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Abstract 

The current climate crisis requires a shift towards renewable energies. Wind energy generation will 

play a major role. Offshore wind energy can provide greater output due to more predictable weather 

conditions compared to onshore wind energy and has one of the lowest lifecycle greenhouse gas 

emissions for any source of energy. Some of the difficulties in their operation and maintenance lie in 

the difficulty of accessing the site. Although remote monitoring has become standard in the industry, 

structural health monitoring and predictive maintenance still present some challenges. 

Normally, most or all the available data are of regular operation, thus methods that focus on the data 

leading to failures end up using only a small subset of the available data. Furthermore, when there is 

no historical precedent of a type of damage, those methods cannot be used. In addition, offshore 

wind turbines work under a wide variety of environmental conditions and regions of operation 

involving unknown input excitation given by the wind and waves. Finally, supervised approaches rely 

on correctly labelling data, which is not possible in production conditions. Considering the difficulties, 

the stated strategy in this work is based on unsupervised and semi-supervised approaches and it 

works under different operating and environmental conditions based only on the output vibration 

data gathered by accelerometer sensors. The proposed strategy has been tested through 

experimental laboratory tests on a down-scaled model. 

This project applies spectral entropy, a non-standard parameter in vibration analysis, to the studied 

models. Overall accuracies of 93,88% for Isolation Forest (a semi-supervised method), and 88,67% for 

One Class Support Vector Machine (a non-supervised method) can be achieved. The accuracies of 

both models increase to up to 100% when trained against a larger dataset of healthy samples, 

however achieving these results requires retuning for features and hyperparameters. 

For all of this, the use of non-supervised and semi-supervised machine learning models is a realistic 

approach to structural health monitoring of offshore wind turbines and has obtained promising 

results when tested against an experimental dataset. 
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Resum 

La crisi climàtica actual requereix un gir cap a les energies renovables. La generació d'energia eòlica hi 

jugarà un paper important. L'energia eòlica marina pot proporcionar una major producció degut a 

condicions climàtiques més previsibles en comparació amb l'energia eòlica terrestre i té una de les 

emissions de gasos d'efecte hivernacle de cicle de vida més baixes en comparació amb qualsevol font 

d'energia. Algunes de les dificultats en el seu funcionament i manteniment radiquen en la dificultat 

d'accés al lloc. Si bé la monitorització remot s'ha volgut estàndard a la indústria, la monitorització de 

la salut estructural i el manteniment predictiu encara presenta algunes dificultats. 

Normalment, la majoria o totes les dades disponibles són de l’operació regular, per tant els mètodes 

enfocats en la utilització de les dades precedents a falles acabant utilitzant només un petit 

subconjunt de les dades disponibles. A més, quan no hi ha antecedents històrics d'un tipus de dany, 

no es poden utilitzar aquests mètodes. Encara, les turbines eòliques marines funcionen en una 

amplia varietat de condicions ambientals i regions d'operació que involucren una excitació d'entrada 

desconeguda proporcionada pel vent i les onades. Finalment, els enfocaments supervisats es basen 

en l'etiquetatge correcte de les dades, que no és possible en condicions de producció. Tenint en 

compte les dificultats, l'estratègia establerta en aquest treball es basa en enfocaments no supervisats 

i semi-supervisats i funciona sota diferents condicions ambientals i operatives basant-se únicament 

en les dades de vibració de sortida recopilades pels acceleròmetres. L’estratègia ha estat provada a 

través d’assajos experimentals de laboratori en un model a escala reduïda. 

Aquest projecte aplica l'entropia espectral, un paràmetre no estàndard en l'anàlisi de vibracions, als 

models estudiats. Es poden aconseguir precisions generals del 93,88 % per a ‘Isolation Forest’ (un 

mètode semi supervisat) i del 88,67 % per a ‘One Class Support Vector Machine’ (un mètode no 

supervisat). Les precisions dels dos models augmenten fins al 100 % quan s'entrenen amb un conjunt 

de dades més grans de mostres sanes; tanmateix, per aconseguir aquests resultats és necessari 

tornar a ajustar les ‘features’ i els hiperparàmetres. 

Per tot això, l’ús de models no supervisats i semi supervisats és un enfoc realista per la monitorització 

estructural de les turbines de vent marines obtenint resultats prometedors quan s’ha provat contra 

un conjunt de dades experimental. 
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Resumen 

La actual crisis climática requiere un giro hacia las energías renovables. La generación de energía 

eólica jugará un papel importante. La energía eólica marina puede proporcionar una mayor 

producción debido a las condiciones climáticas más predecibles en comparación con la energía eólica 

terrestre y tiene una de las emisiones de gases de efecto invernadero de ciclo de vida más bajas en 

comparación cualquier fuente de energía. Algunas de las dificultades en su funcionamiento y 

mantenimiento radican en la dificultad de acceso al sitio. Si bien el monitoreo remoto se ha vuelto 

estándar en la industria, el monitoreo de la salud estructural y el mantenimiento predictivo aún 

presenta algunos desafíos. 

Normalmente, la mayoría o todos los datos disponibles son de operación regular, por lo que los 

métodos que se enfocan en los datos que conducen a fallas terminan usando solo un pequeño 

subconjunto de los datos disponibles. Además, cuando no existe un antecedente histórico de un tipo 

de daño, no se pueden utilizar esos métodos. Por añadido, las turbinas eólicas marinas funcionan en 

una amplia variedad de condiciones ambientales y regiones de operación que involucran una 

excitación de entrada desconocida proporcionada por el viento y las olas. Finalmente, los enfoques 

supervisados se basan en el etiquetado correcto de los datos, que no es posible en condiciones de 

producción. Teniendo en cuenta las dificultades, la estrategia establecida en este trabajo se basa en 

enfoques no supervisados y semi supervisados y funciona bajo diferentes condiciones operativas y 

ambientales basadas solo en los datos de vibración de salida recopilados por los sensores del 

acelerómetro. La estrategia propuesta ha sido probada a través de pruebas experimentales de 

laboratorio en un modelo a escala reducida. 

Este proyecto aplica la entropía espectral, un parámetro no estándar en el análisis de vibraciones, a 

los modelos estudiados. Se pueden lograr precisiones generales del 93,88 % para ‘Isolation Forest’ 

(un método semi supervisado) y del 88,67 % para ‘One Class Support Vector Machine’ (un método no 

supervisado). Las precisiones de ambos modelos aumentan hasta un 100 % cuando se entrenan con 

un conjunto de datos más grande de muestras sanas; sin embargo, para lograr estos resultados es 

necesario volver a ajustar las ‘features’ y los hiperparámetros. 

