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Abstract

In this thesis we present the main properties of Hilbert modular surfaces and their
associated modular forms. The most remarkable one is that they can be viewed as
modular varieties associated to the orthogonal group of a quadratic space of type
(2, 2). This property provides a source of modular forms, which we will study, with
a special focus on the so-called Borcherds lift and the Doi-Naganuma lift. Once the
foundations of Hilbert modular surfaces and modular forms are established, we intro-
duce the theory of Complex Multiplication, starting with some basic facts for elliptic
curves that will serve as an introduction to the Theory of Complex Multiplication for
Hilbert modular surfaces. We will show how to obtain the so-called CM points on the
Hilbert Modular surface and how to evaluate Borcherds lifts on them. We will also
see that those values are nice algebraic numbers in some concrete fields and that when
we evaluate our modular function on a full CM cycle we get rational numbers with
several prime factors. We provide several examples of those numerical computations
on SageMath to support the theoretical results.

Resum

En aquesta tesi presentem les propietats principals de les superf́ıcies modulars de
Hilbert i les formes modulars associades. La més remarcable és que poden ser vistes
com a varietats modulars associades al grup ortogonal d’un espai quadràtic de tipus
(2, 2). Aquesta propietat dona una font de formes modulars, que estudiarem, posant
un especial èmfasi al Borcherds lift i el Doi-Naganuma lift. Una vegada els fonaments
per les superf́ıcies modulars de Hilbert hagin estat establerts, introduirem la teoria
de la Multiplicació Complexa, començant per alguns fets bàsics en el cas de corbes
el·ĺıptiques que servirà com a introducció per al cas de Multiplicació Complexa per a
superf́ıcies modulars de Hilbert. Mostrarem com obtenir els anomenats punts CM a la
superf́ıcie modular de Hilbert i com avaluar el Borcherds lift en aquests punts. També
veurem que aquests valors són nombres algebraics que pertanyen a cossos concrets i
que quan avaluem una funció modular en tot un cicle CM obtenim nombres racionals
amb múltiples factors primers. Donem diversos exemples de càlculs numèrics fets
amb SageMath per confirmar els resultats teòrics.

Resumen

En esta tesis presentamos las propiedades principales de las superficies modulares de
Hilbert y las formas modulares asociadas. La más remarcable es que pueden ser vis-
tas como variedades modulares asociadas al grupo ortogonal de un espacio cuadrático
de tipo (2, 2). Esta propiedad nos da una fuente de formas modulares, que estudi-
aremos, poniendo especial énfasis en el Borcherds lift y el Doi-Naganuma lift. Una
vez hayamos establecido los fundamentos de las superficies modulares de Hilbert, in-
troduciremos la teoŕıa de la Multiplicación Compleja, empezando por algunos hechos
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básicos en el caso de curvas eĺıpticas que nos servirá como introducción para el caso de
Multiplicación Compleja para superficies modulares de Hilbert. Mostraremos cómo
obtener los llamados puntos CM en la superficie modular de Hilbert y cómo evaluar
el Borcherds lift en esos puntos. También veremos que esos valores son números alge-
braicos pertenecientes a unos cuerpos concretos y que cuando evaluamos una función
modular en todo el ciclo CM obtenemos números racionales con muchos factores pri-
mos. Damos varios ejemplos de los cálculos numéricos realizados con SageMath para
respaldar los resultados teóricos.
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MSC2020: 11G15, 11F41

iii



Contents

0 Introduction 1

1 Hilbert Modular forms 4
1.1 Real quadratic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 The Hilbert modular group . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Hilbert modular surfaces and cusps . . . . . . . . . . . . . . . . . . . 7
1.4 Siegel domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Hilbert modular forms . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Eisenstein series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.7 Finite dimensionality of the space of cuspforms and modular forms . 20
1.8 Restriction to the Diagonal . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Orthogonal groups 24
2.1 Quadratic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 The Clifford algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Rational Quadratic spaces of type (2,n) . . . . . . . . . . . . . . . . . 32
2.4 The Hilbert Modular Group as an Orthogonal group . . . . . . . . . 35
2.5 Modular forms for O(2,n) . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6 Heegner divisors and Hirzebruch-Zagier divisors . . . . . . . . . . . . 39
2.7 Theta lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Additive and multiplicative lifts 41
3.1 The Doi-Naganuma lift . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Borcherds lift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Evaluating Borcherds products numerically . . . . . . . . . . . . . . . 53

4 Complex Multiplication 56
4.1 Complex Multiplication for elliptic curves . . . . . . . . . . . . . . . . 56
4.2 Differences in the theory of Complex Multiplication for higher dimen-

sion abelian varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 CM-fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Quartic CM fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5 Abelian varieties with Complex Multiplication . . . . . . . . . . . . . 71
4.6 Moduli space of abelian surfaces with CM . . . . . . . . . . . . . . . 73
4.7 CM points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

iv



4.8 Abelian surfaces with CM by OK . . . . . . . . . . . . . . . . . . . . 74
4.9 Algorithm to enumerate all CM points of a given type for a quartic

CM field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.10 Evaluating Hilbert modular functions at CM points . . . . . . . . . . 85

Appendix 91

v



Chapter 0

Introduction

The Kronecker-Weber theorem states that every abelian extension of Q is contained
in some cyclotomic field (a field of the form Q(e2πin) for some integer n). At the
beginning of the 20th century Hilbert published his famous list of 23 unsolved prob-
lems that guided the research of many mathematicians during the 20th century. The
12th of these problems asks for a generalization of the Kronecker-Weber theorem for
number fields other than Q. More explicitly, it asks to find and analogue of the ex-
ponential function z 7→ e2πiz such that when we adjoint its values to a number field
K, we obtain an abelian extension of K.

The Theory of Complex Multiplication of elliptic curves gives a complete answer
for this problem when K is an imaginary quadratic extension of Q (i.e. K = Q(

√
d)

for some rational d < 0). This theory shows that values of the j-invariant (a modular
function whose Fourier expansion is j(τ) = q−1 + 744 + 196884q + 21493760q2 + . . .
for q = e2πiτ ) at the CM points together with some values of the Weber function
generate all abelian extensions of K. Furthermore, it shows that K(j(τ)) is the
Hilbert Class field of K, the maximal unramified abelian extension of K. Shimura
and Taniyama developed the theory of complex multiplication for higher dimensional
abelian varieties and they managed to give a partial answer for the cases where K is
a CM field (a degree 2 imaginary extension of a totally real field). Although many
things change from the case of elliptic curves (for instance we can’t generate all class
fields just using Complex Multiplication, we have to consider principally polarized
abelian varities, a new field called the reflex field appears...) there is one thing that
is really similar. When we evaluate the j-function on a certain set of points and
multiply the results we get nice integers with many prime factors. A similar thing
happens with Hilbert modular functions when we evaluate them on all the points of
a certain set which is known as a CM cycle, with the difference that this time the
results are rationals and not necessarily integers. In this thesis we won’t focus on
the part of generating class fields using the theory of Complex Multiplication. We
will rather work on the problem of obtaining all points on a CM cycle to evaluate
Hilbert Modular functions at them and get those nice rational numbers (and also
evaluating Hilbert modular functions at single CM points to get certain algebraic
numbers, although this time they will not generate the Hilbert Class field like in the
elliptic curves case).
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In the first chapter we study some basic properties of Hilbert Modular forms
and Hilbert modular surfaces. Hilbert modular forms are a generalization of elliptic
modular forms. They were first developed by Hilbert and his student Blumenthal
in the beginning of the 20th century. After their initial work it took several years
to continue their study because both algebraic geometry and the theory of complex
functions needed more study. Those modular forms are similar in many ways to
classical elliptic modular forms (they transform similarly, they also have a Fourier
expansion) but the fact that they are functions in several variables adds an extra
complexity. Unlike in the case of elliptic modular forms, the space of Hilbert modular
forms is much more complex and so it is more difficult to determine its dimension.
It is also much harder to find a fundamental domain for the action of the Hilbert
modular group.

A really nice property about Hilbert Modular surfaces is that they can be viewed as
modular varieties for orthogonal groups of certain quadratic spaces. For this reason
in the second chapter we study quadratic spaces, the Clifford algebra and several
realizations of the hermitian symmetric domain associated to the orthogonal group
of a quadratic space. This tools will allow us to see why Hilbert Modular Surfaces
can also be seen as modular varieties of orthogonal groups and how we can use this
to lift Hilbert Modular forms from modular forms for orthogonal groups.

In the third chapter we describe two lifts that provide a source of modular forms:
the Doi-Naganuma lift and the Borcherds Lift. We will see that sometimes they give
the same modular forms, and at the end of this chapter we use this to show how one
can evaluate Borcherds lifts at points of H2 in those particular cases (the code used
can be found in the appendix). Evaluating the Borcherds lift will be particularly
important in the last chapter.

In the last chapter we will start by stating the main facts of Complex Multiplica-
tion for elliptic curves. The most stunning one is the fact that the modular function j
that we mentioned before gives algebraic integers when evaluated at CM points. This
will serve as an introduction for Complex Multiplication for Abelian varieties. We
will see that for higher dimension abelian varieties we need to introduce the notion of
the reflex field and the reflex type (this doesn’t happen for elliptic curves as the reflex
field coincides with the base field and there is just one canonical way to embed an or-
der in an imaginary quadratic field into the ring of endomorphisms). Hilbert modular
surfaces parametrize isomorphism classes of abelian varieties with Real Multiplication
(that is abelian varieties such that we can embed an order in a totally real field into
its endomorphism ring) which is a particular case of abelian varieties with Complex
Multiplication. We will see how to enumerate all the isomorphism classes of abelian
surfaces with Complex Multiplication and how to relate those classes with points
on the Hilbert Modular Surfaces. We also present a certain Galois action on those
classes that will allows to describe the the nature of the values of Hilbert Modular
functions on those points. Abelian surfaces (with CM) have Complex Multiplication
by orders in quartic CM fields, so we will study the possibilities for a quartic CM
field and make explicit the notion of reflex field in each case. With the help of the
method explained in chapter 3 to evaluate Borcherds lifts and an algorithm to get
the CM points in the Hilbert Modular surface, we will get analogous results to those
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CHAPTER 0. INTRODUCTION

obtained for the j-invariant. The value of the Borcherds lift at one CM point is a
nice algebraic number belonging to a concrete extension of the reflex field, while the
product of all the values at a cycle is a rational number with multiple prime factors.
We provide several examples of those computations for each possible case of quartic
CM field.
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Chapter 1

Hilbert Modular forms

In this first chapter we define the Hilbert modular group, Hilbert modular surfaces
and Hilbert modular forms and explain the most significant features of them. Al-
though they are similar to classical elliptic modular forms, the fact that they are
functions in several variables, adds an extra complexity which changes some things.
For instance we’ll see that the space of Hilbert modular is finite dimensional, but
unlike the classical case it is hard to determine a basis for the graded ring of modular
forms. Similarly it is difficult to determine a precise fundamental domain and not
very useful, but it is useful to know the existence of one to be able to proof some
results that involve integrating on a fundamental domain or proving that a certain
function is bounded. We will also discuss several properties about this forms such as
the Fourier expansions, growth conditions of the coefficients or the number of cusps
of Hilbert modular surfaces. In the end will see the first examples of Hilbert modular
forms, the Eisenstein series, and the restriction to the diagonal trick, which allows
us to get an elliptic modular by restricting the domain of our Hilbert modular form.
Since we know the structure of the space of elliptic modular forms (dimension and
generators), this will give a lot of information on the structure of our Hilbert mod-
ular form. This fact will be exploited in the third chapter when we construct some
Borcherds lift from the Doi-Naganuma lift.

Although there is a more general definition for Hilbert modular forms on n vari-
ables, we restrict to Hilbert modular forms on H2 (2 variables) for real quadratic
extensions of Q, where H = {α ∈ C | Im(α) > 0} is the complex upper half plane.
The reason for this is that in the last chapter (about Complex Multiplication) we will
restrict to the cases of abelian surfaces and quartic CM fields (to be defined later)
so we don’t need a more general setting now. We start by summarizing the main
properties of real quadratic fields, one of the central objects of study on this thesis.

1.1 Real quadratic fields

Let D > 1 be a squarefree integer and consider the field F = Q(
√
D) ⊂ R. We denote

by OF the ring of algebraic integers of F (those elements of F that are roots of some
monic polynomial with integer coefficients). Recall that:
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CHAPTER 1. HILBERT MODULAR FORMS

OF =

{
Z+ 1+

√
D

2
Z, if D ≡ 1 (mod 4)

Z+
√
DZ, if D ≡ 2, 3 (mod 4)

(1.1)

and for the discriminant ∆F = disc(F ) we have:

∆F =

{
D if D ≡ 1 (mod 4)

4D if D ≡ 2, 3 (mod 4)
(1.2)

Remark 1.1. In many references instead of using D and ∆F , they use d and D for
the square of the element that we adjoint to Q and the discriminant, respectively.
However, here we use this different notation to leave d as a variable for the future.
We make this remark to avoid any possible confusion.

We don’t consider the case where D is a multiple of 4 as it contradicts the assump-
tion that it is squarefree. We denote byO∗

F the group of units ofOF (the elements that
have its inverse in OF ). By the Dirichlet unit theorem there is a unique unit ε0 > 1
(which is called the fundamental unit of F ) such that O∗

F = {±1} × {εn0 | n ∈ Z}.
The two embeddings of F are real, and they are the identity and conjugation, which
we will denote by x 7→ x′ and maps the element r + s

√
D 7→ r − s

√
D for r, s ∈ Q.

The norm of an element x ∈ F is N(x) = xx′ and the trace in F of an element x is
tr(x) = x+ x′.

An integral ideal of OF is a OF -submodule of OF , while a fractional ideal is
an OF -submodule of F . Fractional ideals form a group with the operation of ideal
multiplication, and the neutral element is OF since OFa = a for any ideal a. The
inverse of a fractional ideal is

a−1 = {x ∈ F, xa ⊂ OF}

Although it is not that easy for ideals of other types of field, in the case where F
is a quadratic extension of Q, we have an explicit formula for a−1 which is given by
a−1 = 1

N(a)
a′ where a′ is the conjugate ideal of a (its elements are the conjugates of

the elements in a) and N(a) is the ideal norm which is given by N(a) = [OF : a] for
an integral ideal, and for a fractional ideal b, if we write it as b = ra for some integral
ideal a, N(b) = N(r)N(a) where N(r) is the norm of the element r in the quadratic
extension F .

An important ideal that will frequently appear is the different ideal of F . For a
general number field K, the different ideal dK is defined to be the ideal I−1 where
I = {x ∈ K | trK/Q(xOK) ⊂ Z}. In the case of a real quadratic field F = Q(

√
D),

we have:

dF =

{
(
√
D) if D ≡ 1 (mod 4)

(2
√
D) if D ≡ 2, 3 (mod 4)

If we consider the set of all ideals of F , it is possible to define an equivalence
relation on it. Two fractional ideals a, b are in the same equivalence class if there
exists an r ∈ F such that a = rb. The group of equivalence classes is denoted by Cl(F )
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CHAPTER 1. HILBERT MODULAR FORMS

and is called the ideal class group. It is a finite abelian group and its order is called
the class number. This group will take an important role in the last chapter. When
|Cl(F )| = 1, OF is a principal ideal domain and all integral ideals can be generated by
a single element. That’s not usually the case for most F , but the following property
is true (in fact it holds for any Dedekind domain).

Property 1.2. If a ⊂ F is a fractional ideal, then there exist α, β ∈ F such that
a = αOF + βOF .

This property together with the fact that the ideal class group is finite, will be
useful to prove that the number of cusps of a Hilbert modular surface is finite.

1.2 The Hilbert modular group

Let SL2(F ) = {( a b
c d ) | a, b, c, d ∈ F, ad− bc = 1} be the special linear group of 2× 2

matrices with coefficients in F . We can embed this group into SL2(R) × SL2(R) by
using the two real embeddings of F . This group acts on H×H via the action(

a b
c d

)
z =

(
az1 + b

cz1 + d
,
a′z2 + b′

c′z2 + d′

)
(1.3)

where z = (z1, z2) ∈ H2. Note that this action is well defined since

(
1 0
0 1

)
z =

(z1, z2) = z and it can be checked that for g, h ∈ SL2(F ), h(gz) = (hg)z.

Definition 1.3. If a is a fractional ideal of F , we write

Γ (OF ⊕ a) =

{(
a b
c d

)
∈ SL2(F ) | a, d ∈ OF , b ∈ a−1, c ∈ a

}
for the Hilbert modular group corresponding to ideal a. When a = OF , we write

ΓF = Γ (OF ⊕OF ) = SL2(OF )

Note that the last equality comes from the fact that OF is the neutral element of
the ideal class group and hence, O−1

F = OF . The group ΓF is called the full Hilbert
modular group. Also note that we can define an action on H2 for any subgroup of
SL2(R) (for instance for ΓF ) by restricting the action defined in (1.3) to that subgroup.

