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ABSTRACT: The Arctic environment is changing, increasing the vulnerability of local communities 
and ecosystems, and impacting its socio-economic landscape. In this context, weather and climate  
prediction systems can be powerful tools to support strategic planning and decision-making  
at different time horizons. This article presents several success stories from the H2020 project 
APPLICATE on how to advance Arctic weather and seasonal climate prediction, synthesizing the 
key lessons learned throughout the project and providing recommendations for future model and 
forecast system development.
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C limate change is particularly prominent in the Arctic, where local and remote feedback 
mechanisms amplify the warming signal, and the accelerating retreat in snow and 
ice cover in conjunction with an increase in humidity are expected to promote the 

occurrence of extreme temperature and rainfall events (Bintanja 2018; Dobricic et al. 2020). 
All these changes are considerably affecting local communities and wildlife (Walsh et al. 
2020), impacting economic activities such as trans-Arctic shipping, resource extraction and 
fisheries (Pizzolato et al. 2016; Nishio et al. 2020), and bringing Arctic sovereignty into the 
geopolitical agenda (Jensen and Hønneland 2015). To improve the preparedness for future 
changes in the region, there is a pressing need to advance the weather and climate prediction 
systems in the Arctic, where skill is generally lower than at midlatitudes (Jung et al. 2016). 
Flagship international activities like the Year of Polar Prediction (YOPP; Goessling et al. 2016) 
and the Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC; Shupe 
et al. 2022) have been put forward to significantly advance the observing, modeling and 
prediction capabilities in polar regions.

The accuracy of numerical weather predictions (NWP) and climate predictions largely relies 
on our understanding of the relevant processes governing the global and regional weather and 
our ability to simulate them with numerical models. Enhancing the realism of such models 
is therefore expected to improve the predictive capacity in the Arctic. This can be achieved 
by increasing the vertical and/or horizontal model resolution to explicitly resolve finer-scale 
processes and structures (e.g., sea ice leads, boundary layer), adding new physical components 
(e.g., interactive sea ice, atmospheric chemistry), or improving existing parameterizations to 
better describe the contribution of unresolved processes (e.g., melt ponds, form drag, cloud 
microphysics). Another crucial step is data assimilation, the process in which the model 
is blended with observations to create the best possible initial conditions for the weather 
and climate predictions. This is a critical process to fully exploit the predictability from the 
slowly-varying Earth system components. Further predictive skill improvements can there-
fore be achieved by increasing the uptake of Arctic observations in the assimilation process.  
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An efficient generation and exploitation of ensemble forecasts can also offer important predic-
tive advantages, like a better characterization of the forecast uncertainty and more efficient 
constraint of the predictable signals. Likewise, multimodel forecast ensembles can bring 
further advantages as a better sampling of structural model uncertainty (Min et al. 2020).

Over the last four decades, major NWP improvements have been achieved in a so-called 
quiet revolution (Bauer et al. 2015), underpinned by continuous scientific and technical 
advances at weather prediction centers worldwide. These improvements have gone hand in 
hand with considerable advances in supercomputing technologies and power, and a growing 
network of high-quality observations, which have been jointly leveraged to improve model 
fidelity and perform larger ensembles of predictions. Predictive skill has also increased at 
longer forecast horizons, specially at subseasonal and seasonal scales (Vitart and Robertson 
2018; Tang et al. 2018). In the Arctic, seasonal predictions of features like the sea ice edge 
and surface air temperature already show promising potential (Day et al. 2014; Zampieri  
et al. 2018; Dirkson et al. 2019). Such predictions are being promoted and intercompared for 
both dynamical and statistical systems—currently showing similar levels of skill—through the 
yearly Sea Ice Outlooks (Steele et al. 2021) of the Sea Ice Prediction Network Phase 2 (SIPN2).

However, the Arctic is a region where Earth system predictions have suffered from both 
reduced availability of in situ observations and model limitations to realistically simulate the 
relevant physical processes (Jung et al. 2016). To help overcome these problems, the European 
H2020 project APPLICATE (https://applicate-h2020.eu/; November 2016–May 2021) fostered new 
dedicated research to improve weather and seasonal climate predictive skill in and around 
the Arctic, playing a key role in international initiatives like YOPP, MOSAiC, and SIPN2. In 
the following, we present a selection of lessons learned throughout APPLICATE, followed by 
a list of recommendations for Arctic weather and climate forecast system development.