Por todo esto, el uso de modelos de aprendizaje automático no supervisados y semi supervisados es 

un enfoque realista para el monitoreo de la salud estructural de las turbinas eólicas marinas y ha 

obtenido resultados prometedores cuando se prueba con un conjunto de datos experimental. 
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Glossary 

AI: Artificial intelligence 

CF: Crest factor 

ML: Machine learning 

O&G: oil and gas 

O&M: operation and maintenance 

PP: Peak-peak 

RBF: Radial basis function 

RBM: reliability-based maintenance 

RMS: Root mean squared 

SHM: Structural health monitoring 

SVM: Support vector machine 

TPM: total productive maintenance 

WT: Wind turbine 

ZP: Zero-peak 
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1. Introduction 

Within the current climate crisis that the world is facing right now it only makes sense to devout as 

many resources as possible to make sure that humanity can thrive in a sustainable way. The use of 

renewable sources of energy is one way to reduce the environmental impact of the current demand 

for energy.  

Offshore wind turbines make use of the high-speed wind currents found at sea. However, their 

locations also provide a challenge as they can be difficult and costly to service. For this reason, the 

advances in predictive maintenance and structural health monitoring (SHM) have been of great 

interest in the industry. 

The implementation of the latest maintenance techniques and research to monitor the structural 

integrity of offshore wind turbines will translate into an optimization of resources. In the last years, 

the offshore wind turbine industry has started to integrate extensive predictive maintenance plans in 

order to maximise the performance, minimize costs and increase profits. 

1.1. Goals of the project 

The main goal of this project is to study the applicability of non-supervised and semi-supervised 

artificial intelligence models in health monitoring of offshore wind turbines. 

This project will introduce wind energy and offshore wind turbines and their relevance. The project 

will also include an overview of maintenance theory and vibration analysis in wind turbines. There 

will be a brief introduction to artificial intelligence, machine learning and some non-supervised and 

semi-supervised methods. Vibration analysis and the previously introduced machine learning 

methods will be applied to a SHM dataset to create a health monitoring model.  
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2. Wind energy 

One of climate change’s main drivers are CO2 emissions. Energy consumption was responsible for 

76% of CO2 emissions globally (37.2 GtCO2e) in 2018. Within the energy sector, heat and electricity 

generation was responsible for 15.6 GtCO2e in 2018, or 31.9% of total greenhouse gas emissions. 

Emissions from electricity and heat generation increased 78% from 1990 to 2013, but then dropped 

by 2.4% between 2013 and 2016. The decrease was driven by various factors, including a shift to 

natural gas from coal and increased use of renewables. (World Resources Institute 2021) Renewable 

energy sources have a much lower carbon footprint in comparison to fossil fuels. (Schlömer S. 2014) 

 
Figure 1 Median emissions of selected electricity supply technologies 

In 2019 wind energy generated 1427TWh, a 5% of the total electrical power generated globally. The 

output has grown year after year for the past three decades and is expected to continue this trend. 

(IEA 2019) 
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Figure 2 Wind electricity generation, World (1990-2019) (IEA 2018) 

2.1. Off-Shore wind turbines 

Offshore wind power is a subset of wind power, where wind turbines are placed on bodies of water 

(usually seas or oceans, but also in lakes). Offshore wind turbines benefit from higher and more 

predictable wind speeds. However, they also present higher operation and maintenance (O&M) costs 

compared to onshore wind turbines.  



SHM for Offshore Wind Turbine Foundations Through Unsupervised and Semi Supervised Machine Learning Methods  

  7 

 
Figure 3 ECMFW wind field data after correction for orography and local roughness (European Environment Agency 2009) 

Globally, in 2020 offshore wind capacity passed 35GW and now represents 4.8% of total cumulative 

wind capacity. GWEC Market Intelligence expects that over 469 GW of new onshore and offshore 

wind capacity will be added in the next five years - that is nearly 94 GW of new installations annually 

until 2025, based on present policies and pipelines. (Global Wind Energy Council 2021)  

Currently Europe has over 25GW of offshore wind energy capacity, with a total of 5402 grid 

connected wind turbines delivering power from 116 offshore wind farms in 12 European countries. 
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Figure 4  Total installed capacity (IC) of offshore wind energy by region (Barthelmie and Pryor 2021) 

2.2. Components of Wind Turbine Installations 

This project focuses on horizontal axis upwind turbines installed offshore. In horizontal axis wind 

turbines, the axis that is connected to the main bearing for electricity generation is parallel to the 

ground and the main rotor is directed towards the wind.  

The design of wind turbines in offshore must consider the harsher conditions compared to onshore 

wind turbines: 

• Strong currents and waves. 

• Corrosive environments. 

• Harsh climatological conditions, stronger storms, and winds. 

Typically, the turbine manufacturer provides the roto-nacelle assembly and the tower. The support 

structure and base are chosen according to the needs of the project (Bhattacharya 2019). 
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Figure 5 Components of an offshore wind turbine (Li, et al. 2022) 

2.2.1. Drivetrain 

In wind turbines the power is transmitted from the rotor to the generator through the system 

composed of the main shaft, friction connection, multiplying gearbox and a flexible coupling. This 

whole system is known as the drivetrain. (Michal, Gawarkiewicz and Wasilczuk 2015)  

The drivetrain may have a gearbox between that main rotor and generator to increase the rotational 

speed of the rotor to generator speeds. This is the most common design as it allows for use of 

standard components. Less frequently, drivetrains may be gearless, requiring a multi-pole generator. 

(Barszcz 2019) 

2.2.2. Foundation 

The foundations of wind turbines can be classified in two main groups: grounded systems and 

floating systems. Foundations can be classified as shallow base or deep base. Some examples are the 

following: 

• Monopile structures are deep base structures, where a long steel cylinder of 3 to 7m of 

diameter is placed up to 40m into the ocean floor. These are the most common kind of 

foundation. 

• Shallow foundation structures, designed to avoid tensions between the foundation structure 

and the seabed, in order to avoid torsion. 
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• Suction based foundations are more shallow than monopolar structures but deeper than 

gravity-based ones. They are formed by a tubular structure topped by a circular side that acts 

like a suction cup, attaching to the seabed. 

2.2.3. Structural Support 

Offshore wind turbines require more robust support structures than onshore wind turbines, due to 

the extreme conditions at sea.  

