
Stochastic Optimal Control of
Lithium-ion Battery Operations

Pedret Sagnier, Berta

In partial fulfillment of the requirements for the degree in Telecommunications

Technologies and Services Engineering and the degree in Engineering Physics

Advisor: Richard D Braatz

Tutor: Arnau Doria Cerezo

Cambridge, MA

May 2022

Abstract

Optimal charging of lithium-ion batteries maximizes battery life while ensuring fast charging and

safe usage. The properties of manufactured batteries can differ from design values and change

over time due to degradation. The limitation of past battery simulations is that they use fixed

deterministic values for these parameters that may not be accurately known. Stochastic analysis

includes real-world uncertainties in simulations to represent this manufacturing variation. This

study aims to propagate the uncertainty of model parameters onto output states, such as voltage

or cell temperature. Output uncertainty is characterized by these states’ upper and lower bounds.

This research integrates stochastic uncertainties in optimal battery control by using proba-

bilistic distributions to define model parameters, such as the ambient temperature. The uncer-

tainty propagation is then performed using linear sensitivity analysis. The linearized sensitivity is

validated using Monte Carlo with several hundreds of replicates, proving that sensitivity analysis

is significantly less computationally expensive. A methodology is designed to quantify uncer-

tainty propagation in lithium-ion batteries for any set of probabilistic parameters and optimal

charging paths. This methodology computes linear sensitivities on any system of differential-

algebraic equations. For battery modeling, it can accurately compute sensitivities on mixed

continuous-discrete simulations, solving typical issues found with following discrete stages and

the control of non-measurable states.

The methodology given is a powerful tool for stochastic battery simulations. It can help

redefine accurate optimal charging paths for future onboard real-time applications and deter-

mine safer manufacturing specifications. Multiple case studies are presented to validate this

methodology, including reaction kinetics and optimal charging paths. The examples analyzed

consider how an uncertain ambient temperature affects the battery’s voltage, temperature, and

state of health for relevant optimal charging protocols.

Keywords: sensitivity analysis, uncertainty quantification, stochastic parameters, optimal

control, battery modeling, lithium-ion batteries.

i

Resum

El control òptim en bateries de ions de liti maximitza la vida útil de la bateria alhora que

garanteix la càrrega ràpida i un ús segur. Les propietats de les bateries fabricades poden diferir

del valor de disseny i canviar amb el temps en degradar-se. La limitació d’anteriors simulacions

de bateries és que utilitzen valors deterministes per aquests paràmetres que no es coneixen

amb precisió. L’anàlisi estocàstic inclou aquestes incerteses d’aplicacions reals en simulacions.

Després d’integrar les incerteses, l’objectiu és quantificar-ne la propagació per veure com afecta

als estats finals.

Aquest treball integra incerteses estocàstiques en el control òptim de bateries definint amb

distribucions de probabilitat alguns paràmetres, com la temperatura ambient. La propagació

de la incertesa es fa utilitzant anàlisi de sensibilitat lineal. S’ha dissenyat una metodologia per

quantificar aquesta propagació d’incertesa a les bateries de ions de liti per a qualsevol conjunt

de paràmetres incerts i model de càrrega òptim. Aquesta metodologia pot calcular sensibilitats

lineals en qualsevol sistema d’equacions discretes i algebraiques. En simulació de bateries, permet

calcular sensibilitats en sistemes de càrrega híbrids (continus-discrets) resolent els inconvenients

típics d’implementar salts discontinus o controlar estats no observables.

La metodologia dissenyada és una eina versàtil per a simulacions estocàstiques de bateries.

Pot redefinir rutes de càrrega òptimes i precises per futures aplicacions en temps real o per

determinar noves especificacions de fabricació més segures. Per demostrar la precisió d’aquest

mètode, els resultats presenten múltiples casos d’estudi, incloent la cinètica de reacció i els

models de càrrega òptims. Els exemples mostren els efectes de definir una temperatura ambient

incerta en estats de la bateria com el voltatge, la temperatura o l’estat de salut per protocols

rellevants de càrrega òptima.

Paraules clau: anàlisi de sensibilitat, quantificació d’incertesa, paràmetres estocàstics, con-

trol òptim, simulació de bateries, bateries de ions de liti.

ii

Resumen

El control óptimo de baterías de iones de litio maximiza la vida útil de la batería garantizando

también la carga rápida y un uso seguro. Las propiedades de las baterías al fabricarse pueden

diferir de los valores de diseño o cambiar con el tiempo por degradación. La limitación de

anteriores simulaciones de baterías de litio es que utilizan valores deterministas para parámetros

que no se conocen con precisión. El análisis estocástico incluye estas incertidumbres reales en las

simulaciones. Después de integrar las incertidumbres, el objetivo es cuantificar su propagación

para saber cómo afectan a los estados finales.

Esta investigación integra incertidumbres estocásticas en el control óptimo de baterías

definiendo como distribuciones de probabilidad algunos parámetros del modelo, como la tem-

peratura ambiente. La propagación de la incertidumbre se implementa utilizando análisis de

sensibilidad lineal. Se ha diseñado una metodología para cuantificar esta propagación de incer-

tidumbre en baterías de iones de litio para cualquier conjunto de parámetros inciertos y cualquier

modelo de carga óptima. Esta metodología permite calcular sensibilidades lineales en cualquier

sistema de ecuaciones discretas y algebraicas. Para simulaciones de baterías, puede calcular sen-

sibilidades en sistemas de carga híbridos (continuos-discretos) resolviendo limitaciones comunes

de implementar saltos discontinuos y controlar estados no observables.

La metodología utilizada es una herramienta versátil para simulaciones de baterías estocás-

ticas. Puede redefinir rutas de carga óptimas y precisas para futuras aplicaciones en tiempo real

o para determinar nuevas especificaciones de fabricación más seguras. Para demostrar la pre-

cisión de este método, los resultados presentan múltiples casos de estudio, incluida la cinética de

reacción y modelos de carga óptimos. Los ejemplos definen una temperatura ambiente incierta

y consideran su efecto en estados de la batería como el voltaje, la temperatura o el estado de

salud en protocolos relevantes de carga óptima.

Palabras clave: análisis de sensibilidad, cuantificación de incertidumbres, parámetros es-

tocásticos, control óptimo, simulación de baterías, baterías de iones de litio.

iii

Nomenclature

The next list describes the symbols used within the body of the document:

Symbols

ψ State of battery model

σx Standard deviation of x

θ Vector of uncertain parameters

Ds Solid-phase diffusion coefficient

k Reaction rate constant

Vx Variance (matrix) of x

M(t) Sensitivity matrix

L(t) Sensitivity vector

Constant Charging Modes

CC Current [A]

CCe electrolyte concentration [kmol/m3]

CCss solid surface concentration [kmol/m3]

CP Power [W]

CPo Li Plating over-potential [V]

CV Voltage [V]

Acronyms

BMS Battery Management System

CFD Central Finite Differences

DAE Differential-Algebraic Equations

FVM Finite Volume Method

LCO Lithium Cobalt Oxide

LIB Lithium Ion Battery

NMPC Nonlinear Model Predictive Control

PET Porous Electrode Theory

SA Sensitivity Analysis

SOC State of Charge

SOH State of Health

UQ Uncertainty Quantification

iv

Acknowledgments

First of all, I would like to express my deepest gratitude to my advisor Prof. Richard D. Braatz,

for granting me this wonderful opportunity to work within his group. I appreciate his support,

motivation, immense knowledge, and the fantastic and passionate community he has built here.

I would also like to thank Marc D. Berliner for his dedicated work in battery modeling, which

served as a perfect ground to start my research. I’m grateful for his work on this project, his

wisdom, and the support he has given me.

Secondly, I would like to thank Prof. Arnau Doria for his advice and guidance during my

research project. I appreciate his suggestions and insightful comments during our online meetings

and his feedback support on the writing of this thesis.

Additionally, I want to thank the Massachusetts Institute of Technology, the Centre de

Formació Interdisciplinaria Superior (CFIS), and the CELLEX foundation for making it possible

and for their economic support.

Last but not least, I’m thankful for all of my friends and family’s encouragement. I’m

grateful for my Braatz group colleagues, who have shared tireless hours and limitless food with

me in the office. I appreciate the presence of Pep, Guillem, and Hector in this incredible Boston

experience. I especially want to thank David, Marina, and Louisa for their constant emotional

support; it would not have been the same without all of you.

Thank you, and see you soon!

Berta

v

Contents

Abstract i

Resum ii

Resumen iii

Nomenclature iv

Acknowledgments v

Contents vi

List of Figures ix

1 Introduction 1

1.1 Context and motivation . 1

1.2 General objectives . 3

1.3 Overview . 4

2 State of the art and Applications 5

2.1 Lithium Ion Batteries . 5

2.1.1 Battery fundamentals . 6

2.1.2 Hazards and use assessment . 7

2.1.3 Future prospects . 8

2.2 Battery modeling and optimal charging . 8

2.2.1 Porous Electrode Theory (PET) . 9

2.2.2 The PETLION model and software . 11

2.2.2.1 Mixed continuous-discrete simulation for optimal charging 12

2.3 The Julia language . 13

3 Mathematical background and Methodology 15

3.1 Uncertainty quantification . 15

3.1.1 UQ on Differential-Algebraic Equations 16

3.2 Sensitivity Analysis . 17

vi

3.2.1 Output probability distribution with 1st order approximation 18

3.2.2 Sensitivity Equations for differential systems 19

3.2.2.1 Derivation of the sensitivity equations 20

3.2.2.2 Initial conditions in sensitivity equations 21

3.2.2.3 Numerical implementation of sensitivity equations 21

3.2.3 Finite Differences to compute the sensitivity vector 22

3.2.3.1 Numerical implementation of Central Finite Differences 22

3.2.4 Logarithmic sensitivity equations for small parameters 22

3.3 Methodology for implementing Sensitivity Analysis 23

4 Preliminary Results 24

4.1 Chemical reaction example . 24

4.1.1 ODE approach . 25

4.1.2 DAE approach . 25

4.1.3 Evolution of the states in the reaction . 25

4.1.4 Sensitivity analysis . 26

4.2 Sensitivity Analysis of PETLION . 27

4.2.1 SA using Sundials . 27

4.2.2 SA using sensitivity equations . 28

4.2.2.1 Issues with this method . 30

4.2.3 Sensitivity Analysis using Central Finite Differences 32

4.3 Uncertainty Quantification of PETLION’s states 34

4.3.1 Accuracy of Central Finite Differences against Monte Carlo sampling . . . 36

4.3.2 Second-order expansion for Sensitivity Analysis 38

4.3.3 SA by sampling original nonlinear model 38

4.4 General parametric sensitivities of PETLION . 39

4.4.1 Uncertain parameter distributions in lithium-ion batteries 39

4.4.2 Basic charge sensitivity analysis with multiple uncertain parameters . . . 39

5 Results on continuous-discrete charging 42

5.1 Uncertainty Quantification on a CC-CV charge 42

5.1.1 Sensitivity Analysis on a discrete step in CC-CV 43

5.1.2 Verifying results with MC sampling . 45

5.2 Charging along with non-measurable state bounds 46

5.2.1 Results on an optimal CC-CPo-CV process 46

5.2.1.1 Charge state following measurable current curve I 48

vii

5.2.1.2 Charge state following measurable current considering Vmax . . . 50

5.3 Degradation effects on long-term battery charging 51

6 Conclusions 52

6.1 Limitations of the current work . 53

6.2 Future work or alternatives . 54

A Chemical simple example 55

B Implementation of SA for PETLION 59

B.1 Parametric sensitivities L(t) using CFD . 60

B.2 Standard deviation of the output state . 60

B.3 Determine new state limits . 61

B.4 Final optimal approach and implementation . 61

viii

List of Figures

2.1 Ragone chart from ‘SUBAT: An assessment of sustainable battery technology’ [19] 5

2.2 Schematic of the PET model for an LiC6/LiCoO2 cell during discharge from [1] . 10

2.3 Flowchart for mixed continuous-discrete solution to charging protocols in

PETLION [1] . 12

2.4 Charging default PETLION Lithium-ion Battery (with 1D temperature) follow-

ing continuous-discrete modeling from SOC = 20% to 80% with boundaries on

temperature and voltage. 13

4.1 Evolution of the concentration of each substance in the basic chemical reaction

example. A is the original reactant, and B and C are the final products that

maintain equilibrium. Left shows the ‘fast’ start of the reaction (20 ms) and right

shows the long-term states (10 s). 25

4.2 Initial evolution (20ms) of the parametric sensitivity of each substance in the

chemical reaction example against the desired parameters in θ = [CA,0, k1, k2, k3].

The parametric sensitivities for this basic chemical reaction can be computed in

∼ 66ms. 26

4.3 Charging default PETLION Li-ion Battery with 1D temperature modeling from

state of charge SOC0 = 0% at constant current I = 1C until SOCend = 100% . . 27

4.4 Parametric sensitivities for uncertain ambient temperature. Process charging de-

fault PETLION Lithium-ion Battery from SOC = 0 at constant current I = 1C.

The sensitivity is computed for the states: current (I), voltage (V) and average

temperature (T). 30

ix

4.5 Parametric sensitivities of the output voltage on PETLION when charging a de-

fault Li-ion battery from SOC = 0% at I = 1C. The sensitivity is computed using

second-order accurate CFD for multiple parameter steps ranging from 10−11 to

0.1. The step ∆parameter is the one used to model ψ(θ ± ∆θ]) on the finite

differences Eq. (3.7). 32

4.6 Accuracy of different Central Finite Difference methods with respect to 8th order

CFD. Error is computed relatively as ||sens8|− |sensi||/|sens8| where sens is the

parametric sensitivity ∂V/∂Tamb. 33

4.7 Absolute error of second-order accurate CFD with respect to original Sensitivity

Equations approach for the simple charging path I = 1C. Error is computed as

||sensSE | − |sensCFD|| where sens is the parametric sensitivity ∂V/∂Tamb. 34

4.8 Nominal voltage and its sensitivity with respect to the variation on ambient tem-

perature computed using second-order accurate Central Finite Differences for a

complete I = 1C charge. 35

4.9 Mathematical probability distribution of the voltage when charging a default Li-

ion battery in PETLION from SOC = 0% at I = 1C for an uncertain Tamb. The

pdf(V (ti)) is computed using second-order accurate Central Finite Differences for

different points in time along the charging curve. 35

4.10 Probability distribution of the output voltage in the PELTION model for an

uncertain ambient temperature when charging a default Li-ion battery from SOC

= 0 at I = 1C. The pdf is computed using 2nd order CFD and 1st order SA and

the histogram shows the distribution of 50k Monte Carlo samples with different

ambient temperature conditions. 36

4.11 Sensitivity results of voltage for multiple uncertain parameters as a function of

time. The sensitivities are computed for a simple full charge at CC I = 1C. . . . 40

5.1 Nominal voltage for I = 4C charge and upper and lower bounds with 99.7%

accuracy as a function of time using second-order accurate CFD. Left shows the

complete evolution and right shows a zoom section where the upper and lower

bounds actually hit the maximum limit of 4.1V. 43

5.2 Average temperature of the battery cell during a CC-CV charge from 0% to 60%

SOC. The lower and upper model bounds with 99.7% significance are found using

CFD and linear SA. The 40 °C line is plotted as a usual desired limit temperature

in battery modeling to reduce degradation. 44

x

5.3 Probability distribution of the time that the CC-CV charging battery spends over

40 °C for an uncertain ambient temperature. The histogram is built from 10k

Monte Carlo samples. The approximation pdf in red is built using second-order

accurate CFD and linear SA. 45

5.4 Output states {I, V, ηp, SOC} for nominal CC-CPo-CV battery charge pro-

cess. The plating overpotential boundary is hit at t1 = 325.38s and the voltage

boundary is hit at t2 = 544.25s. 47

5.5 Nominal lithium plating overpotential for I = 4C charge. Upper and lower bounds

with 99.7% accuracy as a function of time using second-order accurate CFD. The

left shows the complete evolution, and the right shows a zoomed section where

the limit states hit the negative boundary. 47

5.6 Nominal lithium plating overpotential for I = 4C charge. Upper and lower bounds

with 99.7% accuracy as a function of time using second-order accurate CFD. Left

shows the complete evolution and right shows a zoomed section where the limit

states actually hit the negative boundary. 48

5.7 Comparing the mathematical probability distribution of the lithium plating over-

potential for the CC-CPo-CV model against the Monte Carlo approach for 5k

samples. Upper and lower bounds with 99.7% accuracy as a function of time

using second-order accurate CFD. From top left to bottom right the distributions

show the overpotential at times t = {250, 350, 450, 600}s. 49

5.8 Voltage curve for CC-CPo-CV when simulation follows nominal current curve for

t < 545s and V < Vmax. Upper and lower back-off bounds shown for 99.7%

significance. Left shows the complete charge and right shows a zoomed section

where the limit states hit Vmax . 49

5.9 Plating overpotential curve for CC-CPo-CV considering that lower plating limit

actually follows a CC-CV charge. Upper and lower bounds shown for 99.7%

accuracy as a function of time using second-order CFD. Left shows the complete

evolution and right shows a zoomed section. 50

A.1 Complete evolution (10s) of the parametric sensitivity of each substance in the

chemical reaction example against the desired parameters in θ = [CA,0, k1, k2, k3]. 58

xi

Chapter 1

Introduction

This research provides stochastic optimal control of lithium-ion batteries for charging and dis-

charging operations through software simulations. Optimal control allows detecting paths that

ensure fast charging times while potentially increasing battery lifetime. This work extends previ-

ous publications that successfully found fast battery charging methods using only deterministic

parameters. Here, stochastic analysis is implemented to account for the intrinsic uncertainty of

the battery model’s parameters. Stochastic optimal control allows defining some time-invariant

parameters as probability distribution functions to characterize later the effect of this dispersion

on the control results. The uncertainty quantification on the output is done through parametric

sensitivity analysis and allows describing the functionality ranges and back-off specifications of

all the studied battery operations.

