
1. Introduction
Seasonal climate forecasts have become essential for several socio-economic sectors such as agriculture, renewable 
energy, water management, insurance or public health (Befort et al., 2019; Ceglar et al., 2018; Lowe et al., 2016; 
Pechlivanidis et al., 2020; Torralba et al., 2017). These sectors have started to integrate seasonal forecasts in their 
decision-making processes because this information can lead to better and timely management of risks related to 
climate variability (Bruno-Soares et al., 2018; Buontempo et al., 2014). Several institutions around the world use 
coupled ocean-atmosphere general circulation models (GCMs) to produce seasonal forecasts on a regular basis. 
These forecasts are issued in a probabilistic way, which accounts for the uncertainties coming from the initial 
conditions and model formulation (Slingo & Palmer, 2011). The delivery of suitable information regarding the 
quality of these predictions is essential to help stakeholders in making better informed decisions (Alessandrini 
et al., 2013; Doblas-Reyes et al., 2013).

Seasonal forecast systems have been traditionally evaluated in terms of skill scores (see, e.g., Manzanas 
et al., 2014, 2017, 2020; Nikulin et al., 2018) and also their ability to reproduce the large-scale modes of variabil-
ity (e.g., Stockdale et al., 2015). However, it is also key that these forecasts are statistically reliable (Palmer, 2002; 
Weisheimer & Palmer, 2014). Reliability measures the agreement between the forecast probabilities for a certain 

Abstract One of the key quality aspects in a probabilistic prediction is its reliability. However, this property 
is difficult to estimate in the case of seasonal forecasts due to the limited size of most of the hindcasts that are 
available nowadays. To shed light on this issue, this work presents a detailed analysis of how the ensemble 
size, the hindcast length and the number of points pooled together within a particular region affect the resulting 
reliability estimates. To do so, we build on 42 land reference regions recently defined for the IPCC-AR6 and 
assess the reliability of global seasonal forecasts of temperature and precipitation from the European Center for 
Medium Weather Forecasts SEAS5 prediction system, which is compared against its predecessor, System4. Our 
results indicate that whereas longer hindcasts and larger ensembles lead to increased reliability estimates, the 
number of points that are pooled together within a homogeneous climate region is much less relevant.

Plain Language Summary Seasonal climate forecasts provide information on the average 
conditions that can be expected for the next months (up to a year) and can help decision making in different 
socio-economic sectors such as agriculture, energy and health (among others). However, predictability at this 
time-scale is in general limited, so the actual usefulness of seasonal forecasts must be carefully evaluated before 
they are used in practical applications. In this aspect, reliability—which measures how well/bad the forecast 
probability for a particular event fits with its actual occurrence—is a key property. This work assesses the 
reliability of global seasonal forecasts of temperature and precipitation using the latest operational seasonal 
forecasting system from European Center for Medium Weather Forecasts. Our results show that reliability is 
generally better for temperature than for precipitation. Moreover, we demonstrate that reliability is sensitive 
to the number of retrospective forecasts (known as hindcast) and ensemble members (from which forecast 
probabilities are obtained) available. Finally, we also demonstrate that the new IPCC-AR6 land reference 
regions are adequate for seasonal verification purposes. These findings are important for a fair interpretation 
of the reliability of seasonal forecasts which are obtained for specific regions/seasons/systems building on 
different experimental frameworks.
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event/category (e.g., the temperature being warmer than normal) and the actually observed frequency of occur-
rence of that event (Mason & Stephenson, 2008). For example, if we collect a large sample of forecasts indi-
cating a 70% of probability, we would ideally expect to observe the event in the ∼70% of the cases. Previous 
studies have shown that seasonal forecasts are reliable for particular regions and seasons of the year (see, e.g., 
Manzanas et al., 2018, 2019; Nikulin et al., 2018; Weisheimer & Palmer, 2014), but they can be also affected 
by over/under-confidence problems (see, e.g., Baker et  al.,  2018; Becker & Van Den Dool,  2016; Johnson 
et al., 2019). To overcome these issues, the use of large ensembles has been recommended (Eade et al., 2014; 
Manzanas et al., 2019). However, one of the major limitations in seasonal forecasting is the small sample size 
(i.e., number hindcast years and ensemble members) from which estimates of forecast quality (e.g., reliabil-
ity) can be computed. Furthermore, while most skill metrics for seasonal forecasts are directly computed on a 
grid point basis, measuring reliability requires aggregation of many nearby grid points in order to obtain larger 
samples (Manzanas et al., 2018; Matsueda et al., 2016; Verfaillie et  al., 2020; Weisheimer & Palmer, 2014). 
Although the scientific community has already recognized the importance of the sample size in seasonal forecast 
verification (Kumar, 2009; Lledó et al., 2020; Manzanas et al., 2019; Siegert et al., 2016), a systematic evaluation 
on how this factor may affect reliability estimates at a global scale is still lacking.

