mild, moderate, severe, or profound. It

can affect one ear or both ears, and leads to difficulty in hearing conversational speech

or loud sounds. Hard-of-hearing refers to people with hearing loss ranging from mild

to severe. People who are hard-of-hearing usually use a mix of communication through

spoken language and signed languages and can benefit from hearing aids, cochlear im-

plants, and other assistive devices as well as captioning. A deaf 1 a person mostly has

profound hearing loss, which implies very little or no hearing. Their primary means of

communication is through sign language.

In the following sections we present the goals, motivations and contributions of this thesis

followed by the outline of the rest of this document.

1.1 Goals

Our first goal is to create sign language resources, such as a large-scale multimodal

dataset, suitable for training modern machine learning models. The creation of such

datasets has the potential to instigate the advance in the area of research that involves

Computer Vision (CV) tasks that focus on sign language, such as sign language recog-

nition, translation and production and etc. Thus, in Part I we describe the multimodal

data collection process that led to the creation of the How2Sign dataset.

Second, we aim at contributing to the development of automatic systems that account

for sign language in their pipeline. Towards that, in Part II we tackle different tasks that

include (i) automatic sign language data annotation, (ii) sign language recognition, (iii)

sign language video retrieval, (iv) sign language video generation, and, (v) understanding

if and how sign language users perceive automatic generated sign language videos. More

specifically, we present in Chapter 4 a framework called Spot-Align, based on sign

spotting methods, that is designed to automatically annotate sign instances across a

broad vocabulary in continuous sign language. We further access the benefits of this

framework and establish sign language recognition baselines on the How2Sign dataset.

In Chapter 5 we benefit from the different annotations and modalities of the How2Sign

to explore sign language video retrieval by learning cross-modal embeddings. Later in

Chapter 6, we explore sign language video generation by applying Generative Adversarial

Networks to the sign language domain in order to transfer the sign language motion

from one individual into another. With this approach we aim to access the level of

understanding sign language users have regarding automatically generated sign language

videos and propose an evaluation protocol based on How2Sign topics English translation.
1We follow the recognized convention of using the upper-cased word Deaf which refers to the culture

and describes members of the community of sign language users and the lower-cased word deaf describes
the hearing status[11].
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1.2 Motivations

The majority part of Deaf or hard-of-hearing individuals use sign language as their

primary means of communication. Different countries and even different regions of the

same country have developed their own sign language, that account for more than 300

different sign languages in use nowadays [12].

A person who is deaf from birth, usually acquires a sign language as their primary

language, and eventually (but not necessarily), learns spoken language as their second

or third language. In fact, in such cases, spoken language is a particularly hard-to-

learn second language for deaf individuals– it must be learned based only on a set of

written symbols and based on observations of highly ambiguous mouth patterns, without

any auditory cues. As a consequence, many deaf children leave school with significant

difficulties in writing and reading spoken languages [13].

For most deaf individuals, the interaction with non-sign language users in education, em-

ployment, healthcare, legal settings, entertainment, or even while watching online videos

are usually challenging tasks. To overcome this communication barrier, an alternative

is to employ a sign language interpreter to translate the spoken language into the sign

language used in the situation. However, more than 80% of people who use sign language

to communicate live in developing countries and have limited access to interpreters. In

addition to that, when interpreters are available, it is important that they are trained,

qualified, and certified to ensure quality standards, which comes with a high cost that

not everybody can easily afford. In more casual circumstances, such as at restaurants,

or daily interactions, most Deaf people often prefer to be independent, communicating

with non-sign language users via gestures or writing.

When it comes to the digital world, some streaming platforms and broadcast services

provide accessibility options such as captions or audio descriptions. However, these are

available just for a part of the catalog and often in a limited amount of languages. When

they are not available, volunteers or relatives may generate and distribute them through

third-party platforms. However, a large portion of online videos are not from streaming

or broadcast services but are generated by amateur users. As reported by a video stream

platform, an average of 400 hours of videos are uploaded every day on a common video-

sharing website. These users do not typically create any metadata for accessibility. Their

intention is informal, addressed to a reduced audience and, produced in a very short time.

The huge and growing amount of such online videos requires automatic methods capable

of adapting these contents across modalities to make them more accessible to everybody.
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To address such issues, researchers from different areas have recently started including

sign language in the developments of new technologies. Sign Language understanding

(also called Sign Language Processing by some authors [1, 14, 15]) is an emerging field of

artificial intelligence that aims to automatically process, analyze and extract the seman-

tic meaning of sign language content. It lies at the intersection of both Natural Language

Processing (NLP) and computer vision, and frequently involves three base tasks: (i) Sign

Language Translation (SLT), which targets an automatic translation from sign language

representations (e.g. videos or poses) to spoken language text; (ii) Sign Language Pro-

duction (SLP), which targets the generation of sign language representations (usually

poses or SL annotations) or; (iii) Sign Language Recognition (SLR) where individual

signs are just recognized and classified. However, we believe that the development of

new challenging and interesting tasks that involve sign language, and the engagement

of the research community on creating more resources and new methods are crucial and

necessary next steps in order to overcome the challenges that sign language brings to the

related research areas.

The development of resources and methods that account for signed languages in their

pipeline can enable several real-world applications, such as: (i) systems that can better

document endangered sign languages; (ii) the development of educational tools for sign

language learners; (iii) tools that can query and retrieve information from signed language

videos; (iv) the development of personal assistants that react to signed languages; (v)

real-time automatic sign language translation and production, which can assist sign

language users in daily interactions with non-sign language users, and more.

Although such applications can benefit different groups of people, it is important to

remember that signed languages are and will always be an important part of the culture

and lives of members of the Deaf communities. Here we would like to re-state that, when

addressing this research area, researchers should work alongside and under the direction

of Deaf communities, and prioritizing the benefit of the signing communities’ interest

above all [1, 14, 16, 17].

While investing in the development of resources and methods that address sign language

can offer several benefits to society and challenging research topics to be addressed,

signed languages present several technical and/or linguistic challenges that we discuss

next. It is important to note that since sign languages are different languages among

them, the challenges presented next can vary from language to language. We mostly

present the ones we dealt with while working with American Sign Language, and British

Sign Language but that are usually common to other sign languages.

From the challenges presented next, in this thesis, we explicitly focus on mitigating the

first two challenges (lack of data and representation of sign languages), and deal implicitly
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with the rest by improving the visual understanding of sign languages via the proposed

methods.

1.3 Challenges

Lack of data. With the availability of large amounts of labeled training data, deep

learning models have shown excellent performance on some generic computer vision and

natural language processing tasks such as human action detection/recognition and neural

machine translation. However, when it comes to fields where specific and detailed data

are required, the lack of reliable large-scale datasets is still a big challenge. This challenge

is even bigger when dealing with low-resources languages, such as signed languages. A

language is considered a low-resource when there is no accessible and public available

documentation and data to be explored. In the case of signed languages, public available

datasets are very scarce as it will be demonstrated in Section 2.2 with an extended

overview of existing sign language datasets. When available, they unfortunately present

several drawbacks, such as:

Small size: Sign language corpora needed to fuel the development of sign language-

related tasks are still several orders of magnitude smaller than their spoken language

counterparts, typically containing fewer than 100,000 articulated signs. (See Table 2.1

for detailed information about existing sign language datasets.)

Presence of continuous signing: Many datasets of sign languages only contain individual

signs. While isolated signs may be important for certain scenarios, most real-world use

cases of sign language tasks involve natural conversational with complete sentences.

Participation of native signers: Due to the difficulties of recruiting signers who are native

in a specific signed language, many existing datasets allow people that are still learning

the language (i.e. non-deaf students) to participate in the recordings or include data

scraped from online sources (e.g. social media or video platforms) where information

about the signer and theirs language skill are unknown. Other datasets also include

professional interpreters, who are highly skilled but are often not native signers. Very

frequently, interpreters can also change the execution of the language (e.g. by simplifying

the narrative and vocabulary or signing slower for a better understanding) since this is

a common practice in their daily jobs. Datasets of native signers are needed to build

models that presents this core user group.

Limited signer variety: Signed languages are used by different groups of people and

naturally differ from person to person. To accurately represent the signing population

and assure realistic scenarios, sign language datasets should include a larger variety
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of signers with different: gender, ages, clothing, geography, culture, skin tone, body

proportions, language fluency, video background, lighting conditions, camera quality,

and camera angles. It is also very important to generate signer-independent datasets,

that allow measuring the generalizability of models by training and testing on different

signers.

Recorded in controlled settings: Current datasets are usually recorded in a laboratory

or a TV broadcast setting, where illumination is constant and the usage of language is

carefully chosen (by the fact that signers know they are being recorded). In addition

to that, data from TV broadcasts are usually sign language interpretation, which as

mentioned above, can change the execution of the language. Data that reflect real-world

scenarios are needed to train models that can be used outside controlled scenarios.

Although the drawbacks of current datasets are noticeable and already pointed out in the

literature [14, 18], creating larger, more representative and public sign language video

datasets is far from being an easy task. Many Deaf signers are not comfortable with

being recorded while signing, because of privacy and other personal reasons. Also, when

subjects are willing to collaborate in the data collection, many find it a long and tedious

process which makes the continuity of the task hard, slow and, expensive. Collection and

annotation of sign language data can take up to 600 minutes for each minute of video

data [19]. Moreover, annotation usually requires a specific set of knowledge and skills,

which makes recruiting or training qualified annotators very challenging. Additionally,

there is little existing signed language data in the wild in video platforms that can be

used, especially from native signers that are not interpretations of speech data, as in

weather forecast broadcasts. Therefore, data collection often requires massive efforts

from data collectors as well as high costs of on-site recordings.

Representation of sign languages is a significant challenge when dealing with sign

language data. Unlike spoken languages, signed languages have no widely adopted writ-

ten form which prevents the easy adaptation of existing methods that work with spoken

languages to also work with signed languages. Exploring a standard representation of

sign languages can benefit the adaptation of existing models and instigate the improve-

ment of recent developed technologies. Below we describe the current forms that sign

languages are represented.

Video. Although videos are the most common and straightforward way of representing

signed language, they are not an easy and convenient data type to work with. They

are expensive to record, store, transfer, and encode and usually comes with unnecessary

information that need to be processed out. In addition to that, when thinking about

privacy, videos may also record the signers face and physical characteristics which can

limit the possibility of making the video data publicly available [20].
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YOUR NAME WHATASL Gloss

HamNoSys

SignWriting

2D pose

Video

109 frames

Figure 1.1: Sign Language representations. Different representations of a sentence in Amer-
ican Sign Language. Here we represent the sentence with video frames, 2D pose estimation,
SignWriting, HamNoSys and glosses. The English translation is “What is your name?”. Image
adapted from [1].

Poses can be an alternative to reduce the computational cost of working with raw videos.

They can be seen as a representation of the visual cues in a skeleton-like or mesh form

that corresponds to the location of the human joints in the frame. These locations can

be captured via special equipment or directly from video frames. While motion capture

equipment can often provide better quality pose estimation, they are still very expen-

sive and intrusive. An alternative to that are pose estimation methods from monocular

videos [21–25]. Compared to video representations, accurate poses are lower in complex-

ity and keep the signer’s face anonymized, while observing relatively low information

loss [26]. However, they remain a continuous, multidimensional representation that dif-

fers from the type of data that recent computer vision and natural language processing

models expect. In addition to that, due to the fast movements of the signer’s hand and

the motion blur caused by that, state-of-the-art video pose estimation models [23, 25]

often fail to predict the pose of the hands in sign language videos.

Written notation systems aim to represent signs as discrete visual features. While dif-

ferent notation systems have been proposed [27–29], there is still no standard widely

adopted by any sign language community. The absence of such standard notaion system

inhibits the exchange and unification of resources (such as sign language data) and mod-

els for different tasks. Figure 1.1 shows examples of two notation systems used by a few

projects in sign language research: SignWriting [27], a two-dimensional pictographic sys-

tem, and HamNoSys [28], a linear stream of graphemes that was designed to be readable

by machines.

Glossing is a tool used by linguists to transcribe signed languages sign-by-sign using spo-

ken language words together with sign language specific notations. While different gloss

annotation guidelines have been recently provided [30–32], as in sign language writing

notations systems, there is still no single standard way of transcribing signed language
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using gloss transcriptions. Gloss transcription has been adopted as an intermediate rep-

resentation for machine learning solutions for translation and production. However, it is

important to note that glosses are an incomplete way of representing signed language be-

cause they do not adequately capture all information expressed simultaneously through

different cues (i.e. body posture, eye gaze and facial expressions) or depiction, and spa-

tial relationship. This limitation leads to an inevitable information loss at the semantic

level that affects downstream tasks, such as sign language translation [33].

Use of multiple articulators to convey information. Different from spoken lan-

guages, which primarily use the oral-auditory modality, signed languages use the visual-

gestural modality to convey information. Signed languages rely on multiple manual and

non-manual articulators such as the face, hands, body of the signer [34], and the space

around them to create distinctions in meaning. Their use can be explicit or very subtle

and all of them must be taken into account during their modeling and use in compu-

tational models to fully capture the meaning of a signed sentence. We present more

information about the elements of sign languages in Section 2.1.

Co-articulation is a naturally occurring situation in which a word (in the form of

a speech sound or a sign) is influenced by and becomes more like the preceding or a

following word. Unlike in speech recognition 2, the influence of coarticulation in sign

languages is over longer duration and simultaneously impacts different aspects of the

sign in terms of the location, palm orientation, hand shape and movement. Due to this

phenomenon, the appearance of a sign, especially the hand location at the beginning and

end of the sign, can be significantly different under different sentence contexts making

the recognition or natural production of signs in sequences (e.g. in a sentence) a hard

task. In natural conversations, with the use of continuous signing and co-articulated

signs, the speed at which a signer conveys information is also faster than when a signer

performs an isolated sign. Thus, when recorded by a camera, continuous signing can also

contain motion blur, which can be a problem specifically for computer vision techniques.

Sign variants. Sign languages can have several variants for the same meaning or word.

The different variants may depend on the region that the language is being used, the

signer’s social background, the context in which the sign was used (formal or informal

variants) etc. To train robust computational models, sign language datasets need to have

a recorded amount of all the variants of each sign, which can be challenging to obtain.

Depiction is the act of representing or enacting information, an act, a dialogue, or a

psychological event in sign language [3, 35]. This representations can also be done by the
2Coarticulation in speech recognition refers to changes in the speech articulation of the current

speech segment due to neighboring speech.
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Figure 1.2: Example of depiction in Norwegian Sign Language. In this example from [2]
the signer is telling a personal experience about her childhood where she narrates how her father
would have to physically come and find her when she was out playing. We thank Ferrara and
Halvorsen 2018 [3] for the example image.

use of classifiers 3. As mentioned before, different sign languages present different com-

ponents and can vary from language to language 4. In Figure 1.2 we present an example

of depiction in Norwegian Sign Language (NSL) where part of an informal conversation

from [2] is illustrated. In this example, the signer is telling a personal experience about

her childhood where she narrates how her father would have to physically come and find

her when she was out playing because she could not hear his calls 5.

She begins with the signs “POINT FATHER”, indicating the “father” as the actor referent.

Here, the pointing action serves to indicate that she is talking about her father. The

signer then elaborates on her father’s actions by using the sign “RUN” to express how

her father would have to run (and find her). She ends by enacting how her father would

be physically grab her (and bring her close). Here, she indicates herself as a referent

through eye gaze and meaningful use of space. In this example, apart from the use

of depiction to illustrate the sentence’s verb, we can also notice how the signer used

subtle shifts in her body positioning and eye gaze to indicate the referents. Correctly

recognizing and identifying the occurrence of depiction, classifiers and the subtle non-

manual components is crucial for an accurate sign language recognition, translation, and

production system. However, understanding depiction requires exposure to Deaf culture

and linguistics, which the communities driving progress in computer vision generally

lack [16]. Another challenge is also how to create depiction annotations. Countless

depictions can express the same concept, and annotation systems do not have a standard

way to encode this richness in the way sign language is expressed.
3More information about classifiers can be seen in Section 2.1
4More information about different sign languages can be seen in Section 2.1
5This example was taken from the great work of Ferrara and Halvorsen 2018 [3]. We thank the

authors for the great explanation and examples of depiction presented in their work
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1.4 Contributions

In this Section, we list the publications and the releases of datasets and open-source

software published during the course of this thesis. We detail the technical contributions

within the main publications in Chapters 3, 4, 5 and 6 and Appendix A and B.

1.4.1 Publications

Here we list the main publications included in this thesis. All publications are pub-

lished in the proceedings of peer-reviewed conferences.

• Amanda Duarte, Shruti Palaskar, Lucas Ventura, Deepti Ghadiyaram, Kenneth

DeHaan, Florian Metze, Jordi Torres, and Xavier Giro-i Nieto. How2sign: a

large-scale multimodal dataset for continuous american sign language.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2021 [36] (Chapters 3 and 6)

• Amanda Duarte, Jordi Torres, and Xavier Giro-i Nieto. Cross-modal neural

sign language translation. In Proceedings of the 27th ACM International Con-

ference on Multimedia (ACMMM) - Doctoral Symposium, 2019 [37] (Chapter 3)

• Amanda Duarte, Samuel Albanie, Xavier Giro-i Nieto, and Gül Varol. Sign lan-

guage video retrieval with free-form textual queries. Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

2022 [38] (Chapters 4 and 5)

• Didac Surís, Amanda Duarte, Amaia Salvador, Jordi Torres, and Xavier Giró-i Ni-

eto. Cross-modal embeddings for video and audio retrieval. In Proceedings

of the European Conference on Computer Vision (ECCV) Workshops - Sight and

Sound Workshop, 2018 [39] (Appendix A)

• Amanda Duarte, Francisco Roldan, Miquel Tubau, Janna Escur, Santiago Pascual,

Amaia Salvador, Eva Mohedano, Kevin McGuinness, Jordi Torres, and Xavier

Giro-i-Nieto. Wav2pix: Speech-conditioned face generation using gener-

ative adversarial networks. In IEEE International Conference on Acoustics,

Speech, & Signal Processing (ICASSP), 2019 [40] (Appendix B)

As a product of other research activities

Journal publication product of a collaboration during the course of this dissertation:
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• Lucia Specia, Loic Barrault, Ozan Caglayan, Amanda Duarte, Desmond Elliott,

Spandana Gella, Nils Holzenberger, Chiraag Lala, Sun Jae Lee, Jindrich Libovicky,

et al. Grounded sequence to sequence transduction. IEEE journal of selected topic

sin signal processing, 2020 [41]

List of works developed in the scope of this thesis by other students with my collaboration:

• Peter Muschick. Learn2Sign: Sign language recognition and translation using hu-

man keypoint estimation and transformer model. Master’s thesis, Universitat Po-

litecnica de Catalunya, 2020 [42]

• Pol Pérez Granero. 2d to 3d body pose estimation for sign language with deep

learning. Bachelor’s thesis, Universitat Politecnica de Catalunya, 2020 [43]

• Miquel Tubau. WAV2PIX: Enhancement and evaluation of a speech-conditioned

image generator. Master’s thesis, Universitat Politecnica de Catalunya, 2019 [44]

• Sandra Roca. Block-based speech-to-speech translation. Bachelor’s thesis, Univer-

sitat Politecnica de Catalunya, 2018 [45]

• Janna Escur i Gelabert. Exploring automatic speech recognition with tensorflow.

Bachelor’s thesis, Universitat Politecnica de Catalunya, 2018 [46]

1.4.2 Datasets and open-source softwares

The How2Sign dataset. We have publicly released the How2Sign dataset (https:

//how2sign.github.io/) as part of the publication presented in Chapter 3 [36] in

collaboration with Carnegie Mellon University, Facebook AI and Gallaudet University.

How2Sign is the largest publicly available multimodal and multiview continuous Ameri-

can Sign Language (ASL) dataset to date, that includes sign language videos and a set

of corresponding modalities such as speech, English transcripts, depth and other manual

and automatic annotations. The dataset further includes a three-hour subset recorded

in the CMU Panoptic studio 6 enabling detailed 3D pose estimation. How2Sign has

the potential to impact a wide range of sign language processing tasks, such as sign

language recognition, retrieval, translation and production, as well as wider multimodal

and computer vision tasks like 3D human pose estimation.

The Youtubers dataset. We publicly released part of the Youtubers dataset (ht

tps://imatge-upc.github.io/wav2pix/) as part of the publication presented in
6http://www.cs.cmu.edu/~hanbyulj/panoptic-studio/

https://how2sign.github.io/
https://how2sign.github.io/
https://imatge-upc.github.io/wav2pix/
https://imatge-upc.github.io/wav2pix/
http://www.cs.cmu.edu/~hanbyulj/panoptic-studio/
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Appendix B [40]. The Youtubers dataset is an audio-visual dataset containing 168,796

seconds of speech with the corresponding video frames, and cropped faces from a list

of 62 youtubers active during the past few years. The dataset is gender-balanced and

manually cleaned keeping 42,199 faces, each with an associated 1-second speech chunk.

Software. The following works presented in this thesis were made open-source and

publicly released:

• Sign language video retrieval with free-form textual queries: The code,

model and annotations for sign language video retrieval will be released as part

of the project presented in [38] (Chapter 5). The project page can be found at:

https://imatge-upc.github.io/sl_retrieval/

• Cross-modal embeddings for video and audio retrieval: The code for video

and audio retrieval is released as part of the project presented in [39] (Appendix A).

The code can be found at: https://github.com/surisdi/youtube-8m

• Wav2Pix: The code for automatic face generation conditioned to raw speech

signal is released as part of the project presented in [40] (Appendix B). The code

can be found at: https://github.com/imatge-upc/wav2pix

1.5 List of Collaborations and Visits to other Research Groups

This section presents a list of collaborations and visits to other research groups pursued

in the course of this dissertation:

• Johns Hopkins University: From June to August of 2018 I participate in the

Fifth Frederick Jelinek Memorial Summer Workshop (JSALT) at Johns Hopkins

University. I was part of the Grounded Sequence to Sequence Transduction team

working under the supervision of Prof. Lucia Specia and Prof. Desmond Elliott on

language grounding using multiple modalities. This collaboration lead to a journal

publication title "Grounded sequence to sequence transduction" [41] mentioned

under publications "product of other research activities" (Sec. 1.4.1).

– Workshop website: https://www.clsp.jhu.edu/workshops/18-workshop/

– Grounded Sequence to Sequence Transduction team website: https://www.

clsp.jhu.edu/workshops/18-workshop/grounded-sequence-sequence-tr

ansduction/

– Github: https://github.com/lium-lst/nmtpytorch

https://imatge-upc.github.io/sl_retrieval/
https://github.com/surisdi/youtube-8m
https://github.com/imatge-upc/wav2pix
https://www.clsp.jhu.edu/workshops/18-workshop/
https://www.clsp.jhu.edu/workshops/18-workshop/grounded-sequence-sequence-transduction/
https://www.clsp.jhu.edu/workshops/18-workshop/grounded-sequence-sequence-transduction/
https://www.clsp.jhu.edu/workshops/18-workshop/grounded-sequence-sequence-transduction/
https://github.com/lium-lst/nmtpytorch
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• Carnegie Mellon University: From February to August of 2019 I was a visiting

student at the Language Technologies Institute (LTI) at Carnegie Mellon University

(CMU) under the supervision of Prof. Florian Metze. During this visit, we collect

the How2Sign dataset presented as one of the contributions of the this dissertation.

• Gallaudet University: During my visit at CMU and throughout this disserta-

tion, I informally collaborated with Dr. Kenneth DeHaan from Gallaudet Univer-

sity.

• École des Ponts, Univ Gustave Eiffel: From June to November of 2021 I

was a (virtual) visiting student at LIGM - École des Ponts at Univ Gustave Eiffel

(ParisTech) under the supervision of Dr. Gül Varol and Dr. Samuel Albanie from

Oxford University now at Cambridge University. During my visit we develop the

sign language video retrieval with free-form textual queries work that is presented

as one of the contributions of this dissertation.