 
Figure 6 Main types of offshore wind turbine foundations (Xie and Lopez-Querol 2021) 

Support structures may be: monopile (essentially an extension of a pile foundation), tripile, tripod, 

gravity based/shallow foundation or jacketed/latticed. This project focuses on the SHM of jacket 

structures, more in-depth description of them can be found in the next section. 

Jacketed or latticed structure 

The historical precedent for jacket structures in offshore wind foundations are gas and oil extraction 

platforms. However, their use as a structural support for wind turbines presents some specific 

particular challenges, the most prominent one being a significant contribution to vibrations due to 

the impact of wind, while in oil and gas (O&G) extraction platforms waves are the most significant 

vibration contribution. 

These structures typically have 4 supports, which will have pile, gravity bases or suction caissons. 

There has been increased interest in the use of 3-legged jacket structures as they present lower costs. 
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As for the dimensions of the jacket structure, more traditional approaches rely on integrated 

aeroelastic models with a simplified representation of the foundation for calculations. (Agustyn, 

Nielsen and Pedersen 2017) Some models for a systematic approach for the predesign phase have 

been developed, but further work from experienced professionals is still required for a complete 

design. (Häfele, et al. 2018) 

 
Figure 7 Jacket structure. (A) Scheme (B) Jacket foundation transportation (Alpha Ventus wind farm) (C) Jacket foundations 

installed (Alpha Ventus wind farm) (Manzano-Agugliaro, et al. 2020) 

2.2.4. Floating systems 

There has been increasing interest in floating systems to be used when the depth exceeds around 

60m.  

• Mooring stabilised TLP (tension leg platform) concept 

• Ballast stabilised Spar buoy 

• Buoyancy stabilised semi-submersible is a combination of the previous two approaches. 

Although some offshore wind projects with floating systems have been deployed in Scotland 

(Scotland Hywind) and Norway (Equinor Tampen), they are still in the minority. 
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3. Maintenance theory 

Maintenance is a highly scoped subject, that includes but is not limited to the maintenance of 

buildings, the emergency repairs of machines damaged during industrial accidents and the 

monitorisation of equipment in any industry. 

Many companies have started to implement methodologies such as Six-Sigma, or Just in Time in an 

effort to fulfil the customer demands for high-quality products in a timely manner. This has resulted 

in a shift of their manufacturing, organizational, and supply chain strategies toward agility, quality, 

automation, and high performance. This has resulted in very high investments in equipment and 

people. To achieve the targeted rates of return-on-investment equipment must be reliable and safe 

to operate without costly work stoppages and repairs. (Duffuaa and Raouf 2015) 

In the energy industry, the growing global energy demand, and the inability to store excess energy at 

a large scale have resulted in the need to minimize downtime in energy production systems, ranging 

from nuclear reactors to solar panels. These changes have shifted the perception of maintenance 

from a necessary evil to a key activity in manufacturing and energy production. 

The requirements for agility, quality, automation, and high performance have led to the 

implementation of maintenance methodologies like total productive maintenance (TPM), reliability 

centred maintenance (RCM), or lean six sigma. 

3.1. Maintenance Strategies 

In this project maintenance will refer to conservative maintenance, that is, maintenance that is 

intended to preserve the functionality of a system. However, maintenance may also include 

improvement maintenance, overhaul maintenance, emergency maintenance and others. 

Several different maintenance strategies have been developed since the industrial revolution, with 

increasing technical complexities, leveraging the latest technical developments in statistical analysis 

and monitoring capabilities.  More simple maintenance strategies must not be disregarded as it is 

usual for several different strategies to coexist in the maintenance plan of any system. 

• Corrective maintenance: Maintenance actions are carried out after a breakdown. Upfront 

costs of this type of maintenance are non-existent, however, long term and for expensive 

pieces of equipment, it may result in very high costs. 
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• Preventive maintenance: Maintenance actions are carried out at predetermined intervals of 

time or wear. This approach leads to less equipment downtime and longer asset life, 

however it is also more labour-intensive and there is potential for over-maintenance. 

• Condition-based maintenance or predictive maintenance: Preventive maintenance that is 

initiated because of knowledge of the condition equipment through routine (discontinuous) 

or continuous monitoring. This approach leads to a decrease of maintenance costs of 30% on 

average (Schallehn, et al. 2018) and reduces the frequency of breakdowns by about 75% 

(PwC 2018). The complexities in the implementation of predictive maintenance systems in 

most industries arise from difficulties in developing the models and implementing the 

infrastructure required for condition monitoring tracking. 

3.2. Key performance indicators in maintenance 

Different industries will have different definitions for success in maintenance, a common way to 

define success in relatively standardised way are Key Performance Indicators, or KPIs. Some common 

KPIs are as follows: 

• Mean time Between Failures (MTBF) is the average amount of time between breakdowns. 

The definition of a breakdown can differ. In the case of Offshore WT this is a specially 

relevant metric as service trips to the turbine farms can be costly and have a high logistical 

complexity. 

𝑀𝑇𝐵𝐹 = 
𝑇𝑜𝑡𝑎𝑙 𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝐻𝑜𝑢𝑟𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠
 

• Mean time to repair (MTTR) is the amount of time that it takes, on average, to return a 

piece of equipment to working conditions after a breakdown. 

𝑀𝑇𝑇𝑅 = 
𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑝𝑎𝑖𝑟 𝑡𝑖𝑚𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠
 

• Availability measures the percentage of time that equipment is in working conditions. It 

gives an idea of the uptime of a piece of equipment. It is especially relevant in renewable 

energy generation (specifically solar and wind) as a readiness metric for the use of 

favourable wind conditions, as the throughput relies on external variable factors (e. g. 

meteorology). 

𝐴𝑣𝑎𝑖𝑙𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹 +𝑀𝑇𝑇𝑅
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• Overall equipment effectiveness (OEE): it is a measure of quality, performance and 

availability frequently used in manufacturing. The highest score (100%) is obtained when 

equipment is operating at the highest performance (number of pieces produces per time 

unit), with no defective pieces and no unavailability events. 

𝑂𝐸𝐸 = 𝐴𝑣𝑎𝑖𝑙𝑖𝑏𝑖𝑙𝑖𝑡𝑦 · 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 · 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 

These metrics offer a way to objectively compare different maintenance strategies and the reliability 

of equipment. 

3.3. Maintenance in offshore wind turbines 

The increase in offshore wind turbine installations has led to a renewed interest for new and 

advanced techniques of maintenance for wind turbines. (Costa, et al. 2021)  

Operation and maintenance costs represent 25% of energy production costs offshore wind turbine 

maintenance. This is 15% more than O&M costs for onshore wind turbines.  