Improving forecast initialization through enhanced assimilation of observations
Increasing the uptake of Arctic observations is key to initializing forecast models with a better 
estimate of the observed state. For this, understanding which assimilated observations yield 
higher predictive potential is essential.

Observing System Experiments, in which different observation types were alternately 
excluded from data assimilation when creating the initial conditions for the Integrated  
Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts  
(ECMWF), were used to perform a first comprehensive study documenting the role of different 
observation sources on Arctic NWP skill (Lawrence et al. 2019). All observations were shown 
to positively impact short- and medium-range forecast skill in the Arctic troposphere (e.g., 
in Figs. 1a,b for pan-Arctic 500 hPa geopotential height). Microwave sounding observations 
from low-Earth-orbit satellites and conventional observations showed the largest contributions 
to skill in summer and winter, respectively, as indicated by the fact that they led to larger 
random forecast errors when their respective observations were excluded. The analysis also 
showed that microwave sounding data were suboptimally used in winter, in particular over 
snow and sea ice covered areas, where their uptake was reduced (Figs. 1c,d) due to model 
errors and increased uncertainties in estimating surface emissivity and temperature. This 
study thus provided a good example of how forecast initialization and model development 
are interconnected.

The implementation of new nudging capabilities in three different APPLICATE seasonal 
forecast systems showed promising benefits from the assimilation of sea ice properties on 
the Arctic prediction skill. Blockley and Peterson (2018) found remarkable improvements 
in predicting the summer Arctic sea ice extent and the local surface weather when satel-
lite observations of sea ice thickness (SIT) were used to initialize the Met Office Global 
Seasonal forecast system (GloSea; Fig. 2a). The assimilation of different SIT products 
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was later found to also enhance the short-term (up to 5 days) predictive skill of sea ice 
concentrations (Fiedler et al. 2022; Mignac et al. 2022), an important milestone toward 
the future operational implementation of SIT assimilation within Met Office forecasting 
systems. However, the limited length of current SIT observations precludes performing 
long hindcasts to robustly bias-correct the forecasts and thus reduce forecast uncertainty 
(Blanchard-Wrigglesworth et al. 2017). A more idealized study, assimilating only sea ice 
freeboard observations in EC-Earth with an ensemble Kalman filter (EnKF), was also 
shown to improve the prediction of sea ice extent in July–October (Fig. 2b), in particular 
the September minimum. A different study, also based on EC-Earth predictions, demon-
strated that forecast errors around the sea ice edge can be reduced by assimilating sea ice 
concentrations through nudging (Fig. 2c). These latter predictions even showed increased 
skill in the summer atmospheric circulation over the North Atlantic and Eurasia through 
an improved representation of the teleconnection mechanisms with the regions where sea 
ice errors were reduced (Acosta Navarro et al. 2022).

Fig. 1. (a),(b) Normalized change in the standard deviation of the forecast errors of ECMWF IFS system for the Arctic  
geopotential height at 500 hPa for different observation system experiments for the summer and winter seasons,  
respectively. Forecast errors are verified against the ECMWF operational analysis. Values are given as fractions with respect 
to the errors of a control forecast in which all observations are assimilated. Positive values in this quantity indicate that  
random forecast errors increase when the respective observations are excluded. (c),(d) Number of observations from 
channel 5 of the microwave sounding unit AMSU-A that were assimilated in the ECMWF operational system in June– 
September 2016 and in December 2017–March 2018, respectively. All panels are reproduced from Lawrence et al. (2019).
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Model development to enhance process representation
APPLICATE also explored how to improve Arctic forecasts through enhanced process  
representation. New or revised model components in APPLICATE NWP systems, includ-
ing a version of IFS-HRES with a multilayer snow scheme (Arduini et al. 2019; Day et al. 
2020) and new versions of ARPEGE, AROME and IFS-HRES with dynamic sea ice models  