Definition 1.4. Let a be a non-zero ideal of OF . Let

Γ (a) =

{
γ ∈ ΓF | γ ≡

(
1 0
0 1

)
(mod a)

}
This subgroup of ΓF is called the principal congruence subgroup of level a. A subgroup
Γ ⊂ SL2(F ) such that Γ contains Γ (a) with finite index is called a congruence
subgroup.

6



CHAPTER 1. HILBERT MODULAR FORMS

It is easy to verify that both Γ (OF ⊕ a) and Γ (a) are groups by computing the
product of two elements of them and by noting that for γ = ( a b

c d ) ∈ SL2(R)

γ−1 =

(
a b
c d

)−1

=

(
d −b
−c a

)
Example 1.5. Although here we are dealing with real quadratic spaces, if we let
F = Q and a = (N) for some integer N , we obtain the classical congruence subgroups
Γ (N) that appear in the theory of classical elliptic modular forms.

Proposition 1.6. Let Γ1 and Γ2 be congruence subgroups. Then

(i) Γ1 ∩ Γ2 is also a congruence subgroup and Γ1 is commensurable to Γ2 (Γ1 ∩ Γ2

has finite index in both Γ1 and Γ2).

(ii) ΓF = SL2(OF ) is a congruence subgroup.

Proof. By definition, there exists a non-zero ideal of OF such that, Γ (a) ⊂ Γ1 and
the quotient is finite. Similarly, there exists b such that Γ (b) ⊂ Γ2 and the quo-
tient is finite. Let g1, g2, . . . , gn be representatives of Γ1

/
Γ (a) and h1, h2, . . . , hm be

representatives of Γ2

/
Γ (b). Then

Γ1 ∩ Γ2 =

( ⋃
1≤i≤n

giΓ (a)

)⋂( ⋃
1≤j≤m

hjΓ (b)

)
=

⋃
1≤i≤n,1≤j≤m

(giΓ (a) ∩ hjΓ (b))

Note that when a and b are coprime, we can apply the Chinese Remainder Theorem
and we can express each term of the form giΓ (a)∩hjΓ (b) as ri,jΓ (a∩b) for some ri,j.
However, if a and b are not coprime, the intersection may be empty or not depending
on gi and hj. In any case, we can write⋃

1≤i≤n,1≤j≤m

(giΓ (a) ∩ hjΓ (b)) =
⋃

1≤k≤l

rkΓ (a ∩ b)

for some l ≤ nm (if a, b are coprime, l = nm as every pair of congruences has
solution). Clearly one of the gi and one of the hj is the identity because Γ (a) and
Γ (b) are contained in Γ1 and Γ2, respectively, which implies that the corresponding
rk is also the identity, so we have that Γ (a ∩ b) ⊂ Γ1 ∩ Γ2. It is clearly contained
with finite index l ≤ nm. And since the index of Γ (a ∩ b) in Γ (a) is finite, and the
index of Γ (a) in Γ1 is finite, the index of Γ (a ∩ b) in Γ1 is also finite, which implies
that Γ1 ∩ Γ2 has finite index in Γ1 (and analogously for Γ2).

That ΓF = SL2(OF ) is a congruence subgroup is a direct consequence of the fact
that ΓF = Γ (OF ) so ΓF contains Γ (OF ) with index 1.

1.3 Hilbert modular surfaces and cusps

Let Γ ⊂ SL2(F ) be a subgroup commensurable with ΓF (recall that this means that
ΓF ∩ Γ has finite index in Γ and ΓF ). For a point p ∈ H2, the stabilizer of p,
Γp = {γ ∈ Γ | γp = p} is a finite subgroup of Γ . If |Γp/{±1}| > 1 (there is a non
trivial element which fixes the point), we say that p is an elliptic fixed point.

7



CHAPTER 1. HILBERT MODULAR FORMS

Definition 1.7. For a Hilbert modular group Γ , the quotient

Y (Γ ) = Γ\H2

is called a Hilbert modular surface.

The Hilbert modular surface is a normal complex surface whose singularities are
the elliptic fixed points. There is a finite number of them. In general, the Hilbert
modular surface Y (Γ ) is not compact (it has some points at infinity) but it can be
compactified by adding a finite number of points which are called the cusps of Γ
which we will describe now.
We can let SL2(F ) act on the projective space

P1(F ) =

{(
α
β

)
∈ F 2 \ {0}

}
/F ∗

by matrix multiplication on the left. Throughout the following lines we will use
( α
β ) and (α : β) indistinctly to refer to the elements of P1(F ). Notice that since

( a b
c d )∞ = ( a b

c d )(
1
0 ) = ( a

c ), the action of SL2(F ) is transitive. However, that’s not
necessarily the case for other subgroups of SL2(F ). For a subgroup Γ ⊂ SL2(F ), the
orbits under the action of Γ on P1(F ) are called the cusps (or cusp points) of Γ . Let
(α : β) ∈ P1(F ). Note that we can assume that α, β are integral since we can multiply
both by a common denominator and nothing changes. Now to (α : β) ∈ P1(F ) we
can associate the ideal αOF + βOF .

Proposition 1.8. The map

φ : ΓF\P1(F ) −→ Cl(F )

(α : β) 7−→ αOF + βOF ,

is bijective.

Proof. First we have to show that φ is well-defined (that the image of an Γ -class
does not depend on the representative that we choose). Clearly we have φ(α : β) =
φ(tα : tβ) since a = αOF + βOF and b = tαOF + tβOF = ta are in the same
ideal class. Now for γ = ( a b

c d ) ∈ ΓF let
( α1
β1

)
= ( a b

c d )
( α2
β2

)
. We have to show that

φ(α1 : β1) = φ(α2 : β2). But this follows from

φ(α1 : β1) = α1OF + β1OF = (aα2 + bβ2)OF + (cα2 + dβ2)OF ⊂ φ(α2 : β2)

since the elements of (aα2 + bβ2)OF + (cα2 + dβ2)OF are of the form α2(ar1 + cr2) +
β2(br1 + dr2) for r1, r2 ∈ OF , so ar1 + cr2, br1 + dr2 ∈ OF .

Now, since the inverse of γ = ( a b
c d ) is γ

−1 =
(

d −b
−c a

)
, we have that

φ(α2 : β2) = α2OF + β2OF = (dα1 − bβ1)OF + (−cα1 + aβ1)OF ⊂ φ(α1 : β1)

Therefore φ(α1 : β1) = φ(α2 : β2) and the map is well defined.

8
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The surjectivity of φ comes from a well-known fact that holds in any Dedekind
ring, although we just need it for OF . For any fractional ideal a ⊂ F , there exist
α, β ∈ F such that a = αOF + βOF (Property 1.2).

Finally, to prove the injectivity, assume that a = φ(α1 : β1) = φ(α2 : β2). Then
1 ∈ OF = aa−1 = (α1OF + β1OF )a

−1 = α1a
−1 + β1a

−1, so there exist γ1, δ1 ∈ a−1

such that α1δ1 − β1γ1 = 1. Then for

M :=

(
α1 γ1
β1 δ1

)
∈ SL2(F )

we haveM∞ =M( 1
0 ) =

( α1
β1

)
. Analogously we find that there exist γ2, δ2 ∈ a−1 such

that for

N :=

(
α2 γ2
β2 δ2

)
∈ SL2(F )

we have N∞ = N( 1
0 ) =

( α2
β2

)
. So we have

( α2
β2

)
= NM−1

( α1
β1

)
and

NM−1 =

(
α2 γ2
β2 δ2

)(
δ1 −γ1
−β1 α1

)
=

(
α2δ1 − γ2β1 −α2γ1 + γ2α1

β2δ1 − δ2β1 −β2γ1 + δ2α1

)
∈ ΓF ,

which proves the injectivity and finishes the proof of the proposition.

A direct corollary of this proposition is

Corollary 1.9. The number of cusps of Γ is equal to h(F ), the class number of F
(number of classes in the class group).

In particular, the number of cusp points is finite and by adding them to the Hilbert
modular surface, we can make it into a compact space. We can embed P1(F ) into
P1(R) × P1(R) using the two real embeddings of F , and now P1(R) can be seen as
the set of rational boundary points on H2.

If we denote by (H2)∗ = H2∪P1(F ), we can give the set (H2)∗ a topology that will
make Γ\(H2)∗ a compact Hausdorff space with the quotient topology (Baily-Borel
compactification). This topology is the unique that has the following properties:

(i) The induced topology on H2 agrees with the usual topology.

(ii) H2 is an open set in (H2)∗

(iii) The sets UC ∪ {∞}, where UC = {(z1, z2) ∈ H2 | ℑ(z1)ℑ(z2) > C} for C > 0
are a base of open neighborhoods of the cusp at ∞.

(iv) If κ ∈ P1(F ) and ρ ∈ SL2(F ) is such that ρ∞ = κ, then the sets ρ(UC ∪∞) are
a base of open neighborhoods of the cusp κ.

Lemma 1.10. The stabilizer of the cusp infinity Γ (OF⊕a)∞ consists on the elements
of Γ (OF ⊕ a) of the form

( ε µ
0 ε−1

)
where ε ∈ O∗

F and µ ∈ a−1.

9
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Proof. If for γ = ( a b
c d ) we have γ∞ = ∞, we need c = 0. Since the determinant has

to be 1, a, d ∈ O∗
F are each other’s inverse. Finally b can be any element in a−1.

Remark 1.11. The base of open neighborhoods of (iv) does not depend on the choice
of ρ, because the stabilizer Γ∞ of ∞ acts trivially on UC . If γ =

( ε µ
0 ε−1

)
∈ Γ∞, then

γz = (ε2z1 + ϵµ, (ε′)2z2 + ε′µ′)

so the product of the imaginary parts remains the same since (εε′)2 = 1.

1.4 Siegel domains

Many times it is important to prove the existence of a ”nice” fundamental set S ⊂ H2

so that ΓS = H2. For instance to be able to prove the convergence of certain integrals
it is nice to know that we are integrating over a ”small” set. In general it’s not
practical to try to describe a fundamental domain (a set S satisfying ΓS = H2 and
that γS ∩S has measure 0 for all non-trivial γ). When we are working with elliptical
modular forms for the group Γ = SL2(Z) on H, we have a nice description of a
fundamental set:

S =

{
z ∈ H | |z| ≥ 1 and |Re(z)| ≤ 1

2

}
And although a similar result is possible in more general settings, it is unnecessary

as in most cases we just need to make sense of integrals in the quotient Γ\H2 or to
prove that an SL2(OF )-invariant function is bounded in H2. In subsequent sections
we will make use of those fundamental sets precisely for those reasons.

Definition 1.12. A subset S ⊂ H2 is said to be a fundamental set for Γ if ΓS = H2,
that is

H2 =
⋃
γ∈Γ

Γ (S)

.

Definition 1.13. A fundamental set S for a group Γ is a fundamental domain if it
satisfies:

(i) S is measurable

(ii) For all non-trivial γ ∈ Γ , we have that γS ∩ S has measure zero.

It is possible to prove that every measurable fundamental set contains a funda-
mental domain. We now proceed by giving nice examples of sets that will help us
build a fundamental set, which are known as Siegel domains.

Definition 1.14. Fix a positive real number r. We define the Siegel domain for r as:

Sr = {(z1, z2) ∈ H2 | |Re(z1)|, |Re(z2)| < r, Im(z1), Im(z2) >
1

r
}

10
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Now, thanks to the next Theorem (its proof is a bit extense and can be found in
[Gar90], chapter 1.6, page 20) we can use Siegel domains to build a fundamental set
for Γ .

Theorem 1.15. Let p1, . . . , pl ∈ P1(F ) be a set of representatives for the cusps Γ ,
and let γ1, . . . , γl ∈ SL2(F ) such that γj∞ = pj. There is a r > 0 such that

S =
l⋃

j=1

γjSr

is a measurable fundamental set for Γ .

We will use this result when we prove that the space of modular forms of a fixed
weight is finite dimensional.

1.5 Hilbert modular forms

Now that we have introduced the basic elements that we need to define Hilbert
modular forms, such as the Hilbert modular group and surface or the cusps, we can
proceed with the definition of holomorphic Hilbert modular forms. In this section we
also show the existence of Fourier expansion of a certain form and several lemmas
that show that for a holomorphic Hilbert modular form of a certain weight to exist,
the weight can’t be negative. One stunning fact that we will see in this section is
that unlike what happens with elliptic modular forms, a holomorphic modular is
automatically holomorphic at the cusps (by the Koecher principle).

Definition 1.16. For γ = ( a b
c d ) ∈ SL2(F ), k = (k1, k2) ∈ Z2 and z = (z1, z2) ∈ H2,

let

µ(γ, z)k = (cz1 + d)k1(c′z2 + d′)k2

which is called the automorphy factor (in the following lines we will see why).

Definition 1.17. Let Γ be a congruence subgroup of ΓF . An holomorphic function
f : H2 → C is called an holomorphic Hilbert modular form of weight (k1, k2) := k for
the group Γ if

f(γz) = µ(γ, z)kf(z) (1.4)

for all γ ∈ Γ and z ∈ H2. When k1 = k2, f is simply called a holomorphic Hilbert
modular form of weight k1 (and it is said to have parallel weight).

We can also have non-holomorphic Hilbert modular forms. For instance, meromor-
phic functions that satisfy condition (1.4) are called meromorphic Hilbert modular
forms and are also Hilbert modular forms. But since we will just dealwith holomor-
phic Hilbert modular forms we will sometimes refer to them as Hilbert modular forms
for brevity. Note, that some of the results that we will present in the next pages are
not true or slightly different for non-holomorphic modular forms, and that’s why we
have to make the distinction.

11
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Definition 1.18. For f : H2 → C the Petersson slash operator is defined by

(f |k1,k2 γ)(z) = µ(γ, z)−1f(γz)

When k1 = k2 =: k we just write (f |k γ)(z) instead of (f |k1,k2 γ)(z).

Using the Petersson slash operator, we can rewrite condition (1.4) as

(f |k1,k2 γ)(z) = f(z) ∀γ ∈ Γ, z ∈ H2

Similarly to what happens with elliptic modular forms, we can also define modular
forms for the group Γ with a group character χ. Those kinds of modular forms will
appear in the next chapters when we talk about the theta lifting, so we are also going
to introduce their definition now, but we will continue talking about Hilbert Modular
forms without character after that.

Definition 1.19. Let Γ be a congruence subgroup of ΓF and χ : Γ → C∗ a group
character that only takes finitely many different values. An holomorphic function
f : H2 → C is called a Hilbert modular form of weight (k1, k2) for the group Γ and
character χ if

(f |k1,k2 γ)(z) = χ(γ)f(z)

for all γ ∈ Γ and z ∈ H2.

Notation 1.20. we denote by Mk(Γ, χ) the space of Hilbert modular forms of weight
k ∈ Z2, for the group Γ and character χ and simply Mk(Γ ) when we are not consid-
ering any character (which can also be seen as the case where the character is trivial).
When we are considering the full space of Hilbert modular forms of any weight, we
remove the subindex and write M(Γ, χ) or M(Γ ).

Note that if we have two Hilbert modular forms f ∈Mk(Γ ) and g ∈Mk′(Γ ), then
fg ∈Mk+k′(Γ ). Therefore

M(Γ ) =
⊕
k∈Z2

Mk(Γ )

has the structure of a graded ring with the grading that we just described.

1.5.1 Fourier expansion of holomorphic Hilbert modular forms

In a similar way to what happens in the classic case, Hilbert modular forms also have
a Fourier expansion. The main difference is that in this case it is not indexed by
integers, but by the elements of a dual lattice. We will also prove some conditions on
the coefficients of the Fourier expansion.

Proposition 1.21. Let Γ be a congruence subgroup, and let Λ = {λ ∈ F | {( 1 λ
0 1 ) ∈

Γ}. Then any f ∈Mk(Γ ) has a Fourier expansion of the following form:

f(z) =
∑
ν∈Λ∨

aνe(tr(νz))

12
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where e(x) = e2πix, tr(νz) = νz1 + ν ′z2 and

Λ∨ = {λ ∈ F | tr(λΛ) ⊂ Z}

is the dual lattice of Λ with respect to the trace form on F . The Fourier series is
absolutely and uniformly convergent on compact sets of H2.