The reason behind this difference is the technical and logistical complexity of maintenance 

operations for offshore wind farms, which his higher than for onshore wind turbines. Service visits to 

offshore wind farms occur approximately once every 6 months (Faulstish, Hahn y Tavner 2011) and 

up to 5 times per and require 40 to 80 of man-hours to service. 

Two decades ago, the improvements were centred on improving the maintainability of the turbines 

by facilitating access through lifting improvements and onshore farms and condition monitoring 

happening discontinuously, with measurements taken during service visits exclusively. (van Bussel 

and Henderson 2001) 

Currently, although the evolution of strategies for maintenances is ongoing, it is clearly centred on 

remote condition monitoring of the turbines through the application of advanced models from 

vibration and acoustic signals. (van Bussel and Henderson 2001) Specifically vibration analysis 

represents 58% of the market share of condition monitoring. (Barszcz 2019)  
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4. Vibration analysis 

As stated in the previous section, most current condition monitoring systems use vibration analysis, 

and there is great interest in its application to smart, remote condition monitoring. This section will 

give an introduction on how vibration signals are acquired and processed, and how condition 

monitoring systems use vibration data. 

4.1. Data acquisition 

The first step for vibration analysis is the acquisition of the vibration data. This is usually done by 

placing several accelerometers throughout the machine or area to be monitored. The exact 

placement will depend on the machine, the components that present most wear, and a variety of 

other factors. 

In wind turbines the sensors are usually placed on the drive train, blades, and support structure. 

4.2. Vibration Signals 

Although the study of vibration signals may start with simple, clean sine waves, vibration signals 

recorded in real settings are often much noisier, including several overlapping signals of different 

amplitudes and phases. In any case, vibration signal analysis frequently starts by analysing the signal 

waveform itself but other methods such as frequency analysis or envelope analysis may be used. Due 

to the scope of this project, only time domain vibration features will be presented. 

4.2.1. Relevant features of vibration signals 

The features that will be presented in this section are “broadband” features because they do not use 

any filtering techniques. Therefore, the information they provide considers all signal components 

from a large (or “broad”) frequency band and provide information of the overall system and not just 

from the specific mechanical problem that may be malfunctioning. All these features can be easily 

calculated from the vibration signal. They are: 

• Statistical values such as the mean, the standard deviation, and the kurtosis of the signal. 

• Root-mean-square (RMS) which describes the area of the signal and therefore its energy  

𝑅𝑀𝑆 = √𝐸(𝑥2), where 𝐸 is the mean value operator. 

• Peak value, or peak-peak (PP) is a measure of the distance of the maximum peaks of the 

signal 𝑃𝑃 = 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 
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• Zero-peak (ZP) may be used instead of peak-peak as it is more easily compared to signal 

components such as the amplitude and other related signal components. 𝑍𝑃 =
𝑃𝑃

2
 

• Crest Factor (CF), which is the ratio of the peak amplitude to the RMS value. Usually, a 

change in the operation mode will change RMS and PP proportionally, therefore it is useful 

to track the ratio of these two, which should be independent of operation conditions. 𝐶𝐹 =
𝑍𝑃

𝑅𝑀𝑆
 

4.3. Complex methods 

Although graphical comparisons of the waveforms or simple statistical analysis of these features can 

be enough for some purposes, more complex methods have been developed to determine health 

status of structures and machinery. 

Guided waves are one of such methods. This approach relies on the mathematical modelling of the 

behaviour of a material when an ultrasonic wave is applied to it via a transducer. Any cracks, 

delamination or defects will become apparent as a deviation of the mathematical model.  Guided 

wave-based approach for health monitoring of composite structures; Application to wind turbine 

blades (Shoja 2018) is an example of its application to wind turbines, but the size of wind turbine 

components is a challenge as only a low number of frequencies can be applied. 

Another challenge to SHM of wind turbines (WT) is the fact that the excitation in the structures due 

to wind and waves cannot be known, and therefore a normal input-output model cannot be used. 

This can be solved by vibration-response-only SHM where only the response of the structure is 

studied. (Puruncajas, Vidal and Tutivén 2020) 

In some cases, more complex or novel features of the vibration signals are studied. These can include 

spectral kurtosis, spectral entropy (Sandoval, et al. 2020), and others. 

Finally, many artificial intelligence (AI) methods have been applied. Some examples are convolutional 

neural networks (Puruncajas, Vidal and Tutivén 2020) , supervised machine learning methods such as 

logistic regression and support vector machine models (Taylor, Beale and Murat 2017) or 

unsupervised methods like Gaussian mixture models (Statco, et al. 2019). 



SHM for Offshore Wind Turbine Foundations Through Unsupervised and Semi Supervised Machine Learning Methods  

  17 

5. Applied Artificial Intelligence 

The British Encyclopaedia defines artificial intelligence as “the ability of a digital computer or 

computer-controlled robot to perform tasks commonly associated with intelligent beings”. 

Research in this field has been ongoing since the 1950s. The 1960s were a decade of relative success, 

but at that time most applications focused on following an established set of rules in order to 

perform a task. However, this meant that AI could not yet be applied to solving problems that could 

not be defined by simple sets of rules. As computational power became more easily accessible, 

increasingly complex sets of rules could be applied obtaining results in a timely manner, and neural 

networks were developed, which allowed to solve problems that could not be encoded in those 

rules. Today, the amount of data available has meant that AI has been used for problem solving in a 

variety of fields, ranging from medicine to retail. (Haenlein and Kaplan 2019)  

5.1. Machine Learning 

Machine Learning is a subset of artificial intelligence based on computers observing data, building a 

model based on those observations and using this model as a hypothesis for problem-solving. (Norvig 

and Russell 2021) 

There are three main types of Machine Learning: 

• Supervised 

• Non-supervised 

• Semi-supervised 

• Reinforcement learning 

Supervised models are trained with structured labelled data. This means that the data the model is 

trained with contains both the input data and the desired output data. The model can then infer the 

label of a new, unseen data point. It is often expensive and cumbersome to rely on specialists and 

trained workers to label a dataset. In some cases, labelling may not even be possible 

 For health monitoring of offshore wind turbines, labelling of data would require collection of data in 

a wide array of conditions for the specific structure or an identical one. The wide array of possible 

structural damages as well as the different possible combinations of wind turbine models, 

foundations and structural support configurations would require an extensive dataset, which would 

be costly in terms of time, monetary resources, and expertise. 
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In non-supervised machine learning models, the labels for the data are not provided, so the desired 

output is not available. The model will look for patterns or clusters to generate a classification 

algorithm relying solely on the input data. This is a common industry scenario when there are 

systems in place to record data, such as SCADA systems. This route can be cheaper, as there are no 

costs in terms of time and expertise to label the data. Due to the lack of labels on the data, it may be 

more difficult to achieve the same level of accuracy as with supervised machine learning.  