Fig. 2. (a) September 2012 mean probability of sea ice for two ensembles of seasonal forecasts 
made with the GloSea system in which sea ice thickness observations are not included (CTRL-HC, 
left) and included (ThDA-HC, right) within the model initialization. Contours of 15% sea ice  
concentration (SIC) are overlain to represent the sea ice edge for the ensemble mean (orange) and 
the Copernicus Marine Environment Monitoring Service (CMEMS) reanalysis (black). Probability is 
defined at each point as the proportion of ensemble members with at least 15% SIC. The CMEMS 
and modeled sea ice extent (SIE) and associated integrated ice edge error (IIEE) are included in the 
lower-right corner (units: 106 km2). Both panels are reproduced from Blockley and Peterson (2018). 
(b) Total Arctic 2012 SIE in two sets of 50-member seasonal predictions with EC-Earth performed 
with/without assimilation of OSI-450 sea ice freeboard observations. Colored shades indicate the 
5%–95% ensemble range (light shade) and interquartile 25%–75% range (medium shade), and 
thick lines the ensemble medians. (c) IIEE in the Arctic (solid lines) and its Atlantic sector (dashed 
lines) for two sets of retrospective predictions with EC-Earth initialized with/without SIC assimila-
tion of sea ice nudging. Each set covers the period 1992–2019 and includes 30 ensemble members. 
IIEE is evaluated against NSIDC-0051 observations (Cavalieri et al. 1996) after bias-correction is 
applied (Batté et al. 2020). All forecast systems in the figure are initialized the first of May.
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(Bazile et al. 2020; Day et al. 2022), demonstrated that improved representation of cold sur-
faces can lead to enhanced predictions of near-surface variables. The typical improvements 
achieved for predicting surface air temperature in three distinct Arctic regions are quantified 
in Fig. 3. The inclusion of the dynamic sea ice model GELATO (Global Experimental Leads and 
Ice for Atmosphere and Ocean; Salas Mélia 2002) in ARPEGE led to significant reductions in 
mean absolute errors, with particularly large improvements in the regions surrounded by sea 
ice. Similar forecast improvements were also found for predicting low and high temperature  
extremes. The impact of the multilayer snow scheme in IFS-HRES was more complex  
(Fig. 3b), reducing a warm bias in continental regions from Northern Scandinavia, but increasing 
a cold bias in Arctic maritime climates (e.g., Svalbard and Norway).

APPLICATE also devoted substantial efforts to develop and test new parameterizations 
and model features to refine the representation of sea ice, like sea ice thickness distribution 
(Massonnet et al. 2019; Moreno-Chamarro et al. 2020), landfast ice, snow on sea ice, form 
drag, and melt ponds (Sterlin et al. 2021). These showed mixed results in terms of improved 
forecast skill, both in NWP and seasonal systems (Ponsoni et al. 2021). An identified problem 
was that preexisting—and partly compensating—systematic model errors, unbalanced physics, 
and numerical issues disguised the expected improvements. Another limitation was related 
to the use of a forced ocean-sea ice model configuration for testing some of the parameteriza-
tions. Because this configuration uses prescribed atmospheric fields (thus excluding air–sea 
feedbacks), some of the improvements detected for new model features did not hold when 
eventually evaluated in coupled mode. Further work also showed that the coupling with the 
atmosphere could introduce new systematic errors not present in the stand-alone ocean–sea 
ice models, like an erroneous circulation of Atlantic Water in the Arctic in the coupled version 
of the Alfred Wegener Institute Climate Model (AWI-CM1), arising from a bias in the overlaying  
atmospheric circulation (Hinrichs et al. 2021). All the above results thus highlighted the 
importance of testing new developments directly in the final model configurations.

Understanding the physical origins of model errors is essential to assist and improve model 
development. This understanding can be fostered through the implementation of new model 

