Generating and Characteristic Functions

February 4, 2022

Probability generating function Convolution theorem

Moment generating function

Series expansion and moments Convolution theorem

Characteristic function

Characteristic function and moments Convolution theorem Inversion and unicity Joint characteristic functions

1 / 63

Probability generating function

Definition

Probability generating function

If X takes a finite number of values, then $G_X(s)$ is just a polynomial of the indeterminate s:

$$
G_X(s) = \sum_{k=0}^{n} s^k \mathbb{P}(X = k)
$$

= $\mathbb{P}(X = 0) + \mathbb{P}(X = 1) s + \dots + \mathbb{P}(X = n) s^n$

The random variable s^X is a function of the random variable X . For each valid value of s, where $s \in \mathbb{R}$, we compute the expectation of s^X . In this way, we get a one-variable function of s.

 $G_X(s) \equiv \mathbb{E}(s^X) = \sum_{k \geqslant 0} s^k \mathbb{P}(X = k)$

Let X be a nonnegative integer-valued random variable. The probability generating function of X is defined to be

Probability generating function

Otherwise, if X takes a countable number of values, then $G_X(s)$ is given by a power series:

$$
G_X(s) = \sum_{k \geq 0} s^k \mathbb{P}(X = k)
$$

= $\mathbb{P}(X = 0) + \mathbb{P}(X = 1) s + \dots + \mathbb{P}(X = k) s^k + \dots$

The series defining $G_X(x)$ converges at least for all $s \in [-1,1]$, because if $|s| \leqslant 1$, then

$$
\sum_{k\geqslant 0}|s|^k \; \mathbb{P}(X=k) \leqslant \sum_{k\geqslant 0}\mathbb{P}(X=k)=1
$$

More generally, there exists a radius of convergence R, $1 \leqslant R \leqslant \infty$, such that

$$
\sum_{k\geqslant 0} s^k \; \mathbb{P}(X=k)
$$

converges absolutely if $|s| < R$ and diverges if $|s| > R$.

 \blacktriangleright The probability generating function $G_X(s)$ is well-defined for all $s \in [-R, R]$.

5 / 63

Examples

Let X be a Bernoulli random variable, $X \sim \text{Be}(\rho)$, such that

$$
\mathbb{P}(X=0)=q, \qquad \mathbb{P}(X=1)=p,
$$

where $q = 1 - p$.

Then

$$
G_X(s) = \sum_{k \geqslant 0} s^k \, \mathbb{P}(X = k) = q + p \, s, \quad s \in \mathbb{R}
$$

Examples

If $X \sim Bin(n, p)$, then

$$
\mathbb{P}(X=k) = \binom{n}{k} p^k q^{n-k}, \quad k = 0, 1, \ldots, n
$$

Hence

$$
G_X(s) = \sum_{k\geq 0} s^k \mathbb{P}(X = k) = \sum_{k=0}^n s^k {n \choose k} p^k q^{n-k}
$$

$$
= \sum_{k=0}^n {n \choose k} (ps)^k q^{n-k} = (q + ps)^n, \quad s \in \mathbb{R}
$$

Let $X \sim Po(\lambda)$.

$$
\mathbb{P}(X=k)=e^{-\lambda}\frac{\lambda^k}{k!}, \quad k=0,1,2\ldots
$$

Then

$$
G_X(s) = \sum_{k \geqslant 0} s^k \mathbb{P}(X = k) = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda s)^k}{k!}
$$

$$
= e^{-\lambda} e^{\lambda s} = e^{\lambda(s-1)}, \quad s \in \mathbb{R}
$$

Let $X \sim \text{Ge}(p)$.

$$
\mathbb{P}(X = k) = q^{k-1}p, \quad k = 1, 2, \ldots, \quad 0 < p < 1
$$

Therefore

$$
G_X(s) = \sum_{k \ge 0} s^k \mathbb{P}(X = k) = \sum_{k=1}^{\infty} s^k q^{k-1} p
$$

= $p s \sum_{k=1}^{\infty} (qs)^{k-1} = \frac{ps}{1-qs}, \quad |s| < \frac{1}{q}$

9 / 63

Unicity

If two nonnegative integer-valued random variables have the same generating function, then they follow the same probability law.