Semi-supervised models use a small set of labelled data and a much larger set of non-labelled data 

for training. This is an option where data can be collected for one class of data, for example collecting 

data from “normal” behaviour, such as non-fraudulent credit card transactions, or in the case of this 

project, “healthy” data from a non-damaged structure. 

Reinforcement learning models are trained based on some reward or punishment that the algorithm 

is trained to achieve or avoid. This is used for example to train algorithms that will play a video game. 

Reinforcement learning is outside the scope of this project. 

In this project, non-supervised and semi-supervised models will be used, in an attempt to provide a 

solution that can be easily applied for SHM of real offshore wind turbine foundations. 

5.2. Carrying out Machine Learning Projects 

In the previous section several types of machine learning models were discussed. Attaining 

meaningful results when applying any of these models to a dataset requires extensive work. The 

following diagram of flow shows the steps in which a data science project is carried out. (Grus 2015) 
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Figure 8 Steps of a Machine Learning project 

Setting the research goal 

The first step is to decide what will be the goal of the research. This includes not only choosing the 

topic but also setting metrics by which the success of the outcome will be measured. Some metrics 

that could be applied to predictive maintenance projects are described in Section 3.2. 

Data collection 

Data must be acquired before it can be analysed. 

In a lot of cases datasets are published by researchers or institutions with hopes that the availability 

of the data will interest researchers. One example of this is the MNIST data set, a dataset of 

handwritten characters. 

Sometimes, in corporate or government settings data will be collected with the intention of it being 

analysed. Data collection can be done through surveys in social science studies, or with sensors or 

other devices in STEM research. 

Sometimes real data cannot be collected, in this case, synthetic data may be used. Synthetic data is 

data manufactured to replicate real world data as closely as possible. Synthetic data is used in cases 

where real world data is not available due to lack of technical or economical sources.  

Setting 
research goal

Data 
collection

Data 
preparation

Data 
exploration

Data 
modelling
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Data Preparation 

Once data has been collected, it must be prepared before further analysis. This may include data 

cleaning, where malformed or badly recorded data is removed from the data set; or data imputation, 

where missing data is filled in. It may also include transforming the data by reshaping matrixes or 

change the format, from audio to image or from the time domain to the frequency domain. This step 

usually takes up the longest, and often makes up for most of the time spent in any data science 

project. 

Data Exploration 

After preparing the data, some preliminary analysis is carried out. This usually entails generating 

some quick visualisations of the data sets with bar plots or scatter plots, to get a broad understanding 

of the data. 

Data Modelling 

In this step, mathematical models, statistical models, and machine learning models are used to 

model how the system behaves. The goal is to produce a model that will classify, cluster or label new 

data or accurately predict an outcome. 

Model Validation 

After the models have been trained, the model is validated by measuring its behaviour against 

several metrics and measuring its effectiveness in achieving the goals set on the first step of the 

process. 

After these steps, the model goes in “production” where it will be used for the research goal 

determined in the first step of the process. The model being “in production” does not mean that the 

data scientist’s work has finished. Changes in the processes, new data becoming available and new 

developments in the machine learning field men that the model may need to be retrained with a new 

dataset, retuned to achieve better results, or completely changed if a better alternative model 

becomes available. 

5.3. Models in Machine Learning 

Within all these types of machine learning, there are many algorithms or models. A model is 

essentially a mathematical pattern that performs certain operations to be able to label, classify or 

cluster data.  
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Oftentimes a simple machine learning model will be implemented within a software solution that 

offers a complex functionality. A lot of chatbots are powered by early Natural Language Processing 

models, like ELIZA. 

Sometimes several machine learning models can also be combined or linked to provide more 

complex outputs. For example, modern object recognition models use first a model that will locate all 

the objects in the picture. The sub-images of the sections of the objects will then be classified by a 

second model. 

The next sections will introduce the models used in the practical section of this project. 

5.3.1. One-Class SVM  

One-Class Super Vector Machine (SVM) is an unsupervised model for outlier detection. 

It is a variation of the Super Vector Machine. In traditional SVM, samples are separated by a decision 

boundary that attempts to separate two classes with the maximum margin. The support vectors refer 

to the data points that lie on the margin to the decision boundary. 

 
Figure 9 SVM decision boundary and support vectors (Wang, y otros 2019) 

 In the case of non-linearly separable classes, samples can be projected on a higher dimensional 

space using a kernel and are then separated by a hyperplane. This way, samples that may not have 

been separable in the original space, become separable by a decision boundary that is not linear in 

the original space. 
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Figure 10 Original and kernelized feature space (Rizwan, et al. 2021) 

One-Class SVM is trained with only one class of data. In this case the samples are projected in a 

higher dimensional space and the hyperplane is set between the origin and the samples, making the 

region where the samples lie as small as possible. Points that lie on the side of the origin of the 

hyperplane will be considered outliers. (Scholkopf, et al. 1999) 

Kernels 

This is the function that performs the projection into a higher dimensional space. Particularly, this 

project uses the polynomial, sigmoid and radial basis function (RBF) kernels. 
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Figure 11 Illustration of non-linear kernel transformations (Ezra Pilario, et al. 2020) 

Nu 

Nu is the number of samples we allow outside the decision boundary during the initial training. This 

hyperparameter is useful in the case of a noisy dataset, where although we expect most samples to 

belong to the “normal” class, we want to allow some samples to lie outside of the class. Otherwise, 

the decision boundary may include outliers. 

5.3.2. Isolation forest  

Isolation forest is a semi-supervised model for anomaly detection based on the use of decision trees. 
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The model will create decision trees based on random features of the samples, setting a random 

threshold for the separation criteria. As anomalies are "few and different" they will be separated 

early in the tree. 

 
Figure 12 Example of a random tree in an Isolation Forest Model 
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Figure 13 Scatter plot and decision boundaries of a random decision tree in an Isolation Trees model 

Instead of relying on one single decision tree, the model generates many isolation trees, and the 

anomalies will be those that on average, over all of the trees, have short paths. The ensemble of 

these isolation trees is what the name of the algorithm refers to. 

