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Abstract. It is known that the class of deterministic finite automata is poly-
nomial time learnable by using membership and equivalence queries. We inves-
tigate the query complexity of learning deterministic finite automata, i.e.. the
number of membership and equivalence queries made during the process of learn-
ing. We prove lower bounds on the number of alternations between membership
and equivalence queries, and also show that a trade-off exists, allowing us to re-
duce the number of equivalence queries at the price of increasing the number of
membership queries. Finally, we study learning in a parallel model, the CRC'W
PRAM. We prove a lower bound on the parallel time needed for learning and

design an algorithm that asymptotically achieves this bound.

1. Introduction

Query learning was introduced by Angluin [1] and is currently one of the most important

models in computational learning theory. It differs from other models. such as inductive
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inference or certain PAC-learning algorithms, in that the learning process, the learner,
obtains information about the concept to learn by making gueries to some teacher, instead
of passively receiving examples.

Variants of the formalization of learning via queries have been proposed in [14, 15].
We are interested here in the notion of “bounded learning” described there. In bounded
learning, the learning algorithm is given a number as an Input parameter. The goal of
the algorithm is to output some hypothesis that only needs to be correct up to the length
indicated by the input parameter. This learning notion is somewhat different from the
original notion studied in Angluin’s papers, but it allows us to avoid tedious and minor
problems in the original notion. (See [15] for the justification of the bounded learning
notion.)

It must be mentioned that all the concept classes used in this paper are finite and
have a fixed length, so that the negative results also hold under Angluin’s learning notion.
Additionally, our learning algorithms for positive results also achieve exact learning.

The formalization of the concept of learning is particularly useful since a substantial
gain of understanding comes from the possibility of relating it to various concepts from
Computational Complexity. In particular, there are negative results for learning that rely
on widely believed complexity-theoretic hypothesis, such as R # NP or the existence of
cryptographic one-way functions (10, 4]. Additionally, the idea of considering ueries as
a resource allows one to prove absolute negative results, whose proofs are independent
of the learner’s computational power: they are based instead on bounding the number
of queries asked, and do not rely on any assumption. This contrasts with the negative
results that depend on additional hypothesis. All our results here are absolute 1n this
sense.

One of the successful fields in query learning is the problem of constructing a de-
terministic finite automaton (henceforth dfa) from information about the set it accepts.
This is the problem we study in this paper. Pitt [11] surveys the status of this important
problem in several learning models. For the case of query learning, Angluin proved an

important positive result:

Proposition 1.1. [1] There exists a polynomial time algorithm that constructs a dfa

using membership and equivalence queries.

Algorithms using these two kinds of queries will be called here (Mem, Equ)-learners.
When only membership or only equivalence queries are allowed to be asked by the algo-

rithm, we will call it a (Mem)-learner, respectively (Equ)-learner. Angluin showed that
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neither membership queries alone nor equivalence queries alone are good enough to learn

dfa in polynomial time.

Proposition 1.2.
(1) [2] No polynomial time (Mem)-learner exists for dfa.

(2) [3] No polynomial time (Equ)-learner exists for dfa.

Actually, it is easy to see that Angluin’s dfa learning algorithm (witnessing Propo-
sition 1.1) needs at most n equivalence queries for learning n state dfa. In this paper
we investigate the query complezity of learning algorithms for dfa, i.e. the number of
membership and equivalence queries used or needed to learn a fixed dfa.

First, we study the number of times that a learner must alternate between membership
and equivalence queries. We impose limitations on this “alternations” resource, as a
natural generalization of the learners that only use one of the two sorts of queries —
which alternate 0 times—, and show that this restriction implies an increase of the total
number of queries. For instance, as a consequence of this result, we show that in order
to learn an n-state dfa in polynomial time, membership and equivalence queries must
alternate at least Q(n/log®n) times.

Second, we study whether it is possible to reduce the number of one type of queries,
maybe at the expense of the other. The learning formalism does not take into account how
the queries are answered; but it is intuitively clear that, for many representation classes.
answering a membership query can be substantially easier than answering an equivalence
query. For instance, in the dfa case, evaluating a dfa on a word is one of the simplest
problems in complexity theory, while deciding the equivalence of two dfa is complete
for nondeterministic logspace. We prove that the number of such expensive queries can
be reduced to some extent. More precisely, when no restriction is assumed on the way
membership and equivalence queries are distributed on the computation of the learner,
and only a bound on their number is set, a certain type of “trade-off” between them occurs.
We show that it is possible to reduce the number of equivalence of queries, say, to n/f(n)
while increasing that of membership queries by a factor of 2/("). On the other hand, we
also prove that in order to reduce equivalence queries to n/f(n) one has to increase the
number of membership queries by a factor of 2%(/(")). Thus, the above 2/(*) increase is
essential. For example, we can construct a polynomial time dfa learning algorithm that
asks n/clog n equivalence queries, but it is impossible to reduce equivalence queries more

than a factor of O(log n) without using a superpolynomial number of membership queries.
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Finally, we consider whether parallel models can achieve substantially better running
times in learning. We consider a well-studied model of parallel machine, the Concurrent-
Read Concurrent-Write PRAM. Extending the lower bound obtained for the sequential
model, we show that any CRCW PRAM using a polynomial number of processors requires
(n/logn) time for learning DFA. Then we give an upper bound that matches this lower
bound (up to multiplicative constants), 1.e., a parallel version of Angluin’s algorithmm with
O(n/logn) running time and polynomially many processors.

Results reported in sections 3 and 4 were reported in [5]. Results in section 5 will

appear in [6].

2. Preliminaries

In this paper we follow standard definitions and notations in formal language theory and
computational complexity theory; in particular, those for finite automata are used without
definition. The reader will find them in standard textbooks such as [8].