1.6 Dissertation Outline

This thesis consists of seven chapters including this introduction. The main content is

divided into two parts as well as two additional appendices.

Background. Chapter 2 presents an overview of the linguistic components of Sign

Languages. This overview brings the basic important information that is necessary to

understand the languages and the complexity of the topic tackled in this thesis. We also

present an overview of public and non public sign language datasets up to date.

Part I: Collecting and Annotating Sign Language Data.

Chapter 3 presents the process of collecting and annotating the sign language video

collection that compose the How2Sign. We first define and explain all the different the

modalities that compose the How2Sign. Then we describe the video recording process

that took place in two different studios followed by an explanation of the manual and

automatic annotation process of the signing videos. We later present the final dataset

statistics and a discussion on the privacy, bias and ethical consideration. We conclude

by presenting our final remarks and the experience acquired by the process of collecting

and annotating a large-scale and multimodal dataset.

Part II: Sign Language Meets Computer Vision.

Chapter 4 addresses the annotation scarcity problem and presents our proposed frame-

work, called Spot-Align, that integrates multiple sign spotting methods to automati-

cally annotate significant fractions of the How2Sign dataset with sign-level annotations.
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Using the resulting automatic annotations, we further explore and establish sign language

recognition baseline for the How2Sign dataset.

Chapter 5 proposes the task of sign language video retrieval with free-form textual queries

by learning a joint embedding space between text and sign language videos. We establish

baselines for the How2Sign in the proposed task and test our approach on the largely

used Phoenix2014T dataset.

Chapter 6 explores the use of Generative Adversarial Networks in the context of sign

language video generation and presents a user study that aims to understand if and how

well sign language users understand automatically generated sign language videos.

Discussion. We conclude this thesis in Chapter 7 with a summary of contributions

followed by a discussion of open problems and future work in the area of sign language

understanding and beyond.

In addition to the technical contributions presented in the main body of this thesis, we

append two other contributions that do not directly involve the main topic of this thesis

(sign language understanding) but were developed as preliminary studies. They paved

the way for the development of the main methods presented in Chapters 5 and 6.

Appendix A – Cross-modal audio and video retrieval presents our preliminary

work on cross-modal audio-video retrieval with a simple and yet effective model that

explores cross-modal embedding for retrieving videos given an audio file or vice-versa.

Appendix B – Sign Language Video Generation presents our approach towards

cross-modal image generation, more specifically, the generation of facial images given a

raw speech signal. We propose a new speech-conditioned generative adversarial network

architecture and a new image-speech dataset, called Youtubers.



2
Background

The success of sign language understating systems not only relies on learning the com-

plex linguistic aspects of sign languages, but also understanding the culture of the Deaf

communities, making sure that these new technologies are aligned with their needs and

desires.

Here, we summarize the background information presenting the basic linguistic compo-

nents of sign languages (Section 2.1), the history of American Sign Language (Subsec-

tion 2.1.2), followed by a brief introduction to the Deaf culture and the marginalization

of their languages (Subsection 2.1.3). In addition, we also present an extensive survey of

the existing sign language datasets (Section 2.2), where we present the modalities and

limitations of the publicly available sign language datasets up to date.

2.1 A Brief Introduction to Sign Languages

Sign languages are complex natural languages that have their own grammatical structure

directed by linguistic rules [47] with distinct lexicons (vocabularies) of arbitrary signs

(conventional symbols) that are constantly evolving. They should not be confused with

gesturing or any sort of mime1.

Given the complexity of sign languages and the focus of this thesis, here we provide

a high-level overview of important elements that compose sign languages, followed by
1Although sign languages have been used for thousands of years they have been marked as inferior

and not recognized as languages by hearing people throughout history. Until circa of 1980 sign languages
used in Deaf communities was wrongly considered to be merely a system of mime and ungrammatical
gestures [48].

15
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a few information about American Sign Language and the marginalization of the Deaf

communities and their languages. It is important to note that the following information

is by no means comprehensive and detailed, but it is intended to provide an overall

understanding of the level of difficulty of the problems tackled in this thesis, as well as

an overall understanding of sign languages. Furthermore, the notations discussed here

can differ between signed languages and may not apply to all of them.

2.1.1 Linguistic Components of Sign Languages

Similar to spoken languages, signed languages can appear in different grammatical levels,

such as individual letters (called fingerspelling), single sign/word (or also called isolated

sign) or complete sentences (continuous signing). The nomenclature in italics is used

throughout this dissertation.

Use of multiple articulators. Sign languages are visual-gestural languages that convey

information via manual and non-manual markers [49]. Manual articulators are composed

of four basic visual-gestural units, which are: hand shape, hand location, hand movement,

and palm orientation [34]. Apart from the hands, non-manual articulators such as the

head (nod/shake/tilt), mouth (mouthing), eyebrows, cheeks, face (called facial grammar

or facial expressions), and eye gaze are also used and equally important for sign language

communication [50]. Below we provide more details about important manual and non-

manual articulators and their roles in ASL.

Hand shape refers to the distinctive configurations that the hands take as they are used

to form signs [51]. Hand shape is one of five components of a sign, along with location,

orientation, movement, and facial-body expression. Different sign languages use of dif-

ferent hand shapes. American Sign Language uses 18 hand shapes for ordinary signs,

plus a few marginal hand shapes taken from the American Manual Alphabet for finger

spelling [52].

Head movement. The movement of the head supports the semantics of sign language.

Questions, affirmations, denials, and conditional clauses are communicated with the help

of the signer’s head movement.

Facial grammar. Facial grammar does not only reflect a person’s emotions, but also con-

stitutes a large part of the grammar and linguistic information in sign languages [53]. In

American Sign Language (ASL), for example, the eyebrows are used to indicate whether

the sentence ends with a question mark, exclamation mark, or period. When asking

a W-question (e.g. questions that have WHO, WHAT, WHERE, WHEN, WHY, and
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WHICH) the eyebrows move downward to indicate curiosity or inquiry, while when ask-

ing YES or NO questions, the eyebrows are raised. Another purpose of facial expressions

in ASL grammar is to express the emotion of the sign. For example, when signing

HAPPY, SAD, or MAD, the facial expression must match the sign. If the sign HAPPY

is signed with a sad face, the sign will be grammatically incorrect. Facial expressions

are also used to add emphasis to a sign. In English, if a person wants to express the

importance of a point, it is common to add the word “very” before it, for example, to

provide emphasis. To show emphasis in ASL, facial expressions are added instead of an

additional sign. Furthermore, ASL also has a tone to the signs. For example, we can use

the sign "FINE" and create different meanings, e.g. FINE (happy), FINE (annoyed), or

FINE (angry). These tones are created by adding a happy, annoyed, or angry face, in

addition to emphasizing the sign FINE [54].

Mouth morphemes (mouthing). Mouth movement or mouthing is used to convey an

adjective, adverb, or another descriptive meaning in association with an ASL word.

Some ASL signs have a permanent mouth morpheme as part of their production. For

example, the ASL sign NOT-YET requires a mouth morpheme (TH) whereas LATE

has no mouth morpheme. These two are the same sign but with a different non-manual

signal. These mouth morphemes are used in some contexts with some ASL signs, not all

of them.

Simultaneity. Both manual and non-manual markers usually appear simultaneously

within the signs but can also be used at a sentence level to express a grammatical

change. For example, in American Sign Language, a positive sentence can be turned

into a negative sentence by adding a headshake while signing or a signer can use eyebrow

movements to transform a statement into a question.

Signing space. Sign language users utilize not just their body to communicate but

also the space around them2. The signer’s use of space is an important aspect of signed

languages used not just to articulate signs but also to represent different mapping func-

tions and interactions [55, 56]. For example, in ASL, the signing space can be used to:

convey the noun-verb relationships; identify nouns and pronouns; refer to individuals,

objects, buildings, and places; illustrate time sequencing; reflect spatial relationships;

express distance between locations; compare and contrast; or to indicate the location of

objects.

The most common way of using the signing space is by “placing” people, objects, etc.

in a conversation. One example of placement can be seen as the following: the signer

introduces who they will be talking about by signing their names and placing them
2The signing space extends from above the signer’s head to the waist vertically and from elbow to

elbow horizontally. Signs are articulated on or in front of the signer’s body.
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somewhere in the signing space. If we want, for example, to describe characteristics of

Peter and Julia, we will sign “P-E-T-E-R” and place it on our right, then sign “J-U-L-I-A”

and place it on our left. During the whole conversation, we will then refer back to Peter

and Julia as “he” or “she” by just pointing to, looking at, or signing towards where each

of them were placed instead of signing their names again. The placement can also be

used to demonstrate a verb. For example, if we want to sign that Peter gave something

to Julia, this action can be expressed by moving the sign “to give” from right to the left,

or the opposite if we want to express that Julia gave something to Peter.

Classifiers are important yet complex elements of sign languages. They are designated

handshapes that are associated with specific categories (classes) of things, size, shape,

or usage. They can help to clarify the message, highlight specific details, and provide

an efficient way of conveying information [57]. However, it is important to note here

that the same handshape can be used to represent different objects or situations; this

means that disambiguation can only come via context. For example, the handshape

classifier “1” (CL:1) can be used to represent a person walking or a thin object such as

a knife, pen, stick. Yet, it can also be used to explain how skinny an object is. Another

commonly used classifier is the classifier “3” (CL:3). It is typically used to represent

vehicles (e.g. cars, trucks, motorcycles, etc). For example, if signing CAR one can use

the CL:3 classifier to explain how the vehicle was moving (direction, speed, etc) 3.

Depiction. The use of classifiers are usually related to the use of depiction, where the

person uses their body to depict an action (e.g. showing how one would fillet a fish),

a dialogue, or psychological events [35]. When a signer is depicting something, subtle

shifts in body positioning and eye gaze can be used to indicate a referent, as explained

above in the signing use of space.

Fingerspelling is often used to convey concepts from a spoken language that do not

have a corresponding sign, or if the person does not know the sign for it. It can also be

used to introduce a person who has not yet been assigned a name sign4. It is based on the

alphabet of a spoken language, where every letter in the alphabet has a corresponding

(static or dynamic) sign. Fingerspelling is also not shared between sign languages and

can differ the way it is presented. For example, in ASL, the sign letters are performed

using one hand, while in BSL two hands are used.

The vocabulary and syntax of sign languages also differ from the spoken languages of

the same geographical area. They are independent of the spoken languages around them
3More information about handshapes and classifiers can be found at https://www.lifeprint.com/

asl101/pages-signs/classifiers/classifiers-main.htm
4People within the Deaf community will often assign a unique and personal "name sign" as a way to

identify someone without fully spelling out their name. These names often reflect the person’s character
and are usually devised by someone within the Deaf community.

https://www.lifeprint.com/asl101/pages-signs/classifiers/classifiers-main.htm
https://www.lifeprint.com/asl101/pages-signs/classifiers/classifiers-main.htm
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and keep evolving in the Deaf 5 communities where new signs emerge within the user’s

interaction. Signs from other sign languages can also be borrowed, similar to loanwords

in spoken languages. In this case, the sign is still part of an established lexicon. However,

SL users can also create an ad hoc sign (productive lexicon) to describe or convey a piece

of a specific information. For example, if one wants to sign “a man walking on long legs”

in Flemish Sign Language, instead of signing “MAN”, “WALK”, “LONG” and “LEGS”,

the hands can be used as classifiers to imitate the man walking [58]. Both the established

and productive lexica are considered parts of the languages.

2.1.2 American Sign Language

While sign languages share some important characteristics, they are not universal.

Similar to spoken languages, different countries and even different regions have developed

their own sign language with distinct grammar and lexicons that brings with them the

culture and identity of a community.

Although all Deaf communities and their sign languages are important and should have

appropriated accessibility and inclusion in our society, for logistics reasons, in this work,

we mainly focus on American Sign Language. ASL is the predominant language of the

Deaf communities in the United States and most of the English-speaking parts of Canada.

Dialects of ASL and ASL-based sign languages are also used in many countries around

the world, including a big part of West Africa and parts of Southeast Asia. Despite its

wide use, no accurate count of ASL users has been taken since hardly signed languages

are included in language census [59].

ASL was originated in the early 19th century when Thomas Gallaudet and Laurent

Clerc together opened the first American school for the deaf in Hartford (Connecticut,

USA) after having traveled to Paris to study the French method of teaching 6 [60, 61].

Thus, unlike the spoken languages, American Sign Language has more in common with

French Sign Language (LSF) than with British Sign Language (BSL) [60]. Although

sign language had been used by various communities in the United States, ASL was just

formalized as a language in 1960 by William C. Stokoe. His contributions revolutionized

the understanding of the language in the United States and sign languages throughout

the world [34].

Even though most Deaf communities of a country adopt a sign language to be used,

this can vary depending on the geographic region and culture. For example, in Spain,
5We follow the recognized convention of using the upper-cased word Deaf which refers to the culture

and describes members of the community of sign language users and the lower-cased word deaf describes
the hearing status [11].

6The first school for the deaf was established in Paris during the 18th century.
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there exists Spanish Sign Language, which differs from Catalan Sign Language (used in

Catalonia), and Galician Sign Language (used in Galicia), similarly as their spoken coun-

terparts. In addition to that, sign languages can also have dialects that vary according

to region, social, and ethnic groups. Very often signers in different geographic regions or

from different social groups show systematic differences in the way they use the language.

For example, ASL users from the Northeast and Southern regions of the United States

often use different signs for the same object, and deaf African Americans use the Black

American Sign Language (BASL) dialect within the Black Deaf community [62].

2.1.3 Deaf Culture and the Marginalization of Signed Languages

A culture has different components such as language, values, traditions, norms and iden-

tity [63]. Sign language users form cultural minorities, that are connected by all these

five sociological aspects. Deafness is not seen as a disability, but as a cultural identity [64]

with many advantages [65]. Sign languages are a central component of Deaf cultures, and

consequently, the development of systems that account sign language is highly sensitive,

and must do the language justice to gain adoption [14].

Although signed languages are complete and natural languages used as the first or pre-

ferred mode of communication by millions of people worldwide [10], they unfortunately

continue to be marginalized languages. It is worth noting that the marginalization of

the Deaf community extends way beyond language and is highly similar to the long his-

tory of oppression experienced by minority groups in our society [66]. The suppression

of sign language communication has been a major form of oppression against the Deaf

community known as “audism” [67, 68]. In 1880, an international congress of a majority

of hearing educators declared that sign language should not be used in the education

process of deaf children, and spoken language should be used instead [69].

Consequently, oralism was widely enforced by training students to lip-read and speak.

Since then, Deaf communities have fought to use sign languages in schools, work, and

public life (e.g. [70]). Although this historical struggle can make development of sign

language technology particularly sensitive in the Deaf community, we believe and rein-

force that providing easy access to sign languages, including in education, public services

and access to information is a critical current missing point for the human rights of deaf

people [71].
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2.2 Sign Language datasets

There are a number of sign language datasets publicly available that can be used for

computer vision and natural language processing tasks, referred as sign language under-

standing tasks throughout this thesis. However, such datasets have been mostly collected

for linguistic purposes, disconsidering most of the features that modern deep learning

models require.

Benchmarks of isolated signs and continuous signing have been proposed for American

(ASL) [6, 72–76], British (BSL) [77–79], Chinese (CSL) [80, 81], Finnish (FSL) [82],

Flemish (VGT) [83], German (DGS) [19, 84, 85], Greek (GSL) [86], Indian (ISL) [87],

Irish [88], Kazakh-Russian (K-RSL) [89], Swiss-German (DSGS) [83], Swedish (SSL) [90],

Turkish (TİD) [91] Sign Languages.

Isolated signs datasets normally contains videos of people performing single signs

(lexicon) together with its corresponding spoken word7. They are usually collected and

provided by linguists and researchers from different areas as a dictionary database or in

smaller sizes as a collection of specific signs [6, 72–74, 86, 87, 89–91]. The signs in these

datasets are usually performed at a slower speed (for clarity), and the hands of the signer

regularly starts and ends from a neutral pose, also called resting position. Although such

data may be important as sign dictionary, or as a resource for those who are learning a

sign language, most real-world use cases of sign language involve natural conversational

with complete sentences (i.e. continuous sign language).

Continuous signing datasets can contain different types of data (also called modalities

in this thesis) together with videos of people signing in a continuous way. Different from

isolated signs, continuous signing presents two or more signs performed one after the

other, with a context, usually forming a sentence. This represents a more natural way

one would use the language in a daily live, e.g. in a conversation, in common activities,

or also translating from spoken languages to sign languages.

Despite the large effort towards having large-scale sign language datasets in recent years8,

the lack of suitable datasets is still one of the biggest challenges in the area of computer

vision applied to sign language research [14]. It is important to note that the collection

and annotation of such data is a laborious and expensive task. It requires a team of sign

language linguistics and native speakers (e.g. a Deaf person) working together to acquire

reliable data. Sign language videos can sometimes be harvested from online sources (e.g.
7Depending on the purpose of the dataset, the corresponding spoken language word may not be

available.
8Datasets released after the publication of How2Sign are marked with a * in Table 2.1
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Table 2.1: Summary of isolated and continuous sign language datasets publicly avail-
able. At the time of its publication, How2Sign was the largest publicly available Sign Language
dataset across languages in terms of vocabulary, and still the largest American Sign Language
(ASL) dataset in terms of video duration. We also see that How2Sign is the dataset with the
most parallel modalities. A detailed explanation of each modality can be found in the Section 3.2.
*denotes datasets that were published after the How2Sign. Mult. stands for Multiview and it is
consider when the recordings contain 2+ cameras. Align. stands for Alignment and it is consider
when there is an automatic or manual alignment between the sign videos and the text translation
(Trans.).

Name Lang. Vocab. Duration (h) Signers Modalities
Mult. Trans. Gloss Pose Depth Alig. Speech

Isolated signing
K-RSL corpus [89]* K-RSL 200 1 5 ✗ ✓ ✗ ✓ ✗ ✓ ✗

AUTSL [91]* TİD 226 21 43 ✗ ✓ ✗ ✗ ✓ ✓ ✗

INCLUDE [87]* ISL 263 3 7 ✗ ✓ ✗ ✗ ✗ ✓ ✗

GSL isol. [86]* GSL 310 6 7 ✗ ✓ ✗ ✗ ✓ ✓ ✗

MSASL [6] ASL 1,000 25 200 ✗ ✓ ✗ ✗ ✗ ✓ ✗

WLASL [72]* ASL 2,000 14 119 ✗ ✓ ✓ ✗ ✗ ✓ ✗

ASL-LEX 2.0 [73]* ASL 2,723 – – ✗ ✓ ✓ ✗ ✗ ✓ ✗

ASLLVD [74] ASL 3,300 4 6 ✓ ✗ ✓ ✓ ✗ ✓ ✗

SSL Lexicon [90] SSL 19,708 – – ✗ ✗ ✓ ✗ ✗ ✓ ✗

Continuous signing
Public DGS Corpus [19] DGS – 50 327 ✓ ✓ ✓ ✓ ✗ ✓ ✗

Video-Based CSL [80] CSL 178 100 50 ✗ ✓ ✗ ✓ ✓ ✓ ✗

GSL SD [86]* GSL 310 10 7 ✗ ✓ ✓ ✗ ✓ ✓ ✗

SIGNUM [84] DGS 450 55 25 ✗ ✓ ✓ ✗ ✗ ✓ ✗

S-pot [82] FSL 1,211 9 5 ✗ ✓ ✗ ✗ ✗ ✗ ✗

SWISSTXT-WEATHER [83]* DSGS 1,248 1 – ✗ ✓ ✗ ✓ ✗ ✓ ✗

CSL-Daily [81]* CSL 2,000 23 10 ✗ ✓ ✗ ✗ ✗ ✗ ✗

BOBSL [78, 79]* BSL 2,281 1,467 39 ✗ ✓ ✗ ✓ ✗ ✗ ✗

RWTH-Phoenix-2014T [85, 92] DGS 2,887 11 9 ✗ ✓ ✓ ✗ ✗ ✓ ✗

BSL Corpus [77] BSL 5,000 – 249 ✗ ✓ ✓ ✗ ✗ ✗ ✗

VRT-NEWS [83]* VTG 6,875 9 – ✗ ✓ ✗ ✓ ✗ ✓ ✗

SWISSTXT-NEWS [83]* DSGS 10,561 9 – ✗ ✓ ✗ ✓ ✗ ✓ ✗

Boston104 [75] ASL 104 8.7 (min) 3 ✗ ✓ ✓ ✗ ✗ ✗ ✗

NCSLGR [76] ASL 1,866 5.3 4 ✓ ✓ ✓ ✗ ✗ ✗ ✗

How2Sign (ours) ASL 15,686 79 11 ✓ ✓ ✓ ✓ ✓ ✓ ✓

video platforms or SL learning resources), but still need to be annotated by sign language

experts.

An extended overview including non public isolated and continuous sign language datasets

are presented in Figures 2.1 and 2.2 respectively. We present detailed information about

the signed language, the content or modalities included in the dataset, the vocabulary

size, the number of samples, the domain of discourse, the number of signers, the resolu-

tion of the videos or images, the link for download (if available), the related publication

and if the dataset is publicly available or not. An online version of both lists can also be

found at https://how2sign.github.io/related_datasets.html. We intend to keep

both lists updated in order to assist future work on this research area.

Table 2.1 presents summary of the dataset overview containing just publicly available

datasets grouped by isolated and continuous signing.

https://how2sign.github.io/related_datasets.html
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Figure 2.1: Isolated sign language datasets. We present an extended overview and detailed
information of the public and non-public isolated sign language datasets up to date.
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Figure 2.2: Continuous sign language datasets. We present an extended overview and
detailed information of the public and non-public continuous sign language datasets up to date.
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Modalities As mentioned before, sign language datasets can contain different types of

data 9. Regarding the different modalities available in the public datasets, we can observe

that: (i) the majority of the datasets does not include multiview recordings (e.g. more

than one camera at different view points), which can be helpful to disambiguate signs and

have a better estimation of the body position; (ii) all continuous signing datasets include

the translation in one or more of its spoken language counterpart; (iii) in addition to

the translation, some of the datasets also provide gloss annotations, that is, a text-based

transcription of the signs that can serve as a proxy in translation tasks; (iv) a few provide

2D or 3D pose estimation, usually extracted using out-of-the-box human pose estimation

methods (e.g. OpenPose [23]); (v) only five datasets used a Depth sensor to record the

signers in addition to the RGB camera; (vi) some of the datasets provide manually or

automatic alignment between the sign language videos and the spoken language transla-

tion – datasets that do not provide such alignment usually maintain the alignment with

the audio coming from the spoken language translation, when available; (vii) although

other datasets have the translation coming from the spoken language audio, How2Sign

is the only sign language dataset aligned with a speech track.

Limitations. The publicly available datasets present one or more of the following

weaknesses: (i) they have a limited number of signers – for example, GSL SD [86]

and S-pot [82], have seven or fewer signers; (ii) they have a limited vocabulary size –

for example, Video-Based CSL [80], SIGNUM [84] and Boston104 [75] only have a few

hundred signs or spoken language words; (iii) they are limited in total duration – for

example the popular RWTH-Phoenix-2014 [85] dataset contains only 11 hours of con-

tent; (iv) they represent natural continuous signs but cover a limited domain of discourse

or contain sign language interpretation10 – for example, the videos in RWTH-Phoenix-

2014 [85], SWISSTXT-WEATHER [83], SWISSTXT-NEWS [83], VRT-NEWS [83] and

BOBSL [78] are from weather broadcasts or TV shows. If we focus on American Sign

Language (ASL), BOSTON-104 [75] only contains 8.7 minutes of grayscale video, while

NCSLGR [76] is larger, but still an order of magnitude smaller than How2Sign. We

present details about the How2Sign dataset including its statistics, modalities, and in-

formation on the video recordings and annotations in the next Chapter.