Proof. Note that since Γ is a congruence subgroup, it contains Γ (a) for some ideal
a of OF , and therefore, a ⊂ Λ. Writing z = x + yi with x = (x1, x2) ∈ R2 and
y = (y1, y2) ∈ R2, f(x + yi) is as smooth as we could desire as a function of x and
periodic by the rank 2 (over Z) lattice Λ, so it has a Fourier expansion (as a function
of x)

f(x+ yi) =
∑
ν∈Λ∨

aν(y)e(tr(νx))

which is absolutely and uniformly convergent for x in compact subsets of R2. The
only exponentials that appear are those that make tr(νx) and integer, so that’s why
we are summing over Λ∨. Since f is holomorphic, it must satisfy the Cauchy-Riemann
equations i ∂f

∂x1
= ∂f

∂y1
and i ∂f

∂x2
= ∂f

∂y2
. So we have must have

i
∑
ν∈Λ∨

aν(y)(2πiν)e(tr(νx)) =
∑
ν∈Λ∨

∂aν(y)

∂y1
e(tr(νx))

i
∑
ν∈Λ∨

aν(y)(2πiν
′)e(tr(νx)) =

∑
ν∈Λ∨

∂aν(y)

∂y2
e(tr(νx))

By uniqueness of the Fourier expansion we must have

−aν(y)(2πν) =
∂aν(y)

∂y1

−aν(y)(2πν ′) =
∂aν(y)

∂y2

for each ν ∈ Λ∨ And this is a system of differential equations whose solution is given
by

aν(y) = aνe
−2πtr(νy)

for a constant aν . To see that the expansion is absolutely and uniformly convergent,
we observe that as y1 or y2 increase, e−2πtr(νy) doesn’t increase. As we have already
established the absolute and uniform convergence in x, the proposition is proven.

There is an explicit formula for the Fourier coefficients given by

aν =
1

vol(R2/Λ)

∫
R2/Λ

f(z)e(−tr(νz))dx1dx2

where R2/Λ is the quotient of R2 with the lattice described in the statement of
Proposition 1.21.

13
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One important property of holomorphic Hilbert modular forms is that they are
automatically holomorphic at the cusps, as opposed to what happened in the one-
dimensional case where an holomorphic modular function could not be holomorphic
at the cusps. This surprising property is given by the Koecher principle. Our next
goal will be to prove it, but before we will need an auxiliary lemma.

Lemma 1.22. Let a be a non-zero ideal of OF . Then there exists a unit u ∈ O∗
F such

that u ≡ 1 (mod a) (meaning that u− 1 ∈ a) and u ̸= ±1.

Proof. If a = OF the statement if clear as for all the units u, u − 1 ∈ OF . Assume
that a ̸= OF and select a unit ε ∈ O∗

F , ε ̸= ±1 (for instance the fundamental unit)
and consider the sequence ε, ε2, ε3, . . . (mod a). Since the index of a in OF is finite,
there are finitely many values that ε, ε2, ε3, . . . (mod a) can take. Therefore, there
exist n,m ∈ Z, n > m such that εn ≡ εm (mod a) ⇐⇒ εm(εn−m − 1) ≡ 0 (mod a),
which implies that u := εn−m ≡ 1 (mod a) because otherwise we would have εm ∈ p
for some prime ideal dividing a and this would imply that 1 ∈ p =⇒ p = OF (since
1 = εmε−m and ε−m ∈ OF ). Note that u ̸= ±1 and, therefore, it satisfies the desired
conditions.

Theorem 1.23 (Koecher principle). Let f : H2 → C be an holomorphic function
satisfying f |k1,k2 γ = f ∀γ ∈ Γ , a congruence subgroup of ΓF . Then in the Fourier
expansion of

f(z) =
∑
ν∈Λ∨

aνe(tr(νz))

(where Λ is the lattice defined in Proposition 1.21) we have that aν = 0 unless ν = 0
or ν is totally positive (i. e. we have ν, ν ′ > 0)

Proof. Since Γ is a congruence subgroup, it contains Γ (a) for some non-zero ideal
a. Using the previous Lemma, we know that there exists u ∈ O∗

F such that u ≡ 1
(mod a), so the transformation law for

(
u 0
0 u−1

)
(which belongs to Γ by the construc-

tion of u) implies that

uk1u
′k2
∑
ν∈Λ∨

aνe(tr(νu
2z)) =

∑
ν∈Λ∨

aνe(tr(νz))

Using the uniqueness of the Fourier expansion, we deduce that for each exponential,
the coefficients must be equal giving

uk1u
′k2au−2ν = aν (1.5)

Assume that for ν ∈ Λ∨ we have aν ̸= 0 and ν < 0 or ν ′ < 0. Without loss of
generality, assume the first case. Now there exists a unit ε ∈ Λ such that ε > 1 and
0 < ε′ < 1 (either u2 or 1

u2 work since both are greater than 0 and not equal to 1).

Then as n → ∞, tr(ε2nν) = ε2nν + (ε
′
)2nν ′ tends to −∞ as the second term in the

sum tends to 0 and ε2n → ∞, ν < 0. Let’s consider the following series which is a
subseries of the Fourier expansion at z = (i, i) (so it must converge absolutely):

14
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∑
n≥1

e(itr(νε2n))aνε2n

But by the identity from (1.5),∑
n≥1

|aνε2ne(itr(νε2n))| = |aν |
∑
n≥1

εk1nε
′k2ne−2πtr(νε2n) → ∞.

since all terms in the sum are positive and the exponential goes to ∞ faster than
εk1nε

′k2n goes to 0. This contradicts the convergence, and therefore, no such ν exists.

Corollary 1.24. A holomorphic Hilbert modular form for the group Γ has a Fourier
expansion at the cusp ∞ of the form

f(z) = a0 +
∑
ν∈Λ∨
ν≫0

aνe(tr(νz)) (1.6)

The constant term a0 is the value of f at ∞ (we can write f(∞) = a0). If
κ ∈ P1(F ) is a cusp of Γ , we take ρ ∈ SL2(F ) such that ρ∞ = κ and f(κ) = (f |k1,k2
ρ)(∞) is the value of f at the cusp κ. Note that this value depends on the choice of
γ unless (k1, k2) = (0, 0) (by a non-zero factor).

Definition 1.25. A holomorphic Hilbert modular form is called a cusp form if it
vanishes at all the cusps of Γ .

Proposition 1.26. Let f be an holomorphic Hilbert modular form of weight (k1, k2)
for the group congruence group Γ . If k1 ̸= k2, f is a cusp form.

Proof. It is a consequence of the relation between the coefficients of the Fourier ex-
pansion that we saw in the proof of Koecher’s principle. From (1.5), we had:

uk1u
′k2au−2ν = aν

for some unit u ̸= ±1, so for ν = 0, we get that

(uk1u
′k2 − 1)a0 = 0

proving that the f is a cusp form if k1 ̸= k2 since uk1u
′k2 = 1 ⇐⇒ uk1u

′k1u
′k2−k1 =

1 ⇐⇒ N(u)k1u′k2−k1 = 1 =⇒ u′k2−k1 = ±1 =⇒ u′ = ±1 =⇒ u = ±1 which is
not the case.

To finish this section we will prove that not for every pair of integers (k1, k2) there
exists an holomorphic Hilbert modular of weight (k1, k2). Actually we will see that
such forms only exist when k1, k2 > 0 or k1 = k2 = 0. But before directly proving it
we will need some additional lemmas.

Lemma 1.27. Let f be a modular form of weight (k1, k2) for the congruence subgroup

Γ . Then h(z) = |f(z)yk1/21 y
k2/2
2 | is Γ -invariant (where z = (x1 + iy1, x2 + iy2)).
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Proof. Let γ = ( a b
c d ) ∈ Γ . We want to see that h(γz) = h(z) for all z ∈ H2. Let

ℑ(z) be the imaginary part of z. Note that if we consider the action of SL2(F ) on H
defined by

γz =

(
a b
c d

)
z =

az + b

cz + d

we have that

ℑ(γz) = ℑ(az + b

cz + d
) = ℑ((az + b)(cz + d)

(cz + d)(cz + d)
) = ℑ((az + b)(cz + d)

|cz + d|2
) =

= ℑ(ac|z|
2 + adz + bcz + bd

|cz + d|2
) =

1

|cz + d|2
ℑ(ac|z|2 + adz + bcz + bd) =

=
1

|cz + d|2
ℑ(adz + bcz) =

1

|cz + d|2
ℑ(adz − bcz) =

ℑ(z)
|cz + d|2

But then

h(γz) =
∣∣f(γz)ℑ(γz1)k1/2ℑ(γ′z2)k2/2∣∣ = ∣∣f(z)(cz1 + d)k1(c′z2 + d′)k2ℑ(γz1)k1/2ℑ(γ′z2)k2/2

∣∣ =
=
∣∣f(z)ℑ(z1)k1/2ℑ(z2)k2/2∣∣ = |f(z)yk1/21 y

k2/2
2 | = h(z)

where γ′ denotes the matrix resulting of conjugating in F the entries of γ.

Lemma 1.28. Let f be an holomorphic modular form of weight (k1, k2) for Γ and

let h(z) = |f(z)yk1/21 y
k2/2
2 |. Then

1. If f has parallel weight k := k1 = k2, then h attains a maximum in H2.

2. If f is a cusp form h vanishes at the cusps and attains a maximum in H2.

Proof. By the previous proposition, we know that h is Γ -invariant. Therefore, to
prove that it attains a maximum in H2, we only need to prove that it attains a
maximum in a fundamental set. By Theorem 1.15, it is enough to show that for any
γ ∈ SL2(F ) and any t > 0, h(γz) attains a maximum on the Siegel domain St. From
equation (1.6) we know that the Fourier expansion of f at the cusp γ∞ tells us that

h(γz) = (y1y2)
ka0 + (y1y2)

k
∑
ν∈Λ∨
ν≫0

aνe(tr(νz))

where Λ ⊂ F is the rank 2 lattice over Z defined in Proposition 1.21. Since k is
negative,

lim
y1y2→∞

(y1y2)
k/2 = 0

so
lim

y1y2→∞
h(γz) = 0

since the sum converges uniformly and absolutely. Therefore h(γz) is bounded on St

and hence it attains a maximum on St, completing the first part of the lemma.
The second part is proven similarly and the fact that h vanishes at the cusps is

direct from the fact that f also vanishes at the cusps.
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Proposition 1.29. Let f be an holomorphic modular form of weight (k1, k2) for the
congruence subgroup Γ . Then f is identically 0 unless k1, k2 > 0 or k1 = k2 = 0. If
k1 = k2 = 0, then f is constant.

Proof. We will start by proving that there are no non-zero holomorphic modular
forms of weight (k1, k2) when one of them is 0 and the other isn’t. Without loss of
generality assume that k1 = 0 and k2 ̸= 0. Then, since k1 ̸= k2, Proposition 1.26 says
that f is a cusp form and by Lemma 1.28, h(z) = y

h2/2
2 f(z) is such that |h| achieves a

maximum in H2. As a function of the first variable z1, h must be constant due to the
maximum modulus principle. Recall that this principle says that if z0 ∈ U ⊂ C, for a
connected open subset U , and g is an holomorphic function such that |g(z0)| ≥ |g(z)|
for all z in a neighborhood of z0, then g is constant in U . So

h(z1, z2) = h(γ(z1, z2)) = h(γz1, γ
′z2) = h(z1, γ

′z2)

for all γ ∈ Γ . Since {γ′z2 | γ ∈ Γ} is dense in H (OF is dense in R and the same
happens for any ideal of F , so it is not hard to see it also for Γ ), h must be constant
also in z2 and therefore in all H2. But it vanishes at the cusps, so it must vanish in
all H2 and f = 0.

For the case where k1 = k2 = 0, if f is a cusp form, by Proposition 1.28, |f |
attains a maximum in H2 and by the maximum modulus principle, it is constant in
each variable, so it is constant. Since it vanishes at the cusps, f = 0. If it is not a
cusp form, consider

g(z) =
∏

κ∈Γ\P1(F )

(f(z)− f(κ))

which vanishes at all the cusps. With a similar reasoning we find out that g = 0, so
f takes only the values that takes at the cusps and by continuity, this values must be
the same. Hence f is constant.

Lastly, assume that one of k1, k2 is negative. Then if k1 ̸= k2 by Proposition 1.26,
f is a cusp form. And if k1 = k2 f has parallel negative weight. In any case, by
Proposition 1.28, h(z) = |f(z)yk1/21 y

k2/2
2 | attains a maximum, so it is bounded by a

constant C > 0 on H2. Then the coefficients of the Fourier expansion at the cusp ∞
satisfy

|aν | ≤
1

vol(R2/Λ)

∫
R2/Λ

|f(z)e(−tr(νz))|dx1dx2 ≤
C

vol(R2/Λ)

∫
R2/Λ

|y−k1/2
1 y

−k2/2
2 |dx1dx2

Letting y1 → 0, we see that aν vanishes for all ν ∈ Λ∨, so f = 0 as we wanted to
prove.

To finish with this section we give a result from Hecke that gives a bound on the
growth of the coefficients of Hilbert modular forms.

Proposition 1.30. Let f ∈Mk(Γ ) for some congruence group Γ and aν be its Fourier
coefficients.

(i) Then aν = O(N(ν)k) when N(ν) → ∞ (|aν | ≤ CN(ν)k for some constant C
for sufficiently large N(ν))
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(ii) If f is a cusp form the estimate is stronger: aν = O(N(ν)k/2.

Proof. For a general congruence group, the first part is hard. For the full Hilbert
modular group we can use the fact that every modular form can be written as the
sum of a cusp form and Eisenstein series (to be presented in the next section) which is
established in Theorem 1.32 and compute bounds for each Eisenstein series (we know
their Fourier coefficients) and use the bound of the second part of this proposition
for the cusp form.

The bound for cusp forms can be easily proven with the results we just presented.
Using the expression for the Fourier coefficients of the expansion at∞ and Proposition
1.28 which tells us that |f(z)(y1y2)k/2| is bounded on H2, we have

|aν | ≤
1

vol(R2/Λ)

∫
R2/Λ

|f(z)e(−tr(νz))| dx1dx2 ≤ C

∫
R2/Λ

(y1y2)
−k/2e−2π(νy1+ν′y2)dx1dx2

for y1, y2 ∈ R and for some constant C > 0. If y1 = 1/ν, y2 = 1/ν ′, we get that

|aν | ≤ Cvol(R2/Λ)N(ν)k/2

proving the proposition.

1.6 Eisenstein series

In this section we show the first examples of Hilbert modular forms. We will restrict
to the simpler case where Γ = ΓF = SL2(OF ) for the real quadratic field F . We will
write N(x) for the norm of x ∈ F and N(a) for the norm of a fractional ideal a ⊂ F
indistinguishably.

Recall the definition for the norm of an ideal that wegave when we introduced real
quadratic fields. For z = (z1, z2) ∈ H2, recall that N(αz + β) = (αz1 + β)(α′z2 + β′).
The group of units of OF acts on b × b for a fractional ideal b by (α, β) 7→ (εα, εβ)
for ε ∈ O∗

F . Since N(ε(αz + β)) = N(ε)N(αz + β) and N(ε)k = 1, for k ∈ Z even,
N(αz + β)k is well defined for (α, β) ∈ O∗

F\b× b and even k.

Definition 1.31. Let k > 2 be an even integer. We define the Eisenstein series of
weight k for an ideal b ∈ Cl(F ) by

Ek,b(z) = N(b)k
∑

(α,β)∈O∗
F \b×b

(α,β)̸=(0,0)

N(αz + β)−k

The Eisenstein series Ek,b converges uniformly absolutely in every Siegel domain
and does not depend on the representative b of the ideal class that we choose. If
a = rb is another representative, then:

Ek,b(z) = N(b)k
∑

(α,β)∈O∗
F \b×b

(α,β) ̸=(0,0)

N(αz + β)−k = N(ra)k
∑

(α,β)∈O∗
F \ra×ra

(α,β)̸=(0,0)

N(αz + β)−k =

18
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= N(a)kN(r)k
∑

(α,β)∈O∗
F \a×a

(α,β)̸=(0,0)

N(rαz+rβ)−k = N(a)kN(r)k
∑

(α,β)∈O∗
F \a×a

(α,β)̸=(0,0)

N(r)kN(αz+β)−k =

= Ek,a(z)

For this reason we may simply write Ek,B for B ∈ Cl(F ) to denote the Eisenstein
series for b ∈ B. For a proof of the uniform and absoulte convergence see [Gar90],
section 1.5.