Theorem

Let X and Y be nonnegative integer-valued random variables such that

$$
G_X(s)=G_Y(s).
$$

Then

$$
\mathbb{P}(X = k) = \mathbb{P}(Y = k) \quad \text{for all } k \geq 0.
$$

This result is a special case of the uniqueness theorem for power series.

Convolution theorem

Theorem (convolution)

Let X and Y be independent, nonnegative, integer-valued random variables, and let $Z = X + Y$. Then

$$
G_Z(s)=G_X(s)G_Y(s)
$$

Proof: Since X and Y are independent, the random variables s^X and s^Y are also independent. Therefore,

$$
\begin{aligned} G_Z(s) & = \mathbb{E}\left(s^Z\right) = \mathbb{E}\left(s^{X+Y}\right) \\ & = \mathbb{E}\left(s^X s^Y\right) = \mathbb{E}\left(s^X\right) \, \mathbb{E}\left(s^Y\right) = G_X(s) \, G_Y(s) \end{aligned}
$$

Let $X \sim \text{Bin}(n, p)$ and $Y \sim \text{Bin}(m, p)$ be independent and let

 $Z = X + Y$

We have

$$
G_Z(s) = G_X(s)G_Y(s) = (q + ps)^n (q + ps)^m = (q + ps)^{n+m}
$$

Since $G_Z(s)$ is the probability generating function of a $\sin(n + m, n)$ random variable, we deduce from the unicity theorem that

 $X + Y \sim \text{Bin}(n + m, p)$

More generally,

Theorem

Let X_1, X_2, \ldots, X_n be independent, nonnegative, integer-valued random variables and set $S = X_1 + X_2 + \cdots + X_n$. Then

$$
G_S(s)=G_{X_1}(s)G_{X_2}(s)\cdots G_{X_n}(s).
$$

13 / 63

Convolution theorem

A case of particular importance is:

Corollary

If, in addition, X_1, X_2, \ldots, X_n are equidistributed, with common probability generating function $G_X(s)$, then $G_S(s) = (G_X(s))^n$.

Example: If X_1, X_2, \ldots, X_n are independent Be(p)-distributed random variables, then $S = X_1 + \cdots + X_n \sim Bin(n, p)$ and

$$
G_S(s) = (G_X(s))^n = (q + sp)^n
$$

Example: Negative binomial

A coin for which the probability of landing on heads is p is flipped until a total amount of k heads is obtained. Let X be the number of tosses.

Notice that

 $X = X_1 + X_2 + \cdots + X_k$

where X_i is the number of tosses between the $(i - 1)$ -th and the i-th toss showing heads, an so

 $X_i \sim \mathsf{Ge}(\rho), \quad 1 \leqslant i \leqslant k,$

and the variables X_1, \ldots, X_n are independent.

Example: Negative binomial

Since the variables X_1, \ldots, X_k are independent, we can apply the convolution theorem. Moreover, since X_1, \ldots, X_k are identically distributed, we have

$$
G_X(s) = G_{X_1}(s)G_{X_2}(s)\cdots G_{X_k}(s)
$$

= $(G_{X_1}(s))^k = \left(\frac{ps}{1-qs}\right)^k$, $|s| < \frac{1}{q}$

If we expand $G_X(s)$ as a power series, $G_X(s) = \sum_{k\geqslant 0} a_k s^k$, then

$$
a_k=\mathbb{P}(X=k)
$$

Example: Negative binomial

Recall that if $\alpha \in \mathbb{R}$, then the Taylor series expansion about 0 of the function $(1+x)^\alpha$ is

$$
(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + \cdots + \frac{\alpha(\alpha-1)\dots(\alpha-r+1)}{r!}x^r + \cdots = \sum_{r>0} {\binom{\alpha}{r}}x^r, \quad x \in (-1,1),
$$

$$
\text{ where } \left(_{0}^{\alpha}\right)\equiv1 \text{ and, for } r\geqslant1,
$$