1.1 Context and motivation

Battery research has focused on finding chemical compositions with short charging times and

high energy density while keeping safety constraints and long durability. Electrochemical power

sources have evolved significantly in the last years by optimizing design, materials, operating

ranges, and production costs. Lately, there has been a significant focus on optimizing how

the battery is used once the chemistry is decided, for example, regarding lithium-ion batteries.

Research is looking for methods to best charge, use, and discharge batteries that extend their

lifetime (implying lower environmental impact), allow fast charging, and maximize energy den-

sity. Using mathematical models for simulation and controlling battery operations enable us to

1

Chapter 1. Introduction

study these issues quickly, safely, and with lower costs than physical experiments. It is an effi-

cient method to project battery cycles for extended periods, determine their future perspectives,

and see how degradation affects multiple operation paths.

Lithium-ion batteries are now ubiquitous in technology such as cell phones, laptops, and

electric vehicles (EV). Compared to alternative technologies, they have proven to have one

of the best energy density ratios with reasonable cost and specifications such as no memory

effect, high voltage, and low self-discharge. They also represent a realistic alternative to fossil

fuels which can change the environmental impact that technology is causing. As government

incentives to reduce emissions are rising, the importance of batteries keeps growing, especially

for automation, aerospace applications, and green energy storage. For a future wide adoption

of EVs, batteries must be safe, cheap, allow for long driving ranges, and charge quickly with

minimal degradation [7].

Optimal charging problems for lithium-ion batteries can help this purpose, aiming to min-

imize charging time while maximizing the battery lifetime. An accurate physical and chemical

model of the Li-ion battery working principles is required for simulation and as a base for op-

timal charging control models. There exist multiple technologies devoted to battery modeling

in different programming languages with diverse strengths and potentials. The software used

for modeling in this research is the PETLION.jl [1] library made by M. Berliner, which models

Li-ION batteries based on Porous Electrode Theory (PET) in the Julia programming language.

Some fast charging paths are determined using this software on [3] which gives interesting in-

sights on possible optimal charging methods that could potentially increase the battery lifetime.

A limitation of this previous work is that all the parameters are defined as deterministic values.

Manufactured batteries can be diverse and have minor discrepancies in their parameters from

cell to cell concerning the desired standard, so a deterministic approach does not suffice. Also,

some of the parameters are hard to measure and determine experimentally. In fact, ‘most of the

effective model parameters in porous electrode theory are not practically identifiable from cy-

cling data for a lithium-ion battery’ [2]. Specifically, parameters such as the solid-phase diffusion

coefficients (Ds,n and Ds,p, m2/s) and reaction rate constants (kn and kp, m5/2/(mol1/2s)) are

hard to measure as they are affected by porosity and other cell factors. They are usually mod-

eled as effective values which lump together multiple physical properties for simplicity. Since the

experimental measurement is difficult, these parameters have been estimated with a broad set of

techniques in past literature, giving results spanning numerous orders of magnitude. Stochastic

analysis is crucial to understand better how this uncertainty can affect the battery’s operations.

2

1.2. General objectives

A common issue in simulation and physical models is that these give a deterministic approach

to problems that are by nature uncertain. Furthermore, when providing real-world applications

to these simulated problems, values can usually change due to multiple issues and diverse op-

erating conditions worldwide. It is essential, thus, to include uncertainty issues in the given

battery models to provide secure specification ranges of operation and ensure successful usage of

batteries based on modeling results. For this purpose, stochastic analysis allows describing pa-

rameters as probabilistic distributions. The probabilistic distributions of the model parameters

can be defined using the literature-estimated boundaries found. Integrating stochastic analysis

on previous modeling technologies will help reduce unexpected dangerous outcomes in battery

applications. Furthermore, a better understanding of specification boundaries and reasonable

operating conditions could help to limit precise manufacturing standards.

1.2 General objectives

Optimal charging gives helpful insight into battery protocols and provides efficient usage cycles

that can extend the battery lifetime. The addition of stochastic uncertainty quantification is re-

quired to quantify the effect of uncertain parameters in the operation modes of the battery. Once

the parameters are stochastic, the states of the model will also have a probabilistic distribution.

The goal of quantification is to determine the shape and bounds of these output distributions,

which can help validate or completely change previous deterministic fast-charging results. The

information from these statistical methods can ensure a prosperous and safer performance within

any boundaries by giving functionality back-off on any state to specify more precise operation

ranges.

The goal of this project is to expand previous work done on Optimal Charging of Li-ion

batteries in [3] that was based on the PETLION deterministic modeling. The expansion includes

stochastic uncertainty quantification using sensitivity analysis for all uncertain coefficients in

the electrochemical model. We want to build a mathematical approximation for uncertainty

quantification that is computationally efficient and accurate. We expect to quantify the effects of

parametric uncertainties on multiple modeling constants and battery operating conditions. The

goal is to determine the output probability distribution of any state for any charge paths and set

stochastic parameters. Integrating stochastic uncertainties can also help better understand the

significance of every uncertain parameter in the evolution of the battery states. The final results

should give accurate specifications, be closer to real Li-ion battery applications, and provide

3

Chapter 1. Introduction

higher assurance that constraints such as maximum temperature or voltage are satisfied.

1.3 Overview

This project analyzes stochastic uncertainties in optimal control over available operating modes

of lithium-ion batteries using the Julia programming language.

Chapter 2 describes the fundamentals of Li-ion battery operations, their most common ap-

plications, hazards of use, and the necessary chemical and physics background for software

simulation using PETLION.

Chapter 3 contains the mathematical background for uncertainty quantification and the

methodology used, which gives multiple options to implement the sensitivity analysis over the

electrochemical battery simulation.

Chapter 4 describes some preliminary results implementing the mathematical methods into

Julia programming. The chapter is divided into four test cases that make different approaches

and report the results of simulations’ accuracy and computational efficiency. Sensitivity Analy-

sis is implemented using Finite Differences to analyze everyday battery operations’ deviations,

performance, and boundary constraints.

Chapter 5 employs the analysis from the mathematical background and preliminary results in

Julia to describe the stochastic uncertainties effect through more complex PETLION charging

paths. Precise operational boundaries and optimal charging constraints are given for Li-ion

battery operations with multiple safe applications. The computational cost of each method is

detailed, and the accuracy is verified against Monte Carlo sampling.

Finally, Chapter 6 concludes the main findings of this thesis and gives some future work

insight.

4

Chapter 2

State of the art and Applications

2.1 Lithium Ion Batteries

Batteries play an essential role in our everyday lives, both on a household and large industrial

scale. The integration of consumer electronics into portable and wearable devices and the rise

of hybrid electric vehicles (HEVs) in the last century have emphasized the need for efficient and

powerful energy storage devices. Batteries have also stood out as a more sustainable option

that can reduce emissions and pollution from other energy sources. The increasing popularity

of batteries has brought about massive progress in research and enterprises looking for devices

with the highest power density and minimal size and weight. Different chemistries have been

developed in the last years to provide energy storage based on Lead, Nickel, Lithium, or Sodium,

which express various features. A complete analysis of sustainable battery options, which ex-

plains in-depth the features of Li-ion batteries against other alternatives, can be found on [19].

The Ragone chart in Fig. 2.1 serves as an indicator of the specific energy and power ranges

available, which are fundamental for battery-electric and hybrid vehicles.

Figure 2.1: Ragone chart from ‘SUBAT: An assessment of sustainable battery technology’ [19]

5

Chapter 2. State of the art and Applications

Overall, among electrochemical accumulators, Li-ion batteries have the lowest environmental

impact while providing one of the best trade-offs in terms of power density, cell voltage, low

weight, and low self-discharge [19]. These features justify why Li-ion batteries are currently

the most popular technology for energy storage as portable electronics become more and more

important in our everyday lives. They are present in most phones, laptops, tablets, tools,

cameras, drones, smartwatches, and general health-tracking devices. They are also used more

and more for personal electric mobility and hybrid and electric vehicles. They are essential for

renewable energy storage (such as solar and wind power), making them crucial in developing

clean-energy systems. Their wide span of applications requires batteries to be efficient, safe, and

have low production costs. At present, Li-ion batteries are performing close to their maximum

power/ energy density capacity, so further research is being conducted on the materials, design

of LIBs, and efficient usage.

The present relevance of Lithium-Ion Batteries is undoubted. The Nobel Prize in Chemistry

2019 was awarded to John B. Goodenough, M. Stanley Whittingham, and Akira Yoshino “for

the development of lithium-ion batteries” in their diverse research which has brought about our

current rechargeable future1.

2.1.1 Battery fundamentals

Lithium-ion batteries can generate electrical energy by converting electrochemical energy into

a flux of ions and electrons. Batteries are composed of an anode and cathode (which store the

Lithium ions), split by a separator full of an electrolyte solution, and have negative and positive

current collectors on each edge. When charging and discharging, the electrolyte carries the pos-

itively charged Li-ions between cathode and anode, generating an external flux of electrons that

gives current2. The flux of ions inside the battery allows charging and discharging the battery

multiple times with a low loss of function, which is one of their most significant advantages

compared to previous technologies for energy storage and delivery.

When charged, Li+ ions remain on the anode of the battery, which serves as a neutral storage

medium for the charged atoms and electrons (usually graphite). When a load is connected

between the current collectors, Li+ migrates to its cathode (usually a metal oxide such as

LiCoO), creating an external flux of electrons from the negative to the positive electrode. Each

charge and discharge process is known as a cycle of the battery’s lifetime. Cycles are associated

with an irreversible loss of Li-ions in the battery’s material, implying that fewer electrons will be
1See details in www.noberlprize.org
2Complete description and a diagram of how a Li-ion battery works are available on the U.S. Department of

Energy website: www.energy.gov

6

https://www.nobelprize.org/prizes/chemistry/2019/press-release/
https://www.energy.gov/eere/articles/how-does-lithium-ion-battery-work

2.1. Lithium Ion Batteries

available in the following cycle, reducing the battery’s capacity. This aging process can seriously

affect battery lifetime and performance. Aging will be mainly affected by the battery chemistry,

the choice of materials and electrolytes, and the usage ranges (which is the focus of this research),

such as power consumption and current extraction through the cycles. For example, batteries

have faster degradation when charged over 80% state of charge (SOC) because of the high

voltages required to reach the maximum charge.

2.1.2 Hazards and use assessment

Lithium-ion batteries have had multiple issues concerning safety in the past in production,

storage, and usage. They tend to overheat and damage at high operational voltages, which is why

it is so important to have accurate specifications that are correctly bounded even for uncertain

parameters. On the one hand, they are currently used in various applications (with very different

energy requirements) and very diverse operating conditions such as extreme temperatures. On

the other hand, covering all these applications and making batteries more efficient, especially for

electric vehicles, has brought lithium-ion chemistry closer to its operational physical limit. This

is where battery modeling can make a big difference and why LIBs require safety mechanisms

and sensors to ensure they are working within limits, such as Battery Management Systems

described below.

Most of the safety issues are associated with the fact that the liquid electrolyte in Lithium-ion

batteries is highly flammable [10]. A common failure is caused by thermal runaway that occurs

when the battery’s temperature rises above ∼ 80 °C, making the exothermic reactions inside the

cell faster which further heats the battery. This process may result in fires or explosions [10]. In

other scenarios, the battery could ignite or explode from other hazards such as breaking/crashing

or other events that can cause an internal short-circuit of the battery. Extensive research has

focused on better understanding the issues that cause these battery hazards and finding optimal

materials (internal protection) or sensors/control methods (external protection) that improve

LIB’s safety [10]. Safety is a crucial step toward broad adoption of Li-ion batteries, especially in

the future of electric mobility, and is a required milestone before further increasing their energy

density and charge capacity (which could lead to worse hazards if uncontrolled).

To sum up, safety issues with Lithium-ion batteries could be caused by a simple malfunction

or manufacturing issue, an external incident such as a crash causing some deformations/per-

foration, or simply lousy usage and operation. Modeling and stochastic optimal control can

easily prevent the latter, especially for onboard applications. Furthermore, the integration of

stochastic analysis could help reduce issues with manufacturing and malfunction by setting more

7

Chapter 2. State of the art and Applications

explicit specification bounds from the results of previous studies.

2.1.3 Future prospects

Present Lithium-ion batteries are highly optimized to fit the demanding requirements of the new

digital era. They can currently operate for months to years with good function and minor loss of

capacity, which is a considerable achievement given that many of the materials operate outside

their thermodynamic stability windows [6]. Most advances in battery technology have resulted

from years of research with global efforts and extensive investments looking for better-optimized

systems. As a result, the modern battery is operating with properties that are getting closer and

closer to the fundamental capacity of the materials: “further lithium removal from the cathode

results in irreversible structural transformations or oxygen loss, while on the anode no vacancies

in the lattice remain to accommodate more Li ions” [6]. The rest of the elements on the battery,

such as the current collectors and electrodes, are getting thinner and thinner to improve energy

density and reduce costs. It is reasonable to assume that research in this field will continue

to evolve in the following years, and many exciting paths could improve current technology.

Some paths to improve Li-ion battery standards include layering the cathodes, replacing the

common graphite anode with higher storage density structures (such as silicon), or regarding

the electrolyte, it is possible to increase its volume fraction or ionic transport capability [6].

There are other research branches devoted to finding alternatives to Lithium-ion systems.

One possible path involves changing the traditional liquid electrolyte to others, such as ionic liq-

uids and solid-state batteries (SSBs). Another alternative is enabling anion reduction-oxidation

chemistry for Lithium with air or sulfur. Lastly, there can be considered alternative highly elec-

tronegative base materials beyond Li, such as Na, Mg, Ca, or Al [6]. Indeed, Elon Musk recently

announced Tesla’s interest in using manganese on their battery cells to use more accessible

materials3.

2.2 Battery modeling and optimal charging

Having accurate and computationally efficient methods that simulate battery operations and

predict long time effects is crucial for improving usage efficiency and extending the lifetime of

lithium-ion batteries. Battery cells’ aging depends on how their power is consumed through

the cycles and the current levels of usage. Advanced Battery Management Systems (ABMS)

is responsible for monitoring the state of the batteries to ensure safe and efficient operation in

3Tesla Welt Podcast: Giga Berlin Opens speech https://www.youtube.com/watch?v=BDy7K-vOM8g

8

https://www.youtube.com/watch?v=BDy7K-vOM8g

2.2. Battery modeling and optimal charging

multiple scenarios. Battery packs that incorporate BMS and some capacity for external commu-

nication are ‘smart battery packs’, which can be charged according to optimal protocols. BMS

usually monitors parameters such as the State of Charge (SoC), Depth of Discharge (DoD),

State of Health (SoH), and operating temperature [17]. Battery modeling is relevant for accu-

rate BMS, improving the charging/discharging cycles, enhancing short and long-term battery

capacity, preventing material damage, and allowing the faster study of LIBs behavior under safe

conditions.

According to [17], there are three levels of battery models depending on their degree of physi-

cal insight: white-box model (electrochemical), grey-box model (circuit-oriented), and black-box

model (based on artificial intelligence, e.g., Neural Networks). The former is the one used on

this project as it is the basis of the PETLION software. Electrochemical models can extensively

determine Lithium-ion battery chemistry through a set of partial differential equations, mak-

ing these systems exact. The system usually combines electrical principles and electrochemical

equations to describe the system efficiently. “They are a true representation of what occurs in

the cell and are known to be very accurate” [17] because this model can mathematically ex-

plain microscopic cell behavior. Another advantage is that all states are fully observable within

battery modeling compared to real-life measuring, which allows ‘virtual measurements’ and a

deeper understanding of multiple states. The only issue with electrochemical models is that the

high level of detail and precision makes them computationally expensive and complicated to

configure. Hence, a real-time application does not seem promising.

The Li-ion battery simulator used as the base for the uncertainty quantification in this

project is the PETLION software, which stands for Porous Electrode Theory Lithium ION. The

motivation behind using PETLION is that this open-source software has been thoroughly opti-

mized in Julia to have fast computational times while simulating battery protocols rigorously.

“PETLION is an open-source, high-performance computing implementation of the porous elec-

trode theory (PET) model in Julia. [...] the software is seen to be two orders of magnitude faster

than comparable software for some application” [1]. The general study of uncertainties requires

running the same model multiple times for perturbed parameters, so a compiled language as

Julia and a computationally efficient software are optimal options. The chemical and physical

models of the battery in PETLION are built using the PET model.

2.2.1 Porous Electrode Theory (PET)

Porous Electrode Theory was developed around 1975 by John Newman and others as a pow-

erful mathematical model to define battery components and processes. A general description

9

Chapter 2. State of the art and Applications

and multiple applications are given in [13]. PET is currently widely used to model battery

cycling behavior. It is based on the porous electrode, which defines the battery’s solid-phase

material and conductive matrix as porous elements allowing intimate contact with the filling

electrolyte solution. This porosity can provide a larger surface area for electrochemical reactions

that are intrinsically slow and also store the essential reactants in proximity to the electrode

surface, allowing high-rate discharge [13]. PET describes electrochemical kinetics (more accurate

for battery models than simple Equivalent Circuit models), thermodynamics, and transport of

lithium ions through Fickian diffusion and Ohmic conduction. The model is also called P2D

(pseudo-two-dimensional model) since it gives an approximated uniform size to all particles in-

side the battery. One of the dimensions is the position x along the length of the battery between

the external metal electrode contact points, and the second dimension r is the distance from the

center of a solid particle [1] as can be seen in Fig. 2.2.

