
Master Thesis
Reverse Curriculum Hierarchical Recursive

Learning

Author: Tair Tahar
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Abstract

This work presents a study on Hierarchical Reinforcement Learning, where several different
approaches for learning are researched, developed and tested. Specifically, the algorithm Re-
verse Curriculum Vicinity Learning (RCVL) resulted with an excellent performance in
the tested environments. It is built on two level hierarchies, where the high hierarchy learns
to suggest adequate subgoals to the lower level recursively, the latter learns the sequence of
needed primitive actions to achieve the subgoals, and finally the ultimate goal. Currently it
is designed only for discrete Reinforcement Learning environments.

Hierarchical Learning allows to break a task into several smaller sub-tasks, which results
with faster learning, since smaller tasks are easier to master. Each of the levels in the hierar-
chy has its own ”resolution” (i.e. different time scales) of the problem, while the low policy is
the one to interact with the environment exclusively. In our problem the subgoals proposed
by the high policy can be seen as milestones that break the big task into several shorter tasks.

The proposed algorithm integrates the concept of Reverse Curriculum Learning. Its learn-
ing begins from states around the goal, and gradually expands to more difficult tasks from
further states, until mastering the whole state space. With this curricular approach, the
agent is able to learn faster: first it masters the easy tasks, and then challenged with harder
tasks. In the proposed algorithm the high hierarchy stores neighbours from the vicinity of
each goal (collected by low hierarchy interactions) such that the goal is reachable from them
with a limited number of actions. In the meantime, the low policy learns simple actions to
solve the mini-trajectories from the neighbours to the goal. Then with the accumulation of
knowledge of both hierarchies, the high policy learns to draw a path from the goal to the
state backwards recursively, suggesting the subgoals along the way. By long-term return
estimation learning, the agent is able to decide which is the best subgoal for each given pair
of state and goal (or subgoal).

It is possible to make the learning even faster when allowing a preliminary phase of vicin-
ity acquisition. In this configuration small and fast interactions of the low level with the
environment are done first. Only afterwards the concurrent learning of both hierarchies is
performed together. This allows a good starting point for learning during the main learning
phase.

More concepts are integrated in the algorithm to accelerate the learning and to allow
sample efficiency. First, the algorithm is an off-policy algorithm, that is, the experience is



accumulated, and is being used later to train a policy that is different from the policy acting
while the experience was acquired. Secondly, the reward system is designed to exploit the
maximum information when rolling-out the collected experience so that all possible ordered
combinations are stored with a non-sparse reward. Finally, the algorithm uses Hindsight Ex-
perience Relabelling, allowing exploitation of the accumulated experience in a more efficient
way.

The proposed algorithm has shown outperformance over the State of the Art algorithms:
DDQN [1], and DDQN combined with HER [2] in more complex tested environment. It has
reached to a success rate of above 97%, while avoiding unfeasible subgoals suggestion, and
constructing optimal paths. Finally, it has shown to be robust to most of hyperparameters
changes.

Keywords: AI · Machine Learning · Reinforcement Learning · Hierarchical Learning ·
Curriculum Learning · Actor Critic · SAC · DDQN · HER · Q-learning · UVFA
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Chapter 1

Introduction

This projects presents our two new developed algorithms Reverse Curriculum Recursive

Learning and Reverse Curriculum Vicinity Learning, that were designed for solving
complex Reinforcement Learning environments tasks with both high sample efficiency and
high learning efficacy. We make use of some concepts as off-line learning, hierarchical learning,
hindsight experience relabeling, and curriculum learning.

1.1 Motivation

Reinforcement Learning (RL) is a field in Machine Learning, where the learning is done by an
agent that explores an environment and tries to solve a task. The way it learns mimics human
learning: Trial and Error, by interacting with the environment, accumulating experience
that includes rewards on the actions it does, when it is found in a particular state. The agent
aims to maximise its reward in the long term, meaning it needs to learn a behaviour that
is adequate to the environment and that brings it closer to solving the task. The research
in this field has different areas of focus, from the reward function, through agent architec-
ture, experience accumulation, the balance between exploration of new revealed states and
exploitation of the existing knowledge and more.

The immediate reward the agent receives from the environment for performing an action,
can be binary (0 or 1), positive or negative, or sparse, meaning it does not receive anything
until a trial is ended, or a combination of those. Most of the environments in real world
problems have binary and sparse rewards: if the agent achieved the goal it gets 1 in the
end of the trial, otherwise 0 (or 0 and -1 instead, respectively). That makes it very difficult
for the agent to learn, and it means that many trials end up with no contribution for the
learning - low learning signal. If the agent fails there is no indication if it is because it was
far from achieving the goal, or maybe only a few steps were missing for success. That affects
sample efficiency, since experience does not necessarily help to learn. That is one reason for
the limited applicability of RL algorithms.

In addition to the insufficiently indicative reward, the applicability of RL algorithm on
real-world problems is limited since it requires both RL expertise and domain expertise. Fur-
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Chapter 1– Introduction Motivation – 2

thermore, there are cases where the admissible behaviour is not known.

However, the field is experiencing a significant progress in RL that brought to the devel-
opments of more complex agent architectures, and to the need of parallelism in both reward
estimation and policy learning. Trying to tackle the inefficiencies of the process we aspire to
propose an algorithm that combines several paradigms which form together an efficient and
generalizable algorithm.

First, we use Hierarchical Learning (HL), that allows breaking down one big task to
several small tasks, such that each hierarchy learns tasks in different resolution, where the
combination of the hierarchies together is able to solve the big task more efficiently. The
fact that each of the hierarchies has only part of the big tasks, allows the agents to learn
much faster complex tasks. The lower hierarchy is the one that performs interactions with
the environment. An example for that would be if we want a robot to pick up an object
and locate it in another location. The high level steps of the process would be in that case:
to move the robotic arm to a current object location, grasp the object, move to the desired
location and finally leave the object. The low level tasks would be the series of primitive
actions that result with each of the high level steps. For instance, to pick up an object, the
robot needs to learn how to close its arm around the object such that it will not fall when
moving it. In order to reach a specific location, it needs to try to advance from any state to
the desired, via exploring new states and exploiting the accumulated knowledge.

Second, the experience the agent gains interacting with the environment, is stored in
the Experience Replay (ER) for later networks update, formally Off-policy learning,
meaning the agent learns from other behaviours (since it keeps changing its own behaviour),
allowing sample efficiency. To make use of the experience even more, Hindsight Experi-
ence Replay (HER) helps a lot. It suggests relabeling existing experiences, even if they
were not helpful for the current goal, they might be useful for the case that the goal is the
actual state the agent ended up reaching.

The third element is the Curriculum Learning where the subgoals that are suggested
to the agent come in a certain order, mimicking the curricular process: in the beginning
easy goals are suggested, and as the agent becomes more trained, and masters its current
goals, it is possible to challenge it with harder goals gradually. Different ways of creating
an automated curriculum are investigated and developed. The paradigm we adopted is the
Reverse Curriculum, where we start learning from easy starting states (close to the goal)
and gradually make the problem harder, learning to reach the goal from distant states.

The solution is formed by several Neural Networks (NN) that act like function ap-
proximators for the long-term return and the behaviour of the agent. That is an important
on-going developing sub-field of Deep Reinforcement Learning that presents the State
of the Art algorithms currently studied.

Finally, the purpose of this work is to suggest an algorithm that combines the elements
above, and to test it in possible environments.

2
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1.2 Contribution

This work aims to present a new Hierarchical Reinforcement Learning algorithm, that
allows an agent to solve relatively complex problems, while demonstrating sample efficiency,
and avoiding unacceptable states. The solution is composed by two levels hierarchy, where
the higher suggests subgoals or promising starting states to the lower level recursively ex-
pressing Reverse Curriculum approach. The reward is shaped to be non-sparse, which
makes the learning more efficient.

With the mentioned ideas, and the combination of Hindsight Experience Relabelling,
the lower level is able to master the short trajectories from states in the vicinity of a goal to
the goal, and in a recursive way, it knows to reach from any starting state to any goal state
in the given environment, passing through the milestone given by the high level policy. The
high level policy proficiency in high level tasks evolves as the lower level performs interaction
with the environment. It can be seen like the high policy ”samples” knowledge from the low
policy with a “sample rate” of the low policy horizon. Low policy horizon is the top limit
number of primitive steps we set for each mini-trajectory performed. The algorithm as a
whole challenges currently existing State of the Art algorithms, presenting very impressive
results for a discrete space.

1.3 Document Overview

This report suggests three main RL algorithms that combine several fields of research. Chap-
ter 2 gives the background and goes through the formulation of the given problem. Chapter
3 presents some State of the Art papers and ideas in the same area of research, while some
of the ideas presented are integrated in suggested algorithms. Chapter 4 describes the algo-
rithms in detail, while chapter 5 presents the most relevant experiments. Lastly, chapter 6
presents some conclusions and possible future research and development.

3



Chapter 2

Background: Reinforcement Learning

This chapter presents the background of Reinforcement Learning and the formulation of the
problem, while emphasising the concepts and paradigms that are used in the proposed solu-
tions. Unless cited otherwise, the information presented in this chapter is summarised from
Sutton et al. introductory book for RL [3] and Professor Martin Course Notes [4].

2.1 Initial Formulation

Reinforcement Learning (RL) is a field of learning in Machine Learning, where the learned
skill is a behaviour given a specific environment and tasks, that are referred to as goals.
The idea is that an agent is learning how to achieve the goals, getting rewards from the
environment on the actions it chooses to execute: trial and error just like a human being.
A positive reward encourages the agent to choose the selected action in the future, while a
negative (penalty) should do the opposite. Eventually the expectation is that the agent will
learn how to achieve its goals in an effective and efficient way, converging to the optimal
solution (optimal behaviour).

The main elements of a RL are [5]:

• Environment - the world where the agent executes its tasks.

• State - current agent’s status.

• Reward - the payment the agent receives after executing an action in the environment
given its current state.

• Policy - the behaviour of the agent, which can be seen as a mapping between current
state and goal, to an action in the action set. It can be either deterministic or stochastic.

• Value function - the accumulated expected future reward when executing an action
given the current state. When speaking on V-value function, then the actions selected
along the way are according to the agent policy, while Q-value function, is where
current action is not necessarily the current policy choice, but then the rest of the
action are aligned with the policy.

4
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The general framework of RL, can be represented by figure 2.1 and it can be formalised
by Markov Decision Process (MDP), as the tuple < S,A,R, P >. The current state of
the agent is assigned as s, which is one state from the set of possible states S. By executing
action a out of the set of possible actions A, the agent receives a reward r ∈ R, while the
state of the agent is updated to be s′ ∈ S. When the environment is not fully observable,
then instead of state we have only observation o, which might not contain the complete
knowledge about the real state. R(st, at, st+1) is the reward function, and P (st, at, st+1) is
the transition probability function in time step t.

Figure 2.1: RL Framework [6]

The objective of the process is for the agent to learn an optimal behaviour (policy), which
maximises its overall long term return. The reward function R determines the immediate
reward rt at each step of the learning rt = R(St):

R(s, a) = E[rt+1|st = s, at = a] (2.1)

Which can also be expressed in the following way:

R(s, a) =
∑
s′

P (s, a, s′) · R(s′) (2.2)

The long-term reward in the case of a finite horizon H can be express in the following
way:

Rt = rt+1 + rt+2 + rt+3 + ... =
H∑
k=0

rt+1+k (2.3)

For the infinite horizon case, we say the the summation continues until infinity (H→∞).
A discount factor γ ∈ (0, 1] is usually introduced when calculating the long-term reward,
which results with the following expression for the infinite horizon case:

Rt = rt+1 + γrt+2 + γ2rt+3 + γ3rt+4... =
∞∑
k=0

γkrt+1+k (2.4)

When the value of γ equals one, we get a far-sighted evaluation, while when it is close to
zero, the significance of further steps decreases greatly.

5
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2.2 Value Function

The Value Function is a prediction of future accumulated reward from a particular state,
which depends on the agent’s policy. The idea is to have the cached knowledge in a single
function V π(s) that represents the utility of any state s in achieving the agent’s overall goal
or reward function. This knowledge allows the agent to immediately assess and compare
the utility of states and/or actions [7]. The state-value function V π(s) is defined as the
expected return, when the agents begins at state s and follows the policy π:

V π(s) = E
π
[Rt|St = s] = E

π

{
∞∑
k=0

γkrt+k+1

∣∣∣∣St = s

}
(2.5)

The action-value function Qπ(s, a) is the future expected return when the agents
begins at state s, executes action a and the follows then policy π:

Qπ(s, a) = E
π

[
Rt

∣∣st = s, at = a
]
= E

π

{
∞∑
k=0

γkrt+k+1

∣∣∣∣st = s, at = a

}
(2.6)

TheBellman expectation equation decomposes the value function and action-value
function using the recurrence relation in following way:

V π(s) = E
π
[Rt|st = s] = E

π

[
rt+1 + γV π(st+1)

∣∣st = s
]

(2.7)

Qπ(s, a) = E
π
[Rt|st = s, at = a] = E

π

[
rt+1 + γV π(st+1)

∣∣st = s, at = a
]

(2.8)

We can notice that Qπ(s, π(s)) = V π(s), which implies that the above can be also ex-
pressed in recursively with Q state-action value:

Qπ(s, a) = E
π

[
rt+1 + γQπ (st+1, π(st+1))

∣∣st = s, at = a
]

(2.9)

The optimal policy is a policy that means any action selection that is not following
the policy will result in lower long-term return. The learning of the optimal policy can be
achieved by either iterating the policy (PI) adding some exploration or iterating the value
functions (VI), while some algorithms combine them both. In order to converge to the op-
timal policy, the agent faces the trade-off between exploration of new unknown state, to
exploitation of the information it already obtained from the environment in past experience.

It is possible to improve policy π if and only if there exist a state s in the state space
S and an action a in the action space A, such that Qπ(s, a) > Qπ(a, π(s)). If a policy π is
improvable, it means it is not optimal when choosing action a from state s.

The optimal policy can be expressed in the following way based on value functions and
transition function, showing is it a greedy policy:

π(s) = argmax
a∈A

Qπ(s, a) = argmax
a∈A

∑
s′

P a
ss′ [R(s

′) + γV π(s′)] (2.10)

6
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If the policy is the greedy policy that means that the value function is maximised:

V π(s) = max
a∈A

Qπ(s, a) = max
a∈A

∑
s′

P a
ss′ [R(s

′) + γV π(s′)] (2.11)

2.3 Stochastic Vs. Deterministic Policy

A policy can be either stochastic or deterministic. Deterministic policy would like:

a = πθ(s) (2.12)

meaning that in state s, the agent will always choose action a. Stochastic policy would be
expressed like:

P (a|s) = πθ(a|s) (2.13)

meaning that the probability for the agent to choose action a from state s is according to
the policy. Stochastic policies can be either categorical policies in discrete action space,
or Gaussian policies for continuous action space. The good thing with stochastic policies
is that they are smoother than greedy policies, so it is possible to use the gradients.

For training stochastic policies we can sample actions from the policy, and we can compute
the log likelihood of particular action logπθ(a|s).

2.4 Exploration Vs. Exploitation

A Greedy Policy is the optimal one. That is the behaviour that has the highest possible
benefit given a particular environment. It can not be further improved. A greedy action is
the one that is selected by the policy. Under the assumption that the policy converges to
the optimal one, a greedy action is simply the one that is suggested by the current policy.
However, we know that the policy is not always optimal, so its selection of actions should be
reconsidered during training. Mostly in the beginning of the training, where we start with a
random policy, it is hard to believe that the action selected by the policy is the best one.

Knowing the agent collects its experience, and in the meanwhile aims to improve its pol-
icy, we face the RL famous trade-off of exploration and exploitation. In order to get to know
as much as possible about the environment, to be able to choose wisely, and converge to the
optimal policy, we need to have the experience of the agent as wide as possible. That means
we need to explore a lot, and let the agent not always go with its current policy, so new states
are visited, and the knowledge on the environment gets more complete. On the other hand,
we want to maximise the long-term expected return. We have the policy that is learnt, and
that is expected to get closer and closer to optimal behaviour, and assumed to benefit the
agent with higher rewards. That makes it appealing to use the existing policy, knowing that
following it, the long-term return should be relatively high (higher as much as the training
proceeds). With that, if we keep only following the current policy, we might get stuck in a
local minimum, with suboptimal behaviour, because we haven’t got all the experience needed

7
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to do the best actions.