Fig. 3. Averaged improvements/deteriorations (red/blue) in the mean absolute error (MAE) for predicting 2 m tempera-
tures up to 4 days ahead in all weather station sites of three characteristic Arctic regions (inland northern Scandinavia, the 
Norwegian coastal and fjord areas, and Svalbard) resulting from (a) the inclusion of the GELATO sea ice model in ARPEGE, 
(b) including a multilayer snow scheme (MLSS) in IFS-HRES, and (c) comparing the mean of an EPS based on AROME-Arctic 
with its deterministic counterpart. Improvements/deteriorations on the ability to forecast tail events are additionally 
quantified with the Brier skill score (BSS) for low (<observed 10% tile) and high (>observed 90% tile) temperature events 
using, respectively, ARPEGE predictions with prescribed climatological sea ice, IFS-HRES predictions with a single layer 
snow scheme, and the deterministic AROME-Arctic system as reference forecasts. Significant changes (at 95% confidence 
level) calculated by bootstrapping are enclosed by a black frame.
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frameworks for process-based analysis, and by exploiting new observations to facilitate model 
evaluation. APPLICATE made important contributions on both fronts. On the first, the devel-
opment of an Atmosphere–Ocean Single Column Model (Hartung et al. 2018, 2022), based 
on ECMWF IFS, provided a versatile and computationally inexpensive tool that was used to 
show that a revised skin conductivity parameter, which controls the coupling between sea 
ice and atmosphere, reduced a pre-identified surface warm bias over melting sea ice regions. 
Tjernström et al. (2021) later evaluated the vertical structure of the lower atmosphere in IFS 
using data from the Arctic Ocean 2018 campaign, showing that the warm bias, which had a 
deep vertical structure, arose from complex interactions between surface temperature, clouds, 
the energy fluxes, and vertical mixing. On the second front, APPLICATE also exploited the 
wealth of in situ observations from Arctic supersites (e.g., from YOPPsiteMIP) for model error 
investigation, which involved the definition of process-based diagnostics for evaluating as-
pects as diverse as the surface energy budget or solid precipitation (Day et al. 2020; Køltzow 
et al. 2020). This exercise also highlighted the importance of standardizing the formats and 
preprocessing of Arctic observations, as carried out within YOPP.

APPLICATE additionally explored the impact of model resolution on process representa-
tion and forecast quality. Increasing the model resolution in the AROME-Arctic NWP system 
from 2.5 to 1.25 km and from 65 to 90 vertical levels showed overall added value in forecast 
accuracy of near-surface variables, especially during winter (Køltzow et al. 2021). Valkonen 
et al. (2020) additionally showed that regional NWP configurations with kilometer and subki-
lometer grid spacing can outperform state-of-the-art Arctic operational systems over complex 
terrain areas thanks to a better representation of topographic wind effects. By contrast, ret-
rospective seasonal predictions based on EC-Earth3 and CNRM-CM6 showed no clear added 
value on Arctic prediction of increasing the ocean–sea ice model spatial resolution from 100 
to 25 km, which could be due to a suboptimal tuning of the higher-resolution configurations. 
Tuning efforts in the Arctic could be further compromised at even finer resolutions at which 
linear kinematic sea ice features start to emerge, dramatically increasing the computational 
demands. This motivated the development of a computationally efficient sea ice solver for 
FESOM2 (Koldunov et al. 2019), a global ocean–sea ice model able to reach, through its 
unstructured mesh, ground-breaking resolutions in the Arctic for climate scale simulations.

Ensemble strategies to boost Arctic prediction
APPLICATE also explored new ways to optimize ensemble prediction in the Arctic. For 
NWP, the major forecast improvements were achieved with the development of a pioneer-
ing high-resolution regional ensemble prediction system (EPS) based on AROME-Arctic 
(Køltzow et al. 2021). This system exhibited promising improvements in different Arctic 
regions when compared to its deterministic counterpart, in particular for forecasting low-
probability tail events in surface temperature (Fig. 3c) and precipitation (not shown).  
A fundamentally different approach, based on the combination of large multimodel 
ensembles with process-oriented constraints, led to large improvements in seasonal prediction. 
The method, developed in Acosta Navarro et al. (2020), used the strength of an observed 
teleconnection—generally underestimated in models—between Barents–Kara sea ice con-
centrations in November and the winter atmospheric circulation in western Russia (Mori  
et al. 2019), as a metric to subselect those members of an ensemble of APPLICATE systems 
for which the teleconnection was more realistic. This physically constrained ensemble 
showed substantially higher skill for the atmospheric circulation in western Russia and 
surface air temperature in Eurasia (Figs. 4a,b). Similar skill enhancements for forecast 
years 2–10 were also found when subselecting a multimodel ensemble from the Decadal 
Climate Prediction Project (DCPP; Boer et al. 2016; Figs. 4d,e) according to the strength 
of the same teleconnection. Other recent studies also showed the potential of applying 
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physical constraints in the analysis of large prediction ensembles to circumvent systematic 
model problems (Smith et al. 2020; Donegan et al. 2021). Also worth highlighting is a 
separate study that confirmed the benefits of multisystem initiatives for enhancing forecast 
accuracy of sea ice features in the melt season (Batté et al. 2020).