Let ¥ denote {0,1}, and throughout this paper, we use ¥ as our alphabet. For any
set A of strings, let A to denote the complement of A, i.e., ¥~ — A. For any sets A and
B of strings, let AA B denote the set (A — B)U (B — A). The length of a string x is
denoted by |z|. The cardinality of a finite set A is written as ||A||. Symbols AS™ and

A=™ are used to denote the sets {z € A: |z| <m} and {z € A: |v] = m} respectively.

Notions and Notations for Query Learning

We briefly explain the notions and notations for discussing query learning formally.
We basically follow the style established in [14, 15].

A learning problem is specified as a “representation class” [12]. A representation
class is a triple (R, ®, p), where R C £~ is a representation language, ® : R — 2% is a
semantic function or concept mapping, and p : R — N is a size function. For example, a
representation class for dfa! is formally defined as follows: DFA = (Rafa, Pdta, pdfa), where
Rgsa is the set of dfa that are encoded in £*, and for any r € Rgpa., Paalr) and paga(r) are
respectively the regular language accepted by the dfa (represented by) r and the number
of states in the dfa (represented by) r. Following common convention, we write ®gza(7)
as L(r) and para(r) as |r|.

The encoding R, is assumed to be honest, i.e. not much longer than necessary; in
particular, we assume that the encoding of a dfa is polynomially long in the number of

states.

1By “deterministic finite automaton” we mean a “complete” deterministic finite automaton over L*,

That is, we assume that the transition function is total.
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Our computation model for learning is the “learning system”. A learning system
(S,T) is formed by a learner S and a teacher T'. The learner has access to an input tape,
an output tape, a communication tape, and a number of work tapes. The teacher has
access to the same input and communication tapes, and furthermore a target tape.

The tapes except the communication tape and the target tape are used in a ordinary
way. The communication tape is a read-write tape and used for the communication
between S and T. That is, the queries from S and the answers from T are written on
it. The target tape is a read-only tape, and its role is to let the teacher 7' know a target
concept, a set to be learned. That is, a representation r of a target concept is written
on the target tape; this situation intuitively means that 7' knows the concept that is
represented by r. A teacher 7' who knows r (or. more precisely, T with r on the target
tape) is written as “T'(r)”. Prior to the execution. the input w and a target representation
r are given respectively on the input tape and the target tape. Then the computation
of (S,T) (which is written as (S, T(r))(w)) starts from .5, executes .S and 7" in turn, and
finally halts at S. If S outputs y on its output tape and halts normally, then we say that
(S, T(r))(w) outputs y (and write (S, T(r))(w) = y).

In our framework, T' is regarded as a function while S is regarded as some algorithm,
or a Turing machine. That is, we omit considering T’s computation and assume that T’
can somehow answer to queries.

For query types, we consider membership query (Mem) and equivalence query (Equ).
For each membership query, the teacher T is supposed to answer “yes” or “no”; on
the other hand, for each equivalence query, T is supposed to answer “ves” or provide
a counterexample to the query. A learner is called, e.g., (Mem,Fqu)-learner if it asks
membership and equivalence queries, and a teacher is called, e.g., (Equ)-teacher if it
answers only to equivalence queries. A tuple such as (Mem.Equ) is called a query-answer
type?.

Now we are ready to define our “learnability” notion. To simplify our discussion, we
explain and define notions by using (Mem,Equ) for a typical query-answer type. However,
these notions are defined similarly for other query-answer types.

In this paper, we consider only “bounded learning”, which has been introduced in
(14, 15] as one reasonable query learning notion. Intuitively, in the bounded learning,

for a given parameter m > 0, the goal of a learner is to obtain a representation that

2The notation for query-answer types used in [14, 15] is more complicated in order to denote a finer
query-answer type classification, including other query types. However. such classification is not necessary

here; thus, we use this simpler notation.



denotes a target set up to length m. The parameter m is called a length bound. On the
other hand, though we assume that teachers provide correct answers up to a given length
bound, answers may not be correct if they are out of the length bound. By considering
length bounds, we can avoid many tedious difficulties that come with the original and
more general learning notion. Furthermore, bounded learning is well-motivated, and it
is not just an artificial notion. Thus we use this learning notion throughout this paper.
(Hence “bounded” is often omitted.) It should be noted, however, that every proof in
this paper works even in the original query learning notion. '

Let us define “bounded learning” more precisely. For any target representation r and,
for a given equivalence query r’, we say that T'(r) answers r’ correctly up to length m if
T gives a counterexample if it exists in ©S™ and answers “yes” otherwise. A teacher T is
called a (consistent) bounded (Mem, Fqu)-teacher for DFA if for given target representation
r and length bound m, T'(r) answers each membership query correctly w.r.t. », and T'(r)
answers each equivalence query correctly up to length m. By considering a bounded
teacher, we can avoid the case where a learner is given unnecessarily long counterexamples
and the case where a learner abuses the teacher’s power of searching through an infinite
number of strings.

The value of m will be provided to the learning system as a part of the common input.
Another part of the common input will be a value n. which is understood as a bound on
the size of the output description to be written by the learner. This convention allows us

to measure the time bound in terms of the input, as is customary in complexity theory.

Definition 2.1. [15] A (Mem,Equ)-learner S learns C' = (R.®,p) (or C' is learned by
S) in the bounded learning sense if for every bounded (Mem,Equ)-teacher T for C', every

r € R, every n > p(r), and every m > 0,
(S,T(r))(n,m) = r' such that ®(+')S™ = &(r)s™.

Remark.

(1) Notice that the definition does not include the case where n < p(r) is given as input
for learning r. In other words, a learner can output anything in such a case. Thus.
for specifying a learning algorithm, it is enough to consider the case that n > p(r).

(2) In the later discussion, we assume that some additional parameter is given as an

input. In such a case, the above and following definitions are extended naturally.