Theorem 1.32. Let k > 2 be an even integer. Then Ek,B ∈ Mk(ΓF ) and the set of
Eisenstein series for B ∈ Cl(F ) are linearly independent. As a corollary, the space
of modular forms of weight k for ΓF may be written as

Mk(ΓF ) = Sk(ΓF )⊕
⊕

B∈Cl(F )

CEk,B

Proof. To check that Ek,B ∈Mk(ΓF ) we just need to check that for any γ = ( a b
c d ) ∈ ΓF

Ek,B(γz) = N(b)k
∑

(α,β)∈O∗
F \b×b

(α,β)̸=(0,0)

(α
az1 + b

cz1 + d
+ β)−k(α′a

′z2 + b′

c′z2 + d′
+ β′)−k =

= N(b)kN(cz+d)k
∑

(α,β)∈O∗
F \b×b

(α,β) ̸=(0,0)

(α(az1+b)+β(cz1+d))
−k(α′(a′z2+b

′)+β′(c′z2+d
′))−k =

= N(b)kN(cz + d)k
∑

(α,β)∈O∗
F \b×b

(α,β)̸=(0,0)

N((αa+ βc)z + αb+ βd)−k =

= N(b)kN(cz + d)k
∑

(α,β)∈O∗
F \b×b

(α,β)̸=(0,0)

N(αz + β)−k =

= µ(γ, z)kEk,B

where the second to last equality because for ( a b
c d ) ∈ ΓF the action (α, β) 7→ (aα +

cβ, bα+ dβ) is a bijection of {(α, β) ∈ O∗
F\b× b | (α, β) ̸= (0, 0)} to itself. The other

part of the theorem is proven in [Gar90] in page 17.

We can define Eisenstein series for odd values of k > 2, although the series will be
identically zero if there exists a unit of negative norm. Note that Ek,B is a symmetric
Hilbert modular form in the sense that Ek,B(z1, z2) = Ek,B(z2, z1) for all (z1, z2) ∈
H2. For any pair (α, β) ∈ O∗

F\b × b if both (α, β) and (α′, β′) belong to the same
equivalence class under the action of O∗

F then N(αz + β) = (αz1 + β)(α′z2 + β′) =
N(αz′ + β) where z′ = (z2, z1). And if they are not in the same equivalence class,
then for each pair (α, β) over which we are summing, we have a different pair (α′, β′)
such that N(αz + β) = N(α′z′ + β′) and thus Ek,B is symmetric.

In a similar way to how it is done in the classical case, we can compute the Fourier
expansion of the Eisenstein series which has the following form:

19



CHAPTER 1. HILBERT MODULAR FORMS

Theorem 1.33. Let k > 2 be an even integer. The Eisenstein series Ek,B has a
Fourier expansion

Ek,B = ζB−1(k) +
(2πi)2k

(k − 1)!2
D

1
2
−k
∑
ν∈d−1

F
ν≫0

σk−1,dFB(dFν)e
2πitr(νz) (1.7)

where dF is the different ideal of F and σm,a(c) is the divisor sum

σm,B(c) =
∑
b∈B
b|c

N(b)s

1.7 Finite dimensionality of the space of cuspforms

and modular forms

The goal of this section is to show that Mk(Γ ) has finite dimension. We will do it
with the help of the previously defined fundamental sets. To compute integrals on
fundamental domains, we will use a measure that is invariant on H2 under the action
of SL2(R)2, which is induced by the Haar measure on H under the action of SL2(R)
and is given by the differential form

dµ =
dx1dy1
y21

dx2dy2
y22

Definition 1.34. Let f, g ∈Mk(Γ ). The Petersson scalar product is defined by

⟨f, g⟩ =
∫
F
f(z)g(z)(y1y2)

kdµ

where F is any fundamental domain for Γ .

Proposition 1.35. When at least one of f and g are cusp forms, the Petersson scalar
product converges absolutely and does not depend on the choice of the fundamental
domain.

Proof. A similar argument to that of Proposition 1.28 shows that f(z)g(z)(y1y2)
k is

invariant under Γ and bounded on H2. Hence, that the integral does not depend on
the choice of F follows from the absolute convergence using the theorem on dominated
convergence for the Lebesgue integral. To prove the absolute convergence, it is enough
to show that ∫

F
dµ <∞

However, since we saw that S (from Theorem 1.15) is a fundamental set that consists
of a finite union of images of Sr by elements of SL2(F ) for some r, it is enough to
prove that ∫

Sr

dµ <∞
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But this follows from∫
Sr

dµ =

∫
Sr

dx1dy1
y21

dx2dy2
y22

=

∫ ∞

1
t

∫ t

−t

∫ ∞

1
t

∫ t

−t

dx1dy1
y21

dx2dy2
y22

=

= (

∫ t

−t

dx1)(

∫ ∞

1
t

dy1
y21

)(

∫ t

−t

dx2)(

∫ ∞

1
t

dy2
y22

)) <∞

Where the last inequality is true since
∫∞

1
t

dy
y2

converges and so does
∫ t

−t
dx. Actually

their exact values can be computed and are t and 2t respectively.

Now that we have a well-defined scalar product we can use it to define the asso-
ciated norm on Sk(Γ ):

||f ||2 :=
√

⟨f, f⟩
We can also define the maximum norm by

||f ||∞ := max
z∈F

(|f(z)|(y1y2)
k
2 )

Those two norms are related by the following lemma which is proven in [Fre90], in
page 68.

Lemma 1.36. There is a constant A such that

||f ||∞ ≤ A · ||f ||2

for all f ∈ Sk(Γ ).

Using this lemma we are ready to prove the following

Theorem 1.37. The vector space Mk(Γ ) is finite dimensional.

Proof. It is enough to show that Sk(Γ ) is finite dimensional. To see why, assume
that dimSk(Γ ) <∞ and dimMk(Γ ) = ∞. That means that for every N > 0 we can
pick N modular forms from Mk(Γ ) that are linearly independent and independent
with Sk(Γ ). But the number of cusps is finite, so we can choose a finite subset of
modular forms whose linear combination vanishes at all cusps, giving a cuspform and
contradicting the hypothesis.

Let’s proof then that dimSk(Γ ) <∞. Let f1, f2, . . . , fm be an orthonormal set of
cuspforms with respect to the Petersson scalar product. Let

f =
m∑
j=1

λjfj

be an arbitrary linear combination of them (λj ∈ C). By the previous lemma, there
exists A such that ||f ||∞ ≤ A · ||f ||2, so for all z ∈ H2 we have∣∣∣∣∣

m∑
j=1

λj(y1y2)
k/2fj(z)

∣∣∣∣∣ ≤ A

(
m∑
j=1

|λj|2
) 1

2
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When λj = fj(z), we have that∣∣∣∣∣
m∑
j=1

|fj(z)|2(y1y2)k/2
∣∣∣∣∣ ≤ A

(
m∑
j=1

|fj(z)|2
) 1

2

Now by squaring and dividing by the sum on the right hand side, we get

m∑
j=1

|fj(z)|2(y1y2)k ≤ A2

Finally, by integrating over F and using that f1, f2, . . . , fm is an orthonormal set and
hence, ⟨fj, fj⟩ = 1 we obtain

m∑
i=1

⟨fi, fi⟩ = m ≤ A2vol(Γ\H2)

which is finite. This concludes the proof of the Theorem.

1.8 Restriction to the Diagonal

We finish this chapter by mentioning a useful trick for Hilbert modular forms. If we
take a modular form of parallel weight k, f ∈Mk(ΓF ) and consider its restriction to
the diagonal g(τ) = f(τ, τ), then since SL2(Z) can be embedded in ΓF = SL2(OF )
and for γ = ( a b

c d ) ∈ SL2(Z) ⊂ ΓF we have that γ = γ′, g transforms in the following
way:

g(γτ) = f(γτ, γτ) = f(γτ, γ′τ) = f(γ(τ, τ)) = (cτ + d)2kf(τ, τ) = (cτ + d)2kg(τ)

which means that g is an elliptical modular form of weight 2k. This fact is really
useful as we know the dimension of the space of elliptic modular forms of weight 2k
and which elements generate them. Therefore, it is not really hard to find what is
the modular form g (by looking at the first few coefficients, for instance) which tells
us information about the Hilbert modular form f . We will use this trick in the third
chapter to prove that certain modular forms that we lift with the Doi-Naganuma lift
are equal to some concrete Borcherds lift. The details will be explained there once
we introduce the two lifts.

But we can also use this trick right now to get some nice identities. For k = 2, 4,
we have that the dimension of the space of elliptic modular forms of weight 2k is 1
and the space is generated by the elliptic Eisenstein series, so the restriction to the
diagonal of Ek,B (the Hilbert modular Eisentein series) coincides with a multiple of
the classical Eisenstein series. Therefore we can deduce some interesting identities,
like the values of the Dedekind zeta function of F , by comparing the coefficients of
the Fourier expansion given by equation 1.7 with the Fourier expansion for elliptic
modular forms. For instance we can we get the following:
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Proposition 1.38. The values of the Dedekind zeta function of the real quadratic
field F at the arguments −1,−3 are given by

ζF (−1) =
1

60

∑
x∈Z

x2<∆F

x2≡∆F (mod 4)

σ1

(
∆F − x2

4

)

ζF (−3) =
1

120

∑
x∈Z

x2<∆F

x2≡∆F (mod 4)

σ3

(
∆F − x2

4

)

where ∆F is the discriminant of F and σm(n) is the sum of the m-th powers of the
divisors of n.
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Chapter 2

Orthogonal groups

An interesting property of Hilbert modular surfaces is that they can also be seen as
modular varieties associated to the orthogonal group of a certain quadratic space.
This property is useful to study some features of Hilbert modular surfaces such as
certain divisors (the so-called Hirzebruch-Zagier divisors) which are necessary when
studying the Borcherds lift. In this chapter we start by introducing the basic notions
of quadratic spaces and the Clifford algebra. We also discuss some realizations of an
hermitian symmetric domain corresponding to the orthogonal group of a quadratic
space of type (2, n). Afterwards, we will use those notions to prove the desired results
for our case of Hilbert modular surfaces and introduce the theta lifting. Although the
introduction to quadratic spaces and Clifford algebras could be much shorter and skip
some results and examples, they are included for clarity and to make the explanation
easier to follow. However, that doesn’t mean that all the definitions are as general as
they could possibly be.

2.1 Quadratic forms

Let R be a commutative ring with unity 1 and R∗ the group of invertible elements, and
assume that 2 is an invertible element. Let M be a finitely generated R-module and
B : M ×M → R be a symmetric bilinear form (it is linear in both arguments). We
define a quadratic form to be an application Q : M → R such that Q(x) = B(x, x)
for some bilinear form B. We will usually refer to B(x, y) as (x, y) for brevity.
Note that we can recover the bilinear form from the quadratic form by (x, y) =
1
2
(Q(x + y) − Q(x) − Q(y)). The pair (M,Q) is called a quadratic module over R.

When R is a field, we call it a quadratic space.
We say that x and y are orthogonal if (x, y) = 0. For a set S ⊂M , the orthogonal

complement is defined to be

S⊥ = {x ∈M | (x, y) = 0 ∀ y ∈ S}

The quadratic module is non-degenerate when M⊥ = 0. For a non-zero x ∈ M , if
Q(x) = 0, it is called isotropic, and anisotropic otherwise.
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Given two quadratic modules (M1, Q1), (M2, Q2) an R-linear map σ : M1 → M2

is an isometry if it is injective and Q2(σ(x)) = Q1(x) for all x ∈ M . When σ is
surjective, we say thatM1 andM2 are isometric. The orthogonal group ofM consists
on the isometries from M to itself,

OM = {σ ∈ Aut(M) | σ is an isometry}

The special orthogonal group SOM is the subset of elements of OM with determinant
1. It is clear that both have a group structure.

Example 2.1. One of the most common type of isometries are reflections. Given an
element x ∈ M such that Q(x) ∈ R∗, the reflection in the hyperplane x⊥ is defined
by

τx = y − 2(y, x)x

Q(x)
y ∈M.

Note that it is precisely the reflection by hyperplane x⊥ because τx(x) = x− 2(x,x)x
Q(x)

=

x− 2x = −x, if y ∈ x⊥, (x, y) = 0 =⇒ τx(y) = y and τ 2x = id. The last part is true
as for any y ∈M

τx(τx(y)) = τx(y −
2(x, y)x

Q(x)
) = y − 2(x, y)x

Q(x)
−

2(x, y − 2(x,y)x
Q(x)

)

Q(x)
x =

= y− 2(x, y)x

Q(x)
− 2(x, y)x

Q(x)
+

4(x, y)(x, x
Q(x)

)

Q(x)
x = y− 2(x, y)x

Q(x)
− 2(x, y)x

Q(x)
+

4(x, y)

Q(x)
x = y

A nice property of reflections is given by the next theorem.

Theorem 2.2. Let M be a non-degenerate quadratic space over a field k of char-
acteristic ̸= 2. Then the orthogonal group OM is generated by reflections and SOM

is the subgroup of OM whose elements can be written as the composition of an even
number of reflections.

Let p, q be non-negative integers. The quadratic space over R, Rp+q with the
quadratic form

x21 + . . .+ x2p − x2p+1 − . . .− x2p+q

is denoted by Rp,q. If (V,Q) is a finite dimensional quadratic space over R, then there
exist p, q such that V is isometric to Rp,q. In this case we say that V is of type (p, q).
Its orthogonal group is denoted by OV = O(p, q).

2.2 The Clifford algebra

Let (V,Q) be a finitely generated quadratic module over a commutative ring R. For
an R-algebra A the center of A is

Z(A) = {x ∈ A | xy = yx ∀ y ∈ A}
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(the set of elements that commute with any element in A).
Consider the tensor algebra

TV = R⊕ V ⊕ (V ⊗R V )⊕ (V ⊗R V ⊗R V )⊕ . . .

and let IV be the two-sided ideal generated by Q(v)− v ⊗ v for all v ∈ V . Then the
Clifford algebra of V is defined by

CV = TV /IV

For brevity we denote an element v1 ⊗ v2 ⊗ . . . ⊗ vm (vj ∈ V ) by v1v2 . . . vm. Note
that in the Clifford algebra of V we have by definition that for u, v ∈ V ⊂ CV :

Q(v)− v2 = 0 ⇐⇒ Q(v) = v2

uv + vu = (u+ v)(u+ v)− uu− vv = Q(u+ v)−Q(u)−Q(v) = 2B(u, v)

In particular, when u and v are orthogonal, uv = −vu. Assume that V is free and
that v1, . . . , vn is a basis of V . Then those vectors generate CV as an R-algebra and
the elements

vi1vi2 . . . vim (1 ≤ i1 < . . . < im ≤ n)

are a basis of CV , so CV is a free module of rank 2n.
Now we give some examples of the Clifford algebras Cp,q associated to the real

quadratic space Rp,q.

Example 2.3. When p = 0, q = 1, R0,1 is a one dimensional space and has as
quadratic form associated Q(x) = −x21. There exists an element v such that Q(v) =
−1 and all the other elements in V are multiples of v. Therefore, in the Clifford
algebra we only have elements of the form a + bv where a, b ∈ R and v is such that
v2 = −1. Therefore, C1,0 ∼= C.

Example 2.4. When p = 1, q = 1, R1,1 is a two dimensional space and has as
quadratic form associated Q(x) = x21 − x22. There exist two elements v1 = (1, 0), v2 =
(0, 1) such that Q(v1) = 1, Q(v2) = −1 and B(v1, v2) = 0. All other elements in V are
a linear combination of v1, v2. Therefore, in the Clifford algebra we have elements of
the form a+ bv1 + cv2 + dv1v2 where a, b, c, d ∈ R (that’s true because we can always
express elements in V as linear combinations of v1 and v2 and reduce all terms that
contain a v21 or v22 using the relation Q(v) = v2). Identifying

1 7→
(
1 0
0 1

)
v1 7→

(
0 1
1 0

)
v2 7→

(
0 1
−1 0

)
v1v2 7→

(
0 1
1 0

)(
0 1
−1 0

)
=

(
−1 0
0 1

)
we have that those for matrices span M2(R) and(

0 1
1 0

)2

=

(
1 0
0 1

) (
0 1
−1 0

)2

=

(
−1 0
0 −1

)
(
0 1
1 0

)(
0 1
−1 0

)
= −

(
0 1
−1 0

)(
0 1
1 0

)
since v21 = 1, v22 = −1 and v1v2 = −v2v1 the identification is well defined. And since
those 4 matrices span M2(R), we have C1,1 ∼= M2(R).
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Similarly it can be shown that C0,2 ∼= H (the Hamilton quaternion algebra).
We define the even Clifford algebra of V to be the R-subalgebra generated by

products of an even number of vectors in our basis. It is denoted by C0
V . Note that

the definition makes sense as the relation Q(v) = v2 involves an even number of
vectors and it is a subalgebra since the product of two elements that are product of
an even number of vectors, is also an element consisting of an even number of vectors.
If we denote by C1

V the R-submodule generated by the elements that are products of
an odd number of vectors of the basis (which is not a subalgebra as the product of
two elements in C1

V lies on C0
V ), then we have the following decomposition:

CV = C0
V ⊕ C1

V

We can give another characterization of C0
V and C1

V . Consider the isometry σ
of V defined by σ(v) = −v (multiplication by −1). Then it induces an algebra
automorphism that agrees with σ on V ⊂ CV called the canonical automorphism
J : CV → CV such that

C0
V = {x ∈ CV | J(x) = x} C1

V = {x ∈ CV | J(x) = −x}

There is also another automorphism called the canonical involution and is defined
by t : CV → CV such that (v1v2 . . . vm)

t = vmvm−1 . . . v2v1 where v1, v2 . . . vm ∈ V . In
R⊕ V it is the identity. Using this automorphism we can define the Clifford norm

N : CV → CV , N(x) = xtx

When x ∈ V , it coincides with Q(x) so it is an extension of the quadratic form. In
general it is not multiplicative.