Contamination 

The percentage of samples that are expected to be anomalies. It is the one parameter that makes 

this model into a semi-supervised model, as at least an estimation of the proportion of the two 

classes must be known beforehand. (Liu, Ting and Zhou 2008) 

Number of estimators 

The amount of decision trees in the random forest. The number of trees will impact the computation 

time significantly. However, a larger number of trees will also produce more nuanced anomaly scores 

when compared to a lower number of trees. 

As this is not a deterministic model, with a lower number of trees the results will also be less 

repeatable. This can be solved by using a pseudo-random generation that can be seeded with a 

repeatable randomness state. 
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5.4. Validation metrics in Machine Learning 

This section will present some metrics that can be used for the validation of ML models. In regression 

models some metrics like Error, Mean Square Error or Root Mean Square Error may be used. As this 

project focuses on the separation of two classes of data, two relevant metrics are: 

Accuracy 

Accuracy is a relatively simple metric to assess the performance of a ML model. It is the percentage of 

correct labels predicted for a dataset. Although it is a simple metric it has some shortfalls in the case 

of unbalanced data. The model may be classifying correctly only one large class and due to class 

imbalance, a high accuracy could still be obtained.  

Confusion matrix 

Confusion matrixes are a common way to represent the performance of a ML model. Confusion 

matrixes have four boxes, and they represent the predicted and true label of a dataset. A good 

performing model will perfectly map all the samples, so the predicted label matches the true label. 

Confusion matrixes also provide insight into false positives and false negatives. 

5.5. Applications of Machine Learning in Engineering 

Machine Learning has been applied to problems in the engineering domain for many decades now. 

Currently, the advances in computing, sensor technology and new algorithms are facilitating the 

implementation of Machine Learning to new industry problems. 

5.5.1. Manufacturing Industry 

Within the manufacturing industry, Machine Learning has been used for process optimisation 

(Weichert, et al. 2019) and predictive maintenance and computer vision systems have been 

implemented for quality control. (Wu and Sun 2013) 

5.5.2. Energy industry 

Within the energy industry, machine learning is currently being applied to energy demand forecasting 

(Ahmat and Chen 2018) and predictive maintenance of both electrical distribution (Hoffman, et al. 

2020) and energy production assets such as wind turbines. 
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6. Vibration analysis and ML model application to 

experimental data 

In this section an experimental dataset will be used to train two models (One Class SVM and Isolation 

Forest) in order to assess if it is feasible to use non-supervised and semi-supervised ML models for 

SHM of offshore wind turbines. 

6.1. Data collection 

The dataset used is the same as in Vidal et. al. In the article, eight triaxial accelerometers are placed 

on a scaled down model of an offshore wind turbine with a jacket structure. The wind conditions are 

simulated by a modal shaker using several amplitudes (0.5, 1, 2 and 3A) of electrical current as a 

proxy for wind speeds. Furthermore, data is recorded in 4 scenarios: a healthy bar, a bar with a loose 

bolt, a bar with a crack, and a replica bar. (Vidal, Rubias and Pozo 2019) 

 
Figure 14 (a) The bench test detailing the location of the bar, and(b) Location of the sensors (Hoxha, Vidal and Pozo 2020) 
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The data consists of 25 experiments for each amplitude, amounting to a total of 100 experiments: 

 

 Amplitude 

 0.5 A 1 A 2 A 3 A 

Healthy bar 10 10 10 10 

Replica bar 5 5 5 5 

Cracked bar 5 5 5 5 

Loose bolt in bar 5 5 5 5 

Table 1 Number of experiments by state of bar and amplitude 

In each experiment, a time window of 60 seconds is recorded at a frequency of 1651.6129 Hz. Thus, 

we obtain 99097 data measurements from each of the 24 sensors (8 accelerometers with 3 axis each) 

for each experiment. 

6.2. Data transformation 

As explained in the previous section, for each of the 25 experiments performed we obtain a matrix of 

shape [999097x24]. However, since the sampling frequency is very high compared to an industry 

setting, the data is subsampled in a 1:6 ratio. Therefore, our new subsampled matrixes are of shape 

[166517x24] which is equivalent to a sampling frequency of 256 Hz and a time window of 60 seconds. 

[

𝑥(1,1) ⋯ 𝑥(1,24)
⋮ ⋱ ⋮

𝑥(999097,1) ⋯ 𝑥(999097,24)
]
𝑆𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑡𝑜 𝑙𝑜𝑤𝑒𝑟 𝑓𝑟𝑒𝑞.
→                      [

𝑥(1,1) ⋯ 𝑥(1,24)
⋮ ⋱ ⋮

𝑥(166517,1) ⋯ 𝑥(166517,24)
] 

However, we can expect to obtain results with a shorter time window, so the data is reshaped in 

order to obtain 664 samples from each experiment, which equates using a time window of 0.090361 

seconds. Therefore, each row (sample) will contain 199 timestamps for 24 sensors, for a total length 

of 4776 datapoints). We can stack the samples in a matrix of shape [664x4776] for each experiment, 

and furthermore stacking samples of several experiments, although each sample will be processed 

separately. 

[

𝑥(1,1) ⋯ 𝑥(1,24)
⋮ ⋱ ⋮

𝑥(166517,1) ⋯ 𝑥(166517,24)
]
𝑆𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑚𝑎𝑡𝑟𝑖𝑥
→                [

[𝑥(1,1) … 𝑥(199,24)]
⋮

[𝑥(166318,1) … 𝑥(166517,24)]
] 
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The matrixes are then scaled with a standard scaler fitted column wise to the “healthy” dataset. 

6.3. Features 

For each of the samples obtained in the previous section, we calculate the average, standard 

deviation, kurtosis, RMS, PP, ZP, CF (defined in Section 4.2.1) and spectral entropy. 

6.4. Model training 

The healthy samples are split into a training set (80%) and a validation set (20%). In the case of One 

Class SVM all other states are used only as validation data and not used for training. In the case of 

Isolation Forest, a random set of 8,73% the size of the healthy sample training set is drawn and 

included in the training set, and the complete set of other states is used for training. 

Then we train the model with the training set for a range of values on the hyperparameters for both 

models.  

Hyperparameter Values 

Kernel RBF, Polynomic, Sigmoid 

Nu 0.0001, 0.01, 0.1, 0.25 

Tolerance 0.01, 0.001, 0.0001 

Gamma Scale, Automatic 

Degree (only for polynomic kernel) 2 

Table 2 Hyperparameter values tested for One Class SVM 

Hyperparameter Values 

Number of estimators 5, 10, 50, 100 

Contamination Nrandom outliers/Ntotal training data 

Random state 32 

Table 3 Hyperparameter values tested for Isolation Forest 
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6.5. Model validation 

We perform validation against the samples of classes 1, 3 and 4. Both models obtain 100% accuracy 

in several cases. We enclose two particular sets of hyperparameters and features that achieved this 

accuracy.  The full results can be found in the GitHub repository in https://github.com/clara-

9/TFG_public. 