Now define the polynomial time learnability in the bounded learning sense. A learner is

polynomial time if for some polynomial p and for all inputs (n,m), it halts within p(n+m)
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steps. A representation class C is polynomial time (Mem,Equ)-learnable in the bounded
learning sense if C is learnable by some polynomial time (Mem,Equ)-learner.

Finally, we define “query complexity”. Intuitively, the “query complexity” is the
number of queries asked by S in the worst case. More precisely, for any learner S for
DFA, the query complexity # queryg is defined as follows: Let 7 be the tamily of bounded
teachers for DFA of S’s query-answer type. For any T' € 7T, any r € Ry, and any
n,m > 0, let #query(s’T(r))(n, m) be the number of queries asked during the computation
(S,T(r))(n,m). Now for any n,m > 0,

#querys(n,m) = max{ #querysriy(n,m) : T €7T,r € Ry }.

We are also interested in the alternation complexity of a (Mem,Equ)-learner S. Let
T be the family of bounded (Mem,Equ)-teachers For any T' € 7, any r € Rgra, and any
n,m 2 0, let #alt(s(r))(n, m) be the number of times that S changes from membership
to equivalence queries or vice-versa during the computation (S, T(r))(n, m). Now for any

n7m 2 0,

#alts(n,m) = max{ #altsrey(n.m) : T € T.r € Ry }.

3. Query Alternations

Here we consider the case where the number of alternations between membership and

equivalence queries is limited.

Theorem 3.1. Let n,x and m,x denote (3k% +2)(a+1) and 2k*(a + 1) respectively. For
every constant ¢ > 1 there is some constant ¢’ > 0 such that for every (Mem,Equ)-learner

S for DFA, every a, and every sufficiently large k.

e either S on input (n,k, m, k) asks some equivalence query with a dfa of size greater
than 2¢'%,
® or #altS(na,kama,k) Z a+ 13
k

o or #equ-querys(ngk,Mak) > c°,

o or #mem-queryg(nap,max) > 25— 1.

Remark. Proposition 1.2 (2) is proved as a special case of this theorem.
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For the proof, we use the technique established in [3]. Thus, we first recall some
definitions and facts from [3]. For any & > 0, and any ¢, 1 < i < n, define L(7, k) to be
the set of strings of length 2k whose ith bit is equal to the (k + ¢)th bit. Consider any
set L(¢1,k)L(i9,k) -+ L(ik, k), where 1 < 4y, ...,ix < k. The words in this set have length
mox = 2k%. It is easy to show that the set is accepted by some dfa with ngx = 3k2 42
states. Let R, denote the set of dfa representations r such that |r| = nox and L(r) =
L(2y,k)L(29,k)--- L(ix, k) for some 1 < %y,...,17x < k. From the above discussion, any set
of the form L(i1, k)L(42, k) - - - L(ix, k) has a dfa representation in Ry; thus, ||Re|| = k*.

The following lemma, which states the lower bound of the number of equivalence

queries for learning r € Ry, plays a key role for proving our theorem.

Lemma 3.2. For any constant ¢ > 1 there is a constant ¢’ > 0 with the following prop-
erty. Let S be any (Equ)-learner for DFA such that S on input (ngk, mo ) never asks a dfa
(as an equivalence query) with more than 2¢'% states. Then # equ-queryg(no k. mox) > c*,

for all sufficiently large k.

Proof. The proof is immediate from the argument in [3]. Here we review some important
facts and state the proof outline.
Let S be defined as in the lemma, and let ¢ > 1 be any constant. For any £ > 0,

define the following sets:
Ap = {@mzazy o apae ¢ Vi1 <6< ka6 TF] )

Ber = {mwynzoyz - aeys ¢ V3,1 <o <k [ay € SFA (2 m) > (1= 1/¢)k]

where d(z,y) is the Hamming distance of = and y.

The following facts can be shown as in [3].

Fact 1.

(1) Ay = ﬂ{L(r) :r € Ry } .
LA

(2) For any w € Bk, ||[{r € Re : we L(r) }|| < <?> '

Fact 2. For every c there is some ¢’ > 0 such that for any sufficiently large k, and for

any dfa M with at most 2¢'% states, if M accepts all strings in Ay, then it accepts some

string in Bex.

We define a teacher T) that answers an equivalence query r € Rqap in the following

way:
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o So long as there are any “positive” counterexamples from Aj (i.e., strings in Ax —

L(r)), Ty returns one of them as a counterexample.

o Else if there are any “negative” counterexamples from B, (i.e., strings in L(r)— B. ),
then T; returns one of them as a counterexample.
¢ Otherwise, T} returns some counterexample within the length bound, or returns “yes”
if no counterexample exists.
Let k£ be any sufficiently large integer for which Fact 2 holds. We show that S needs
to ask at least ¢* equivalence queries to learn some r. € R; from T}, where r. will be
determined through our discussion. Now consider the execution of (S, T1(7.))(n0k, Mok)-
This process is regarded as identifying r. among the potential candidates. Clearly, at
the beginning, every r € Ry is candidate, and for getting a correct answer for r., it is
necessary to reduce the number of candidates to 1. We show that in order to achieve this
goal, the execution needs at least c¢* equivalence queries for some r.. (In the following
discussion, we assume that a candidate set is a subset of R;. A real candidate set may
contain other representations, but this only increases the number ot queries.)