Recommendations based on APPLICATE findings
Initialization enhancements, through an improved uptake of atmospheric (particularly  
microwave sounding data over snow and ice) and sea ice thickness/freeboard observations, 
were shown to improve predictive skill from a few days to several months ahead. Improving 
the representation of cold surfaces through different approaches (e.g., improved modeling 
of snow and sea ice and their coupling to the atmosphere) also led to improvements in Arctic 
NWP systems. The importance of producing physically consistent ocean and sea ice initial 
conditions for Arctic seasonal prediction was demonstrated as well (Cruz-García et al. 2021). 
Performing similar analyses in decadal prediction is thus encouraged.

Fig. 4. (a),(b) Skill difference for predicting winter SLP and atmospheric temperature at 2 m (T2m) 
when subsampling a multimodel ensemble of November initialized seasonal predictions from  
APPLICATE (120 members in total) according to the strength of an observed teleconnection  
between November Barents–Kara sea ice and winter sea level pressure in western Russia [green 
box in (a)], as compared to the full ensemble. The constrained ensemble includes the 5% subset 
of 10,000 random combinations of 12 members yielding the strongest teleconnection strength. 
Stippling represents significant skill differences at the 95% confidence level. (c),(d) As in (a),(b), 
but in an ensemble of decadal predictions comprising 55 members from 6 models contributing to 
DCPP. Skill is computed in winter for the average of forecast years 2–10. Observational references 
for evaluating the skill in the seasonal/decadal predictions are Centre ERS d′Archivage et de Trait-
ement (CERSAT)/HadISSTv1.1 for sea ice and ERA-Interim/JRA55 for SLP and T2m.
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Many state-of-the-art coupled models used for weather and climate prediction are subject to 
considerable model biases over the Arctic, limiting their predictive capacity and credibility to 
assess future changes. Understanding the origin of these biases, and how each model compo-
nent contributes to them, is a time-consuming but crucial first step to eventually correct them 
through improved model development and tuning. For this, APPLICATE has successfully de-
veloped process-based diagnostics and metrics to compare models and observations (Day et al. 
2020; Khosravi et al. 2022). These diagnostics provided key knowledge to later improve, e.g., the 
representation of the vertical structure of the lower atmosphere and the feedback mechanisms 
with the surface, a much-needed step to fully capitalize on the forecast improvements currently 
achieved at the surface. Another key process proposed to control the remote influence of Arctic 
sea ice on the midlatitudes, which is still debated (Blackport and Screen 2020), is the strength 
of the eddy momentum feedback on the mean flow. This feedback is underestimated in current 
models with respect to observations, which could explain the generally weak model responses 
found in the Polar Amplification Model Intercomparison Project to Arctic sea ice loss (Smith  
et al. 2022). We therefore recommend further work to understand why models underestimate 
the eddy momentum feedback and how this error could be corrected.

The vast amount of satellite measurements used to improve forecast quality in the 
assimilation process could be further exploited for a more efficient model evaluation (and 
forecast system development) in the Arctic. For this, it is critical to consider the uncertainties 
in observation-based products, which can show important differences in sea ice mean state 
and variability (Ponsoni et al. 2019; Moreno-Chamarro et al. 2020). Likewise, models can 
also assist the development of future observing systems, providing key information on the 
sampling locations providing more predictability (Ponsoni et al. 2020; Sandu et al. 2021).

Given the high potential shown by multisystem forecast ensembles to boost skill through 
the use of optimized ensemble aggregation techniques and the introduction of physical 
constraints to select members with larger skill, it is important to promote and further exploit 
existing multi-collaborative initiatives for retrospective and real-time prediction, such as it 
is currently done through DCPP, the Copernicus Climate Data Store, and SIPN2.

Preliminary results from APPLICATE suggest that the high computational costs of enhanc-
ing horizontal resolution for seasonal climate prediction in the Arctic are still not worthwhile 
when compared to the benefits of larger ensembles, at least for the resolutions and models 
considered thus far. In a regional NWP system, enhanced resolution was found to improve the 
predictive skill, but to a lesser degree than an ensemble approach with similar computational 
costs (Køltzow et al. 2021). Unveiling the real benefits of higher resolution configurations will 
require optimally tuned model versions.
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