9We summarize and describe the most common types of data available in continuous SL datasets in
Section 3.2.

10Language interpretation is defined by the International Standards Organization (ISO) as the fol-
lowing: "Rendering a spoken or signed message into another spoken or signed language, preserving the
register and meaning of the source language content." [93]
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3
The How2Sign dataset

In this Chapter we introduce the How2Sign dataset and present in detail the modalities

it is composed of (Section 3.2), followed by the description of the data collection process.

In particular, we describe in Section 3.3 how the sign language videos were recorded,

and in Subsections 3.3.2 and 3.3.3 we detail the how the manual (English translation

re-alignment, gloss annotations and videos categories) and automatic (2D/3D pose es-

timation) annotations where collected. We also include a discussion about the privacy,

bias and ethical considerations that are important for a better understanding of the data

(Section 3.4).

3.1 Introduction

Promising recent works in sign language understanding tasks have shown that modern

computer vision and machine learning architectures may be able to help breaking down

the communication barriers that sign language users face in their daily lives [85, 94–98] .

However, in order to successfully train such data-hungry models, large amounts of an-

notated data is needed. The availability of public large-scale datasets suitable for sign

language understanding tasks is very limited, as presented in the previous Chapter, es-

pecially when it comes to continuous sign language datasets, i.e., where the data is

segmented and annotated at the sentence level. Before the publication of the dataset

presented in this thesis, there was no ASL dataset large enough to be used with current

deep learning approaches.

27
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How2 dataset

Speech Signal

English Transcription 
Hi, I’m Amelia and I’m going to talk 

to you about how to remove gum from 
hair.

Gloss Annotation 
HI, ME FS-AMELIA WILL ME TALK GUM IX-LOC-HAIR STUCK

Green screen studio RGB videos Green screen studio RGB-D videos

Body-face-hands keypoints Multi-view studio data (only for a subset)

3D keypoints estimationMulti-view VGA and HD videos

How2Sign dataset

Figure 3.1: Sample data of the How2Sign dataset. Our dataset consists of over 80 hours
of multiview sign language videos and different modalities.

In order to tackle this problem, we collected and we present in this Chapter the How2Sign

dataset. In the following sections we describe in details the process of collecting sign

language video and annotations and provide insights and information that can facilitate

future data collection efforts. Figure 3.1 shows samples of the data that compose the

How2Sign. The dataset is publicly available for research purposed and can be downloaded

at: http://how2sign.github.io/.

3.2 Dataset Modalities

As mentioned in Section 2.2, continuous sign language datasets usually include differ-

ent types of data (called here modalities) together with the sign language videos. The

How2Sign dataset is composed of six different modalities that were either borrowed from

the source language dataset or were manually or automatically collected.

As a starting point, we selected a set of instructional videos from the existing How2

dataset [99] that were originally available in spoken English. The How2 is a publicly

available multimodal dataset for vision, speech and natural language understanding,

with utterance-level time alignments between the speech and the ground-truth English

transcription. The original dataset consists of 79,114 instructional videos (2,000 hours

in total, with an average length of 90 seconds) downloaded from Youtube with English

transcription (subtitles) manually added by the users. A subset of 13,662 videos (300

hours) was manually verified as part of the first release and translated into Portuguese

and called by the authors How2-300h. From the How2-300h subset, we selected 2,192

http://how2sign.github.io/
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videos (60 hours) from the training set and the complete validation (115 videos) and test

sets (149 videos) to be part of the How2Sign.

Using the selected videos, we record videos of ASL signers translating the original spoken

English content into American Sign Language translations. In addition to the videos, we

also collect a set of different modalities that are described next.

Multiview. All sign language videos were recorded from multiple angles. This allows

the signs to be visible from multiple points of view, reducing occlusion and ambiguity,

especially in the hands. Specifically, the sign language videos recorded in the Green

Screen studio contain two different points of view (frontal and lateral), while the Panoptic

studio recordings consist of recordings of more than 500 cameras allowing for a high

quality estimation of 3D keypoints [100]. We detail the recordings in both studios in

Section 3.3.

Transcriptions. The English speech transcriptions (or also called English translation)

originates from the subtitles track of How2 original videos. The transcriptions were

manually produced by the uploader of the instructional video in form of text, that was

loosely synced with the video’s speech track. As subtitles are not necessarily fully aligned

with the speech, transcriptions were time-aligned at the sentence-level as part of the How2

dataset [99]. The transcriptions were later re-aligned with the sign language videos as

part of the How2Sign dataset. We explain this process in Subsection 3.3.2.

Gloss. As mentioned in Section 1.3, gloss is used in linguistics to transcribe signs using

spoken language words. Although gloss is not a true translation, it is the form of text

that is closest to sign language and it has been used by a number of approaches as an

intermediate representation for sign language understanding [85, 94, 97, 98, 101]. An

example of gloss annotation is shown on the bottom right of Figure 3.1.

Pose. Human pose information, e.g. body, hand and face keypoints were extracted for

all the recorded sign language videos in the full resolution – 1280 x 720 pixels. For the

Green Screen studio data, the two-dimensional (2D) pose information was automatically

extracted using OpenPose [23]. In total, each pose consists of 25 body keypoints, 70

facial keypoints and 21 keypoints for each hand. We provide pose information for both

frontal and side view of the Green Screen studio data. A sample of the pose information

extracted can be seen on the bottom row in the left side of Figure 3.1. For the Panoptic

studio data, we provide high quality 3-dimensional (3D) pose information estimated by

the Panoptic studio internal software [100] that can be used as ground-truth for a number

of 3D vision tasks.

Depth data. For the Green Screen studio data, the sign language videos were also

recorded using a Depth sensor (Creative BlasterX Senz3D) from the frontal viewpoint.
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The sensor has high precision facial and gesture recognition algorithms embedded and is

able to focus on the hands and face, the most important human parts for sign language.

Speech. The speech track comes from the instructional videos as part of the How2

dataset [99]. They are audio files containing what the person in the video is speaking.

As part of the How2 dataset, a set of features were extracted and distributed.

3.3 Data collection

In this section we detail the data collection process, i.e. the process we followed for

collecting the sign language videos as well as for the manual and automatic annotations.

We later present the data statistics of the dataset.

3.3.1 Sign language video recordings

All recordings were performed in a supervised setting at two different locations: the Green

Screen studio and the Panoptic studio, both described below. We recorded the complete

dataset (80 hours) in the green screen studio. Note that the 60 hours of videos selected

from the How2 dataset translated to 80 hours of videos in the How2Sign due the different

speed in which both English and ASL are conveyed, as well the followed recording pipeline

(we explain this process below). We then choose a small subset of videos (approx. 3

hours) from the validation and test splits and recorded them again in the Panoptic

studio. After recording, we trimmed the RGB frontal and lateral sign language videos

and divided them in sentence-level clips, each annotated with a corresponding English

transcript, and the modalities presented in Section 3.2.

The Green Screen studio was equipped with a depth and a high definition (HD)

camera placed in a frontal view of the signer, and another HD camera placed at a lateral

view. All three cameras recorded videos at 1280x720 resolution, at 30 fps. Figure 3.2

shows the studio and its setup. Samples of data recorded in this studio are shown in the

top row of Figure 3.1.

The Panoptic studio [100] is a singular system equipped with 480 VGA cameras, 30

HD cameras and 10 RGB-D sensors, all synchronized. All cameras are mounted over the

surface of a geodesic dome1, providing redundancy for weak perceptual processes (such

as pose detection) and robustness to occlusion. In addition to the multiview VGA and

HD videos, the recording system can further estimate high quality 3D keypoints of the

interpreters, also included in How2Sign. Figure 3.3 shows the inside of the dome and
1http://www.cs.cmu.edu/~hanbyulj/panoptic-studio/

http://www.cs.cmu.edu/~hanbyulj/panoptic-studio/
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Figure 3.2: Green Screen studio. On the left we can see the studio setup with the green
background, the cameras on the tripods in front and on the side of the chair where the signers
would remain sitting during the recordings as well as the screen (grey laptop) where they would
watch the video that would be translated. On the right we can see a signer during a recording
session from the point of view of the person recording it. The image show the output of the
Depth camera.

its setup. Samples of data recorded in this studio are shown on the bottom-right of

Figure 3.1.

Recording pipeline. Before recording the videos, the signers were asked to position

themselves in front of a screen where the videos were presented to them. In the Green

Screen studio they remained sitting with a green screen background behind them, while in

the Panoptic studio they stayed standing in the middle of the dome. Before starting the

video recordings the signer would first watch the video with the transcript as subtitles in

order to become familiar with the overall content; this enables them to perform a richer

translation. After becoming familiar with the content, they were asked to watch the

video again but now translating the English sentences from the subtitles into ASL while

being recorded. During the recordings the signers were watching the original video at a

slightly slower-than-normal (0.75) speed to facilitate the translation.

Importance of providing the original video to the signer before the recordings.

During the preliminary design phase of the data collection, signers were asked to perform

English to ASL translation when given: (1) just text without reading it beforehand; (2)

the video and text together but without seeing it previously and (3) text and video

together and allowing them to watch it before the recording. The conclusions for each

case were: (1) signers found it hard to understand and follow the lines at the same

time, causing lots of pauses and confusion; (2) signers found it easier to understand and

translate but still with some pauses and (3) the understanding and flow improved. With

these conclusions we decide to proceed with (3) during the rest of the recordings.

Verification process. After the recordings, a set of around 750 videos (30%) were

manually verified by ASL users that did not participate into the recordings. They were
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Figure 3.3: Panoptic studio. On the left we can see the external structure of geodesic dome
where the 500+ cameras are mounted in different view points. The whole system is equipped
with 480 VGA cameras, 30 HD cameras and 10 RGB-D sensors. On the top right of the image
we can see the internal structure of the dome with the cameras and the illumination system. On
the bottom right we can see two signers during a recording session.

asked to watch the original video with the subtitles that were presented to the signers

as well as the ASL translation and asked if the translation conveyed by the signer was

correct or not. This verification process assure us that the signers translated the content

correctly as requested.

Signers. In total, 11 people appear in the sign language videos of the How2Sign dataset;

we refer to them as signers. Of the 11 signers, 5 self-identified as hearing, 4 as Deaf

and 2 as hard-of-hearing. The signers that were hearing were either professional ASL

interpreters (4) or ASL fluent. Figure 3.4 show all the 11 signers that participated in

the recordings of the How2Sign dataset. From the 11 signers, four of them (signers 1,

2, 3 and 10 ) participated in both the Green Screen studio and the Panoptic studio

recordings. Signers 6 and 7 participated only in the Panoptic studio recordings, while

signers 4, 5, 8, 9 and 11 participated only in the Green Screen recordings. The signer ID

information of each video is made available with the dataset.

Duration and cost of data collection. The videos in the dataset were collected across

65 days over 6 months. For each hour of video recorded, the preparation, recording and
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Figure 3.4: The 11 signers that appear in the How2Sign dataset videos. On the top
row, we can see signers 1-5 (from left to right) in the Green Screen Studio, while on the bottom
row we can see signers 8-11 (again left to right) in the Green Screen Studio. The rightmost figure
on the bottom row shows signers 6-7 in the Panoptic studio.

video review took approximately 3 hours on average. All the videos were then manu-

ally verified and trimmed by professionals. This post-process step took approximately

4 months. After being verified and trimmed, the English transcriptions were realigned

with the ASL videos (see Section 3.3.2 for more information) as well as part of the gloss

annotation was collected. This process took approximately 8 months 2. All participants

including signers, video editing professionals and ASL linguists were compensated ac-

cordingly to their tasks rounding the total cost of the data collection to $35,000 US

dollars 3.

3.3.2 Manual Annotations

Beyond the video recordings we further collected a number of manual annotations for

the sign language videos. Here we present the re-aligment of the English transcriptions,

followed by the gloss annotations and the classification of the video categories. All

manual annotations are available with the dataset.

Re-alignment of the English translation. The English translation originates from

the subtitles in the How2 dataset (also called English transcriptions). The transcriptions

were manually produced by the uploader of the instructional video in form of text, that

was loosely synced with the video’s speech track. As subtitles are not necessarily fully

aligned with the speech, transcriptions were time-aligned at the sentence-level as part

of the How2 dataset release. However, when translating the content from English to

American Sign Language, the original alignment between the speech and the subtitles

is not transferable to the ASL videos. English and ASL are different languages and do
2Part of the gloss annotations are still being collected.
3Video recordings, manually verification and post-processing step cost a total of $15,000 US dollars

while the subtitle realignment and gloss annotation cost a total of $20,000 US dollars.
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Figure 3.5: Samples of the RGB videos from How2Sign. the six first rows show samples
of the videos recorded by the frontal view RGB camera in the Green Screen studio. Last row
shows samples from the RGB cameras from the Panoptic studio. Given the overall structure of
both studios, for each recording session, we recorded one person at the time on the Green Screen
studio, and two people at the time in the Panoptic studio. At the Panoptic studio it is possible
to easily separate and choose the data of each signer to be used by selecting the camera view (in
case of the RGB videos) or the person ID (in the estimated 3D keypoints data).



The How2Sign dataset 35

…

Time

Audio 
aligned

Sign
aligned

00:5000:48 00:52 00:54 00:56 00:58 01:00 01:02 01:04

…

Figure 3.6: Re-alignment of the English translation. We illustrate the differences in the
temporal alignment between the ASL video sequences (top) and the English translation when
the text is aligned with the audio from the original video from How2 (middle), and when it is
re-aligned to match the signing video (bottom). In order to align the ASL videos and the English
translation, we manually re-aligned all sentences in the How2Sign dataset. The timestamps of
both alignments are provided with the dataset. Image adapted from [4].

not have the same structure. In addition to that, during the ASL translation and sign

language video recording process, any temporal alignment is naturally lost. We illustrate

this problem in Figure 3.6.

In order to correct that, we asked ASL users to re-align the English subtitles with the

ASL videos so that each sentence in ASL have a correspondent English translation. The

re-alignment process was manually performed using ELAN [102], an annotation soft-

ware for audio and video recordings, specifically enhanced for sign language annotations.

Figure 3.7 shows a screenshot of the software. In ELAN, each sentence of the subti-

tle is allocated in a different line, called “tiers”, which is time-aligned to the video file.

Figure 3.7 shows different tiers in the bottom part of the image. To adjust the time-

alignment, the sentence boundaries can be moved from left to right (and vice-versa) so

the start and end of each English text sentence coincides with the corresponding ASL

sentence in the video.

It should be noted that not all sentences in the How2Sign have a corresponding English

translation. This is due the fact that the subtitles were first automatically time-alignment

with the speech in the How2 dataset and some sentences were removed in this process.

More specifically sentences that were too short, that contained music components or that

did not form a complete sentence.

Gloss annotations are used in linguistics to transcribe signs using spoken language

words and sign language specific notations. We provide more details about gloss annota-

tions in Section 3.2. Note that since gloss annotations are used specifically as a linguistic

tool, sign language users are not necessarily familiar with them.

Thus, to annotate part of the sign language videos with gloss, it was necessary to employ

ten sign language linguists. A total of 4 hours (around 128 videos) of the How2Sign

was annotated with gloss. The annotation process was performed using ELAN, over
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Figure 3.7: Samples of gloss annotations. We provide an example of the ELAN files used to
collect the gloss annotation.

the re-aligned English translation. In order to prepare the data to be annotated, the

ELAN files needed to be created one-by-one and prepared so the linguists would have

the appropriate files to work on. This process took on average 5 minutes per video.

The gloss annotation was done sentence-by-sentence, where the annotator would first

watch the ASL video, identify the start and end of the sentence, and transcribe each

sign in that sentence into glosses. This process took in average one hour for every 90

seconds of video, becoming an extreme difficult, time consuming, and expensive part of

the annotation step that was initially not expected.

Below we describe the convention used to annotate the How2Sign with glosses. Most

symbols are standards in ASL glossing, but some adaptations were proposed by the

linguists who annotate our data to better adjust the data to our needs. A complete list

is available on the dataset website 4.

• Capital letters. English glosses are written using capital letters. They represent

an ASL word or sign. It is important to remember that gloss is not a translation.

It is only an approximate representation of the ASL sign itself, not necessarily a

meaning.

• A hyphen is used to represent a single sign when more than one English word is

used in gloss (e.g. STARE-AT).
4https://how2sign.github.io/

https://how2sign.github.io/
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• The plus sign (+) is used in ASL compound words (e.g. MOTHER+FATHER –

used to transcribe parents). It is also used when someone combines two signs in

one (e.g. YOU THERE will be glossed as YOU+THERE).

• The plus sign (++) at the end of a gloss indicates a number of repetitions of an

ASL sign (e.g. AGAIN++ – the word “again" was signed two more times meaning

“again and again").

• FS: represents a fingerspelled word (e.g. FS:AMELIA).

• IX is a shortcut for “index", which means to point to a certain location, object, or

person.

• LOC is a shortcut for “locative", a part of the grammatical structure in ASL.

• CL: is a shortcut for “classifier". Classifiers are signs that use handshapes that

are associated with specific categories (classes) of things, size, shape, or usage.

They can help to clarify the message, highlight specific details, and provide an

efficient way of conveying information5. In our annotations, classifiers will appear

as: “CL:classifier(information)". For example, if the signer signs “TODAY BIKE"

and uses a classifier to show the bike going up the hill, this would be glossed as:

“TODAY BIKE CL:3 (going uphill)").

A number of unexpected events including budget, time consumed, and lack of annotators

lead to an interruption of the gloss annotation collection. Here we give a perspective of

how much time and budget would be needed to finish collecting the annotations for the

whole How2Sign according to our estimations and previous data. As mentioned above,

ELAN files need to be created and adapted to accommodate the gloss annotations.

Considering the total amount of videos on the How2Sign, a total of 200 hours would be

needed to finish the creation of such files. An automatic strategy could help accelerate

this process. In addition to that, given the total amount of hours remaining to be

annotated, a total of around 3000 hours would be needed to finish the gloss collection.

For this the budget for each step would vary accordingly to the annotators’ cost as well

as the group of researchers and assistants conducting the data collection.

Video Categories. Although the How2 dataset provides automatically extracted “top-

ics” for all videos using Latent Dirichlet Allocation [103], we found that the automatic an-

notations were in general very noisy and not properly characterizing the selected videos.

In order to better categorize the videos, we manually selected 10 categories from the
5More info about handshapes and classifiers can be found at: https://www.lifeprint.com/asl101

/pages-signs/classifiers/classifiers-main.htm

https://www.lifeprint.com/asl101/pages-signs/classifiers/classifiers-main.htm
https://www.lifeprint.com/asl101/pages-signs/classifiers/classifiers-main.htm
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Figure 3.8: Video categories. Cumulative number of videos per category.

instructional website Wikihow 6 and manually classified each How2Sign video in a single

category. The categories are: Personal Care and Style, Games, Arts and Entertainment,

Hobbies and Crafts, Cars and Other, Vehicles, Sports and Fitness, Education and Com-

munication, Food and Drinks, Home and Garden and Pets and Animals. The distribution

of videos across the ten categories can be seen in Figure 3.8.

3.3.3 Automatic Annotations

Green Screen 2D Pose Estimation. We extract 2-dimensional (2D) pose information

(e.g. body, hand, face keypoints) for the RGB videos collected in the Green Screen studio

(frontal and lateral view points) using OpenPose [23]. OpenPose is a multiple-person

detection library that associates human body parts with individuals in a image. In total,

the full body pose estimation consists of 25 body keypoints, 70 facial keypoints and 21

keypoints for each hand. Figure 3.9 shows the kinematic tree of the predicted keypoints

of the body, face and hand 7.

The 2D pose estimation was extracted for all the HD videos (frontal and lateal RGB

videos) recorded in the Green Screen studio using the full resolution– 1280 x 720 pixels.

A sample of the pose information extracted from the How2Sign videos can be seen in

the bottom row in the left side of Figure 3.1.

Confidence of the extracted keypoints. We compare the confidence of OpenPose

detections for two different video definitions in order to estimate the quality of the
6https://www.wikihow.com/Special:CategoryListing
7More information can be found at the OpenPose documentation: https://cmu-perceptual-compu

ting-lab.github.io/openpose/web/html/doc/md_doc_02_output.html

https://www.wikihow.com/Special:CategoryListing
https://cmu-perceptual-computing-lab.github.io/openpose/web/html/doc/md_doc_02_output.html
https://cmu-perceptual-computing-lab.github.io/openpose/web/html/doc/md_doc_02_output.html
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Figure 3.9: Kinematic tree of OpenPose. On the left image we can see the kinematic tree
representation of the output of the COCO body model used to extract the keypoints of the
How2Sign videos. The facial (top) and the hand (botton) kinematic tree representation are
shown on the right.

Table 3.1: OpenPose confidence scores. Average of confidence score of OpenPose on high
resolution (1280 x 720) compared with low resolution (210 x 260) videos of the How2Sign dataset.

Body Right hand Left hand Face Total

High resolution 0.39 0.42 0.47 0.84 0.53

Low resolution 0.40 0.24 0.30 0.73 0.42

automatic extracted 2D poses. Extracting keypoints from 1280 x 720 videos provided a

53.4% average confidence versus a 42.4% confidence for a lower resolution (210 x 260).

This difference is more prominent when different parts of the body are analyzed. Table 3.1

show the different average confidence scores when OpenPose is extracted using high and

low resolution videos. We see that both hands cause the most harm when low resolution

is used.

Panoptic 3D Pose Estimation. For the Panoptic studio data, we provide high qual-

ity 3-dimensional (3D) pose information estimated by the Panoptic studio internal soft-

ware [100] which may be used as ground-truth for a number of 3D vision tasks.
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Figure 3.10: Clip-level statistics. Distribution of the number of frames (left) and words (right)
over sentence-level clips. Each clip has on average 162 frames (5.4 seconds) and 17 words.

Sign Spotting. Using two different sign spotting techniques, we collect mouthing-

based [79] and dictionary-based [104] sign spotting annotations for the How2Sign, en-

abling its use in sign language recognition and retrieval tasks. The automatic production

of these pseudo-labels is a contribution of this thesis and it is detailed in Section 4.

3.3.4 Dataset statistics

In Table 3.2 we show detailed statistics of the How2Sign dataset. To the best of our

knowledge, How2Sign is the largest publicly available sign language dataset across lan-

guages in terms of vocabulary, as well as an order of magnitude larger than any other

ASL dataset in terms of video duration. We see that How2Sign is also the dataset with

the most parallel modalities, enabling multimodal learning. The bottom section presents

the statistics of the automatically extracted human pose annotations.

Number of videos. A total of 2,456 videos from the How2 [99] were used to record

the sign language videos– 2,192 from the trainning set, 115 from the validation set and

149 from the test set. We maintain the videos in the same partion as they appear in the

How2 dataset. Some of the videos were recorded more than once by a different signer in

the Green screen studio – 21 videos from the training set, 17 videos from the validation

set and 35 videos from the test set. Those videos can be identified by the video ID

provided in the dataset. In total the How2Sign consists of 2,529 videos.

Number of sentences. All the HD-RGB recorded videos were split into sentence-level

clips. Each clip has on average 162 frames (5.4 seconds) and 17 words. The distribution

of frames (right) and words (left) over all the clips for the 3 splits of the dataset can be

seen in Figure 3.10. The collected corpus covers more than 35k sentences with an English

vocabulary of more than 16k words, where approximately 20% of it is finger spelled.

Number of signers. The videos were recorded by 11 different signers distributed

across the splits. The test set contains 26 duplicated videos that were recorded by a
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Table 3.2: How2Sign statistics. Some of the videos were recorded more than once by a
different signer in the Green screen studio (see second row vs. first row). The RGB videos from
frontal and side view were split into sentence-level clips.