A useful compromise between those two is the ϵ-greedy (Epsilon Greedy) exploration.
That method allows the agent to explore with probability of ϵ. Explore means to choose an
action at random. The agent chooses the action according to the policy only with probability
of 1 − ϵ. When ϵ is high (close to 1) then we are more likely to explore, and the opposite
when it is small. ϵ can be viewed as a hyperparameter, where the problem needs to be solved
and the agent’s architecture should be considered for a wise choice. It is frequent to use a
decaying epsilon, which means that in the beginning of the learning we explore more, and as
we proceed we rely more on the policy, as the policy is closer to the optimal one, less random
actions for exploration.

There exist some other popular exploration methods such as Softmax Exploration,
Gibb’s exploration, that adjust the exploration with more specific characteristics to bias
the exploration to more promising actions, or other possible motivations.

2.5 On-policy Learning Vs. Off-policy Learning

On-policy methods try to evaluate/improve the policy that is used for action selection, while
Off-policy methods try to evaluate/improve a policy that is different from the one that is
used for the data generation. In on-policy the agent grasps the optimal policy and uses
the same policy to act and learn from it as the action is executed, right after the episode
completion.

On-policy training should be used when the value of the current exploring agent needs
to be optimised. Off-policy training can be cost-effective when the deployment of the algo-
rithm is in the real world. The updated policy is different from the policy used for experience
accumulation. With that said, for the off-policy case, the evaluation becomes more chal-
lenging due to high randomness.

2.6 Model free algorithms

RL problems can be solved using model-based methods or model-free methods. Model-
based methods allow inference on the environment [8]. Models are used for planning, deciding
on actions by considering possible future situations. A model predicts the next state and the
reward. In model-free solutions, we can not infer on the environment, and the information
about the environment is captured only by the interaction of the agent with it: being in
a particular state s, perform an action a, and observe the reward r and the next state s′.
Changing the policy of value function from a specific state of a model-free agent, the agent
must move to that state and act from it, possibly many times. Model-free algorithms are
able to generalise to more environments.

8
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In figure 2.2 it is possible to see the distribution to the two main groups, through the
methods used and eventually specific algorithms that implement these ideas. The algorithms
that will be presented in this work are model-free, which allows generalization to other pos-
sible environments.

Figure 2.2: Taxonomy of RL algorithms[9].

In model free algorithms the agent gets to know more and more about the environment,
as it collects experiences, while interacting with the environment. The experience is collected
while the agent is going through different episodes or trials. Each episode has a starting
state and a goal state. The observation of a sequence of states, actions and reward during
the episode reveals information regarding the environment. Based on those experiences, it is
possible to estimate the long term return from each state by averaging the collected rewards
after these states in different episodes.

In the following sections several important components of model free algorithms will be
presented, as well as some useful methods we will use in this project. We will start by
explaining VI and PI methods, and then we will see how those are merged into one algorithm
with the two components.

2.6.1 Value Iteration

One major drawback of PI (that will be elaborated in more details in section 2.6.2), is that
each iteration involves policy iteration, which is another iterative process over the state space.
Sutton et al. show in their book [3] that there is no need to iterate the value function more
than a few times, to lean on it for policy evaluation, without losing the promise for conver-
gence of the algorithm. An important special case is where value iteration is truncated after
exactly one iteration, it is called Value Iteration, and it combines policy improvement and

9
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truncated policy evaluation steps. In practice, VI can be seen as turning Bellman’s opti-
mality equation into an update rule. Similar to PI this process should continue an infinite
amount of times until convergence to the optimal value, however when the updates are small
enough (below some threshold) the process is stopped in practice.

2.6.1.1 Monte Carlo Methods

The Monte Carlo methods assume episodic tasks, meaning every episode terminates, with
no dependency on the action selection. In those methods we average the complete return
from the state until the end of the episode. The process is involved with computing the value
functions V π and Qπ for a fixed arbitrary policy π, then policy improvement, and finally
generalised policy iteration. This idea is used also in Dynamic Programming (DP), which is
a model-based approach.

In its simplest version, MC takes long term rewards collected from a state in different
episodes and averages over them. For this case, it is necessary to complete all the episodes
we want to base on in the calculation. In the version of Incremental MC it is possible to
update the value function after every episode, following the update:

Vn(st) = Vn−1(st) +
1

n
(Rt − Vn−1(st)) (2.14)

Where n is the number of visits to each state, which we should store. Instead of using
that coefficient of 1

n
usually a constant parameter α is used:

V (st) = V (st) + α(Rt − V (st)) (2.15)

It can be shown that:

Vn(s) = α
n−1∑
i=0

[
(1− α)iRn−1 + (1− α)nR0

]
(2.16)

With this parameter α it is possible to control the proportion of old long-term return
forgetting. It is useful since as the training proceeds, the policy is updated, so the new
created experiences are more updated with it, and older ones are less important. Moreover,
it is frequent to use a decaying alpha, meaning forgetting more.

Observing equation 2.15, but bearing in mind the exploration - exploitation trade-off that
is brought under section 2.4, the MC incremental update becomes:

Q(s, a)← Q(s, a) + α(Rt −Q(s, a)) (2.17)

MC is an on-policy method (further explanation on on-policy learning is under section
2.5).

10
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2.6.1.2 Temporal Difference (TD) Methods: Q-Learning

Another value iteration method that uses an idea that is similar to MC, but using Bellman’s

equation in the place of Rt:

Q(s, a)← Q(s, a) + α [rt+1 + γQ(s′, π(s′))−Q(s, a)] (2.18)

Q(s, a)← (1− α) ·Q(s, a) + α [rt+1 + γQ(s′, π(s′))] (2.19)

This way of using Q-Value estimations of the next state to update the current one is
called bootstrapping, and it allows the value to update every state and not only when the
episode ends. That is a significant advantage of Q-Learning over MC. TD is an off-policy

method (further explanation on off-policy learning is under section 2.5).

2.6.1.3 Deep Q-Netowrk

Q-Learning that is performed via MC and TD is based on the tabular case of Q-function,
which becomes very complex as the dimensionality grows. That is what gives the importance
to Function approximators (FA). Its major advantages are that it can both generalise to
unseen states, and in the meantime enabling to approximate a Q-value table without a de-
pendency on the state/action dimensionality.

The way to converge to optimality would be applying gradient descent where the loss
function is the difference between the estimation and the actual real values from the collected
experience, in a supervised manner. When the real value is unknown then bootstrapping is
used.

Having this approach alongside with online incremental learning, the experience samples
are consequent and are not independent and identically distributed (i.i.d). This problem is
resolved with batch gradient descent, which means that we sample randomly from past
experiences. This of course can be done only with off-policy learning, using a Replay Buffer

or Experience Replay ER. This buffer accumulates the collected experiences, and then when
it is needed to update the approximator, a sample from this buffer is used. Experience is
stored in the ER with the pattern of < s, a, r, s′ >: state,action, reward and next state. In
this way the samples are expected to be closer to be i.i.d and the learning gradient is more sta-
ble since it relies on computation over a batch of samples and not only a single one experience.

Another problem that rises is the moving target problem. We calculate the loss based
on the target that keeps on changing. The solution that is suggested is to handle two sets
of approximators, θ for Q-Value, and the other, θ′ for target Q-approximator. The target
ones are only updated when an episode is finished, meaning it does not change during super-
vised regression. That solves the problem of the moving target to a large extent.

In addition with ER, having the policy changing over the time, but continuing sampling
from old experiences for approximator updates, might result in inappropriate updates for

11



Chapter 2– Background: Reinforcement Learning Model free algorithms – 12

irrelevancy purposes. That can be solved with either removing old samples from ER, or limit
its size with FIFO (first in, first out) method cleaning. FIFO means that the first one to get
into the ER is the first to also get erased from the memory.

DQN algorithm is an important breakthrough [10] in Q-learning approximation develop-
ment. It is a FA in the form of a deep Neural Network (NN) along with incremental learning
mode. It uses a NN, parametrized by θ for Qθ(s, a) approximation, while for loss calculation,
the ground truth that is used is bootstrapping for each experience (s, a, r, s′):

Qθ(s, a) = r + γmax
a′

Qθ′(s
′, a′) (2.20)

The error can be then expressed by:

error = Qθ(st, at)− rt+1 + γmax
a′

Qθ′(st+1, a
′) (2.21)

Based on the value FA the policy can be evaluated and improved.
DQN has revealed a clear outperforming over the former existing methods, however one

significant drawback is that it can be optimistic when estimating the Q-value. That happens
given a random initialization of the networks. Observing equation 2.21, we notice that in
the case where all of actions have a zero reward, the estimation should be exactly r, however
with the random initialization it might get a positive result (this is a maximum operator).
This overestimation propagates to other states.

2.6.1.4 Double Deep Q-Learning (DDQN)

Double Deep Q-Learning [1] tackles the overestimation problem presented in the former
section, using the two existing NNs for Q-value estimations that are parametrized by θ and
θ′. The NN Qθ′ is udes for action selection while Qθ is used for action evaluation.

The equation for the error in 2.21 then becomes the following:

error = Qθ(st, at)− rt+1 + γmax
a′

Qθ(st+1, argmax
a′

Qθ′(st+1, a
′)) (2.22)

The resulting algorithm is shown in Algorithm 1. In this algorithm we minimise square er-
ror betweenQθ andQ

∗, whileQθ′ softly copies the parameters ofQθ, using Polyak averaging

with τ , the averaging rate [11].

2.6.2 Policy gradient algorithms

In this family of algorithms there is an explicit representation of the policy πθ(a|s). The
parameters θ are learnt via optimising the objective function (loss). The general idea of PI is
to initialise the policy randomly and then go through the iterative process where the action
selected by the policy is updated in case it increases the long-term return. The optimal policy
is expressed in 2.10.

12
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Algorithm 1 DDQN: Deep Double Q-Learning (Hasslet et al., 2015) [1]

1: Initialize primary network Qθ, target network Qθ′ , replay buffer D, τ << 1
2: for each iteration do
3: for each environment step do
4: Observe current state st and select action at ∼ π(st)
5: Execute and observe next state st+1 and reward rt = R(st, at)
6: Store experience (st, at, rt, st+1) in D
7: end for
8: for each update step do
9: Sample experience batch ∼ D

10: Compute target Q value: Q∗(s, a) ≈ rt + γQθ(st+1, argmaxa′ Qθ′(st+1, a
′))

11: Perform batch gradient descent step on the error (Q∗(s, a)−Qθ(s, a))
2

12: Update target network parameters: θ′ ← τ · θ + (1− τ) · θ′
13: end for
14: end for

In the end of every iteration of training, or every several of them, the policy that is learnt
should be evaluated, which means its value-function should be calculated. In theory the
process should continue infinite times for convergence to the optimal policy. In practice, the
iterations continue until the updates in the policy become very minor (below some threshold).

Policy iteration has more promising probability for convergence than Q-value iteration.
It is effective in high dimensional or continuous action spaces, and it can learn stochastic
policies. However, it tends to converge in a sub-optimal solution (locally optimal), and it
also tends to have a lot of variance and to sampling inefficiency.

There are several approaches for policy iteration such as Cross Entropy Method and
some Genetic Algorithms. We will elaborate more on Policy Gradient since it is the
approach we implement in this project.

The idea is to perform gradient ascent to find the policy that results with the max-
imum long term return, the value function. We define the the long-term reward from
a trajectory τ = (s0, a0, r1, s1, a1, r2, ..., sT−1, aT−1, rT , sT ) as the sum of the reward accumu-
lated during the trajectory, which can also be discounted with γ:

R(τ) =
T∑
t=1

r(st) (2.23)

We then note P (τ |θ) as the probability of the path τ following policy πθ. The policy value
J(θ) can be expressed as in equation 2.24. We aim to maximise this term with respect to θ,
which implies analytically compute ∇P (τ |θ). Assuming the policy is differentiable when it
is not zero, we can use the log trick that allows us to replace this gradient with the deriva-
tive of its logarithm as shown in equation 2.25. Then we can derive ∇θlogP (τ |θ) using the
stochastic policy to eventually get the gradient expression brought in 2.26 (H is the horizon)

13



Chapter 2– Background: Reinforcement Learning Model free algorithms – 14

for a sample of m experiences.

J(θ) = E
πθ
[R(τ)] =

∑
τ

P (τ |θ)R(τ) (2.24)

∇θJ(θ) =
∑
τ

P (τ |θ)R(τ)∇θlogP (τ |θ) (2.25)

∇θJ(θ) ≈
1

m

m∑
i=1

R(τ)
H−1∑
i=0

∇θlogπθ(ai|si) (2.26)

Second approach that aspire to optimise the expected return over state (2.27), having dπθ

the probability of being in each state according to the policy (expected number of time steps
the agent is in s normalised by the number trial time steps). Third and last, taking into
consideration one immediate reward as brought in 2.28.

J(θ) =
∑
s

dπθV πθ(s) =
∑
s

dπθ
∑
a

πθ(a|s)Q(s, a) (2.27)

J(θ) =
∑
s

dπθV πθ(s) =
∑
s

dπθ
∑
a

πθ(a|s)r(s, a) (2.28)

Policy Gradient theorem expresses the equation for the objective function gradient, as
appear in 2.29, for each of the approaches proposed (2.24, 2.27, 2.28).

∇θJ(θ) = E
πθ
[∇θlogπθ(a|s)Qπθ(s|a)] (2.29)

The classic algorithm to mention under policy gradient is Reinforce. It is a simple policy
iteration where we generate an episode following the policy πθ, then rolling it out we calculate
the long-term return from each time step Rt, and finally updating the parameters θ with a
rate of α and according to: ∇θlogπθ(a|s)Rt based on 2.29. This process is being iterated
until convergence up to some threshold.

One problem in Reinforce is that it has a lot of variance, which affect the convergence
and solution. To overcome this, a baseline, which is an estimation of V πθ(st) is introduced
for the calculation of Rt. This approach is called Actor Critic algorithm.

2.6.3 Actor Critic Algorithms (AC)

This is a family of algorithms that combines both Policy Iteration and Value Iteration

concurrently. AC can be performed as on-policy (MC) or off-policy. It uses the estimation
of V πθ(st) as a baseline in the parameters update and explained in the former section.

It has two main components: An Actor that implements the current policy, and a Critic
that evaluates the current policy, and is being used for training. It holds two sets of param-
eters, one for each one of the components. For the Critic approximation is it possible to
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apply the explained under section 2.6.1, including bootstrapping and more. The Actor as-
cends with the gradient, directed by the Critic.

The diagram of one step AC can be visualised in figure 2.3. TD (time difference) is for
calculating the error, by the Actor and the Critic for the update. This algorithm has a
lot of variations: λ time steps error, Trust Region Policy Optimization (TRPO), which
optimises action with respect to existing policy by proximal steps, Natural Actor Critic,
which assures the direction of ascending with the gradient is more promising towards opti-
mality, and more.

Figure 2.3: Actor Critic diagram

A famous AC algorithm is DDPG - Deep Deterministic Policy Gradient [12] from
2016 by Lillicrap et al., which implements an extension of Q-Learning (off-policy) for the
continuous case. The difference from other value function approximators is that the policy
is deterministic, and a gaussian is added for exploration purposes.

TD3 (Twin Delayed DDPG) [13] by Fujimoto et al. that was published in 2018 presented
several improvements over DDPG. First, The actions are clipped to avoid out of the range
situations. Second, a pessimism is integrated in the Double Q-Learning, using a twin Q-
netowrk and take the worse for network updates. Lastly, it suggested a delayed policy
updates, that implies more frequent Critic updates than Actor updates.

2.6.3.1 SAC (Soft Actor Critic)

SAC is an off-policy entropy regularised algorithm [14] [15]. It implements a stochastic policy.
The entropy imposes exploration, meaning there is no need for adding noise, as done in
previously presented algorithms. It makes use of 7 networks as approximators:

• Four Q-value networks like TD3: two networks to handle overestimation with target
network for each of them. Those are parametrized with θ1, θ1,targ, θ2, θ2,targ respectively.

• Two V-value networks that are parametrized by ψ, ψtarg respectively.

• One Actor network, parametrized by ϕ.
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Given the entropy that is presented in equation 2.30, the optimal policy will be 2.31,
having α as a regularizer between the entropy and the reward. Normally α decays over the
learning process and is set to zero in test time.

H(π(·|s)) = E
a∼π(s)

[−logπ(a|s)] (2.30)

π∗ = argmax
π

E
τ∼π

[
∞∑
t=0

γt (R(st+1) + αH(π(·|s)))

]
(2.31)

Let us then propagate the entropy to the expressions we used in SAC as described in 2.32
and 2.33. Those allow us to update Bellman’s operator to soft Bellman’s operator presented
in 2.34 and 2.35.