 

Parameters Number of Estimators Overall accuracy 

Standard Deviation, Kurtosis, Spectral Entropy 50 100% 

RMS, Zero Peak, Spectral Entropy 100 100% 

Standard Deviation, Zero Peak, Spectral Entropy 100 100% 

Standard Deviation, Peak-Peak, Spectral Entropy 100 100% 

Mean, RMS, Spectral Entropy 50 100% 

Mean, Kurtosis, Spectral Entropy 100 100% 

Kurtosis, Spectral Entropy 50 100% 

Kurtosis, Spectral Entropy 100 100% 

Standard Deviation, Kurtosis, Spectral Entropy 100 100% 

Mean, Kurtosis, Spectral Entropy 50 100% 

Mean, RMS, Spectral Entropy 100 100% 
Table 4 Selection of hyperparameters and features for Isolation Forest models with 100% accuracy 

Parameters Tolerance Nu Gamma Overall accuracy 

Zero Peak, Spectral Entropy 0.0010 0.0001 auto 100% 

Zero Peak, Spectral Entropy 0.0100 0.0001 auto 100% 

Zero Peak, Spectral Entropy 0.0001 0.0001 scale 100% 

Zero Peak, Spectral Entropy, Crest Factor 0.0010 0.0001 auto 100% 

Zero Peak, Spectral Entropy  0.0010 0.0001 scale 100% 

Zero Peak, Spectral Entropy, Crest Factor 0.0100 0.0001 auto 100% 

Zero Peak, Spectral Entropy  0.0001 0.0001 auto 100% 

Zero Peak, Spectral Entropy, Crest Factor 0.0001 0.0001 auto 100% 

Table 5 Selection of hyperparameters and features for One Class SVM models kernel RBF with 100% accuracy 

Parameters Tolerance Nu Gamma Overall accuracy 

Mean, Spectral Entropy 0.0001 0.0001 auto 100% 

RMS, Spectral Entropy 0.0001 0.0001 auto 100% 

Kurtosis, Spectral Entropy, Crest Factor 0.0001 0.0001 auto 100% 

Kurtosis, Spectral Entropy, Crest Factor 0.0001 0.0001 scale 100% 

Standard Deviation, Spectral Entropy 0.0001 0.0001 scale 100% 

Mean, Spectral Entropy 0.0001 0.0001 scale 100% 

Standard Deviation, Spectral Entropy, 0.0001 0.0001 auto 100% 
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Crest Factor 

RMS, Spectral Entropy 0.0001 0.0001 scale 100% 
Table 6 Selection of hyperparameters and features for One Class SVM models kernel sigmoid with 100% accuracy 

Parameters Tolerance Nu Gamma Overall accuracy 

Mean, Spectral Entropy 0.0001 0.0001 scale 100% 

RMS, Spectral Entropy 0.0001 0.0001 scale 100% 

RMS, Spectral Entropy 0.0001 0.0001 auto 100% 

Mean, Spectral Entropy 0.0001 0.0001 auto 100% 

RMS, Spectral Entropy 0.0010 0.0001 scale 100% 

Mean, Spectral Entropy 0.0010 0.0001 auto 100% 

Mean, Spectral Entropy 0.0100 0.0001 auto 100% 

RMS, Spectral Entropy 0.0100 0.0001 scale 100% 
Table 7 Selection of hyperparameters and features for One Class SVM models kernel polynomic with 100% accuracy 

We will further analyse one of the sets of hyperparameters and features that achieved a 100% 

accuracy for each model. Specifically, for isolation forest, we will analyse the pair of features kurtosis 

and spectral entropy with 100 estimators, and for one class SVM kernel RBF, gamma “scale”, 

tolerance 0.0001, nu 0.0001 with zero-peak and kurtosis 

 
Figure 15 Visualisation of Isolation Model selected for further analysis 
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Figure 16 Visualisation of One Class SVM selected for further analysis 

 

6.6. Model validation with replica bar 

In the previous section the model was validated only against classes 1, 3, and 4. That is, against the 

healthy class and two different unhealthy classes. 

In this section the selected models are tested against a second healthy class, the replica bar. 

This would be comparable to a scenario where there is damage and the bar is replaced for a new 

one, so the system goes from an unhealthy to a healthy state again, but this second healthy state 

isn’t necessarily identical to the first case. 

 
 

Isolation Forest One Class SVM 

Healthy class accuracy 100% 100% 
Replica class accuracy 24,57% 0% 
Unhealthy class accuracy 100% 100% 

Table 8 Selected models accuracy by class 

In both models the accuracies for this new class were low, obtaining a maximum of accuracy of 

24,57% for the replica class for One Class SVM and 0% accuracy for the replica class for Isolation 

Forest. 
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By visualizing the data, we can see a much higher overlap of the replica samples and the unhealthy 

samples in the parameters chosen. Furthermore, in the case of the Isolation Forest, the samples for 

the replica class lay completely outside of the decision boundary. 

 
Figure 17 Selected Isolation Forest model validated against replica class 

 
Figure 18 Selected One Class SVM model validated against replica class 

6.7. Retrained model validation with replica bar 

In a production environment, repairs will be known. The model could then be retrained using the 

“replica bar” dataset and not including the first “healthy bar” dataset. 
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A first approach would be to use the selected models but use the replica class for training. This yields 

the following results: 

 
 

Isolation Forest One Class SVM 

Training class accuracy (replica) 95,52% 99,62% 
Validation class accuracy (replica) 96,39% 98,50% 
Unhealthy class accuracy 64,25% 59,91% 

Table 9 Accuracy of selected models by class when trained with replica class 

As can be seen, although the decision borders of the models shift due to the training with the replica 

class, the overlap of the samples in the two parameters makes a clear separation impossible and 

limits the accuracy of the models. 

 
Figure 19 Selected Isolation Forest model trained with replica class 
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Figure 20 Selected One Class SVM model trained with replica class 

 

6.8.  Retuning the model for replica bar 

Another option would be to retune the hyperparameters. As can be seen, the best results are 

achieved by using different parameters. 