Green screen studio Panoptic studio
train val test Total val test Total

How2 [99] videos 2,192 115 149 2,456 48 76 124
Sign language videos 2,213 132 184 2,529 48 76 124
Sign language video Duration (h) 69.62 3.91 5.59 79.12 1.14 1.82 2.96
Number of frames (per view) 6.3M 362,319 521,219 7.2M 123,120 196,560 319,680
Number of clips 31,128 1,741 2,322 35,191 642 940 1,582

Camera views per SL video 1 HD + 1 RGB-D (frontal) + 1 HD (side) 480 VGA + 30 HD + 10 RGB-D

Sentences 31,128 1,741 2,322 35,191 642 940 1,582
Vocabulary size 15,686 3,218 3,670 1807 2360 3260
Out-of-vocabulary – 413 510
Number of signers 8 5 6 9 3 5 6
Signers not in train set – 0 1 2 2

2D keypoints 3D keypoints
Body pose 25 25
Facial landmarks 70 137 70
Hand pose (two hands) 21 + 21 21 + 21

Automatic sign-level annotations 31,128 1,741 2,322 35,191 642 940 1,582

Table 3.3: Statistics of the Green Screen studio data by signer. We present the number
of videos recorded by signer (Videos), together with the total duration of the recorded videos in
hours (Hours) and the number of utterances (Utterances) of each signer.

Signer 1 Signer 2 Signer 3 Signer 4 Signer 5 Signer 8 Signer 9 Signer 10 Signer 11 Total

Train

Videos 50 22 163 24 899 994 18 - 43 2213
Hours 1.89 0.82 3.80 0.82 31.59 28.28 0.67 - 1.72 69.59
Utterances 892 422 1859 398 12102 14596 292 - 486 31047

Test

Videos 16 16 37 - 47 42 - 26 - 184
Hours 0.51 0.53 1.05 - 1.67 1.08 - 0.71 - 5.55
Utterances 224 243 538 - 621 449 - 268 - 2343

Validation

Videos 17 19 27 - 37 32 - - - 132
Hours 0.57 0.68 0.65 - 1.20 0.79 - - - 3.89
Utterances 276 270 306 - 454 433 - - - 1739

signer that is not present in the training set; this subset of 26 videos can be used for

measuring generalization across different signers. In total, 9 signers participated in the

Green Screen studio recordings, and 6 signers in the Panoptic studio recordings. Table

3.3 presents detailed statistics of the videos from the How2Sign dataset recorded in the

Green Screen studio grouped by signer.

3.4 Privacy, Bias and Ethical Considerations

In this section we discuss some metadata that we consider important for understanding

the biases and generalization of the systems trained on our data.
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Privacy. Recording sign language data may feel very personal since it is necessary to

record videos of the person signing (at a minimum, the upper body including face and

torso). Because of the small size of the deaf community, it may be possible to per-

sonally identify signers in videos even though if their names are not available. Signer’s

usually have privacy concerns when contributing to video datasets. This concerns in-

clude misuse of videos, being recognized, showing their surroundings when the video is

recorded at their personal space, signing personal content when asked to tell stories about

themselves, discomfort about looking presentable/attractive or concerns regarding their

signing abilities [18]. One way of mitigating this problems would be by anonymizing the

signer’s face. However, facial expressions are a crucial component for generating and/or

translating sign languages. With this in mind, before the video recordings, each signer

attended an explanation session where the whole recording procedure was explained as

well as how the data would be used and shared for research purposes. All the expla-

nation was also delivered in a written document. After that, if they agreed with the

procedure and were comfortable on being recorded and having their data shared, they

were asked to sign a consent form stating their agreement. The collection of the dataset

followed a set of procedures approved by the Carnegie Mellon University Institutional

Review Board (IRB Registration Number: IRB00000352, Federalwide Assurance Num-

ber: FWA00004206) including a Social & Behavioral Research training completed by the

author of this thesis.

Audiological status and language variety. The majority of the participants iden-

tified American Sign Language as the main language used during the recordings and

sometimes making use of “contact signing” (Pidgin Sign English - PSE) . It is notewor-

thy that differences in audiological status can be correlated with different language use.

The Deaf were likely to identify ASL as the main language used in the recording process.

In contrast, the hearing were likely to identify a mix of contact signing and ASL as the

main language use in the recording process. More information about PSE and ASL can

be found in [105].

Geographic. All participants were born and raised in the United States of America

(most of them in Pittsburgh, PA), and learned American Sign Language as their primary

or second language at school time.

Signer variety. Our dataset was recorded by signers with different body proportions.

Six of them were self-identified male and five self-identified female. The dataset was

collected across 65 days during 6 months, which gives a variety of clothing and accessories

used by the participants.

Data bias. Our data does not contain large diversity in race/ethnicity, skin tone,

background scenery, lighting conditions and camera quality.
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ME  ME NAME 

Figure 3.11: Sample of language variety on our dataset. Both signers were translating the
sentence “I am". We can see that the signer on the left used the casual approach of signing it
(ME NAME) while the signer on the left used the formal approach (ME).

Factors that may impair accurate automatic tracking. During the recording,

signers were requested to not use loose clothes, rings, earrings, watches, or any other

accessories that might impair accurate automatic tracking. They were also asked to

wear solid colored shirts (that contrasted with their skin tone).

Out-of-vocabulary and signer generalization. Although not specifically designed

for this, the How2Sign dataset can be used for measuring generalization with respect

to both out-of-vocabulary words and signers. The dataset contains 413 and 510 out-of-

vocabulary words, e.g. words that occur in validation and test, respectively, but not in

training. It further contains duplicate recordings on the test set by a signer that is not

present in the training set ; these recordings can be used for measuring generalization

across different signers and assessing how well the models can recognise or translate the

signs given an out of the distribution subject.

Language variety. As discussed previously, our dataset contains variations in the

language used by each signer during the recordings. In addition to that, we also would

like to mention that sign language users can also use different signs or different linguistic

registers (i.e., formal or casual) to express the same given sentence. As we can see in

Figure 3.11, two signers from our dataset used two different signs in a linguistic register

to express the phrase “I am”. The signer on the left used the casual approach of signing

(ME NAME) while the signer on the left used the formal approach (ME).

Intra-sign variety. In addition to the multiple variety of signs and linguistic registers,

it is also common to notice differences in the way that different people would perform the

same sign. For example, we can see on Figure 3.12 two signers from our dataset signing

the word “hair”. In this sign, as described by its gloss annotation (IX-LOC-HAIR) the

signer should point to their own hair location. This pointing is not specified and can

vary depending of the person or even depending on the position that the person is in the

moment. We can observe in this situation that both signers choose different locations

to point to their hair. This is a common practise in signed languages that can bring

challenges especially for computer vision-based models.
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IX-LOC-HAIR IX-LOC-HAIR 

Figure 3.12: Sample of intra-sign variety. In this case, both signers are signing the word
“hair" (IX-LOC-HAIR). We can see that the signer on the left chose to point to her hair with a
different gesture from the signer on the right.

3.5 Final Remarks

In this Chapter, we have presented the full process of collecting and building the How2Sign

dataset. The design, management, collection, processing, annotation, storage and ma-

nipulation of the How2Sign is not just one of the biggest contributions of this thesis,

but also the process with more challenges and learning moments of my entire researcher

career until now.

The collection of the How2Sign challenged me to leave my personal and professional

comfort zone and deal with situations that were not common for me until that time

neither were expected during this PhD journey. The first challenge was for sure putting

in practice all the leanings about ASL, management and data collection to be able

to recruit and manage more than thirty people including, Deaf signers, interpreters,

ASL users, linguists, technical and financial support. The How2Sign was a product of

the dedication and contribution of several people that worked hard for this project to

succeed.

After the data collection, the post-processing phase brought different challenges, such

as the manipulation and annotation of a large-scale collection of data. In total, the

How2Sign counts with six different types of data, that accounts for more than twenty

terabytes of raw data. Most part are videos that contain about seven million frames for

each camera recording (in total we have 4 streams of videos), and an large amount of

different folders and files that needed to be organized, processed, annotated and made

available in a manageable way. A storage and data manipulation strategy (in special

videos) is something that needs to be well planned and executed to avoid data loss.

The annotation phase, brought to us unexpected challenges that could have being avoided

with a better design and testing phase. As explained before, annotating such large

amounts of data specially with specific annotations that requires specialists can become

a extreme hard task. In our case, we did not properly account the difficulties in finding

specialized ASL linguists neither the large amount of time that this task can take and the
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different annotation pace in which different people work. This miscalculation regarding

the time of annotation and people management as well as resources needed led to a

interruption of the data collection after several months of unsuccessful efforts. With

such process we have learn the importance of a well planned and calculated design phase

with several rounds of annotation testing to proper estimate the time, efforts and human

and financial resources needed.

Later, in the final phase, the manipulation, storage and distribution of the data taught

us the technical difficulties of the process. Having a proper server to store and distribute

date is an expensive and challenging task that should be taken into account and planned

to be available for a long period of time. Accounting such expense and future technical

support is something that should be included in the final budget.

In summary, for future data collection efforts, the lesson learned with this process was

to plan, calculate and account methodically every possible problem and leave margin for

errors, that they will naturally appear during the process.
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Introduction

Although sign languages have been investigated and studied by linguists for many decades,

only recently they have caught the attention of computer linguistics and computer vi-

sion researchers. Vision-based sign language research, has mainly focused on building

systems that can understand, recognize and translate sign languages to spoken/written

languages or vice versa, aiming at creating a more natural way of communication be-

tween signers and non signers. However, most research to date has mainly focused on

isolated sign recognition and spotting, neglecting the underlying rich grammatical and

linguistic structures of sign language that differ from spoken language.

Tackling complex tasks like Continuous Sign Language Recognition (CSLR) or Sign

Language Translation (SLT) and Production (SLP) has only recently become a tangible

goal for the computer vision research community. With advancements in deep learning

modeling, the first annotated datasets and weakly-supervised algorithms have recently

emerged [8, 85, 98, 101, 104, 106–108]. However, the area is still in its infancy: most

datasets available are very small and/or restricted to a specific domain lacking annotated

data and researchers mainly focus on the same tasks mentioned above. We believe

that such practices, although important, hinders the progress in algorithmic design and

benchmarking.

In this Part of the thesis, we present our contribution to the development of new tasks,

approaches to existing problems and annotation tools that include sign language in their

pipeline. In the following Chapters we explore different computer vision tasks developed

thanks to the How2Sign dataset presented in Chapter 3. In particular, we have addressed

sign language recognition (Chapter 4), sign language video retrieval (Chapter 5) and sign

language video generation (Chapter 6).
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4
Sign Language Recognition

4.1 Introduction

Sign language Recognition (SLR) is the task of recognizing individual signs in a video

sequence, and potentially classify them into individual spoken words or glosses. Sign

Language videos can contain letters (fingerspelling), isolated or a full sequence of signs.

Depending on the levels of syntactic hierarchy, the name of this task can appear as: (i)

fingerspelling recognition– when the task aims to recognise just individual letters; (ii) sign

language recognition– when the task aims to recognise isolated signs or; (iii) continuous

sign language recognition– when the task aims to go one step further and recognise a

full sentence or sequence of signs. It is important to note that in the former case, the

underlying linguistic rules of sign language are not taken into account and for this reason

not considered a full translation task.

Early works in sign recognition date back in 1983 where Grimes [109] propose a glove-

based system that used sensors to detect the movement of the hand, twisting and flexing

of the wrist and flex of the finger joints that was able to recognize 26 different signs.

Since then, hundreds of works have been proposed using different approaches, including

recently the successfully use of deep neural networks.

Deep architectures, however, are known to be “data hungry” and require a large amount

of data in order to be successfully trained. To apply such models for sign language recog-

nition, it is necessary to have datasets with sign-level annotations. This is usually not

the case, since such fine-grained annotations are extremely costly to obtain. In order to

address this problem, in this Chapter, we propose an automatic framework to generate
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sign-level pseudo-labels. It employs sign spotting techniques that can produce sparse

annotations over continuous sign language data. We use this framework to automati-

cally annotate the How2Sign dataset and use a sign recognition model based on a 3D

convolutional neural network to establish a baseline for this task.

4.2 Related Work

Sign Language Recognition was one of the first sign language research directions

explored by the computer vision community [109, 110]. Early works tackled this task

focusing just on a few of the manual markers of sign language by computing hand-

crafted features for hand shape and motion [82, 111–113]. Later, additional markers

such as the upper body and the hand pose where incorporated in the pipeline [114–

116]. Although non-manual features are as important as the manual ones, face [92, 113,

117], and mouth patterns [118–120] are relatively less considered. In order of modeling

sequence of signs, Hidden Markov Models [111, 121–123], and later Long short-term

memory (LSTM) models [124, 124–126], have been used. More recently the community

has started to employ convolutional neural networks to consider and model the signer’s

whole appearance [127]. In particular, the I3D architecture, originally developed for

action recognition [128], has proven to be effective for sign recognition [6, 72, 79, 129–

131]– we similarly employ this model in sign recognition pipeline. A broader survey of

works that tackle isolated and continuous sign language recognition are presented by

Koller et al [132] and Rastgoo et al [133].

Sign spotting. Although the sign spotting problem has been formulated some time

ago [82, 134], it was just recently used by [131] to localise signs in continuous news

footage and improve a proposed isolate sign classifier. Since then this idea has been used,

similarly to our work, to weakly annotate continuous sign language data and improve

the performance of sign language tasks such as recognition [79, 104, 129].

Automatic annotation of sign language with auxiliary cues. The abundance of

audio-aligned subtitles in broadcast data with sign language interpreters has motivated

a rich body of work that has sought to use them as an auxiliary cue to annotate signs.

Cooper and Bowden [135] propose to use a priori mining to establish correspondences

between subtitles and signs in news broadcasts. Alternative approaches investigate the

use of Multiple Instance Learning [114, 136, 137]. Other recent contributions leverage

words from audio-aligned subtitles with keyword spotting methods based on mouthing

cues [79], dictionaries [104] and attention maps generated by transformers [8] to annotate

large numbers of signs, as well as to learn domain invariant features for improved sign

recognition through joint training [138].
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Similarly to these works, we also aim to automatically annotate sign language videos by

making use of audio-aligned subtitles. To this end, we make use of prior keyword spotting

methods [79, 104]. However, differently from all the other methods mentioned above

we propose an iterative approach, Spot-Align, that alternates between repeated sign

spotting (to obtain more annotations) and jointly training on the resulting annotations

together with dictionary exemplars (to obtain better features for spotting).

4.3 Enhancement of Sign Language Annotations

As mentioned in Chapter 1, a key challenge for machine learning-based sign language

methods is the lack of data, more specifically, datasets that are fine-grained annotated.

To the best of our knowledge, there are no large-scale public datasets of continuous

signing with corresponding sign-level annotations in ASL. This is due the fact that such

annotations are extremely expensive and time consuming to produce manually.

To address this challenge, in this Chapter, we present Spot-Align, which is an auto-

matic and iterative method to obtain sign-level annotations for continuous sign language

videos based on different sign spotting techniques. Sign spotting methods aim at de-

tecting and recognizing isolated signs, from a set vocabulary, in a given sequence of

continuous signing. Such methods usually use different sign language related cues (e.g.

mouthing, isolated signs from a dictionary collection) to guide the recognition and clas-

sification. However, as mentioned before, when dealing with continuous sign language

data, co-articulation and the visual domain gap between isolated and continuous signing

data are challenges to be addressed.

To that end, we tackle both problems by first obtaining a collection of sign-level an-

notations for the How2Sign dataset using two different sign spotting techniques. Such

methods were proposed in recent works and employ mouthing cues [79] and dictionary

examples [104]. We improve the sign language visual representations and obtain bet-

ter visual features and iteratively increase the amount of dictionary-based annotations

following a re-train and re-query framework. Next, we describe each of these steps.

4.3.1 Sign spotting methods

Mouthing-based sign spotting [79] First, we use the mouthing-based sign spotting

framework of [79] to identify sign locations corresponding to words that appear in the

written How2Sign translations. This approach, which relies on the observation that

signing sometimes makes use of mouthings in addition to head movements and manual
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gestures [48], employs the keyword spotting architecture of [139] with the improved P2G

phoneme-to-grapheme keyword encoder proposed by Momeni et al. [140]. We search for

keywords from an initial candidate list of 12K words that result from applying text nor-

malisation [141] to words that appear in How2Sign translations (to ensure that numbers

and dates are converted to their written form, e.g. “7” becomes “seven”) and filtering to

retain only those words that contain at least four phonemes. Whenever the keyword

spotting model localises a mouthing with a confidence over 0.5 (out of 1), we record

an annotation. With this approach, we obtain approximately 37K training annotations

from a vocabulary of 5K words. We filter these words to those that appear in the vo-

cabulary of either WLASL [5] or MSASL [6] lexical datasets. Both are largely adopted

and related ASL isolated signs datasets that were collected from a large range of videos

on the internet. The resulting 9K training mouthing spottings (M) annotations cover

a vocabulary of 1079 words, which consists of our initial vocabulary for training a sign

recognition model.

Dictionary-based sign spotting [104]. Next, we employ an exemplar-based sign

spotting method similar to [104]. This approach considers a handful of video examples

per sign which are used as visual queries to compare against the continuous test video.

The location is recorded as an automatic annotation for the queried sign at the time

where the similarity is maximised. Such similarity measure between the query and the

test videos requires a joint space. In [104], a complex two-stage contrastive training

strategy is formulated. For our framework, we opt for a simpler mechanism in which we

jointly train a sign recognition model with an I3D backbone on the set of query videos

(which are often from an isolated domain such as lexical dictionaries) and sign-annotated

videos from our search domain (i.e. How2Sign sparse annotations obtained from the

previous step of mouthing-based spotting). The latent features from this classification

model (which are now approximately aligned between the two domains) are then used

to compute cosine similarities.

Similarly to the mouthing method, we select candidate query words for each video based

on the subtitles. However, when employing dictionary spotting, we look for both the

original and the lemmatised (removing inflections) forms of the words, since the sign

language lexicons we employ usually contain a single version of each word (e.g. ‘run’

instead of ‘running’).

As the source of sign exemplars from which we construct queries, we make use of the

training sets of WLASL [5] and MSASL [6], two datasets of isolated ASL signing, with 2K

and 1K vocabulary sizes, respectively. For joint training, we select samples from their

training subsets that occur in the 1079-sign vocabulary from our previous mouthing
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Step 1: Mouthing-based 
sign spotting annotations 

Mouthing-based
sign spotting (M)
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Step 2: Dictionary-based 
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Figure 4.1: Spot-Align overview: We propose Spot-Align, a framework for iteratively
increasing annotation yield to obtain better visual sign language features. At each iteration i,
the current I3D model is trained for sign language recognition (sign classification) jointly on
the How2Sign annotations from iteration i− 1 and lexicon exemplars from the WLASL [5] and
MSASL [6] datasets. The resulting improved embedding is then used to obtain a new set of sign
spottings by re-querying How2Sign videos with lexicon exemplars.

annotations. However, we use the full training sets for querying, allowing us to automat-

ically annotate signs outside of the initial 1079 signs. We record all annotations where

the maximum similarity (over all exemplars per sign) is higher than 0.75 (out of 1),

resulting in 59K dictionary sign spottings (D1) training annotations from an expanded

vocabulary of 1887 signs. We initialise the I3D classification from the pretrained British

Sign Language recognition model released by the authors of [78].

4.3.2 Spot-Align: An iterative sign language annotation framework

From the previous two methods, we obtain an initial set of automatic annotations. How-

ever, as mentioned before, the yield of the dictionary-based spotting method is heavily

limited by the domain gap between the videos of How2Sign and the datasets used to

obtain the exemplars. It is therefore natural to ask whether we can improve the output

of the dictionary-based spotting by achieving a better feature alignment between the

dictionary exemplar and How2Sign domains. To this end, we introduce a retrain-and-

requery framework, which we call Spot-Align, to increase the amount of dictionary

sign spottings (D) and obtain better aligned sign language visual features. We describe

the followed procedure next.

At iteration i, we employ the I3D latent features obtained by joint training between

WLASL-MSASL lexicons and How2Sign automatic annotations provided by iteration i−
1 as illustrated in Figure 4.1. We observe a significant increase in the output annotations

(e.g. 160K annotations in iteration D2 vs 59K annotations in iteration D1) despite using

the same exemplars and same subtitles to construct our queries. The key difference

is then the better aligned visual features with which we compare the exemplar from

WLASL-MSASL and test videos from the How2Sign.
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In Figure 4.2, we illustrate the resulting sparse annotations over a continuous timeline

for sample videos where we observe that the density of annotations significantly increases

with Spot-Align iterations. We denote with Di, the set of automatic training annota-

tions after applying iteration i.

D1

D2

D3

M

Time

Figure 4.2: Iterative enhancement of automatic annotations: We illustrate sparse anno-
tations generated by different iterations of the Spot-Align framework on six different video
segments (rows) over a fixed-duration interval of 50 seconds each (x-axis).

4.4 Experiments

Automatic sign annotations. We train our sign recognition model using the auto-

matic sparse annotations produced by the Spot-Align framework. Summary statistics

obtained across multiple iterations of sign spotting are illustrated in Figure 4.3. To en-

able evaluation of sign recognition performance, we construct a manually verified test

set. This is done by providing annotators proficient in ASL with sign spotting candidates

using the VIA annotation tool [142]. This results in a labelled test set of 2212 individual

sign video-category pairs, which have been made public as part of the How2Sign dataset.

Sign Recognition model and implementation details. The automatic annota-

tions are used to train a sign recognition model that takes a multiple-frame video as

input and outputs class probabilities over sign categories. This model is composed of a

3D convolutional neural network instantiated with an I3D [128] architecture pretrained

on the BOBSL dataset [78]. We employ this architecture due to its success on ac-

tion recognition benchmarks, as well as its recently observed success on sign recognition

datasets [6, 72, 79].

We finetune this model on the How2Sign dataset using our automatic sign spotting

annotations. In the final setting with mouthing (M) and dictionary (D3) spottings from

a vocabulary of 1887 signs, we have 206K training video clips, each corresponding to a
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Figure 4.3: Iteratively increasing the sign annotations: Starting from a small set of
mouthing annotations, we apply sign spotting through dictionaries several times, by retrain-
ing our I3D backbone on the previous set of automatic annotations. The left plot demonstrates
the significant increase in the number of annotations, for both the restricted (1079) and the full
(1887) set of categories.

single sign. Since the spottings represent a point in time, rather than a segment with

beginning-end times, we determine a fixed window for each video clip. For mouthing

annotations, this window covers a length of 0.8 seconds and it is defined as 15 frames

before the annotation time and 4 frames after ([−15, 4]). For dictionary annotations,

the window covers 1 second and it is similarly defined as 3 frames before the annotation

time and 22 frames after ([−3, 22]). During training, we randomly sample 16 consecutive

frames from this window, such that the RGB video input to the network becomes of

dimension 16 × 3 × 224 × 224. We apply a similar spatial cropping randomly from

256× 256 resolution. We further employ augmentations such as colour jittering, resizing

and horizontal flipping.

We perform a total of 25 epochs on the training data, starting with a learning rate of

1e-2, reduced by a factor of 10 at epoch 20. We optimise using SGD with momentum

(with a value of 0.9) and a minibatch of size 4. At test time, we apply a sliding window

averaging in time, and center cropping in space. The sign recognition performance on

the manually verified test set are reported in Table 4.1.

