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Probability generating function

Definition

Let X be a nonnegative integer-valued random variable. The

probability generating function of X is defined to be

GX (s) ≡ E(sX ) =
∑

k�0

sk P(X = k)

The random variable sX is a function of the random variable X .
For each valid value of s, where s ∈ R, we compute the
expectation of sX . In this way, we get a one-variable function of s.
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Probability generating function

If X takes a finite number of values, then GX (s) is just a
polynomial of the indeterminate s:

GX (s) =

n∑

k=0

sk P(X = k)

= P(X = 0) + P(X = 1) s + · · ·+ P(X = n) sn
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Probability generating function

Otherwise, if X takes a countable number of values, then GX (s) is
given by a power series:

GX (s) =
∑

k�0

sk P(X = k)

= P(X = 0) + P(X = 1) s + · · ·+ P(X = k) sk + · · ·

The series defining GX (x) converges at least for all s ∈ [−1, 1],
because if |s| � 1, then

∑

k�0

|s|k P(X = k) �
∑

k�0

P(X = k) = 1
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Probability generating function

More generally, there exists a radius of convergence R ,
1 � R � ∞, such that

∑

k�0

sk P(X = k)

converges absolutely if |s| < R and diverges if |s| > R .

◮ The probability generating function GX (s) is well-defined for
all s ∈ [−R ,R].
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Examples

Let X be a Bernoulli random variable, X ∼ Be(p), such that

P(X = 0) = q, P(X = 1) = p,

where q = 1− p.

Then
GX (s) =

∑

k�0

sk P(X = k)= q + p s, s ∈ R
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Examples

If X ∼ Bin(n, p), then

P(X = k) =

(
n

k

)

pkqn−k , k = 0, 1, . . . , n

Hence

GX (s) =
∑

k�0

sk P(X = k) =

n∑

k=0

sk
(
n

k

)

pkqn−k

=

n∑

k=0

(
n

k

)

(ps)kqn−k= (q + ps)n, s ∈ R
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Examples

Let X ∼ Po(λ).

P(X = k) = e−λ
λk

k!
, k = 0, 1, 2 . . .

Then

GX (s) =
∑

k�0

sk P(X = k) = e−λ

∞∑

k=0

(λs)k

k!

= e−λeλs= eλ(s−1), s ∈ R
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Examples

Let X ∼ Ge(p).

P(X = k) = qk−1p, k = 1, 2, . . . , 0 < p < 1

Therefore

GX (s) =
∑

k�0

sk P(X = k) =
∞∑

k=1

skqk−1p

= ps

∞∑

k=1

(qs)k−1=
ps

1− qs
, |s| <

1

q
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Unicity

If two nonnegative integer-valued random variables have the same
generating function, then they follow the same probability law.

Theorem

Let X and Y be nonnegative integer-valued random variables such

that

GX (s) = GY (s).

Then

P(X = k) = P(Y = k) for all k � 0.

This result is a special case of the uniqueness theorem for power
series.
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Convolution theorem

Theorem (convolution)

Let X and Y be independent, nonnegative, integer-valued random

variables, and let Z = X + Y . Then

GZ (s) = GX (s)GY (s)

Proof: Since X and Y are independent, the random variables sX

and sY are also independent. Therefore,

GZ (s) = E

(

sZ
)

= E

(

sX+Y

)

= E

(

sX sY
)

= E

(

sX
)

E

(

sY
)

= GX (s)GY (s)
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Example

Let X ∼ Bin(n, p) and Y ∼ Bin(m, p) be independent and let

Z = X + Y

We have

GZ (s) = GX (s)GY (s) = (q + ps)n(q + ps)m = (q + ps)n+m

Since GZ (s) is the probability generating function of a
Bin(n +m, p) random variable, we deduce from the unicity
theorem that

X + Y ∼ Bin(n +m, p)
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Convolution theorem

More generally,

Theorem

Let X1,X2, . . . ,Xn be independent, nonnegative, integer-valued

random variables and set S = X1 + X2 + · · ·+ Xn. Then

GS(s) = GX1(s)GX2(s) · · ·GXn
(s).
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Convolution theorem

A case of particular importance is:

Corollary

If, in addition, X1,X2, . . . ,Xn are equidistributed, with common

probability generating function GX (s), then GS(s) = (GX (s))
n .

Example: If X1,X2, . . . ,Xn are independent Be(p)-distributed
random variables, then S = X1 + · · ·+ Xn ∼ Bin(n, p) and

GS(s) = (GX (s))
n = (q + sp)n
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Example: Negative binomial

A coin for which the probability of landing on heads is p is flipped
until a total amount of k heads is obtained.