$$
\binom{\alpha}{r} \equiv \frac{\alpha(\alpha-1)\dots(\alpha-r+1)}{r!}
$$

17 / 63

Example: Negative binomial

By identifying x with $-sq$ and α with $-k$ we obtain the series expansion of $G_X(s)$:

$$
G_X(s) = (ps)^k (1 - qs)^{-k} = (ps)^k \sum_{r=0}^{\infty} {\binom{-k}{r}} (-qs)^r,
$$

where

$$
\binom{-k}{r} = \frac{-k(-k-1)\cdots(-k-r+1)}{r!}
$$

$$
= (-1)^r \binom{k+r-1}{k-1}, \quad r \ge 0
$$

Example: Negative binomial

Therefore,

$$
G_X(s) = \sum_{r=0}^{\infty} {k+r-1 \choose k-1} p^k q^r s^{k+r} = \sum_{n=k}^{\infty} {n-1 \choose k-1} p^k q^{n-k} s^n
$$

Hence,

$$
\mathbb{P}(X=n) = \begin{cases} 0, & n < k \\ \binom{n-1}{k-1} p^k q^{n-k}, & n = k, k+1, \cdots \end{cases}
$$

This is the negative binomial probability law, $X \sim NBin(k, p)$.

 \blacktriangleright $G_X(0) = \mathbb{P}(X = 0)$ \blacktriangleright $G_X(1) = 1$

Indeed,

$$
G_X(1) = \sum_{k \geqslant 0} s^k \mathbb{P}(X = k) \Bigg|_{s=1} = \sum_{k \geqslant 0} \mathbb{P}(X = k) = 1
$$

Some properties

Proposition

Let R be the radius of covergence of $G_X(s)$. If $R > 1$, then

$$
\mathbb{E}(X)=G_X'(1)
$$

Indeed, differentiating the series term by term,

$$
G'_X(s) = \frac{d}{ds} \sum_{k \geqslant 0} s^k \mathbb{P}(X = k) = \sum_{k \geqslant 1} k s^{k-1} \mathbb{P}(X = k)
$$

Hence,

$$
G_X'(1) = \sum_{k \geqslant 0} k \, \mathbb{P}(X = k) = \mathbb{E}(X)
$$

21 / 63

Some properties

More generally,

Proposition

$$
(a) \mathbb{E}(X) = G'_X(1) \equiv \lim_{s \to 1^-} G'_X(s)
$$

(b)
$$
\mathbb{E}(X(X-1)\cdots(X-k+1)) = G_X^{(k)}(1) \equiv \lim_{s\to 1^-} G_X^{(k)}(s)
$$

If the radius of convergence is $R = 1$, then $\lim_{s \to 1^{-}} G_X^{(k)}(s)$ could be ∞.

Examples

Let $X \sim Bin(n, p)$.

$$
\mathbb{E}(X) = G_X'(1) = \left. \frac{d}{ds} (q + \rho s)^n \right|_{s=1}
$$

= $np (q + \rho s)^{n-1} \big|_{s=1} = np (q + \rho)^{n-1} = np$

Let $X \sim Po(\lambda)$.

$$
\mathbb{E}(X) = G_X'(1) = \left. \frac{d}{ds} e^{\lambda(s-1)} \right|_{s=1} = \lambda e^{\lambda(s-1)} \Big|_{s=1} = \lambda
$$

Analogously,

$$
\mathbb{E}(X(X-1)) = G''_X(1) = \lambda^2 e^{\lambda(s-1)}\Big|_{s=1} = \lambda^2
$$

Hence,

$$
E(X^2) = \lambda^2 + \lambda, \qquad \text{Var}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \lambda
$$

Examples

If $X \sim \text{Ge}(p)$, then

$$
\mathbb{E}(X) = G_X'(1) = \left. \frac{d}{ds} \frac{ps}{(1 - qs)} \right|_{s=1} = \left. \frac{p}{(1 - qs)^2} \right|_{s=1} = \frac{1}{p}
$$

Analogously,

$$
\mathbb{E}(X(X-1)) = G''_X(1) = \frac{2pq}{(1-qs)^3}\bigg|_{s=1} = \frac{2q}{p^2}
$$