Let r; be S’s first query in the execution. Suppose (the dfa represented by) r; does not
accept some strings in A;. Then T} returns one of them w as a positive counterexample.
(Le., w witnesses L(r.)— L(r1) # 0.) But every r € Ry accepts w, so we cannot reduce the
number of candidates by this counterexample. On the other hand, suppose that r, accepts
every string in Ag. Then from Fact 2, it must accept some string u in B, . Here we can
assume that r, is chosen so that it does not accept u. (Because the number of » € R that
accepts u is at most (k/c)* << ||Rk||.) That is, (L(r,) — L(r.)) N B., contains at least
one element, i.e., u. Then T} answers one of them w as a negative counterexample. (IL.e.,
w witnesses L(ry) — L(r.) # §.) But by this counterexample, we can reduce the number
of candidates by at most (k/c)*. For, w is a negative counterexample to at most (k/c)*
representations in R;. By a similar argument, the second, third, ... counterexamples kill
at most (k/c)* candidates each (if 7. is chosen appropriately). Thus, after ¢ queries, at
least k* — g(k/c)* candidates are left. Hence. in order to have k* — ¢(k/c)¥ < 1. ¢ must

satisfy ¢ > ¢ — (¢/k)* > ¢* — 1. That is, ¢ > ¢*. O

Proof of Theorem 3.1. Assume for contradiction that there is an integer ¢ such that

for some (Mem,Equ)-learner S and for infinitely many k, we have
e S on input (ngk, mek) never asks a dfa with more than 2¢'k states.

® #alts(na,k,ma_k) <a+1,



o F#equ-querys(nak, Mag) < c¥, and
o #mem-querys(nak, max) < 2F—1.

Select such a to be the minimum with this property. We will contradict this minimality.

First observe that a is not 0. For ¢ = 0, no alternation occurs. Thus, the learner is
either a (Mem)-learner or an (Equ)-learner, and the lower bound follows from the results
in {2] and [3]. More precisely, for (Mem)-learners, considering the class of dfa accepting a
set of the form {w} for some string w of length k + 1, at least 2F — 1 queries are necessary.
On the other hand, for (Equ)-learners, considering the class Ry, at least ¢* queries are
necessary. Notice that these dfa have at most ng ;. states and accept only strings of length
mok- Thus, both lower bound results hold for any input (ngs.mex) if k is sufficiently
large.

Now we have that a > 1. Let R;, be the set of all dfa representations with at
most n, , states accepting only strings of length at most m, . We distinguish two cases

depending on the type of the first query of S on input (ng &, mq)-

Case 1: membership queries are asked first.

Consider sets of representations for languages of the form L = wL(r), wherer € R,_1
and |w| = k. These representations have size at most k+2+n,_1 < n4k. and the length
of the strings they accept is bounded by k + m,_1 x < m, . Hence, they are in R, k.

Simulate the initial membership query phase of S answering always “no”. The number
of queries is less than the total number of membership queries, so at the end of the phase
we can select some w that has never appeared as prefix of a query. It 5 is still able to
learn the representations for wL(r) when r € R,_1k, then a trivial modification of &

learns R,_; with a — 1 query alternations, which contradicts the minimality of a.

Case 2: equivalence queries are asked first.

We now consider representations for sets of the form 0L(r) U 1L(r"), where r € Rq-1x
and 7' is in Ry, the class used in Lemma 3.2. The representations for 0L(r) U 1L(r") have
size at most na_1 %+ (3k% +2) = n, 4, and the length of the strings they accept is bounded
by ms_1k+ 1 < m, k. Hence, they are in R, ;. again.

For the first phase of equivalence queries of S, use a teacher that answers while possible
with counterexamples for the 1L(r') part. By the bound on the number of equivalence
queries, we know that after this phase there remain at least two representations in Fj that
S cannot distinguish. Moreover, during the process, S has obtained only counterexamples

beginning with 1. If it is able now to learn the part 0L(r). then a trivial modification
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learns R,_1 in a — 1 alternations, contradicting again the minimality of a. O

The following negative result is easy to obtain from the theorem.

Theorem 3.3. There is no polynomial time (Mem,Equ)-learner for DFA that alternates

noy e . : .
O(W—n) times between membership and equivalence queries.

Proof. Consider any infinite sequence {n;},-zo of natural numbers such that for each n;

there are a; and k; with the properties:

o n; = (3k} +1)- (a; +1),

o a; = o(n;/log®n;) (as a function of 7).

Note that k; = w(log n;). We will show that no polynomial time (Mem,Equ)-learner for
DFA can alternate less than a; times to learn dfa with n; states. The theorem follows if
we can prove this for any sequence {n;}i>o with these properties.

Take any learner S that runs in polynomial time, and for each n; in the sequence
consider the behavior of S with input (n;,2k;(a; + 1)). By Theorem 3.1. one of the

following facts holds for some target dfa with n; states:

1. either S asks an equivalence query of size at least 2¢%

o

or S alternates more than «; times,
3. or S asks at least c* equivalence queries,

4. or S asks at least 2% — 1 membership queries,

where ¢ > 1 and ¢/ > 0 are constants. If cases 1, 3, or 4 hold for infinitely many 1,
then the running time of S is d* = d“(°8™) for infinitely many ¢ and the constant
d = min{2%,¢,2} > 1. This contradicts the assumption that S runs in polynomial time.

Hence, case 2 must hold for all but finitely many ¢ and we are done. O

4. Trade-off Between the Number of Membership and Equivalence Queries

In this section, we consider the general case; that is, no restriction (except the number of
queries) is assumed on the way of asking membership and equivalence queries. We show

some trade-off relation between the number of membership and equivalence queries.
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Let us consider the performance of Angluin’s query learning algorithm for DFA. Sup-
pose that the algorithm is to learn a n state dfa within a length bound m. Then it is easy
to see that the algorithm asks at most n equivalence queries and a polynomial number of
membership queries. Here we improve the equivalence query complexity while spending
some more membership queries. More specifically, our improved algorithm takes (n,m, h)
as input and learns a target dfa in the bounded learning sense, while asking n/h equiva-
lence queries and 2* - p;(n + m) membership queries, where p; is some fixed polynomial.