Figure 2.2: Schematic of the PET model for an LiC6/LiCoO2 cell during discharge from [1]

The diagram in Fig. 2.2 shows the process of discharge when a load is connected between the

extremes of the battery. The lithium ions can flow freely through the electrolyte and separator

layer from the storing anode structure (graphite) to the metal oxide cathode (lithium cobalt

oxide here), which creates a potential difference that makes the electrons flow through the load

creating an electric current. The PET model is used for simulation as tightly coupled nonlinear

partial differential-algebraic equations (PDAE). The states of the model are given by the

electrolyte and volume-averaged solid concentrations ce and cavgs , the ionic flux j, the electrolyte

and solid potentials Φe and Φs, the applied current I, and the temperature T for non-isothermal

simulations [1]. These states define the battery’s evolution and are the ones that can be measured

to quantify the uncertainty of the outputs.

10

2.2. Battery modeling and optimal charging

2.2.2 The PETLION model and software

PETLION is an open-source software4, a high-performance model that is easy to use and modify

even for the general public. The software allows for multiple straightforward evaluations of

battery operations. It can run on conventional operational modes such as constant current,

voltage, and power. However, it also implements more novel options such as conditions based

on temperature, lithium plating over-potential, and others. It can also be used for nonlinear

model predictive control (NMPC) to find optimal charging paths under desired constraints.

The simulation equations are based on the PET model described and are implemented using

the Finite Volume Method (FVM) in the x dimension. The software converts the PDAE system

into a set of DAEs with time t as the independent variable. The differential equations on the

model describe the evolution of the temperature and concentration variables. The algebraic

equations apply conservation laws on the charge and mass. The DAE system’s discretization

consists of seven sections split into the x and r dimensions. In the x-direction there are Np, Ns,

and Nn points for the cathode, separator, and anode respectively. The discretizations in the

r direction with Fickian diffusion are Nr,p and Nr,n for the cathode and anode solid particles.

A complete description of the governing DAE system, FVM applications, parametrization, and

discrete implementation of PET can be found in the documentation of the Matlab version

LIONSIMBA [18], or for PETLION [1]. In this project, the number of discretization points used

are Np = Ns = Nn = N = 10 defining a PET model with 351 DAEs.

The PETLION software equations have been validated multiple times by comparison against

other codes [1]. When compared to LIONSIMBA, a Matlab implementation of PET [18], all

output state errors are below 10−5. Usage of the Julia language allows PETLION to be easily

accessible (as it has an open-source license), gives the model fast speed after compilation, and

ensures multiple options for the numerical methods and ODE solvers. Julia has a growing

ecosystem for tools on ODEs and physics-informed neural networks. PETLION was designed

for fast serialized evaluations (highly efficient after the first compilation). It reduces the overhead

by allowing the user to choose desired outputs from the model. The computational efficiency

is verified when compared against similar battery-modeling software such as LIONSIMBA (on

Matlab) and PyBaMM (on Python). On average for non-isothermal conditions, PETLION

is 229×faster than LIONSIMBA, 68x faster for PyBaMM’s “fast” mode, and 159×faster for

PyBaMM’s “safe” mode [1]. This efficiency can be directly related to the usage of Julia since

MATLAB and Python are interpreted languages compared to the compiled nature of Julia.

4The code, installation instructions, and some usage examples are available in JuliaHub

11

https://juliahub.com/ui/Packages/PETLION/zngF5/0.2.5

Chapter 2. State of the art and Applications

This difference makes basic procedures such as ’for’ loops faster, reducing the overhead usually

incurred when reinterpreting the code on each iteration.

Finally, PETLION uses the most efficient solver for DAE systems in Julia, which was proven

to be Sundials in [1]. The ensemble of characteristics and the effort devoted to optimizing the

software by exploiting optimal Julia features and its open-source characteristic make PETLION

an excellent option for battery simulation. As stated in [1]: “Currently, PETLION does not

support forward or adjoint parametric sensitivity analyses” so the exploration of these features

is an exciting step forward in this project.

2.2.2.1 Mixed continuous-discrete simulation for optimal charging

Past work done on optimal charging of batteries using PETLION was based on a mixed

continuous-discrete model, which is also the approach used in this project. The continuous

nature of the PETLION solver allows computing the states of the battery at any point in time

for multiple possible charging operational modes. Conventional and straightforward battery

charging modes are constant current (CC) and constant voltage (CV). The discrete part of

the simulation accounts for the control boundaries that the solver can detect over the steady

base. When charging, the interest of control is setting and following desired safety or optimal

constraints such as a limit maximum voltage, a maximum temperature, or a minimum plat-

ing over-potential. Mixed continuous-discrete optimal control allows the integration of discrete

boundaries in any charge path that leads to new limited operational methods.

Figure 2.3: Flowchart for mixed continuous-discrete solution to charging protocols in PETLION [1]

12

2.3. The Julia language

When a specific boundary such as Tmax is reached the simulation can continue by setting that

new boundary as the base operational mode (in this case a CT charge at Tmax). As an example,

a CC-CT-CV charge is shown with boundaries {Vmax = 4.1V , Tmax = 40 °C, SOCmax = 80%}:

Figure 2.4: Charging default PETLION Lithium-ion Battery (with 1D temperature) following
continuous-discrete modeling from SOC = 20% to 80% with boundaries on temperature and voltage.

PETLION includes new unconventional operational modes that can be of interest in

continuous-discrete simulation when other boundaries are set. These include constant temper-

ature (CT), Plating Over-Potential (CPo), constant electrolyte concentration (CCe), constant

solid surface concentration (CCss), and constant mechanical stress (Cσ).

2.3 The Julia language

The Julia programming language was initially designed in 2010 with highly ambitious goals.

It set out to be an open-source language, with a liberal license, with the speed of C with

higher dynamism, familiar mathematical notation, and that was usable for general programming,

statistics, string processing, linear algebra, and machine learning among others5. More than ten

years after the first release, the language has had over one hundred contributors. Thousands of

people worldwide are using Julia, and it is also taught in universities and used as base software

in entire companies. Julia has proven to be fast and has a high performance in standard tests

compared to other common languages such as Matlab and Python [20]. It is dynamically typed,

has an easily reproducible environment, uses the multiple dispatch paradigm effectively, and has

many general testing, debugging, and profiling tools.
5See Why we created Julia from the creators on the Julia blog - 14 February 2012

13

https://julialang.org/blog/2012/02/why-we-created-julia/

Chapter 2. State of the art and Applications

The nature of Julia and its focus on high speed makes it a perfect language for this research.

The open-source nature allows direct usage of multiple optimized libraries. PETLION.jl code

is currently available online as a Julia library for battery modeling. The versatility and speed

of Julia allow modeling complex DAE systems efficiently and being able to run computationally

expensive tasks in much shorter times. This efficiency is a big priority in optimal battery control.

On the one hand, to make the development and programming much faster, given the significant

difference of not waiting for weeks to obtain some long-time simulated results. On the other

hand, speed and efficiency could make a big difference in adopting these technologies on online

applications for Advanced Battery Management Systems (ABMS).

Some open-source libraries of Julia besides PETLION.jl that are fundamental to this

project are LinearAlgebra.jl, DifferentialEquations.jl,Dierckx.jl (interpola-

tion of discrete functions), Statistics.jl, Distributions.jl and Plots.jl. There is

a specific library for local sensitivity analysis on Julia called DiffEqSensitivity.jl6, but

it has limitations regarding the choice of initial values of the sensitivity and their derivatives.

One of the main functionalities of the PETLION software is its continuous-discrete operational

modes with multiple schemes. The built-in sensitivity analysis of Julia does not suffice to keep

the continuity of the analysis in the discrete changes of operational mode as it requires setting

null sensitivities for every new system of equations.

The software developed in this project and the computational results are all run on a Julia

1.7.2 kernel. The version of the battery modeling PETLION.jl package used is 0.2.6, the current

latest release (in May 2022).

6See complete features of the DifferentialEquations.jl library in [14]

14

https://diffeq.sciml.ai/stable/analysis/sensitivity/

Chapter 3

Mathematical background and
Methodology

3.1 Uncertainty quantification

The main focus of this study is stochastic Uncertainty Quantification (UQ) which consists in

quantitatively characterizing the uncertainty in real-world and computational applications. Most

physics equations are deterministic and explain principles of reactions according to the expected

behavior. It is known, though, that real-world problems and experiments are affected by a wide

range of probabilistic factors which should be considered when assessing the performance of a

simulation model. Especially in the study and analysis of batteries, which are expected to have a

wide range of operating temperatures, capacities, and extended lifetimes, it is crucial to consider

parameter variability and conditions.

UQ determines how likely an outcome change is if some of the model parameters are un-

certain. To define the model, consider a system with a state vector x ∈ Rnx which depends

on a series of uncertain parameters θ ∈ Rnθ (where nx is the number of states, and nθ is the

number of uncertain parameters that affect the model. The main goal is to consider the effect

of parametric uncertainties in θ on the probabilistic distribution of the states and variables of

the model predictions. The process of UQ can be decomposed into three main steps:

1. Characterisation of the parameters and their uncertainty

2. Propagation of uncertainty in the model

3. Uncertainty management or evaluation and exploitation of the information obtained

15

Chapter 3. Mathematical background and Methodology

Regarding the first characterization step, the model parameters’ uncertainty can be repre-

sented as deviations from the standard/desired norm with some bounds. We define θ = θ̂ + δθ

which represents a perturbation δθ about the nominal model parameters θ̂. Propagating uncer-

tainties, we quantify how this input perturbation is transferred onto the output concerning the

deterministic nominal value. For any state or variable of interest δψ = ψ− ψ̂. The aim is thus to

quantify δψ to determine the probability distribution function (pdf) of any variables of interest

such as ψ. Finally, the pdf characterization allows for defining upper and lower probability

bounds and understanding the distribution of the results. When applied to battery modeling,

this can help control charging states, detect real important boundaries, and solve safety issues.

3.1.1 UQ on Differential-Algebraic Equations

Differential-Algebraic Equations (DAEs) are systems that contain both differential (standard

ODE systems) and algebraic equations. Algebraic equations usually represent some physical/

mathematical constraint that gives more information than standard differential dynamics. Since

the PETLION model is built on a system of DAEs, the uncertainty quantification is applied to

the complete system of equations, and the specific mathematical methodology must be known.

A parametric DAE can be defined implicitly as F (t, dx, x, θ) which can be split:

dx

dt
= f(t, x, θ)

0 = g(t, x, θ)

The part g(t, x, θ) has all the algebraic equations of the system. For the system’s solution

to be well defined, the dimension of the complete DAEs must be the same as the number of

states: F (t, dx, x, θ) ∈ Rnx having an equal number of equations and unknowns. The goal of

uncertainty quantification in this system is to compute the variation of any of the states x for

the probabilistic parameters of interest θ = θ̂+ δθ. Following the previous notation, the output

of interest ψ can be any or all states in x.

Regarding the actual resolution of the DAE, it is usually defined in 2 steps: first, the initial

conditions must be precisely computed, and secondly, the trajectory of the states can be found.

General computational methods for solving DAEs consist of converting the systems into ODEs

to use more common ODE solvers, but this can be arduous and even impossible for implicit

algebraic constraints. The advantage of Julia is that there are multiple numerical solvers in

Julia1 for DAEs both in mass-matrix form or implicitly defined. Given the complexity of the

system of equations required to simulate Li-ion battery operations in PETLION, a single run
1Julia DAEs introduction and solvers are described in diffeq.sciml.ai

16

https://diffeq.sciml.ai/stable/tutorials/dae_example/

3.2. Sensitivity Analysis

of the nonlinear DAE solver can already be an intense computational task. A direct approach

to quantifying uncertainties on the DAE would require running the complete model with the

integrated solver multiple times to test every possible combination of uncertain parameters.

Then, the ensemble of outputs could be analyzed, and one could attempt to fit the values into

some probabilistic distribution curve to understand the dispersion or characterize worst-case

boundaries. The main goal of Sensitivity Analysis for UQ is to determine the probabilistic

output distribution of the states without having to re-run the nonlinear model a high number

of times.

3.2 Sensitivity Analysis

Sensitivity Analysis (SA), also known as parametric sensitivity, characterizes how the variation

of an output state in a model can be related to the different sources of uncertainty found in its

input parameters. SA can be helpful for multiple purposes, such as increasing the understanding

of a model’s behavior from the relationship input-output, assessing the robustness of a system

in the presence of uncertain values, or finding sets of parameters that generate limit outputs to

restrict their deviations beforehand.

Sensitivity Analysis (SA) can determine how target-dependent variables are affected by dif-

ferent sources of uncertainty on independent variables. For a given set of uncertain parameters

and their bounded ranges, the SA goal is to characterize their effect on the overall uncertainty of

the model. Previous mathematical research by M. Caracotsios and W.E. Stewart [4] describes an

efficient method to apply Sensitivity Analysis to Initial Value Problems for Algebraic Equations.

The relatively low computational cost and simple implementation make SA a popular method for

parametric uncertainty quantification with many potential applications in optimization, model

simplification, and experimental design.

The main objective is to evaluate the change over time of output ψ (any target state or

function of the battery model) within a bounded set of time-invariant uncertain parameters θ.

To characterize the output variation, the deviation on the vector of parameters can be defined

as δθ such that θ = θ̂ + δθ with respect to the nominal value. Since the model state depends

on its parameter ψ = ψ(θ). In a neighborhood of the optimal known deterministic solution ψ̂, a

Taylor series expansion can be used to quantify the deviation in these outputs according to [11]:

δψ = Lδθ +
1

2
δθTMδθ + ... (3.1)

17

Chapter 3. Mathematical background and Methodology

Where L(t) = ∇θ̂ ψ(t) ∈ Rnθ is the sensitivity vector and M(t) = ∇2
θ̂
ψ(t) ∈ Rnθ×nθ is the

sensitivity matrix which quantify the change in the desired output with respect to δθ. This

formulation defines a linearized solution to the UQ problem where the expansion only has to be

accurate in a region close to the control solution. Even for highly nonlinear processes, the use

of a small number of terms (1st or 2nd order expansions) can give satisfactory results [11].

3.2.1 Output probability distribution with 1st order approximation

As explained, the final goal of this research is to characterize the change in the output when

the model parameters are uncertain. Thus, it is essential to understand how δψ affects the final

value ψ, its deviation from the optimal result, and its probabilistic distribution. When a first-

order expansion is used on the sensitivity analysis to define the deviation as δψ = Lδθ , it is

possible to compute an analytical expression of the worst-case outputs [12]. More importantly,

when the uncertain parameters follow a multivariate normal distribution, it is possible to define

the pdf of the output states analytically. Since most algorithms that estimate parameters from

experimental data produce a multivariate normal distribution, this analytical formula is signifi-

cant. For the specific case of Li-ion battery modeling, the past study on the identifiability of the

parameters [2] gives independent normal distribution coefficients for the solid-phase diffusion

and reaction rate constants. Therefore, the uncertain parameters θ are characterized here by a

multivariate normal distribution:

fp.d.(θ1, . . . , θnθ) =
1√

(2π)nθ |Vθ|
· exp

(
−1

2

[
(θ − θ̂)TVθ

−1(θ − θ̂)
])

Where θ is the vector of parameters for a specified uncertain event, θ̂ is the nominal set of

parameters, and Vθ is the variance/covariance matrix of this distribution. In this study, the

parameters are considered independent, so the covariance matrix is a diagonal matrix defined

by the variance of each parameter’s pdf. For a first-order Taylor expansion on δψ given by the

sensitivity vector L(t), the estimated probability distribution of the output state is given by:

fp.d.(ψ) =
1√
2πVψ

· exp
(
−(ψ − ψ̂)2/(2Vψ)

)
(3.2)

Which is a standard normal distribution for a single state where the variance is given by [12]:

Vψ = LVθL
T −→ σψ(t) =

√
Vψ(t) =

√
L(t)VθL(t)T (3.3)

This distribution of ψ is a function of time according to the values of L(t) that determine Vψ(t)

and the nominal output ψ(t). The proof to obtain (3.2) can be done using the first-order series

18

3.2. Sensitivity Analysis

expansion that defines δψ = Lδθ and knowing that the dispersion in θ is characterized as a

normal distribution which makes ψ normally distributed. This mathematical model is verified

on the results section by comparing the theoretical pdf given by (3.2) against a Monte Carlo

method using the whole nonlinear model for the multinormal distributed input parameters.

The first-order approximation of Sensitivity Analysis will be used in this project to quantify

the uncertainty in any output state as it directly gives the output’s mathematical probability

distribution. To be able to define the pdf in (3.2) it is required to compute Vψ which is found

from the known variance matrix of the uncertain parameters Vθ and the sensitivity vector L(t).

Thus, the goal of this project is mainly to compute accurately L(t) = ∇θ̂ ψ(t) ∈ Rnθ . Once this

vector is computed, the output values of interest can be accurately bounded without re-running

the whole nonlinear model for every combination of uncertain coefficients. The sensitivity vector

L(t) can be computed by solving the system’s differential-algebraic equations with the additional

set of sensitivity equations or by using finite differences.

3.2.2 Sensitivity Equations for differential systems

There are two common approaches to computing sensitivity analysis numerically: Forward Sen-

sitivity Analysis and Adjoint Sensitivity Analysis. The latter is a more complex alternative as it

requires defining additional functions and computing the DAE solution separately to know the

states at any point. The former is used to compute local sensitivities simultaneously with the

actual ODE solver and is the one used to define the Sensitivity Equations.