Now we will compute the center of Clifford algebra and of the even Clifford algebra,
but we will need the following lemma.

Lemma 2.5. Let A,B ⊂ {1, 2, . . . , n} and let vA =
∏

j∈A vj where the product over
the elements is taken in increasing order of the indices (analogously with vB). Then
vAvB = (−1)|A||B|−|A∩B|vBvA.

Proof. Recall that we have vivj = −vjvi if i ̸= j and obviously vivj = vjvi if i = j.
Let A = {i1, i2, . . . , ir} and B = {j1, j2, . . . , js}. Then we start swapping the elements
with indices in A with all the elements with indices in B, starting with ir, and finishing
with i1. Each time we do a swap there is a change of sign unless we are swapping
two elements with the same index. Therefore we have |A||B| − |A ∩ B| sign changes
as there are |A||B| swaps, |A ∩B| of which don’t affect the sign.

Write δ = v1v2 . . . vn, then we have:

Theorem 2.6. The center of CV is

Z(CV ) =

{
k for even n

k + kδ for odd n

The center of C0
V is

Z(C0
V ) =

{
k + kδ for even n

k for odd n
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Proof. Let’s find first the center of CV . Clearly k ⊂ Z(CV ). Now let vA be an
element different from δ and 1. Then there exists i ∈ A and j ̸∈ A, so consider
B = {i, j} for those indices. Then, |A ∩ B| = 1 and hence |A||B| − |A ∩ B| is odd.
So we have vAvB = −vBvA (by the previous lemma) and therefore vA ̸∈ Z(CV ).
When n is odd, for any A we have that for B = {1, 2, . . . , n}, |A ∩ B| = |A|, so
|A||B|−|A∩B| = |A||B|−|A| = |A|(|B|−1) which is even. Therefore, vAvB = vBvA for
any A, and kδ ⊂ Z(CV ). Note that if we have a linear combination

∑
λAvA ∈ Z(CV ),

every term in the sum must also be in the center, so we are done with the first part.
For Z(C0

V ), note that k ⊂ Z(C0
V ) trivially. If n is even, for any A, we have that for

B = {1, 2, . . . , n} vAvB = vBvA since |A||B|− |A∩B| = |A||B|− |A| = |A|(|B|− 1) is
even (|A| must be even if vA ∈ C0

V ) Obviously, δ ̸∈ Z(C0
V ) for odd n because δ ̸∈ C0

V .
We can use the same reasoning as before to see that Z(C0

V ) ⊂ k+kδ (no other element
is in the center). Let vA be defined as before for some non-empty A such that |A| is
even and vA ̸= δ, vA ̸= 1, and let B = {i, j} for i ∈ A, j ̸∈ A. Then, vAvB = −vBvA
because |A||B| − |A ∩B| = |A||B| − 1 is odd.

Example 2.7. Assume that n = 4 and that v1, v2, v3, v4 is an orthogonal basis of V
and put qj = Q(vj) ∈ k∗ for j = 1, 2, 3, 4. Then by the previous theorem, the center
of the even Clifford algebra is k + kδ and

C0
V = Z + Zv1v2 + Zv2v3 + Zv1v3.

Since (v1v2)
2 = −q1q2, (v2v3)2 = −q2q3 (v1v3)2 = −1 and (v1v2)(v2v3) = q2(v1v3) =

−(v2v3)(v1v2), C
0
V is isomorphic to the quaternion algebra (−q1q2,−q2q3) over Z. The

conjugation in the quaternion algebra is identified with the canonical involution and
the norm with the Clifford norm.

2.2.1 The Spin group

The setting is the same as before, R is a commutative ring with unity 1 and (V,Q)
is a finitely generated quadratic module over R. The Clifford group CGV of V is
defined to be

CGV = {x ∈ CV | x is invertible and xV J(x)−1 = V }

Note that it is a group since 1 ∈ CGV , for x, y ∈ CGV we have xyV = xV J(y) =
V J(x)J(y) = V J(xy) so xy ∈ CGV and x ∈ CGV ⇐⇒ xV J(x)−1 = V ⇐⇒
V = x−1V J(x) = x−1V J(x−1)−1 ⇐⇒ x−1 ∈ CGV . For every x ∈ CGV we
can define the application αx(v) = xvJ(x)−1. By the definition of CGV , it is an
automorphism of V . We have a linear representation from CGV to Aut(V ) called
the vector representation that maps x 7→ αx. Note that the involution x 7→ xt takes
CGV to itself, since xV = V J(x) ⇐⇒ (xV )t = (V J(x))t ⇐⇒ V xt = J(xt)V ⇐⇒
J(V xt) = J(J(xt)V ) ⇐⇒ −V J(xt) = −xtV ⇐⇒ xtV J(xt)−1 = V . Therefore, for
an x ∈ CGV , we have N(x) ∈ CGV .

Proposition 2.8. The kernel of the vector representation α : CGV → Autk(V ) is
equal to k∗. The Clifford induces an homomorphism CGV → k∗
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Proof. Clearly for x ∈ k∗, αx is the identity, so k∗ ⊂ ker(α). Now let’s show that if
x ∈ ker(α), x ∈ k∗. Write x = x0 + x1 where x0 ∈ C0

V and x1 ∈ C1
V . We have that

xv = J(x)v for all v ∈ V . Therefore for all v ∈ V we have

x0v = vx0

x1v = −vx1

Since V generates the algebra CV and x0 commutes with every element in V , it
commutes with every element of CV and therefore is an invertible element of Z(CV )
and C0

V . Applying Theorem 2.6, we find that x0 ∈ k∗. Now all we need is to prove that
x1 = 0. Going back to the notation that we introduced before, if x1 =

∑
A∈I λAvA

satisfies x1v = −vx1, it must be true for all the terms in the sum. Now pick one vA of
the sum and let v = vi for some i ∈ A. The number of swaps to move v = vi from the
back of vAvi to the front (vivA), is odd, but in one of them the sign doesn’t change as
we are swapping vi with itself. Therefore, there is an even number of sign changes,
giving vAvi = vivA and contradicting x1v = −vx1 unless no such A exists and x1 = 0.

For the second part of the proposition, let v ∈ V and x ∈ CGV . Then w = αx(v) =
xvJ(x)−1 ∈ V , which means that w = −J(w) = −J(w)t. Therefore, since the inverse
and the two involutions commute, xvJ(x)−1 = −J(xvJ(x)−1)t = −(J(x)J(v)x−1)t =
−(xt)−1(−vt)J(x)t = (xt)−1vJ(xt). From xvJ(x)−1 = (xt)−1vJ(xt) we get xtxv =
vJ(xt)J(x) ⇐⇒ N(x)v = vJ(N(x)), so N(x) ∈ ker(α) = k∗. Now it is direct that
for x, y ∈ CGV , N(xy) = (xy)txy = ytxtxy = ytN(x)y = N(x)yty = N(x)N(y), so
the norm is multiplicative for the Clifford group.

Proposition 2.9. Let x ∈ CGV . The automorphism αx ∈ AutR(V ) is an isometry.

Proof. Let v ∈ V , and w = αx(v) = xvJ(x)−1. Since x ∈ CGV , w ∈ V , and the
Clifford norm coincides with the quadratic form, so

Q(w) = N(w) = (xvJ(x)−1)t(xvJ(x)−1) = J(x−1)tvtxtxvJ(x−1) = J(x−1)tvtN(x)vJ(x−1) =

= N(x)J(x−1)tN(v)J(x−1) = N(x)N(J(x−1))N(v) = Q(v)

where we used that N(x), N(v) ∈ k, so it commutes with the elements of the Clifford
algebra, that N(y) = N(J(y)) and the multiplicativity of the norm that we saw in the
previous lemma. To see N(y) = N(J(y)), just recall that in the previous proposition
we saw that N(x)v = vJ(N(x)) ⇐⇒ N(x)vJ(N(x))−1 = v.

Using the last two propositions we see that vector representation defines an ho-
momorphism α : CGV 7→ OV . Furthermore, for x ∈ CGV ∩ V , αx = τx, the reflection
in the hyperplane x⊥.

Definition 2.10. For a quadratic space V we define the general spin group by

GSpinV = CGV ∩ C0
V

and the Spin group by

SpinV = {x ∈ GSpinV | N(x) = 1}
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Under the hypothesis of Theorem 2.2 the vector representation α : CGV 7→ OV is
surjective. Its kernel is k∗ by Lemma 2.8, CGV and GSpinV are central extensions of
OV and SOV , respectively

1 −→ k∗ −→ CGV
α−→ OV −→ 1

1 −→ k∗ −→ GSpinV
α−→ SOV −→ 1

According to Lemma 2.8, the Clifford norm defines an homomorphism CGV → k∗,
which induces a homomorphism

θ : OV → k∗/(k∗)2

called the spinor norm. It is defined by taking a section of the vector representation
α from OV to CGV and then taking the Clifford norm on CGV . Since the kernel of
α is k∗ (Lemma 2.8) the section is defined up to a scalar in k∗, and the norm up to
an element of (k∗), so it is well-defined. For a reflection τx, θ(τx) = x (recall that
τx = αx and N(x) = Q(x) for x ∈ V . So we have another exact sequence

1 −→ {±1} −→ SpinV
α−→ SOV

θ−→ k∗/(k∗)2

Proposition 2.11. Assume that dim(V ) ≤ 4. Then

GSpinV = {x ∈ C0
V | N(x) ∈ k∗} (2.1)

SpinV = {x ∈ C0
V | N(x) = 1} (2.2)

Proof. By definition it is clear that the second equality follows from the first one. It
is also clear that GSpinV ⊂ {x ∈ C0

V | N(x) ∈ k∗} since for x ∈ GSpinV we have
that x ∈ CGV ∩ C0

V , so N(x) ∈ k∗ and x ∈ C0
V . Now let’s see the converse. Assume

that x ∈ C0
V and N(x) ∈ k∗, we need to show that x ∈ CGV .

1
N(x)

xt is the inverse of

x, so x is invertible, so we just need to show that xV J(x)−1 ∈ V , but since x ∈ C0
V ,

J(x) = x. Let v ∈ V and w = xvx−1 ∈ C1
V (the product of an element in C0

V and
one in C1

V is in C1
V ). The fact that dim(V ) ≤ 4 implies that if x ∈ C1

V , we have
x ∈ V ⇐⇒ xt = x. This is true because for an element in y ∈ V ⊕ V ⊕ V we have
yt = −y. That’s true because if v1, v2, v3, v4 are an orthogonal basis and i, j, k are
pairwise different, (vivjvk)

t = vkvjvi = vivkvj = −vivjvk. Therefore, to show w ∈ V ,
we just to show w = wt ⇐⇒ xvx−1 = (xt)−1vxt ⇐⇒ N(x)v = vN(x) which is true
since N(x) ∈ k∗.

2.2.2 Quadratic space of dimension 4

Now we focus on the cases where (V,Q) is a rational quadratic space of dimension
4 over the field k. We put qi = Q(vi) ∈ k∗ where v1, v2, v3, v4 is an orthogonal basis
of V . By what we previously saw, SpinV is the group of elements of norm 1 in the
quaternion algebra (−q1q2,−q2q3) over Z(C0

V ) = k + kδ. Our goal is to describe the
vector representation of SpinV (that is SOV ) just in terms of C0

V . This can be done
by identifying V with an isometric copy Ṽ inside C0

V . The vector representation on
V translates to a new vector representation in Ṽ that we’ll call the twisted vector
representation.
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Lemma 2.12. Let v0 ∈ V with q0 = Q(v0) ̸= 0 and σ is the adjoint automorphism
associated to v0, x

σ = v0xv
−1
0 for x ∈ C0

V . Then

1. δσ = −δ

2. The fixed algebra of σ in C0
V is a quaternion algebra B0 over k such that C0

V =
B0 ⊗k Z.

Proof. Up to multiplication by an element in k∗, δ does not depend on the chosen
basis, so rechoosing our basis, we can assume that v0 = v4 (by picking v0 as an
element of the basis and extending it to an orthogonal basis. Then δσ = v0δv

−1
0 =

v0v1v2v3v0v
−1
0 = v0v1v2v3 = −v1v2v3v0 = −δ. For (ii), consider the basis of C0

V

1, i = v1v2, j = v2v3, k = ij = q2v1v3, δ, δi, δj, δk

Then, 1σ = 1, iσ = v0v1v2v
−1
0 = v0v

−1
0 v1v2 = i and similarly for j and k, proving that

B0 is spanned by 1, i, j, k and so it is the quaternion algebra (−q1q2,−q2q3). It is also
clear that B = B0 + δB0 = B0 ⊗k Z.

Therefore, on the center Z(C0
V ) = k + kδ, the automorphism σ agrees with the

conjugation in Z/k. Let

Ṽ = {x ∈ C0
V | xt = xσ}

This is a quadratic space over k with the quadratic form

Q̃(x) = q0 · xσx = q0 ·N(x)

There is an action of the group SpinV on Ṽ . If x ∈ Ṽ and g ∈ SpinV , the action is
defined by

x 7→ α̃g(x) := gxg−σ

The action is well defined since

(gxg−σ)t = (g−σ)txtgt = N(g)−1gσxσgt = gσxσg−1 = (gxg−σ)σ

and the quadratic form is preserved by this action since

Q̃(gxg−σ) = (gxg−σ)t(gxg−σ) = (gxg−σ)σ(gxg−σ) = (gσxσg−1)(gxg−σ) = gσ(xtx)g−σ = Q̃(x)

Lemma 2.13. The assignment x 7→ x · v0 defines an isometry of quadratic spaces

(Ṽ , Q̃) → (V,Q)

which is compatible with the actions of SpinV .

Proof. Using the basis of Lemma 2.12 for C0
V , Ṽ is spanned by 1, δi, δj, δk, which

means that the map x 7→ x · v0 is a linear isomorphism between Ṽ and V . Now, if we
pick x ∈ Ṽ ,

Q(x · v0) = (x · v0)2 = xv0 · xv0 = xxσv20 = q0N(x) = Q̃(x)

and the map is an isometry. Note that

α̃g(x) · v0 = gxg−σv0 = gxv0g
−1v−1

0 v0 = g(xv0)g
−1

so the isometry is compatible with the action of SpinV on each of V and Ṽ .
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2.3 Rational Quadratic spaces of type (2,n)

Let V be a non-degenerate quadratic space over Q and Q the quadratic form asso-
ciated to it. As a quadratic space over R (V (R) = V ⊗Q R) it is isometric to Rp,q

for some pair of integers (p, q) called the type of V . The orthogonal group OV (R)
contains a maximal compact subgroup K such that OV (R)/K is a symmetric space.
When p = 2 or q = 2 it has a complex structure (it is hermitian). From now on, let’s
assume that V has type (2, n) (we make this assumption but everything would work
the same for the case (n, 2) if we replace Q by −Q) and study dome realizations of
this hermitian symmetric domain.

2.3.1 Grassmannian model

Here we consider the two dimensional subspaces of V (R) on which the quadratic form
is positive definite.

Gr(V ) = {v ⊂ V (R) | dim v = 2, Q(x) > 0 ∀x ∈ v}

OV (R) acts transitively on Gr(V ) as for any v1, v2 ∈ Gr(V ), by Witt’s theorem, we
can extend the isometry between v1 and v2 to an isometry between V (R) and V (R).
Now, fix v0 ∈ Gr(V ) and consider the stabilizer Kv0 of v0 in OV (R). It preserves v0,
so it also preserves the orthogonal complement, which means that choosing a basis,
Kv0

∼= O(2)×O(n). It can be seen that it is a maximal compact subgroup of OV (R).
It is compact for being the product of the two compact groups O(2), O(n) (groups of
the type O(m) are bounded because ifM ∈ O(m) is written in a orthogonal basis, we
have that the norm of the columns is equal, up to sign, to the value of the quadratic
form on a element of the base and hence bounded). The maximality ofKv0 is not hard
to prove, and Gr(V ) ∼= OV (R)/Kv0 is a realization of the hermitian symmetric space.
However, with this description we don’t see the complex structure of OV (R)/Kv0 .