Let X be the number of tosses.

Notice that
X = X1 + X2 + · · ·+ Xk ,

where Xi is the number of tosses between the (i − 1)-th and the
i-th toss showing heads, an so

Xi ∼ Ge(p), 1 � i � k ,

and the variables X1, . . . ,Xn are independent.
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Example: Negative binomial

Since the variables X1, . . . ,Xk are independent, we can apply the
convolution theorem. Moreover, since X1, . . . ,Xk are identically
distributed, we have

GX (s) = GX1(s)GX2(s) · · ·GXk
(s)

= (GX1(s))
k =

(
ps

1− qs

)k

, |s| <
1

q

If we expand GX (s) as a power series, GX (s) =
∑

k�0 aks
k , then

ak = P(X = k)
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Example: Negative binomial

Recall that if α ∈ R, then the Taylor series expansion about 0 of
the function (1 + x)α is

(1 + x)α = 1 + α x +
α(α− 1)

2
x2 + · · ·

+
α(α− 1) . . . (α− r + 1)

r !
x r + · · ·

=
∑

r�0

(
α

r

)

x r , x ∈ (−1, 1),

where
(
α

0

)
≡ 1 and, for r � 1,

(
α

r

)

≡
α(α− 1) . . . (α− r + 1)

r !
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Example: Negative binomial

By identifying x with −sq and α with −k we obtain the series
expansion of GX (s):

GX (s) = (ps)k(1− qs)−k = (ps)k
∞∑

r=0

(
−k

r

)

(−qs)r ,

where
(
−k

r

)

=
−k(−k − 1) · · · (−k − r + 1)

r !

= (−1)r
(
k + r − 1

k − 1

)

, r � 0
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Example: Negative binomial

Therefore,

GX (s) =
∞∑

r=0

(
k + r − 1

k − 1

)

pkqr sk+r =
∞∑

n=k

(
n − 1

k − 1

)

pkqn−k sn

Hence,

P(X = n) =







0, n < k

(
n − 1

k − 1

)

pkqn−k , n = k , k + 1, · · ·

This is the negative binomial probability law, X ∼ NBin(k , p).
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Some properties

◮ GX (0) = P(X = 0)

◮ GX (1) = 1

Indeed,

GX (1) =
∑

k�0

skP(X = k)

∣
∣
∣
∣
∣
∣
s=1

=
∑

k�0

P(X = k) = 1
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Some properties

Proposition

Let R be the radius of covergence of GX (s). If R > 1, then

E(X ) = G ′

X (1)

Indeed, differentiating the series term by term,

G ′

X (s) =
d

ds

∑

k�0

skP(X = k) =
∑

k�1

k sk−1
P(X = k)

Hence,
G ′

X (1) =
∑

k�0

k P(X = k) = E(X )
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Some properties

More generally,

Proposition

(a) E(X ) = G ′

X
(1) ≡ lims→1− G ′

X
(s)

(b) E(X (X − 1) · · · (X − k + 1)) = G
(k)
X

(1) ≡ lims→1− G
(k)
X

(s)

If the radius of convergence is R = 1, then lims→1− G
(k)
X

(s) could
be ∞.
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Examples

Let X ∼ Bin(n, p).

E(X ) = G ′

X (1) =
d

ds
(q + ps)n

∣
∣
∣
∣
s=1

= np (q + ps)n−1
∣
∣
s=1

= np (q + p)n−1 = np
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Examples

Let X ∼ Po(λ).

E(X ) = G ′

X (1) =
d

ds
eλ(s−1)

∣
∣
∣
∣
s=1

= λ eλ(s−1)
∣
∣
∣
s=1

= λ

Analogously,

E(X (X − 1)) = G ′′

X (1) = λ
2 eλ(s−1)

∣
∣
∣
s=1

= λ
2

Hence,

E (X 2) = λ
2 + λ, Var(X ) = E(X 2)− (E(X ))2 = λ
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Examples

If X ∼ Ge(p), then

E(X ) = G ′

X (1) =
d

ds

ps

(1− qs)

∣
∣
∣
∣
s=1

=
p

(1− qs)2

∣
∣
∣
∣
s=1

=
1

p

Analogously,

E(X (X − 1)) = G ′′

X (1) =
2pq

(1− qs)3

∣
∣
∣
∣
s=1

=
2q

p2

Therefore

E (X 2) =
2q

p2
+

1

p
, Var(X ) = E(X 2)− (E(X ))2 =

q

p2
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Examples

X ∼ NBin(k , p).