The aim of the present work is to fill this gap of knowledge by providing a detailed analysis of the influence on 
reliability of the ensemble size, the hindcast length and the number of points aggregated within a (homogeneous 
climate) region. To do this, we consider 2-m temperature and precipitation from SEAS5, the current operational 
seasonal forecasting system from European Center for Medium Weather Forecasts (ECMWF), and compare its 
reliability with that obtained from its predecessor, the System4.

This comparison allows us to quantify the improvement of SEAS5 over System4. Moreover, the systematic 
evaluation of the effect that the available sample size has on the reliability estimates allows for fairer interpreta-
tion of the results obtained when different seasonal forecasting systems are compared. In this regard, note that, 
although, the ensemble size and hindcast length of a prediction system are ultimately determined by the produc-
ing center,  the number of points needed for the characterization of the reliability in a particular region is a choice 
to be made during verification.

The paper has been structured as follows. Section 2 describes the seasonal forecasts and the observational refer-
ences used, and presents the methodological framework considered. Section 3 discusses the sensitivity of the 
reliability to the ensemble size (Section 3.2), hindcast length (Section 3.3) and region definition (Section 3.4). 
Finally, Section 4 presents the main conclusions obtained from this work.

2. Data and Methodology
2.1. Observational Reference

Observations of 2-m temperature and precipitation from the EWEMBI data set (Lange, 2019) have been used as 
reference for evaluating the seasonal forecast reliability. EWEMBI has global coverage with a horizontal resolu-
tion of 0.5°—here we have applied a land-sea mask to focus exclusively on land grid points—and it is available 
for the 1979–2016 period, providing daily data for 41 meteorological variables based on a combination of differ-
ent data sources. For the variables used in this work, 2-m temperature and precipitation, EWEMBI is based on 
the WATCH forcing methodology applied to ERA-Interim reanalysis data (WFDEI: Weedon et al. (2014)). For 
the particular case of precipitation, WFDEI has been bias adjusted with respect to GPCC v5 and v6 (Schneider 
et  al.,  2018). The EWEMBI data set was compiled to support the bias correction of climate input data for 
the impact assessments carried out in phase 2b of the Inter-Sectoral Impact Model Intercomparison Project 
(ISIMIP2b: (Frieler et al., 2017)), which has contributed to the 2018 IPCC special report on the impacts of global 
warming of 1.5°C above pre-industrial levels and related global greenhouse emission pathways (https://www.
ipcc.ch/sr15/).

In addition to EWEMBI, we have also considered another data set of observed 2-m temperature and precipitation 
in order to assess the effect that observational uncertainty may have on the estimation of seasonal reliability, 
the gridded Climate Research Unit Time Series (CRU TS, version 4.04: (Harris et  al.,  2020)), developed by 
the University of East Anglia. CRU TS has global coverage (only for land regions) with a resolution of 0.5° 
and provides monthly data for 1901–2019. This data set has been produced using angular-distance weighting 
interpolation from an extended network of weather stations distributed worldwide. Note thus its convenience as 
alternative observational reference to EWEMBI, which is mostly based on reanalysis data.
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In all cases, for each variable, season and grid point, the 33rd and 66th climatological percentiles in 1981–2016 
(the common period between observations and hindcasts) have been computed and used to separate the obser-
vations in three tercile categories (below normal or T1, normal or T2, and above normal or T3). The reliability 
assessment is based on tercile events, because most of the seasonal forecast products tailored to end-user applica-
tions are currently given as the percentage of ensemble members falling into the below normal, near normal, and 
above normal categories of the climatological distribution.