Therefore

$$
E(X^2) = \frac{2q}{\rho^2} + \frac{1}{\rho}
$$
, $Var(X) = E(X^2) - (E(X))^2 = \frac{q}{\rho^2}$

25 / 63

Examples

 $X \sim \mathsf{NBin}(k, p).$

$$
\mathbb{E}(X) = G_X'(1) = \frac{d}{ds} \left(\frac{\rho s}{1 - qs}\right)^k \Big|_{s=1}
$$

$$
= k \left(\frac{\rho s}{1 - qs}\right)^{k-1} \frac{\rho}{(1 - qs)^2} \Big|_{s=1} = \frac{k}{\rho}
$$

Notice that this result can also be obtained from $X = \sum_{i=1}^k X_i$, with each $X_i \sim$ Ge(p), for then

$$
\mathbb{E}(X) = \sum_{i=1}^k \mathbb{E}(X_i) = \frac{k}{p}
$$

Moment generating function Series expansion and moments Convolution theorem

Definition

The moment generating function of a random variable X is defined by

$$
\Phi_X(t) \equiv \mathbb{E}\left(e^{tX}\right)
$$

for all values of $t, t \in \mathbb{R}$, for which this expectation exists.

 \blacktriangleright If X takes values in $\{0, 1, 2, \ldots\}$, then

$$
\Phi_X(t) = \mathbb{E}\left(e^{tX}\right) = G_X(e^t).
$$

For more general random variables we have

$$
\Phi_X(t) = \begin{cases} \sum_i e^{tx_i} \mathbb{P}(X = x_i), & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} e^{tx} \ f_X(x) \, dx, & \text{if } X \text{ is continuous} \end{cases}
$$

provided that the sum or the integral converges.

29 / 63

Examples

Let $X \sim Bin(n, p)$.

$$
\Phi_X(t) = \sum_{k=0}^n e^{tk} \mathbb{P}(X = k)
$$

=
$$
\sum_{k=0}^n {n \choose k} (pe^t)^k q^{n-k} = (q + pe^t)^n, \quad t \in \mathbb{R}
$$

Examples

Let $X \sim Po(\lambda)$.

$$
\Phi_X(t) = \sum_{k=0}^{\infty} e^{tk} \mathbb{P}(X = k) = \sum_{k=0}^{\infty} e^{tk} e^{-\lambda} \frac{\lambda^k}{k!}
$$

$$
= e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda e^t)^k}{k!} = e^{\lambda (e^t - 1)}, \quad t \in \mathbb{R}
$$

Notice that in the two last examples $\Phi_X(t) = G_X(e^t)$.

,

Let $X \sim \text{Exp}(\mu)$.

$$
\Phi_X(t) = \int_{-\infty}^{\infty} e^{tx} f_X(x) dx
$$

=
$$
\int_{0}^{\infty} \mu e^{-(\mu - t)x} dx = \frac{\mu}{\mu - t}, \quad t < \mu
$$

For a continuos random variable, $\Phi_X(t)$ is related to the Laplace transform of the probability density function $f_X(x)$.

Let $Z \sim N(0, 1)$. Then

$$
\Phi_2(t) = \int_{-\infty}^{\infty} e^{tx} f_2(z) dz = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{z^2 - 2u}{2}} dz
$$

$$
= e^{\frac{t^2}{2}} \underbrace{\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{(x - t)^2}{2}} dz}_{x} = e^{\frac{t^2}{2}}, \quad t \in \mathbb{R}
$$

33 / 63

Examples

More generally, if Z ∼ N(0, 1) and

 $X = \sigma Z + m$,

then $X \sim N(m, \sigma^2)$ and

$$
\Phi_X(t) = \mathbb{E}\left(e^{tX}\right) = \mathbb{E}\left(e^{t(\sigma Z + m)}\right)
$$

$$
= e^{tm}\mathbb{E}\left(e^{t\sigma Z}\right) = e^{tm}\Phi_Z(\sigma t) = e^{\frac{\sigma^2 t^2}{2} + tm}
$$

Unicity

The moment generating function specifies uniquely the probability distribution.