E(X ) = G ′

X (1) =
d

ds

(
ps

1− qs

)k
∣
∣
∣
∣
∣
s=1

= k

(
ps

1− qs

)k−1
p

(1− qs)2

∣
∣
∣
∣
∣
s=1

=
k

p

Notice that this result can also be obtained from X =
∑

k

i=1 Xi ,
with each Xi ∼ Ge(p), for then

E(X ) =

k∑

i=1

E(Xi ) =
k

p
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Moment generating function

Definition

The moment generating function of a random variable X is defined

by

ΦX (t) ≡ E

(

etX
)

for all values of t, t ∈ R, for which this expectation exists.

◮ If X takes values in {0, 1, 2, . . .}, then

ΦX (t) = E

(

etX
)

= GX (e
t).
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Moment generating function

For more general random variables we have

ΦX (t) =







∑

i

etxi P(X = xi ), if X is discrete

∫
∞

−∞

etx fX (x) dx , if X is continuous

,

provided that the sum or the integral converges.
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Examples

Let X ∼ Bin(n, p).

ΦX (t) =

n∑

k=0

etk P(X = k)

=

n∑

k=0

(
n

k

)
(
pet

)k
qn−k =

(
q + pet

)n
, t ∈ R
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Examples

Let X ∼ Po(λ).

ΦX (t) =

∞∑

k=0

etk P(X = k) =

∞∑

k=0

etk e−λ
λk

k!

= e−λ

∞∑

k=0

(λet)k

k!
= eλ(e

t
−1), t ∈ R

◮ Notice that in the two last examples ΦX (t) = GX (e
t).
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Examples

Let X ∼ Exp(µ).

ΦX (t) =

∫
∞

−∞

etx fX (x) dx

=

∫
∞

0
µe−(µ−t)x dx=

µ

µ− t
, t < µ

For a continuos random variable, ΦX (t) is related to the Laplace
transform of the probability density function fX (x).
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Examples

Let Z ∼ N(0, 1). Then

ΦZ (t) =

∫
∞

−∞

etz fZ (z) dz =
1

√
2π

∫
∞

−∞

e−
z
2
−2tz
2 dz

= e
t
2

2
1

√
2π

∫
∞

−∞

e−
(z−t)2

2 dz

︸ ︷︷ ︸

1

= e
t
2

2 , t ∈ R
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Examples

More generally, if Z ∼ N(0, 1) and

X = σZ +m,

then X ∼ N(m,σ2) and

ΦX (t) = E

(

etX
)

= E

(

et(σZ+m)
)

= etm E

(

etσZ
)

= etm ΦZ (σt)= e
σ
2
t
2

2
+tm
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Unicity

The moment generating function specifies uniquely the probability
distribution.

Theorem

Let X and Y be random variables. If there exists h > 0 such that

ΦX (t) = ΦY (t) for |t| < h,

then X and Y are identically distributed.
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Power series expansion

By the following non-rigorous argument one has

Φ
′

X (t) =
d

dt
E

(

etX
)

= E

(
d

dt
etX

)

= E

(

X etX
)

and therefore
Φ
′

X (0) = E(X )

Analogously,

Φ
′′

X (t) =
d

dt
Φ
′

X (t) =
d

dt
E

(

X etX
)

= E

(

X 2etX
)

and so
Φ
′′

X (0) = E(X 2)
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Power series expansion

For instance, if X ∼ Exp(µ),

ΦX (t) =
µ

µ− t
, t < µ,

then

E(X ) = Φ
′

X (0) =
d

dt

(
µ

µ− t

)∣
∣
∣
∣
t=0

=
µ

(µ− t)2

∣
∣
∣
∣
t=0

=
1

µ

Analogously,

E(X 2) = Φ
′′

X (0) =
d

dt

(
µ

(µ− t)2

)∣
∣
∣
∣
t=0

=
2µ

(µ− t)3

∣
∣
∣
∣
t=0

=
2

µ2
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Power series expansion

More generally,

ΦX (t) = E

(

etX
)

= E

(

1 + t X +
(t X )2

2!
+ · · ·+

(t X )k

k!
+ · · ·

)

= 1 + E(X ) t +
E(X 2)

2!
t2 + · · ·+

E(X k)

k!
tk + · · ·

This is the Taylor’s series expansion of ΦX (t),

ΦX (t) =

∞∑

k=0

Φ
(k)
X

(0)

k!
tk

Hence
Φ
(k)
X

(0) = E

(

X k

)
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Power series expansion

Theorem

If ΦX (t) converges on some open interval containing the origin

t = 0, then X has moments of any order,

E

(

X k

)

= Φ
(k)
X

(0),

and

ΦX (t) =

∞∑

k=0

E(X k)

k!
tk
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Power series expansion

For instance, let X ∼ Exp(µ). If |t| < µ, then

ΦX (t) =
µ

µ− t
=

1

1− (t/µ)

= 1 +
t

µ
+

(
t

µ

)2

+ · · ·+

(
t

µ

)n

+ · · ·

Hence,
E (X n)

n!
=

1

µn

and

E (X n) =
n!