An efficient method for sensitivity analysis of nonlinear IVP is based on implementing Sensi-

tivity Equations (SEs). These equations are linear and can be solved with the local Jacobian of

the states’ system. Consider an ODE system of the form ẋ(t) = f(t, x(t), θ) with known initial

values. The sensitivity equation to determine the elements of L(t) with respect to θ is:

L̇ = JxL + Jθ where Jx =
df

dx
∈ Rnx×nx , Jθ =

df

dθ
∈ Rnx×nθ (3.4)

In this notation L is a matrix that contains in every row the vector L = ∇θ̂ ψ(t) for each state ψ of

the whole vector x that define the ODE states. The linearity of (3.4) and the possible integration

into the original ODE model (since they share the Jacobian) make sensitivity equations a really

efficient method to perform SA. The time-varying element L(t) can be computed by adding this

sensitivity equation to the solver system. To do so the sensitivity equation is split for each θj

into column-wise vectors of L that represent new system sensitivity states. The number of states

is extended by nf · nθ and the Jacobian is repeated for each uncertain parameter in vector θ.

19

Chapter 3. Mathematical background and Methodology

3.2.2.1 Derivation of the sensitivity equations

Sensitivity equation (3.4) can be obtained following the notation developed by M. Caracotsios

and W. E. Stewart [4]. Define a dynamic system where x is the vector of state variables and

θ is the vector of time-independent uncertain parameters given by the set of ODEs or DAEs

F (t, x, ẋ, θ) = 0 with initial values x(t0) = x0(θ) and ẋ(t0) = ẋ0(θ). The fully implicit form

F = 0 is used to describe more generic DAE systems. Deriving the system of differential state

equations F with respect to one time-invariant uncertain parameters θj :

∂F (t, x, ẋ, θ)

∂θj
=
∂F (t, x, ẋ, θ)

∂x(t)
· ∂x(t)
∂θj

+
∂F (t, x, ẋ, θ)

∂ẋ(t)
· ∂ẋ(t)
∂θj

+
∂F (t, x, ẋ, θ)

∂θj
= 0 (3.5)

Which is directly equivalent to the sensitivity equation in (3.4) considering the definition of

the column vector Lθj (t) = ∂x
∂θj

|t and defining the Jacobians of the system of equations F as

Jx = dF
dx ∈ Rnx×nx , Jẋ = dF

dẋ ∈ Rnx×nx and Jθj =
dF
dθj

∈ Rnx×1.

The final DAE sensitivity equation is:

Jx · Lθj + Jẋ · L̇θj + Jθj = 0 (3.6)

In matrix forms, the jacobian matrices and sensitivity vector are:

Ju =

∂f1
∂u1

∂f1
∂u2

· · · ∂f1
∂uk

∂f2
∂u1

∂f2
∂u2

· · · ∂f2
∂uk

· · · · · · · · · · · ·

∂fk
∂u1

∂fk
∂u2

· · · ∂fk
∂uk

, Jθj =

∂f1
∂θj

∂f2
∂θj

...

∂fk
∂θj

, Lθj =

∂u1
∂θj

∂u2
∂θj

...

∂uk
∂θj

For the specific case where the system is an ODE without any algebraic equations, the matrix

Jẋ is equivalent to the identity matrix of dimension nx, which is coherent with one of the column

elements of the original Eq. (3.4) (considering the slight difference in the Jacobian definitions

caused by the explicit equation form of the ODE function f).

For the PETLION model, L(t) can be computed by integrating equation (3.6) into the DAE

model. The addition will define a new set of states (one for each original state) that consider the

sensitivity against a single parameter. There will be nψ · nθ sensitivity total equations added to

the system. Since Initial Values define the problem, it is also necessary on sensitivity equations

to correctly define the initial conditions for L(t = 0) and L̇(t). As stated in [1]: “Accurate,

consistent initialization for DAEs is an important part of maintaining the numerical stability in

a simulation code”. This initialization is crucial to avoid deviations in further points and ensure

20

3.2. Sensitivity Analysis

convergence of the solver algorithms that might fail otherwise.

3.2.2.2 Initial conditions in sensitivity equations

The usage of sensitivity equations allows seeing this problem as an extended system of DAEs,

which means that the initial conditions can be determined as one would for the original system.

This is based on solving the system F (t0, x, ẋ, θ) = 0. The initial sensitivity values are 0 for

all differential state variables as the sensitivity effect has to begin null. The initial sensitivity

of the algebraic states is found by solving g(t0, x, θ) = 0 with any numerical method. Finally

the initial sensitivity derivatives are computed solving the system (3.6) in matrix form using

the previously found values of L(t0) and isolating L̇(t0). Also, the initial sensitivities for some

of the uncertain parameters are known to be null a priory if they only affect differential terms.

For example, initial sensitivities with respect to diffusion constants such as Dsn and Dsp are

zero but with respect to kn and kp they are non-zero. The expanded DAE system now has

initial conditions based on the union of the original states x0 and ẋ0 and the initial sensitivities

for as many parameters as desired. With this expansion of the DAE system, it is possible to

determine the uncertainty for each desired output. For this research, it is necessary to have

consistent initial conditions for every continuous charging mode that has different DAEs. This

implies that the sensitivity values on discrete points also have to be fit accordingly. The specific

mathematical notation to do so is thoroughly described in ‘Parametric sensitivity functions for

hybrid discrete/continuous systems’ [5].

3.2.2.3 Numerical implementation of sensitivity equations

To use built-in Julia solvers the DAE must be defined as F(res, du, u, p, t) which mod-

ifies the states’ residuals in-place. This function is built by extracting the states Y, YP from

PETLION and extending them using sensitivity equations. The issue with this methodology

is that knowing the states outside the model requires some modifications on the software that

make the PETLION solver much slower. Once the function is built it can be fitted to a DAE

type for the solver using fun = DAEFunction(F). The problem is defined using prob =

DAEProblem(fun, du0, u0, tspan, p, differential_vars) where du0 and u0 are the

extended initial conditions, p contains the uncertain parameters, tspan = (t0, tend) and differ-

ential_vars is a Boolean vector to indicate which states are not algebraic. Finally, the Sundials

IDA built-in solver can be called using solve(prob, IDA())2.

2DAEFunction() and DAEProblem() are functions of the DifferentialEquations.jl library.

21

https://diffeq.sciml.ai/stable/features/performance_overloads

Chapter 3. Mathematical background and Methodology

3.2.3 Finite Differences to compute the sensitivity vector

The sensitivity vector and matrix can also be approximated using numerical methods such as

finite differences. Knowing that L(t) = ∇θ̂ ψ(t) accounts for the output variability, this first

derivative can be estimated with multiple accuracy approaches to finite differences. Since this

research aims to provide precise results while ensuring fast computation, it is crucial to use a nu-

merical method that considers the trade-off between accuracy and computational cost. With this

goal, the finite differences approach chosen is second-order accurate central differences3,

L(t) =
1
2ψ(θ +∆θ)− 1

2ψ(θ −∆θ)

∆θ
, (3.7)

which is more precise and has lower numerical noise (oscillations) than usual first-order accuracy

forward finite differences.

This method is chosen for its accuracy and computational speed since every complete sim-

ulation of the model only has to be run 2nθ times (two deviations for every parameter). It is

verified on Sec. 4.2.3 that using higher orders of differentiation does not give significantly higher

accuracy but is more computationally expensive. The selection of the time step ∆θ is vital in

this method since it could alter the results. A tiny step has significant issues with accuracy

because it is closer to the machine precision eps, which causes round-off errors. A big step does

not give precise results since it has to be small enough to fulfill the local linearity assumption

of the Taylor expansion in the finite differences approximation.

3.2.3.1 Numerical implementation of Central Finite Differences

An algorithm is defined to compare the accuracy of several finite differences defining L(t) =

1
∆θ

∑n
i=0 αiψ(θ + βi∆θ) where n is the order of FD, α are the coefficients and β are the indices

of each term. For the second-order accurate CFD case in Eq. (3.7): coef. = [1/2, -1/2] and

indices = [1, -1]. The methodology used employs Julia @threads to compute the n · nθ
summation terms in parallel. There are exactly four threads available in this simulations given

the computer used. To ensure that there are no issues with allocations, four copies are created

of p (the structure that contains the parameters and specifications of the model in PETLION).

3.2.4 Logarithmic sensitivity equations for small parameters

In this project, the set of uncertain parameters has various orders of magnitude ranging from the

ambient temperature Tamb ∼ 102 to the diffusion coefficients Di ∼ 10−14. Implementing directly

finite differences in these small parameters can lead to some inaccuracies as the deviation ∆θ

3Multiple finite differences options and their coefficients are described in Wikipedia

22

https://en.wikipedia.org/wiki/Finite_difference_coefficient

3.3. Methodology for implementing Sensitivity Analysis

gets close to the machine precision eps ∼ 10−16. In these cases, a common alternative to the

standard sensitivity vector definition is a logarithmic derivative:

L(t) = ∇θ̂ ψ(t) = ∇log10 θ̂
ψ(t) · ∇θ̂ log10 θ = ∇log10 θ̂

ψ(t) · 1

ln 10 · θ̂
=

L2(t)

ln 10 · θ̂

Here, the vector L2(t) = ∇log10 θ̂
ψ(t) defines the derivative of the states against the logarithm

of the parameters which are values much more tractable given their order of magnitude. This

mathematical notation is used when computing sensitivity components for uncertain parameters

of a low order of magnitude, giving better precision and less numerical noise.

3.3 Methodology for implementing Sensitivity Analysis

The methodology used to apply the mathematical background to battery models starts from

a simple deterministic simulation. This simulation serves as the basis for all the desired com-

putations, such as deviation ranges, back-off boundaries, and new safety constraints. Since the

project’s goal is to quantify the output uncertainty using sensitivity analysis, the value of the

sensitivity vector L(t) is found first to compute the actual deviation of any state later. In sum-

mary, the methodology used in this project for complete uncertainty quantification of mixed

continuous-discrete simulations is:

1. Run any desired operational mode CC,CV,CPo,CT, ... with nominal parameters

2. Choose the uncertain parameters that affect this model and their normal distributions

3. Choose a success range α for the percentage of accuracy desired in the output dispersion

4. For every or all states of interest of the simulated model:

(a) Compute the state’s parametric sensitivities L(t) using Central Finite Differences

(b) Compute the standard deviation using the definition of σψ in (3.3)

(c) Use the standard deviations equivalent to α to determine new state limits

5. Check new boundaries (time constraints, maximum values, or safety limits) for the deviated

model. Determine new back-off from results of interest against past deterministic results.

The procedure is carried out in the final results chapter to quantify the effect of parametric

sensitivities on lithium-ion battery operational modes. For efficient and simplified computation,

all uncertain model states are found simultaneously as states of interest. This methodology

gives two exact copies of the original model that represent new upper and lower limit states. The

exact implementation of these steps using the Julia programming language is shown in Ap. (B).

23

Chapter 4

Preliminary Results

Preliminary results include four simple test cases used to verify the functionality of the proposed

method and better understand the results with smaller examples. The first case shown in

Sec. 4.1 implements the sensitivity equations on a simple chemical reaction. The second case

uses different methods to compute the sensitivity vector for a basic Li-ion battery charge. The

third case, in Sec. 4.3, quantifies the probabilistic state distribution in PETLION based on the

previously found sensitivity vector. The last case determines the parametric sensitivity and

output deviations for multiple standard uncertain parameters in batteries.

4.1 Chemical reaction example

Since the equations that define the PETLION model are complex and the state variables are

highly related between them. A simpler chemical example was used first to have a faster and

easier approach to the sensitivity equations’ implementation in Julia. The reaction studied is:

A
k1−→ B

k2
⇌
k3
C

The goal is to simulate the concentration of species A, B and C in a constant volume batch

chemical reactor with isomerization kinetics. The initial concentrations of the tank are CA(0) =

1M and CB(0) = CC(0) = 0M. The rate constants are k1 = 1000s−1, k2 = k3 = 1s−1 which

implies that A will react really fast and B and C reach an equilibrium point later on.

The set of uncertain parameters chosen for this sensitivity analysis problem is given by the

vector θ = [CA,0, k1, k2, k3], including all the time-invariant parameters that affect the reaction.

24

4.1. Chemical reaction example

4.1.1 ODE approach

The basic equations that describe the 3 states of the chemical reaction are given usually by

differential equations that express the change in every concentration using the rate constants

that affect it: {dCAdt = −k1CA, dCB
dt = k1CA − k2CB + k3CC ,

dCC
dt = k2CB − k3CC}

4.1.2 DAE approach

Using algebraic equations allows building physical constraints into the system while keeping the

number of equations that the ODE had. In this case, we want to explicitly conserve the mass

in the system: CA(t) + CB(t) + CC(t) = CA,0. We can replace the last equation of the system

with the conservation law. The equation can now be written in a fully implicit form as:

F (t, C(t), Ċ(t)) =

−k1CA − dCA

dt

k1CA − k2CB + k3CC − dCB
dt

CA(t) + CB(t) + CC(t)− CA,0

 =

0

0

0

 (4.1)

Keeping in mind that the PETLION model is based on a system of DAEs, the system of equations

given by (4.1) is the one used to test the future implementation of the uncertainty quantification

mathematical systems.

4.1.3 Evolution of the states in the reaction

The resolution of the ODE or DAE models defined above can be found with Julia using any of

the available numerical integrating tools. Using the DAEProblem() function with the Sundials’

IDA() solver gives the following results:

Figure 4.1: Evolution of the concentration of each substance in the basic chemical reaction example.
A is the original reactant, and B and C are the final products that maintain equilibrium. Left shows the

‘fast’ start of the reaction (20 ms) and right shows the long-term states (10 s).

25

Chapter 4. Preliminary Results

4.1.4 Sensitivity analysis

Sensitivity equations in Eq. (3.6) are used to find the sensitivity vector of this simple DAE

system. The IDAS Julia solver then solves the complete system of equations as a regular one

with the extended states. It is important to choose accurate initial conditions for the model’s

success. The results of the sensitivity analysis on the 3 states of the system x(t) = [CA(t),

CB(t), CC(t)] for the 4 parameters θ = [CA,0, k1, k2, k3] is:

Figure 4.2: Initial evolution (20ms) of the parametric sensitivity of each substance in the chemical
reaction example against the desired parameters in θ = [CA,0, k1, k2, k3]. The parametric sensitivities for

this basic chemical reaction can be computed in ∼ 66ms.

The results seen in Fig. 4.2 can be logically interpreted as parametric sensitivities considering

the behavior of the original equation. For example, the initial concentration of the reactant A

directly affects the concentration CA at t = 0 as it represents its value while CB starts with 0

sensitivity and proliferates for the fast reaction until it is also ∼ 1.0 (the concentration of B will

depend entirely on CA,0 in a short time). Similarly, the reaction rate constant k1 highly affects

the concentrations of A and B in the first ms of the simulation only and is zero otherwise since

its value does not affect future concentrations. Of the three constant rate values, k2 has the

highest sensitivity value, which shows that it is more relevant to reaching the equilibrium, as

expected. With this better understanding of sensitivity equations and analysis, it is now easier

to carry out the SA of PETLION.

26

4.2. Sensitivity Analysis of PETLION

4.2 Sensitivity Analysis of PETLION

Multiple approaches have been tested to design the function that will conduct sensitivity analysis

over the battery charging model. A standard charging process is used as the base of sensitivity

analysis preliminary cases to test quickly and efficiently. For the remaining of this section,

all software implemented and results refer to the default Li-ion battery on PETLION {cathode:

LCO, anode: LiC6, Fickian solid diffusion, no aging, voltage bounds [2.5, 4.3V], 1D temperature

modeling}. The battery operation used for initial testing of results is fully charging battery

from 0% SOC at constant current I = 1C (C-rate), which means that the battery is

completely charged in 1 hour1. The evolution of some battery states during this charge are:

Figure 4.3: Charging default PETLION Li-ion Battery with 1D temperature modeling from state of
charge SOC0 = 0% at constant current I = 1C until SOCend = 100%

The sections that follow, showing initial attempts and operations to implement sensitivity

analysis, all refer to the computation of the parametric sensitivities of this charging process.

The set of uncertain parameters is defined only by the ambient temperature θ = {Tamb} for the

study of the preliminary results. Where Tamb ∼ N(298.15K, 1K) ∼ N(25 °C, 1 °C).

4.2.1 SA using Sundials

The first attempt to implement sensitivity analysis on the complete PETLION model was based

on extending the usage of the Sundials software (SUite of Nonlinear and DIfferential/ALgebraic

equation Solvers) [8]. This implementation could be straightforward since the current solver that

PETLION uses for the DAE system is Sundials’ IDA [9], and according to the documentation,
1The C-rate is a measure relative to the capacity of the battery such that an I = 2C charge is equivalent to

the current required to charge the battery in 30 minutes and I = 0.5C charges the battery in 2 hours.

27

Chapter 4. Preliminary Results

there is an extension called IDAS that allows automatic computation of sensitivities on every

state for multiple parameters [16]. IDAS finds the sensitivity values by integrating the sensitivity

equation for L(t) into the DAE system based on (3.6). Changing the solver of PETLION from

IDA to IDAS requires specifying the initial conditions for L0 and L̇0.

This solution was not possible for implementation on Julia since there are some discrepancies

between the functionalities of the original Sundials package (based on C language) and the

equivalent package Sundials.jl. The Julia version has been adapted from the original Sundials

C API and provides almost complete library coverage, but it has not been possible to wrap the

sensitivity part. This option remains a potential alternative for the future whenever the Julia

version of the software is completed to integrate sensitivity analysis into DAEs solver methods.

4.2.2 SA using sensitivity equations

Since the IDAS software was not compatible with the Julia language, the next best option is to

implement the sensitivity equations manually following the mathematical notation given in (3.6).

With this method, the number of equations is increased in the DAE so that the standard solver

IDA of Sundials solves the expanded system of equations. The issue with PETLION is that

the solver is integrated into the model, so the states and equations are not directly accessible.