2.2. Seasonal Hindcasts

Seasonal forecasts of 2-m temperature and precipitation from the current operational seasonal forecasting system 
at the ECMWF, SEAS5 (Johnson et al., 2019), have been used. SEAS5 is based on the Integrated Forecast System 
(IFS Cycle 43r1) atmospheric model coupled to the Nucleus for European Modeling of the Ocean (NEMO 3.4.1) 
ocean model. SEAS5's forecasts are issued the first day of each month and span seven months into the future at 
6-hourly time resolution and a spatial resolution of ∼36 km. Hindcasts are available for the period 1981–2016 
(i.e., 36 years) with 51 ensemble members for the start dates of February, May, August, and November. Note that 
SEAS5 has been selected for this study because it is the operational seasonal forecast system with the longest 
hindcast and the largest ensemble, which allows for robust experimentation with increasing sample sizes.

For comparison purposes, some analyses have been also carried out for the ECMWF System4 (Molteni 
et  al.,  2011), the previous version of SEAS5, whose operational lifecycle ended in November 2017. For this 
model we have combined hindcasts (1981–2010) and operational forecasts (2011–2016) to cover the full period 
available for SEAS5, 1981–2016. System4 has a spatial resolution of ∼80 km and provides 51 members for the 
start dates of February, May, August, and November.

In this work we focus on one-month lead forecasts for December-January-February (DJF), March-April-May 
(MAM), June-July-August (JJA), and September-October-November (SON), corresponding to the start dates 
of November, February, May, and August, respectively. For the sake of direct comparison between SEAS5 and 
System4, both models have been interpolated to the EWEMBI observational grid through a nearest neighbor 
approach. In all cases, as for the observations, the 33rd and 66th percentiles for the 1981–2016 hindcast have been 
computed for each variable, season and grid. For a given year, the probability for each tercile category is given by 
counting the number of members (out of the total available) falling in that category.

2.3. Reliability Categories

The reliability of a prediction system measures how closely the forecast probabilities of a certain event (here, 
one of the three tercile categories: T1, T2, and T3) correspond to the actual observed frequency of that event. 
Typically, the forecast probabilities are plotted against the observed relative frequencies for a number of proba-
bility bins in the reliability diagram (see, e.g., Doblas-Reyes et al., 2008; Frías et al., 2018). As in previous works 
(see, e.g., Johnson et al., 2019), the number of probability bins used in all the analyses undertaken in this study 
equals the number of ensemble members considered plus one. Weisheimer and Palmer (2014) first proposed a 
methodology to translate the information contained in the reliability diagram into an easy-to-interpret scale with 
five categories, which was later modified by Manzanas et al.  (2018) by including a sixth reliability category: 
perfect (green), still very useful (blue), marginally useful + (dark yellow), marginally useful (yellow), not useful 
(orange) and dangerously useless (red). This classification is based on the relative position of the reliability line 
(a weighted linear regression of the observed frequencies) with respect to the perfect reliability line, the no-skill 
line, and the no-resolution line, as well as on the 75% uncertainty range around it. The latter is derived in this 
work from 1000 bootstrapped reliability lines which are obtained by randomly resampling members, gridboxes, 
and years both in the observations and in the predictions. Note that this bootstrapping process makes the compu-
tation of reliability categories highly demanding in terms of computational resources and times. Note also that 
using different tercile thresholds for hindcasts and observations implicitly corrects systematic biases that may 
be present in the model predictions (see, e.g., Manzanas, 2020). Therefore, reliability is a non-sensitive to bias 
metric. The reader is referred to the aforementioned references for further details on reliability diagrams and 
reliability categories.