 

Parameters Number of Estimators Overall accuracy 

Mean, Standard Deviation, Kurtosis 50 93,88% 

Mean, Standard Deviation, Kurtosis 10 93,76% 

Mean, Standard Deviation 50 93,57% 

Mean, Standard Deviation 100 93,53% 
Table 10 Selection of hyperparameters and features for Isolation Forest models with best accuracy (replica class) 

 

Parameters Kernel Tolerance Nu Gamma Overall Accuracy 

Mean, Kurtosis RBF 0.0001 0.0001 auto 88,67% 

Standard Deviation, Crest Factor, 

Spectral Entropy 

Sigmoid  0.01 0.25 auto 75,44% 

Mean, Kurtosis Polynomial 0.1 0.10 auto 87,13% 

Table 11 Selection of hyperparameters and features for One Class SVM models, with best accuracy (replica class) 
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The visualisation for the best performing two dimensional models, although not the best performing 

one in the case of Isolation Forest, are enclosed below for ease of comparison with the previous 

sections. 

 
Figure 21 Isolation Forest trained with replica class, Standard Deviation, Kurtosis and 50 estimators 

 
Figure 22 Best Performing One Class SVM with replica class 

 
Isolation Forest One Class SVM 

Training class accuracy (replica) 98,95% 99,62% 
Validation class accuracy (replica) 98,49% 97,29% 
Unhealthy class accuracy 90,93% 83,43% 

Table 12 Accuracies by class of the best performing models when trained with the replica class (hyperparameters can be 
found in Table 10 and Table 11) 



SHM for Offshore Wind Turbine Foundations Through Unsupervised and Semi Supervised Machine Learning Methods  

  37 

These new results are slightly inferior to the results of training with the “healthy bar” class only. One 

possible explanation would be that the new healthy dataset is 1/4th the size of the original dataset 

and this decreases the accuracy of the model. This could be solved with some data augmentation 

techniques such as changing the values taken during the subsampling for a lower frequency. 

6.9. Conclusion 

Satisfactory results were achieved with both models, but Isolation Forest was a better performer. 

The use of spectral entropy, a non-traditional feature in vibration analysis, provided reliable results 

when the training set was larger. 

The selected models needed to be trained and tuned again (with new features and hyperparameters) 

in order to have satisfactory results for a new “healthy” state. Even in that case, the performance 

achieved was lower, possibly due to the effects of a smaller data set for training. 
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7. Environmental impact analysis 

Currently offshore wind energy generation has a higher environmental impact than onshore wind 

energy generation. Some estimates indicate that the emissions of greenhouse gases amounted to 

less than 7 g CO2-eq/kWh for onshore and 11 g CO2-eq/kWh for offshore. (Bounou, Laurent and 

Olsen 2016) Offshore wind energy can also lead to marine habitat loss and ecosystem degradation in 

a variety of ways. (Hernandez, Shadman and Maali 2021) 

However, appropriate maintenance can lead to a smaller environmental footprint of systems. In fact, 

badly maintained systems can lead to a higher energy consumption. (Jasiulewicz-Kaczmarek and 

Drożyner 2013) 

In the case of offshore wind turbines, the environmental impact of an improved maintenance 

strategy is twofold: 

- A higher availability of the wind turbines will lead to a higher generation of renewable 

energy, enabling displacement fossil fuel-based energy generation. (Snyder and Kaiser 2009) 

- Improved maintenance leads to more reliable systems. A higher reliability would allow for a 

lower frequency of servicing, which is usually done by boat or sometimes helicopter. The 

reduction in these servicing trips would reduce carbon emissions. 

For these reasons the application of structural health monitoring to offshore wind turbines could 

overall lead to a decrease in greenhouse gas emissions and have a positive environmental impact. 
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Conclusions 

The current climate crisis requires a shift towards renewable energies. Wind energy generation Will 

play a major role. Offshore wind energy can provide greater output due to more predictable weather 

conditions compared to onshore wind energy and has one of the lowest lifecycle greenhouse gas 

emissions for any source of energy.  For these reasons, there is increased interest and investment in 

offshore wind turbines.  

Some of the difficulties in their operation and maintenance lie in the difficulty of accessing the site. 

Although remote monitoring has become standard in the industry, structural health monitoring and 

predictive maintenance still presents some challenges. 

Most predictive maintenance strategies in the industry rely on vibration analysis, this work 

introduces some of the most standard, broadband features to study vibrations in the industry, but it 

also introduces some novel features that have shown promising results in the field of SHM of WT. 

Specifically, this project uses spectral entropy as an additional feature to the classical features. 

Regarding machine learning, this project features the use of Isolation Forest (a semi supervised 

method) and One Class SVM (a non-supervised method) as a more realistic approach to SHM of WT 

compared to supervised methods due to the difficulty of labelling data. The strategy tested in this 

project (available in https://github.com/clara-9/TFG_public) works under different operating and 

environmental conditions and provides results based only on the output vibration data gathered by 

accelerometer sensors. 

When the strategy is tested against an initial dataset of experimental data accuracies of 100% are 

achieved with both models. However, when the accuracies for a different, previously unseen healthy 

dataset obtains lower accuracies and the features and hyperparameters of the model must be 

retuned. Excluding the initial healthy state achieves overall accuracies of 93,88% for Isolation Forest 

and 88,67% for One Class Support Vector. 

For all of this, the use of non-supervised and semi-supervised machine learning models is realistic 

approach to structural health monitoring of offshore wind turbines and has obtained good results 

when tested against an experimental dataset based on a scaled model. 
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Economic analysis 

The resources required to develop this project are as follows: 

 Time Salary Cost 

Researcher hours 24 ECTS at 60h/ECTS 760€/80 h monthly 12680€ 

Supervisor hours 10% of researcher hours 3040€/160 h monthly 2736€ 

Computer resources - - 700€ 

Total cost 16116€ 

Table 13  Economic analysis of the project 

This calculation considers the net salary for a20h/week researcher position at UPC, multiplied by 1.3 

to take into account taxes. In the case of the supervisor, the salary has been calculated by doubling 

the hourly rate. 

The experimental data used for the development of the model was generated in a previous study and 

will be released in an open-source journal. All cited articles were accessed through open-source 

journals or access was provided by the university. These costs have not been considered. 

The economic impact of the research goes beyond the direct cost of the project. Operation and 

maintenance costs represent 25% of energy production costs offshore wind turbine maintenance. 

(van Bussel and Henderson 2001) This is 15% than Operation and Maintenance costs for onshore 

wind turbines. Moreover, Turnbull reports that up to 8% of these costs can be saved through early 

maintenance intervention. (Turnbull and Carrol 2021) 
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