To be able to do this extension of the DAE, Marc Berliner helped in developing a simplified

version of the PETLION code that had a main function compatible with IDA solver of the form

f_petlion!(res, t, Y, YP, p; kw...) which is equivalent to a fully-implicit DAE form

where res is the in-place evaluation of the function F (t, x, ẋ, θ) used in (3.6). Here the states

are built into the variable Y , the derivatives into Y P , the set of parameters stored in p as with

the standard PETLION model, and kw... stores extra model information for the run. Using the

same procedure implemented for the simple chemical equation example, shown in the code A.2,

it was possible to implement the sensitivity equations into the PETLION code.

Initial conditions

The initial conditions were defined following the mathematical notation from Sec. 3.2.2.2 so

that the system of DAEs was fulfilled at the start point. To do so, Y0 and Y P0 are initially

guessed with the PETLION function Y0, YP0 = PETLION.guess_init(p; SOC = 0). The

state I is modified in Y 0 to show the operating mode chosen, which is I = 1C. The algebraic

initial conditions are set by solving the initial system g(y, t) = 0 and using also Y P0 = 0 as the

algebraic states have null sensitivity derivatives at the start. Finally, the initial values for the

differential terms are found solving f(y, t)− y′ = 0 at the start time.

28

https://github.com/SciML/Sundials.jl

4.2. Sensitivity Analysis of PETLION

A similar procedure is applied to the initial conditions of the sensitivity terms, the extended

part of the DAE system. Initial sensitivity values are zero for all differential terms and computed

from the system of equations for the algebraic states. The initial derivative terms are null for

the algebraic states and can be computed from the system for the differential terms. The system

solved is the final sensitivity equation Eq. (3.6).

Jacobian matrices

To be able to use the sensitivity equations it is necessary to define the jacobian matrices Jx =

dF
dx ∈ Rnx×nx , Jẋ = dF

dẋ ∈ Rnx×nx and Jθ = dF
dθ ∈ Rnx×nθ . These matrices are computed

numerically in Julia. There are multiple functions designed for this purpose and the one used

in this case was ForwardDiff.jacobian() from ForwardDiff.jl which returns J(x) evaluated

at a single point x. This is an accurate method to compute the Jacobian matrices but it is also

computationally expensive as it is computing the complete matrix when most of the cases will

just require a reduced amount of columns (most values on the states are 0). Also the Jacobian

matrices are required in the sensitivity equation to compute some matrix-vector products so

many of the terms will not be used at the end. These are possible aspects of this implementation

that can bring computational inefficiency and could be further upgraded.

Preliminary results

This approach with the simplified PETLION code and sensitivity equations worked successfully

in measuring the sensitivity of the output. The code was initially tested with uncertainties only

on the ambient temperature modeled as a normal distribution with 1ºC of standard deviation

and mean value Tamb = 25 °C = 298.15K. For this input uncertainty, the resulting sensitivity

on some of the outputs is given in Fig. 4.4.

As expected, the current sensitivity shown in Fig. 4.4 is 0.0 since the model is pre-setting this

value as an input and thus is not altered by the uncertainty. The voltage sensitivity is inversely

proportional and grows with time, whereas the temperature sensitivity is directly proportional

and grows fast at the beginning of the charging process. Also, the battery’s temperature is highly

sensitive to the ambient temperature, which is reasonable because these parameters are directly

linked. The temperature in Fig. 4.4 is measured as a weighted average of all the discretized grid

points of the battery model.

The solution of the extended DAE system after initialization takes 5651s ≈ 1h 34mins2

for the standard system with ten discretization points in all directions and setting the solver

2All tests are performed on a 2016 MacBook Pro 2.9 GHz 2-Core Intel i5 computer with 8 GB of RAM. Also,
all simulations use Julia 1.7.2 kernel.

29

https://juliadiff.org/ForwardDiff.jl/stable/user/api/#ForwardDiff.jacobian

Chapter 4. Preliminary Results

Figure 4.4: Parametric sensitivities for uncertain ambient temperature. Process charging default
PETLION Lithium-ion Battery from SOC = 0 at constant current I = 1C. The sensitivity is computed

for the states: current (I), voltage (V) and average temperature (T).

with 10−4 relative tolerance and 10−6 absolute tolerance. This result represents a substantial

computational cost, especially when compared to the time required to solve the DAE system

without the sensitivity extension, which is 92 s ≈ 1m 32s. The time required to solve the

extended program is >60x the initial time extending by far the expected 2x since the sensitivities

are only computed for one extra parameter doubling the number of equations solved.

4.2.2.1 Issues with this method

After successfully finding sensitivities for the uncertain ambient temperature, some other pa-

rameters of interest were tested. The method was unsuccessful when applying uncertainties to

the diffusion and equilibrium parameters. The Jacobian estimator used with Automatic Differ-

entiation uses dual numbers to compute slopes. When other parameters are uncertain, they are

defined as Dual numbers for the computation. This classification creates a compatibility issue

since PETLION has built-in specifications that limit the type of its parameters. As a result, it

is not possible to numerically compute the Jacobian matrices for Dsn, Dsp, kn, kp.

Independently on the ability to compute parametric sensitivities for other uncertain inputs,

this method has a substantial computational cost compared to expectations. The method was

initially designed here without focusing on speed and optimization, whereas an already built-

in function to compute sensitivities on any language is based on multiple tricks that make

them efficient. Every single computation of the Jacobian is an expensive procedure, and the

sensitivity equations require computing three Jacobian matrices at every single point of the

30

4.2. Sensitivity Analysis of PETLION

DAE integration.

Improvement options

As suggested, there are multiple numerical approaches to optimize the computation of sensitivity

equations, considering that the Jacobians are the biggest bottleneck:

• Speeding up the Jacobian evaluation: given the wide usage of Julia for mathematical

modeling, linear algebra, and vastly complex systems, there are multiple optimization

alternatives to compute these derivative matrices. In this original hard-coded approach,

every Jacobian matrix is fully computed with ForwardDiff.jl at every point in time using.

Alternative systems to optimize the computation and storage of these matrices are:

– Sparsity form of the Jacobian: sparsity tools allow building and storing only the

relevant values of the matrices. Many iterations of the Jacobian are used to determine

which values are not important from the Dense matrix form using SparseDiffTools.jl.

The sparse jacobian configuration can then be fed to the ForwardDiff.jl package to

compute the matrices faster.

– JuMP graph coloring optimization: the Jacobian can be evaluated using a sparse

forward-mode automatic differentiation based on a graph coloring algorithm [15] that

reduces the number of function evaluations. PETLION uses this method.

• Matrix-vector direct computations: a potential alternative to computing expensive

Jacobian matrices on systems of ∼ 350 equations is based on computing the desired product

Jx · L(t) directly. This option requires fewer computations since multiple values on the

vector and matrices can be null and lower allocations result in much lower memory storage

for every iteration.

• Symbolics approach: the library Symbolics.jl allows defining a complex problem with

multiple state variables and parameters as a symbolic result. The exact value of every

output has a precise equation, depending on the original states, that uses basic operations

as the addition and product. Symbolics is an interesting feature of Julia, which takes

longer to compile and build up but is much faster afterward to find output states from the

compiled model. This approach is tested on PETLION, but the results can also only be

computed for the uncertain Tamb and not for other parameters.

31

https://juliadiff.org/ForwardDiff.jl/v0.7/dev/how_it_works.html
https://github.com/JuliaDiff/SparseDiffTools.jl

Chapter 4. Preliminary Results

4.2.3 Sensitivity Analysis using Central Finite Differences

As explained in the Mathematical Background in Sec. 3.2.3 it is possible to compute parametric

sensitivities using Central Finite Differences. The parametric sensitivity vector L(t) is given by

a derivative and can thus be computed by running the whole nonlinear PETLION simulation

2 · nθ times, slightly shifting the uncertain parameters to measure absolute deviation. A good

feature of this approach is that it does not require the PETLION model to be simplified because

the vectors of states Y and Y P are not explicitly needed. The finite differences approach should

be much more efficient than implementing the sensitivity equations and integrating them into

the DAE model. Some checks are made below to verify that this approach is coherent with the

expected result and has enough accuracy.

• Informed choice of parameter finite step in differentiation

The choice of the parameter step size is crucial in implementing finite difference as it will

affect the results. If the step chosen to compute the derivative is too small, there will be

issues with accuracy because of machine round-off limitations (eps ≈ 2.22 · 10−16). If the

chosen step is too big, the parametric sensitivity found will not be accurate enough to

fit the local approximation. The FD sensitivity code is initially run for multiple steps to

check the alternatives and find a reasonable span. The results found are:

Figure 4.5: Parametric sensitivities of the output voltage on PETLION when charging a default Li-ion
battery from SOC = 0% at I = 1C. The sensitivity is computed using second-order accurate CFD for
multiple parameter steps ranging from 10−11 to 0.1. The step ∆parameter is the one used to model

ψ(θ ±∆θ]) on the finite differences Eq. (3.7).

32

4.2. Sensitivity Analysis of PETLION

From Fig. 4.5, we can deduce that any step coefficient in the range from 10−2 to 10−8 is

a good fit for the model. The sensitivity results are stable in this range, justifying that

the orders of magnitude are the accurate ones. This result is coherent with the expected

minimum proper step being of the order of magnitude of the squared root of the machine

precision error:
√
ϵ ≈ 1.5 · 10−8. The step chosen for all the FD methods in the whole

project is ∆θ = 10−3 · θ, which is always applied proportional to the actual parameter.

• Accuracy of chosen second-order Central Finite Differences vs. higher orders

The Central Finite Differences option is chosen to compute the numerical approximation

of L(t). The order chosen is second-order because it does not have a high computational

cost. In this case, the whole nonlinear model is run exactly two times for every uncertain

parameter in the model. For a reduced number of parameters, which is coherent with this

study since the number of uncertain parameters is between one and five, the time needed

to run the model will always be similar in order of magnitude to the time required for a

single run. The relative error of different orders is compared to the eighth-order accurate

CFD approximation (considered the most accurate option) to verify that the precision of

the second-order model is enough. The relative error is shown in Fig. 4.6:

Figure 4.6: Accuracy of different Central Finite Difference methods with respect to 8th order CFD. Er-
ror is computed relatively as ||sens8|−|sensi||/|sens8| where sens is the parametric sensitivity ∂V/∂Tamb.

The result is that the second-order CFD is accurate enough since the relative error com-

pared to the eighth-order derivative is mostly below 10−3. The initial relative error is

higher since the voltage sensitivity is null at the start (as can be seen in Fig. 4.4).

33

Chapter 4. Preliminary Results

• Accuracy of Central Finite Differences against Sensitivity Equations

The accuracy of the CFD approximation for computing sensitivity parameters can be

checked against the original approach with sensitivity equations based on (3.6). Computing

the absolute error between the second-order accurate CFD sensitivity of ∂V/∂Tamb and

the original sensitivity equations result shown in Fig. 4.4 gives:

Figure 4.7: Absolute error of second-order accurate CFD with respect to original Sensitivity Equations
approach for the simple charging path I = 1C. Error is computed as ||sensSE | − |sensCFD|| where sens

is the parametric sensitivity ∂V/∂Tamb.

The absolute error of the CFD approximation shown in Fig. 4.7 is almost lower than 10−5

for the complete simulation, which is highly accurate. There is some oscillation noise in the

initial error that can be related to the interpolator function that the CFD method employs

to obtain the same comparable time points on each iteration3. The small oscillation of

the parametric uncertainty is not alarming as the overall value is accurate for the whole

simulation. The complete root-mean-square deviation is rmse = 6.22µV (for a voltage

range going from 2.75V to 4.20V) proving that CFD is highly accurate.

4.3 Uncertainty Quantification of PETLION’s states

The parametric sensitivities computed so far focus on finding the values that define the sen-

sitivity vector L(t). This vector contains the sensitivity of any output state concerning the

uncertainty of the parameters that define the battery. Following the notation from the math-

ematical background, the output states’ probability distribution can be explicitly determined

when they are modeled as a first-order Taylor expansion δψ = Lδθ . In this case, the theoretical

3The function to interpolate specific output time points in PETLION is Spline1D from the Dierckx.jl library

34

4.3. Uncertainty Quantification of PETLION’s states

probability distribution of the output states is known and given by Eq. (3.2). The accuracy of

this mathematical linear approximation can be tested against the results of running the whole

nonlinear PETLION model with uncertain parameters using Monte Carlo sampling.

For the same charging method given by I = 1C, SOC0 = 0, and uncertain parameter Tamb ∼

Normal(25 °C, 1 °C) the distribution of any state such as the voltage can now be mathematically

determined. The probability distribution function of the voltage against time can be found

knowing the main curve of V (t) and L(t) = ∂V
∂Tamb

:

Figure 4.8: Nominal voltage and its sensitivity with respect to the variation on ambient temperature
computed using second-order accurate Central Finite Differences for a complete I = 1C charge.

Using these and the definition of fp.d.(ψ) and Vψ we can determine the pdf curve at any time t:

Figure 4.9: Mathematical probability distribution of the voltage when charging a default Li-ion battery
in PETLION from SOC = 0% at I = 1C for an uncertain Tamb. The pdf(V (ti)) is computed using second-

order accurate Central Finite Differences for different points in time along the charging curve.

35

Chapter 4. Preliminary Results

The results in Fig. 4.9 are a good indicator of the parametric sensitivity’s evolution over

time. This sensitivity variation is inversely related to the height of the waterfall’s probability

distributions so the dispersion of the voltage gets wider as the charging evolves in time. The

progress of the pdf shown is consistent with the sensitivity results found from the sensitivity

equation’s method (Fig. 4.4) that are verified for the CFD approximation. The sensitivity

∂V/∂Tamb is initially small (pdf close to a delta function), then it grows to a local maximum

around t = 500s, is slightly reduced and finally grows until the battery is almost fully charged.

This preliminary results show that the voltage is susceptible to the changes in an uncertain

ambient temperature. The output probability distribution of any state can be mathematically

computed for the first-order approximation using the sensitivity vector computed with CFD.

4.3.1 Accuracy of Central Finite Differences against Monte Carlo sampling

We have verified so far that the numerical approximation using CFD is accurate to sensitivity

equations. It is important to verify that the results obtained with this linear mathematical

approximations fit the dispersion of the original nonlinear function. This can be checked using

Monte Carlo. To determine the real dispersion of the voltage when the ambient temperature is

uncertain the PETLION simulation is run for a set of 50k different ambient temperature samples

drawn from Tamb ∼ N(25, 1 °C). The CFD sensitivity on the final voltage shows that V̂end =

4.189V and its computed standard deviation is σV =
√
Vψ(t) =

√
L(t)VθL(t)T = 0.002V.

The normal pdf given by this mathematical distribution V ∼ N(V̂end, σV) is displayed over the

histogram of the 50k Monte Carlo nonlinear samples:

Figure 4.10: Probability distribution of the output voltage in the PELTION model for an uncertain
ambient temperature when charging a default Li-ion battery from SOC = 0 at I = 1C. The pdf is
computed using 2nd order CFD and 1st order SA and the histogram shows the distribution of 50k Monte

Carlo samples with different ambient temperature conditions.

36

4.3. Uncertainty Quantification of PETLION’s states

The results from Fig. 4.10 are encouraging as it seems that the linear approximation fits

the nonlinear model with high precision for the basic CC charge and the chosen parametric

uncertainties. To further check this accuracy, the percentage of samples that fit into every set

of standard deviations from the mathematical mean can be computed:

Table 4.1: Accuracy of sensitivity analysis using CFD SA against original nonlinear PETLION model.
Check of theoretical mathematical model mean and standard deviation of the final voltage. Check of the

percentage of samples that fit into each span of standard deviations from the mean.

Mathematical Approx. MC samples
Mean (V̂) 4.18878 4.18887
Std (σ) 0.00236 0.00237
1 std 68.269% 68.468%
2 std 95.450% 95.324%
3 std 99.730% 99.576%
4 std 99.994% 99.982%

This table proves the fitting accuracy for various ranges, which was visually apparent on the

histogram dispersion. The mathematical values for the percentage of samples are well known for

a normal distribution. Once the final nominal voltage and its standard deviation from the mean

are known, the percentage of samples that fall into each standard deviation can be computed.

The computed percentages are highly accurate to the mathematical value.

This result verifies that the mathematical approximations for Sensitivity Analysis and Cen-

tral Finite Differences can accurately quantify the uncertainty propagation of the voltage in a

continuous battery charge (I = 1C) over the PETLION model. The important conclusion is

that this methodology is computationally efficient and could be applied to determine the dis-

persion of any output state for any parametric uncertainties. The computational time to find

the sensitivity of the voltage against the ambient temperature is ∼ 0.33s which is a signifi-

cant improvement compared to the sensitivity equations alternative, which was more than 90

minutes. The direct approach of using Monte Carlo to sample fifty thousand different ambient

temperature charges took ∼ 20 minutes. This time difference indicates the benefit of using

sensitivity analysis to quantify the output uncertainty instead of computing the actual output

for every possible input uncertain parameter. In summary, computing the mathematical pdf

from the second-order Central Finite Difference sensitivities is approx 3600x faster than finding

the histogram dispersion from the direct samples.

37

Chapter 4. Preliminary Results

4.3.2 Second-order expansion for Sensitivity Analysis

Following the mathematical background, it is known that the variation on any of the variables/s-

tates of the model when one or multiple parameters are uncertain can also be modelled as a

second-order expansion: δψ = Lδθ + 1
2δθ

TMδθ. Although this approximation is more precise

than the first-order approach, it is more computationally expensive since the sensitivity matrix

M(t) must also be computed.