Furthermore, the algorithm runs in polynomial time w.r.t. the number of queries.

Theorem 4.1. There is a (Mem,Equ)-learner Sp for DFA with the following complexity:
for every n,m,h > 0,

(a) #equ-querys,(n,m,h) <
(b) #mem-queryg, (n,m,h) < 2".pi(n+m), and

I’

>0 3

(¢) So on input (n,m, k) halts within time py(F#querys, (n, m,h)),

where p; and p, are polynomials depending on Sp.

Remark. The upper bound for the membership query complexity depends on the choice
of our alphabet, i.e., & = {0,1}. More in general, we have #mem-querys, (n.m., k) < |||

pi(n+m+[|Z]).

Proof. We first recall some facts about Angluin’s algorithm. In the algorithm, an obser-
vation table plays an important role for constructing hypotheses. An observation table is a
tuple (S, E,T), where S and F are finite and prefix-closed sets, and 7 maps (SUS-X) x £
to {0,1}. At certain points, the algorithm builds a dfa W = M(S, E,T') (i.e., a hypothe-
sis) from the table, and presents M to the teacher as an equivalence query. If the answer
is “yes”, the algorithm halts. Otherwise, it uses a received counterexample to expand 5,
E, and T, in a way such that the next equivalence query must have at least one more
state than the previous one. Furthermore, the algorithm has the following property: If
the target set is accepted by a n state dfa, then when the constructed hypothesis has n
states at some point, it must accept exactly the target language. From these properties,
it is clear that Angluin’s algorithm needs at most n equivalence queries.

We design Sp so that it adds at least h states to M between each two consecutive
equivalence queries. If we can still ensure that n bounds the number of states of M, then
clearly Sy needs at most n/h equivalence queries for obtaining the target dfa.

To do this, we define the notion of observation table with lookahead h. It is a tuple
(S, E,T) as before, but table T maps (S - £5*) x E to {0,1}. Note that Angluin’s tables

are tables with lookahead 1. Sy acts as Angluin’s algorithm. but keeping an observation
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table with lookahead h. This requires filling ||S<"|| entries in T with membership queries
each time that S increases.

Clearly, this modification does not affect the correctness of the learner; that is, like
Angluin’s learning algorithm, Sy learns DFA correctly. Furthermore, maintaining this
additional information roughly increases the number of necessary membership queries by
|=<%]| - p1(n + m) for some polynomial p;. Thus, the entire membership query complexity
satisfles the theorem with some polynomial p;. It is also easy to show that Sp halts in
time polynomial in the total number of queries.

Now it remains to show that at least h states are added after each equivalence query
since this implies the desired upper bound on the number of equivalence queries. To show

this property, it is enough to prove the following stronger version of Lemma 4 in {1]. O

Lemma 4.2. Assume that (S, E,T) is a closed and consistent observation table with
lookahead h. Suppose that dfa M = M (S, E,T) has k states. If A/’ is any dfa consistent
with T that has less than k + A states, then M’ is isomorphic to A{.

Proof. In the following, let M = (Q,qo, F,6) and M’ = (Q',¢qq, F"',¢"). We assume
without loss of generality that M’ is minimum. That is, every state of M’ can be reached
from g5 and no two states in M’ are equivalent.

We show an isomorphism between M and M’. Let us recall of give some definitions
first.

o Recall that for a string s € S- £, row(s) denotes the finite function mapping each
e € E to T(s,e). Recall also that Q = {row(s) : s € S} is the set of states of M.

e For every ¢’ € Q’', define Row(q’) to be a finite function from £ to {0,1} such that
Row(q')(e) =1 iff 6'(¢',e) € F'.

o For every s € S, define f(s) = 6'(¢p, ). Note that Row(f(s)) = row(s), from the as-
sumption that M’ is consistent with 7". In fact, for every u € £5P, Row(&8'( f(s),u)) =
row(s - u).

o For every ¢ € Q, define ¢(q) = {f(s) : row(s) = ¢}.

In the following sequence of claims, we show that ¢ defines a bijection between () and the
set {{¢'} : ¢’ € Q'}. Clearly, we can then transform ¢ into a bijection from @ to @', and

this turns out to be our desired isomorphism.
Claim 1. ||Range(f)|| = k.

Proof. From the above remark, it is easy to see that f(s1) = f(s2) implies row(s;) =
row(sz). On the other hand, there are k different rows row(s) in T' (i.e., the states of M ):
hence, there must be at least k£ different f(s). Thus, ||Range(f)|| > k. 0O Claim 1

106



Intuitively, the next claim states that for any two states in M’ there is already some

string in E that proves them different. Here is where we make explicit use of the lookahead.
Claim 2. For any two different states ¢] and ¢} in @', Row(q;) # Row(q3).

Proof. By induction on the length of a string z witnessing that ¢; and ¢5 are not equiv-
alent.

If z is the empty string, then Row(q;) and Row(q;) are different in the entry corre-
sponding to the empty string.

Consider the case where z is not empty. For the first symbol a € ¥ of z, define
g5 = 8'(q},a) and ¢} = §'(g3,a). Then ¢4 # ¢ (otherwise z is not a witness), and a string
shorter than z witnesses that ¢} and ¢} are not equivalent. By induction hypothesis,
Row(q;) is different from Row(g)).

On the other hand, because there are less than & + A states in Q' — Range(f) (since
|Range(f)|| > k from Claim 1), ¢; and g5 must be reachable from states in Range(f)

with a path of length less than A. More precisely, there exist u, v in ©<" and sy, s, in S

such that ¢} = §'(f(s1),u) and ¢, = §'(f(s2),v). Then
row(s; - ua) = Row(q;) # Row(gy) = row(ssz - va)

(the equalities are true because M’ is consistent with T and ua and va are in £<%). By

o

the consistency of T, it must happen that
row(s, - u) # row(sy - v).