V π(s) = E
τ∼π

[
∞∑
t=0

γt (R(st+1) + αH(π(·|st)))

∣∣∣∣∣s0 = s

]
(2.32)

Qπ(s, a) = E
τ∼π

[
∞∑
t=0

γtR(st+1) + α
∞∑
t=1

γtH(π(·|st))

∣∣∣∣∣s0 = s, a0 = a

]
(2.33)

V π(s) = E
τ∼π

[
Qπ(s, a) + αH(π(·|st))

∣∣∣∣∣s0 = s

]
(2.34)

Qπ(s, a) = E
s′∼P,a′∼π

[R(s′) + γ (Qπ(s′, a′) + αH(π(·|s′)))] = E
s′∼P

[R(s, a, s′) + γV π(s′)]

(2.35)
Back to the networks mentioned, we can now define the losses for them. The loss of each

Q-value approximator is the one that appears in 2.36, while for the v-value approximator
loss is as in 2.37.

The objective function for the Actor network is defined to minimise the Kullback Leibler

divergence between the current policy and the Softmax policy derived from the Q-values,
which makes the policy to prefer actions with high Q-values. The result expression that we
would like to optimise appears in 2.38.

L(θi, D) = E
(s,a,r,s′,d)∼D

[(
Qθi(s, a)− (r + γVψtarg(s

′))
)2]

(2.36)

L(ψ,D) = E
s∼D,a∼πϕ

(
Vψ(s)−

(
min
i=1,2

Qθi(s, a)− αlogπϕ(a|s)
))2

(2.37)

E
a∼πϕ

(Qπϕ(s, a)− αlogπϕ(a|s)) (2.38)

After obtaining the objective functions, we need to derive them for updating. The prob-
lem is that the gradients in that case are not that straightforward. The expectation depends

16



Chapter 2– Background: Reinforcement Learning Model free algorithms – 17

on ϕ, the parameter we want to derive with respect to. To tackle this we define π to be
a gaussian by adding noise to the action and then apply the reparameterization trick.
We can write the actions then as appears in 2.39, where µ and σ are not stochastic. Then
the expectation will not be dependent on ϕ anymore, but on the ξ sampled from a normal
distribution. We, of course, need to update all of the actions accordingly. Then we are able
to compute the gradient with respect to ϕ. The expectation from 2.38 can be rewritten as
in 2.40, allowing optimization according to 2.41. The high level description of the algorithm
is presented in algorithm 2.

ãϕ(s, ξ) = tanh (µϕ(s) + σϕ(s)⊙ ξ), ξ ∼ N (0, 1) (2.39)

E
ξ∼N

[Qπϕ(s, ãϕ(s, ξ))− αlogπϕ(ãϕ(s, ξ)|s)] (2.40)

max
ϕ

E
s∼D,ξ∼N

[Qθ1(s, ãϕ(s, ξ))− αlogπϕ(ãϕ(s, ξ)|s)] (2.41)

Algorithm 2 Soft Actor Critic

1: Initialize policy parameters ϕ, Initialize Q-value parameters θ1, θ2, and set target param-
eters equal to main parameters θtarg1 ← θ1, θtarg2 ← θ2, V-value paramters ψa, ψb, τ
soft update parameter, ΛV , ΛQ, Λπ (objective functions for v-value, Q-value and actor
networks respectively), learning rates, Empty Replay Buffer D.

2: while Not converged do
3: for each iteration do
4: for each environment step do
5: Observe current state st and select action at ∼ πθ (·|s)
6: Execute and observe next state s′, reward r, done signal d indication for goal

achievement.
7: Store experience (s, a, r, s′, d) in D
8: end for
9: for each update step do State Sample experience batch B = {(s, a, r, s, d)} ∼ D
10: ψa ← ψa − λV∇ψaJV (ψa)
11: θi ← θi − λQ∇θiJQ(θi) for i ∈ {1, 2}
12: ϕ← ϕ− λπ∇ϕJπ(ϕ)
13: ψb ← τψa + (1− τ)ψb
14: end for
15: end for
16: end while
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Chapter 3

Related Work

This chapter aims to summarise ideas and algorithms that contributed to the creation of the
proposed solutions in this work. The papers that will be presented express the ideas (sub-
fields) of Hierarchical learning, Curriculum Learning, Hindsight Relabeling ER, Neural
Network. Neural Networks are used both as approximators and also for generation and dis-
crimination.

Some of the ideas can be mixed together in one solution, and sometimes the same method
can act as two of those together, which makes it complicated to make a definitive distinction.
Having that said, the sections are written such that a paper is under a subfield which its
novelty expresses the most.

3.1 Universal Value Function Approximators (UVFA)

The idea of UVFA is presented by Schaul et al. in [7]. First, let us define the generalization
of MDP formulation. UMDP, Universal Markov Decision Process, is a generalisation of MDP,
where instead of having only one goal, we have a goal space, which means a set of possible
goals. The problem formulation is the tuple < S,A,R, P,G >. The difference is that now
G is the goal space that contains all the possible goals in the problem while G ⊆ S. Now
the reward function R is defined as S × G × A × S → R. That is, from the accumulated
experience tuple of (state, goal, action, next state) to a reward r.

The general value function Vg(S), which depends on the policy π parameterised by θ,
represents the utility of any state s in achieving a given goal g following the policy. Each
value function is represented by a pseudo-reward function that occupies the place of the real
rewards in the given problem, and represents a piece of knowledge about the environment,
which is the way to evaluate a specific aspect of the environment. Finally a collection of
general value functions provides a powerful form of knowledge representation, which is very
useful.

The function approximator can be either a linear combination of features of a neural
network (Also in our implementation we use neural networks as function approximators). The
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function approximator makes use of the state space structure to efficiently learn the value of
the observed states, and further generalise to the value of similar unseen states. The UVFA
[7] V (s, g; θ) extends the idea of value function approximators to both states s and goals
g. In the same way Q(s, g, a; θ) extends the idea of Q-value function approximators.

For every goal g ∈ G, a pseudo-reward function Rg(s, a, s
′) is defined. For any policy

π : S → A and each goal g, they define a general value function that represents the expected
cumulative pseudo-discounted future pseudo-return:

Vg,π(S) := E

[
∞∑
t=0

Rg(st+1, at, st)
t∏

k=0

γg(sk)

∣∣∣∣∣s0 = s

]
(3.1)

while actions are generated according to the policy π. The action-value function looks as
following:

Qg,π(s, a) := E [Rg(s, a, s
′) + γg(s

′) · Vg,π(s′)] (3.2)

Schaul et al. presents in [7] two possible architectures to handle working with both states
and goals as inputs to the approximator. The one we are going to use is referred to as
”concatenated architecture”, where the state and the goal are concatenated, and together
they act as input, as can be visualised in Figure 3.1.

Figure 3.1: Concatenated architecture

Each goal allows an optimal policy π∗
g(s) := argmaxaQπ,g(s, a). The corresponding opti-

mal value functions are then V ∗
g := Vg,π∗

g
and Q∗

g := Qg,π∗
g
. Hence, the approximators will be

as follow:

V (s, g; θ) ≈ V ∗
g (s) (3.3)

Q(s, a, g; θ) ≈ Q∗
g(s) (3.4)

Those are parametrized by θ ∈ Rd and approximate the optimal value function with
respect to both state space S and goal space G. In our implementation, the same idea will
be applied to the Actor network in the case of SAC.
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3.2 Experience Relabeling

The paper [2] suggests an important method, called HER - Hindsight Experience Replay,
for exploiting episodes that are not successful. HER is a technique that allows sample-efficient
learning from sparse binary rewards, meaning no need for complicated reward engineering. It
can be applied together with an off-policy RL algorithm and it can be viewed as an implicit
curriculum. This method is applicable in cases of multiple achievable goals as in our UVFA.
In practice, when an episode has been collected, one of the states in the episode is chosen to
be stored as if it was a successful episode to this new chosen goal. There are several different
strategies for choosing the intermediate state among the rest. The strategy that showed the
best performance is to choose a random state within the sequence. This is called the “future”
strategy and we use it in our implementation.

Experience relabeling is a very useful technique and it is adopted in several more papers
presented here under other subfields.

3.3 Hierarchical Learning

As mentioned, the idea behind Hierarchical Learning is to have several hierarchies that collab-
orate to compose the solution of the problem together. Each hierarchy has its own resolution
of the problem, while the lower one interacts with the environment and its resolution is
the primitive actions, the lowest possible. That allows breaking down a problem into sub
mini problems that are easier to master. The algorithm as a whole then is able to learn faster.

A Hierarchical Learning framework with Actor Critic is proposed in HAC [16], as a
solution to sample efficiency. Many DRL algorithms force agents to learn at the lowest level
of temporal abstraction, performing only primitive actions. Complex sequences of actions
become very difficult and slow to learn, especially with sparse rewards. It takes longer for
the Q-values back propagation to take action and the exploration is restrained.

In the proposed algorithm, agents learn to divide tasks that involve continuous state and
action space to different tasks that correspond to different time scales. It is achieved by
agents that learn multiple policies in parallel. Subsequent hierarchies learn to break down
tasks corresponding to increasing time resolution. Figure 3.2 exemplifies the different goals
generation in the different 3 hierarchies. The distances between the vertical lines express the
amount of time the agent has to accomplish each subgoal. The lowest level can be interpreted
as sub goals that require one action, while the highest breaks down the ultimate goal with
relatively large time resolutions. This approach has both the advantage of that the learned
policies are length-limited (shorter policies are learned more quickly) and also, it allows high
level exploration. Each hierarchy is an Actor-Critic network. Each agent learns policies
that are limited time-wise.

The algorithm uses DDPG, UVFA and HER. The input of each Actor network is the
current state and higher level goal, while the output is a particular time-scale action that
can be referred to as subgoal. Each Actor network has its own Critic network and replay
buffer to learn a near optimal policy. Each critic network approximates the Q-function
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Figure 3.2: HAC general concept

for the associated policy using Bellman equation as target.
It is expected to be easier for the agents to learn multiple shorter policies in parallel

rather than one long policy. The subgoals that the Actor network needs to learn should
be efficient (achieve its high level goal in as minimum amount of actions as possible), while
suggesting goals that are achievable by the lower level actor in a limited number of steps
(low level horizon). Those two objectives are contradicting, hence, a coordination between
the higher level and lower level is needed. To address this need for coordination HAC proposes
two measures: First, all experience transitions passed to the replay buffers of subgoal actor
networks contain actions that were actually achieved by the consequent, lower level actor
network within the number of actions limit. Secondly, HAC penalises when subgoals that are
proposed were not achieved. If layer i proposed a subgoal that was not achieved, layer i
receives a negative reward with no discount factor, making it not dependent on the Q-value
of a different state.

HAC shows good performance, however it also suffers from a problem of non-stationarity
when different hierarchies learn in parallel, building on non-optimal estimations of lower
levels. The paper [17] tries to tackle the non-stationarity problem. It suggests that RL can
be used to learn all policies in parallel if each level above ground level has a way to simulate
a transition function that uses the optimal versions of lower level policies. The suggested
framework allows the user to simulate a transition function that uses an optimal lower level
policy hierarchy. The algorithm is implemented basing on two concepts that express HER:

1. Hindsight Action transitions : As explained previously, when a layer i−1 is unsuccessful

21



Chapter 3– Related Work Hierarchical Learning – 22

over several attempts in achieving a subgoal gi proposed by layer i, but it achieves
instead another goal g′i, than, layer i receives a transition that includes g′i as the action.
That is in practice, assuming that the lower level i− 1 policy is optimal.

2. Hindsight Goal transitions : One of the states reached in hindsight is used as the goal
state in the transition instead of the original goal.

The most significant drawback of that approach is that level i can only learn Q-values for
subgoal proposals (its actions in practice) that are relatively close to its current state and
will ignore the Q-values for all subgoal actions that require more than H (horizon) actions.
Another problematic phenomenon is that subgoal hierarchy ignores the lower level abilities,
and so the output subgoals created might be suboptimal. To overcome this disadvantage, an
approach for subgoal testing transitions is proposed. That is to help a subgoal layer to
learn whether the subgoal it proposed is reachable within the horizon H steps of the lower
level with its current policy. If it not reachable, the transition will contain a penalty of −H.

Another algorithm called HIRO suggested in [18] to tackle the problem of non-stationarity,
by off-policy correction. The approach is to relabel gt for past high level policy experi-
ences in order to make the observed action sequence more likely with the current lower level
policy. Having at:t+c−1 ∼ πlo(st:t+c−1, gt:t+c−1), the goal that should be stored is g̃t:t+c−1, the
one that maximizes πlo(at:t+c−1|st:t+c−1, g̃t:t+c−1) with the current low policy πlo out of 10
candidates. That is approximated by 3.5. Eight candidates are sampled from a Gaussian

around st+c− st, while one candidate is always st+c− st, which is equal to gt if the algorithm
performs correctly, and trivially, gt itself is the tenth and last candidate.

logπlo(st:t+c−1, g̃t:t+c−1) ∝ −
1

2

t+c−1∑
i=t

||ai − πlo(si, g̃i)||22 + constant (3.5)

The paper [19] presented by Wang et al. also tries to tackle the problem of non-
stationarity of high-level training for decision making - AGILE (Adversarially Guided

Subgoal Hierarchical Generation). The proposed approach is to adversarially enforce
the high-level policy to generate subgoals that are in accordance with the momentary in-
stantiation of the low-level policy. That aims to enhance high-level policy’s knowledge of the
low-level’s ability. The generator is the high level policy that learns to generate subgoals fol-
lowing a compatible distribution with the current low-level policy. A discriminator network
is used to distinguish a generated subgoal that may not be reachable by the low level policy
from a relabeled subgoal that is known to be reachable.

The framework proposed has 2 hierarchies. The high-level modulates the behaviour of
the low-level policy by intrinsic rewards for reaching the generated subgoals. The high-level
policy aims to maximise the extrinsic reward rhkt that is defined in 3.6. The low-level policy
aims to maximise the intrinsic reward provided by the high-level policy, that is measure by
subgoal reaching performance: rlt = −||st + gt − st+1||2.

The architecture used is of TD3 for each of the two hierarchies. One objective of the
subgoal generator is to maximize the expected return induced by a deterministic policy in
3.7.
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rht =
t+k−1∑
i=t

renvi , t = 0, 1, 2, ... (3.6)

Jdpg = Es∼D[Qh(s, g)|g = G(s; θg)] (3.7)

The subgoal generation network g = G(s; θg) maps from state space to subgoal space (not
sampled from random noise as in vanilla GAN). D is the replay buffer with the high level action
relabeled: gt of the high-level transition (st, gt,Σ

t+k−1
i=t renvi , st+k) is relabeled with g̃t to max-

imise the probability of the created low-level sequence of actions: πl(at:t+k−1|st:t+k−1, g̃t:t+k−1).
This probability is approximated by maximising the log probability in 3.8.

logπl(at:t+k−1|st:t+k−1, g̃t:t+k−1) ∝ −
1

2

t+k−1∑
i=t

||ai − πl(si, g̃i)||22 (3.8)

A major difficulty in HL is that higher levels should suggest effective subgoals, without
actually knowing if they are reachable or not, since this information can be collected only by
the lower level after having sufficient exploration and training. The papers [20], [21] by Zhang
et al. present the algorithm HRAC, which tries to tackle this problem. The term ”Shortest
transition distance” refers to the minimum number of steps needed to reach a target state
from a start state. It can be achieved by minimising the expected first hit time over all
possible policies. The high-level action space can be restricted from the whole goal space to
a k-step adjacent region centred at the current state.

The algorithm requires an Adjacency network training from Adjacency table: explic-
itly memorise the adjacency information by constructing a binary k-step adjacency matrix
of the explored states. The adjacency matrix has the same size as the number of explored
states, and each element represents whether two states are k-step adjacent. The adjacency
network learns a mapping from the goal space to an adjacency space, where the Euclidean
distance between the state and the goal is consistent with their shortest transition distance.

Another interesting paper by Kim et al. presents the algorithm called HIGL [22], which
is similar to HRAC but it evaluates both the reachability of states, and their novelty. The
novelty score is higher for novel states dissimilar to the ones the predictor network has been
trained on. The adjacency Network discriminates whether two states are k-steps adjacent
or not. It learns a mapping from goal space to an adjacency space, by minimising the
contrastive-like loss. Then it is possible to approximate the shortest transition distance. The
algorithm does Landmark sampling: coverage based sampling and novelty based sampling.
Coverage based sampling means to sample farthest points from a wide range of visited states
from the Experience Replay. The distance is measured in the goal space as norm2. As for
novelty-based sampling, they introduce a priority queue of a fixed size ordered by novelty. The
novelty of a state decreases constantly, meaning it should be updated all along. previously
sampled similar states are discarded.