One problem that arises when computing the reliability diagrams and the corresponding reliability categories is 
the small sample sizes available for each probability bin. In our case, for a single grid point, season and category 
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one would have only 36 SEAS5 forecasts (one per year), which may result in bins with very few instances. To 
make the computation more stable to the random effects that may appear due to the bootstrapping step followed, 
it is usual to pool forecasts of nearby grid points in a single reliability diagram to derive the corresponding 
areal reliability category. For instance, Weisheimer and Palmer (2014) and Verfaillie et al. (2020) considered 21 
regions over land for this purpose. In this study, we have used the new set of 42 land reference regions which have 
been defined in Iturbide et al. (2020) for the Sixth Assessment Report of the IPCC (two regions over the Antarctic 
continent have been omitted). The reader is referred to Figure S1 and Table S1 in Supporting Information S1 for 
details about these regions, including the number of grid points contained in each of them at the 0.5° resolution 
used here.

3. Results
3.1. Comparison of SEAS5 and System4 in Terms of Reliability

Although some recent works have preliminary analyzed the reliability of SEAS5 for particular regions and/or 
seasons (see Gubler et al., 2020; Johnson et al., 2019), a global, systematic assessment is still lacking. Figures 1 
and 2 shows the reliability categories obtained for precipitation and temperature in DJF, MAM, JJA, and SON 
over the 42 IPCC-AR6 reference regions considered when EWEMBI is used as observational reference. For 
each season, the maps in the first row correspond to the SEAS5. The second row provides a comparison between 
SEAS5 and System4, expressed as the number of categories changed in the former, with respect to the latter. Blue 
(red) colors indicate thus that SEAS5 improves (worsens) the reliability found for System4. For instance, passing 
from not useful in System4 to marginally useful + in SEAS5 (or from perfect to still very useful) would be repre-
sented by a 2 (−1). For both models, SEAS5 and System4, the full hindcast (51 members and 36 years) is consid-
ered in this experiment. For the sake of brevity, we only include here results for the below and above normal 
categories (T1 and T3, respectively). In agreement with previous works (Kharin & Zwiers, 2003; Van Den Dool 
& Toth, 1991; Yang et al., 2021), forecasts for the near normal category (T2) exhibit poorer quality in all cases.

The comparison between SEAS5 and System4 reveals that the former outperforms the latter in terms of relia-
bility, as shown by the predominance of the blue color in most of the regions and seasons. In general, forecast 
reliability is higher for temperature than for precipitation. Indeed, Figure 2 suggests that seasonal forecasts of 
temperature might be safely used for practical applications in several regions and seasons for which the perfect 
reliability category is found. Differently, according to Figure 1, reliability is in general poor for precipitation, 
especially outside the tropics. Note that the results obtained here for System4 should not be directly compared 
with those presented in Weisheimer and Palmer (2014), who used a shorter 30-year period and a different set of 
21 regions.

To investigate the effect that observational uncertainty may have on the results shown in Figures 1 and 2, the 
maps in the first rows of Figures S2 and S3 in Supporting Information S1 have been calculated considering CRU 
TS (instead of EWEMBI) as observational reference for precipitation and temperature, respectively. Moreover, 
the maps in the second row show the differences in reliability—expressed as the number of categories changed—
with respect to those displayed in the first rows of Figures 1 and 2 (i.e., using EWEMBI as reference). Blue (red) 
colors indicate thus that the reliability of SEAS5 improves (worsens) when CRU TS is used for validation instead 
of EWEMBI.

These two figures reveal that the choice of observational reference may indeed lead to slightly different results 
for particular variable-season-region-tercile combinations (please note a detailed analysis of these differences is 
out of the scope of this paper). Nevertheless, most of the changes found (either improvements or worsening) are 
scattered worldwide and limited to one reliability category, which in some cases might be even explained by the 
uncertainty inherent to the calculation of reliability (recall bootstrapping needs to be applied). Importantly, none 
of the two datasets considered leads systematically to better results, neither for precipitation nor for temperature.