µn
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Convolution theorem

The convolution theorem applies also to moment generating
functions.

Theorem

Let X1,X2, . . . ,Xn be independent random variables and let

S = X1 + X2 + · · ·+ Xn.

Then,

ΦS(t) = ΦX1(t)ΦX2(t) · · ·ΦXn
(t)
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Examples

Let X ∼ Po(λX ) and Y ∼ Po(λY ) be independent.

If Z = X + Y , then

ΦZ (t) = ΦX (t)ΦY (t)

= eλX (e
t
−1) eλY (et−1) = e(λX+λY )(et−1)

Hence,
Z ∼ Po(λX + λY )
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Examples

Let X ∼ N(mX ,σ
2
X
) and Y ∼ N(mY ,σ

2
Y
) be independent.

If Z = X + Y , then

ΦZ (t) = ΦX (t)ΦY (t)

= e
σ
2
X
t
2

2
+tmX e

σ
2
Y
t
2

2
+tmY = e

(σ2
X
+σ

2
Y
)t2

2
+t(mX+mY )

Therefore
Z ∼ N(mX +mY ,σ

2
X + σ

2
Y )
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Characteristic function

Definition

The characteristic function MX (ω) of a random variable X is the

complex-valued function of the real argument ω defined as

MX (ω) ≡ E

(

e i ωX
)

= E (cos (ωX )) + i E (sin (ωX ))

◮ Any random variable has a characteristic function.

◮ MX (ω) is well-defined for all ω ∈ R.

46 / 63

Characteristic function

If X is a discrete or a continuous random variable, then

MX (ω) =







∑

k

e i ωxk P(X = xk), if X is discrete

∫
∞

−∞

e i ωx fX (x) dx , if X is continuous

◮ If X is a continuous random, MX (ω) is the Fourier transform
of its probability density fX (x). (Notice the change of sign in
the usual definition of Fourier transform.)

◮ For discrete random variables, characteristic functions are
related to Fourier series.
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Properties

◮ |MX (ω)| � MX (0) = 1 for all ω ∈ R.

Indeed,

|MX (ω)| =
∣
∣
∣E

(

e i ωX
)∣
∣
∣ � E

(∣
∣
∣e

i ωX

∣
∣
∣

)

= E(1) = 1

Moreover,

MX (0) = E

(

e i ·0·X
)

= E(1) = 1

◮ MX (ω) is uniformly continuous on R.

◮ If Y = aX + b, then MY (ω) = e iωb MX (aω).
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Properties

◮ MX (ω) = MX (−ω).

MX (ω) = E (cos (ωX )) + i E (sin (ωX ))

= E (cos (ωX ))− i E (sin (ωX ))

= E (cos (−ωX )) + i E (sin (−ωX )) = MX (−ω)

More concisely,

MX (ω) = E (e i ωX ) = E

(

e i ωX
)

= E

(

e−i ωX

)

= E

(

e i (−ω)X
)

= MX (−ω)
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Examples

Let X ∼ Bin(n, p). Then,

MX (ω) =
(
q + p e iω

)n

If X ∼ Po(λ), then

MX (ω) = eλ(e
iω
−1)

If X ∼ N(m,σ2), then

MX (ω) = e iωm−
1
2
σ2ω2
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Characteristic function and moments

Theorem

If E(X n) < ∞ for some n � 1, then

MX (ω) =

n∑

k=0

E(X k)

k!
(i ω)k + o (|ω|n) as ω → 0.

So,

E(X k) =
M

(k)
X

(0)

ik
for k = 1, 2, . . . , n.

In particular, if E(X ) = 0 and Var(X ) = σ2, then

MX (ω) = 1−
1

2
σ
2
ω
2 + o

(
ω
2
)

as ω → 0.
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Characteristic function and moments

Indeed, in the case that X has moments of any order we have

MX (ω) = E

(

e iωX
)

= E

(
∞∑

k=0

(i ωX )k

k!