Limitations. The annotations produced by the Spot-Align method are limited to the

vocabulary size of the queried videos. With this methodology we are not able to discover

signs that do not appear in the vocabulary of the lexicon queried videos. We believe that

other techniques, such as label propagation and the use of the available subtitles can be

a possibility to expand the vocabulary of the automatic annotations. We leave this new

approach for future work.
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Training Vocab per-instance per-class
Annotation top-1 top-5 top-1 top-5

M 1079 15.1 27.0 12.5 21.9

M+D1 1079 61.9 77.8 44.3 65.6
M+D2 1079 66.1 81.3 51.8 71.3
M+D3 1079 64.7 81.0 49.3 70.7

M+D1 1887 55.4 74.6 40.1 61.6
M+D2 1887 59.5 78.9 44.5 68.7
M+D3 1887 58.4 77.7 42.2 66.4

Table 4.1: Sign recognition results: We report the accuracy (%) results of individual sign
recognition (1079-way and 1887-way classification) on the manually verified test set.

4.5 Final Remarks

In this Chapter we have demonstrated the feasibility of using sign spotting techniques to

automatically annotate continuous sign language videos with signing-aligned subtitles.

We utilize two sign spotting techniques, and a re-train and re-querying methodology that

incorporates iterative rounds of sign spotting and feature alignment, and presented the

Spot-Align framework that can be used to automatic sparse annotate sign language

data with low annotation budget.

Such framework is an important tool for collecting automatic sign-level annotations that

can later be used to improve more complex tasks such as sign language translation and

production. We also provide a sign language recognition baseline for the How2Sign

dataset that can be further used as a starting point for training more complex models.

The automatic annotations are further used in the next Chapter for the novel task of

sign language video retrieval.



5
Sign Language Video Retrieval

5.1 Introduction

Recent developments in automatic speech recognition (ASR) for spoken languages [143–

146] have enabled automatic captioning of vast swathes of video content hosted on plat-

forms such as YouTube. In addition to rendering the videos more accessible, this caption-

ing yields a second important benefit: it allows the content of the videos to be indexed

and efficiently searched with text queries. By contrast, the same automatic captioning

capability (and hence searchability) does not exist for sign language content. Indeed,

recent work has drawn attention to the pressing need to develop systems that can index

archives of sign language videos to render them searchable [14]. Without these tools,

sign language video creators must manually introduce the spoken language translation

of their content if they want to reach the same discoverability as their spoken language

counterparts.

One solution might appear to be to use sign language translation systems to perform

video captioning, analogous to ASR cascading in spoken content retrieval [147]. Un-

fortunately, while promising translation results have been demonstrated in constrained

domains of discourse (such as weather forecasts) [85, 106, 148], it has been widely ob-

served that these systems are unable to achieve functional performance across diverse

topics [8, 14, 108] required for open-vocabulary video indexing.

An alternative solution would be to employ existing methods for sign spotting to perform

keyword search, as explored in Chapter 4. However, such approaches are fundamentally

brittle—they work best when the user knows exactly which signs of interest were used in

56
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Figure 5.1: Text-based sign language video retrieval: In this Chapter we introduce sign
language video retrieval with free-form textual queries, the task of searching collections of sign
language videos to find the best match for a free-form textual query, going beyond single keyword
search.

the video. Moreover, to build an accurate index of such signs using recent sign spotting

techniques [79, 104, 149] requires a list of appropriate query candidates, which to date

have often been obtained from subtitles corresponding to speech transcriptions of the

translation, for example from an ASR engine. Our focus is on sign language videos

produced by and for signers, that do not contain any speech track, so producing such

transcriptions is not an option.

To address this gap, in this Chapter, we present the task of sign language retrieval with

free-form textual queries: given a written query (e.g., a sentence) and a large collection

of sign language videos, the objective is to find the signing video in the collection that

best matches the written query. The terminology “natural language query” is commonly

used to describe unconstrained textual queries in spoken languages. However, since sign

languages are also natural languages, we adopt for the term “free-form textual query”

instead.

We tackle this task by learning a joint embedding space between text and video as illus-

trated in Figure 5.1. Cross-modal embeddings target only the task necessary to enable

search (i.e. ranking a finite pool of sign language videos), rather than the more involved

task of full sign language translation. As we demonstrate through experiments, this

renders their practical application even across multiple topics. Moreover, cross-modal

embeddings enable extremely efficient search with the potential to scale up to collec-

tions of billions of videos thanks to mature approximate nearest neighbour algorithms

for embedding spaces [150].
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The task of sign language video retrieval is challenging for several reasons: (1) Translation

mappings between sign languages and spoken languages are highly complex [48], with

differing modalities and grammar structures (ordering is typically not preserved between

signed and spoken languages, for example); (2) In contrast to the datasets used to train

text-video retrieval models (millions of paired examples of videos with corresponding

sentences [151, 152]) sign language datasets are orders of magnitude smaller in scale; (3)

In addition to a paucity of paired data, the annotated data available for learning robust

sign embeddings is also extremely scarce (with sign recognition datasets also considerably

smaller than their counterparts for action recognition [153, 154], for example).

In order to address the first and second challenges highlighted above, we construct cross-

modal embeddings that leverage pretrained language models to reduce the burden of

data required to learn the mapping between signing sequences and sentences. To address

the third challenge (annotation scarcity), we used the Spot-Align framework, described

in Chapter 4, to automatically annotate significant fractions of the How2Sign dataset.

By training on the resulting annotations, we obtain more robust sign embeddings for the

downstream retrieval task.

5.2 Related Work

Text-video embeddings for video retrieval. Recently, there has been extensive

research interest in enabling video content search with textual queries via cross-modal

embeddings. Following the seminal DeViSE model [155] that demonstrated the strength

of this approach for images and text, a wide array of text-video embeddings have been

explored [152, 156–165]. Differently from these works which target the retrieval of

describable events, our work focuses on retrieving signing content that matches a spoken

language query formulated with text.

Sign language video retrieval. The task of sign language video retrieval has primarily

been investigated under the query-by-example search paradigm, in constrained domains

and with small datasets. In this formulation, a user query consists of an example of

the sign(s) of interest, similarly how most keyword-based search engines deal with text

databases. Two particular variants of this problem have received attention for sign

language video retrieval: searching visual dictionaries of isolated signs, and searching

continuous sign language datasets, both discussed next.

Sign language dictionaries are video repositories with recordings of individual signs suit-

able for learners. To search such videos, Athitsos et al. [166] coupled hand motion cues
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with Dynamic Time Warping (DTW) to enable signer-independent search of an American

Sign Language (ASL) dictionary containing 3k signs and testing with 921 queries.

For continuous sign language datasets, the goal is retrieving all occurrences of a demon-

strated query sign in a target video. Different techniques have been proposed for this

purpose, including hand features with CRFs [167], hand motion with sequence match-

ing [168], hand and head centroids [169], per-frame geometric features coupled with

HMMs [170], and non-face skin distribution matching [82].

As an alternative to querying by example, a number of works have investigated sign

spotting with learned classifiers. Ong et al. [134] tackled this problem with HSP-Trees, a

hierarchical data structure built upon Sequential Interval Patterns. Later work combined

human pose estimation with temporal attention mechanisms to detect (but not localise)

the presence of a set of glosses among signing sequences [171]. This work was later

extended to enable search for individual words [172] and further extended to additionally

incorporate hand-shape features, improving performance [173]. More recently, Jiang et

al. [149] showed the effectiveness of the transformer architecture for the sign spotting task,

achieving promising results on the BslCorpus [77] and Phoenix2014 [132] datasets.

However, to the best of our knowledge, no prior sign language retrieval literature has

considered the task that we presented in this Chapter, namely retrieving sign language

videos with free-form textual queries.

5.3 Sign Language Retrieval

In this section, we first formulate the task of sign language video retrieval with free-form

textual queries (Subsection 5.3.1). Next, in Subsection 5.3.2 we describe the cross-modal

(CM) learning formulation considered in this work, and in Subsection 5.3.3 we describe

our text-based retrieval through sign language recognition (SLR) model that uses the

model described previously in Chapter 4.

5.3.1 Task formulation

Let V denote a dataset of sign language videos of interest, and let t denote a free-form

textual user query. The objective of the sign language video retrieval with textual queries

task is to find the signing video v ∈ V whose signing content best matches the query

t. We use text-to-sign-video (t2v) as notation to refer to this task. Analogously to the

symmetric formulations considered in the existing cross-modal retrieval literature [158,
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174], we also consider the reverse sign-video-to-text (v2t) task, in which a signing video,

v, is used to query a collection of text, T .

5.3.2 Cross modal retrieval embeddings

To address the retrieval task defined above, we assume access to a parallel corpus of

signing videos with corresponding written translations. We aim to learn a pair of en-

coders, ϕv and ϕt, which map each signing video v and text t into a common real-valued

embedding space, ϕv(v), ϕt(t) ∈ RC , such that ϕv(v) and ϕt(t) are close if and only if t

corresponds to the content of the signing in v. Here C denotes the dimensionality of the

common embedding space.

To learn the encoders, we adopt the cross modal ranking learning objective proposed

by Socher et al. [175]. Specifically, given paired samples {(vn, tn)}Nn=1, we optimise a

max-margin ranking loss:

L =
1

B

B∑
i=1,i ̸=j

[ηij − ηii +m]+ + [ηji − ηii +m]+ (5.1)

where m denotes the margin hyperparameter, [·]+ denotes the hinge function max(·, 0),
B denotes the size of minibatch sampled during training, and ηij denotes the cosine

similarity between signing video vi and text tj .

Once learned, the embeddings can be applied directly to both the t2v and v2t tasks.

For the former, inference consists of simply computing the cosine similarity between the

text query t and every indexed signing video v ∈ V to produce a ranking (and vice versa

for the v2t task).

Encoder architectures. The sign video encoder, ϕv consists first of an initial sign

video embedding, ψv, which we instantiate as an I3D neural network [128] over clips

of 16 frames (motivated by its effectiveness for sign recognition tasks [5, 6, 79]). The

output of ψv is temporally aggregated to a fixed size vector, and then projected to the

C-dimensional cross modal embedding space, ϕv(v) ∈ RC .

To implement ϕt, each text sample, t, is first embedded through a language model that

has been pretrained on large corpora of written text. The resulting sequence of word

embeddings are then combined via NetVLAD [176] and projected via Gated Embedding

Unit following the formulation of [158] to produce a fixed-size vector, ϕt(t) ∈ RC .

Here, we pay particular attention to the initial sign video embedding, ψs, which, as we

show through experiments in Section 5.4, has a critical influence on performance. We also
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Figure 5.2: Method overview: To perform cross modal retrieval, we employ ψv, together
with a language model, to produce embeddings of videos and text. These are passed to a video
encoder and text encoder, respectively, which are trained to project them into a joint space such
that they are close if and only if the text matches the video. The embedding produced by ψv

is additionally passed to a sign recognition model, providing the basis for text-based similarity
search.

conduct experiments to evaluate suitable candidates for both the temporal aggregation

mechanism on ϕv, and the language model employed by ϕt. As shown in Figure 5.2, this

embedding underpins the sign video encoder, ϕv, of our cross modal embedding, and is

also used to classify individual signs to enable text-based retrieval, described next.

5.3.3 Text-based retrieval by sign recognition

The individual sign recognition model presented in Chapter 4 can naturally be used to

obtain a sequence of signs if applied in a sliding window manner on the long signing

videos from v. While the performance of this model is not expected to be high (due

to a lack of temporal modelling stemming from the lack of continuous annotations), the

output list of predicted sign categories gives us a set of candidate words which can be

used to check the overlap with the query text. This is analogous to cascading ASR for

spoken content retrieval [147], except that sign recognition is significantly more difficult

than speech recognition (in part, due to a lack of training data [14]). Since the order of

signs do not necessarily follow the order of the words in the translated text, we simply

compute an Intersection over Union (IoU) to measure similarity between a query text and

the recognised signs. Before we compute the IoU, we lemmatise both the query words

and predicted words. We constrain the set of recognised signs by removing duplicates

and removing classifications that have probabilities below a certain threshold (0.5 in our

experiments). In the next section, we show that this text-based retrieval approach, while

performing worse than the cross-modal retrieval approach, is complementary and can

significantly boost overall performance.
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5.4 Experiments

In this section we present the data and evaluation protocols used in our experiments (Sub-

section 5.4.1). Next, we provide retrieval results on How2Sign dataset, conducting abla-

tion studies to evaluate the influence of different components of our approach (Subsec-

tion 5.4.3). Then, we establish baseline retrieval performances on the Phoenix2014T [85]

dataset (Subsection 5.4.5). Finally, we present a qualitative analysis and discuss limita-

tions and the societal impact (Subsection 5.4.6).

5.4.1 Data and evaluation metrics

Datasets. We use the videos and the temporally aligned subtitles of the How2Sign for

training and evaluating the retrieval model, taking subtitles as textual queries. There

are 31075, 1739 and 2348 video-subtitle pairs in training, validation and test sets, respec-

tively. Note that, we remove a small number of videos from the original splits, where the

subtitle alignment is detected to fall outside the video duration. We use the validation

set to tune parameters (i.e. training epoch), and report all results on the test set.

We also evaluate our sign language retrieval method and provide baselines on the com-

monly used Phoenix2014T dataset [85], (although this is not our central focus due to its

restricted domain of discourse). Phoenix2014T contains German Sign Language (DGS)

videos depicting weather forecast videos. The dataset consists of 7096, 519 and 642

training, validation and test video-text pairs, respectively. The benchmark is primarily

used for sign language translation where promising results can be obtained due to the

restricted vocabulary size of 3K German words. Here, we re-purpose it for retrieval,

providing baselines using both our cross-modal embedding approach, and a text-based

retrieval by sign language translation [106].

Evaluation metrics. To evaluate retrieval performance, we follow the existing retrieval

literature [158, 159, 163] and report standard metrics R@K (recall at rank K, higher is

better) and MedR (median rank, lower is better). For cross modal embedding ablations

(for which the sign video embedding ψv is frozen, and only the text encoder, ϕt, and

video encoder, ϕv, are trained), we report the mean and standard deviation over three

randomly seeded runs.
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5.4.2 Implementation Details

Text embedding. We consider several text embeddings in this work. When conduct-

ing experiments on the How2Sign dataset, we explore the following English language

embeddings:

GPT [177] is a 768-dimensional embedding that uses a Transformer decoder which is

trained on the BookCorpus [178] dataset.

GPT-2-xl [179] is a 1600-dimensional embedding (employing 1558M parameters, also

in a Transformer architecture [180]) that is trained on the WebText corpus (containing

millions of pages of web text).

Albert-XL [181] is a 2048-dimensional embedding that builds on BERT [182] to increase

its efficiency. It is trained with a loss that models inter-sentence coherence on the Book-

Corpus [178] and Wikipedia [182] datasets.

W2V [183] is a 300-dimensional word embedding, trained on the Google News corpus 1.

GroVLE [184]. This is a 300-dimensional embedding that aims to be vision-centric: it is

adapted from Word2Vec [183]

For experiments on the Phoenix2014T dataset, we use a German language model:

German GPT-2 [185] (based on the original GPT-2 architecture of [177]) is a 768-

dimensional embedding. The model is trained on the OSCAR [186] corpus, together

with a blend of smaller German language data 2.

Sign video embedding. We employ the I3D recognition model (presented in Chap-

ter 4) to instantiate our sign video embedding. More specifically, we use the outputs cor-

responding to the spatio-temporally pooled vector before the last (classification) layer.

This produces a 1024-dimensional real-valued vector for each 16 consecutive RGB frames.

We extract these features densely with a temporal of stride 1 from How2Sign sign lan-

guage sentences to obtain the sequence of sign video embeddings.

Text-based retrieval. At test time, we obtain the predicted class for each 16-frame

sliding window (with a stride of 1 frame), and record the corresponding word out of the

1887-vocabulary if the probability is above the 0.5 threshold. The resulting set of words

are merged in case of repetitions, and are compared against the queried text to obtain

an intersection over union (IOU) score, used as the similarity.
1we use the GoogleNews-vectors-negative300.bin.gz model from https://code.google.com/ar

chive/p/word2vec/
2We use the parameters made available at https://huggingface.co/dbmdz/german-gpt2

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://huggingface.co/dbmdz/german-gpt2
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Cross-modal retrieval. The dimensionality of the shared embedding space (denoted

by the variable C in Subsection 5.3.2) used is 512. The margin hyperparameter, m,

introduced in Equation. 5.1 is set to 0.2, following [158]. All cross modal embeddings are

trained for 40 epochs using the RAdam optimiser [187] with a learning rate of 0.001, a

weight decay of 1E−5 and a batch size of 128. For each experiment, the epoch achieving

the highest geometric mean of R@1, R@5 and R@10 on the validation set was used to

select the final model for test set evaluation. The NetVLAD [176] layer employed in the

text encoder uses 20 clusters.

Spot-Align iterations. In Figure 5.3 we provide, as a reminder, a detailed sketch

of the Spot-Align framework and how we obtain our Mouthing and Dictionary-based

annotations for the How2Sign dataset, explained in the previous Chapter. On the left

([b], [d], [f]), we show the iterations for the joint training between How2Sign, WLASL [72]

and MSASL [6], which is used for Dictionary-based sign spotting. On the right ([a], [c],

[e], [g]), the training is only performed on the How2Sign dataset, which provides sign

video embeddings for retrieval.
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H2S(M+D1)+WASL+MASL
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H2S(D1)

D: compare to WASL+MASL

exemplars using subtitles

H2S(D2)

H2S(D3) H2S(M+D3)

H2S(M+D2)

H2S(M+D1)

Train sign recognition (used to extract features 
aligned with the WASL+MASL domain)

H2S(M)H2S(M)

M: keyword spotting within 
mouthings using subtitles

Train sign recognition 
(used for retrieval)

I3D
 training

D
ictionary spotting

M
outhing spotting

[a]

[b] [c]

[d] [e]

[f] [g]

Figure 5.3: Pipeline sketch of Spot-Align iterations: [a] We use a Mouthing-based sign
spotting to obtain an initial set of automatic sign-level annotations on the How2Sign (H2S)
dataset which we call here H2S(M). [b] Using the automatic annotations obtained, we jointly
train on the continuous signing examples from H2S(M) and the dictionary-style signing videos
from WLASL and MSASL, in order to obtain a feature space aligned between the two domains.
A Dictionary-based sign spotting approach is then used to obtain a new set of sign spottings
(D1) by re-querying How2Sign videos with lexicon exemplars. The process is then iterated with
the new spottings, as described in the main paper.

5.4.3 Retrieval results on How2Sign

In this section, we present ablation studies experimenting with: (i) different sign video

embeddings, (ii) different initialisations, (iii) video embedding aggregation mechanisms,

and (iv) text embeddings. We further study (v) the probability threshold hyperparameter
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for text-based retrieval via sign recognition. We also highlight (vi) the importance of

having a sign language aligned subtitle data by experimenting with using the original

speech-aligned timings provided by [36]. Finally, we demonstrate the advantages of

(vii) combining our cross-modal embedding similarities with text-based similarities via

sign recognition.

(i) Comparison of sign video embeddings. Our main results on sign language

retrieval are summarised in Table 5.1. Here, we assess the quality of our end-to-end

video classification model to obtain sign video embeddings from the last layer of the

I3D model. We report both the sign language retrieval from the sign recognition outputs

(using text-to-text matching, as described in Subsection 5.3.3) on the left, and the learned

cross-modal embeddings (text-to-video matching) on the right.

We first observe that our cross-modal embeddings (which can potentially capture cues

beyond the limited categories of the sign recognition model) perform significantly better

than their text-based counterparts. Next, we compare various choices of backbone sign

video embeddings to evaluate the effectiveness of our proposed Spot-Align framework.

As a first baseline, we experiment with using standard Kinetics [128] training—we observe

that this produces video embeddings that (as expected) perform poorly for our task. We

also include as a baseline the model from [78] (pretrained on the BOBSL data) that was

used to initialise our I3D sign video embedding. Next, we investigate the sensitivity of

our model to different initialisations.

Table 5.1: Effect of sign video embeddings: The iterative increase of sign annotations
with mouthing- (M) and dictionary-based (D) spotting improves the performance for sign video
retrieval tasks with both sign recognition and cross-modal embeddings. The embeddings for
the last seven rows are obtained from How2Sign trainings, pretrained on BOBSL (second row),
which itself was pretrained on Kinetics (first row).

Text-based retrieval Cross-Modal retrieval
Sign-Vid-Emb Vocab R@1↑ R@5↑ R@10↑ MedR↓ R@1↑ R@5↑ R@10↑ MedR↓

Kinetics [128] - - - - - 1.00.1 4.40.4 6.90.6 296.812.5
BOBSL [78] - - - - - 17.20.6 32.50.7 39.51.3 30.52.2

M 1079 0.6 2.3 4.4 1174.5 16.41.2 31.10.8 38.20.8 32.73.1
M+D1 1079 10.2 21.2 26.5 136.3 20.61.1 36.70.6 43.30.9 22.02.6
M+D2 1079 15.6 29.0 33.9 92.0 21.80.4 38.00.6 44.60.8 18.22.0
M+D3 1079 16.7 29.1 33.3 95.3 21.91.2 38.20.7 44.80.5 18.70.6

M+D1 1887 14.1 26.1 31.4 88.0 20.40.6 36.40.3 43.50.7 20.01.0
M+D2 1887 18.3 31.3 35.8 69.8 23.70.5 40.80.1 47.10.2 14.70.6
M+D3 1887 18.4 32.2 36.6 68.0 24.50.2 40.71.1 46.70.7 15.71.5

While strongly outperforming Kinetics training, this model remains substantially weaker

than the end-to-end ASL sign recognition training on How2Sign enabled by Spot-Align.

We observe improvements from each of our Spot-Align iterations, instantiated from



Sign Language Video Retrieval 66

mouthing-only (M) annotations, expanded first in the number of annotations within

the same vocabulary size of 1079, then expanded in the number of sign categories with

1887-way classification. In light of their superior performance, we use sign video embed-

dings trained with M+D3 annotations from the 1887 large-vocabulary for the rest of our

experiments on How2Sign.

(ii) Sensitivity to Initialisation. We provide in Table 5.2 comparisons for training

with annotations from Mouthing (M) and the first iteration of Dictionary (D1) ([a] and

[c] in Figure 5.3) spottings from four different initialisations: I3D weights pretrained on

BOBSL [78], BSL-1K [79], WLASL [72], or randomly initialised. Note that all BOBSL,

BSL-1K and WLASL models are also initialised from Kinetics. Here, we rerun the

Dictionary-based sign spotting to obtain different sets of D1 annotations by initialising

from WLASL-pretrained and random weights (instead of BSL-1K model from [8] in the

rest of the experiments). While random initialisation significantly hurts performance,

the WLASL-pretrained model performs slightly worse than [78], demonstrating that our

method can work provided a reasonable initialisation. Assuming access to WLASL is

realistic since we use it in step [b].

Table 5.2: Sensitivity to initialisation: We investigate the effects of different initialisa-
tion for our sign video embedding. We experiment with random and WLASL initialisation.
D1,BSL1K,ft(HMWM) means obtaining D1 by pretraining the [b] model (see Fig. 5.2) on BSL-
1K [8] and finetuning jointly on H2S mouthing annotations and WLASL/MSASL exemplars.