In this case, though, even if the probability distribution of the uncertain parameters is known

and follows a multivariate normal form, the analytical variation on the output is unknown. Other

methods such as Monte Carlo can determine the probability distribution found in the results

with a more accurate model. This repetition approach can also verify the analytical approach

taken on the first-order simplified model.

Since the first-order linear approximation seems highly accurate, this project does not use

the second-order approach. It could be an exciting method for future work and development.

4.3.3 SA by sampling original nonlinear model

A final insightful approach to quantify the effect of uncertainties in battery operations is to use

direct sampling of the complete nonlinear DAEs model given by PETLION. This method is

highly accurate as it gives the exact results for any distribution of the parameters. The issue

is that the complete charging/discharging process has to be re-run for every set of uncertain

parameters to precisely determine the output states. The method is computationally expensive

as it requires running a similar simulation multiple thousand times. Once the output result is

known for a representative set of samples, the probability distribution of the states of interest

can be studied to determine how significant the dispersion is and even try to fit them into a

well-known probabilistic distribution (in this case, an expected normal pdf).

Sampling the original simulation is always an alternative to finding parametric sensitivities

in nonlinear models. In this case, the direct sampling of the complete PETLION model serves

as the reference result to verify the accuracy of the mathematical methods tested, just as shown

above in Fig. 4.10.

38

4.4. General parametric sensitivities of PETLION

4.4 General parametric sensitivities of PETLION

4.4.1 Uncertain parameter distributions in lithium-ion batteries

The fundamental reason for using stochastic optimal control is that batteries are not determin-

istic, so uncertainty in their parameter definition must be considered. The variability of the

desired parameters must be known to integrate stochastic analysis into the model. In this case,

the parameters follow a normal distribution given by their mean and standard deviation values.

The uncertain parameters used in this report are given by θ = {Tamb, Dsn, Dsp, kn, kp} which are

considered relevant parameters in the optimal charging process [2]. The ambient temperature is

modeled again as a normal distribution with T̂amb = 25 °C and σT = 1 °C. The specifically iden-

tifiable distributions of the solid-phase diffusion and reaction rate constants are characterized in

detail as nonlinear distributions using different literature estimations [2]:

Table 4.2: Means and standard deviations on a logarithmic basis for battery simulation values [2]

log10 µi log10 σµ,i

Ds,p -15.26 0.2513
Ds,n -11.63 0.2841
kp -12.49 0.3007
kn -9.736 0.3283

These distributions for the parameters are thoroughly studied in previous work and should

be used, since they are given by the literature, to define the input parameters’ distributions. The

significant values for this study are the standard deviation results for every single parameter.

These are used to build the variance matrix Vθ that defines the original model uncertainty as a

diagonal matrix since all the parameters are independent. Following the previous methodology,

the sensitivity vector is computed first for the desired parameters in vector θ, and then the

output distribution of any state can be calculated.

4.4.2 Basic charge sensitivity analysis with multiple uncertain parameters

The sensitivity analysis is applied on the same basic complete charging simulation with I = 1C

and SOC0 = 0. In this case the vector of uncertain parameters is θ = {Tamb, Dsn, Dsp, kn, kp}.

The second-order accurate Central Finite Differences method is used to find the sensitivity vector

of the voltage V (t) against these five parameters. The standard notation is used for the ambient

temperature as before, but the logarithmic derivative is used to compute the sensitivities over

the other parameters as they are of orders ki ∼ 10−11 and Di ∼ 10−14. The parametric voltage

sensitivities found are given by:

39

Chapter 4. Preliminary Results

Figure 4.11: Sensitivity results of voltage for multiple uncertain parameters as a function of time. The
sensitivities are computed for a simple full charge at CC I = 1C.

The results found in Fig. 4.11 show that computing the sensitivities of other parameters be-

sides the ambient temperature is possible using CFD. The sensitivity vector has to be computed

separately for each parameter, so the complete charging simulation is run 2nθ = 10 times for

second-order accuracy CFD. The same methodology can be directly used on other parameters

of interest in PETLION, proving that the computation chosen is highly efficient since all the

voltage sensitivities are found in ∼ 4.45 s.

Even if the sensitivity values seem too large for the diffusion and reaction rate constants, they

are coherent when applied to these small parameter values. They are highly accurate on order

of magnitude compared to the effect of the ambient temperature given that the parameter’s

orders are Tamb ∼ 102, Di ∼ 10−14, and ki ∼ 10−11. A good indicator for general uncertainty

quantification to summarise how much influence one parameter has in the dispersion of the

voltage is the integral of the sensitivity curve proportional to the parameter’s value:

Table 4.3: Sensitivity of the voltage for I = 1C full charge given from higher to lower effect. Computed
as the integral of the each parametric sensitivity curve and scaled for each mean value.

Value θ̂ V sensitivity
Tamb [°C] 25 1902.67
kn [m5/2/(mol1/2s)] 5.031 · 10−11 53.58
kp [m5/2/(mol1/2s)] 2.334 · 10−11 46.94
Ds,p [m2/s] 1.0 · 10−14 31.60
Ds,n [m2/s] 3.9 · 10−14 7.24

40

4.4. General parametric sensitivities of PETLION

The values in Fig. 4.3 quantify the uncertainty effect of each parameter separately on the evo-

lution of the voltage in the Li-ion charge. The ambient temperature has the highest significance,

followed by the rate constants and diffusion coefficients. These values are a good preliminary

indicator of how many states will be affected by a deviation in any input parameter. The previ-

ous methodology can be repeated to quantify the output probability distribution, defining the

pdf of any state using the sensitivity vector and the variance matrix Vθ.

Issues with the defined normal distributions

When trying to determine the standard deviation of the nominal voltage for these new uncertain

parameters using their sensitivity curves, it is found that the literature-estimated multivariate

normal distribution is not accurate. If the values specified in the literature to define the proba-

bilistic distribution of θ are used, the final dispersion range of the voltage at any point in time

gives non-physical results. This result confirms the initial stated issue that parameter estimation

in literature is not accurate and usually delimits the constants in ranges too wide for real ap-

plications. Again, this validates the importance of stochastic uncertainty quantification for this

set of parameters and other interesting constants in the battery model, which cannot usually be

fixed deterministic values.

This case study concludes that the notation used in this project is consistent and can be

edited to include multiple parameters quickly following the same procedure. The only issue

is that literature estimates for the input multivariate normal distribution are not physically

accurate and thus cannot be used for the following results of the project. For the final results,

the only uncertain parameter modeled is the ambient temperature which can be set as desired.

For further alternative work including these parameters, new distribution functions could be

chosen with more narrow standard deviations that have a subtle effect on the dispersion of the

final states.

41

Chapter 5

Results on continuous-discrete charging

The case studies performed as preliminary results prove that second-order accurate Central

Finite Differences is a good estimator for the sensitivity vector. Also, First-order Sensitivity

Analysis can accurately predict the distribution of the states at any point in time. These studies

are implemented on PETLION for a continuous charging method at a constant current I = 1C.

This new section aims to determine if the methodology can be efficiently extended to mixed

continuous-discrete operations while maintaining high accuracy.

The methodology used to determine the uncertainty propagation from the input parameters

on the PETLION model begins by computing the nominal simulation. The desired charging

path is modeled in PETLION following the documentation and setting the initial states, dis-

crete boundaries, and continuous operational modes. Since the literature-estimated probability

distribution of the parameters of interest cannot be applied in this simulations, the only uncer-

tain parameter used is again Tamb ∼ N(25 °C, 1 °C). The sensitivity of the simulation can then

be computed following the procedure of the previous sections. For this results section, the devi-

ations from the nominal values are computed using ±3 standard deviations from the mean.

This boundary in a normal probability distribution represents 99.7% of the possible outputs,

meaning that the upper and lower bounds found here limit this percentage of possible values.

5.1 Uncertainty Quantification on a CC-CV charge

A basic path for optimal charging is CC-CV which uses maximum constant current as long

as the voltage is below the desired safety bound. If the voltage limit is hit before reaching

the desired State of Charge, the battery can be completely charged following a CV mode at

42

5.1. Uncertainty Quantification on a CC-CV charge

the maximum bound. Lithium-ion batteries can be damaged when charged outside their voltage

limits, leading to premature aging, so it is important to ensure that this constraint is satisfied. To

test the effect of uncertain parameters in this charge path, a basic model is defined in PETLION

with SOC0 = 0%, I0 = 4C, Vmax = 4.1V , and SOCmax = 60%. Following the procedure of

the preliminary results, the new expected bounds on any state with 99.7% significance can be

determined. In this specific example, an exciting insight could be to know when the voltage

limit of 4.1V is hit if the ambient temperature is uncertain. The sensitivity of the voltage curve

can be computed, and the standard deviation can be found. Since the standard deviation is a

function of time, it is possible to plot the unbounded voltage for I = 4C as a ribbon with its

±3 std boundaries:

Figure 5.1: Nominal voltage for I = 4C charge and upper and lower bounds with 99.7% accuracy as a
function of time using second-order accurate CFD. Left shows the complete evolution and right shows a

zoom section where the upper and lower bounds actually hit the maximum limit of 4.1V.

This initial analysis of the dispersion on the nominal voltage curve shows the significance

of uncertainty analysis in battery modeling. The desired limit voltage is hit in a time-span

∆t ≈ ±320ms. Also, the real value of the voltage when the nominal limit happens can span in a

range of ∆V ≈ ±2mV. This result shows that for a 1 °C standard deviation on the temperature,

the uncertainty effect on voltage is small. This initial voltage example proves that any desired

state can be bounded for specific accuracy constraints α to quantify uncertainty effects.

5.1.1 Sensitivity Analysis on a discrete step in CC-CV

It is essential to verify whether the mathematical notation and software methodology used for

the preliminary results can also accurately determine the uncertainty propagation for a mixed

continuous-discrete simulation. For this purpose, sensitivity analysis is applied to the complete

CC-CV charging curve defined above. The primary approach starts by computing the complete

curve with nominal parameters. The final methodology is used to design a function that can

simultaneously compute the standard deviation of all the model’s states. The output from this

43

Chapter 5. Results on continuous-discrete charging

function includes the upper and lower limit complete models instead of a single state. This

new approach allows analyzing any state of interest afterward quickly and efficiently. This new

system is highly efficient and works for any desired success range α using the required standard

deviations from the nominal states.

The main CC-CV simulation output has deviated ±3 std resulting in two limit models

bounding 99.7% of the possible outputs. This deviation returns two new simulation outputs

corresponding to the upper and lower boundaries. The computational cost of finding all complete

model simulation outputs deviated for the lower and upper bounds is ∼ 59 s. The most

significant benefit is that all the states’ deviations are already known with the current notation,

so no more expensive computations are required afterward. Regarding fast charging using a CC-

CV path, the time required to charge the stochastic battery goes from 1685s to 1738s considering

99.7% of probable states. The expected fast charge CC-CV time will happen in a span of 43s

around the deterministic end time of 1711 s ≈ 28min.

Once these limit models have been computed, any state or specification can be further stud-

ied. A typical state of interest in battery operations is temperature, which is a prominent

surrogate for battery degradation. General operating modes will aim for low temperatures,

avoiding fast degradation. Accordingly, the temperature should be kept below 80 °C to avoid

dangerous effects such as thermal runaway. Since the temperature is an essential factor in degra-

dation, we can try to quantify the uncertain Tamb effect on the CC-CV battery’s temperature.

More specifically, we can analyze the average 1D cell temperature along time which is:

Figure 5.2: Average temperature of the battery cell during a CC-CV charge from 0% to 60% SOC.
The lower and upper model bounds with 99.7% significance are found using CFD and linear SA. The
40 °C line is plotted as a usual desired limit temperature in battery modeling to reduce degradation.

44

5.1. Uncertainty Quantification on a CC-CV charge

This figure shows how the average cell temperature is susceptible to the uncertainties in

ambient temperature. The mixed continuous-discrete sensitivity analysis implementation was

straightforward, using the information from the preliminary results. Initially, some issues with

numerical errors appeared as noise and oscillations in the sensitivity curves. Given an accuracy

issue on the PETLION library interpolation of values, this noise occurred in discrete steps. The

interpolating function did not consider that the partial continuous operational modes equations

differed after discrete bounds. This example helped detect this minor issue with the PETLION

software for discrete steps, easily solved by changing the inner interpolating function to consider

continuous parts separately.

5.1.2 Verifying results with MC sampling

Following the methodology of the preliminary results section, the actual accuracy of the math-

ematical approximation can be determined against a Monte Carlo sampling approach. As ex-

plained, to reduce battery degradation, we can determine how much time the battery charge

is happening over 40 °C, a common upper bound on the temperature. From the limit curves

and the nominal average temperature in Fig. 5.2, the time spent over 40 °C can be computed

with a numerical integral. Plotting this mean value and standard deviation as the expected

mathematical pdf over the Monte Carlo results for ten thousand samples:

Figure 5.3: Probability distribution of the time that the CC-CV charging battery spends over 40 °C
for an uncertain ambient temperature. The histogram is built from 10k Monte Carlo samples. The

approximation pdf in red is built using second-order accurate CFD and linear SA.

Again, this result proves the significant accuracy and efficiency of the methodology used to

approximate the output dispersion. For the 10k samples used, exactly 99.65% fit inside the

45

Chapter 5. Results on continuous-discrete charging

upper and lower bounds found from the mathematical approximation in Fig. 5.2 against the

expected 99.7%. Computationally, the Monte Carlo analysis for 10k samples requires ∼ 10 min

which is 10x more than the sensitivity analysis. This new result verifies the significance of linear

sensitivity analysis to predict output probability distribution in a continuous-discrete charge

such as CC-CV.

5.2 Charging along with non-measurable state bounds

An important advantage of PETLION is that it incorporates unconventional general operating

modes such as CT , CPo, CCe, CCss, and Cσ previously described. The project has demon-

strated successful approximations for battery charging using conventional methods of CC and

CV. The same procedure can be extended using different mixed continuous-discrete operations

to assess its significance further. The issue when implementing sensitivity analysis on any other

charging paths is that other states are not measurable or controllable in real battery opera-

tions. Opposite from the current I, which is a directly adjustable input state and can be used

to create a CC path. This new approach aims to find an alternative method to compute para-

metric sensitivities on battery charges for non-measurable boundary states such as the plating

overpotential.

5.2.1 Results on an optimal CC-CPo-CV process

In addition to the main lithium-ion flows in battery reactions, other side elements interact in

the cell, causing degradation during charge and discharge. Some anodic reactions cause lithium

plating, which can limit the battery’s capacity. These reactions occur when the anodic lithium

plating overpotential is negative [3]. It is interesting thus to control whether the plating over-

potential ηp becomes negative with stochastic uncertainties.

Previous fast control using PETLION in [3] suggests CC −CPo−CV charge as an efficient

method that would extend the battery lifetime. The protocol is based on {SOC0 = 0%, I0 =

4C, Vmax = 4.1V, ηpmin = 0V, SOCmax = 60%} and finds a fast charging method that avoids

negative overpotential. The goal of this section is to determine how an uncertain ambient

temperature Tamb ∼ N(25 °C, 1 °C) can affect the output. The nominal charge results for this

simulation without uncertainties are given in Fig. 5.4. The voltage and plating bounds are

almost reached around the same time. When the plating boundary is hit, the full charging

speed is reduced, and the voltage evolves until it reaches the maximum. The battery reaches

the maximum 60% charge shortly after.

46

5.2. Charging along with non-measurable state bounds

Figure 5.4: Output states {I, V, ηp, SOC} for nominal CC-CPo-CV battery charge process. The
plating overpotential boundary is hit at t1 = 325.38s and the voltage boundary is hit at t2 = 544.25s.

Since the state of interest in this case is the plating overpotential, we can compute the

dispersion of this state when the ambient temperature is uncertain. The evolution of the nom-

inal ηp and the two limit simulations deviated by ±3std are computed following the previous

methodology:

Figure 5.5: Nominal lithium plating overpotential for I = 4C charge. Upper and lower bounds with
99.7% accuracy as a function of time using second-order accurate CFD. The left shows the complete

evolution, and the right shows a zoomed section where the limit states hit the negative boundary.

The results in Fig. 5.5 show that the actual point in time where this first bound is hit will

deviate ∆t = ±16.6s from the expected deterministic point and can happen at ∆ηp = ±7mV

difference. If the desired constraint was to avoid crossing over to negative potential values, the

CPo mode should start at ∼ 310s, the earliest bound. As explained, though, the lithium plating

overpotential ηp is not a measurable state in batteries, so using it in deviated simulations to

detect the actual points when this boundary is crossed would be unrealistic.

47

Chapter 5. Results on continuous-discrete charging

5.2.1.1 Charge state following measurable current curve I

As an alternative, the main current curve Î(t) can be used as the reference in uncertain simula-

tions. This method’s benefit is that the current state can be used as an input for any simulation.

The methodology is:

1. Computing the nominal simulation output starting at {I0 = 4C, SOC0 = 0%} and follow-

ing the 3 desired discrete constraints {Vmax, ηpmin , SOCmax}

2. Define from this main output states a function Î(t)

3. Compute the CFD parametric sensitivities by simulating a charge state that follows a

current function I = Î(t) with only 2 discrete constraints {Vmax, SOCmax}

This methodology gives three final model results: the nominal curve and the upper and

lower bounds. From these models, we can now plot the evolution of any state such as ηp. As

we can see from the dispersed output distribution in Fig. 5.6, the lithium plating overpotential

reaches negative values when there are uncertainties in the ambient temperature. To test the

accuracy of this dispersion and see if it fits 99.7% of the samples, we can also analyze this method

using Monte Carlo. In this case, the samples used are also modeled following the nominal curve

I = Î(t). We can predict that using this curve instead of directly tuning the CPo curve will

affect the distribution of the outputs and make the linear approximation less accurate as time

progresses.