)

=

∞∑

k=0

ik E(X k)

k!
ω
k

This is the Taylor series expansion for MX (ω). Therefore

ikE(X k) = M
(k)
X

(0) and hence

E(X k) =
M

(k)
X

(0)

ik
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Convolution theorem

Theorem

Let X1,X2, . . . ,Xn be independent random variables and let

S = X1 + X2 + · · ·+ Xn.

Then

MS(ω) = MX1(ω)MX2(ω) · · ·MXn
(ω)
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Convolution theorem

Proof:

MS(ω) = E

(

e iωS
)

= E

(

e iω(X1+X2+···+Xn)
)

= E

(

e iωX1e iωX2 · · · e iωXn

)

= E

(

e iωX1

)

E

(

e iωX2

)

· · ·E
(

e iωXn

)

= MX1(ω)MX2(ω) · · ·MXn
(ω)
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Convolution theorem

(Remark)

We have essentially the convolution theorem for Fourier transforms.

If X and Y are continuous and independent random variables and

Z = X + Y , then fZ = fX ∗ fY , that implies

F(fZ ) = F(fX ) · F(fY ),

that is to say,

MZ (ω) = MX (ω)MY (ω)
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Inversion

Theorem (Inversion of the Fourier transform)

Let X be a continuous random variable with density fX (x) and
characteristic function MX (ω). Then

fX (x) =
1

2π

∫
∞

−∞

e−iωxMX (ω) dω

at every point x at which fX (x) is differentiable.

◮ To obtain fX (x) from MX (ω) usually requires contour
integration in the complex plane.
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Inversion

In the discrete case, MX (ω) is related to Fourier series.

Theorem

If X is an integer-valued random variable, then

P(X = k) =
1

2π

∫
π

−π

e−ikωMX (ω) dω
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Inversion and unicity

Theorem

Let X have probability distribution function FX (x) and
characteristic function MX (ω). Let

FX (x) =
FX (x) + FX (x

−)

2

Then

FX (b)− FX (a) = lim
T→∞

1

2π

∫
T

−T

e−iaω − e−ibω

iω
MX (ω) dω.

MX specifies uniquely the probability law of X . Two random
variables have the same characteristic function if and only if they
have the same distribution function.
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Joint characteristic functions

Definition

The joint characteristic function of the random variables X1, X2,

. . ., Xn is defined to be

MX (ω1,ω2, . . . ,ωn) ≡ E

(

e i(ω1X1+ω2X2+···+ωnXn)
)

Using vectorial notation one can write ω = (ω1,ω2, · · · ,ωn)
t ,

X = (X1,X2, · · · ,Xn)
t and

MX (ω
t) = E

(

e iω
tX

)
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Joint moments

The joint characteristic function allows as to calculate joint
moments. For instance, given X , Y ,

MXY (ω1,ω2) = E

(

e i(ω1X+ω2Y )
)

Therefore,

∂MXY (ω1,ω2)

∂ω1
= i E

(

X e i(ω1X+ω2Y )
)

∂2MXY (ω1,ω2)

∂ω1∂ω2
= i2 E

(

XY e i(ω1X+ω2Y )
)
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Joint moments

Hence,

∂2MXY (ω1,ω2)

∂ω1∂ω2

∣
∣
∣
∣
(ω1=0,ω2=0)

= i2 E(XY ) = −E(XY )

More generally,

E

(

X kY l

)

=
1

ik+l

∂k+lMXY (ω1,ω2)

∂kω1 ∂
lω2

∣
∣
∣
∣
(ω1,ω2)=(0,0)
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Marginal characteristic functions

Marginal characteristic functions are easily derived from the joint
characteristic function.

For instance, given X , Y :

MX (ω) = E

(

e iωX
)

= E

(

e i(ω1X+ω2Y )
)∣
∣
∣
(ω1=ω,ω2=0)

= MXY (ω, 0)

Analogously,

MY (ω) = MXY (0,ω)
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Independent random variables

Theorem

The random variables X1,X2, . . . ,Xn are independent if and only if

MX (ω1,ω2, . . . ,ωn) = MX1 (ω1)MX2(ω2) · · · MXn
(ωn)

The necessity of the condition is easily proved. Indeed, if the
variables are independent, then

MX (ω1,ω2, . . . ,ωn)

= E

(

e i(ω1X1+ω2X2+···+ωnXn)
)

= E

(

e iω1X1 e iω2X2 · · · e iωnXn

)

= E

(

e iω1X1

)

E

(

e iω2X2

)

· · · E
(

e iωnXn

)

= MX1 (ω1)MX2(ω2) · · · MXn
(ωn)
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