3.2. Sensitivity to the Ensemble Size

The SEAS5's hindcast have 51 ensemble members for the specific start dates considered in this work (February, 
May, August, and November). However, this ensemble size is halved for the rest of start dates. Furthermore, 
it is common that the operational configuration of the different seasonal forecast systems has more ensemble 
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Figure 1. Reliability categories obtained for precipitation in December-January-February, March-April-May, June-July-
August, and September-October-November (from top to bottom) over the 42 IPCC-AR6 reference regions considered when 
EWEMBI is used as observational reference. For each season, the maps in the first row correspond to the SEAS5. The second 
row provides a comparison between SEAS5 and System4, expressed as the number of categories changed in the former, with 
respect to the latter. Blue (red) colors indicate thus that SEAS5 improves (worsens) the reliability found for System4. For 
both models, SEAS5 and System4, the full hindcast (51 members and 36 years) is considered in this experiment, so direct 
comparison is fair. For brevity, results are only shown for the below and above normal categories (T1 and T3, respectively).
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members than the corresponding hindcasts that are used for forecast quality 
assessment. Therefore, it is important to assess how the ensemble size avail-
able may affect reliability.

Figure 3 shows the number of regions exhibiting each of the six reliability 
categories (blocks of bars in different colors) as a function of the ensem-
ble size (for 10, 30, and 51 members), for precipitation and temperature 
(in columns) along the different seasons (in rows), when the SEAS5 is 
validated against EWEMBI. For the sake of robustness, we have consid-
ered five different subsets of 10 members and five other subsets of 30 
members, all of them randomly chosen out of the 51 available members. 
Within each block of bars, the first two represent the mean result obtained 
across the five subsets of years considered, with the error bar account-
ing for the corresponding standard deviation. To provide a summary of 
the full picture, the results displayed are summed in all cases along the 
three terciles (T1, T2, and T3). In general, in agreement with previous 
works (see, e.g., Hagedorn et al., 2005; Manzanas et al., 2019), this figure 
evidences that reliability improves as the number of ensemble members 
considered increases. In particular, for the case of precipitation, the 
number of regions exhibiting the marginally useful + category increases 
in general when passing from 10 to 30 and 51 ensemble members. A very 
similar behavior is also found for temperature, for which the number of 
regions with still very useful and perfect reliability categories tends to 
increase with the ensemble size.

Similar results are found when EWEMBI is substituted by CRU TS for verifi-
cation (see Figure S4 in Supporting Information S1), which suggests that our 
findings are robust to the choice of observational reference.

3.3. Sensitivity to the Hindcast Length

Most of seasonal forecast systems produce a hindcast which typically covers 
less than 25 years since its generation is computationally very expensive and 
consistent oceanic observations for initialization are usually not available 
before 1993. For this reason it is important to asses how the hindcast length 
available for verification may affect reliability. SEAS5 constitutes an ideal 
test-bed to do this, since this model provides the longest-to-date hindcast, 
covering a 36-year period.

Figure  4 shows the number of regions exhibiting each of the six reliabil-
ity categories (blocks of bars in different colors) as a function of the hind-
cast length (for 15, 25, and 36 years), for precipitation and temperature (in 
columns) along the different seasons (in rows), when the SEAS5 is vali-
dated against EWEMBI. For the sake of robustness, we have considered five 
different subsets of 15 years and five other subsets of 25 years, all of them 
randomly chosen out of the 36 available years. Within each block of bars, the 
first two represent the mean result obtained across the five subsets of years 
considered, with the error bar accounting for the corresponding standard 
deviation. As in Figure 3, the results displayed are summed in all cases along 
the three terciles (T1, T2, and T3).

Although the dispersion of the results (i.e., the length of the error bars) is 
larger in this figure than in Figure 3, it is still clear that the number of regions 

with dangerously useless and not useful reliability categories is reduced for both temperature and precipitation 
when the number of years increases, whereas marginally useful and still very useful categories become more 
frequent. Interestingly, a reduction in the number of regions categorized with perfect reliability is encountered 

Figure 2. As Figure 1 but for temperature.
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for the case of temperature in DJF when the number of years considered is 
increased. This suggests that short hindcasts may lead to overestimated relia-
bility estimates merely due to sampling uncertainty (recall that bootstrapping 
is applied to quantify the uncertainty range around the regressed reliability 
line). In agreement with previous works (see, e.g., Manzanas et al., 2019), 
these findings suggest the importance of having long hindcasts for a robust 
estimation of forecast reliability.