After Landmark sampling comes Landmark selection to detect the urgency of the
landmark since not all the landmarks are helpful. First, build a graph of landmarks, then
run the shortest path planning to a goal in a graph. Nodes in the graph consist of current
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state, a goal, and landmarks. Each edge is weighted with the distance that is estimated by
low-level goal conditioned value function. When the calculated distance is too big, the edge
is being discarded, since distance estimation via value function is only locally accurate. Value
iteration is used as shortest path planning, and the first landmark is selected to be the goal.

3.4 Curriculum Learning

Curriculum Learning (CL) aims to address the sampling inefficiency for off-policy methods
problem to accelerate RL training procedure and for some cases to improve the results, by
performing the experience acquisition in heuristic systematic manner than the random. The
inspiration of CL is the fact that animals and humans learn better when the experience they
see is ordered in a meaningful manner, that gradually encompasses more concepts, with in-
creased levels of complexity.

Bengio et al. claims in [23] that curriculum strategy can act like a continuation method,
which helps to find a better local minima, and points out that curriculum strategy operates
like a regularizer, as reported in experiments. For convex criteria curriculum strategy can
speed-up the convergence to the global minimum. In an older paper 1993, Elman presents
the notion of starting small [24] and makes the statement that this strategy enabled humans
to learn what might otherwise prove to be unlearnable.

One difference between HL and CL is that HL is built such that both agents learn dif-
ferent resolution of solution to the problem, and eventually in test time, the higher policy
is part of the solution. On the other hand, CL might involve two agents so the one aims
only to accelerate the learning of the actual agent, and the first does not form part of the
ultimate solution in test time. Also sometimes the implementation of curriculum does not
imply another agent, but the goals that are suggested, are characterised by some heuristics
so the learning is accelerated. The suggested algorithms in this work combine the two ideas,
and let both the agents learn in a curricular way.

While in first years the focus of CL was mainly on constructing manually a sequence
of tasks of increasing difficulty, in more recent papers the focus is on the automatic
curriculum generation. A practical (automatic) curriculum learning method addresses
training examples ordering and sampling modification based on the order. A typical guideline
of curriculum algorithm would be:

1. Curriculum design.

2. Evaluation metric design - how easy or difficult the current target is?

3. Sequentially Increasing difficulty level tasks (training).

A classic paper in the field of CL is [25] Teacher and Student Curriculum Learning
(TSCL), where a teacher agent chooses automatically which task to give to the student
which allows the student agent to learn gradually more complex tasks. At each time step the
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teacher selects a task from a list of possible tasks, the student trains on the task and returns
a score. The goal of the teacher for the student to succeed in achieving the ultimate task goal.

A big challenge is for the teacher to estimate the level of the student, to pick tasks in
the right level of difficulty and balance the exploration exploitation trade-off. The problem
is that the only learning signal the teacher has is from the noisy scores of the student, which
makes it harder to track the learning curve of the student. To overcome this, three approaches
are presented and tested: Firstly, the naive approach, where an average over K times the
students tries to solve the problem, then use the regression coefficient of the learning curve
as a reward in a non-stationary bandit algorithm. Secondly, FIFO buffer over last k scores,
then again linear regression to estimate the slope of the learning curve for each task, with
respect to time steps. While those two options require exploration hyper parameters tuning,
the third option takes inspiration from Thompson sampling, where k last rewards for each
task is kept in a buffer, then to choose the next task, a recent reward is sampled for each
task, and whichever yields the highest reward gets selected.

Another paper [26] aims to investigate the effect of the task distribution as a hyperparam-
eters in the Gradient-based Meta-Learning framework. When the distribution contains a
large variety of tasks, most likely an underfitting problem will occur, since the agents are
incapable to specialise in neither of the tasks reaching a good performance. On the other
hand, low variety might lead to poor generalisation. The random sampling of tasks can also
harm the ability to learn, in cases where qualitatively different tasks are chosen. The idea is
to address the problem of meta-overfitting by explicit optimization for task distribution.

The proposed method is called Meta-ADR (Active Domain Randomization) and it was
proposed by Mehta et al.. The algorithm, as can be visualised in figure 3.3, helps the agent
to learn a curriculum of tasks, instead of uniformly sampling the given tasks set. A dis-
criminator that was trained over pre-adaptation and post-adaptation sequences, is used to
learn task difficulty, via rewards, which are used for the particles training. Intuitively ADR is
optimised to find environments where the same policy results with different behaviour.

Another interesting paper [27] by Held et al. presents GoalGAN - Automatic Goal

Generation for Reinforcement Learning Agents, an adversarial training approach for
subgoals generation, which are always in the appropriate difficulty of the agent, producing
a curriculum. The method includes a dynamic modification of the probability distribution
from which goals are sampled, which assures that the difficulty level of the generated goals
is appropriate.

The algorithm formulation directly motivates the agent to train on tasks that challenge
its capabilities, which reflects the concept of Intrinsic Motivation. In addition, the algo-
rithm is based on Skill-learning, which is an approach where an agent can reuse skill, an
improvement over learning from scratch. The third idea that the algorithm is based on is
Curriculum Learning.

The algorithm uses an indicator function, with a tolerance and a distance metric, such
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Figure 3.3: Meta-ADR

that when reaching a certain distance from the target within the T time steps limitation
(horizon), it counts as 1, otherwise 0. It applies to problems with binary and sparse reward,
which resembles real world problems. The goal space is continuous. They define an objective
of equation 3.9, named Coverage function, which should to be optimised.

The first step of the algorithm is goal labelling as Goals of Intermediate Difficulty
(GOIDi) or not. GOIDi are goals that during iteration i, yield a long term return within a
certain range of Rmin and Rmax, as described in 3.10. Goal sampling during training is then
uniform over the set of GOIDi. In this way, the agent is trained with goals that will result in
some reward, but has not yet been mastered (not receiving the maximum reward it can get).
Rmin and Rmax can be seen as the minimum and maximum probability of reaching a goal in
T time steps. The algorithm suggests to first estimate the label yg ∈ {0, 1} that indicates
whether g ∈ GOIDi for all goals g used in the previous training iteration, then use these
label to train a generative model from where goals sampling for the next iteration is possible.
The label estimation is done by calculating the fraction of success out of all trajectories that
contain g in the previous iteration. Then the result can be passed through 3.10 threshold to
be labelled as 1 or 0.

π∗(at|st, g) = argmin
π

Eg∼Pg(·)R
g(π) (3.9)

GOIDi := {g : Rmin ≤ Rg(πi) ≤ Rmax} ⊆ g (3.10)

The second component of the algorithm is Adversarial Goal generation, using Goal GAN. Goal
GAN is a Generative Adversarial Networks with a modification that allows training with both
positive examples and negative examples (factuals and counterfactuals). Negative examples
mean they were sampled from a distribution that does not share support with the desired
one. GANs also allow scaling to high dimensional goal spaces (such as images). The Goal

Generator G(z) is trained to uniformly output goals from noise vector z, that are in GOIDi,
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using Goal Discriminator D(g). The optimization is done similar to Least-Squares GAN

(LSGAN), with the modification for negative examples.

Let us emphasize the a main difference between AGILE (the hierarchical adversarial al-
gorithm that was presented under 3.3), with the recently presented Goal-GAN: Goal-GAN
does not have a condition on the observation, instead, its generator stands alone. The GAN
and the policy are separated and sequentially trained. AGILE generator on the other hand,
is a substitute of the actor network, and policy update is performed directly through the
adversarial loss and policy loss concurrently.

3.4.1 Reverse Curriculum Generation for Reinforcement Learning

One way of automatic curriculum for sparse environments is Reverse Curriculum [28]. The
algorithm suggests a framework where a robot is trained in “reverse”, from the goal back-
wards. In practice it means to reach the goal from a set of starting states that are increasingly
far from the goal. Those ”promising” starting states are located around the target (or states
that are similar to the goal state), which means it is easier and more probable to reach the
target from them. When the agents master the task of reaching the goal from ”good starts”,
it is now possible to spread more, and learn how to reach from states that are close to the
”good starts”, to the promising state. That can be seen in a way where the ”promising state”
becomes the new goal, for other ”promising states”. In this way, gradually the agents learn
to reach different goals (or states). This way of training assures that the given goals are
reachable with intermediate difficulty. Intermediate difficulty for most cases is defined to be
tasks that the agent has not mastered yet, but has at least some success.

Reverse Curriculum Learning is expected to accelerate the learning since the agents should
reach the target relatively fast, which grants him with high reward. That is a strong learning
signal which is beneficial for the learning.

This paper suggests a discrete-time finite-horizon MDP by a tupleM = (S,A, P, r, ρ0, T ).
Most of those were already explained in section 2. ρ0 : S → R+ is a start state distribution,
r and T are the reward function and the horizon respectively. The starting state distribution
ρi changes in every learning iteration i, while evaluation is done on the uniform distribution
of the states, as in the original problem. The general problem that is considered then is
reaching goal space Sg ⊂ S from any start state S0 ⊂ S. Having the reward a binary one in
case reaching a state the belongs in Sg, implies that the return associated with every start
state s0 is the probability of reaching the goal in the T horizon limit.

The suggested algorithm relies on 3 assumptions:

1. It is possible to resent the agent into any start state s0 ∈ S at the beginning of all
trajectories.

2. At least one state sg is provided such that sg ∈ Sg.

3. The Markov Chain induced by taking uniformly sampled random actions has a commu-
nicating class including all start states S0 and the given goal state sg.
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To find those ”good starts”, a procedure called SampleNearby is performed concurrently
during the learning. The agent performs T (horizon) random actions from the goal state,
which bring it to new states, in the vicinity of the goal state. Several different series of actions
are done, so those states which the probability of reaching the goal from them is high, are
collected to the list of good starts. Then the distribution of those good starts is updated
with the newly found states. All those states visited during the rollouts are guaranteed to
be feasible and can then be used as start states.

The ”good start” list in the beginning contains only the goal state sg. The curriculum is
expressed by the fact that the suggested starting states are uniformly sampled from that list.
The algorithm selects only states where the expected return from them is between Rmin and
Rmax, which assures those are not yet mastered but also feasible - not too hard and not too
easy [29]. In theory, to calculate the expected return from them, it is needed to perform some
trajectories from each of them, however to avoid this inefficiency, they use the trajectories
collected by the policy training trajectories.

Gradually, this region of ”good starts” grows, and hopefully covers all possible starting
states in the problem. They showed that Brownian Motion from that ”good starts” list,
performed way better than the option of only uniformly sampling from the state space.

28



Chapter 4

Algorithms

4.1 Motivation

Reinforcement learning algorithms still have a lot of drawbacks that prevent them being
widely used, as explained in chapter 1. The idea in this master thesis was to create an
effective and efficient algorithm that will be able to solve complex environment tasks.

An important work that has been done last year (2021) by the colleague Rafel Pal-
liser Sans, presented the algorithm Learning Recursive Goal Proposal, LRGP. This al-
gorithm was also meant to solve RL complex environment problems with Hierarchical
Learning using two policy levels - high and low. The high policy aims to suggest meaning-
ful subgoals in the way from a given state to a goal, so the low policy only has to learn short
sub-trajectories between the suggested subgoals. The low level is the one that interacts with
the environment exclusively, performing (primitive) actions, which result in the agent’s state
changes. The actions of the high hierarchy are in practice the goals of the low hierarchy, and
they are added to the goal stack in every proposal in First In First Out (FIFO) technique.
The high agent keeps suggesting subgoals recursively as long as the current subgoal is not
reachable by the low agent, and the limit of allowed subgoals does not exceed the high agent’s
horizon. The reachability of a goal/subgoal is verified with is reachable set that stores the
possible movements of the agent within the limit of the low horizon from past experience.
The task of the algorithm is to empty the goal stack, meaning the episode’s ultimate goal
was achieved (it is the last one to be erased from the stack). For sample efficiency and learn-
ing acceleration algorithm uses HER.

LRGP showed relatively high performance and was able to outperform some State of the
Art algorithms in the presented environments. However it had some points for improvements.

One of the challenges is the incomplete space of the environments: some states are not
feasible in the sense that the agent is not able to be in those. For more details regarding
the environment, please refer to section 5.1. The high level of LRGP suffers from impossible
subgoal suggestions, since it does not learn the environment directly. The incomplete space
is handled by storing a set of all visited states as allowed subgoals for proposals. When the
high policy suggests a subgoal that does not appear in this list, it will be eliminated and an-
other attempt of the high policy to suggest an appropriate subgoal is done, while adding some
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noise. In practice, when a suggested subgoal is not allowed it leads to recursively suggesting
locations that are close to the original proposal until an acceptable one is proposed, where
frequently several suggestions are needed until an allowed state is proposed as a subgoal.

Another issue is that the success rate by the end of the learning process keeps oscillating
around 0.89 success rate, meaning there still exist a gap to improve. That is further worsen
when expanding the goal state dimensions to 3 dimensions, to be identical to the state space.
In that case the performance of LRGP seems to degrade.

For these reasons we aspired to offer a Hierarchical algorithm, that integrates several
common component with LRGP (such as goal stack and is reachable set), while basing on
other different concepts, that will allow higher success rate, while also avoiding the unfea-
sible subgoals proposals. To tackle those objectives we offer algorithms that adjust the
idea of Reverse Curriculum Learning to Hierarchical learning.

In this chapter we will present the integration of the Reverse Curriculum Learning idea
in the hierarchical learning framework in our context. Then we will present the two main de-
veloped algorithms in this thesis: Reverse Curriculum Recursive Learning (RCRL) and
Reverse Curriculum Vicinity Learning (RCVL).

4.2 Reverse Curriculum Learning: Adjustments to the

Hierarchical framework

Under section 3.4.1 we went through the idea suggested by Carlos Florensa et al. in [28] in de-
tails. In the next subsections two algorithms that combine this idea of Reverse Curriculum

Learning with the idea of Hierarchical Learning are presented. Florensa in his work [28]
proposes to maintain a list of ”good starts” which are state with high potential for success.
Those are collected by sampling states nearby the goal state. If those states are reachable
from the goal state, meaning that the goal is reachable from them in reversible environment.

The subgoals are uniformly sampled from this set of ”good starts”. The curriculum is
expressed by the difficulty to reach the goal from them, which is estimated by the return from
them over number of experiences. The average in the binary reward environment is equal to
the probability of success. Those with 0 return are too hard, while those with 1 mean that
they are mastered already, too easy. This can be visualised as if it was the area around the
goal that is being learned by the agent, gradually it expands, until hopefully the whole state
space has been visited by the agent in mastering level.

Those ”good starts” are in practice milestones along the way from the state to the goal,
that divide the episode path into several mini-trajectories that are expected to be shorter
than the original path required. The hierarchical architecture facilitates the learning of the
low agent, by making it only the mini-trajectories. Shorter sequences to learn are easier
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(statistically more probable) to learn.

The learning of the different levels is done concurrently, which has its implications: the
high level does not have interactions with the environment and the information it gets is
limited and based on the lower level. That is - the high level learning is strictly subjected
to the low level learning. In addition, when the high level proposes unfeasible subgoals, or
overly hard ones, the lower level is more prone to fail.

For all of the algorithms, the terms of ”close” and ”far” are quantified and measured by
the number of steps needed to move from one state to the other. We do not use the euclidean
distance, since it would not necessarily reflects the reality in the environments (think of two
close states that only one state is between them, but it is unfeasible).

4.3 Main common components for both suggested al-

gorithms

4.3.1 Low policy

The low hierarchy can be described as a UMDP with state space of S, action space A, goal
space G, which is equal to the S. Note that goals of the low agent are unstacked from
goal stack and are drawn by the high policy, rather than the environment. That implies
the goal space perceived is smaller from the whole space, facilitating the low policy learning.
The reward short term reward is defined to be 0 for the step that achieves a mini trajectory
goal and -1 for any step (binary sparse reward). Note that the mini trajectory goal is differ-
ent from the ultimate episode goal. The discount factor is defined to be γ = 1 having the
long-term reward upper bounded by zero. The negative reward of -1 for each step encourages
the agent to learn how to go through a trajectory with the minimum steps possible.

The algorithms make use of is reachable set, which is a set of possible transitions within
low horizon steps in the form of (state, goal). This set grows larger and larger, especially
in the beginning of the learning, while a lot of exploration is done.