#tr. Acc. Text-based retrieval Cross-modal retrieval
Sign-Vid-Emb Init [a][c] ann. top-5 R@1↑ R@5↑ R@10↑ MedR↓ R@1↑ R@5↑ R@10↑ MedR↓

M BOBSL 9K 27.0 0.6 2.3 4.4 1174.5 16.41.2 31.10.8 38.20.8 32.73.1
M+D1,BSL1K,ft(HMWM) BOBSL 38K 77.8 10.2 21.2 26.5 136.3 20.61.1 36.70.6 43.30.9 22.02.6

M BSL-1K 9K 25.1 0.6 2.4 4.4 1174.5 18.00.7 32.40.6 39.30.7 27.81.6
M+D1,BSL1K,ft(HMWM) BSL-1K 38K 77.7 10.4 22.6 27.6 131.5 20.80.8 36.90.9 43.50.8 20.50.5

M WLASL 9K 23.5 1.1 2.9 4.2 1175.5 11.30.5 23.00.5 29.50.6 67.37.2
M+D1,WLASL,ft(HMWM) WLASL 60K 72.7 9.3 19.9 24.5 208.8 17.10.6 31.50.6 38.30.4 32.82.5

M random 9K 6.5 0.0 0.0 0.0 1174.5 0.60.1 2.00.2 3.30.5 530.716.3
M+D1,random,ft(HMWM) random 136K 28.0 0.0 0.5 0.8 1175.0 2.40.2 7.20.2 10.20.0 221.36.4

We note that the performances of BOBSL versus BSL-1K pretraining are similar in

Table 5.2. Our preliminary results also suggest that similar trends from Table 5.1 hold

when pretraining all rows on BSL-1K instead of BOBSL.

We therefore report all our models ([a, c, e, g]) with BOBSL pretraining since this

dataset [78] has recently become available (unlike the BSL-1K source data [8, 79], which

is not public). However, we clarify that the Dictionary spottings were obtained with

models ([b, d, f]) pretrained on BSL-1K.

Furthermore, we investigate whether the domain alignment between WLASL+MSASL

exemplars and How2Sign is beneficial by comparing M+D1,BSL1K,ft(HMWM) and M+D1,BSL1K.

The latter consists of 112K spottings (as opposed to 38K); however, the top-5 recognition
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accuracy drops to 60.0% (from 77.7%) suggesting the poor quality of feature alignment

between the two domains in the absence of joint finetuning.

(iii) Video embedding aggregation. Next, we compare the use of different temporal

pooling strategies on the sequence of sign video embeddings for a given sign language

video. While more sophisticated temporal aggregations are possible, in this work, we

opt for a simple and efficient average pooling mechanism, which has widely been shown

to be effective for text-video retrieval tasks [158, 165]. In Table 5.3, we compare average

pooling with maximum pooling over the temporal axis for each feature dimension. We

observe that average pooling performs best.

Table 5.3: Influence of sign video embedding aggregation strategy: We compare tempo-
ral pooling strategies on the How2Sign retrieval benchmark. Performance metrics are reported
as means and standard deviations over three randomly seeded runs.

Aggregation method R@1↑ R@5↑ R@10↑ MedR↓

Max pooling 23.30.3 39.70.5 46.30.6 15.30.6
Avg. pooling 24.50.2 40.71.1 46.70.7 15.71.5

(iv) Text embedding. We then compare several choices of text embedding for the

training of cross modal embeddings. We report the results in Table 5.4. We observe

that word2vec [183] and GrOVLE [184] obtain competitive performance, outperforming

higher capacity alternatives [177, 179, 181]. This phenomenon is also observed in [165],

where the authors show that for a number of source text distributions, simpler word

embeddings can outperform their “heavyweight” counterparts. We leave the end-to-end

fine-tuning of the language models with our sign language translations to future work,

which can potentially provide further improvements, and use GrOVLE embeddings for

the rest of the experiments.

Table 5.4: Influence of the text embedding: We compare a variety of text embeddings on
the How2Sign retrieval benchmark. Performance metrics are reported as means and standard
deviations over three randomly seeded runs.

Text Embedding R@1↑ R@5↑ R@10↑ MedR↓

GPT [177] 15.40.4 30.50.4 37.60.4 30.21.3
GPT-2-xl [179] 17.00.3 32.50.4 39.60.4 25.71.2
Albert-XL [181] 19.70.3 36.70.3 43.80.4 19.20.8
W2V [183] 24.20.4 40.00.4 46.70.2 14.80.3
GrOVLE [184] 24.50.2 40.71.1 46.70.7 15.71.5

(v) Sign recognition probabilities. Here, we ablate the text-based retrieval approach

which employs a sign recognition classifier. Since the sliding window is applied at each
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frame densely, we obtain one sign prediction per frame (which can be very noisy). Con-

sequently, an important hyperparameter for this method is the selection of which classi-

fication outputs to consider in our set of predicted words (which will in turn guides the

text-based retrieval). Concretely, the hyperparameter we vary is the confidence threshold

at which predictions are included as text tokens. We explore several threshold values

in Table 5.5 and report retrieval performance. We observe that 0.5 performs best—we

adopt this value for our remaining experiments.

Table 5.5: Thresholding sign recognition probabilities: We investigate the influence of the
confidence threshold hyperparameter on How2Sign retrieval performance, and observe that 0.5
works best.

Threshold R@1↑ R@5↑ R@10↑ MedR↓

0.00 13.1 26.5 32.0 75.5
0.10 13.4 26.4 32.4 74.0
0.25 17.5 30.9 35.4 56.5
0.50 18.4 32.2 36.6 68.0
0.75 15.0 27.9 32.4 91.0

(vi) Effect of alignment. As presented in Section 3.3.2, the How2Sign has two sets of

English translation alignments. The original version that comes from the How2 dataset,

which is aligned with the speech of the How2 videos, and a signing-aligned version where

we manually re-aligned the English translation to match the sentences in the signing

videos, described in Section 3.3.2. With this experiment, we highlight the importance

of having aligned video-sentence pairs. We retrain cross modal embeddings on speech-

aligned training data, and evaluate both the recognition and cross modal embedding

models on the speech-aligned test data of How2Sign to compare with signing-aligned

version. The results are reported in Table 5.6, where we observe that speech-aligned

subtitles significantly damage retrieval performance.

Table 5.6: Effect of subtitle alignment: We report retrieval performance on How2Sign for
models trained and evaluated on subtitles aligned to speech and to signing. We observe a
significant drop in performance when using speech-aligned subtitles.

Text-based retrieval Cross-Modal retrieval
Alignment R@1↑ R@5↑ R@10↑ MedR↓ R@1↑ R@5↑ R@10↑ MedR↓

Speech 9.5 16.1 19.0 418.0 5.90.6 13.60.6 18.00.2 483.517.9
Signing 18.4 32.2 36.6 68.0 24.50.2 40.71.1 46.70.7 15.71.5

(vii) Combining several cues. Finally, in Table 5.7, we combine our two types of mod-

els based on sign recognition (SR) and cross-modal embeddings (CM). We perform late

fusion (averaging the similarities, with equal weights) computed with individual models.

Table 5.7 presents both t2v and v2t performances establishing a new benchmark on
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the task of retrieval for the recent How2Sign dataset. We conclude that sign recogni-

tion provides complementary cues to our cross-modal embedding training, significantly

boosting the final performance.

Table 5.7: Combination of models: We report our final benchmark performance on How2Sign
for the retrieval models based on text (from sign recognition) (SR) and cross modal (CM)
embeddings. We observe that the two approaches are highly complementary.

t2v v2t
Models R@1↑ R@5↑ R@10↑ MedR↓ R@1↑ R@5↑ R@10↑ MedR↓

SR 18.4 32.2 36.5 68.0 11.5 27.9 33.3 66.0
CM 24.7 39.6 46.0 17.0 17.9 40.8 46.6 15.0
SR + CM 32.8 47.7 52.9 7.0 23.3 48.5 53.7 7.0

5.4.4 Qualitative results

Some qualitative examples of videos retrieved by our system are provided in Figure 5.4.

We also qualitatively illustrate, with a project webpage 3, our retrieval results using the

best model on the How2Sign dataset (SR+CM combination from Tab 5.7). For each

query, we show the top three ranked videos as well as their corresponding topic category

(see Section 3.3.2 for more details of video categories), signer ID and sentences (note

that these are not used during retrieval, and are provided for visualisation purposes).

The top ten rows of the webpage show cases in which our model is able to correctly

retrieve the video corresponding to the textual query. The middle five rows of the

webpage show cases where the correct video is not retrieved successfully. For these

failures, we nevertheless observe that the retrieval model makes reasonable mistakes (for

instance, in the majority of cases, at least one of the top three ranked videos share the

same topic category of the GT video). In the bottom five rows, we show examples of

failure cases of our model.

In Figure 5.5, we illustrate two example queries for which the use of the sign recognition

model substantially improves the performance of the cross modal embeddings.

5.4.5 Retrieval results on Phoenix2014T

In addition to the How2Sign ASL dataset that formed the primary basis of our study,

we also provide retrieval baselines on the Phoenix2014T dataset [85, 132]. For cross

modal embedding training, we employ a text embedding model trained on German lan-

guage corpora, GPT-2 [179] released by Chan et al. [185]. For text-based retrieval, here
3https://imatge-upc.github.io/sl_retrieval/app-qualitative/index.html

https://imatge-upc.github.io/sl_retrieval/app-qualitative/index.html
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Text query Sign video retrieval

"I hope you're 
having fun."
(GT rank: 3)

Similarity 0.28 Similarity 0.27

“Cheers!”

“So just be 
relaxed and 
have, just do 
whatever you 
need to do to 
make your guest 
have a good 
time.”

"OK, we're going 
to make some 
lidded jars today 
and first thing 
you want to start 
off with obviously 
is your clay."
(GT rank: 1)

Similarity 0.36 Similarity 0.34

“It's first off 
books I bought a 
quite of few 
books I've gotten 
toy books...”

"OK, we're 
going to 
make some 
lidded jars 
today and 
first 
thing..."

Figure 5.4: Qualitative results on text to sign language retrieval: For each query, we
show frames from the top two ranked videos as well as their corresponding sentences (these are
not used during retrieval, and are provided for visualisation purposes). The top row shows a
success case. The bottom row shows a failure case in which the retrieval system struggles with
a less detailed query.

we incorporate a state-of-the-art sign language translation model [106], with which we

compute an IoU similarity measure. Note that sign language translation performance

is high on this dataset due to its restricted domain of discourse, which is the reason

why we opt for a translation-based approach instead of the sign recognition-based re-

trieval as in Subsection. 5.3.3. The results are reported in Table 5.8. We observe that

our cross-modal embeddings strongly outperform the translation-based retrieval. Their

combination performs best (as in Table 5.7).

Table 5.8: Retrieval performance on the PHOENIX2014T dataset: We report baseline
performances for cross modal embeddings, as well as text-based retrieval by sign language trans-
lation on the 642 sign-sentence pairs of the test set.

t2v v2t
Text Embedding R@1↑ R@5↑ R@10↑ MedR↓ R@1↑ R@5↑ R@10↑ MedR↓

Translation [106] 30.2 53.1 63.4 4.5 28.8 52.0 60.8 56.1
Cross-modal 48.6 76.5 84.6 2.0 50.3 78.4 84.4 1.0
Combination 55.8 79.6 87.2 1.0 53.1 79.4 86.1 1.0
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Text query Sign video retrieval

"So another example 
of shape we want to 
show you are in the 
teacup and we would 
take a look at that 
coming up in this 
series."
(GT rank: 7)

Similarity 0.46
“So some 
other shapes 
when you are 
collecting 
pink luster 
...”

Similarity 0.46 “So, if we're 
looking at this 
house, for example, 
when you first walk 
in, you're going to 
see this vignette 
to your left.”

"Then bring your 
feet together and 
by this time you 
should be able to 
have built up 
enough strength to 
do a full push 
up."
(GT rank: 1)

Similarity 0.44 “A proper 
cardiovascular 
program should 
incorporate 
various aspects 
of training...”

Similarity 0.49
"Then bring 
your feet 
together and 
by this time 
you should be 
able to…”

Similarity 0.42

“Then when you 
get strong, then 
you can start 
picking up your 
feet.”

Similarity 0.45

“So I'm shuffling 
this deck at the 
start of this 
segment 
because...”

Similarity 0.27 “So some 
other shapes 
when you are 
collecting 
pink 
luster..”

Similarity 0.26 “So, we're just 
going to start 
right in the 
arch, light, 
feathery 
strokes...”

Similarity 0.28

“Then when you 
get strong, then 
you can start 
picking up your 
feet.”

Similarity 0.29
"A proper 
cardiovascular 
program should 
incorporate 
various 
aspects of 
training..."

Similarity 0.26

“Today we're 
going to work on 
stretching and 
strengthening the 
lower body.”

Similarity 0.26
“Alright, now 
this next shot I 
am showing you is 
kind of illegal 
in pool halls...”

Similarity 0.23
“If I make 
the reach 
cast like 
this, it 
pulls the fly 
back, so as I 
am making my 
reach cast 
stop...”

Similarity 0.22
“Now that we 
have our 
seasoned chicken 
wings and our 
seasoned flour 
we need to get 
those together 
so we are going 
to...”

Similarity 0.22

“So you would 
push this lever 
and you'll pull 
it up into a 
riding position.”

Similarity 0.28
"Then bring 
your feet 
together and 
by this time 
you should be 
able to…"

Similarity 0.21 “Here we're going 
to cover the 
initial contact, 
getting off first, 
the straight blast 
or the chain 
punch....”

Similarity 0.21 “So another 
example of shape 
we want to show 
you are in the 
teacup and we 
would take a look 
at that coming up 
in this series.”

Combination

Cross-Modal

Sign Recognition

"Then bring your 
feet together and 
by this time you 
should be able to 
have built up 
enough strength to 
do a full push 
up."
(GT rank: 16)

"Then bring your 
feet together and 
by this time you 
should be able to 
have built up 
enough strength to 
do a full push 
up."
(GT rank: 1)
SR words: ['to', 'your', 'time', 
'enough', 'full', 'have', 'push']

"So another example 
of shape we want to 
show you are in the 
teacup and we would 
take a look at that 
coming up in this 
series."
(GT rank: 112)

"So another example 
of shape we want to 
show you are in the 
teacup and we would 
take a look at that 
coming up in this 
series."
(GT rank: 3)
SR words: ['show', 'in', 'that', 
'and', 'you', 'up']

Figure 5.5: Qualitative results: We show two samples where text-based retrieval using sign
recognition (SR) helps retrieval when combined with cross-modal embeddings (CM). Top, middle
and bottom rows show the retrieval results for the same query using the average of the similarities
from SR and CM (Combination), Cross-Modal and Sign Recognition models, respectively.
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5.4.6 Limitations and Societal Impact

Limitations Qualitatively, we observe failure cases of our cross-modal retrieval model

(illustrated in Figure 5.4), when using more generic queries that lack precise detail. It is

also worth noting that all datasets used in our experiments are interpreted sign language

rather than conversational (e.g. conversations between native signers – see [14] for a

broader discussion on how this can limit models trained on such data).

Societal Impact. The ability to efficiently search sign language videos has a number of

useful applications for content creators and researchers in the deaf community. However,

by providing this technical capability, it also potentially brings increased risk of surveil-

lance of signers, since large volumes of signing content can be searched automatically.

5.5 Final Remarks

In this work, we introduced the task of sign language video retrieval with free-form

textual queries. The proposed task can be considered more challenging than retrieving

isolated signs or “generic” cross-modal retrieval given the complexity of signed languages.

In this case, the trained model must be able to capture the linguistic content of the video,

while the large cross-modal retrieval literature would simply capture its semantic content

(e.g. “an interpreter signing”).

We believe this task can bring challenging and beneficial research problems to the com-

puter vision community in addition to contributing to solve real-world problems. We

envision research on this task to: (i) massively improve the quality of sign language

video indexing and search on online video collections, enabling sign language users to

search the web using their native and preferable language; (ii) facilitate and speed up

learning sign language via example retrieval, and (iii) provide a highly challenging task

motivating more researchers to work on the very challenging and impactful area of sign

language understanding.

We further provided results for this task on the How2Sign and Phoenix2014T datasets

establishing strong baselines on both datasets which we hope will serve to stimulate

research in the area of sign language understanding.



6
Sign Language Video Generation

6.1 Introduction

Automatic Sign Language Video Generation refers to the task of automatically creating

sign language video animations or avatars 1 given a body pose information. Those videos

can be generated in different ways, such as via video rendering softwares or synthesized

by generative models, like Generative Adversarial Networks (GANs) [188].

The generation of a human-like character can help improving the interpretation of signed

languages in virtual scenarios turning it easier to comprehend and becoming more real-

istic for sign language users. But it is important to note that the Sign Language Video

Generation task differs from Sign Language Production (SLP), where the translation

from spoken to sign language is also required before generating a human-like signer on

top of the predicted pose information– this process can also be done in an end-to-end

approach, but has not been explored yet.

Sign Language Video Generation is an alternative to make the recent present methods

that are working towards sign language production [94–97, 189] more accessible to sign

language users. Such methods currently predict a temporal sequence of keypoints that

form a skeleton representation from spoken language. In these systems, skeletons are

represented by 2D/3D coordinates of human joints also known as keypoints.

Keypoints can carry detailed human pose information and can be an alternative for

reducing the computational bottleneck that is introduced when working with the actual
1An avatar is a cartoon-style computer-animated character

73
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video frames. However, no studies have been made so far on whether they are indeed

useful when it comes to understanding sign language by its users.

In this chapter we present a study where we aim to understand if and how well sign

language users understand automatically generated sign language videos that use 2D

keypoints from How2Sign as sign language representation. In addition to skeleton vi-

sualizations, we go one step further and also generate realistic videos using a popular

method for human motion transfer called Everybody Dance Now (EDN) [7]. We run this

study with a set of ASL signers and record their understanding of the generated videos

in terms of the category of the video, the translation into American English, and a final

subjective rating about how understandable the videos were.

6.2 Related work

Human Motion Transfer. The task of human motion transfer, consists of transferring

the motion of a person from a source to a target video. It has been used in different

applications, such as in the synthesis of videos of a person imitating dancing movements

from another person from a different video [7, 190, 191], to predict future frames an

synthesize new videos [192, 193], and to generate videos with different backgrounds [194,

195] among others [196–200].

These models usually have as input a source pose, represented by 2D/3D keypoints or

a body mask, and output the appearance of a person on top of those representations

performing such pose/movement. In that sense, when applied to sign language research,

these methods can be used, for example, as an addition block in the sign language

production pipeline. In this case, the produced poses can be used to condition a human

synthesis module and generate a human-like character in order to make the sign language

output more realistic and comprehensible by sign language users. However, there has

been limited research regarding the generation of novel poses not seen in source videos

or conditioned on a given input. Most works have been restricted to conditioning pose

generation on a given action [201] or audio [202, 203].

Sign Language Production the automatic translation from spoken to sign language,

has just recently been explored with deep learning approaches [101, 107, 204–206]. Pre-

viously, this task was tackled in two steps. First, the motion of a native signer would be

captured, or created by a expert in 3D animation in collaboration with a deaf person,

and later transferred to an avatar [207–209]. This is very expensive and non-scalable

approach that brings several challenges for the computer animation community as the

motions generated must be realistic and have a precise semantic meaning.
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Initial attempts to automatic SLP have focused on the production of concatenated iso-

lated signs that disregard the grammatical syntax of sign language [95, 206]. Saunders et

al. proposed the first SLP model to produce continuous sign language sequences direct

from source spoken language [107]. A Progressive Transformer model was introduced

that uses a counter decoding technique to predict continuous sequences of varying length

represented as sequences of skeleton visualizations. Stoll et al. produced photo-realistic

signers, but using low-resolution isolated signs that do not generalise to the continuous

domain [95].

6.3 Generating Sign Language Videos

6.3.1 Video Synthesis

In order to generate the sign language videos used in this user study, we experiment with

two different methods: 1) skeleton visualizations and 2) Generative Adversarial Network

generated (GAN-generated) videos.

Skeleton visualizations. A common way of visualizing a set of estimated keypoints

from videos is by connecting the modeled joints and create a wired skeleton following

a given kinematic tree (detailed information about the kinematic tree used here can be

found in Section 3.3.3). By visualizing the sign language poses in a sequence, one can

have access to the human pose and motion information without requiring the full pixel-

level video frames, avoiding the computational bottleneck that comes with it. Middle

row of Figure 6.2 shows an example of a wired skeleton visualization.

GAN-generated videos. We use generative models to synthesize videos conditioned

by the detected keypoints. To generate the animated video of a signer given a set of

keypoints, we use an off-the-shelf motion transfer and synthesis approach called Every-

body Dance Now (EDN) [7]. Given a video of a source person and another of a target

person, the goal of this model is to generate a new video of the target enacting the

same motions as the source. To accomplish this task, the overall pipeline is divided into

three stages– pose detection, global pose normalization, and mapping from normalized

skeleton visualizations to the target subject.

In the pose detection stage P , a pre-trained state-of-the-art pose estimation model is

used to create skeleton visualizations, or also called pose stick figures in the original

work, from the frames of the source video. The global pose normalization stage Norm

accounts for differences between the source and target body shapes and locations within
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the frame. And finally, a system was designed to learn the mapping from the skeleton

visualizations to images of the target person using adversarial training.

The video synthesis method is based on Pix2PixHD [210], where the generator network

G engages in a minimax game against a multi-scale discriminator D [188]. The generator

is trained to synthesize images that would fool the discriminator, which must distinguish

between “real” (ground truth) images and “fake” images produced by the generator. The

two networks are trained simultaneously and drive each other to improve themselves–

G learns to synthesize more detailed images to trick D, which in turn learns differences

between generated outputs and ground truth data. In this case, G synthesizes images of

a person given a skeleton visualization.

To be able to generate realistic sequences of images, EDN was further enhanced with

a learned model of temporal coherence for better video and motion synthesis between

adjacent frames by predicting two consecutive frames. Instead of generating individual

frames, the model predicts two consecutive frames where the first output is conditioned

on its corresponding skeleton visualization and a zero image (a placeholder since there is

no previously generated frame at time t−2). The second output is conditioned on its cor-

responding skeleton visualization and the first output. Consequently, the discriminator

must now determine both the difference in realism and temporal coherence between the

“fake” sequence and “real” sequence. The temporal smoothing changes are also reflected

in the updated GAN objective.

In addition to the temporal smoothing, EDN also includes a separate module for high

resolution face generation, which is highly desirable in our case since facial landmarks

are one of the critical features for sign language understanding. Figure 6.1 shows the

overall pipeline of the EDN model.

Implementation Details. Below we specify the implementation details of each visu-

alization method.

OP-skeletons. The keypoints used in this study were predicted from the videos of the

How2Sign dataset using OpenPose [23]. We extracted the keypoints from the full-

resolution videos and connect them use the original kinematic tree from OpenPose. We

explain the keypoints extraction process in Section 3.3.3.

EDN-generated videos. The EDN model was trained using the original hyper-parameters

detailed in [7]. Each model was trained from scratch using the videos of one signer

from the How2Sign dataset. More specifically, keypoints extracted from videos of the

first signer (top row in Figure 6.2) were used to learn the model that generates realistic

videos of the second signer (bottom row) 2. The subset used to train the model consisted
2A sample of a generated video can be seen at: https://youtu.be/wOxWUyXX6Ys

https://youtu.be/wOxWUyXX6Ys
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Training

Fake,
Temporally
Incoherent

Real,
Temporally
Coherent

Transfering

Figure 6.1: Training (Top): The EDN model [7] uses a pose detector P to create skeleton
visualizations from video frames of the target subject. A mapping G is learned alongside with
an adversarial discriminatorD which attempts to distinguish between the “real” correspondences,
and “fake” sequences. Transfer (Bottom): The pose detector P is used to obtain pose keypoints
for the source person that are transformed by a normalization process Norm into joints for
the target person for which skeleton visualizations are created. A training mapping G is then
applied.

Figure 6.2: Sample of generated Sign Language videos. Source video (top row) was used to
automatically extract 2D keypoints (middle row) and generate frames of a video with a different
identity (bottom row).

of 28 hours of the training split– it consists of all the videos of “signer 8” and transfered

to “signer 5”.