Theorem

Let X and Y be random variables. If there exists $h > 0$ such that

$$
\Phi_X(t) = \Phi_Y(t) \quad \text{ for } |t| < h,
$$

then X and Y are identically distributed.

Power series expansion

By the following non-rigorous argument one has

$$
\Phi_X'(t)=\frac{d}{dt}\mathbb{E}\left(e^{tX}\right)=\mathbb{E}\left(\frac{d}{dt}e^{tX}\right)=\mathbb{E}\left(X\,e^{tX}\right)
$$

and therefore

$$
\Phi'_X(0) = \mathbb{E}(X)
$$

Analogously,

$$
\Phi''_X(t) = \frac{d}{dt}\Phi'_X(t) = \frac{d}{dt}\mathbb{E}\left(X e^{tX}\right) = \mathbb{E}\left(X^2 e^{tX}\right)
$$

and so

$$
\Phi''_X(0) = \mathbb{E}(X^2)
$$

37 / 63

Power series expansion

More generally,

$$
\begin{aligned} \Phi_X(t) &= \mathbb{E}\left(e^{tX}\right) = \mathbb{E}\left(1 + t \,X + \frac{(t \,X)^2}{2!} + \dots + \frac{(t \,X)^k}{k!} + \dots\right) \\ &= 1 + \mathbb{E}(X) \, t + \frac{\mathbb{E}(X^2)}{2!} \, t^2 + \dots + \frac{\mathbb{E}(X^k)}{k!} \, t^k + \dots \end{aligned}
$$

This is the Taylor's series expansion of $\Phi_X(t)$,

$$
\Phi_X(t) = \sum_{k=0}^{\infty} \frac{\Phi_X^{(k)}(0)}{k!} t^k
$$

Hence

$$
\Phi^{(k)}_X(0) = \mathbb{E}\left(X^k\right)
$$

Power series expansion

For instance, if $X \sim \text{Exp}(\mu)$,

$$
\Phi_X(t) = \frac{\mu}{\mu - t}, \quad t < \mu,
$$

then

$$
\mathbb{E}(X) = \Phi_X'(0) = \left. \frac{d}{dt} \left(\frac{\mu}{\mu - t} \right) \right|_{t=0} = \left. \frac{\mu}{(\mu - t)^2} \right|_{t=0} = \frac{1}{\mu}
$$

Analogously,

$$
\mathbb{E}(X^2) = \Phi_X''(0) = \left. \frac{d}{dt} \left(\frac{\mu}{(\mu - t)^2} \right) \right|_{t=0} = \left. \frac{2\mu}{(\mu - t)^3} \right|_{t=0} = \frac{2}{\mu^2}
$$

Power series expansion

Theorem

If $\Phi_X(t)$ converges on some open interval containing the origin $t = 0$, then X has moments of any order,

$$
\mathbb{E}\left(X^k\right)=\Phi_X^{(k)}(0),
$$

and

$$
\Phi_X(t) = \sum_{k=0}^{\infty} \frac{\mathbb{E}(X^k)}{k!} t^k
$$

For instance, let X ∼ Exp(µ). If |t| < µ, then

$$
\Phi_X(t) = \frac{\mu}{\mu - t} = \frac{1}{1 - (t/\mu)}
$$

$$
= 1 + \frac{t}{\mu} + \left(\frac{t}{\mu}\right)^2 + \dots + \left(\frac{t}{\mu}\right)^n + \dots
$$

Hence,

 $\frac{\mathbb{E}(X^n)}{n!} = \frac{1}{\mu^n}$

and

$$
\mathbb{E}(X^n)=\frac{n!}{\mu^n}
$$

41 / 63

Examples

Let
$$
X \sim Po(\lambda_X)
$$
 and $Y \sim Po(\lambda_Y)$ be independent.
If $Z = X + Y$, then

$$
\Phi_Z(t) = \Phi_X(t)\Phi_Y(t)
$$

= $e^{\lambda_X(e^t-1)} e^{\lambda_Y(e^t-1)} = e^{(\lambda_X + \lambda_Y)(e^t-1)}$

Hence,

$$
Z \sim \text{Po}(\lambda_X + \lambda_Y)
$$

Convolution theorem

The convolution theorem applies also to moment generating functions.