The low policy is implemented by DDQN with HER, using Future strategy (see section
3.2) for goal relabeling. This selection of DDQN is following the study that was performed
in the LRGP thesis, which showed it fits to the environments we test in the thesis.

4.3.2 is reachable set

The low agent also stores in its property the set of (state, goal) tuples, which are collected as
possible during one low horizon. When the low agent performs its steps, the visited states
are stored in the a list. Then after a low horizon actions of the low agent, were made, this
list is rolled out and each combination of two states s1, s2 where s1 occurred before s2 is
stored in the is reachable set. This set is being used to verify if the current proposed goal
is reachable within one low horizon by the lower policy. Based on this information, a new
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subgoal/starting state is proposed: if the tuple of (current state, current goal) exists in the
set, then the low level gets into action. Otherwise, another subgoal will be proposed by the
high level.

4.3.3 High policy

The high policy aims to suggest promising starting states (subgoals), and it is implemented
differently in the different algorithms proposed. The problem can be defined as UMDP with
state space S, goal space G which is the same as S. Action space A of the high policy is the
same as S since its part is to propose starting states. The transition probability P depends
on the lower policy, since the lower policy is the only to actually interact with the environment.

The states that are perceived by the high level are the first and last in every mini-
trajectory, meaning states that low horizon consecutive steps are between them. Those are
high level steps. That is why a high level is able to ”capture” the big picture. The high
level steps are stored from the beginning of the episode until the end of it, and then they are
rolled out to be store in the high hierarchy ER.

The high level agent is implemented as variation of SAC: RCRL uses the explicit policy rep-
resentation while RCVL uses the value function approximator for most cases, and the explicit
representation of the policy in cases where we have a goal that we don’t know its vicinity
yet. SAC for the high policy was chosen in a similar way to the lower level following LRGP

thesis study, which showed it fits the environments we test in the thesis.

The short-term reward equals to -1 for each goal proposal, resulting with a long time
reward of minus the quantity of subgoals suggested from state to goals. That makes the
long-term reward be the ”cost” (negative) of proposed starting states number in an episode,
or number of subgoals to be suggested. Therefore learns to minimise the number of subgoals
suggested, leading to minimising also the number of steps that should be done by the low
hierarchy agent.

Long-term return estimation
During an episode, we store the ”high level steps” done, and after the episode is finished

we roll out this list and create several tuples to store in the ER. In between the high level
steps we have the low level steps (maximum of low horizon steps), which are a black box
to the high level. The idea of Hindsight Action Transition, that is presented in [17] and
was used in [30], means that the high policy learns under the assumption that the low policy
is optimal. That helps to stabilise the learning though having the low policy changing.

When rolling out the ”high level steps”, we relabel the actions to be in a way that the
created sequence has successful sub-trajectories. Sub-trajectory is a partial path (s, a, g) of
the existing sequence, where always s is visited not after a and a is visited not after g (ei-
ther before or they are the same). Then there are two optional approaches. First one is the
Monte Carlo empirical approach, and the other is based on the long term reward estimation.
The second one was used only for a variation of the algorithm RCVL, that is presented in 4.5.4.
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• Monte Carlo based approach, where the number of subgoals proposed between state
s and goal g is the actual number of high level steps between them. Let us look at an
example: (s1, s2, s3, s4) visited high level steps during an episode. We will store all the
following tuples in ER of high policy:

1. (s1, s2,−1, s2) - one subgoal was required to be proposed to reach from s1 to s2
via s2.

2. (s1, s2,−2, s3) - two subgoals were required to be proposed to reach from s1 to s3
via s2.

3. (s1, s2,−3, s4) - three subgoals were required to be proposed to reach from s1 to
s4 via s2.

4. (s1, s3,−3, s4) - three subgoals were required to be proposed to reach from s1 to
s4 via s3.

5. (s2, s3,−1, s3) - one subgoal was required to be proposed to reach from s2 to s3
via s3.

6. (s2, s3,−2, s4) - two subgoals were required to be proposed to reach from s2 to s4
via s3.

7. (s3, s4,−1, s4) - one subgoal was required to be proposed to reach from s3 to s4
via s4.

We can see that this exploits a lot of the collected experiences, which reflects the sample
efficiency. We accumulate much faster experience that otherwise would have required
more actual transitions, meaning more episodes. The value networks can then learn
to predict the reward (cost) of minus the quantity of subgoals proposed. A proposed
subgoal requires in practice low horizon steps of the low level.

• Value estimation based approach. In our UVFA implementation of SAC, we have a
V (s, g), which is the approximation of the long-term return going from state s to goal
g following the policy. In addition we have two Q-value networks (not including their
target networks) Q(s, a, g). When rolling out the high level experience to store in the
ER at the end of an episode, we assign the reward for (s, a, g) of the high level. Here
we aspired to store the value estimation using the value approximators. For every
movement from state s to goal g via action a, we compare Q(s, a, g) (state, subgoal,
goal) to V (s, g) (state, goal). If the first is higher (higher value, lower cost), that means
that in order to move from state s to state g, it is better to pass the way via a, than
the currently policy. Then we store in the ER the tuple (s, a, vapprox, g). We expect
the algorithm to converge to the optimal path, similar to the previous approach that
does empirical experience storing. It is important to say that also in this variation of
experience storing, we perform the presented calculations for each of the (s, a, g) tuples
as in the previous approach. In the sense of sample efficiency it is the same, however,
the real problem with this approach is that the learning is very difficult. Further
explanation is brought under section 4.5.4.
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For both main algorithms suggestions RCRL and RCVL the used approach is the first one
(monte carlo). RCVL has a variation that uses the second approach.

In the case where the high policy suggests a subgoal that is identical to current goal or
current state, than we store to the high policy ER a ”penalty” of negative high horizon for
this suggestion, meaning it is a worthless suggestion, as if it was leading to an unsuccessful
episode.

4.4 Reverse Curriculum Recursive Learning (RCRL)

4.4.1 The idea

Combining the idea of the reverse curriculum with hierarchical learning, we use the high
policy to be the one to suggest those good starts. The idea is that having a starting state
and a goal state, [s, g], we want to suggest a state that is close to g, which is hopefully a
good start, but also reduces the cost between s and g. This state should be an intermediate
state between them, in the vicinity of g. The high policy is expected to learn states that g
is reachable from them easily. The more the training progresses, larger areas around goals
should be learned by the low policy but also, by the high policy in a more macro-resolution.

4.4.2 Algorithm flow

The proposed algorithm is presented in Algorithm 39. First we initialise the networks for the
high policy and for the low policy. We iterate a number of episodes, while at each iteration
we reset the environment to get a new state and goal aiming to perform an optimal path
between them. In each episode we create starting state list from the goal and the state
such that the first two elements in this list are the current goal state (cgs) and current start
state (css) respectively (lines 1-6).

We then go into the loop (line 6) where we try to solve the trajectory between css to cgs:
We check if cgs is reachable from css with low horizon steps and put the Boolean answer in
Reachable. If we are exploring (probability of ϵ) we will assign True to Reachable without
dependency of its real reachability (line 7).

In the case where the cgs is not reachable from css then the high level policy should
suggest a new starting state (line 12), that will be inserted into starting states list, in
the second place (line 13). That means we divided the planned trajectory into two sub-
trajectories with another starting state in the middle, that is expected to be close to cgs and
is closer to css than cgs. An important step here is to roll out the experience accumulated
possibly over several low level runs. We use HER as explained previously. We have to roll
it out and reinitialize the steps stored since when we add a new subgoal then we cut the
continuity in the accumulation, and the next visits steps are not consequent to the last ones.
A new accumulation of steps for both high and low level starts. We actualize cgs to be the
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Algorithm 3 Reverse Curriculum Hierarchical Recursive Learning

Require: high agent, low agent, is reachable(s,g) function, low horizon Hl, num episodes
1: for episode = 1:num episodes do
2: s ← initial state
3: g ← environment goal
4: starting states list ← [g, s]
5: css ← starting states list[1] and cgs ← starting states list[0]
6: while True do
7: reachable ← is reachable(css,cgs) or exploration
8: if not reachable then
9: if count suggestions >max suggestion then
10: Break While loop.
11: end if
12: new ss ← high.propose ss(css, cgs)
13: starting states list.insert(new ss, index=1) and roll out experiences (HER).
14: css ← starting states list[1] and cgs ← starting states list[0]
15: else
16: high state = css
17: for low step = 1:Hl do
18: a ← low.select action(css, cgs)
19: Apply action a and observe next state css’
20: achieved = (css’ == cgs)
21: store in low.experience replay the tuple (s, a, achieved-1, s’)
22: css ← css’
23: if achieved then
24: starting state list.pop()
25: css ← starting states list[1] and cgs ← starting states list[0]
26: break for loop
27: end if
28: store in low ER (css, a, bool(achieved) -1 , css’, cgs)
29: end for
30: high state next = css’
31: store in high ER (high state, high state next)
32: if length of starting state list == 1 then
33: Episode is completed. Break While loop
34: end if
35: end if
36: end while
37: Roll out experiences (HER in both policies)
38: Every n episodes: update networks
39: end for
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first element in starting states list, and css to be the second, that is the new suggested
starting point (lines 14). Here we make the use of the assumption that it is possible to move
the agent to a required state: we manually position the agent in the suggested starting state
(css). We then iterate again the while loop.

If reachable is true then the low policy performs Hl (horizon of the low level) steps (lines
17-29). In the case that during those steps cgs was achieved, we have solved the current sub-
trajectory, meaning we can erase cgs from starting states list, update cgs and css to
now solve the next sub-trajectory and we break the inner loop of the low policy (lines 23-27).
We store the high level steps in the high level ER (line 30). We start the while loop again:
the next sub-trajectory that needs to be solved is from the current state with the same goal
as before. However, after performing the last low level horizon steps assuming a good policy,
we should be closer to cgs.

Recursivity stop conditions: The recursivity in this algorithm is in the starting states
suggested by the high policy, or in other words, the division of the original trajectory s
to g into several sub-trajectories. When starting states list contains only one element,
then we have completed all the sub-trajectories we had, and the episode is completed (lines
32-34). Another stop condition to the recursivity is in the number of suggested subgoals
(lines 9-11).

After each episode the experience accumulated for both hierarchies is rolled out with HER
and all the networks are updated.

starting state list episode example
To simulate one example of an episode let us visualise the starting state list in figure

4.1. We initialise the environment, the agent is in state s1 and g is the episode goal. g is not
reachable so the high policy suggests state s2 between s1 and g (line2 in the example). The
current state (css) is now s2 and the goal is still g (notice that in this example the updated
states are the last two elements in the sequence but in the python list those are the first ones).

We then see that g is also not reachable from s2 then the high policy suggests another
starting state s3. Now the trajectory should be from s3 to g. g is reachable from s3, so the
low level performs a horizon of primitive goals towards g, hopefully arriving at g. In this
example we arrive at g, which results with the deletion of it from the list, however if it was
not reached, another loop trying to solve the next trajectory which is from the state that the
agent has reached after the horizon primitive steps to g.

After popping out g from the list, now we update the current state (css) to be again s2
from where we will try to reach s3 (line 5 in the example). After checking, s3 is not reachable,
so the high policy suggests s4 in between. We continue this routine until the last trajectory
is solved or until one of the recursion conditions is fulfilled.

36



Chapter 4– Algorithms Reverse Curriculum Vicinity Learning (RCVL) – 37

Figure 4.1: Reverse Curriculum Recursive Learning starting states list along an example
episode.

4.5 Reverse Curriculum Vicinity Learning (RCVL)

4.5.1 The idea

The general idea is that the high policy suggests possible subgoals, from the episode goal
and backwards recursively until the suggestion is reachable to the agent. An example is
shown in section 4.5.4. Here, similarly to LRGP we use the goal stack with First In First
Out (FIFO) technique. The ultimate episode goal is the last one to be popped out and that
is when a successful episode is finished.

Trying to tackle the problem of unfeasible subgoals suggestion in incomplete environ-
ments, we want to suggest subgoals from a visited set of states that are located in the
vicinity of the current target. We will refer to this list of sets as goal list. We collect
those states during the concurrent training of the higher policy and lower policy, and possi-
bly in another separated step of vicinity acquisition that is performed before the concurrent
learning as a preliminary step. In this way we get to know the state (goal) space such that it
is possible to compose trajectories from each state to any other state passing through com-
mon states (intersections) between two or more neighbourhoods as expressed in figure 4.2.
The more we sample and explore and state space, the more options are available for subgoal
suggestion, which implies that it is possible to get closer to the optimal solution.
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Figure 4.2: Learned neighbourhoods in the state space. Every circle is a neighbourhood
around a goal. It is possible to construct a path from state s to goal g passing the common
neighbours on the way. The neighbourhoods that participate are the blue circles, and the
green dots are the states that form the whole path.

4.5.2 Algorithm flow

An overview of the algorithm is presented in algorithm 4. The first step is vicinity prelimi-
nary acquisition (line 1), however it is not a mandatory phase step. Then we iterate number
of episodes we define, such that in every episode the algorithm first tries to create the path
for the lower level, by high level sugoal suggestion, and then when the high level path is
complete, and the last subgoal proposal is reachable from the current state, then the low
level gets into action and goes though the constructed path by the high level.

In each episode we start with assigning 0 to the number of subgoals proposed (line 3).
We get state and goal for the episode in lines 4-5. We start accumulating the high level steps
in solution (line 6) and we stack the goal into goal stack (line7). Then we get into the
while loop that allows recursively subgoals suggestion and finally low level steps that will go
through the mini-trajectories. If the current goal is reachable from the current state within
low horizon steps, then reachable gets True value. In addition we explore with a probability
of decaying ϵ. If it is an exploration sub-trajectory then reachable is assigned True (line 10).

In the case that the current goal is not reachable then it is needed to verify the number
of suggested subgoals. In the case where more than high horizon (Hh) subgoals were pro-
posed we break the while loop and the episode is terminated without success (lines 12-13).
Otherwise, a new subgoal is suggested by the high policy and is stacked into goal stack

in case it is legal and the subgoal count grows by one (legal is when the subgoal location is
different than current state and current goal) (lines 15-17).

In the other case, where reachable is True, the low level performs its Hl steps in the
environment trying to get to the current goal (lines 19-29). During the run, we store every
step done with -1 reward in the low level ER (line 23). If we happen to achieve the goal (line
22) we pop out the current goal from goal stack and break the low run (lines 25-28).

After the low level run we save current state to the solution (high level steps) (line 30). If
the goal stack is empty it means that the ultimate episode goal was achieved, the episode
is finished with success (lines 31-33).

After every episode we roll out the solution to the vicinity, and then we create the tran-
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Algorithm 4 Reverse Curriculum Vicinity Learning (RCVL)

Require: high agent, low agent, is reachable(s,g) function, Hl low horizon, Hh high
horizon, r radius for collection.

1: preliminary goal acquisition() - algorithm 7
2: for episode=1:num episodes do
3: num subgoals = 0
4: s← initial episode state
5: g ← environment goal
6: solution ← [s]
7: goal stack ← [g]
8: while True do
9: g ← goal stack[-1]

10: reachable ← is reachable(s, g) or exploration
11: if not reachable then
12: if num subgoals > Hh then
13: Break. episode ends.
14: end if
15: new ss ← high.subgoal suggestion(s, g) - algorithm 6
16: num subgoals += 1
17: goal stack.append(new ss)
18: else
19: for low steps = 1:Hl do
20: a← low.select action(s, g)
21: Apply action a and observe next state s’
22: achieved = (s’ == g)
23: store in low.experience replay the tuple (s, a, achieved-1, s’)
24: s← s′

25: if achieved then
26: Remove g from goal stack

27: Break for loop
28: end if
29: end for
30: solution.append(s) and high.store(first state and last state of low run).
31: if len(goal stack) == 0 then
32: episode is completed, break
33: end if
34: end if
35: end while
36: high.solution to vicinity(solution, r) - algorithm 5
37: HER on low policy and high policy

38: Every n episodes: Update networks
39: end for
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sitions with HER. Every n episodes we update all the networks (lines 36-38).

4.5.3 Algorithm main components

• Vicinity acquisition
The vicinity acquisition is performed during the preliminary acquisition, if done, and
during the concurrent learning of the high level and low level. For the vicinity acqui-
sition during the concurrent learning we collect the ”high level steps” that are visited
during the episode in solution list (lines 6 and 30 in the complete algorithm 4), and
then we roll it out to store the data in goal list. More details regarding goal list

structure are in appendix A. By ”high level steps” we refer to the states that are
visited every completion of low horizon steps. When rolling out this solution (so-
lution to vicinity() in line 36 in the complete algorithm 4, see algorithm 5), we have
several settings to take into consideration.