2.3.2 Projective model

Consider the projective space

P (V (C)) = V (C)\{0})/C∗

The zero quadric
N = {[Z] ∈ P (V (C)) | (Z,Z) = 0}

is a closed algebraic subvariety of dimension n (P (V (C)) has dimension n + 1, since
V (C) has dimension n+ 2 and there is one restriction).

The subset of N defined by

K = {[Z] ∈ P (V (C)) | (Z,Z) = 0, (Z,Z) > 0}

consists of two connected components. Notice that it is well defined, as the definition
doesn’t depend on the representative of P (V (C)) that we choose. If we write Z =
X + iY for X, Y ∈ R, then the above conditions can be written as

[Z] ∈ N ⇐⇒ (X + iY,X + iY ) = (X,X) + 2i(X, Y )− (Y, Y ) = 0 ⇐⇒
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⇐⇒ (X, Y ) = 0 and (X,X) = (Y, Y )

[Z] ∈ K ⇐⇒ [Z] ∈ N and (X+ iY,X− iY ) = (X,X)+(Y, Y )+2i(X, Y ) > 0 ⇐⇒

⇐⇒ (X, Y ) = 0 and (X,X) = (Y, Y ) > 0

The action of OV (R) on K is transitive as we can always choose and element
that maps X1 7→ X2 and Y1 7→ Y2 by using Witt’s extension Theorem, and it will
map [Z1] = [X1 + iY1] to [Z2] = [X2 + iY2]. Consider the subgroup of OV (R) of
elements whose spinor norm equals the determinant and denoted by O+

V (R). Those
elements preserve the orientation of positive definite planes, so O+

V (R) preserves the 2
components of K and OV \O+

V (R) interchanges them. Fix one of the two components
and call it K+ and as we just did for a Z ∈ V (C) consider the decomposition into
its real and imaginary part so that Z = X + iY where X, Y ∈ V (R). Using this
decomposition we can find an isomorphism between K+ and Gr(V ) in the following
way.

Lemma 2.14. The assignment [Z] 7→ v(Z) := RX + RY defines a real analytic
isomorphism K+ 7→ Gr(V ).

Proof. The assignment is well defined, since if we have two representatives Z1, Z2 ∈
[Z], it means that Z1 = X1+iY1 and Z2 = X2+iY2 = (X1+iY1)(a+bi) = (aX1−bY1)+
i(bX1 + aY1). But then v(Z2) = R(aX1 − bY1) + R(bX1 + aY1) = RX + RY = v(Z1)
(it’s just a change of basis for the plane). Before we deduced that [Z] ∈ K implies
(X, Y ) and (X,X) = (Y, Y ) > 0. Therefore, v(Z) = RX + RY ∈ Gr(V ) since it is a
positive definite two dimensional space. Conversely, given v ∈ Gr(V ), either [X+ iY ]
or [Y − iX] are in K, so we can choose a suitably oriented orthogonal basis X, Y and
it gives a unique [Z] = [X + iY ] ∈ K+.

Now we can see the complex structure, but it is not the direct analogue of the
upper half plane, the standard model for the hermitian symmetric space for SL2(R).

2.3.3 Tube domain model

Pick an isotropic vector e1 (i.e. (e1, e1) = 0) and e2 ∈ V with (e1, e2) = 1. Let
W = V ∩ e⊥1 ∩ e⊥2 . Then W has type (1, n − 1) and V = W ⊕ Qe1 ⊕ Qe2. For a
Z ∈ V (C) we can write it as Z = z + ae2 + be1 with z ∈ W (C) and a, b ∈ C and we
will denote it by Z = (z, a, b). Consider the domain

H = {z ∈ W (C) | Q(ℑ(z)) > 0}

Lemma 2.15. The assignment

z 7→ ψ(z) := [(z, 1,
−Q(z)−Q(e2)

2
]

defines an holomorphic map ψ : H → K.
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Proof. If z ∈ H, then ψ(z) = [z + e2 − (Q(z)+Q(e2))
2

e1] satisfies (ψ(z), ψ(z)) = (z, z) +
(e2, e2) − (Q(z) + Q(e2))(e2, e1) = Q(z) + Q(e2) − (Q(z) + Q(e2)) = 0 (recall that
(z, e2) = (z, e1) = 0) and (ψ(z), ψ(z)) = (z, z) + (e2, e2) − (Q(z) + Q(e2))(e1, e2) −
((Q(z) +Q(e2))(e1, e2) = (z, z) +Q(e2)− 1

2
(Q(z) +Q(z) +Q(e2) +Q(e2)) = (z, z) +

Q(e2)− 1
2
(Q(z)+Q(z)+Q(e2)+Q(e2)) = (z, z)− 1

2
((z, z)+(z, z))) = −1

2
(z−z, z−z) =

−1
2
Q(iℑ(z)) = 1

2
Q(ℑ(z)) > 0, so ψ(z) ∈ H.

Conversely, if [Z] ∈ K and we write Z = X + iY , since X, Y generate a two
dimensional positive definite space, we must have (Z, e1) ̸= 0 (otherwise e1 would be-
long to a negative definite subspace, contradicting the fact that is isotropic). There-
fore, there exist a representative of [Z] of the form (z, 1, b). From Q(Z) = 0, we get
(z+e2+be1, z+e2+be1) = 0 ⇐⇒ (z, z)+(e2, e2)+2b(e2, e1) = 0 ⇐⇒ Q(z)+Q(e2)+

2b = 0 ⇐⇒ b = −Q(z)+Q(e2)
2

. And therefore, [Z] is of the form (z, 1,−Q(z)+Q(e2)
2

), to

see that z ∈ H, we can use (z + e2 +−Q(z)+Q(e2)
2

e1, z + e2 +−Q(z)+Q(e2)
2

e1) > 0 ⇐⇒
(z, z)+(e2, e2)− 1

2
(Q(z)+Q(e2)+Q(Z+Q(e2)) > 0 ⇐⇒ (z, z)− 1

2
((z, z)+(z, z)) >

0 ⇐⇒ −1
2
(z − z, z − z) > 0 ⇐⇒ −Q(z − z) > 0 ⇐⇒ −Q(2iℑ(z)) > 0 ⇐⇒

Q(ℑ(z)) > 0.
The holomorphicity follows from the fact that it is defined by polynomial equa-

tions.

If we view the domain H ⊂ W (C) as the positive norm vectors of W (R), it has
two connected components corresponding to the two cones in the Lorentzian space
W (R). We can identify the one to which K+ is mapped when applying ψ as H+.
When n = 1, then H consists of those elements z ∈ C such that ℑ(z)2 > 0 (those
with ℑ(z) ̸= 0), so H can be identified with C−R and H+ with the upper half plane
H. We will see that for n = 2, we can identify H+ with H2.

2.3.4 Lattices

We still consider a non-degenerate quadratic space (V,Q) over Q of type (2, n).

Definition 2.16. A lattice in V is a Z-module L ⊂ V such that V = L⊗Z Q.

A lattice is integral if the bilinear form associated to Q is integral on L ((x, y) ∈ Z
for x, y ∈ L). Furthermore, it is even if the bilinear form takes even values on L. The
dual lattice L∨ is defined to be

L∨ = {x ∈ V | (x, y) ∈ Z for all y ∈ L}

A lattice is integral if and only if L ⊂ L∨ and in this case the quotient is a finite
abelian group. Assume now that L is an even lattice. Then OL ⊂ OV (R) ∼= O(2, n)
is a discrete subgroup. Let Γ ⊂ OL ∩ O+

V (R) be a subgroup of finite index. Then
Γ acts properly discontinuously on Gr(V ),K+ and H+. We consider the quotient
Y (Γ ) = Γ\H+ similarly to the case of Hilbert modular surfaces and it is a normal
complex space which is compact if and only if V is anisotropic. If it is not compact,
it can be compactified by adding some boundary points.
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2.4 The Hilbert Modular Group as an Orthogonal

group

Here we discuss the isomorphism that relates the Hilbert modular group to an or-
thogonal group of type (2, 2), which is one the main points of the chapter.

Let D ∈ Q∗ \ Q2 and let F = Q(
√
D). Consider the four dimensional Q-space

V = Q⊕Q⊕F (F is a two dimensional Q-space) with the quadratic form Q(a, b, ν) =
νν ′ − ab where ν ′ is the conjugate of ν. Note that by writing ν = x + y

√
D and

a = z + t, b = z − t, we get Q(a, b, ν) = x2 − Dy2 − z2 + t2, so (V,Q) is a rational
quadratic space of type (2, 2) if D > 0 and of type (3, 1) if D < 0. The bilinear form
associated to Q is B(x1, x2) = 1

2
(ν1ν

′
2 + ν ′1ν2 − b1a2 − a1b2) where xj = (aj, bj, νj).

Consider the orthogonal basis of (V,Q)

v1 = (1, 1, 0) v2 = (1,−1, 0)

v3 = (0, 0, 1) v4 = (0, 0,
√
D)

Then we have Q(v1) = −1, Q(v2) = Q(v3) = 1, Q(v4) = −D. therefore δ = v1v2v3v4
and δ2 = v1v2v3v4v1v2v3v4 = v1v2v3v4v4v3v2v1 = Q(v1)Q(v2)Q(v3)Q(v4) = D. From
Theorem 2.6 we know that the center of the even Clifford algebra of V is Z(C0

V ) =
Q+Qδ ∼= F and Example 2.7 tells us that

C0
V = Z + Zv1v2 + Zv2v3 + Zv1v3

is isomorphic to the (1,−1) quaternion algebra over F , also known as the split quater-
nion algebraM2(F ) over F . The isomorphism is given by the following assignements:

1 7→
(
1 0
0 1

)
v1v2 7→

(
1 0
0 −1

)
v2v3 7→

(
0 1
−1 0

)
v1v3 7→

(
0 1
1 0

)

so the element
a+ d

2
+
a− d

2
v1v2+

b− c

2
v2v3+

b+ c

2
v1v3 in C

0
V is assigned to

(
a b
c d

)
∈

M2(F ). The isomorphism between Z = Q+Qδ and F is realized by x+yδ 7→ x+y
√
D.

The operation of canonical involution on C0
V corresponds to the conjugation(

a b
c d

)∗

=

(
d −b
−c a

)
inM2(F ) since (

a+d
2
+ a−d

2
v1v2+

b−c
2
v2v3+

b+c
2
v1v3)

t = a+d
2
+ d−a

2
v1v2+

c−b
2
v2v3+

−b−c
2
v1v3

which corresponds toa+ d+ d− a

2

c− b− b− c

2
b− c− b− c

2

a− d+ a+ d

2

 =

(
d −b
−c a

)

The Clifford norm on C0
V corresponds to the determinant in M2(F ) since
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(
a b
c d

)∗(
a b
c d

)
=

(
d −b
−c a

)(
a b
c d

)
=

(
ad− bc 0

0 ad− bc

)
This means that by Proposition 2.11 SpinV can be identified with the matrices in
M2(F ) of determinant 1, that is with SL2(F ). So we have SpinV

∼= SL2(F ). Then
ΓF = SL2(OF ) and other commensurable groups can be viewed as arithmetic sub-
groups of SpinV . In fact, in the case of SL2(OF ), it turns out that ΓF = SpinL where
L is the lattice Z⊕ Z⊕OF ⊂ V .

The next step is to describe the vector representation (how SpinV acts on V ) using
Lemmas 2.12 and 2.13. Let σ be the automorphism of C0

V associated to the basis
vector v1, that is x

σ = v1xv
−1
1 for x ∈ C0

V . Then δ
σ = −δ, and on F we have that σ

agrees with conjugation in F/Q. On M2(F ) the action of σ is given by(
a b
c d

)
7→
(
a b
c d

)σ

=

(
d′ −c′
−b′ a

)
Consider now

Ṽ = {X ∈M2(F ) | X∗ = Xσ} = {X ∈M2(F ) | X t = X
′} =

{(
a ν ′

ν b

)
| a, b ∈ Q, ν ∈ F

}
with the quadratic form

Q̃(X) = −Xσ ·X = −
(
b −ν ′
−ν a

)(
a ν ′

ν b

)
= −

(
ab− νν ′ 0

0 ab− νν ′

)
= − det(X)

The bilinear form associated is

B̃(X1, X2) = −tr(X1X
∗
2 )

and the Spin group acts isometrically on Ṽ via

X 7→ g ·X := gXg−σ = gX(g
′
)t (2.3)

In this case, the isometry of Lemma 2.13 is given by(
a ν ′

ν b

)
7→ (a, b, ν)

since (writing ν = x+ yδ)

(
a+ b

2
+
a− b

2
v1v2+

ν ′ − ν

2
v2v3+

ν + ν ′

2
v1v3)·v1 =

a+ b

2
v1+

a− b

2
v2+

ν ′ − ν

2
v2v3v1+

ν + ν ′

2
v3 =

=
a+ b

2
v1 +

a− b

2
v2 − yδv2v3v1 +

ν + ν ′

2
v3 =

a+ b

2
v1 +

a− b

2
v2 + yv4 +

ν + ν ′

2
v3 =

= (
a+ b

2
,
a+ b

2
, 0) + (

a− b

2
,
b− a

2
, 0) + (0, 0, y

√
D) + (0, 0,

ν + ν ′

2
) = (a, b, ν)
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Let’s now describe the symmetric space corresponding to OṼ . Ṽ (C) =M2(C) and
the subset of the zero quadric K defined in subsection 2.3.2 is

K = {[Z] ∈ P (M2(C)) | det(Z) = 0,−tr(ZZ
∗
) > 0}

The vectors e1 = ( −1 0
0 0 ) and e2 = ( 0 0

0 1 ) are isotropic (determinant 0), (e1, e2) = 1

and put W = Ṽ ∩ e⊥1 ∩ e⊥2 for the orthogonal complement (like we did with the tube
domain model).

Note that if X = ( x1 x2
x3 x4 ) ∈ W , then B̃(X,λe1 + µe2) = −tr(( x1 x2

x3 x4 )
(
µ 0
0 −λ

)
) =

−tr(
(
µx1 −λx2

µx3 −λx4

)
) = −µx1 + λx4 = 0 for all µ, λ ∈ C, so x1 = x4 = 0 and

W (C) =
{(

0 x2
x3 0

)
| x2, x3 ∈ C

}
And for the tube domain, H ∼= {(z1, z2) ∈ C2 | ℑ(z1)ℑ(z2) > 0}. For z = (z1, z2) ∈
C2 ∼= W (C) we put

M(z) =

(
z1z2 z1
z2 1

)
∈M2(C)

Then [M(z)] ∈ N because M(z) has determinant 0 and

[M(z)] ∈ K ⇐⇒ −tr

((
z1z2 z1
z2 1

)(
z1z2 z1
z2 1

)∗)
= −tr

((
z1z2 z1
z2 1

)(
1 −z1

−z2 z1z2

))
> 0 ⇐⇒

⇐⇒ −(z1z2−z1z2−z1z2+z1z2) > 0 ⇐⇒ −(z1−z1)(z2−z2) > 0 ⇐⇒ −iℑ(z1)iℑ(z2) > 0 ⇐⇒

⇐⇒ ℑ(z1)ℑ(z2) > 0

Therefore the biholomorphic map z 7→ [M(z)] that we defined that takes C2 to
the zero quadric N , when it is restricted to the tube H it maps to K. So the two
components of H, {(z1, z2) ∈ C2 | ℑ(z1),ℑ(z2) > 0} ∪ {(z1, z2) ∈ C2 | ℑ(z1),ℑ(z2) <
0} can be identified with K. We may identify the first of the two connected subsets
with K+, which gives a biholomorphic map

H2 → K+, z 7→ [M(z)]

If we consider the action of SL2(F ), X 7→ g ·X on K+ (the one given in equation
2.3) and the usual action of SL2(F ) described in the first chapter, they commute with
the biholomorphic map z 7→ [M(z)] by

γ ·M(z) = N(cz + d)M(γz)

for γ ∈ ( a b
c d ). This can be checked by computing both sides of the equation. For

γ ·M(z) we have:(
a b
c d

)(
z1z2 z1
z2 1

)(
a′ b′

c′ d′

)
=

(
(az1z2 + bz2)a

′ + (az1 + b)b′ (az1z2 + bz2)c
′ + (az1 + b)d′

(cz1z2 + dz2)a
′ + (cz1 + d)b′ (cz1z2 + dz2)c

′ + (cz1 + d)d′

)
And for N(cz + d)M(γz) we have:

37



CHAPTER 2. ORTHOGONAL GROUPS

N(cz+d)

az1 + b

cz1 + d

a′z2 + b′

c′z2 + d′
az1 + b

cz1 + d
a′z2 + b′

c′z2 + d′
1

 =

(
(az1 + b)(a′z2 + b′) (az1 + b)(c′z2 + d′)
(a′z2 + b′)(cz1 + d) (cz1 + d)(c′z2 + d′)

)

Since both expressions are the same it is true that the action commutes with the
map by γ ·M(z) = N(cz+ d)M(γz) and that implies that modular forms of weight k
like in definition 2.17 (we will see in the next section) can be identified with modular
forms of parallel weight k from definition 1.19.