But row(s; - u) = Row(q}) and row(s; - v) = Row(q;), again because M’ is consistent
with T', and u and v are in £5P. Hence Row(¢1) # Row(gz). 0O Claim 2

Now using Claim 2, we prove that ¢ is a bijection from @ to {{¢'} : ¢’ € @'} in the

following way.

Claim 3.

(1) For every g € @, ()] < 1,

(2) @ C Range(f), and

(3) ¢ is a bijection from Q to {{¢'} : ¢ € @'}

Proof. Part (1): Suppose that some ¢(q) has two different states ¢; and ¢3 in Q. By
Claim 2, Row(q}) # Row(q}). Since both ¢; and ¢ are in ¢(g), there are strings s;, s, in S
such that ¢; = f(s1), ¢4 = f(s2), and row(s;) =-row(s;) = ¢. However, we have row(s,)

(= Row(f(s1))) = Row(q;) # Row(gy) = (Row(f(s2)) =) row(sz). A contradiction.
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Part (2): Take any ¢’ in Q. By an argument as in Claim 2, ¢’ must be reachable from
some state f(s;) using a string u € X<*, that is, Row(q') = row(s: - u). Because T is
closed, there is some s; € S such that row(s, - u) = row(s;). Therefore, Row(q') =
row(s;) = Row(f(s2)). By Claim 2 this means ¢’ = f(s2), and thus ¢’ € Range(f).

Part (3): From the above part (2) and our definitions, we have

Q' C Range(f) C | #(g) € Q".

q€Q
Note also that ||Range(f)|| > k (but ||Q|| = k) and that ||¢(¢)|| < 1 for every ¢ € Q.
Thus, it must happen that ||¢(q)|| = 1 for every ¢ € Q and that all ¢(¢) are different.
Furthermore, every ¢' € Q' has some ¢ € @ such that ¢’ € ¢(¢), which is in fact {¢'} =
#(g). 0O Claim 3

Finally we must show that ¢ is not only a bijection but also an isomorphism between
M and M’. That is, it carries qo to gj, it preserves § to &', and it carries F' to f”. But
having proved that @ and @’ have the same cardinality, the rest is exactly as in Angluin’s

proof. O

From this theorem, it is straightforward to derive the following two upper bound

results.

Corollary 4.3. Let f(n) be any polynomial time computable function such that f(n) <
n. There exist a (Mem,Equ)-learner Sy for DFA, and a polynomial ¢, such that for every

n,m > 0,
#equ-querys (n,m) < f_(nn—) and #mem-querys (n,m) < 27 - gp(n + m).

Corollary 4.4. For any ¢ > 0, there exists a polynomial time (Mem,Equ)-learner .5; for

DFA such that #equ-querys (n,m) <

for every n,m > 0.
clogn

Concerning these upper bound results, a natural question is whether they can be
improved. For example, we may ask whether the number of equivalence queries can
be reduced by more than a O(logn) factor. However, it is shown in the following that
such reduction is not possible without increasing the number of membership queries more
than polynomially. That is, there is a certain type of trade-off between the number of
membership and equivalence queries.

- For showing such trade-off phenomena, we first prove the following somewhat general

lower bound.
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Theorem 4.5. For any (Mem,Equ)-learner S for DFA, and for any n,m > 0, we have
the following bounds:

n—2

-2
J or #mem-queryg(n,m) > 2™ — {n J

#equ-querys(n,m) > l
m

Remark. Proposition 1.2 (1) is a special case, i.e., n = m + 2, of this theorem.

Proof. We show a property stronger than the theorem: For every (Mem,Equ)-learner S
that has query complexity better than the above, and every (Mem,Equ)-teacher T', S fails
to learn some dfa from T'.

To prove this, fix a (Mem,Equ)-learner S, a bounded (Mem,Equ)-teacher T' for DFA,
and any n,m > 0. Without loss of generality we may assume that m+2 < n < m2™ + 2
(otherwise one of the inequalities in the theorem holds trivially). Let | = |(n—2)/m], and
assume that #equ-querys(n,m) < [ and #mem-queryg(n,m) < 2™ —[. Define B nn
to be the set of dfa representations r such that |r| < n A L(r) C E™ A ||L(r)|| < . Notice
that every L C ™ such that ||L|| < { is accepted by some dfa with at most Im +2 < n
states. Thus, any L C X™ of size at most ! has some dfa representation in R, ..

We prove that S fails to learn some dfa representation in Rj; », using an adversary
argument. Define two sets Pos and Neg to be initially empty. Simulate S with input
(n,m), answering its queries as follows:

¢ When S makes a membership query z, answer “yes” if 2 € Pos; otherwise, answer
“no” and add z to Neg.
e When S makes equivalence query r, one of the following three cases occurs.
o Pos # L(r)<™: Return the counterexample = given by T for L(r) when the target
concept is Pos, and add = to Neg if it is not in Pos.
e Pos = L(r)S™ and there is some z of length m not in PosU Neg: Return z and
add z to Pos.
e Otherwise: Return “yes”.
Let Pos; be the value of Pos after the adversary has answered the ith query of 5. We

make the following claim, whose verification is straightforward and left to the reader.

Claim. For every ¢, the answers returned by the adversary for the first i queries are

exactly those returned by the teacher T' when the target concept is Pos;.

With this claim we can prove that the simulation of S with the adversary makes less
than [ equivalence queries. Assume otherwise that S makes ! (or more) equivalence queries

to the adversary. By the claim, it also makes [ equivalence queries to the teacher T'. Let
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Pos, be the value of Pos when (more precisely, just before) S makes its Ith equivalence
query. Note that strings are added to Pos only when 5 makes equivalence queries, so
| Posy|| < I —1. Furthermore, we always have Pos, C ™. Hence, Pos, has some dfa
representation in R, . of size at most n. That is, S makes [ or more equivalence queries
to T on some target concept in Rimn. A contradiction with the query bound we have
assumed for S.