First, the Radius of vicinity: how distant the collected states from the sampled goal
in terms of low horizons. It can vary between one low horizon, meaning the distance is
feasible within one low horizon, to several horizons, when the maximum chosen was 6.

Another decision that needed to be investigated was whether to store each trajectory
in the order it was collected or symmetrically. For example if the agent went from
state s1 low horizon of steps till state s2, we store that s1 is a possible subgoal on
the way to s2, but should we also store that s2 can be a possible subgoal on the way to s1.

Algorithm 5 solution to vicinity

Require: high agent, solution, r radius for collection, symmetry flag
1: solution.reverse()
2: for i = 1:len(solution) do
3: for j=i+1:i+r+1 do
4: index = convert 2 dimensional solution[i] to 1 dimensional index
5: high/goal list[index].add(solution[j])
6: if symmetry flag then index = convert 2 dimensional solution[j] to 1 dimensional

index
7: high/goal list[index].add(solution[i])
8: end if
9: end for

10: end for

• Subgoal suggestion
When the high level suggests a goal (line 14, see algorithm 6), it uses the value function
approximation to calculate the possible values of the different possible paths. Every
path is composed of two parts: one is from current state to the current subgoal, and
second is from the subgoal to the next subgoal/goal. To visualise an example of this
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please refer to figure 4.3. We can see the steps how the algorithm finds the more
rewarding path to go through. This example is for a simple case, where obstacles do
not exist, and the distance goes with opposite relation with the reward: the shorter it
is, the more rewarding it is. For example in 4.3(a) we have 5 optional subgoals from
goal list for the current goal, and we calculate all of the following:

– Q(path1) = Q(s, sg1, g)

– Q(path2) = Q(s, sg2, g)

– Q(path3) = Q(s, sg3, g)

– Q(path4) = Q(s, sg4, g)

– Q(path5) = Q(s, sg5, g)

The suggested subgoal will be the one that draws the path with the maximum value
estimation. In this case, if the value function is close to the real value, we expect the
subgoal sg5 to be selected.

This process is done recursively until a suggested subgoal is reachable from the current
state and the low agent starts to act. it should cross the way that is presented in
4.3(e). If in any of the intermediate subgoals, again one is not reachable, then another
suggestion from the high level can be made in the same way, until the low subgoal is
reachable from the current state.

Algorithm 6 subgoal suggestion

Require: high agent, g current target, s current state.
1: index = convert 2 dimensional goal to 1 dimensional index
2: Possible actions ← high agent.goal list[index]
3: Broadcast s and g to dimensions of Possible actions
4: Calculate Q value(sbroadcast, Possible actions, gbroadcast)
5: Choose the action that maximizes Q value

• Preliminary vicinity acquisition.
In the case where we perform the vicinity collection also as a separated step, see

algorithm 7, in practice we perform some goal sampling before we start the concurrent
learning. In this phase of the algorithm we uniformly sample the goal space (which is
the same as the state space). For each sample we initialise the environment, receiving
a state and a goal. We perform primitive steps using the ϵ-greedy low policy trying
to reach from the state to the goal. We perform a low horizon of steps and then set
the original goal to be the state. That means that we go approximately to the same
direction we came from, but not exactly since we also explore with probability of ϵ,
see figure 4.4 (this technique is compared to a flatten acquisition in section 5.2.3). We
store the first state, and then we store the visited state every low horizon steps. That
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(a) Step 1: Evaluate the benefit (value
approximation) of passing from state s
to goal g through the possible subgoals
{sg1, sg2, sg3, sg4, sg5}.

(b) Step 2: The path through subgoal sg5 is
the most rewarding, so it is now set as the
goal, and the same process of evaluating the
subgoals around it are done.

(c) Step 3: Subgoal sg7 is detected as the
most rewarding subgoal among the possibil-
ities. The same process is repeated for the
vicinity of sg7.

(d) Step 4: Subgoal sg8 is detected as the
most rewarding subgoal among the possibil-
ities. The same process is repeated for the
vicinity of sg8

(e) Step 5: Finally subgoal sg11 is reachable
from the current state s, and we can see the
revealed path that the algorithm suggested
to cross the way from s to g.

Figure 4.3: A simple example of subgoal suggestions from learned vicinity of each of the
goals/subgoals. The path is expected to get better as the value function approximator gets
closer to the real value function, and as the agent learns the neighborhoods better.
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is the equal to a single ”step” of the high policy. That is the same as in the case of the
concurrent learning phase acquisition.

This phase also integrates low policy training, which was decided after experimenting
the consequences of it on the algorithm learning. Details regarding the this experimen-
tation is brought under section 5.2.2.

Figure 4.4: Preliminary vicinity acquisition with ”back and forth” technique. (1) First we
have state s and goal g, and the low agent tries to reach the goal applying ϵ-greedy policy.
It ends a horizon of primitive actions in state s′. (2) Now the original state is set to be the
goal g, while s′ becomes s. g is no longer important, and we keep on sampling around the
states that we are. Having ϵ-greedy policy, after a low horizon of primitive goals, the agent
ends up in s′. (3) Again the process repeats itself, and we end up in a new but relatively
close state.

The vicinity has the following possible properties that need to be tuned and set, in
addition to the radius of the vicinity and symmetrical acquisition explained above:

1. Sample size: How many times to initialise the environment and perform the
process of acquisition.

2. Back and forward or flatten collection: The agents performs low horizon

steps then the goal can be updated to be the initial one, so the agent is expected
to back, however, not exactly, since we use the ϵ-greedy policy of the low agent.
Another option, instead is to leave the goal the same for all the repetitions, so
that we perform mini trajectories on the way to the same goal. For visualisation
please refer to 4.4.

3. Number of repetitions: how many of the mini-trajectories described above
(back and forth or ”flattened” path) the agent performs.
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Algorithm 7 preliminary vicinity acquisition

Require: low agent, high agent n samples, n repetitions, flatten flag, Hl, r radius for col-
lection

1: for i = 1:n samples do
2: s, g ← environment initialization solution.append(s)
3: for j=1:n repetitions do last state = run low steps(low agent, hl, s, g)
4: if Not flatten flag then:
5: g ← last state
6: end if
7: s = last state
8: solution.append(s)
9: HER on low agent accumulated states.

10: end for
11: high agent.solution to vicinity(solution, r) - algorithm 5
12: end for

4.5.4 Learning Recursive Goal Proposal by value estimation

We have also investigated the option of using the value approximations of the network to
be stored in the ER as reward as explained in the second approach for long-term reward
estimation in 4.3.3. The process of collecting and learning the neighbourhoods is done in a
similar way to the other approach, and also in the way of suggesting subgoals.

For suggesting subgoals (action selection of the high policy) the algorithm goes through
all the possible states that are in the list corresponding to the current goal, and calculates
which is the most rewarding path to go from state s to goal g through. The one that has the
maximum value (or minimum cost) will be chosen as a subgoal, and will be suggested as the
next goal for the low policy.

The major difference of storing the estimations in the ER as explained in the seconds
approach, makes the learning way more complicated, since there is nothing empirical that is
fed into the reward estimations. In the beginning of the learning, the suggested subgoals are
expected to be random, however with time, assuming the value estimators are converging to
their true value, they are expected to be relevant. After several experiments, we reasoned
that maybe there is no learning since the random initialization results with low estimation
for the value. We decided then to test several different initializations of the last value
NN layer bias that were expected to encourage learning. That also resulted in failure to
learn.

The possible reason for the failure is that we have combined three characteristics: Func-
tion approximation, bootstrapping and off-policy learning. Those three properties integrated
together might lead to divergence of the algorithm.
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Chapter 5

Experiments and Results

The most relevant experiments performed in this work will be presented in this section. First
the environments used will be presented, then some preliminary experiments, and finally per-
formance comparison with State of the Art and Baseline. The preliminary studies that are
documented are the ones that are related to the RCVL algorithm, the successful one. Similar
studies for hyperparameters were done also with RCRL however when it did not demonstrate
proper learning, it became redundant to document and conclude regarding it. Even though,
in the final comparison, the performance of the two algorithms is presented and discussed.

The implementation details for both algorithms appear in appendix A. The default val-
ues are as appears in the appendix, unless said otherwise. In the preliminary studies and
experiments, the default values are used, and only a single variable, currently characterised
parameter, changes.

5.1 Environments

5.1.1 Minigrid Empty room

Minigrid empty room [31] is a mxn grid table, which is a simplified version of Gym MiniGrid

[32] as appears in figure 5.1. The green arrow represents the agent while the black tile is the
episode goal. When new starting states/subgoal is suggested they appear in different red -
orange gradient as appears in figure 5.1(b).

The state space contains all the position on the board plus a direction: (x,y,dir). The
possible values for x are 0 to m-1 and for y are 0 to n-1 according to grid width and height.
The possible values for the directions are 0-3: right, down left and up. The action space

contains three actions: turn left (0), turn right (1), and move forward (2).

The original goal space had only (x,y) location property. As explained in the previous
chapter, the algorithm proposed also learns the directions for goal states. In that way the
learning is more specific, and the state space, goal space are the same as the high policy
action space. The mapping from state to goal is not longer needed.
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(a) Empty room, target and goal visualiza-
tion

(b) Empty room: state, target with subgoals

Figure 5.1: Empty room example

To allow implementing algorithm of the Hierarchical Reverse Curriculum Learning

4.4, the ability of positioning the agent in a desired location was needed to meet the first
assumption that in that paper [28].

The reward function is sparse, meaning only when the agent reaches the episode goal,
it receives 0, and otherwise it receives -1 for every step.

Let up express the above formally:

• S = {0, 1, 2...,m− 1} × {0, 1, 2..., n− 1}× {Right,Down,Left,Up}.

• G = {0, 1, 2...,m− 1} × {0, 1, 2..., n− 1}× {Right, Down, Left, Up}.

• A = {turn left, turn right, step forward}.

• R = {−1, 0}

5.1.2 Four Rooms MiniGrid

The environment is built of mxn grid table, as in the empty room, but it is divided by walls
into four rooms, and it is possible to move from one room to an adjacent room via one tile
[32]. Each tile (state) in this grid world might be either free, meaning the agent can be
in it, or it is a wall, meaning it is an impossible state for the agent. That means that the
agent needs to learn to align to this ”key” tiles, and perform a ”forward” action to move
to another room. An example of environment with 15x15 tiles can be visualised in Figure 5.2:
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Figure 5.2: 15x15 Minigrid FourRooms

5.2 Studies During Development - configurations

In the following subsections we go through different properties of the learning that were
needed to be characterized for development. In order to be adapted to the complex envi-
ronment we want to solve, the studies and experiments were made with the Four Rooms
Environment. In addition, different properties/hyper parameters choice might result dif-
ferently. But for simplicity, and to isolate the independent variables, only one configuration
was chosen for use in all of the experiments. This can be found in Appendix A.

5.2.1 Symmetry in the vicinity acquisition

The algorithm Reverse Curriculum Vicinity Learning 4.5.4 creates during the the learn-
ing a set of neighbors for each goal (goal list), from where it is reachable. This list could be
saved straightforward in the way the agent visits the states, and in that way all the possible
paths suggested by the high policy are paths that the agent had visited in the very same
order. On the other hand, having our environment a reversible one, when a path from state
s1 to state s2 is possible, means that the other way around is also true. That is, the path
from state s2 to state s1 is also possible. For the high policy larger goal list means
more information that it might exploit for subgoals suggestions. Therefore we get double
information for the high policy with the same amount of steps in the environment with the
symmetrical acquisition.

To characterize the behavior of the policy with these two approaches of symmetrical in-
formation storing, we perform several experiments where all of the hyper parameters are the
same except for the symmetrical states collection. In figure 5.3 it is possible to visualize the
effect of the symmetrical goal storing on the performance evolution during training. For this
test we used the algorithm with no preliminary acquisition. Other test have been performed
with preliminary acquisition and showed similar tendency. Figure 5.4 presents the number
of subgoals proposed during learning for both cases of collection.

We see that the symmetrical collection does not contribute to the algorithm performance,
although enlarges the goal list in doubled rhythm. It does not result with higher success
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(a) Algorithm success rate: Goal storing -
Symmetrical Vs. unidirectional

(b) Low level success rate: Goal storing -
Symmetrical Vs. unidirectional

Figure 5.3: Minigrid FourRooms 15x15: Symmetry collection effect on success rate during
learning.

Figure 5.4: Minigrid FourRooms 15x15: Symmetry collection effect on number of subgoals
suggested during learning.

rate, but the opposite. In addition, the number of subgoals proposed, which we hope to get as
low as possible (as long as the success rate is not defected), is higher for the case of symmet-
rical collection. Recall that more subgoals with the same success rate means inefficiency.
Usually it means that more lower level steps are needed, and that the created path by the
higher level is suboptimal. More subgoals proposed might point that more subgoals are not
reachable to the lower lever, which makes sense in the symmetrical acquisition case, having
stored goals in goal list but not in is reachable. Or in case of exploration, the low level
has not mastered those trajectories yet. Hence the default for this property is chosen to be
unidirectional collection only.
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5.2.2 Low Policy learning phase

Having the first phase of preliminary acquisition, several different configurations are optional
for when to train the low policy as brought in table 5.1. The learning that both high level and
low level perform in the same time is referred as concurrent learning. A series of experi-
ments were performed to compare the performance of each configuration. The representative
results, for a reasonable amount of preliminary acquisition of 5,000 sampling size, were se-
lected and presented in figure 5.5. We can see that combining the low level learning during
the preliminary acquisition contributes a bit to the algorithm performance. The success rate
when skipping concurrent learning is the worst. This is expressed both in the success rate of
the algorithm and the number of subgoals proposed. Interpreting them together: skipping
concurrent learning results with more subgoals suggestion and less successful episodes. That
can be explained by the fact that the preliminary acquisition is characterized by a particu-
lar way of neighborhood collection as explained under section 4.5. This learning helps the
low agent to be more successful but during the concurrent learning it has different tasks,
so learning adaptation to the different task is needed. Summing this up, the learning of
the low level should be integrated during preliminary acquisition, if done, and
always during the concurrent learning with the high level.

Preliminary acquisition Concurrent learning
Low policy

Learning phase
configuration

X
X

X X

Table 5.1: Possible configurations for low policy learning phase
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(a) Algorithm success rate (b) Low policy success rate

(c) Number of subgoals proposal comparison
between the three possible configurations.

Figure 5.5: Minigrid FourRooms 15x15: Low policy training configuration comparison

5.2.3 Flat acquisition Vs. round (back and forth) vicinity

For the vicinity acquisition, one way of doing it was presented in section 4.5.3, which is the
”round”/”back-forth” technique that is eventually used in the final version of the algorithm.
However, it is possible to collect also in a ”flat” way. That means that after a low agent
performs low horizon primitive actions, we store the solution, but continue with another
horizon towards (approximately) the same goal. It is similar to the case of the vicinity
during the concurrent learning, but in this case there is no change in the goal (subgoal
suggestion), and all of those primitive actions are done consequently by current ϵ-greedy
low policy. Figure 5.6 shows the suggested ”back and forth” technique contributes to the
performance with a reasonable 5,000 samples in preliminary acquisition. Observing the low
level success rate, it seems that learning and acquiring in the ”round” manner helps the low
agent to master the learned trajectories, having the success rate so high from the beginning
of the concurrent learning. Eventually this gap is closed and both ways converge to similar
success rates.
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(a) Algorithm success rate (b) Low policy success rate

Figure 5.6: Minigrid FourRooms 15x15: Flatten acquisition Vs. round acquisition (back and
forth).

5.3 Preliminary experiments - Hyperparameters search

Similar to previous section, in the current section all of the experiments are done in Mini-
grid FourRooms environments. Unless claimed otherwise, the implementation details are as
appears in appendix A.2.

5.3.1 Radius for states collection

As we saw in algorithm 5 we need to set the radius, for vicinity collection we need to set a
radius. The radius defines how large the vicinity is around a goal. It is measured with
the ”unites” of low horizons. For example when the radius equals two, the neighbors we
collect into goal list can be located up to 2 low horizons away from the goal. Therefor, we
need to understand which radius value would result with the optimal solution. In addition,
we would want to suggest subgoals that are not necessarily proximal to the goal state, to be
able to suggest less subgoals. In figure 5.7 we can see a characterization of this effect. It could
seem like the larger radius show better performance in the beginning of the learning process.
But then, as the learning proceeds, we see a convergence to similar success rates for all the
different radii. Table 5.2 presents the average number of steps per episode, calculated across
1,000 episodes with random environment initialization. we see that the lower radius results
with fewer steps. That means the path built by the high level is more optimal: it reaches
the same success rate with fewer steps. The difference is not significant (less than 1 step
difference), however enlarging the radius adds run-time complexity, and do not contribute to
the success rate in the long run, neither to the path optimality, meaning it is better resolution
to stick to radius of 1 low horizon.