These conclusions are not much altered when EWEMBI is replaced by 
CRU TS for verification (see Figure S5 in Supporting Information  S1), 
which again suggests that our findings are robust to the choice of observa-
tional reference.

3.4. Sensitivity to the Region Definition

The 42 land reference regions considered in this work have been defined in 
Iturbide et al. (2020) for the assessment of climate change according to their 
climatic homogeneity in terms of the Köppen–Geiger classification. In this 
section we investigate if these regions might also be adequate for seasonal 
forecast verification purposes—recall that reliability is usually assessed 
by pooling together points over large regions (Buizza & Leutbecher, 2015; 
Verfaillie et al., 2020; Weisheimer & Palmer, 2014).—To do this, Figure 5 
shows the reliability category obtained across the 42 reference regions 
(in columns) as a function of the number of grid points considered (in 
rows) within the region for precipitation, when the SEAS5 is validated 
against EWEMBI. Independent subsets of 25%, 50%, 75% grid points were 
randomly selected (only once) and kept fixed for the entire experiment. 
The different seasons are displayed for top to bottom. Within each season, 
results are shown for T1 and T3 (similar conclusions are obtained for T2). 
Figure 6 is the equivalent to Figure 5 but for temperature. In both cases, 
the full hindcast available (51 members and 36 years) from SEAS5 was 
employed.

Although marginal changes in reliability (either increases or decreases) 
can be found for specific seasons and terciles in particular regions—note 
the detailed analysis of these changes is out of the scope of this work,—
these two figures evidence that, overall, reliability is not strongly affected 
by the number of grid points aggregated within a given region, regardless of 
the  variable and the season considered.

This overall conclusion remains valid when EWEMBI is substituted by CRU 
TS for verification (see Figures S6 and S7 in Supporting Information S1), 
corroborating the choice of observational reference has little effect on the key 
outcomes from the present study.

4. Conclusions
Previous works have already explored the influence that the small sample 
sizes currently available in seasonal forecasting may have on skill, but the 
impact on reliability has not been explored so far at a global scale. This 
work aims to fill this gap by providing a systematic evaluation on how the 

seasonal forecast reliability is affected by different potential sources of uncertainty: ensemble size, hindcast 
length and number of aggregated points (within a homogeneous climate region). To do this, we analyze 
one-month lead seasonal forecasts of temperature and precipitation for the four main boreal seasons (DJF, 

Figure 3. Number of regions exhibiting each of the six reliability categories 
(blocks of bars in different colors) as a function of the ensemble size (for 10, 
30, and 51 members), for precipitation and temperature (in columns) along the 
different seasons (in rows), when the SEAS5 is validated against EWEMBI. In 
all cases, results are summed along the three terciles (T1, T2, and T3).
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MAM, JJA, and SON) over the new set of 42 land reference regions defined 
for the AR6 of the IPCC, which cover the entire globe. To facilitate the 
interpretation of the results obtained, we employ the six reliability catego-
ries first introduced in Weisheimer and Palmer (2014) and later modified 
by Manzanas et al. (2018), which provide an easy to interpret and commu-
nicate ranking.

First, we have compared the reliability provided by SEAS5, the current 
operational seasonal forecast system from ECMWF, with that from its 
previous version, System4. Our results show that SEAS5 outperforms 
System4 for most of the regions and seasons. For temperature, perfect 
reliability is found for particular regions and seasons for which seasonal 
forecasts may be directly used in practical applications and/or oper-
ational climate services. Differently, reliability is in general poor for 
precipitation, especially outside the tropics. These results indicate that 
the improvements undertaken in SEAS5 (with respect to System4) have 
efficiently helped to increase reliability. However, there is still room for 
further enhancement, which in some occasions may be achieved through 
proper calibration of the raw model outputs (see, e.g., Hemri et al., 2020; 
Manzanas et al., 2019).