Similarly, we can prove that S makes less than 2™ — | membership queries to the
adversary. Thus, the total number of queries to the adversary is at most (/ — 1) + (2™ —
[-1)=2m -2

Let POS and NEG be the values of Pos and Neg when S halts. Note that each query
of S adds at most one string to either POS or NEG, that is, ||POS U NEG|| < 2™ — 2.
Hence, there are two different strings w;,w; € ™ that are not in POSU NEG. Note that
POS U {w;} and POS U {w;} has at most ! elements and that they are subsets of X™;
thus, some dfa 71,79 € Ry . recognize these two sets. Now, it follows from our discussion
above that S receives the same answers during the executions of (S.T'(ry))(n,m) and
(S, T(r))(n,m), namely, the answers given by the adversary. Therefore, .5 with teacher

T outputs a wrong representation for either ry or r,. O

As a corollary of this theorem, we have the following lower bound in contrast with
Corollary 4.3.

Corollary 4.6. Let f(n) be any function such that f(n) < n and f(n) becomes arbi-
trarily large as n increases, and let S be any (Mem,Equ)-learner for DFA. Then for some

constants ¢1,¢2 > 0, and for infinitely many n,m > 0. we have

n

#equ-querys(n,m) > HOBS #mem-querys(n,m) > 2
n

f(n)
Proof. Define a nondecreasing sequence m;, ms, ... so that m, > f(n)/2 and n/f(n) <
[(n — 2)/m,) < 3n/f(n). Then the corollary follows from Theorem 4.5 for these pairs of

n and m,. (In this rough estimation, ¢; =1/2 and ¢; =3.) O

ge1f(n) _

Thus, roughly speaking, the reduction of the equivalence query complexity by 1/f(n)
factor always costs us about 2°(/(")) membership queries. One interesting example is the

following case, which shows the limitation of Corollary 4.4.

Corollary 4.7. Let f(n) be any function such that f(n) < n and f(n)/logn becomes

arbitrarily large as n increases. Then there exists no polynomial time (Mem,Equ)-learner

S for DFA with the query complexity #equ-queryg(n,m) < f Zl 1)
7
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5. Learning in parallel

The parallel computation model we consiaer is the Concurrent-Read Concurrent PRAM
(CRCW PRAM). See for example [9] for a description. Since each PRAM memory cell
contains an integer, we assume that a string over £ = {0,1} is represented in a PRAM
memory as a range of memory cells containing consecutive bits of the string, i.e., 0/1
integers. Hence, the string can be identified by its start and end addresses.

Individual PRAM processors can make different queries at each time step. To make
query, the processor presents the teacher with the start and end memory addresses of the
queried string as well as the addresses where the answer is to be received.

We first prove our lower bound on the parallel time for learning DFA using two main
ideas. First, the lower bound on the number of Equivalence queries needed for sequential
learning, i.e., Corollary 4.7. Second, a trick introduced by Bshouty and Cleve [7] to reduce

the number of Equivalence queries when transforming a parallel into a sequential learner.

Theorem 5.1. There is no CRCW PRAM (Mem,Equ)-learner for DFA that runs in time

n
) (1 ) with a polynomial number of processors.
ogn

Proof. We prove the theorem by contradiction. Assume that there is a CRCW PRAM

that learns dfain o ( ) parallel time and using a p(n) processors, with p a polynomial.

ogn

We use this PRAM to build a sequential learner for dfa that makes o ( ) Equivalence

queries and runs in polynomial time. This contradicts Corollary 4.7. g

So take the hypothetical PRAM. We can assume without loss of generality that at any
particular step, either all processors compute without queries, or all of them ask queries of
the same type. (Any PRAM can be turned into one with this property without increasing
the number of processors and a constant slowdown factor.)

The sequential learner S is as follows. It simulates sequentially steps 1, 2, ... of
the PRAM. If, at step i, processors compute, S simpy updates the PRAM memory.
If, at step 7, procesors ask Membership queries, S asks all of these queries sequentially
and returns to each processor its corresponding answer. If, at step :, processors ask
Equivalence queries ry, 72, ..., Tp(n), it uses the technique in [BC91] to answer all of them
by making p(n) — 1 Membership queries and a single Equivalence query.

To do this, find a string in the symmetric difference of ®(r,) and ®(r). This can be
done easily since r; and rp are dfa. Ask this string as a Membership query. Depending

on the answer, the string can be used as a counterexample for either ry or ro. Let r,,.
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i € {1,2}, be the query that did not get a counterexample. Find another string in
®(r;,) A ®(r3), ask it for membership, obtain a counterexample for one of the dfa, and
call the other i, ia € {1,2,3}. And so on. After p(n) ~ 1 rounds. we are left with
only one query 7., _,, ip(n)-1 € {1,...,p(n)}, whose counterexample is obtained with an
Equivalence query.

Simulating a parallel step of the PRAM clearly takes polynomial time, and there are
o(n/log n) parallel steps. Hence, S runs in polynomial time. Also, 5 makes at most one

Equivalence query per simulated step. This gives us the desired contradiction. O

Now we present a CRCW PRAM algorithm whose running time matches this lower
bound. Thus, with respect to time, this algorithm is optimal.

To describe the algorithm, we borrow many concepts and notations from the proof of
Theorem 4.1. In the following, let M. be a given target dfa, and let L. denote the lanuage
accepted by M,. Without loss of generality, we may assume that . 1s the minimum dfa.