6.3.2 Automatic evaluation

An approximate but automatic way of measuring the visual quality of the generated

videos is by comparing the keypoints that can be reliably detected by OpenPose in the
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Table 6.1: Results on different OpenPose confidence scores. Percentage of Detected
Keypoints (PDK) and Percentage of Correct Keypoints (PCK) for all keypoints and just for the
hands, when thresholding at different detection confidence scores of OpenPose (OP).

PDK PCK
OP confidence scores 0 0.2 0.5 0 0.2 0.5

All keypoints 0.99 0.88 0.87 0.90 0.94 0.96
Hands 0.99 0.38 0.17 0.08 0.11 0.12

source and generated videos. We focus only on the 125 upper body keypoints which are

visible in the How2Sign videos, and discard those from the legs. We use two metrics:

a) the Percentage of Detected Keypoints (PDK), which corresponds to the fraction of

keypoints from the source frame which were detected in the synthesized frame, and b)

the Percentage of Correct Keypoints (PCK) [211], which labels each detected keypoint

as “correct" if the distance to the keypoint in the original image is less than 20% of the

torso diameter in all keypoints and 10% of the torso diameter for the hands.

In Table 6.1 we present these metrics for different minimum confidence thresholds of

the OpenPose (OP keypoint detectors). We report results for all keypoints, as well as

when restricting the evaluation only on the hand keypoints. We see that although the

repeatability of keypoints is high in general, the model fails to predict reliable keypoints

for the hands. This limitation is especially relevant in sign language processing.

6.3.3 Evaluation with the user in the loop

We evaluate the degree of understanding for both skeleton visualizations and the GAN-

generated videos by showing 3-minute-long videos to four ASL signers. Two signers

watched the skeletons visualizations, while the other two watched the GAN-generated

videos. During the evaluation, each subject was asked to: a) classify six videos between

the ten video categories (see subsection 3.2 for more information about the dataset

categories); b) answer the question “How well could you understand the video?" on the

five-level scale ((1) Bad, (2) Poor, (3) Fair, (4) Good, (5) Excellent); and c) watch

two clips from the previously seen video and translate them into American English.

Results averaged over all subjects are presented in Table 6.2. We report accuracy for the

classification task, the Mean Opinion Score (MOS) for the five-scale question answers

and BLEU [9] scores for the American English translations. Qualitative results are shown

in Table 6.3.

Our results in Table 6.2 show a preference towards the generated videos rather than the

skeleton ones, as the former result in higher scores across all metrics. In terms of general
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Table 6.2: Quantitative results. Comparison between generated skeletons and GAN videos in
terms of classification (Accuracy) between the ten video categories of How2Sign, mean opinion
score (MOS) and translation (BLEU) [9].

Acc. MOS BLEU-1 BLEU-2 BLEU-3 BLEU-4

Skeleton 83.3 % 2.50 10.90 3.02 1.87 1.25
GAN-generated 91.6 % 2.58 12.38 6.71 3.32 1.89

Table 6.3: Qualitative results. Ground-truth (GT) and collected translations for two clips of
the “Food and Drink" category. All subjects were able to correctly classify the category.

GT I’m not going to use a lot, I’m going to use very very little.

Skeleton That is not too much
don’t use much, use a little bit

EDN Don’t use a lot, use a little
dont use lot use little bit

GT I’m going to dice a little bit of peppers here.

Skeleton cooking
chop yellow peppers

EDN cook with a little pepper
chop it little bit and sprinkle

understanding of the topic, the subjects were able to mostly classify the videos correctly

with both types of visualizations.

When it comes to finer grained understanding measured via the English translations,

however, we can see from both Table 6.2 and Table 6.3 that neither skeletons nor GAN-

generated videos are sufficient to convey important information needed from ASL signers

to completely understand the sign language sentences. We hypothesize that current

human pose estimation methods such as [23] are still not mature enough when it comes

to estimate fast movements of the hands. We observed that due to the nature of sign

language and the fast movements of the signers’ hands, OpenPose lacks precision in those

cases which can make the visualizations incomplete, harming the understanding of some

important parts of sign language.

6.4 Final Remarks

In this chapter we have presented a study in which sign language videos generated from

the automatically extracted annotations of our dataset were presented to ASL signers. To

our knowledge, this is the first study that investigates how well keypoint-based synthetic

videos, a commonly used representation of sign language production and translation, can

be understood by sign language users.
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In order to access this information, we proposed a evaluation protocol that include sign

language users in the loop, and evaluate their understanding regarding two different

tasks, video topic detection (easier) and English translation (harder). Both tasks were

formulated using the available data in the How2Sign (video topic and English transla-

tion). Through this evaluation process, we show that subjects prefer synthesized realistic

videos over skeleton visualizations; we also show that current video synthesis methods

can generate videos that allows the understanding of sign language videos to a certain

extent i.e., the classification of the video category, but lack in fidelity to allow for a fine-

grained understanding of the complete sign language sentence. We partially attribute

poor understanding on the bad synthesis of the hands, and believe that future research

towards that direction is highly important.

How can computer vision do better? Our results show that the EDN model used

as an out-of-the-box approach is not enough for sign language video generation. Specif-

ically, we show that the model struggles with generating the hands and detailed facial

expressions, which play a central role in sign language understanding. We argue that hu-

man pose estimation plays an important key in this aspect and needs to be more robust

to blurry images, especially in the hands and to fast movements in order to be suitable

to sign language research. We also argue that it is worth pursuing generative models

that focus on generating hand details, particularly on the movements of the fingers, as

well as clear facial expressions on full-body synthesis.



7
Conclusion

In this chapter, we conclude this thesis by providing a summary of its contributions (Sec-

tion 7.1) followed by a discussion and outlining some lines of future work (Section 7.2).

7.1 Summary of contributions

This thesis has addressed two main challenges of sign language understanding, the lack

of a large-scale dataset and the development of vision-based machine learning models for

sign language.

To tackle the lack of large-scale and reliable sign language datasets, our contributions

are following:

• In Chapter 2 (Section 2.2), we present an extensive survey on the existing sign

language datasets including information about the modalities they are composed

of, as well as the vocabulary size, total duration of the videos, number of samples,

domain of discourse, number of signers, video/image resolution, link to download

(when available) and the dataset publication (if any). This survey can be used as a

first step for future efforts in the development of methods that involve sign language

as well as future data collection, providing the community with the information of

all datasets up to date comprised in a single document. We also provide an online

and collaborative version of this survey where we intend to keep updated for future

use in the area.

81
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• In Chapter 3, we presented the How2Sign dataset, describing the process of

video recordings in both multiview studios, as well as the collection of the manual

and non-manual annotations. We also provide information about costs and time

spent for the construction of the dataset, as well as the pipeline used during our

recordings. We conclude by describing our experience when working directly with

subjects and dealing with large-scale amounts of data and what we have learned

through the whole process. We believe the How2Sign have a large potential on

supporting the advantage of the sign language research field given its quality and

features, but we also believe that the provided information can support and facil-

itate future data collection and minimizing the challenges that were described in

Chapter 1. In addition to that, How2Sign extends the How2 [99] dataset, an exist-

ing multimodal dataset with a new sign language modality, and therefore enables

connecting with research performed in the vision, speech and language communi-

ties.

To address the development of vision-based machine learning models for sign language,

our contributions are the following:

• In Chapter 4 we tackle the annotation scarcity challenge by presenting a frame-

work based on sign spotting techniques that uses a re-train and re-query method-

ology to automatically annotate continuous sign language data with sparse

sign-level labels. Using the presented framework, we annotated a large portion of

the How2Sign dataset with sign-level annotations which allowed us to establish a

strong baselines for the Sign Language Recognition task. We believe this

baseline is an important starting point that can instigate the community to train

and develop more complex and accurate models for this task.

• In Chapter 5, we introduce a novel task– sign language video retrieval with

free-form textual queries and establish strong baselines for both the How2Sign

and Phoenix2014T datasets. We believe that the proposed task brings challenging

problems for the research community that can motivate further work on the area

of content-based sign language video indexing and retrieval.

• In Chapter 6, we explore the Sign Language Video Generation task by applying

a motion transfer technique to synthesize sign language videos. This pipeline is

generally used by the computer vision community as a final step of sign language

production models. However, no studies with sign language users were ever done

before to access if and how well they understand automatically generated

sign language videos and validate the used pipeline. To do so, we present a user-

based evaluation protocol where we present two types of generated videos and ask
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a group of ASL signer to evaluate the visualizations by responding which topic the

video was about and by translating the ASL content back to English, both based

on the How2Sign data. We believe such evaluation is beneficial to understand and

design future approaches to sign language production and generation as well as

understand how well off-the-shelf models work on sign language data.

7.2 Discussion and Future Work

Here we discuss some of the important points learned during this thesis and discuss

future directions in the area of Sign Language understanding.

Inclusion of the Deaf community. First and foremost, we believe that future works

should include the Deaf community from the beginning, in the design phase, until the

end in the development and test phase. As pointed out by different members of different

Deaf communities and recently in the study presented by Bragg et al. [14], sign language

users (deaf people, sign language interpreters, sign language teachers and students, and

hearing people who interact with deaf people professionally or socially) are the principal

stakeholders of any future application of sign language research and should be integrated

into the design and execution of it. This collaboration would avoid most of the common

mistakes and inappropriate directions of research that can be taken when the research

group lacks individuals with lived experience of the problems the technology could or

should solve. It is also common to develop approaches that do not take into account the

linguistic complexities of signed languages for which the algorithms must account. As

a result, such single-disciplinary approaches to sign language understanding will often

end up having limited real-world value [212]. In addition to that, sign languages are an

important part of Deaf communities’ identity and culture and should be respected and

treated as such.

Data. Although various efforts, including this thesis, have been developed towards

collecting large-scale and reliable sign language data that is suitable for the development

of new technologies for sign language, as pointed out by Bragg et al [14], the lack of data

is still one of the biggest challenges to be addressed in the field. Datasets that reflect

real-world use cases, e.g. conversation, healthcare, public services, education, emergency

situations, etc., are still needed. Up to date, the public sign language datasets still

have shortcomings that limit the power and the ability to generalize systems trained

on them. As discussed in Chapter 2, such shortcomings can fall into one or more of

the following categories: limited size/duration, a limited domain of discourse/content,

presence of non-native or fluent signers, signer variety, lack of proper annotations, and

inclusion of linguist complexities of SL (e.g. use of classifiers). In addition to that, we
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believe that the development of tools to assist the data collection and annotations are

also an essential and needed resource.

FATE in AI for Sign Language. With the increasing interest in the development

of models and datasets to train artificial intelligence and machine learning systems to

account for sign language, researchers should also be thoughtful and take into account

the Fairness, Accountability, Transparency, and Ethics (FATE) of such models and data.

Sign language datasets typically contain recordings of people signing, which is highly

personal not just because it contains their face, but also their particular way of com-

municating and expressing themselves. The rights and responsibilities of the parties

involved in data collection and storage are complex and involve different data sponsors,

data collectors or owners, and data users. Deaf community members (and signers, more

generally) are also central stakeholders in any end applications of sign language data. It

is important to note that the centrality of sign language to deaf culture identity, coupled

with a history of oppression, makes the usage of data and development of technology

particularly sensitive [16]. While preliminary work has presented some approaches to

preserve the identity of signers in sign language videos by using facial filters [18], it is

not clear how to move forward in this context and preserve the privacy of signers while

collecting or using sign language data.

Generalization to unseen situations and individuals is a major difficulty of machine

learning, and tasks that involve sign language understanding are no exception. Sign Lan-

guage recognition, translation and production models considered nowadays the state-of-

the-art are usually trained in a small (11 hours) and restricted domain (weather forecast)

dataset. Models trained in such data struggle to generalize to other domains as well as

to deal with different types of data. Larger and more diverse datasets are essential for

training generalizable models. However, generating such datasets can be extremely time-

consuming and expensive. An alternative would be to develop models that are able to

generalize better using limited resources, e.g. data, annotations, compute.

Synthetic data. One approach to address the scarcity, diversity and privacy of sign

language data would be to create and use synthetic data. This approach has recently

become popular in related computer vision domains to address low-level tasks such as

body shape estimation and more recently human action recognition. Such tasks can

usually be tackled with a more generic representation of the human body. However, sign

language understating tasks requires fine-grained data that include movements of fingers

and detailed facial expression. Such detailed data has not been largely explored in models

that create body representation used to generate synthetic data. In addition to that, a

recipe for how to create a good synthetic dataset for training is still unknown. To the best

of our knowledge, there is no synthetically generated data that accounts for sign language.
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We believe this is due to the scarcity of labeled data and the complexity of generating

detailed human pose information. However, we believe the 3D pose information generated

by the Panoptic studio presented in Chapter 3 has the potential to serve as the starting

point potentially be used to generate synthetic 3D human pose representations with

different backgrounds, clothing, skin color, illumination, etc.

Standard annotation system. As noted in Section 6.1 there is still no widespread

manner of annotating or collecting sign language data. Label or annotation format

immediately affects who can label the data, which can also additionally insert biases

into labels or translations. Labels are required for documenting the contents of sign

language data and to enable supervised learning of statistical models to learn mapping

functions between the data and labels. A standard annotation system would expedite

the development of sign language understanding tasks, where datasets annotated with

a standard system could easily be combined and shared. A standard system would also

reduce annotation costs and errors. Using complicated notation systems (e.g. linguistic

notation systems vs. glossing) requires sophisticated software (e.g. ELAN [102]), which

means that only trained annotators can contribute. This may exclude many willing deaf

annotators from contributing and limit dataset size due to high costs [16].

Learn from past mistakes. New AI technologies that include sign languages in their

pipeline are drawing the attention of computer science and linguistic researchers in the

past years. Such tools can be powerful and offer significant benefits to deaf people. At

the same time, as with any powerful tool, AI-enabled sign language technologies can pose

risks of (unintended) harmful consequences. Here, we would like to conclude this thesis

with this reminder and draw the attention of researchers that intend to pursue this path

to such possible risks. Bragg et al [16] compile and presents a wonderful brief history of

deaf-related technology (Section 2.3 of the referred work) and point out some common

benefits and pitfalls so future work can learn from history and be better equipped to

proceed thoughtfully.
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Appendix A:

Cross-modal video and audio

retrieval

In this Appendix, we present our approach that explores a cross-modal retrieval technique

that was later adapted to be used in the sign language context with the availability of

the How2Sign dataset, presented in Chapter 5.

The increasing amount of online videos brings several opportunities for training self-

supervised neural networks. Here we explore the large-scale video dataset YouTube-8M

by taking advantage of the multi-modal information available 1. By means of a neural

network, we are able to create links between audio and visual files, by projecting them

into a common region of the feature space, obtaining joint audio-visual embeddings.

These links are then used to retrieve audio samples that fit well to a given silent video,

and also to retrieve images that match a given a query audio. The results in terms

of Recall@K obtained over a subset of YouTube-8M videos show the potential of this

unsupervised approach for cross-modal feature learning. We train embeddings for both

scales and assess their quality in a retrieval problem, formulated as using the feature

extracted from one modality to retrieve the most similar videos based on the features

computed in the other modality.
1The YouTube-8M dataset had been recently released by the time of this publication
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A.1 Introduction

Videos have become the next frontier in artificial intelligence. Their rich semantics make

them a challenging data type posing several challenges in both perceptual, reasoning or

even computational level. Mimicking the learning process and knowledge extraction that

humans develop from our visual and audio perception remains an open research question,

and video contain both information in a format manageable for science and research.

Videos are used in this work for two main reasons. Firstly, they naturally integrate both

visual and audio data, providing a weak labeling of one modality with respect to the

other. Secondly, the high volume of both visual and audio data allows training machine

learning algorithms whose models are governed by a high amount of parameters.

The popularization of deep neural networks among the computer vision and natural

language processing communities has defined a common framework boosting multimodal

research. Tasks like video sonorization, speaker impersonation or self-supervised feature

learning have exploited the opportunities offered by artificial neurons to project images,

text and audio in a feature space where bridges across modalities can be built.

This work exploits the relation between the visual and audio contents in a video clip to

learn a joint embedding space with deep neural networks. Two multilayer perceptrons

(MLPs), one for visual features and a second one for audio features, are trained to be

mapped into the same cross-modal representation. We adopt a self-supervised approach,

as we exploit the unsupervised correspondence between the audio and visual tracks in

any video clip.

We propose a joint audiovisual space to address a retrieval task formulating a query from

any of the two modalities. A video or an audio clip can be used as a query to search its

matching pair in a large collection of videos. For example, an animated GIF could be

sonorized by finding an adequate audio track, or an audio recording illustrated with a

related video.

In this Appendix, we present a simple yet effective model for retrieving videos or audio

files with a fast and light search. We do not address an exact alignment between the two

modalities which would require a much higher computation effort. We make the code

and trained model publicly available at https://github.com/surisdi/youtube-8m.

https://github.com/surisdi/youtube-8m
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A.2 Related Work

In the past years, the relationship between the audio and the visual content in videos has

been researched in several contexts. Overall, conventional approaches can be divided into

four categories according to the task: generation, classification, matching and retrieval.

As online music streaming and video sharing websites have become increasingly popular,

some research has been done on the relationship between music and album covers [213–

216] and also on music and videos (instead of just images) as the visual modality to

explore the multimodal information present in both types of data [217–220].

A recent study also explored the cross-modal relations between the two modalities but

using images with people talking and speech [221]. It is done through Canonical Corre-

lation Analysis (CCA) and cross-modal factor analysis. Also applying CCA, Zhang et

al. [222] uses visual and sound features and common subspace features for aiding cluster-

ing in image-audio datasets. In a work presented by Ngiam el at. [223], the key idea was

to use greedy layer-wise training with Restricted Boltzmann Machines (RBMs) between

vision and sound.

This work is focused on using the information present in each modality to create a

joint embedding space to perform cross-modal retrieval. This idea has been exploited

especially using text and image joint embeddings [224–226], but also between other kinds

of data, for example for creating a visual-semantic embedding [155] or using synchronous

data to learn discriminative representations shared across vision, sound and text [227].

However, joint representations between the images (frames) of a video and its audio have

yet to be fully exploited, being [228] the work that most has explored this option to the

best of our knowledge by the time of the publication of this work. In Hong et al, they

seek for a joint embedding space but only using music videos to obtain the closest and

farthest video given a query video, only based on either image or audio.

The main idea of the this work is borrowed from [226], which is the baseline to understand

our approach. In Salvador’s et al. work, the authors create a joint embedding space for

recipes and their images. Where they later use to retrieve recipes from any food image,

looking to the recipe that has the closest embedding. Apart from the retrieval results,

they also perform other experiments, such as studying the localized in the activation

unit, or doing arithmetics with the images.
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Figure A.1: Model Architecture. Here we illustrate the architecture used in the cross-modal
retrieval task.

A.3 Cross-modal Video and Audio Retrieval

In this section we present the architecture for our joint embedding model, shown in

Figure A.1. Our architecture have as input an image features vector and an audio

features vector both pre-computed and provided together with the YouTube-8M dataset

[229]. In particular, we use the video-level features, that represents the whole video

clip with two vectors: one for the audio and another one for the video. These feature

representations are the result of an average pooling of the local audio features computed

over windows of one second, and local visual features computed over frames sampled at

1 Hz.

The main objective of the system is to transform the two different features vectors (image

and audio, separately) to other features laying in a joint space. This means that for the

same video, ideally the video and audio features will be transformed to the same joint

features, in the same space. We will call these new features embeddings, and will represent

them with Φi, for the image embeddings, and Φa, for the audio embeddings.

The idea of the joint space is to represent the concept of the video, not just the image

or the audio, but a generalization of it. As a consequence, videos with similar concepts

should be close in the embedding space and videos with different concepts should be

further apart in the joint space. For example, the representation of a tennis match video

will be close to the one of a football match, but not to the one of a maths lesson.

We use a set of fully connected layers of different sizes, stacked one after the other, going

from the original features to the embeddings. They perform a non-linear transformation

on the input features, mapping them to the embeddings, being the parameters of this

non-linear mapping learned in the optimization process. It is important to note that both,

the audio and the image network are completely separated. After that, a classification

step is done, also using a fully connected layer using a sigmoid as activation function.
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Each hidden layer uses ReLu as activation function, and all the weights in each layer are

regularized using L2 norm.

A.3.1 Similarity Loss

Given the objective of getting the two embeddings of the same video to be as close

as possible, while keeping embeddings from different videos as far as possible, we can

formulate our problem as the following: given a video vk, represented by the audio and

visual features vk = {ik, ak} (ik represents the image features and ak the audio features

of vk), the objective is to maximize the similarity between Φi
k (the embedding obtained

by transformations on ik), and Φa
k (the embedding obtained by transformations on ak).

At the same time, however, we have to prevent embeddings from different videos to be

“close” in the joint space. In other words, we want them to have low similarity. However,

the objective is not to force them to be opposite to each other. Instead of forcing them

to have similarity equal to zero, we allow a margin of similarity small enough to force

the embeddings to be clearly not in the same place in in the joint space, called α.

During the training, both positive and negative pairs are used, being the positive pairs

the ones for which ik and ak correspond to the same video vk, and the negative pairs the

ones for which ik1 and ak2 do not correspond to the same video, this is, k1 ̸= k2. The

proportion of negative samples is pnegative.

For the negative pairs, we selected random pairs that did not have any common label, in

order to help the network to learn how to distinguish different videos in the embedding

space. The notion of “similarity” or “closeness” is mathematically translated into a cosine

similarity between the embeddings, being the cosine similarity defined as:

similarity = cos(x, z) =

N∑
k=1

xkzk√
N∑
k

x2k

√
N∑
i
z2k

(A.1)

for any pair of real-valued vectors x and z resulting in the following loss:

Lcos((Φ
a,Φi), y) =

=

{
1− cos(Φa,Φi), if y = 1

max(0, cos(Φa,Φi)− α), if y = −1

(A.2)
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where y = 1 denotes positive sampling, and y = −1 denotes negative sampling.

A.3.2 Regularization

Inspired by the work presented by [226], we allow additional information to our system

by incorporating the video labels (classes) provided by the YouTube-8M dataset. This

information is added as a regularization term that seeks to solve the high-level classifica-

tion problem, both from the audio and from the video embeddings, sharing the weights

between the two branches. The key idea here is to have the classification weights from

the embeddings to the labels shared by the two modalities.

This loss is optimized together with the previously explained similarity loss (Eqn A.3.1),

serving as a regularization term. Basically, the system learns to classify the audio and

the images of a video (separately) into different classes or labels provided by the dataset.

We limit its effect by using a regularization parameter λ.

To incorporate this regularization to the joint embedding, we use a single fully connected

layer, as shown in Figure A.1. Formally, we can obtain the label probabilities as pi =

softmax(WΦi) and pa = softmax(WΦa), where W represents the learned weights, which

are shared between the two branches. We use a softmax in order to obtain probabilities

at the output. The objective is to make pi as similar as possible to ci, and pa as similar

as possible to ca, where ci and ca are the category labels for the video represented by

the image features and the audio features, respectively. For positive pairs, ci and ca are

the same.

For the classification task, we used the cross entropy loss, as following:

L(x, z) = −
∑
k

xk log(zk) (A.3)

Thus, the classification loss is:

Lclass(p
i, pa, ci, ca) = −

∑
k

(pik log(c
i
k) + (pak log(c

a
k)) (A.4)

Finally, the loss function to be optimized is:

L = Lcos + λLclass (A.5)
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A.4 Experiments

A.4.1 Dataset

The experiments presented in this section were developed over a subset of 6,000 video

clips from the YouTube-8M dataset [229]. This dataset does not contain the raw video

files, but their representations as precomputed features, both from audio and video.

Audio features were computed using the method explained in [230] over audio windows

of 1 second, while visual features were computed over frames sampled at 1 Hz with the

Inception model provided in TensorFlow [231].

The dataset provides video-level features, which represent all the video using a single

vector (one for audio and another for visual information), and thus does not maintain

temporal information; and also provides frame-level features, which consist on a single

vector representing each second of audio, and a single vector representing each frame of

the video, sampled at 1 frame per second.