Theorem

Let X_1, X_2, \ldots, X_n be independent random variables and let

$$
S=X_1+X_2+\cdots+X_n.
$$

Then,

$$
\Phi_S(t) = \Phi_{X_1}(t)\Phi_{X_2}(t)\cdots\Phi_{X_n}(t)
$$

42 / 63

Examples

Let $X \sim N(m_X, \sigma_X^2)$ and $Y \sim N(m_Y, \sigma_Y^2)$ be independent. If $Z = X + Y$, then $\Phi_Z(t) = \Phi_X(t)\Phi_Y(t)$ $= e^{\frac{\sigma_X^2 t^2}{2}+tm_X} e^{\frac{\sigma_Y^2 t^2}{2}+tm_Y} = e^{\frac{(\sigma_X^2+\sigma_Y^2)t^2}{2}+t(m_X+m_Y)}$

Therefore

$$
Z \sim N(m_X + m_Y, \sigma_X^2 + \sigma_Y^2)
$$

Characteristic function

Characteristic function

Characteristic function and moments Convolution theorem Inversion and unicity Joint characteristic functions

Definition

The characteristic function $M_X(\omega)$ of a random variable X is the complex-valued function of the real argument ω defined as

$$
M_X(\omega) \equiv \mathbb{E}\left(e^{i\,\omega X}\right) = \mathbb{E}\left(\cos\left(\omega X\right)\right) + i\,\mathbb{E}\left(\sin\left(\omega X\right)\right)
$$

- ▶ Any random variable has a characteristic function.
- $M_X(\omega)$ is well-defined for all $\omega \in \mathbb{R}$.

45 / 63

Characteristic function

If X is a discrete or a continuous random variable, then

$$
M_X(\omega) = \begin{cases} \sum_k e^{i\omega x_k} \mathbb{P}(X = x_k), & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} e^{i\omega x} f_X(x) dx, & \text{if } X \text{ is continuous} \end{cases}
$$

- If X is a continuous random, $M_X(\omega)$ is the Fourier transform of its probability density $f_X(x)$. (Notice the change of sign in the usual definition of Fourier transform.)
- ▶ For discrete random variables, characteristic functions are related to Fourier series.

Properties

 \blacktriangleright $|M_X(\omega)| \leq M_X(0) = 1$ for all $\omega \in \mathbb{R}$. Indeed,

$$
|M_X(\omega)| = \left|\mathbb{E}\left(e^{i \omega X}\right)\right| \leq \mathbb{E}\left(\left|e^{i \omega X}\right|\right) = \mathbb{E}(1) = 1
$$

Moreover,

$$
M_X(0)=\mathbb{E}\left(e^{i\cdot 0\cdot X}\right)=\mathbb{E}(1)=1
$$

- $\blacktriangleright M_x(\omega)$ is uniformly continuous on R.
- If $Y = aX + b$, then $M_Y(\omega) = e^{i\omega b} M_X(a\omega)$.

 $\blacktriangleright \overline{M_X(\omega)} = M_X(-\omega).$ $\overline{M_X(\omega)} = \overline{\mathbb{E}(\cos(\omega X)) + i \mathbb{E}(\sin(\omega X))}$ $= \mathbb{E} (\cos(\omega X)) - i \mathbb{E} (\sin(\omega X))$ $=$ E (cos $(-\omega X)$) + i E (sin $(-\omega X)$) = $M_X(-\omega)$

More concisely,

$$
\overline{M_X(\omega)} = \overline{\mathbb{E}(e^{i\,\omega X})} = \mathbb{E}\left(\overline{e^{i\,\omega X}}\right)
$$

$$
= \mathbb{E}\left(e^{-i\,\omega X}\right) = \mathbb{E}\left(e^{i(-\omega)X}\right) = M_X(-\omega)
$$