Second, building on the SEAS5's full hindcast (51 members and 36 years), 
we have quantified how reliability estimates change with different ensemble 
sizes (10, 30, and 51 members) and hindcast lengths (15, 25, and 36 years). 
On the one hand, we have found that reliability improves in general as the 
number of ensemble members increases, which indicates that larger ensem-
bles allow for a better representation of the forecast uncertainty, leading to 
more reliable probabilities. On the other hand, increasing the number of 
years available for verification leads also to some improvement of reliability, 
although this effect is not so clear. Indeed, our results suggest that forecast 
reliability can be overestimated in short hindcasts as a mere consequence of 
sampling uncertainty.

Third, we have also demonstrated that new IPCC-AR6 land reference regions 
defined in Iturbide et al. (2020) are useful not only for climate change assess-
ments, but also for the verification of seasonal forecast systems in terms of 
reliability. Moreover, the fact that a reduced subset of randomly selected 
points is enough to accurately infer the reliability of these entire regions 
allows for drastically reducing computational costs, which are typically high 
as a consequence of the bootstrapping procedure followed. This considera-
tion turns especially important as the spatial resolution of the newer forecast-
ing systems increases.

Finally, the comparison between the figures shown in the manuscript for 
EWEMBI and the equivalent ones for CRU TS (Figures S1–S7 in Support-
ing Information S1) allows us to conclude that the choice of observational 
reference does not greatly affect any of the aforementioned conclusions, 
which can be useful to (a) model developers who need to fairly assess 
improvements in successive model versions, (b) climate scientists who 
need to fairly evaluate and understand the reliability of seasonal forecasts 
for specific regions/seasons/systems building on different experimental 
frameworks, and (c) climate services' developers who need to optimize the 
computational resources used for specific applications in which reliability 
plays a key role.

Figure 4. Number of regions exhibiting each of the six reliability categories 
(blocks of bars in different colors) as a function of the hindcast length (for 15, 
25, and 36 years), for precipitation and temperature (in columns) along the 
different seasons (in rows), when the SEAS5 is validated against EWEMBI. In 
all cases, results are summed along all the three terciles (T1, T2, and T3).
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Figure 5. Reliability category obtained across the 42 regions analyzed (in columns; see Figure S1 and Table S1 in Supporting Information S1 for details) as a function 
of the number of grid points aggregated (25%, 50%, 75%, and 100%, in rows) within the region for precipitation, when the SEAS5 is validated against EWEMBI. The 
different seasons are displayed for top to bottom. Within each season, results are given for T1 and T3. The full hindcast available (51 members and 36 years) was used 
for this analysis.
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Data Availability Statement
SEAS5 data was retrieved from the MARS archive (https://confluence.ecmwf.int/display/COPSRV/MARS+ar-
chive) following the ECMWF data policy. CRU TS v4.04 was downloaded from https://catalogue.ceda.ac.uk/
uuid/89e1e34ec3554dc98594a5732622bce9. Differently, System4 and EWEMBI were obtained from the User 

Figure 6. As Figure 5 but for temperature.

https://confluence.ecmwf.int/display/COPSRV/MARS%2Barchive
https://confluence.ecmwf.int/display/COPSRV/MARS%2Barchive
https://catalogue.ceda.ac.uk/uuid/89e1e34ec3554dc98594a5732622bce9
https://catalogue.ceda.ac.uk/uuid/89e1e34ec3554dc98594a5732622bce9
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Data Gateway (UDG), a THREDDS-based service from the Santander Climate Data Service that provides access 
to a wide catalogue of popular climate datasets: http://meteo.unican.es/udg-tap/home. See Cofiño et al. (2018) for 
further information. Finally, reliability categories can be computed (and plotted) with the function reliabili-
tyCategories included in the visualizeR package (Frías et al., 2018), which forms part of climate4R 
(Iturbide et al., 2019), a bundle of R packages developed by the Santander Meteorology Group for transparent 
climate data access, post-processing and visualization.
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