A possible reason for the difference in low level performance for the worse for radius of
1, is that the accumulated neighbourhoods are more diluted, that might lead to subgoal
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suggestions that are in the limit of the knowledge of the lower level. It might be that states
that are in the list of is reachable, but have not yet been mastered by the policy itself.
The results are that supposedly reachable subgoals within one horizon are suggested but the
lower level is not well mastered. It is possible that with higher radius, the vicinity contains
more possible states to suggest and it is able to choose the better cheapest path. However,
the bottom line is that with radius of 1 we get the same algorithm success rate, less
complexity and similar path optimality.

(a) Algorithm success rate: vicinity radius
effect

(b) Low level success rate: vicinity radius ef-
fect

Figure 5.7: Minigrid FourRooms 15x15: The effect of different radius in collection. Each
unit of the radius equals one low horizon primitive steps.

Radius [units of low horizon] Average steps per episode
1 16.83
2 17.52
3 17.31
4 17.24
5 17.17

Table 5.2: Minigrid FourRooms 15x15: Average steps per episode across 1,000 random envi-
ronment initialization.

5.3.2 Samples size in preliminary acquisition

The preliminary vicinity learning, as explained, is done before the algorithm is trained as a
whole (concurrent learning of high policy and low policy). As the preliminary acquisition
phase is longer, the vicinity collection naturally increases. Having goal list (learned vicin-
ity for each state) the only storage where the high policy can suggest subgaols from, it was
essential to track its evolution along the learning. The size of the vicinity is measured by
the mean number of states accumulated for each state across all states. It grows during the
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preliminary acquisition phase, if done, and during the concurrent learning phase.

Figure 5.8a presents the mean accumulated number of states in the vicinity along with
the preliminary acquisition. It is possible to see that the accumulation is very fast in the
beginning and becomes slower, however it stays relatively significant all along the acquisi-
tion. Then the effect of different amount of preliminary acquisitions (samples of goals) on the
accumulation of vicinity size during the concurrent learning is presented in figure 5.8b. It is
clearly seen that the more preliminary acquisition is done, the knowledge about the vicinity
is larger (more states are collected for each goal). This is further emphasized in the mean
final neighborhood size in table 5.3. The concurrent learning does not compensate for the
vicinity size by the end of the concurrent learning. However the rhythm (mean derivative
function of the accumulation function) of accumulation is greater as the preliminary learn-
ing is smaller: 0.035 and 0.015 respectively, which is 60% slower. That makes sense with
same reason that the rhythm of accumulation during the preliminary acquisition gets smaller
as more knowledge was already collected. The possible reason is that we accumulate already
known neighbors, so they contribute less to enlarge the known neighborhood. In addition the
lower level is more successful, and less explores, then the collected states are already known,
not new.

The effect of the sampling size during preliminary acquisition on the algorithm success
rate is presented in 5.8c. We can see that asymptotically the different setups converge
to similar success rate, although the preliminary acquisition shows its contri-
bution in accelerating the learning, reaching to better success rates faster. For further
inspection the low level success rate is presented in 5.8d. Having the low level more successful
of course enables the performance of the algorithm as a whole. It does not assure the whole
algorithm success, but without its success, it is impossible the algorithm as a whole will be
successful. It is an essential condition, but not sufficient. Also, for the low level success, the
different setups converge to similar success rates. Further discussion regarding the trends in
low policy success rate for this algorithm will be discussed under section 6.2.1.
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(a) Vicinity size in preliminary acquisition. (b) Vicinity size during the concurrent learn-
ing, having different sampling size in prelim-
inary acquisition.

(c) Algorithm success rate according the
sampling size in preliminary acquisition.

(d) Low level success rate according the sam-
pling size in preliminary acquisition.

Figure 5.8: Minigrid FourRooms 15x15: Vicinity size (in terms of number of states) charac-
terization along learning when setting different number of goals to sample during preliminary
acquisition.

Sampling Number in
preliminary acquisition

Final mean vicinity size
[number of neighbors]

Mean accumulation rhythm

0 78.7 0.035
1,000 79.7 0.0349
5,000 88.515 0.02
10,000 93.61 0.0199
20,000 96.77 0.015

Table 5.3: Neighbors accumulation with different preliminary acquisition sampling number.
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5.3.2.1 Runtime implication of preliminary acquisition

The preliminary acquisition in is practice performing interaction with the environment, which
might diverse in the time addition when changing its parameters such as low horizon, num-
ber of repetitions, number of goals to sample and so on. Calculating on sampling size of
20,000 in the preliminary acquisition with several different parameters, the addition time
required for the preliminary acquisition ranges between 4% to 7% from the concurrent
time learning, depending on the acquisition hyper parameters. This is not a big addition
given that those are only short sampling rounds of mini-trajectories (not as in the concurrent
learning, where we have in each episode high horizon of mini-trajectories), and there is no
large complexity while doing that.

5.3.3 Back and forth while preliminary acquisition: number of
repetitions

When acquiring the samples of the vicinity, as explained, after the agents performs horizon
primitive actions, we try to make the agent to repeat its steps back with the ϵ-greedy policy.
The number of repetitions on that process might affect on both the learning phases of the
low policy (assuming low policy training during goal acquisition and during concurrent learn-
ing). We have performed a study to characterize the effect of repetition number, executing
the experiment with a reasonable sample size of 5,000 in the preliminary acquisition, and
different number of repetitions ranging between 1 and 8. Representative results are shown in
figure 5.9. The results are very similar for low policy. With one and only repetition low policy
starts with lower success rate. In comparison, with 3 or 8 repetition it starts higher. However
8 repetitions do not seem to contribute much over 5 repetitions. As for the algorithm as a
whole, 5 repetition contributed a bit, while 8 repetition results with similar success rate. A
reasonable decision is then to stay with 5 repetitions of back and forth during the
preliminary acquisition.
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(a) Algorithm success rate (b) Low level success rate

Figure 5.9: Minigrid FourRooms 15x15: Back and forth repetitions during preliminary goal
acquisition.

5.3.4 Low level horizon effect

We have tested the effect of different low horizon on the training, and the results appear in
figure 5.10. The most successful choice appears to be a horizon of 4. Horizon of 6 results
with similar success rate as 4 for the algorithm as whole, but the low level success shows a
clear advantage of 4 over 6. The low level success that increases very fast for the shorter low
horizon, allows the high level to prosper accordingly. This is a very important parameter
since as we see, the results do not converge to the same value even after 50,000 episodes.

(a) Algorithm success rate (b) Low level success rate

Figure 5.10: Minigrid FourRooms 15x15: Low horizon success rate effect on the learning

5.3.5 High level horizon effect

Another important hyperparameter for final behavior is the maximum number of subgoals
that are allowed to be proposed during an episode, that is the high level horizon. The char-
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acterization of its effect is presented in figure 5.11. The idea is to choose a minimal number
of subgoals, as long as it does not harm the performance. The reason is simple: less subgoals
with the same low horizon means less primitive steps. If we converge with an increasing
amount of subgoals to the same success rate approximately, it means that there are redun-
dant subogals. That is why the better choice would be the minimum subgoals with maximum
success rate. Observing the results it is clear that horizon of 5 is too low. Similarly horizon
of 8 also seems suboptimal. It is sufficient for most cases but it fails to be enough in some
setup of state and goal. That is why it does not converge to the same as the others. On the
other hand 15 and 20 behave very similar , which implies we might see redundant subgoals
for 20, that makes the agents path longer. A good choice for the high horizon in that
case would be then 15.

(a) Algorithm success rate (b) Low level success rate

Figure 5.11: Minigrid FourRooms 15x15: High horizon success rate effect on the learning
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5.4 Comparison with State of the Art and baseline

The following sections present the comparison of the proposed algorithms with the base-
lines. As for RCVL, all the presented results are without preliminary acquisition, meaning
this is the ”worst” behavior with the algorithm. With the addition of preliminary acquisition
the learning curves for RCVL are better. The rest of the parameters are brought in appendix A.

5.4.1 Minigrid empty room

It is possible to visualize the learning process of the proposed algorithms: RCRL, RCVL in figure
5.12a, in comparison with LRGP (formerly proposed baseline) and State of the Art algorithms:
DDQN and DDQN combined with HER. Observing the success rate of the different algo-
rithms, we can see that RCVL performs similar to the LRGP and to DDQN with HER, reaching
close to 1. RCRL fails to learn well the environment, reaching around 0.5 success rate. As
for the low level success, figure 5.12b, the three algorithms compared show similar learning
curves.

To show the optimality of the paths drawn by the high level of RCVL, let us observe the
average number of steps per episode. DDQN and its variation with HER learn the optimal
behaviour (at least close to optimal) in the empty room (it was tested by observing it in ac-
tion). Also, for the simpler environment we expect DDQN to master the tasks. That is, good
performance of the tested algorithms will results with similar number of steps per episode.
To evaluate this we ran 1,000 episodes with random initialization in the Minigrid Empty
Room 15x15 environment, and calculated the average number of states across all of them for
episode completion. Recall that the success rate of all the algorithms is close to 1, which
makes the comparison valid. Otherwise unsuccessful episodes of one or another might bias
the average, since the unsuccessful episodes are expected to be longer ones. Both scenarios
of taking them into account or ignore them results with some bias. Please refer to table 5.4
to observe the results. We can see that the optimal (shortest) path is done by DDQN with
an average of 12.72 steps. RCVL testing resulted in 13.76, which is 8.1% more. We can un-
derstand that on average RCVL results with a path that has one step that is redundant. This
can be the result of hierarchical learning, which is not needed in such a simple environment.
The fact that LRGP resulted with an even higher number of average steps (17.04 which are
34% more than DDQN), supports this reasoning. Overall it is safe to say that the solution
of RCVL is close to optimal with 1 step difference.
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(a) Algorithm success rate: learning process of the proposed algo-
rithms compared to the baseline (LRGP) and the state of the art (DDQN
and DDQN+HER).

(b) Low level success rate: learning process of the proposed algorithms
compared to the baseline LRGP.

Figure 5.12: Minigrid Empty room 15x15: learning process of the proposed algorithms com-
pared to the baseline LRGP and the state of the art: DDQN and DDQN+HER.
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Algorithm
Average steps
per episode

DDQN 12.72
DDQN + HER 12.86
LRGP 17.04
RCVL (ours) 13.76

Table 5.4: Minigrid Empty Room 15x15: Average number of subgoals per episode calculated
across 1,000 episodes with random initialization.

5.4.2 Minigrid FourRooms environment

5.4.2.1 Success rates

In figure 5.13 It is possible to visualize the comparison of the proposed algorithms to the
baseline LRGP and State of the Art algorithms DDQN, DDQN combined with HER.

Additionally, Some numerical results are presented in table 5.5. The presented mean
success rates are calculated over 500 last episodes in the scope mentioned (last 500 episodes
reaching to 25,000 episodes and so on). Then a 1,000 episodes with random initialization was
performed, and the mean across all those 1,000 is presented in the table. RCVL outperformed
the rest of the algorithms during learning and during test.

It is possible to see that the baseline algorithms struggle a lot solving the problem, hav-
ing DDQN reaching no more than 0.23 of success, and DDQN with HER succeed a bit more
reaching up to 44%, while RCVL reaches close around 0.97 success rate. RCVL out-
performs LRPG, having it around 0.8 success. Observing the low level performance during
learning shown in figure 5.14, RCVL expresses similar learning to the baseline. Thirdly, as
presented under section 5.3.2, addition of Preliminary Acquisition could accelerate the
low level learning, leading to even faster convergence of the algorithm.
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Figure 5.13: Minigrid Four rooms 15x15: Algorithm success rate comparison of the proposed
algorithms with baseline LRGP and State of the Art: DDQN and DDQN+HER

Figure 5.14: Minigrid Four rooms 15x15: Low policy success rate comparison of the proposed
algorithms with baseline LRGP and State of the Art: DDQN and DDQN+HER
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Algorithm
Mean success rate

after 25,000 episodes
Mean success rate

after 50,000 episodes
success rate: Test
over 1000 cases

DDQN 0.1 0.22 0.23
DDQN + HER 0.22 0.44 0.44
LRGP 0.72 0.8 0.85
RCVL (ours) 0.96 0.97 0.98

Table 5.5: Minigrid FourRooms: Comparison of the suggested algorithm with baseline LRGP
and State of the Art algorithms.

5.4.2.2 Subgoals proposals

For further comparison it is possible to observe the number of subgoals suggested along
learning, having equal low low horizon of 4 (otherwise the suggested subgoals would not be
representative for anything). Figure 5.15 presents the results. It is easy to see the the number
of subgoals proposed is lower and steadier (smaller amplitudes) for the proposed algorithm
RCVL over the baseline LRGP.

Figure 5.15: Minigrid FourRooms 15x15: Number of subogals proposal during learning for
both algorithms LRGP, and RCVL (ours)

5.4.2.3 Path optimality

In the following examples in figure 5.20 it is possible to visualize the path drawn by the high
level. The paths seem to be very direct and do not express redundancy.

62



Chapter 5– Experiments and Results Comparison with State of the Art and baseline – 63

Figure 5.16: Drawn path by high
level subgoals suggestions - example
1.

Figure 5.17: Drawn path by high
level subgoals suggestions - example
2.

Figure 5.18: Drawn path by high
level subgoals suggestions - example
3.

Figure 5.19: Drawn path by high
level subgoals suggestions - example
4.

Figure 5.20: Minigrid FourRooms 15x15: Paths examples for visualization of the path drawn
by the high level.
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Chapter 6

Conclusions and Future Work

The most successful algorithm in the tested environments was proven to be RCVL where
the results in the more complex environment of the Minigrid FourRooms showed a clear supe-
riority over the state of the art and the LRGP baseline. In addition the problem of suggesting
subgoals that are not feasible is solved with RCVL.

RCRL did not demonstrate ability to solve the tasks correctly. This could be related to
several points of deficiency which will be suggested in section 6.1.1.

The following sections discuss the results, trying to reason and conclude, for each of the
suggested algorithms separately: first RCRL and then RCVL. For each of the algorithms there
is also a section for possible future suggestions for further development or improvement.

6.1 Reverse Curriculum Recursive Learning (RCRL)

6.1.1 Discussion and conclusions

The algorithm RCRL was not successful in its proposed starting states. It causes the agent to
advance to bad locations, which results in a low success rate for the algorithm as a whole,
while the low level policy, when observed separately, reaches a very high success rate.

One possible reason for the failure could be the fact that when suggesting a new starting
state, a transition rollout is done (both for the low level and high level). It can be either
after one or several mini trajectories done by the low policy, or after zero. It implies that
the transitions accumulation for the high policy is very limited, since that after each new
proposal it is rolled out (stored) and reinitialized. For LRGP and RCVL it is done only at the
end of an episode, which allows accumulating at least several runs of the lower level for most
cases. On the other hand, it is not possible to rollout the transitions only at the end of
an episode for this algorithm, since the transitions are not accumulated continuously.
When the high level proposes a starting state, then we update our agent state to be located in
that position, meaning the continuity in accumulating ”high level steps” (and also primitive
steps) is interrupted. The high level needs this information, since only an accumulation of
at least 4 high level consequent steps can produce a high level significant information (s, a,
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s’, g). It is much less likely for the high level to learn sufficiently to happen with the current
algorithm flow.

Another possibility for the failure is similar, but from a different perspective - the value
estimation of SAC makes use of Bellman’s equation where the next state is used for
error calculation. The problem is that the ”next states” from the tuples (state, action, next
state, reward, goal) that we store during the consequent mini trajectories, are different from
the flow of the algorithm in practice. The high level next state after a suggestion will be the
suggestion plus the low horizon steps performed from it towards the current goal.

Making the algorithm to work, it will still carry the problem of unfeasible starting
states suggestion by the high policy, since we use the explicit representation of the SAC,
which is based on the approximators only, and do not have a direct instructions of which
specific goals to avoid. In that case the solution would be similar to the solution that was
applied in LRGP baseline algorithm, where a list of feasible states is accumulated, and when
the subgoal suggestion is not appropriate then it is eliminated. Another subgoal is then being
requested with addition of noise, to suggest a close location that is allowed.