The main goal of this dataset is to provide enough data to reach state of the art results

in video classification. Nevertheless, such a huge dataset also permits approaching other

tasks related to videos and cross-modal tasks, such as the one we approach in this paper.

For this work, and as a baseline, we only use the video-level features.

A.4.2 Implementation details

We observe that starting with λ different than zero led to a bad embedding similarity

because the classification accuracy was preferred. Thus, we began the training with

λ = 0 and set it to 0.02 at step number 10,000, followed by a margin α of 0.2. The

percentage of negative samples pnegative used was 0.6.

We used 4 hidden layers in each network branch, being the number of neurons per layer

from features to embedding equal to 2000, 2000, 700, 700 in the image branch and 450,

450, 200, 200 in the audio branch. We trained with a batch size of 1024. We used the

Tensorflow [231] code base provided by the authors of the YouTube-8M challenge 2.

A.4.3 Quantitative Evaluation

Evaluation metric. We obtain the quantitative results by applying the Recall@k met-

ric. We define Recall@k as the recall rate at top K for all the retrieval experiments, this
2https://www.kaggle.com/c/youtube8m

https://www.kaggle.com/c/youtube8m
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Table A.1: Audio to video retrieval. We present the Recall@ 1, 5 and 10 when retrieving
video given an audio query.

Size of the feature vector Recall@1 Recall@5 Recall@10
256 21.5% 52.0% 63.1%
512 15.2% 39.5% 52.0%
1024 9.8% 30.4% 39.6%

Table A.2: Video to audio retrieval. We present the Recall@ 1, 5 and 10 when retrieving
audio given a video query.

Size of the feature vector Recall@1 Recall@5 Recall@10
256 22.3% 51.7% 64.4%
512 14.7% 38.0% 51.5%
1024 10.2% 29.1% 40.3%

is, the percentage of all the queries where the corresponding video is retrieved in the top

K, hence higher is better.

The experiments are performed with different dimension of the feature vector. The

Table A.1 shows the results of recall from audio to video. In other words, from the audio

embedding of a video, how many times we retrieve the embedding corresponding to the

images of that same video. Table A.2 shows the recall from video to audio.

To have a reference, the random guess result would be k/Number of elements. The

obtained results show a very clear correspondence between the embeddings coming from

the audio features and the ones coming from the video features. It is also interesting

to notice that the results from audio to video and from video to audio are very similar,

because the system has been trained bidirectionally.

A.4.4 Qualitative Evaluation

In addition to the objective results, we performed some insightful qualitative experiments.

They consisted on generating the embeddings of both the audio and the video for a list of

6,000 different videos. Then, we randomly chose a video, and from its image embedding,

we retrieved the video with the closest audio embedding, and the other way around (from

one video’s audio we retrieved the video with the closest image embedding). If the closest

embedding corresponded to the same video, we took the second one in the ordered list.

The Figure A.2 shows some experiments. On the left, we can see the results given a

video query and getting the closest audio; and on the right the input query is an audio.

Examples depicting the real videos and audio are available online 3. It shows both the

results when going from image to audio, and when going from audio to image. Four
3https://goo.gl/NAcJah

https://goo.gl/NAcJah
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different random examples are shown in each case. For each result and each query, we

also show their YouTube-8M labels, for completeness.

The results show that when starting from the image features of a video, the retrieved

audio represents a very accurate fit for those images. Subjectively, there are non neg-

ligible cases where the retrieved audio actually fits better the video than the original

one, for example when the original video has some artificially introduced music, or in

cases where there is some background commentator explaining the video in a foreign

(unknown) language. This analysis can also be done similarly the other way around, this

is, with the audio colorization approach, providing images for a given audio.

Figure A.2: Qualitative results. On the left we show the results obtained when we gave a
video as a query. On the right, the results are based on an audio as a query.

A.5 Final Remarks

We presented an simple but effective method to retrieve audio samples that fit correctly

to a given (muted) video. The qualitative results show that the already existing online

videos, due to its variety, represent a very good source of audio for new videos, even in

the case of only retrieving from a small subset of this large amount of videos. Due to the

existing difficulty to create new audio from scratch, we believe that a retrieval approach

is the path to follow in order to give audio to videos.

The range of possibilities to extend the presented work is excitingly broad. The first idea

would be to make use of the YouTube-8M dataset variety and information. The temporal

information provided by the individual image and audio features is not used in the current

work. The most promising future work implies using this temporal information to match

audio and images, making use of the implicit synchronization the audio and the images
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of a video have, without needing any supervised control. Thus, the next step in our

research is introducing a recurrent neural network, which will allow us to create more

accurate representations of the video, and also retrieve different audio samples for each

image, creating a fully synchronized system.

Also, it would be very interesting to study the behavior of the system depending on the

class of the input. Observing the dataset, it is clear that not all the classes have the

same degree of correspondence between audio and image, as for example some videos

have artificially (posterior) added music, which is not related at all to the images.

In short, we believe the YouTube-8M dataset allows for promising research in the future

in the field of video sonorization and audio retrieval, for it having a huge amount of

samples, and for it capturing multi-modal information in a highly compact way.



B
Appendix B:

Image Generation from Audio

Recent works are making steps towards sign language production by automatically gener-

ating human pose keypoints from spoken language. However, such representation is not

realistic and compromise the understanding of the language by its users (See Chapter 6

for more details). An ideal Sign Language Production pipeline would be and end-to-end

approach where a spoken language speech input would be automatically translated into

sign language representations and later conveyed by a synthesized human-like character

performing the sign language translation.

However, such approach is yet not feasible with the available resources. Towards that

end, we start by exploring the generation of facial features and expressions, which play an

important role by carrying an large part of the grammar in sign languages [50]. Thus, in

this in Appendix, we explore the potential of the speech signal to generate face images of

a speaker by conditioning a Generative Adversarial Network with raw speech input. Our

model is trained in a self-supervised manner, by exploiting the audio and visual signals

naturally aligned in videos. With the purpose of training from video data, we present a

novel dataset collected for this work, with high-quality videos of youtubers with notable

expressiveness in both the speech and visual signals.

It is worth noting that this work does not use the How2Sign dataset and was developed

as our first attempt on developing a pipeline for sign language video generation directly

from speech. We leave the adaptation of this approach to an end-to-end approach of sign

language production and video generation as future work.

96



Appendix B– Image Generation from Audio 97

B.1 Introduction

Audio and visual signals are the most common modalities used by humans to identify

other humans and sense their emotional state. Features extracted from these two signals

are often highly correlated, allowing us to imagine the visual appearance of a person just

by listening to their voice, or build some expectations about the tone or pitch of their

voice just by looking at a picture of the speaker. When it comes to image generation,

however, this multimodal correlation is still under-explored.

In this Appendix, we focus on cross-modal visual generation, more specifically, the gen-

eration of facial images given a speech signal. Two recent approaches have recently

popularized this research venue [232, 233]. Chung et al. [232] present a method for gen-

erating a video of a talking face starting from audio features and an image of the person’s

identity. Suwajanakorn et al. focus on animating a point-based lip model to later syn-

thesize high quality videos of President Barack Obama [233]. Unlike the aforementioned

works, however, we aim to generate the whole face image at pixel level, conditioning only

on the raw speech signal (i.e. without the use of any handcrafted features) and without

requiring any previous knowledge (e.g speaker image or face model).

To this end, we propose a conditional generative adversarial model (shown in Figure

B.2) that is trained using the aligned audio and video channels in a self-supervised way.

For learning such a model, high quality, aligned samples are required. This makes the

most commonly used datasets such as Lip Reading in the wild [234], or VoxCeleb [235,

236] unsuitable for our approach, as the position of the speaker, the background, and

the quality of the videos and the acoustic signal can vary significantly across different

samples. We therefore built a new video dataset from YouTube, composed of videos

uploaded to the platform by well-established users (commonly known as youtubers), who

recorded themselves speaking in front of the camera in their personal home studios. Such

videos are usually of high quality, with the faces of the subject featured in a prominent

way and with notable expressiveness in both the speech and face. Our model, software

and dataset are publicly released at: https://imatge-upc.github.io/wav2pix/.

B.2 Related Work

Generative Adversarial Networks (GANs) [188] are a state of the art deep generative

model that consist of two networks, a Generator G and a Discriminator D, playing a min-

max game against each other. This means both networks are optimized to fulfill their

own objective: G has to generate realistic samples and D has to be good at rejecting G

https://imatge-upc.github.io/wav2pix/
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samples and accepting real ones. This joint learning adversarial process lasts for as long

as G begins generating samples which are as good enough as to fool D into making as

many mistakes as possible. The way Generator can create novel data mimicking real one

is by mapping samples z ∈ Rn of arbitrary dimensions coming from some simple prior

distribution Z to samples x from the real data distribution X (in this case we work with

images, so x ∈ Rw×h×c where w×h are spatial dimensions width and height and c is the

amount of channels).This means each z forward is like sampling from X . On the other

hand the discriminator is typically a binary classifier as it distinguishes real samples

from fake ones generated by G. One can further condition G and D on a variable e ∈ Rk

of arbitrary dimensions to derive the the conditional GANs [237] formulation, with the

conditioning variable being of any type, e.g. a class label or text captions [238]. In our

work, we generate images conditioned on raw speech waveforms.

Numerous improvements to the GANs methodology have been presented lately. Many

focusing on stabilizing the training process and enhance the quality of the generated

samples [239, 240]. Others aim to tackle the vanishing gradients problem due to the

sigmoid activation and the log-loss in the end of the classifier [241–243]. To solve this,

the least-squares GAN (LSGAN) approach [243] proposed to use a least-squares function

with binary coding (1 for real, 0 for fake). We thus use this conditional GAN variant

with the objective function is given by:

min
D

VLSGAN(D) =
1

2
ex,e∼pdata(x,e)[(D(x, e)− 1)2]

+
1

2
ez∼pz(z),e∼pdata(e)[D(G(z, e), e)2].

(B.1)

min
G

VLSGAN(G) =
1

2
ez∼pe(e),y∼pdata(y)[(D(G(z, e), e)− 1)2], (B.2)

Multi-modal generation. Data generation across modalities is becoming increasingly

popular [238, 244–246]. Several works [238, 246] present different approaches for syn-

thesizing realistic images given a text description. Recently, a number of approaches

combining audio and vision have appeared, with tasks such as generating speech from a

video [247] or generating images from audio/speech [248]. In this paper we will focus on

the latter.

Most works on audio conditioned image generation adopt non end-to-end approaches

and exploit previous knowledge about the data. Typically, speech has been encoded with

handcrafted features, such us the MEL spectrum or Mel-frequency Cepstral Coefficients

(MFCC), which have been very well engineered to represent human speech. At the visual

part, point-based models of the face [249] or the lips [233] have been adopted. In contrast
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to that, our network is trained entirely end-to-end solely from raw speech to generate

image pixels.

A direct synthesis of facial pixels was obtained in [232] with a discriminative model whose

input were a pair of audio features and a visual example of the face to predict. In that

case, the model had the help of a additional identity information (image of the speaker)

to help in the prediction, so the network learned how to modify this input to match

with the speech utterance. Following a similar architecture, a generative model trained

with adversarial training was proposed in [250]. In this case, they introduced a temporal

regularization to improve the smoothness of the output video sequence. Our work differs

from theirs in that we use raw speech instead of hand-crafted features, and we do not

need any image of the speaker as all identity information is extracted from the speech

only.

B.3 The Youtubers Dataset

In this section we describe the multi-stage pipeline adopted to collect the new audio-

visual dataset of human speech used in this work. We collected videos uploaded to

YouTube by well-established users (so-called youtubers), who tend to record themselves

speaking in front of the camera in a well controlled environment. Such videos are usually

of high quality, with the faces of the subject featured in a prominent way and with notable

expressiveness in both the speech and face. The Youtubers dataset is composed of two

sets: the complete noisy dataset automatically generated, and a clean subset which was

manually curated to obtain high quality data.

B.3.1 Data collection

In total we collected 168,796 seconds of speech with the corresponding video frames, and

cropped faces from a list of 62 youtubers active during the past few years. The dataset

is gender balanced and manually cleaned keeping 42,199 faces, each with an associated

1-second speech chunk. The pipeline used for downloading and pre-processing the full

dataset is summarized in Figure B.1, and the key stages are discussed in the following

paragraphs:

YouTubers selection and video download. A list of 62 different Spanish speaker

youtubers was built, consisting on 29 males and 33 females from different ethnicity and

accents. This list was chosen accordantly to their popularity and expressions in front of

the camera. After having the final list, the last 15 videos uploaded to their channel were

downloaded.
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YouTubers collection 
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Audio Preprocessing

Audio/face 
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Samples:
- Bbox: (X, Y , W, H)
- Cropped face
- Full Frame
- 4 secs of speech frame
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Figure B.1: High level representation of the data collection pipeline. Each detected face
is associated with a 4 seconds length audio and the corresponding identity. Besides that we also
kept the bounding box coordinates and the original image frame.

B.3.2 Data Pre-processing

Audio preprocessing. The audio was originally downloaded in Advance Audio Coding

(AAC) format at 44100 Hz and stereo and converted to WAV, as well as re-sampled to

16 kHz with 16 bits per sample and converted to mono.

Face Detection. The faces were detected using a Haar Feature-based Classifier [251]

trained with frontal face features. We prevent the method from having false positives by

taking only the most confident detection for each frame.

Audio/faces cropping. From each detection it is saved the bounding box coordinates,

an image of the cropped face in BGR format, the full frame and a 4 seconds length speech

frame, which encompasses 2 seconds ahead and behind the given frame. Moreover, we

keep an identity (name) for each sample. We apply a pre-emphasis step to each speech

frame and normalize it between [−1, 1].

As stated in section B.5 our model demonstrate a loss of performance when trained

with noisy data. Thus, a part of the dataset was manually filtered to obtain the high-

quality data required to improve the performance of our network. We took a subset of

10 identities, five female and five male, from our dataset and manually filtered them

making sure that all faces were visually clear and all audios contain speech, so that all

the silence and music parts were removed. As a result, the cleaned dataset contains a

total of 4,860 images and audios (4 seconds length).

B.4 Method

Since our goal is to train a GAN conditioned on raw speech waveforms, our model is

divided in three modules trained altogether end-to-end: a speech encoder, a generator

network and a discriminator network described in the following paragraphs respectively.
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Real/Fake

Discriminator NetworkGenerator Network
Speech Encoder

Figure B.2: Overall diagram of our speech-conditioned face generation GAN archi-
tecture. The network consists of a speech encoder, a generator and a discriminator network.
An audio embedding (green) is used by both the generator and discriminator, but its error is
just back-propagated at the generator. It is encoded and projected to a lower dimension (vector
of size 128). Pink blocks represent convolutional/deconvolutional stages.

The speech encoder was adopted from the discriminator in [252], while both the image

generator and discriminator architectures were inspired by [238]. The whole system was

trained following a Least Squares GAN [243] scheme. Figure B.2 depicts the overall

architecture.

B.4.1 Speech Encoder

As mentioned in Section B.2, many existing methods [232, 233, 250] require the extraction

of handcrafted audio features before feeding the data into the neural network. This could

limit the representation learning, as the audio information is extracted manually and not

optimized for our generative task. In contrast, SEGAN [252] proposed a method for

speech enhancement in which they do not work on the spectral domain, but at the

waveform level. We coupled a modified version of the SEGAN discriminator Φ as input

to an image generator G. Our speech encoder was modified to have 6 strided one-

dimensional convolutional layers of kernel size 15, each one with stride 4 followed by

LeakyReLU activations. Moreover we only require one input channel, so our input signal

is s ∈ RT×1, being T = 16, 384 the amount of waveform samples we inject into the

model (roughly one second of speech at 16 kHz). The aforementioned convolutional

stack decimates this signal by a factor 46 = 4096 while increasing the feature channels

up to 1024. Thus, obtaining a tensor f(s) ∈ R4×1024 in the output of the convolutional

stack f . This is flattened and injected into three fully connected layers that reduce the

final speech embedding dimensions from 1024 × 4 = 4096 to 128, obtaining the vector

e = Φ(s) ∈ R128.

B.4.2 Image Generator Network

We take the speech embedding e as input to generate images such that x̂ = G(e) =

G(Φ(s)). The inference proceeds with two-dimensional transposed convolutions, where
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the input is a tensor e ∈ R1×1×128 (an image of size 1 × 1 and 128 channels), based

on [244]. The final interpolation can either be 64×64×3 or 128×128×3 just by playing

with the amount of transposed convolutions (4 or 5). It is important to mention that we

have no latent variable z in G inference as it did not give much variance in predictions in

preliminary experiments. To enforce the generative capacity of G we followed a dropout

strategy at inference time inspired by [253].

In preliminary experiments, we found it convenient to add a secondary component to the

loss of G: a softmax classifier trained over the given speech embedding. This classifier

helped the whole network into preserving the identity of the speaker. The magnitude

of the classification component is controlled by a new hyper-parameter λ. Therefore,

the G loss, follows the LSGAN loss presented in Equation B.2 with the addition of this

weighted auxiliary loss for identity classification.

B.4.3 Image Discriminator Network

The Discriminator D is designed to process several layers of stride 2 convolution with a

kernel size of 4 followed by a spectral normalization [254] and leakyReLU (apart from

the last layer). When the spatial dimension of the discriminator is 4×4, we replicate the

speech embedding e spatially and perform a depth concatenation. The last convolution

is performed with stride 1 to obtain a D score as the output.

B.5 Experiments

B.5.1 Implementation details

The Wav2Pix model was trained on the cleaned dataset described in Section B.3 com-

bined with a data augmentation strategy. In particular, we copied each image five times,

pairing it with 5 different audio chunks of 1 second randomly sampled from the 4 seconds

segment. Thus, we obtained ≈ 24k images and paired audio chunks of 1 second used

for training our model. Our implementation is based on the PyTorch library [255] and

trained on a GeForce Titan X GPU with 12GB memory. We kept the hyper-parameters

as suggested in [238], changing the learning rate to 0.0001 in G and 0.0004 in D as

suggested in [256]. We use ADAM solver [257] with momentum 0.1.
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Original image Generated images

Figure B.3: Qualitative results. Examples of generated faces compared to the original image
of the person who the voice belongs to. In the generated images, we can observe that our model
is able to preserve the physical characteristics and produce different face expressions. We thank
the Youtubers Javier Muñiz (top) and Jaime Altozano (bottom) for their authorization on using
their image in this work.

Identity 1 Identity 2 Identity 3 Identity 6Identity 5Identity 4

Figure B.4: Samples of different identities generated by our model. We condition our
image generation to raw speech in order to generate the different faces associated to the given
identities.

B.5.2 Qualitative results

Figure B.3 shows a set of generated images given a raw speech chunk, compared to

the original image of the person who the voice belongs to. Different speech waveform

produced by the same speaker were fed into the network to produce such images. Al-

though the generated images are blurry, it is possible to observe that the model learns

the person’s physical characteristics, preserving the identity, and present different face

expressions depending on the input speech 1. Other examples from six different identities

are presented in Figure B.4.
1Some examples of images and it correspondent speech as well as more generated images are available

at: https://imatge-upc.github.io/wav2pix/
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Figure B.5: Examples of the 68 key-points detected on images generated by our
model. Yellow circles indicate facial landmarks fitted to the generated faces, numbered in red
fonts.

B.5.3 Quantitative results

To quantify the model’s accuracy regarding the identity preservation, we fine-tuned a

pre-trained VGG-Face Descriptor network [258, 259] with our dataset. We predicted the

speaker identity from the generated images of both the speech train and test partitions,

obtaining an identification accuracy of 76.81% and 50.08%, respectively.

We also assessed the ability of the model to generate realistic faces, regardless of the true

speaker identity. To have a more rigorous test than a simple Viola & Jones face detec-

tor [251], we measured the ability of an automatic algorithm [260] to correctly identify

facial landmarks on images generated by our model. We define detection accuracy as

the percentage of images where the algorithm is able to identify all 68 key-points. For

the proposed model and all images generated for our test set, the detection accuracy is

90.25%, showing that in most cases the generated images retain the basic visual charac-

teristics of a face. This detection rate is much higher than the identification accuracy of

50.08%, as in some cases the model confuses identities, or mixes some of them in a single

face. Examples of detected faces together with their numbered facial landmarks can be

seen in Figure B.5.

B.5.4 Ablation study

We also tried to generate faces with noisy speech, experiments that resulted in failures.

Firstly, we used audio snippets from the same yotubers videos that presented back-

ground noise, silences or other people’s voice. Secondly, using the well known VoxCeleb

1 dataset [235], which contains a larger amount of images and identities but present a

lower audio quality. In both cases, the quality of results was very poor, making it almost

impossible to recognize faces. These results show the importance of having clean speech

samples to train the proposed model.
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Figure B.6: Effect of image resolution. (Left) Images generated for three speech chunk
lengths. (Right) Images generated at two spatial resolutions.

We also observed a drop in performance when working with smaller speech chunks and

lower image definitions. We observed a visual degradation when using audio chunks

of 300 and 700 milliseconds, which was reflected in a decrease of the face detection

rate. Detection accuracy when using 300 and 700 ms chunks was 81.16% and 89.12%,

respectively, in both cases worse than the 90.25% accuracy achieved when using 1000 ms

chunks. Figure B.6 (left) shows examples of generated images for the three speech chunk

lengths. Figure B.6 (right) shows how using a lower definition of 64x64 pixels instead of

128x128 results into blurrier images.

B.6 Ethical considerations

Although this work is a purely academic investigation, in this section we would like to

explicitly discuss a set of ethical considerations that are important to be addressed due

to the potential sensitivity of facial information and usage of this research.

Privacy. Although our method is trained to generate image of faces of a particular set

of individuals, it cannot recover the true identity of a person from their voice (i.e. an

exact image of their face). We designed our method with the intention of investigating

how much of a physical appearance of a person can be recovered by given just their raw

speech as input. We trained it to capture visual features (related to physical appearances

and facial expressions) that are common to different individuals.

Voice-face correlations and dataset bias. As mentioned above, our model is de-

signed to generate correlations that exist between facial features and voices of speakers

in the training data. The training data used is a collection of personal video blogs from

YouTube, and does not represent equally the entire world population. Therefore, the

model– as is the case with any machine learning model– is affected by this uneven distri-

bution of data. More specifically, if a set of speakers might have vocal-visual traits that
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are relatively uncommon in the data, then the quality of our reconstructions for such

cases may degrade.

For the collection of our dataset, a set of video channels of popular spanish Youtubers were

selected and videos that show a variety of facial expressions were used. Therefore, the

image generation will perform better when similar data is used (e.g. Spanish speakers).

We recommend that any further investigation or practical use of this technology should

be carefully tested to ensure that the training data is representative of the intended

user population. If that is not the case, more representative data should be broadly

collected. It is important to note that the current training data was used in order to test

a hypothesis and conduct a academic investigation.

B.7 Final Remarks

In this Appendix we introduced a simple yet effective cross-modal approach for generating

images of faces given only a short segment of speech, and proposed a novel generative

adversarial network variant that is conditioned on the raw speech signal.

As high-quality training data are required for this task, we further collected and curated

a new dataset, the Youtubers dataset, that contains high quality visual and speech

signals. Our experimental validation demonstrates that the proposed approach is able to

synthesize plausible facial images with an accuracy of 90.25%, while also being able to

preserve the identity of the speaker about 50% of the times. Our ablation experiments

further showed the sensitivity of the model to the spatial dimensions of the images, the

duration of the speech chunks and, more importantly, on the quality of the training data.

Further steps may address the generation of a sequence of video frames aligned with the

conditioning speech, as well exploring the behaviour of the Wav2Pix when conditioned

on unseen identities.
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