2.5 Modular forms for O(2,n)

Let V be a non-degenerate quadratic space over Q of type (2, 2), let L be an even
lattice and Γ ⊂ OL ∩O+

V (R). We denote by

K̃+ = {Z ∈ V (C)\{0} | [Z] ∈ K+}

the cone over K+.

Definition 2.17. Let k ∈ Z, and let χ be a character for the group Γ . We say that a
meromorphic function F : K̃+ → C is a meromorphic modular form of weight k and
character χ for the group Γ if it satisfies the following conditions:

(i) F (αZ) = α−kF (Z) ∀α ∈ C\{0}, Z ∈ K̃+

(ii) F (γ · Z) = χ(γ)F (Z) ∀γ ∈ Γ (where the action is the one from equation
(2.3))

(iii) F is meromorphic at the boundary

When F is holomorphic on K̃+ and at the boundary, we call it an holomorphic
modular form.

Now we can see how to identify modular forms for O(2, n) with modular forms in
the sense of definition 1.19. If F : K+ → C is a modular form of weight k, group Γ
and character χ, then f(z) = F (M(z)) is a Hilbert modular form of parallel weight
k for the group Γ and character χ since

f(γz) = F (M(γz)) = N(cz + d)kF (N(cz + d)M(γz)) = N(cz + d)kF (γ ·M(z)) =

= N(cz + d)kχ(γ)F (M(z)) = N(cz + d)kχ(γ)f(z)
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2.6 Heegner divisors and Hirzebruch-Zagier divi-

sors

Modular varieties for orthogonal groups come with a family of divisors called the
Heegner divisors. In view of the relation between Hilbert modular surfaces and
modular varieties associated to certain orthogonal groups, those divisors lead to the
Hirzebruch-Zagier divisors a family of algebraic divisors on a Hilbert modular surface.

Definition 2.18. Let m be a positive integer. The Hirzebruch-Zagier divisor Tm of
discriminant m for the lattice L = Z⊕ Z⊕OF ⊂ V is defined by

Tm =
∑

(a,b,λ)∈L∨/{±1}
ab−λλ′=m/∆F

{(z1, z2) ∈ H2 | az1z2 + λz1 + λ′z2 + b = 0}

These family of divisors will be important when we talk about the Borcherds lift,
as those functions will have support on them. They are invariant under the action of
SL2(OF ).

2.7 Theta lifting

Although there are several ways to get modular forms for orthogonal groups, here
we show the theta lifting which allows us to lift automorphic forms on SL2(R) to
automorphic forms on O(2, n) by integrating the former against a kernel function,
the so-called theta function.

Let V, L, Γ be defined as in section 2.3.4 and assume that dim(V ) = n+2 is even.
We define the level of a lattice L the minimum integerN such thatNQ(λ) is an integer

for all λ ∈ L∨. Consider the discriminant of L modified by a sign ∆ = (−1)
n+2
2 det(S).

Since n + 2 is even, it can be proven that disc(L) = det(S) ̸≡ 2 (mod 4), so ∆ ≡
0 (mod 4) if disc(L) is even. Furthermore, with the sign modification, when det(S) is
odd, ∆ ≡ 1 (mod 4), so we can define a quadratic Dirichlet character χ∆(n) =

(
∆
n

)
(the Kronecker symbol). This character is completely multiplicative and satisfies
χ∆(0) = 0, χ∆(1) = 1, χ∆(−1) = sign(D), χ∆(p) coincides with the Legendre symbol(

∆
p

)
when p is an odd prime and χ∆(2) = 0 if ∆ is even, χ∆(2) = 1 if ∆ ≡ 1(mod 8)

and χ∆(2) = −1 if ∆ ≡ 5 (mod 8).
For a fixed element v ∈ Gr(V ) we can decompose each λ ∈ V (R) as λ = λv + λv⊥

where λv and λv⊥ are the projections of λ on v and v⊥ respectively. Since Q on v⊥ is
negative definite, and positive definite on v we can define a positive definite quadratic
form Qv(λ) = Q(λv)−Q(λv⊥) associated to v. Recall that thanks to the isomorphism

between K+ and Gr(V ), we can associate to element Z ∈ K̃+ a positive definite plane
v(Z) ∈ Gr(V ).

Definition 2.19. Let r ∈ N ∪ {0}. The Siegel theta function of weight r for the
lattice L is defined to be

Θr(τ, Z) = y
n
2

∑
λ∈L∨

(λ, Z)r

(Z,Z)r
e(Q(λv(Z))Nτ +Q(λv(Z)⊥)Nτ)
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where τ = x+ iy ∈ H, Z ∈ K̃+ and e(t) = e2πit.

Note that we can also write

Θr(τ, Z) = y
n
2

∑
λ∈L∨

(λ, Z)r

(Z,Z)r
e(Q(λ)Nx+Qv(Z)(λ)Niy).

Since e(−2πQv(Z)(λ)Ny) decays rapidly, the series converges normally on H×K̃+. It
is non-holomorphic in both variables τ and Z. Using the Poisson summation formula
and Weil representation one can show the following:

Proposition 2.20. As a function of τ , Θr(τ, Z) is a modular form of weight r+1− n
2

character χ∆ for the group Γ0(N). That is

Θr(γτ, Z) = χ∆(d)(cτ + d)r+1−n
2Θr(τ, Z)

for all γ = ( a b
c d ) ∈ Γ0(N), where

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) | c ≡ 0 (mod N)

}

Proposition 2.21. As a function of Z, Θr(τ, Z) is a modular form of weight r for
Γ .

We can use Θr(τ, Z) to lift modular forms for Γ0(N) to modular forms on the
orthogonal group. More precisely if f is a cusp form of weight k = r+ 2−n

2
for Γ0(N)

with character χ∆, the theta lift Φ(Z, f) of f defined by

Φ(Z, f) =

∫
F
f(τ)Θr(τ, Z)y

k−2dxdy.

where F is any fundamental domain for Γ0(N).

Theorem 2.22. The theta lift Φ(Z, f) of f is an holomorphic modular form of weight
r = k − 1 + n

2
for the orthogonal group Γ .

Proof. The transformation law is direct from the fact that Θr(τ, Z) transforms as
a modular form of weight r for the group Γ . For the proof of holomorphicity, see
[Oda77]
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Chapter 3

Additive and multiplicative lifts

In this chapter we present two different lifts that will provide a source of Hilbert
modular forms, the Doi-Naganuma lift and the Borcherds lift. We also discuss local
Borcherds products an introduction for the Borcherds lift. Finally we will see how
in some cases the two lifts can give the same modular forms, and use this property
to evaluate the Borcherds lift on points of H2 by using the explicit expression of the
Doi-Naganuma lift. That coincidence is very convenient as it is usually easier and
better for numerical purposes to evaluate additive formulas than products.

3.1 The Doi-Naganuma lift

In this section we present the Doi-Naganuma lift for the full Hilbert Modular group
ΓF . The proofs of the main theorems of this section are long and can be found in the
literature, so we will just to present the results to show a different way of obtaining
modular forms and their properties and because we are more interested in doing
numerical computations with them rather than in the theoretical details. We will
apply those results in the end of the chapter to show how to evaluate some concrete
Hilbert modular forms.

Let F ⊂ R be the real quadratic field of discriminant ∆F . To make things simpler
we will focus on the cases where F = Q(

√
p) for some primer number p and the

discriminant ∆F = p (so p ≡ 1 (mod 4)). Let (V,Q) be the rational quadratic space
of type (2, 2) corresponding to F as in section 2.4 and let L = Z⊕Z⊕OF . The Siegel
theta function Θk(τ, z) of weight k is a modular function in both τ (for the group
Γ0(p) and character χp(n) =

(
p
n

)
, the Kronecker symbol) and z (for the group ΓF ).

The Doi-Naganuma lift is a small modification of the lifting that we have already
seen that makes explicit computations of modular forms much more convenient.

Definition 3.1. We denote by Mk(p, χp) the space of holomorphic modular forms of
weight k for the group Γ0(p) and character χp (this character is the one that we have
already described in the previous chapter, but when p = 4k + 1, it also corresponds

to the Jacobi symbol χp(n) =
(

n
p

)
). The modular forms in Mk(p, χp) satisfy

f(γz) = χp(d)(cz + d)kf(z)
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for z ∈ H and γ = ( a b
c d ) ∈ Γ0(p) (recall that Γ0(p) = {γ = ( a b

c d ) | γ ∈ SL2(Z) and c ≡
0 (mod p)}.

If we apply the transformation law for
( −1 0

0 −1

)
∈ Γ0(p) we get that f(z) =

χp(−1)(−1)kf(z), but since we are assuming p ≡ 1 (mod 4), χp(−1) = 1 (it is a
quadratic residue). Therefore, for odd k we get f(z) = −f(z), so when k is odd this
space contains only the trivial modular form f = 0. Therefore, from now on, we will
assume that k is even. A modular form f ∈Mk(p, χp) has a Fourier expansion of the
form:

f(τ) =
∑
n≥0

c(n)qn

where q = e2πiτ . We define two subspaces of Mk(p, χp) that are called the plus and
minus subspaces are defined by

M+
k (p, χp) = {f ∈Mk(p, χp) | χp(n) = −1 =⇒ c(n) = 0}

M−
k (p, χp) = {f ∈Mk(p, χp) | χp(n) = 1 =⇒ c(n) = 0}

Basically, the plus space is the space of modular forms that only have non-zero co-
efficients c(n) for those n such that χp(n) ̸= −1 (and similarly for the minus space).
We denote by S+

k (p, χp) and S−
k (p, χp) the subspaces of cusp forms of the plus and

minus space.
At first sight it is not obvious that there exist modular forms in the plus or minus

subspaces. We selected some subset of the non-negative integers and we considered
the modular forms (of a certain weight and for a certain group and character) that
have null coefficients at those positions. Certainly, not for every subset of the non-
negative integers it is possible to do that, but it is not hard to see that such modular
forms exist, and we will give an example based on the Eisenstein series of Mk(p, χp).
We have two different Eisenstein series for Mk(p, χp) whose Fourier expansions are
given by

Gk(τ) =
L(1− k, χp)

2
+

∞∑
n=1

∑
d|n

dk−1χp(d)q
n

Hk(τ) =
∞∑
n=1

∑
d|n

dk−1χp(
n

d
)qn

Usually Gk(τ) is normalized so that the independent term is equal to 1, but we have
normalized it that way so that when we add or substract them we get the following:

Gk(τ)±Hk(τ) =
L(1− k, χp)

2
+

∞∑
n=1

∑
d|n

dk−1(χp(d)± χp(
n

d
))qn

Note that if χp(n) = 1, then for any divisor d of n, we have that 1 = χp(n) =
χp(d)χp(

n
d
), so χp(d) = χp(

n
d
) as the character only takes values 1 and −1, which

means that whenever χp(n) = 1, χp(d) − χp(
n
d
) = 0 and the n-th coefficient of
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E−
k := Gk(τ)−Hk(τ) vanishes, so E

−
k ∈M−

k (p, χp). Similarly, E+
k := Gk(τ)+Hk(τ) ∈

M+
k (p, χp).
Those two modular functions are particularly interesting due to the next result

by Hecke.

Proposition 3.2. The spaces M±
k (p, χp) can be decomposed as

M±
k (p, χp) = CE±

k ⊕ S±
k (p, χp)

So given f ∈ S+
k (p, χp) (respectively in the minus space of cuspforms) we can

substract a multiple of E+
k and it will always give a cuspform (in the plus/minus

space). Furthermore, also due to Hecke, we have that

Proposition 3.3. The spaces Mk(p, χp) can be decomposed as

Mk(p, χp) =M+
k (p, χp)⊕M−

k (p, χp)

which implies that given f ∈ Mk(p, χp) we can write it as a sum of a modular
form in the plus space and one in the minus space.

Now that we are familiarized with the plus and minus spaces we can proceed to
define the modified theta lift, but we will need some preliminary definitions. Given a
modular form f =

∑
n≥0 c(n)q

n, we define

c̃(n) =

{
c(n) if p ∤ n
2c(n) if p | n

(3.1)

Modular forms in the plus space are similar in many ways to elliptic modular
forms for SL2(Z). In [BB01] (Theorem 5) states that M±

k (p, χp) is isomorphic to a
space of vector-valued modular forms of weight k. By interpreting modular forms in
the plus (minus) space as vector valued modular forms it is possible to prove the next
result.

Proposition 3.4. Let f =
∑

n∈Z c(n)q
n ∈ M±

k1
(p, χp) and g =

∑
n∈Z a(n)q

n ∈
M±

k2
(p, χp) (either both belong to the plus space or both belong to minus space). The

bilinear pairing defined by

⟨f, g⟩ =
∑
n∈Z

∑
m∈Z

c̃(m)a(pn−m)qn

is a modular form of weight k1 + k2 for SL2(Z).

Observation 3.5. In the classical case of elliptic modular forms in one variable for
SL2(Z) we have a formula for the dimension of the space of modular forms of weight 2k,
and for weight 4, 6, 8, 10 we know that the dimension is 1, so the space of is spanned by
the Eisenstein series of weight 2k (usually denoted by E2k). Therefore, by the previous
proposition we know that for instance, when k = 2 or k = 4, ⟨E+

k , E
+
k ⟩ = λE2k for

some λ ∈ C that can be determined by looking at the first term of the series of each
side. From here, we can deduce some nice identities for divisor sums involving some
Dirichlet characters.
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Note that we don’t require for f to be holomorphic in Proposition 3.4 as the result
is true also for non-holomorphic modular forms. For instance, we can use it with the
complex conjugate of the Siegel theta function of the lattice that we described at
the beginning of this section, which satisfies the plus space condition. To see why it
satisfies the plus space condition, recall that in our current setting, L = Z⊕ Z⊕OF

and the dual lattice is L∨ = Z⊕Z⊕d−1
F . So the level N of L is p and for (a, b, λ) ∈ L∨,

−pQ(a, b, λ) = p(ab − λλ′) ≡ −pλλ′ (mod p) which is a square modulo p because if

λ = 1√
p
(x+ y

1+
√
p

2
) ∈ dF for x, y ∈ Z, then

−pλλ′ = −p 1
√
p
(x+y

1 +
√
p

2
)
1
√
p
(−x+y

−1 +
√
p

2
) = −(x+y

1 +
√
p

2
)(−x+y

−1 +
√
p

2
) =

= x2 + xy + y2
1− p

4
= (x+

y

2
)2 − p

4
y2 ≡ (x+

y

2
)2 (mod p)

as 4 is coprime to p. Therefore the imaginary part of the exponentials that do not
belong to the variable τ , are of the form 2πim where m is a square modulo p, so there
are no non-zero coefficients whose character is −1 and Θk(τ, Z) belongs to the plus
space.

Definition 3.6. The modified theta lifting for f ∈ M+
k (p, χp) is defined by the

integral

Φ(z, f) =

∫
SL2(Z)\H

⟨f(τ),Θk(τ, z)⟩vk−2dudv

When f is a cusp form the integral converges absolutely. Otherwise it has to be
regularized as it is done in [Bor98]. The main theorem for the theta lift (whose proof
can be found in [Bor98], Theorem 14.3) is the following:

Theorem 3.7. Let f =
∑

n∈Z c(n)q
n ∈ M+

k (p, χp). The modified theta lift Φ(z, f)
satisfies

(i) Φ(z, f) is a Hilbert modular form of weight k for the group ΓF .

(ii) It has the Fourier expansion

Φ(z, f) = −Bk

2k
c̃(0) +

∑
ν∈d−1

F
ν≫0

∑
d|ν

dk−1c̃

(
pνν ′

d2

)
qν1q

ν′

2

where z = (z1, z2),qj = e2πizj and Bk is the k-th Bernoulli number

(iii) If f is a cusp form, Φ(z, f) is also a cusp form.