6.1.2 Future Work

A new way for high level experience accumulation should be considered. In the current
implementation along with the transitions, we store the reward as minus the high level steps
(with the Monte Carlo inspired approach) from state until goal. With the RCRL we can not
know the actual number of high level steps required between a state to action (suggestion of
the high level), only until we go back to have the desired starting state in the current sub-
trajectory to be solved. Recall that this will occur when the recursivity is folded back, after
the last mini-trajectory (that reaches the episode ultimate goal) is solved, and recursively
the mini-trajectories are achieved until reaching the specific scope. The true challenge here
would be to suggest a representative reward system that correlates with algorithm flow and
that will allow actual learning.

One possible method for new experience accumulation can be to store the states visited
with a levelling index, that will be the key to every sub-trajectory that is expected to be
solved during the episode. It can be grasped as a pyramid where the first level is always
the sub-trajectory that starts with the episode starting state, given by the environment. The
accumulation for the first level starts, and then, when another starting state is suggested, we
start to store it to the second level, and so on. Then when the recursivity is folding back-
wards, we track this index and go back to store the visited states after the already stored
states in the specific level (index), when we try to solve the sub-trajectory linked to this
index. This can bypass the incontinuity that is integrated within the algorithm. Then, with
Hindsight experience replay relabeling it will contribute to the high level knowledge without
a doubt more than the currently accumulated knowledge. We can make use the very same
Monte Carlo inspired approach for the reward stored, just in the same way is it applied with
the current algorithm.
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An additional change that could be considered, is to apply some kind of ”inverse” to Bell-
man’s equation used in SAC, in the sense that the error should be calculated for the reward
of the sub-trajectory between the state to the action (suggested starting state). This
is different from the current implementation where the estimation and error calculation is
on the reward between the next state to the goal. That is in light the difference in the flow,
where the estimation should be done for the interval between the state and the action, since
it is the mini-trajectory that is solved after the (action, next state, goal) accumulation, only
when folding the recursivity backwards.

The main problem of the algorithm lies in its flow, where a new goal suggestion inter-
rupts the sequential accumulation of high level steps. Hence, another optional direction
for improvement can be to avoid the manual agent positioning, and perform the mini-
trajectories in a sequential mode. However, it is hard to think of a way to implement this
idea while preserving the reverse curriculum idea.

6.2 Reverse Curriculum Vicinity Learning (RCVL)

6.2.1 Discussion and conclusions

Regarding the construction of the algorithm, given the results in the preliminary characteri-
zations presented, it is possible to notice some trends.

The algorithm does not seem to benefit from the symmetrical acquisition of the neigh-
bourhoods, but instead it slows the learning a bit. A possible reason could be that during
adding information to the goal list, the low level learns the trials that it performs in the or-
der they are performed. That means that if we stored a state, as if a specific goal is reachable
from, but the low agent did not go through them in the specific order, then the agent might
not yet know to move in the opposite direction. Although the high policy could benefit
from that information, it would not necessarily be useful when expecting the low policy

to perform this path. With that being said, by the end of the training, the success rates
difference seems pretty redundant. The bottom line is that unidirectional acquisition is
slightly better.

The preferable radius for collection is 1, by a small difference of path optimality. A
possible reason for that is because having it set to 1 assures that the goal is reachable from
a neighbour within maximum of one low horizon primitive steps, but possibly less. That
happens due to the fact that the agent might move not in a ”straight” direction (U shape
for example). By ”straight” the meaning is an optimal shortest path from st to st+low horizon,
and not necessarily a straight line. Let us recall that for radius r, we collect states that are
maximum r low-horizons (r × low horizon) away from the goal state. The larger r is, the
described phenomenon is amplified, and the actual distance gradually tends to be less than
r × low horizon. The consequences of this phenomenon is that proposed subgoals are in
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practice gradually less than a complete number of low horizons. The result is that the
needed number of subgoals is the ceiling round number of the distance. Let us recall that
we have several sub-trajectories. Having each one them solved by ceiling round number of
low-horizons, does not allow optimality. That is, with larger radius, we have the tendency
to suggest more subgoals, which invigorates path sub-optimality. It is important to say that
if both the high and the low level are faultless, extra subgoals suggestion does
not lead to path suboptimality. However, in the real world, they are not faultless, so
it is better to avoid this situation of incomplete low horizon distance. In the real world -
the more subgoals suggested unnecesarily: the more probable that the high policy will draw
sub-optimal path (and also the low policy performs extra steps if not faultless).

Radius of 1 makes the ”proposed path for solution” by the high level being more direct
and simple, allowing breaking the trajectories more efficiently. Usually for radius of 1 the al-
gorithm builds the whole path before the low level starts acting. Then when it starts acting, it
usually completes the whole path in a row, with no additional subgoals proposals in between.
Let us clarify the idea with an example. With r=2 we might suggest for one sub-trajectory a
subgoal that is 1.2 low-horizons away, and for the consequent sub-trajectory a subgoal that
is 1.3 low horizons away. The whole trajectory is 2.5 low horizons long (optimally speak-
ing). This will be solved with extra 2 subgoals otherwise the low level can’t reach 1.3 of
its horizon, which is summed up to 5 subgoals (the original, two suggested and another two
extra suggested to advance 1.2 and 1.3 low horizons) in the whole trajectory. With r=1, we
would be able to break the trajectory differently: first sugboal 0.9 low horizon away, second
sugboal 0.8 low horizon afterwards, and third 0.8 low horizon afterwards.We solved the same
2.5 low horizons long trajectory with 4 subgoals (the original goal and three suggested). Note
that if both high policy and low policy are faultless, this extra subgoals does not harm the
optimality. The conclusion is that radius of 1 might help to avoid recursively suggesting sub-
goals ”in the middle” with less than low horizon steps between. Let us further clarify the idea.

The important and significant learning phase of the low level is the concurrent
learning, since even when having the low level starting from a very high success rate, if
we skip learning concurrently with the high level, the high level does adaptation to the cur-
rent abilities of the low level by suggesting subgoals that are suboptimal, but in most cases
achieves the ultimate goal. It is possible that a larger sampling size in preliminary acqui-
sition could help the low level to dominate all of the space even better, which could allow
the high level to suggest more optimal paths (without concurrent learning). The addition of
learning during the preliminary acquisition shows a positive contribution to the algorithm
learning, and the best performance was captured when having the low level learning both
during the preliminary acquisition and during the concurrent learning. The reason for that is
probably the success of the low level in the concurrent learning. When learning concurrently
with the high level, then the subgoals are being updated to closer/easier subgoals every time
a subgoal is not reachable, so the low level is expected to be more successful than in the
preliminary acquisition. During the concurrent learning, a lot of mini trajectories end with
success as the learning progresses. It is less likely to happen preliminary acquisition, having
it performed in the beginning of the training, when the epsilon greedy policy is not suffi-
ciently trained, and explores a lot. Higher success rate is a stronger learning signal, meaning
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it contributes a lot more. However, asymptotically it seems that not learning during pre-
liminary acquisition configuration, still converges to a similar success rate by 50,000 episodes.

As to the parameters of the preliminary acquisition: first, the ”round” acquisition
(back and forth) technique has shown to give a higher added value than flattened acquisition
technique. It seems to help the lower level to master many of the possible mini trajectories,
which allows the algorithm as a whole to start with a higher success rate. Secondly, the
sample size during the preliminary acquisition seem to have an effect mainly during the
first 30,000 episodes of concurrent learning. From that point and on, we converge to a similar
success rate of the algorithm. We have seen that the run-time complexity addition of the
preliminary acquisition is not very significant, which strengthens the approach of using it
when we want to accelerate the learning. Otherwise, having it trained enough, the advantage
of the preliminary acquisition decays. Finally, the number of repetition (back and forth)
for each sampled goal seem to have only a relatively small effect. It is reasonable to assume
that the importance if it is higher for the cases where the number of samples in the prelimi-
nary acquisition is relatively small. Having that said, a small choice like 1 repetition results
with lowest added value (the learning curve starts relatively low), which makes sense, since
we only have one mini trajectory (low horizon primitive actions). A reasonable repetition
number would be 5.

In the Minigrid FourRooms environment with preliminary acquisition, the low level suc-
cess rate showed a curious behavior of a decrease first and an increase later-on until
reaching the maximum success rate. Trying to reason that, a possible explanation would be
that at first the algorithm suggests relatively easy goals that are in the vicinity, probably in
the same room. It is more likely that the vicinity learned during preliminary acquisition is
round around each goal, and contains relatively easy paths, since they are more probable to
be visited, hence learned too. Let us recall that the initialization of the value function approx-
imators is random. At the moment that we have a successful subgoal suggestion (achieved),
the value approximation for this subgoal is significantly better than the rest of the states.
It means that the high level suggestions will tend to offer close subgoals, because they will
be suggested first (more probable to be reached randomly, hence probable to be suggested).
Reaching with exploration to the other room is less probable, which is why it takes more time
and exploration during concurrent learning to have those states as a probable suggestion. In
the beginning of the concurrent learning we see the high success rate of the low level, having
the low level mastering the tasks within the same room. At some point with exploration
trying to achieve goals that are further away with the concurrent learning, new states that
are close to the pass (between the rooms) and beyond it, are revealed and suggested, and
then the learning is again ”difficult” to the low level. Difficult in the sense that those are
tasks that were not yet mastered by the lower level. That is why we see a decrease, having
the low level failing to reach the more difficult goals. Then we see an increase again, having
the low level mastering the inter-rooms tasks.

In other aspects of the algorithm analysis there are also some important points to no-
tice. The search space for hyper-parameters is very large, which makes the process
of optimization very hard. Adding the parameters of the preliminary acquisition, with the
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rest of parameters such as low horizon, high horizon, learning rate, network architecture,
we end up trying to optimise in an overly expanded multi-dimensional space. Applying the
algorithm in other environments will require this heavy experimentation. However, the algo-
rithm demonstrates that in the long run with sufficient episodes, the preliminary acquisition
parameters do not result in big differences. That means that the algorithm is robust to
the parameters selection for the preliminary acquisition. The parameters that seem to have
the major effect are the horizons of both low policy and high policy.

The fact that the low horizon of 4 has shown the best performance proves that learning
small tasks is helpful, expressing the exact purpose of the hierarchical learning. It shows
that the algorithm benefits from the hierarchy.

The is reachable set and the goal list are key players in the algorithm. The ”deci-
sion” of who is the next one to act - the high level or the low level, depends on the knowledge
accumulated in is reachable exclusively. In addition, the goal list, should be diverse
enough and to cover as much of the goal state as possible, since all the subgoal suggestions
come from there (except the times where the current goal was never visited, and we ask the
explicit policy representation for a suggestion). The fact that those two lists are needed for a
good performance of the algorithm might harden the generalizability of the algorithm in more
complex environments. With that said, thanks to the goal list we avoid the unfeasible
states suggestion problem, which makes it very important component.

In Minigrid Empty Room 15x15, the simpler environment tested, RCVL showed sim-
ilar performance to the State of the Art algorithms of DDQN and DDQN combined with HER. In
Minigrid FourRooms 15x15, which is the more complex environment (with obstacles) we
aimed to solve, RCVL has shown superiority over DDQN, DDQN with HER and the baseline
LRGP. It has shown faster learning, and efficient subgoals proposing converging to a success
rate of approximately 0.975. The paths the algorithm chooses are close to optimal, verifying
observing it in action. Recall that this thesis aimed to propose an algorithm for solving com-
plex problems, which is why a minor path suboptimality below State of the Art (though same
success rate) in the simple environment is acceptable, as long as in complex environments, it
stands out with superior performance.

One major drawback is that it will be hard to apply in continuous environments. The
algorithm was built to solve discrete environments, but it will have a problem to generalise
to the continuous case. It will require some kind of quantization of the state/action/goal
space, or other metrics for distance evaluation.

To conclude, the new suggested algorithm RCVL was able to outperform State
of the Art methods and the baseline LRGP algorithm in the more complex en-
vironment. It manages to solve the problem of unfeasible subgoals suggestion, and reaches
an incredibly high success rate. In addition, the paths drawn by the high level seem to be
close to optimal when observing it in action. Furthermore, It has shown to have robustness
to changes in a lot of the parameters, making it more reliable.

69



Chapter 6– Conclusions and Future Work Reverse Curriculum Vicinity Learning (RCVL) – 70

6.2.2 Future work

First of all, the algorithm should be tested on new and more complex environments,
to demonstrate its generalizability, to make sure the high performance is not for the specific
problem we solve with the mini grid world.

Secondly, to expand the algorithm to the continuous space. To apply the algorithm in
a continuous environment, one option is to discretize the state space. That raises the
need to come up with a generalizable framework for environment discretization, with
minimal harm to the problem resolution. It should be a modular addition, such that there is
no need to change the environment itself. It seems like a complicated task, and hard to make
in a generalizable manner, since it is most probable that each continuous environment will
require different adaptations. Another option is to save the continuous states as we do with
the discrete environment, but to use some metric to estimate the proximity to them
when needed. That metric can also be learned/estimated.

A possible suggestion to overcome the limitation of goal list and is reachable is to
approximate those by a neural network, specifically GAN, having the generator generating
states in the vicinity of a goal, while the discriminator learning to differentiate if a suggested
state is in the vicinity or not and feasible or not. The collected experience can be divided into
factuals and counterfactuals to train the discriminator. However to create the pool for factu-
als will be a lot easier than to create the counterfactuals pool in the aspect of reachability. We
can only collect states that were visited, but we can’t collect those that are not feasible. We
can try to collect the cases where the low level performs a forward step but stays in the same
location. Then some kind of generalizable estimation of which is the state that we are try-
ing to get but can’t, should be done, so we can use this state as a counterfactual for feasibility.

To make the process even more curricular, instead of suggesting the lowest cost sub-
goal, it can be a state within thresholds (Qmin, Qmax), such that the suggested subgoals are
always in intermediate level of difficulty, since they have not been mastered yet, however still
result with more than a minimal value. That is more similar to the original suggestion of
the Reverse Curriculum idea. The challenge in that case would be to set the thresholds for
intermediate proficiency level of the lower level.
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Appendix A

Implementation Details

is reachable is stored as a set of tuples with the form of (s, g) where each of them has a
3 dimensional descriptor of (x,y,direction). In both proposed algorithms RCRL and RCVL we
use the same structure of it.

A.1 RCRL implementation details

RCRL was implemented with the default parameters as appear in the table A.1.

Hyperparameter Value
High policy and Value estimation SAC A.4
Low policy ϵ greedy DDQN A.3
Low horizon 4
High horizon 15
Learning rate 3e-4
Batch size 256

Table A.1: RCRL default parameters used in studies and experiments

A.2 RCVL implementation details

RCVL was implemented with the default parameters as appear in the table A.2. In the
preliminary studies some of the parameters were changes according the described in the
specific study, while the rest of the parameters stay the same.
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Hyperparameter Value
High policy and Value estimation SAC (A.4)
Low policy ϵ greedy DDQN (A.3)
Low horizon 4
High horizon 15
Learning rate 3e-4
Sample size in preliminary acquisition 0
Batch size 256
Radius for neighborhood 1
Symmetry neighborhood collection False
Flatt or round acquisition (Pre.Acq) Round
Back and forth repetitions (Pre.Acq) 5

Table A.2: RCVL default parameters used in studies and experiments

The implementation of goal list includes a list in the size of m × n, having m board
width and n board height. A function converts from location as (x,y) to a unidimensional
indices list. In the case of the board with size of 15x15 we get a goal list with the length of
225. Each ”element” in this list is a set. That assures that there are no repetitions. This set
contains the collected states in the vicinity of a goal, with their 3 dimensional descriptors:
(x,y,direction).

A.3 DDQN implementation

DDQN was implemented according to [1] with the following hyper parameters:

Hyperparameter Value
Hidden dimension of NN (128, 128, 128, 128)
Optimizer AdamW (default)
ϵ Decay 0.65 to 0.1
Learning rate 3e-4
Buffer size 5e5
Discount coefficient γ 1
Soft-update parameter τ 0.005

Table A.3: DDQN default parameters used in studies and experiments

A.4 SAC implementation details

SAC was implemented based on [14]. It was used for both RCLV and RCRL, while for the
first uses it’s Q-value approximators, and the actor only for the case where the goal was
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never visited before so there are no possible suggestions in goal list. The hyperparameters
for it are the following:

Hyperparameter Value
Hidden dimension of NN (128, 128, 128, 128)
Optimizer AdamW (default)
Learning rate 3e-4
Buffer size 1e6
Discount coefficient γ 1
Soft-update parameter τ 0.005
Entropy regularizer α 1

Table A.4: SAC default parameters used in studies and experiments
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