Examples

Let
$$
X \sim \text{Bin}(n, p)
$$
. Then,

$$
M_X(\omega) = (q + p e^{i\omega})^n
$$

If $X \sim Po(\lambda)$, then

$$
M_X(\omega)=e^{\lambda\left(e^{i\omega}-1\right)}
$$

If
$$
X \sim N(m, \sigma^2)
$$
, then

$$
M_X(\omega) = e^{i\omega m - \frac{1}{2}\sigma^2 \omega^2}
$$

49 / 63

Characteristic function and moments

Theorem

If $\mathbb{E}(X^n) < \infty$ for some $n \geq 1$, then

$$
M_X(\omega)=\sum_{k=0}^n\frac{\mathbb{E}(X^k)}{k!}(i\;\omega)^k+o\left(|\omega|^n\right)\;\;\text{as}\;\;\omega\to 0.
$$

So,

$$
\mathbb{E}(X^k)=\frac{M_X^{(k)}(0)}{i^k} \text{ for } k=1,2,\ldots,n.
$$

In particular, if $\mathbb{E}(X) = 0$ and $\text{Var}(X) = \sigma^2$, then

$$
M_X(\omega) = 1 - \frac{1}{2}\sigma^2\omega^2 + o(\omega^2)
$$
 as $\omega \to 0$.

Characteristic function and moments

Indeed, in the case that X has moments of any order we have

$$
M_X(\omega) = \mathbb{E}\left(e^{i\omega X}\right)
$$

=
$$
\mathbb{E}\left(\sum_{k=0}^{\infty} \frac{(i \omega X)^k}{k!}\right) = \sum_{k=0}^{\infty} \frac{i^k \mathbb{E}(X^k)}{k!} \omega^k
$$

This is the Taylor series expansion for $M_X(\omega)$. Therefore $i^k \mathbb{E}(X^k) = M_X^{(k)}(0)$ and hence

$$
\mathbb{E}(X^k) = \frac{M_X^{(k)}(0)}{i^k}
$$

Theorem

Let X_1, X_2, \ldots, X_n be independent random variables and let

$$
S=X_1+X_2+\cdots+X_n.
$$

Then

$$
M_S(\omega)=M_{X_1}(\omega)M_{X_2}(\omega)\cdots M_{X_n}(\omega)
$$

Proof:

$$
M_5(\omega) = \mathbb{E} \left(e^{i\omega S} \right)
$$

\n
$$
= \mathbb{E} \left(e^{i\omega X_1 + X_2 + \dots + X_n} \right)
$$

\n
$$
= \mathbb{E} \left(e^{i\omega X_1} e^{i\omega X_2} \dots e^{i\omega X_n} \right)
$$

\n
$$
= \mathbb{E} \left(e^{i\omega X_1} \right) \mathbb{E} \left(e^{i\omega X_2} \right) \dots \mathbb{E} \left(e^{i\omega X_n} \right)
$$

\n
$$
= M_{X_1}(\omega) M_{X_2}(\omega) \dots M_{X_n}(\omega)
$$

53 / 63

Convolution theorem

(Remark)

We have essentially the convolution theorem for Fourier transforms. If X and Y are continuous and independent random variables and $Z = X + Y$, then $f_Z = f_X * f_Y$, that implies

$$
\mathcal{F}(f_Z)=\mathcal{F}(f_X)\cdot\mathcal{F}(f_Y),
$$

that is to say,

$$
M_Z(\omega)=M_X(\omega)M_Y(\omega)
$$

Inversion

Theorem (Inversion of the Fourier transform)

Let X be a continuous random variable with density $f_X(x)$ and characteristic function $M_X(\omega)$. Then

$$
f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\omega x} M_X(\omega) d\omega
$$

at every point x at which $f_X(x)$ is differentiable.

 \blacktriangleright To obtain $f_X(x)$ from $M_X(\omega)$ usually requires contour integration in the complex plane.

In the discrete case, $M_X(\omega)$ is related to Fourier series.

Theorem

If X is an integer-valued random variable, then

$$
\mathbb{P}(X=k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-ik\omega} M_X(\omega) d\omega
$$

Inversion and unicity

Theorem

Let X have probability distribution function $F_X(x)$ and characteristic function $M_X(\omega)$. Let

$$
\overline{F}_X(x) = \frac{F_X(x) + F_X(x^-)}{2}
$$

Then

$$
\overline{F}_X(b)-\overline{F}_X(a)=\lim_{T\to\infty}\frac{1}{2\pi}\int_{-T}^T\frac{\mathrm{e}^{-ia\omega}-\mathrm{e}^{-ib\omega}}{i\omega}\;M_X(\omega)\;d\omega.
$$

 M_X specifies uniquely the probability law of X . Two random variables have the same characteristic function if and only if they have the same distribution function.