Figure 5.6: Nominal lithium plating overpotential for I = 4C charge. Upper and lower bounds with
99.7% accuracy as a function of time using second-order accurate CFD. Left shows the complete evolution

and right shows a zoomed section where the limit states actually hit the negative boundary.

The mathematical linear approximation of the probability distribution can be plotted over the

Monte Carlo samples of the lithium plating overpotential at different time points (Fig. 5.7).

The fitting of the Monte Carlo samples for the plating overpotential is not as accurate as of the

previous measurable results. This result was an expected limitation of using linear approxima-

tions in non-measurable states. Nonetheless, the expected probability distribution does serve

48

5.2. Charging along with non-measurable state bounds

Figure 5.7: Comparing the mathematical probability distribution of the lithium plating overpotential
for the CC-CPo-CV model against the Monte Carlo approach for 5k samples. Upper and lower bounds
with 99.7% accuracy as a function of time using second-order accurate CFD. From top left to bottom

right the distributions show the overpotential at times t = {250, 350, 450, 600}s.

as a realistic boundary at different times according to Fig. 5.7. The highly focused distribution

at 600s is coherent with the CV charging mode. The plating is directly related to the applied

voltage, so the possible dispersion is lower. Considering the voltage constraint can explain the

fact that all the real distributions are slightly skewed to higher overpotential values. If we plot

the voltage curve for the linear approximated 99.7% success limit states:

Figure 5.8: Voltage curve for CC-CPo-CV when simulation follows nominal current curve for t < 545s
and V < Vmax. Upper and lower back-off bounds shown for 99.7% significance. Left shows the complete

charge and right shows a zoomed section where the limit states hit Vmax

We can see on Fig. 5.8 that the predicted upper limit for this methodology is reaching the

49

Chapter 5. Results on continuous-discrete charging

maximum voltage condition around ∼ 325s. Some simulations will hit the voltage limit much

earlier than the primary curve. More specifically, the voltage limit is hit at +2.72σV , which

means that ∼ 0.33% of the deviated simulations will never hit the plating constraint and follow

a CC-CV pattern instead.

5.2.1.2 Charge state following measurable current considering Vmax

The CV charge path goes at a much slower rate and delays the evolution of the other states.

When this last operational mode begins, the lithium plating overpotential increases rapidly (as

can be seen from the nominal curve in Fig. 5.6 for t > 550s). To better understand how this

boundary is affecting the dispersion of the model, the deviated simulation that reaches higher

voltages is regressed to the original V > Vmax point, and the charge is completed only at CV.

This simulation gives new bounds on the plating overpotential:

Figure 5.9: Plating overpotential curve for CC-CPo-CV considering that lower plating limit actually
follows a CC-CV charge. Upper and lower bounds shown for 99.7% accuracy as a function of time using

second-order CFD. Left shows the complete evolution and right shows a zoomed section.

This analysis shows that the lower boundary for 99.7% significance on the plating overpo-

tential follows a CC-CV charge path. The maximum voltage limit is reached before the lithium

plating overpotential becomes negative. This behavior can explain the Monte Carlo skewed

distributions in Fig. 5.7 since the samples running at lower plating potentials are reaching the

Vmax limit earlier, which increases the value of the plating rapidly, moving the complete prob-

ability distribution curve to the right. This extended analysis explains the results of including

stochastic uncertainties in a CC-CPo-CV charge.

To sum up, the usage of sensitivity analysis can provide great insight for understanding the

effect of uncertain parameters. The complementary study of the deviations on both limits can

accurately explain the new possible states for 99.7% of uncertain batteries. Also, the computa-

tional cost of the linear approximated limit states is ∼ 71s while the Monte Carlo for 5k samples

takes ∼ 64min. Coherently, more complex simulations take longer to run on PETLION: 10k

50

5.3. Degradation effects on long-term battery charging

samples of the CC-CV charge required only ∼ 10min. This issue makes stochastic uncertainty

quantification with linear sensitivity analysis an even better alternative when modeling more

and more complex methods. In the examples used so far, the computational time of sensitivity

analysis is of the order of ∼ 1min while Monte Carlo sampling for several hundreds of replicas

takes at least 10min and is directly dependent on the number of samples.

5.3 Degradation effects on long-term battery charging

To assess further the computational cost of more complex optimal charging paths, we can include

longer simulated battery operations. We have designed a PETLION simulation for long-term

battery degradation caused by continuous charge-discharge cycles. This simulation uses Imax =

2C and Vmax = 4.2V as general bounds. The lithium-ion battery is fully charged following

CC-CV paths and discharged completely during 500 cycles. The deterministic simulation alone

takes ∼ 8min. If we wanted to quantify uncertainty effects on these 500 cycles using Monte

Carlo sampling, the computational time for only 1k samples would be of the order of ∼ 6 days,

clearly unreasonable. We can use linear sensitivity analysis to estimate the final uncertainties

faster. Since this is a computationally intense simulation, we can use the original methodology

to compute the standard deviation of a single state. Given that we want to study long-term

degradation, a meaningful value is the State Of Health (SOH [%]). This state measures the

maximum battery charge concerning its original total capacity and directly indicates its aging

degradation.

For the deterministic simulation of 500 cycles, the final SOH was 76, 5%. Using the method-

ology chosen with second-order CFD to approximate linear sensitivity analysis when the ambient

temperature is uncertain, the final SOH is bounded for 99.7% of the batteries between 75.8%

and 77.1% SOH. The computational time required to find this dispersion was ∼ 84min con-

sidering both Julia compilation and run time. Even if this is a considerably high time, it is

still much faster than Monte Carlo and offers a very efficient approach to stochastic uncertainty

quantification in highly complex battery simulations.

51

Chapter 6

Conclusions

This project integrates stochastic uncertainties in lithium-ion battery simulations by defining

model parameters, such as the ambient temperature, using normal probability distributions.

The propagation of these uncertainties onto the output states is quantified using linear sensi-

tivity analysis and computed with second-order accurate Central Finite Differences. The main

conclusion derived from this study is that the methodology designed can efficiently and accu-

rately quantify stochastic uncertainty effects on some battery simulations. This methodology

can be easily extended to any desired operational mode available in PETLION for multiple

Li-ion battery materials, usage conditions, and uncertain parameters. The sensitivity results

for each model can define safety specifications better and limit manufacturing parameters with

tighter constraints.

The case studies presented demonstrate the proposed methodology’s accuracy and compu-

tational efficiency on different charging paths. Stochastic optimal control is applied to complete

CC-CV and CC-CPo-CV optimal charges for uncertain ambient temperature with computa-

tional times around 1min. The cases studied also prove that the uncertainty in battery model

parameters can cause significant state variation on optimal charging protocols. The states’ dis-

persion is noticeable when performing stochastic analysis with probabilistic parameters, proving

that a deterministic approach does not suffice. Using sensitivity analysis on optimal control also

gives greater insight into how each parameter affects the evolution of the battery states.

Moreover, the example studies shown in this project verify the mathematical accuracy of

sensitivity analysis for uncertainty quantification, especially for measurable states. Firstly, it is

verified that a Taylor expansion on the value of states against the deviation of the model pa-

rameters is an accurate estimator of the state dispersion δψ. Secondly, it is shown that a linear

52

6.1. Limitations of the current work

first-order expansion can characterize the nonlinear model dispersion and that the mathematical

expected normal distribution is fulfilled for measurable states. Finally, this work demonstrates

that second-order Central Finite Differences can be an excellent numerical estimator for sen-

sitivity analysis in measurable case studies. When using sensitivity analysis to quantify the

uncertainty propagation on an optimal CC-CPo-CV charge, we find that discrete transitions be-

tween non-measurable operating modes can be incompatible with the linear approximation. This

precision loss shows the limitations of linearized modeling for non-measurable states, especially

using them as charging constraints. Nonetheless, even with lower accuracy on non-measurable

states, the fitting of the linear approximation is high enough to bound the desired states success-

fully. Using the linear approximation, we can estimate the probability that the charging battery

crosses the negative lithium overpotential boundary. We could likewise estimate the time spent

below this boundary and this state’s average value, correlated with long-term battery degrada-

tion metrics.

Overall, the benefits of implementing sensitivity analysis are clear, and they can lead to

considerable advantages in battery modeling for increased understanding and safety. The most

significant results found are the methodology and procedure implemented and verifying that they

are successful. Sensitivity analysis can accurately predict the probability distribution of most

states in battery modeling with efficient computational times. The methodology to integrate

stochastic uncertainties in simulation is a powerful tool much faster than Monte Carlo sampling.

The computational time of Monte Carlo compared to sensitivity analysis was 5x faster on a

CC-CV charge, 54x for CC-CPo-CV, and 470x for the long term 500 cycles model (all times

given proportional for five thousand samples in Monte Carlo for a single uncertain parameter).

6.1 Limitations of the current work

Some limitations were found with the stochastic uncertainty quantification methodology de-

signed. A significant issue in this study is that the literature estimated parameter distributions

for lithium-ion batteries give non-physical results when applied in the simulation. This prob-

lem indicates the significant uncertainty associated with battery modeling since the parameters

can span several orders of magnitude according to different estimation methods. Further work

should be done to define better the multivariate normal probability distribution of lithium-ion

battery parameters. Knowing accurate distributions should be the essential requirement to make

stochastic uncertainty quantification significant in real applications.

53

Chapter 6. Conclusions

Lastly, a critical issue that should be noted is that the results shown here are based on specific

test cases with some limited parameters, operating boundaries, and discrete constraints. Further

testing of other optimal control charging paths is required to assess stochastic optimal control’s

general accuracy and significance. Possible new approaches that could extend the applications of

stochastic optimal control include new uncertain parameters with various standard deviations,

more output states of interest, and testing new mixed continuous-discrete charging protocols.

6.2 Future work or alternatives

This thesis serves as a base for stochastic uncertainty quantification in optimal control of lithium-

ion batteries. It is an extension of previous studies that only used deterministic parameters.

One essential application of sensitivity analysis in battery modeling could be its real-time usage

on remote servers or onboard. Using this methodology onboard would require computing the

sensitivity results in real-time (the methodology proposed can only find the deviated states after

the complete simulation is known). If this real-time application is successful and if the software

is fast enough, efficient, and accurate, it could be integrated into portable devices or electric

vehicles to predict deviations on the fly. This application could potentially increase the safety of

lithium-ion batteries and prevent irreversible damage to the cells. It would represent an exciting

development of Advanced Battery Management Systems (ABMS).

An exciting path for future development that is left open in this project is the further study

of sensitivity equations. This mathematical method for sensitivity analysis could be much more

computationally efficient and lead to precise results. Some improvement suggestions in the

preliminary case studies could be implemented in future research, such as defining the Jacobians

using sparse matrices or employing a symbolic approach to the complete PETLION model.

Sensitivity equations could give results in real-time and thus be integrated for the onboard

applications previously described.

Lastly, besides linear sensitivity analysis, many other mathematical methods could be im-

plemented to quantify uncertainty and carry out stochastic optimal control. One of the original

ideas was using Polynomial Chaos Expansion (PCE), a popular alternative method for UQ.

Some literature was investigated, but the mathematical theory’s implementation was not triv-

ial. Exploring the integration of Polynomial Chaos Expansions to propagate uncertainties in

stochastic batteries remains an option for future work.

54

Appendix A

Chemical simple example

The chemical example analyzed was solved using multiple approaches as a 1st attempt to com-

pute parametric sensitivities on an ODE. The easiest option is to use Julia built-in sensitivity

libraries such as DiffEqSensitivity and ForwardDiff. These libraries are very useful to determine

sensitivity of simple equations that can be expressed in semi-explicit form with a mass matrix

for the derivative terms. It works perfectly for continuous functions but can’t be applied to

discrete-continuous processes such as PETLION, which is also built in a fully implicit form and

optimized in a way that the DAEfunction isn’t accessible to use this kind of libraries. The code

for building Sensitivity Analysis using built-in libraries is:

Listing A.1: ‘SA of basic chemistry reaction using Julia sensitivity open source libraries’
1 using Di f f e r en t i a lEqua t i on s , D i f fEqSen s i t i v i t y , ForwardDif f
2

3 function f (dC,C, p , t) # De f i n i t i o n o f the DAE in semi−e x p l i c i t form
4 C_A, C_B, C_C = C
5 C_A0 , k_1 ,k_2 ,k_3 = p
6 dC [1] = −k_1∗C_A
7 dC [2] = k_1∗C_A − k_2∗C_B + k_3∗C_C
8 dC [3] = sum(C) − (0 + 0 + C_A0)
9 nothing

10 end
11

12 M = [1 . 0 0 0 ; 0 1 .0 0 ;0 0 0] # Mass matrix
13 p = [1 . 0 , 1000 , 1 , 1] # Parameters main va lue s
14 vars = (:C_A0 , : k_1 , : k_2 , : k_3) # Parameters names
15

16 u0 = [1 . 0 , 0 . 0 , 0 . 0] # I n i t a l c oncen t ra t i on s
17 tspan = (0 . 0 , 0 . 0 2) ; # Time span with main changes f o r rap id r e a c t i on 1
18 N = length (u0) ; M = length (p)
19

20 func = ODEFunction (f , mass_matrix = M)
21

22 # Solv ing DAE with Forward S e n s i t i v i t y added
23 prob = ODEForwardSensitivityProblem (func , u0 , tspan , p ; s en s e a l g=

ForwardD i f f S en s i t i v i t y ())

55

Appendix A. Chemical simple example

24 @time s o l = so l v e (prob , Rodas5 (a u t o d i f f=fa l se) ; r e l t o l=1e−8, ab s t o l=1e−8)
25

26 # Solv ing DAE without Forward S e n s i t i v i t y
27 prob_no_sens = ODEProblem(func , u0 , tspan , p)
28 @time s o l_no_sens = so l v e (prob_no_sens , Rodas5 (a u t o d i f f=fa l se) ; r e l t o l=1e−8, ab s t o l=1

e−8)

From this first approach, the resolution of the basic DAE without sensitivity analysis takes

857 µs and the one including parametric sensitivities takes 1341 µs. This result has a coher-

ent order of magnitude since the latter has to solve a slightly larder ODE but with the same

specifications and general terms.

Once this approach has been tested and the results were known, the Sensitivity Equations

had to be built manually for the DAE model (which is the one equivalent to the notation of the

PETLION software). The complete code used is:

Listing A.2: ‘SA of basic chemistry reaction using Sensitivity Equations to expand the DAE system’
1 # Goal − Complete the S e n s i t i v i t y Ana lys i s on the system o f DAEs
2 using Sundia ls , D i f f e r en t i a lEqua t i on s , ForwardDiff , F i n i t eD i f f , NLsolve , P lo t s
3

4 # Simulate the concent ra t i on o f s p e c i e s A, B and C in c t t Volume batch : A −> B <−> C
5 ## ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ DAE model ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
6 # dCA/dt = − k1∗CA
7 # dCB/dt = k1∗CA − k2∗CB + k3∗CC
8 # CA(t) + CB(t) + CC(t) = CA(0) + CB(0) + CC(0)
9

10 CA_0 , CB_0 , CC_0 = 1 . 0 , 0 . 0 , 0 . 0 ; # concen t ra t i on s [mol/L]
11 k1 , k2 , k3 = 1000 .0 , 1 . 0 , 1 . 0 ; # ra t e cons tant s [1/ s]
12 # Set o f parameters and va lue s that in c lude un c e r t a i n t i e s / do the SA:
13 θ = [CA_0 ; k1 ; k2 ; k3] ;
14

15 function F(du , u , p , t) # Basic DAE model with in−p lace r e s i d u a l output
16 CA_0 , k1 , k2 , k3 = p ;
17 CA, CB, CC = u
18 dCA, dCB = du
19 [−k1∗CA − dCA, k1∗CA − k2∗CB + k3∗CC − dCB, CA + CB + CC − (CA_0 + CB_0 + CC_0)]
20 end
21

22 function F_sens (res , du , u , p , t) # Extended DAE f o r s e n s i t i v i t i e s
23 n_params = s i z e (p , 1) ; n_terms = In t eg e r (s i z e (u , 1) /(n_params+1))
24

25 y = u [1 : n_terms] ; yp = du [1 : n_terms] # Function s t a t e s x and dx
26 r e s [1 : n_terms] = F(yp , y , p , t) # Function r e s i d u a l s
27

28 j a c_Fx = ForwardDif f . j a cob ian (x −> F(yp , x , p , t) , y)
29 j a c_Fxp = ForwardDiff . j a cob ian (x −> F(x , y , p , t) , yp)
30 j a c_Fp = ForwardDif f . j a cob ian (x −> F(yp , y , x , t) , p)
31

32 for i in 1 : n_params
33 r e s [n_terms∗ i + 1 : n_terms ∗(i +1)] = ja c_Fx∗u [n_terms∗ i + 1 : n_terms ∗(i +1)] +

ja c_Fxp∗du [n_terms∗ i + 1 : n_terms ∗(i +1)] + ja c_Fp [1 : n_terms , i]
34 end
35 end

56

36 # ∗∗
37 # I n i t i a l va lue s and i n i t i a l i z a t i o n o f the DAE problem and s e n s i t i v i t y an a l y s i s :
38 function g_i n i t a l ! (fvec , CC)
39 t0 = 0
40 f v e c [1] = F(z e ro s (3) , (CA_0 , CB_0 , CC[1]) , θ , t0) [3]
41 end
42