Recall that, for an observation table (S.E,T) and a string s € S. row(s) is the
row vector defined by (T'[s, €])eck, and for a string e € E. col(e) is the column vector
defined by (T'[s, €])ses- Similarly, for any string w. row.(w) is the row vector defined by
(L.[w,e])ece. We say that column e separates rows sy and sz if T[s1.¢] # Tlss.€e]. A
string s € S or row(s) is called essential if there is no " lexicographically smaller than
s such that row(s) = row(s’). Similarly, we say that ¢ € E or col(e) is essential if 1t is
the lexicographically smallest column that separates some two rows in the table. Rows
or columns that are not essential are called unessential.

Figure 1 presents the learning algorithm OPT that achieves the optimal upper bound.
Essentially, it uses the queries to maintain a closed and consistent observation table.
Intuitively, the observation table has sufficient lookahead to ensure that only O(n/logn)
Equivalence queries are made, as in Theorem 4.1. But this is not enough because between
each two Equivalence queries there can be as much as Q(n) iterations needed to make
the table closed and consistent. This algorithm uses parallelism to solve in constant
time chunks of about logn each iterations, thus reducing the number of iterations to
O(n/logn).

We first detail the meaning and implementation of some of the lines in the algorithm.
Using standard tricks of CRCW PRAM programming, it is possible to show that each of
these lines requires only O(1) time and a number of processors polynomial in n., 2F = n,
and the length of the longest counterexample received so far. We omit the detailed

descriptions in this version.



build initial table (S, E,T);
while true do
expand table (S, E,T);
remove useless rows and columns from (S, E, T);
if the table closed and consistent then
build M(S, E,T);
ask M(S, E,T) as Equivalence query;
if answer = ‘YES’ then
output M(S, E,T) and halt
else (i.e., answer = (NO, w) for some w)

add w to (S, E,T) fi fi

e T A o B

—_ =
[ S

od.

Figure 1: Learning Algorithm OPT

Line 1 “build initial table”. This means to set S = {A} and £ = {A}, and then to fill in
the entry T[A, A] of T by asking one Membership query “A € L.77.

Line 3 “ezpand table (S, E,T)”: This means to expand table (5, E.T) and make an
auziliary table (S, E, T,ux) by asking Membership queries. Table T,y 1s a two-dimensional
table that is used to check whether (5, F,T) is closed and consistent at Line 5. Similar
to T, Toux keeps L.[s- a,e] for every s € 5, a € ¥, and ¢ € E.

The detail of “expand table (5, E,T)" is the following steps.

for all pairs (s,u) with s € S and u € %" do in parallel add s - u to S;
for all pairs (e,v) with e € £ and v € £5* do in parallel add v - ¢ to E:
for all pairs (s,e) with s € S and e € £ do in parallel
fill the entry T'[s, e] of T by asking Membership query “s-e € L.77";
for all triples (s,a,e) with s € S, a € ¥, and ¢ € £ do in parallel
fill the entry Taux[s - a, €] of Taux by asking Membership query ~s-a-e € L.77;

Line / “remove useless rows and columns”. This means removing from 5 all elements
such that: (i) they are unessential, and (ii) they are only prefixes of unessential elements

in S. Remove from T all rows indexed by elements removed from 5. All in all at most
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each representative for each row is left, if we consider only the elements of S that are
not prefixes of other elements in S. Useless columns are removed similarly. That is,
“remove useless columns” means removing from E all elements such that: (i) they are
unessential, and (ii) they are only suffixes of useless elements in E. Remove from T all

columns indexed by elements removed from £.

Line 5 “if the table closed and consistent”. This means to test whether (5, £, T) is closed
and consistent with lookahead 1. The test can be done just following the definition by

using auxiliary table (S, E, Taux)-

Line 10 “add w to (S, E,T)”: This means that for each prefix u of w, add u to S as new

rows of T'.

Correctness of OPT.

Consider the execution of the above algorithm when target dfa M. has n. states. We
prove that the algorithm terminates in O(n./logn.) iterations, and then we are done
because each iteration takes constant time by the comments above. Roughly speaking.
we show that the size (the number of states) of minimum dfa that is consistent with the
observation table increases at least by h/2 after each iteration. On the other hand. since
M. is the minimum dfa accepting L. and the observationn table is consitent with L., n. is
an upper bound of the size of minimum dfa consistent with the table. Thus, the number
of iterations must be bounded by 2n./h, whichi is O(n./log n.).

For the following lemmas, we introduce one more notion. First. let us assume, in
the following discussion, that observation tables are consistent with the target L.. For
any k > 1 and any table (S, E,T), the k-expansion of (S, E,T) is a table (S, E',T")
such that ' = SUS - Z5F E' = EU T SSF and 77 is consistent with L.. We say
that the k-expansion of (S, E,T) to (S, E'.T') 1s flat if no essential row is introduced
in (S, E',T"), or more precisely, both (S, E,T) and (S’, E’,T’) have the same number of
essential rows. Here we should note that if the k-expansion of (S.E.T) to (5. £.T") is

flat then (S, E,T) is closed and self-consistent.

Fact 3. For any £ > 1 and any (S, F,T), if its k-expansion is flat, then (5, E',T') is closed

and self-consistent.

Now the fact that the number of iterations is bounded by 2n,/h follows from next
two lemmas, whose proofs are not presented in this version (they will be produced real

soon now).
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Lemma 5.2. The total number of non-flat expansions in the sequential execution of OPT

is at most n..

Lemma 5.3. The total number of flat expansions in the sequential execution of OPT is

at most n,.

Since each iteration of OPT simulates h iterations of its sequential execution, it follows
that there are at most 2n./h iterations. Each iteration uses constant time using a number
of processors polynomial in n, 2* = n, and the length of the longest counterexample

received. Hence, we have the following result.

Theorem 5.4. Thereisa CRCW PRAM (Mem,Equ)-learner for DFA that uses O(n/ log n)

time and a polynomial number of processors.
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