57 / 63

Joint characteristic functions

Definition

The joint characteristic function of the random variables X_1 , X_2 , \ldots X_n is defined to be

$$
M_X(\omega_1, \omega_2, \ldots, \omega_n) \equiv \mathbb{E}\left(e^{i(\omega_1 X_1 + \omega_2 X_2 + \cdots + \omega_n X_n)}\right)
$$

Using vectorial notation one can write $\omega = (\omega_1, \omega_2, \cdots, \omega_n)^t$, $X = (X_1, X_2, \cdots, X_n)^t$ and

$$
M_X(\omega^t) = \mathbb{E}\left(e^{i\omega^t X}\right)
$$

Joint moments

The joint characteristic function allows as to calculate joint moments. For instance, given X , Y ,

$$
M_{XY}(\omega_1,\omega_2)=\mathbb{E}\left(e^{i(\omega_1X+\omega_2Y)}\right)
$$

Therefore,

$$
\begin{aligned} \frac{\partial M_{XY}(\omega_1,\omega_2)}{\partial \omega_1} &= i\,\mathbb{E}\left(X\,e^{i(\omega_1 X+\omega_2 Y)}\right)\\ \frac{\partial^2 M_{XY}(\omega_1,\omega_2)}{\partial \omega_1 \partial \omega_2} &= i^2\,\mathbb{E}\left(XY\,e^{i(\omega_1 X+\omega_2 Y)}\right) \end{aligned}
$$

Hence,

$$
\left.\frac{\partial^2 M_{XY}(\omega_1,\omega_2)}{\partial \omega_1 \partial \omega_2}\right|_{(\omega_1=0,\omega_2=0)} = i^2 \mathbb{E}(XY) = -\mathbb{E}(XY)
$$

More generally,

$$
\mathbb{E}\left(X^{k}Y^{l}\right)=\frac{1}{i^{k+l}}\left.\frac{\partial^{k+l}M_{XY}(\omega_{1},\omega_{2})}{\partial^{k}\omega_{1}\partial^{l}\omega_{2}}\right|_{(\omega_{1},\omega_{2})=(0,0)}
$$

Marginal characteristic functions

Marginal characteristic functions are easily derived from the joint characteristic function.

For instance, given X , Y :

$$
M_X(\omega) = \mathbb{E}\left(e^{i\omega X}\right)
$$

= $\mathbb{E}\left(e^{i(\omega_1 X + \omega_2 Y)}\right)\Big|_{(\omega_1 = \omega, \omega_2 = 0)} = M_{XY}(\omega, 0)$

Analogously,

$$
M_Y(\omega)=M_{XY}(0,\omega)
$$

61 / 63

Independent random variables

Theorem

The random variables $X_1, X_2, ..., X_n$ are independent if and only if

$$
M_X(\omega_1, \omega_2, \ldots, \omega_n) = M_{X_1}(\omega_1) M_{X_2}(\omega_2) \cdots M_{X_n}(\omega_n)
$$

The necessity of the condition is easily proved. Indeed, if the variables are independent, then

$$
M_X(\omega_1, \omega_2, \dots, \omega_n) = \mathbb{E}\left(e^{i\omega_1 X_1 + \omega_2 X_2 + \dots + \omega_n X_n}\right) = \mathbb{E}\left(e^{i\omega_1 X_1} e^{i\omega_2 X_2} \dots e^{i\omega_n X_n}\right)
$$

= $\mathbb{E}\left(e^{i\omega_1 X_1}\right) \mathbb{E}\left(e^{i\omega_2 X_2}\right) \dots \mathbb{E}\left(e^{i\omega_n X_n}\right)$
= $M_{X_1}(\omega_1) M_{X_2}(\omega_2) \dots M_{X_n}(\omega_n)$