43 # 1) at t = 0 −> sp e c i f y CA_0 and CB_0 and then GUESS f o r CC_0
44 # 2) To f i nd i n i t i a l va lue s :
45 # 2 . 1) Solve g (y , t) = 0 with NLSolve (no d e r i v a t i v e terms) − f i nd y (0)
46 CC_i n i t i a l = n l s o l v e (g_i n i t a l ! , [0 . 1] , method = : newton) . ze ro [1]
47 # 2 . 2) Exp l i c i t l y s o l v e the system f (y , t) − y ’ = 0 f o r o the r s to f i nd y ’ (0)
48 dCA_0 = −k1∗CA_0
49 dCB_0 = k1∗CA_0 − k2∗CB_0 + k3∗CC_0
50 cCC_0 = CA_0 + CB_0 + CC_i n i t i a l − (CA_0 + CB_0 + CC_0)
51

52 # 3) I n i t i a l va lue s f o r the s e n s i t i v i t y parameters :
53 du0 = [dCA_0 , dCB_0 , cCC_0] ; u0 = [CA_0 , CB_0 , CC_i n i t i a l] ; vt0 = 0 ;
54

55 # Declare n_eqs and n_params f o r use in gene ra l f unc t i on :
56 n_terms = s i z e (u0 , 1) ; n_params = s i z e (θ , 1) ;
57

58 # Def ine i n i t i a l j a cob ian matr i ce s :
59 j a c_Fx_0 = ForwardDiff . j a cob ian (x −> F(du0 , x , θ , t0) , u0) ;
60 j a c_Fxp_0 = ForwardDif f . j a cob ian (x −> F(x , u0 , θ , t0) , du0) ;
61 j a c_Fp_0 = ForwardDif f . j a cob ian (x −> F(du0 , u0 , x , t0) , θ) ;
62

63 # 3 . 1) Solve the i n i t i a l s e n s i t i v i t y va lue s f o r the l a s t d i f f equat ion (not 0)
64 sens_0 = ze ro s (n_params∗n_terms) ;
65 for i in 1 : n_params
66 sens_0 [n_terms∗ i] = −j a c_Fx_0 [3 , 3] \ j a c_Fp_0 [3 , i] ;
67 end
68

69 # The i n i t i a l va lue f o r (dC_A/dC_A0) has to be 1
70 sens_0 [1] = 1 ; sens_0 [3] = 0
71

72 # 3 . 2) Compute the va lue s f o r the i n i t i a l s e n s i t i v i t y d e r i v a t i v e s :
73 # Solv ing the system o f equat ions : ∂ f /∂y ∗ s_p + ∂ f /∂y ’ ∗ s_p ’ + ∂g/∂p = 0
74 # in matrix form −> dsens_0 = −j a c_Fxp\(j a c_Fp + jac_Fx∗ sens_0)
75 dsens_0 = ze ro s (n_params∗n_terms) ;
76 for i in 1 : n_params
77 dsens_0 [n_terms ∗(i −1) + 1 : n_terms∗ i − 1] = (− j a c_Fxp_0\(j a c_Fp_0 [1 : n_terms , i] +

ja c_Fx_0∗ sens_0 [n_terms ∗(i −1) + 1 : n_terms∗ i])) [1 : 2] ;
78 end
79

80 # I n i t i a l va lue s f o r extended DAE and s o l v e r time span :
81 y0 = vcat (u0 , sens_0) ; yp0 = vcat (du0 , dsens_0) ; tspan = (0 . 0 , 0 . 0 2) ;
82

83 # Solv ing the extended DAE us ing Model ingToolk it f un c t i on s
84 DAE_fun = DAEFunction (F_sens)
85 prob = DAEProblem(DAE_fun , yp0 , y0 , tspan , θ , d i f f e r e n t i a l_vars = [true , true , false ,

true , true , false , true , true , false , true , true , false , true , true , fa l se])
86 @time s o l = so l v e (prob , IDA())
87

88 # Plot r e s u l t s . . .

The results from this self built approach to integrate sensitivity equations give identical

57

Appendix A. Chemical simple example

results to the ones simulated with the Julia libraries. The resulting code is much more com-

plex because initial values for the concentrations and parametric sensitivity have to be exactly

determined before solving the DAE. As can be seen, this code has the original DAE function

F which depends on the 4 states required and then has the extended DAE system of equa-

tions given by F_sens which includes the sensitivity set of equations for every parameter of

interest. Thus, converting the system from a three equation DAE to a fifteen equation DAE

nx + nθ ∗ nx = 3 + 4 ∗ 3 = 15. The computational time required to solve this extended system

is 6588 µs which is still coherent compared to the more efficient Julia alternatives as it is in a

similar order of magnitude but much less optimized.

The parametric sensitivity results for this simple chemical reaction in a short time (20ms)

where given in the case study. Results for a longer reaction time (10s) are shown below:

Figure A.1: Complete evolution (10s) of the parametric sensitivity of each substance in the chemical
reaction example against the desired parameters in θ = [CA,0, k1, k2, k3].

58

Appendix B

Implementation of SA for PETLION

Following the notation from the Mathematical Background and Methodology section, the steps

used to model any optimal charging protocol with uncertainties in PETLION is:

...

1. Run any desired operational mode CC,CV,CPo,CT, ... with nominal parameters

2. Choose the uncertain parameters that affect this model and their normal distributions

3. Choose a success range α for the percentage of accuracy desired in the output dispersion

4. For every or all states of interest of the simulated model:

(a) Compute the state’s parametric sensitivities L(t) using Central Finite Differences

(b) Compute the standard deviation using the definition of σψ in (3.3)

(c) Use the standard deviations equivalent to α to determine new state limits

5. Check new boundaries (time constraints, maximum values, etc.) for the deviated model.

Determine new back-off from results of interest against original deterministic results.

...

The numerical implementation used for these steps is described on this section. First of all,

to run the desired operational mode with nominal parameters we must first set the parameters

and constraints of the simulation using p::PETLION.model. Then the simulation is run using

simulate(p, I = 4, SOC = 0, V_max = 4.1, ...) for any chosen operational modes and

maximum and minimum boundaries. The uncertain parameters’ names are defined in the vec-

tor parameter_names = (:T_amb, :D_sn, :D_sp) and their nominal values in parameter

_values. These vectors will be passed to the following functions for uncertainty quantification.

The desired success range is α = 99.7% in these functions which is the probability range covered

59

Appendix B. Implementation of SA for PETLION

when considering ±3std from the nominal state. The functions designed to implement the steps

(a), (b), and (c) for any state are given below.

B.1 Parametric sensitivities L(t) using CFD

The function to compute sensitivities for a single state of interest is built using the algorithm

defined above for Central Finite Differences (coefficients = [−1/2, 1/2], indices = [−1, 1]) with

step size ∆ = 10−3. The function is generalized to compute the sensitivity for multiple output

states ψ depending on the requirements.

Listing B.1: ‘Function to compute sensitivity vector of a single state for any set of uncertain parameters’
1 function compute_s e n s i t i v i t y (p_threads , parameter_names , parameter_values , time_points , output ,

s imulate_fun : : Function = my_simulate , x . . . ; kw . . .)
2 # Chosen step f o r CFD and i t s indexes and c o e f f i c i e n t s f o r second−order accuracy
3 step_s i z e = 10 (−3) ; indexes = [−1 1] ; c o e f f i c i e n t s = [−1/2 1/2]
4 s o l_dummy = simulate_fun (parameter_names , parameter_values , p_threads [1] , time_points ,
5 x . . . ; kw . . .)
6 s o l_sample = s im i l a r (g e t f i e l d (s o l_dummy, Symbol (output)))
7 s o l_sens = [s o l_sample for i in 1 : l ength (parameter_names) ∗ l ength (indexes)]
8 I = Car t e s i an Ind i c e s ((1 : l ength (parameter_names) , 1 : l ength (indexes)))
9 Threads . @threads for i t e r in 1 : l ength (I)

10 ∆_parameter = parameter_va lues [I [i t e r] [1]] ∗ s tep_s i z e
11 p_dummies = copy (parameter_va lues)
12 p_dummies [I [i t e r] [1]] = p_dummies [I [i t e r] [1]] + indexes [I [i t e r] [2]] ∗∆_parameter
13 s o l_dummy = simulate_fun (parameter_names , p_dummies , p_threads [Threads . thread id ()] , time_

points , x . . . ; kw . . .)
14 s o l_sens [i t e r] = c o e f f i c i e n t s [I [i t e r] [2]] . ∗ g e t f i e l d (s o l_dummy, Symbol (output))
15 end
16 s o l_sens_d i c t = Dict {Symbol ,Any}()
17 for i in 1 : l ength (parameter_names)
18 s o l_sens_d i c t [parameter_names [i]] = (s o l_sens [i] + s o l_sens [l ength (parameter_names)+i]) . / (

parameter_va lues [i]∗ s tep_s i z e)
19 end
20 return s o l_sens_d i c t
21 end

B.2 Standard deviation of the output state

Once the sensitivity vector L(t) is known for the state of interest it can be used to compute the

final deviation. As explained on the mathematical background, the standard deviation of the

state depends on the vector L(t) and the matrix of variances of the uncertain parameters Vθ.

The matrix of standard deviations is defined using σi = 0.5% · i for any parameter used except

for the temperature which has σTamb = 1 °C. The matrix could be specifically defined for any

desired dispersion. The sensitivity vector for multiple parameters at every time point is used

separately to find σψ(t) which is saved as std_output.

Listing B.2: ‘Function to compute the standard deviation of any state given the sensitivity results from
the previous function’

1 using LinearAlgebra

60

B.3. Determine new state limits

2 ## 1 s t s e n s i t i v i t y ana l y s i s attempt f o r 1 vector o f s e n s i t i v i t i e s :
3 function compute_std (parameter_names , parameter_values , s e n s i t i v i t y_d i c t)
4 # Create covar iance matrix accord ing to used uncer ta in parameter
5 θ_1_names = parameter_names ; nominal_θ = parameter_va lues ;
6 std_vector = [(value ∗0 .005) 2 for value in parameter_va lues] # Variance : σ∗σ diagona l matrix
7 temp_index = f i n d a l l (parameter_names .== :T_amb) [1] # std i s 1C in temperature
8 std_vector [temp_index] = 1 .0
9 V_θ_1 = zero s (l ength (parameter_names) , l ength (parameter_names))

10 V_θ_1[d iag ind (V_θ_1)] .= std_vector
11
12 # Compute std with covar iance matrix and s e n s i t i v i t y r e s u l t s f o r every time point
13 std_output = f l o a t . (s e n s i t i v i t y_d i c t [parameter_names [1]])
14 for time_i in 1 : l ength (std_output)
15 i f l ength (std_output [1]) == 1
16 L = [s e n s i t i v i t y_d i c t [name] [time_i] for name in parameter_names]
17 V_ψ = L’∗V_θ_1∗L
18 std_output [time_i] = sq r t (abs (V_ψ))
19 else
20 for space_i in 1 : l ength (std_output [1])
21 L = [s e n s i t i v i t y_d i c t [name] [time_i] [space_i] for name in parameter_names]
22 V_ψ = L’∗V_θ_1∗L
23 std_output [time_i] [space_i] = sq r t (abs (V_ψ))
24 end
25 end
26 end
27 return std_output
28 end

B.3 Determine new state limits

Finally, once the standard deviation of the desired state is known we can use it to study the

probabilistic distribution of that variable in time with any desired accuracy α. In this case, since

the probability significance chosen is always 99.7% the number of standard deviations from the

mean required are 3. To analyze the upper and lower bounds of this deviation in the chosen

state we can just plot the nominal curve and ribbon edges using the results from std_output

found before.

B.4 Final optimal approach and implementation

Lastly, as explained on the results section, this methodology is optimized to compute the sensi-

tivities of all the output states simultaneously. Since the deviated model has to be run 2 times

for CFD, the resulting states can be computed directly from that same model without having to

call the compute_sensitivity function multiple times. To do so, the previous functions are

fused and applied to all the states getfield(model.results[end].opts.var_keep,state)

== true which are all the states significant to any model outputs in PETLION.

61

Bibliography

[1] Berliner, Marc D et al. “Methods—PETLION: Open-Source Software for Millisecond-Scale
Porous Electrode Theory-Based Lithium-Ion Battery Simulations”. In: Journal of The
Electrochemical Society 168.9 (2021), p. 090504.

[2] Berliner, Marc D et al. “Nonlinear Identifiability Analysis of the Porous Electrode Theory
Model of Lithium-Ion Batteries”. In: Journal of The Electrochemical Society 168.9 (2021).

[3] Berliner, Marc D. et al. “Fast Charging of Lithium-ion Batteries by Mathematical Reformu-
lation as Mixed Continuous-Discrete Simulation”. In: 2022 American Control Conference
(ACC). accepted. IEEE. 2022.

[4] Caracotsios, Makis and Stewart, Warren E. “Sensitivity analysis of initial value problems
with mixed odes and algebraic equations”. In: Computers and Chemical Engineering 9.4
(1985), pp. 359–365.

[5] Galan, S., Feehery, William, and Barton, Paul. “Parametric sensitivity functions for hybrid
discrete/continuous systems”. In: Applied Numerical Mathematics 31 (1999), pp. 17–47.

[6] Grey, Clare P. and Hall, David S. “Prospects for lithium-ion batteries and beyond—a 2030
vision”. In: Nature Communications 11 (2020).

[7] Hannan, M.A. et al. “Review of energy storage systems for electric vehicle applications:
Issues and challenges”. In: Renewable and Sustainable Energy Reviews 69 (2017), pp. 771–
789.

[8] Hindmarsh, Alan C et al. “SUNDIALS: Suite of nonlinear and differential/algebraic equa-
tion solvers”. In: ACM Transactions on Mathematical Software (TOMS) 31.3 (2005),
pp. 363–396.

[9] Hindmarsh, Alan C. et al. User Documentation for IDA. v6.1.1. 2021.

[10] Liu, Kai et al. “Materials for lithium-ion battery safety”. In: Science Advances 4.6 (2018).

[11] Ma, D. L., Chung, S. H., and Braatz, R. D. “Worst-case performance analysis of optimal
batch control trajectories”. In: (1999), pp. 3256–3261.

[12] Nagy, Zoltan and Braatz, Richard. “Distributional uncertainty analysis using power series
and polynomial chaos expansions”. In: Journal of Process Control 17 (Mar. 2007), pp. 229–
240.

63

Bibliography

[13] Newman, J and Tiedmann, W. “Porous-Electrode Theory with Battery Applications”. In:
AlChE Journal 21.1 (1975), pp. 25–41.

[14] Rackauckas, Christopher and Nie, Qing. “Differentialequations. jl–a performant and
feature-rich ecosystem for solving differential equations in julia”. In: Journal of Open Re-
search Software 5.1 (2017).

[15] Revels, Jarrett, Lubin, Miles, and Papamarkou, Theodore. Forward-Mode Automatic Dif-
ferentiation in Julia. 2016.

[16] Serban, Radu et al. User Documentation for IDAS. v5.1.1. 2021.

[17] Tamilselvi, S. et al. “A Review on Battery Modelling Techniques”. In: Sustainability 13.18
(2021).

[18] Torchio, M et al. “LIONSIMBA: A Matlab framework based on a finite volume model suit-
able for Li-ion battery design, simulation, and control”. In: Journal of The Electrochemical
Society 163.7 (2016), A1192–A1205.

[19] Van den Bossche, Peter et al. “SUBAT: An assessment of sustainable battery technology”.
In: Journal of Power Sources 162.2 (2006), pp. 913–919.

[20] Various authors. The Julia Programming Language. 2021. url: https://julialang.
org/ (visited on 05/10/2022).

64

https://julialang.org/
https://julialang.org/

	Abstract
	Resum
	Resumen
	Nomenclature
	Acknowledgments
	Contents
	List of Figures
	Introduction
	Context and motivation
	General objectives
	Overview

	State of the art and Applications
	Lithium Ion Batteries
	Battery fundamentals
	Hazards and use assessment
	Future prospects

	Battery modeling and optimal charging
	Porous Electrode Theory (PET)
	The PETLION model and software
	Mixed continuous-discrete simulation for optimal charging

	The Julia language

	Mathematical background and Methodology
	Uncertainty quantification
	UQ on Differential-Algebraic Equations

	Sensitivity Analysis
	Output probability distribution with 1st order approximation
	Sensitivity Equations for differential systems
	Derivation of the sensitivity equations
	Initial conditions in sensitivity equations
	Numerical implementation of sensitivity equations

	Finite Differences to compute the sensitivity vector
	Numerical implementation of Central Finite Differences

	Logarithmic sensitivity equations for small parameters

	Methodology for implementing Sensitivity Analysis

	Preliminary Results
	Chemical reaction example
	ODE approach
	DAE approach
	Evolution of the states in the reaction
	Sensitivity analysis

	Sensitivity Analysis of PETLION
	SA using Sundials
	SA using sensitivity equations
	Issues with this method

	Sensitivity Analysis using Central Finite Differences

	Uncertainty Quantification of PETLION's states
	Accuracy of Central Finite Differences against Monte Carlo sampling
	Second-order expansion for Sensitivity Analysis
	SA by sampling original nonlinear model

	General parametric sensitivities of PETLION
	Uncertain parameter distributions in lithium-ion batteries
	Basic charge sensitivity analysis with multiple uncertain parameters

	Results on continuous-discrete charging
	Uncertainty Quantification on a CC-CV charge
	Sensitivity Analysis on a discrete step in CC-CV
	Verifying results with MC sampling

	Charging along with non-measurable state bounds
	Results on an optimal CC-CPo-CV process
	Charge state following measurable current curve I
	Charge state following measurable current considering Vmax

	Degradation effects on long-term battery charging

	Conclusions
	Limitations of the current work
	Future work or alternatives

	Chemical simple example
	Implementation of SA for PETLION
	Parametric sensitivities L(t) using CFD
	Standard deviation of the output state
	Determine new state limits
	Final optimal approach and implementation