By extending the definition of Φ(z, f) so that it is identically zero for f ∈M−
k (p, χp)

we get the Doi-Naganuma lift

DN :Mk(p, χp) →Mk(Γ )

Summarizing, given a modular form f ∈ M+
k (p, χp) for even k > 0, we can

get a modular form for the Hilbert modular group (without having to compute the
bilinear pairing and the integral) by using the formula from Theorem 3.7 (ii) where the
coefficients c̃(n) are the modified coefficients of f as we described before. This makes
computations really convenient. We will use this result in the end of the chapter.

44



CHAPTER 3. ADDITIVE AND MULTIPLICATIVE LIFTS

3.2 Borcherds lift

In this section, we describe the Borcherds lift for Hilbert modular surfaces. It lifts
some weakly holomorphic modular forms of weight 0 to meromorphic Hilbert mod-
ular forms that have zeros and poles on the Hirzebruch-Zagier divisors and have an
absolutely convergent product expansion on some subset of H2. We start by studying
local Borcherds products at the cusps of Hilbert modular surfaces and we restrict
ourselves to this case although the results can be made more generally for O(2, n).
As always, F is a real quadratic field of discriminant ∆ (as there is no confusion, we
won’t add the subscript) and ΓF is the Hilbert modular group. This study of the
local Borcherds products will allow us to introduce some concepts that will appear
when we present the Borcherds lift, like the Weyl chambers or the Weyl vector and
will show how we can obtain a function that is invariant under the stabilizer of the
cusp infinity as an infinite convergent product.

3.2.1 Local Borcherds products

Definition 3.8. For a positive integer m, the local Hirzebruch-Zagier divisor at ∞
of discriminant m is defined by

T∞
m =

∑
λ∈d−1

F /{±1}
−λλ′=m/∆

b∈Z

{(z1, z2) ∈ H2 | λz1 + λ′z2 + b = 0} ⊂ H2

Note that it goes through the cusp ∞. This divisor can be decomposed into a
sum of smaller divisors in the following way:

T∞
m =

∑
λ∈d−1

F /O∗,2
F

−λλ′=m/∆
λ>0

T∞
λ

where
T∞
λ =

∑
u∈O∗,2

F
b∈Z

{(z1, z2) ∈ H2 | λuz1 + λ′u′z2 + b = 0}

Note that this divisor T∞
λ is invariant under the action of the stabilizer of ∞, and so

T∞
m is also invariant under the action of this group (ΓF,∞). To check we just need to

note that the image of (z1, z2) by an element of the stabilizer of infinity which is of
the form (ε2z1 + εµ, (ε′)2z2 + ε′µ′) satisfies

λuε2z1 + λ′u′(ε′)2z2 + λuεµ+ λ′u′ε′µ′ + b = 0

for some u ∈ O∗,2
F and b ∈ Z. But λuεµ + λ′u′ε′µ′ + b ∈ Z and uε2 ∈ O∗,2

F , so that’s
true because (z1, z2) ∈ T∞

λ .
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Now we proceed to define an holomorphic function on H2/ΓF,∞ whose divisor is
T∞
λ . We start by defining the Weyl chambers, but to do that we will need some

additional notation. Let

S(m) =
⋃

λ∈d−1
F

−λλ′=m/∆

{(y1, y2) ∈ (R+)2 | λy1 + λ′y2 = 0}

Each term in the union defines an hyperplane of (R+)2, so S(m) is a union of hy-
perplanes. The complement of S(m), (R+)2 \ S(m) is not connected, as each of the
hyperplanes that form S(m) is a semistraight going through the origin. Each con-
nected component of the complement is a Weyl chamber of index m. An element
λ ∈ d−1

F such that −λλ′ = m
∆

is called positive with respect to a subset W of a Weyl
chamber if tr(λw) > 0 for all w ∈ W . Note that this is equivalent to asking just
that tr(λw0) > 0 for an w0 ∈ W as the sign of tr(λw) doesn’t change inside a Weyl
chamber because it is continuous and only vanishes at the hyperplanes that define
S(m). To denote that λ is positive with respect to W , we put (λ,W ) > 0. When λ
is positive but uλ is not for any u ∈ O∗,2

F with u < 1, we say that λ is reduced. Note
that λ being reduced is equivalent to

(ε−2
0 λ,W ) < 0 and (λ,W ) > 0

for the fundamental unit ε0. It implies that λ > 0.
Denote by R(m,W ) the set of all λ ∈ d−1

F with −λλ′ = m
∆

which are reduced with
respect to W . It is a finite set and satisfies

{λ ∈ d−1
F | −λλ′ = m

∆
} = {±λu | λ ∈ R(m,W ), u ∈ O∗,2

F }

Let W be a subset of a Weyl chamber of index m and λ ∈ d−1
F with −λλ′ = m/∆

and define an holomorphic function ψ∞
λ : H2 → C ‘

ψ∞
λ (z) =

∏
u∈O∗,2

F

(1− e(σutr(uλz))

where e(x) = e2πix and

σu =

{
1, if (uλ,W ) > 0

−1, if (uλ,W ) < 0

The sign is added so that the obtained product is convergent. Note that by definition
we have div(ψ∞

λ ) = T∞
λ . Furthermore, this function is invariant under the subgroup

of translations {
(
1 µ
0 1

)
} ⊂ ΓF,∞, but not under the full group ΓF,∞. However, we can

modify our function so that it is invariant under the action of the full group. Consider
the automorphy factor

J(γ, z) =
ψ∞
λ (γz)

ψ∞
λ (z)
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Since ΓF,∞ is generated by translations and
(

ε0 0

0 ε−1
0

)
, where ε0 is the fundamental

unit, we only need to consider what happens with the automorphy factor for that
generator of the diagonal subgroup of ΓF,∞. We have that

ψ∞
λ (ε20z)

ψ∞
λ (z)

=
∏

u∈O∗,2
F

1− e(σu/ε20tr(uλz))

1− e(σutr(uλz))
(3.2)

since

ψ∞
λ (ε20z) =

∏
u∈O∗,2

F

(1− e(σutr(uε
2
0λz))) =

∏
ũ∈O∗,2

F

(1− e(σũ/ε20tr(ũλz)))

by doing the change of variables ũ = uε20. Note that σu = σu/ε20 for all except one

u ∈ O∗,2
F , so all the factors in the product of (3.2) are equal to 1 except one of them.

Assuming that λ is reduced, we have

ψ∞
λ (ε20z)

ψ∞
λ (z)

=
1− e(−tr(λz))

1− e(tr(λz))
=

(1− e(−tr(λz)))e(1/2− tr(λz))

(1− e(tr(λz)))e(1/2− tr(λz))
=

=
(1− e(−tr(λz)))e(1/2− tr(λz))

e(1/2− tr(λz))− e(1/2)
=

(1− e(−tr(λz)))e(1/2− tr(λz))

−e(−tr(λz)) + 1
= e(1/2−tr(λz))

Consider the invertible holomorphic function on H2

Iλ(z) = e

(
tr

(
λ

ε20 − 1
z

))
which satisfies

Iλ(ε
2
0z)

Iλ(z)
= e

(
tr

(
λε20
ε20 − 1

z

)
− tr

(
λ

ε20 − 1
z

))
= e(tr(λz))

and Iλ(z+µ) = Iλ(z) for all µ ∈ (ϵ20−1)OF . So up to torsion, the automorphy factor
J(γ, z) becomes trivial once we multiply our original function by Iλ(z). That is

Ψ∞
λ (z) = Iλ(z)ψ

∞
λ (z) = e

(
tr

(
λ

ϵ20 − 1
z

)) ∏
u∈O∗,2

F

(1− e(σutr(uλz))

is an holomorphic function that satisfies that a power of it is invariant under the
action of ΓF,∞ and whose divisor is T∞

λ . It is clear that

Ψ∞
λ (ε20z)

Ψ∞
λ (z)

= e(1/2) = −1

so any even power of Ψ∞
λ is invariant under the diagonal subgroup of ΓF,∞. And for

the translations, we have that
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Ψ∞
λ (z + µ)

Ψ∞
λ (z)

= e

(
tr

(
λ

ε20 − 1
µ

))
but (ε20 − 1)(1− ε−2

0 ) = (ε0 − ε−1
0 )2 ∈ Z, so we can cancel the denominator by raising

Ψ∞
λ to an integer and raising Ψ∞

λ to 2 times this integer will make it invariant under
the whole group ΓF,∞.

Although each of Iλ and ψ∞
λ depend on the choice of the Weyl chamber, their

product doesn’t. Now we can do an analogous reasoning to get a similar product
whose divisor is T∞

m instead.

Definition 3.9. Let W be a Weyl chamber of S(m). The Weyl vector of index m
for the camber W is defined to be

ρm,W =
∑

λ∈R(m,W )

λ

ε20 − 1

The local Borcherds product for the divisor T∞
m is

Ψ∞
m =

∏
λ∈d−1

F /O∗,2
F

−λλ=m/∆
λ>0

Ψ∞
λ (z) = e(tr(ρm,W z))

∏
λ∈d−1

F
−λλ=m/∆
(λ,W )>0

(1− e(tr(λz)))

Proposition 3.10. The divisor of Ψ∞
m is equal to T∞

m . There is a power of Ψ∞
m which

is invariant under the action of ΓF,∞.

Proof. It is clear by construction and the decomposition of T∞
m as a sum of T∞

λ that
the divisor of Ψ∞

m is equal to T∞
m . It is also clear that Ψ∞,2

m is invariant under the
diagonal subgroup of ΓF,∞. And a similar reasoning to the previous one shows that
the term e(tr(ρm,Wµ)) gets cancelled when raised to an appropiate integer.

Example 3.11. Here we compute more explicitly Ψ∞
1 for D = ∆ = 5 as an example.

It will be useful for the computations in the next section. Namely we compute the
Weyl vector. Let ε0 = 1+

√
5

2
be a positive fundamental unit. Then (ε−1

0 , ε0) ∈ (R+)2

and (ε−1
0 , ε0) ̸∈ S(1) because λε−1

0 + λ′ε0 = 0 has no solution for λ ∈ d−1
F such that

−λλ′ = 1/D since λε−1
0 +λ′ε0 = 0 =⇒ λ2+ε20/D = 0 which is a contradiction. Thus

(ε−1
0 , ε0) lies in a Weyl chamber W of index 1 and the set of reduced λ with respect

to W such that λ ∈ d−1
F and −λλ′ = 1/D satisfy (λ,W ) > 0 ⇐⇒ ε−1

0 λ + λ′ε0 > 0
and (ε−2

0 λ,W ) < 0 ⇐⇒ ε−3
0 λ+λ′ε30 < 0. Rearranging the equations, multiplying by

λ > 0 and using λλ′ = −1/D, we get that

ε60
D
> λ2 >

ε20
D

Since λλ′ = −1/D and λ ∈ d−1
F ,

√
Dλ ∈ OF and has norm 1 (by multiplicativity of

the norm). So
√
Dλ = ±εk0 for some k ∈ Z. Since we must have

ε60
D
> λ2 =

ε2k0
D

>
ε20
D
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and ε2k0 is increasing in k, k = 2 is the only solution. Then

R(1,W ) = {ε0/
√
D}

and the Weyl vector is equal to

ρ1,W =
ε20√

D(ε20 − 1)
=

ε0√
D(ε0 − ε−1

0 )
=

ε0√
Dtr(ε0)

Analogous computations can be done forD ̸= 5 without changing almost anything.
The main difference is that R(1,W ) contains also another element if the fundamental
unit has norm 1 and not −1.

3.2.2 Borcherds lift

When k = 0, the space Mk(p, χp) is trivial, so the Doi-Naganuma map only gives
the trivial modular form that is identically zero. We may ask if there is something
we can do in this case to lift Hilbert modular forms. Assuming that there exists an
f =

∑
n∈Z c(n)q

n ∈M+
0 (p, χp) and writing its formal expansion from Theorem 3.7

Φ(z, f) = −B0

2k
c̃(0) +

∑
ν∈d−1

F
ν≫0

∑
d|ν

1

d
c̃

(
pνν ′

d2

)
qν1q

ν′

2

which can be reordered to

Φ(z, f) = −Bk

2k
c̃(0) +

∑
ν∈d−1

F
ν≫0

log(1− qν1q
ν′

2 )
c̃(pνν′)

Borcherds, among others, tried to discard the assumption that f is holomorphic and
replace it by something weaker. He considered f to be weakly holomorphic which gives
meromorphic modular forms with a product expansion like the above. This works for
the more general case O(2, n) and lifts weakly holomorphic modular forms of weight
1 − n/2 to meromorphic modular forms on O(2, n) with zeros and poles supported
by Heegner divisors. But here we focus on n = 2, the case for Hilbert modular
surfaces, for which we can lift weakly holomorphic modular forms of weight 0 to
Hilbert Modular forms with zeros and poles supported on Hirzebruch-Zagier divisors.
For the sake of simplicity, let’s assume that the real quadratic field associated to our
Hilbert modular surface has prime discriminant, so D = ∆F = p.

A meromorphic modular form is called weakly holomorphic if it is holomorphic
outside the cusps. We denote by Wk(p, χp) the space of weakly holomorphic modular
forms of weight k and character χp for the group Γ0(p). As before, by W+

k (p, χp)
we refer to the subspace of Wk(p, χp) for which the modular forms satisfy the plus
space condition (the n-th coefficient vanishes when χp(n) = −1). Modular forms in
Wk(p, χp) have a Fourier expansion of the form f =

∑
n≥N c(n)q

n for some N ∈ Z
and the growth of their coefficients is bounded by O(eC

√
n) for some positive constant
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C > 0. Any f =
∑

n≥N c(n)q
n ∈ W+

k (p, χp) for k ≤ 0 is determined by its principal

part
∑

n<0 c(n)q
n because the difference of two modular forms of W+

k (p, χp) with
the same principal part is holomorphic at the cusp ∞ and can also be proven to be
holomorphic at the cusp 0. Those are the only two cusps for Γ0(p), so it is holomorphic
at the cusps. But the only holomorphic modular form of weight k ≤ 0 with character
is the one that is identically zero.

For a f =
∑

n≥N c(n)q
n ∈ W+

k (p, χp) we can define concepts similar to the ones
that appeared when we presented local Borcherds products. The Weyl chambers
corresponding to f are the connected components of

(R+)2 \
⋃
m>0

c(−m) ̸=0

S(m)

For a Weyl chamber W , its corresponding Weyl vector is defined by

ρf,W =
∑
m>0

c̃(−m)ρm,W ∈ F

where the ρm,W are the Weyl vectors defined in Definition 3.9 and the coefficients
c̃(−m) are given by equation (3.1). Now we have all we need to state Borcherds’
Theorem for the Borcherds lift in our case for Hilbert modular forms.

Theorem 3.12. Let f =
∑

n≥N c(n)q
n be a weakly holomorphic modular form in

W+
0 (p, χp) such that c̃(n) ∈ Z for all n < 0. Then, theres exists a meromorphic

Hilbert modular form (with some unitary character of finite order) Ψ(z, f) for ΓF

such that:

(i) The weight of Ψ is equal to c(0), the constant term of f .

(ii) The divisor of Ψ is determined by the principal part of f at the cusp ∞ and it
is explicitly given by

div(Ψ) =
∑
n<0

c̃(n)T−n

where Tm denotes the Hirzebruch-Zagier divisor (defined in Definition 2.18).

(iii) Let W be a Weyl chamber associated to f and let N = min{n | c(n) ̸= 0}. Then
Ψ has the following Borcherds product expansion

Ψ(z, f) = qρ1q
ρ′

2

∏
ν∈d−1

F
(ν,W )>0

(
1− qν1q

ν′

2

)c̃(pνν′)

where ρ if the Weyl vector corresponding to f and chamber W and qj = e2πizj .

The product converges normally for all z such that y1y2 >
|N |
p

outside the set of
poles.
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The function Ψ(z, f) is not exactly a Hilbert modular as we are used to because it
is a Hilbert modular form with a unitary character of finite order. That means that
to the usual transformation law we have to add a character. However, this character
has finite order, so after raising it to some power n we get a Hilbert modular form in
the sense that we are used to. Furthermore, it turns out that we can choose this n so
that all Fourier coefficients are in Z when the Borcherds product is holomorphic.

Note that we are not specifying the choice of the Weyl chamber, but it is not
hard to see that the Borcherds lift does not depend on it (it may depend up to a
multiplicative constant) because if we have two lifts for two different chambers with
the same divisor and weight (from the Theorem), their quotient is holomorphic and
of weight 0 so it must be a constant.

Note that the divisor of the Borcherds lift Ψ(z, f) is determined by the principal
part of f , so to describe which are the possible linear combinations of Hirzebruch-
Zagier divisors that occur as divisors of Borcherds lifts, it is enough to understand
the princiapl part of the modular forms in W+

0 (p, χp). It is easy to obtain necessary
conditions for the principal part. Let f =

∑
n≥N c(n)q

n ∈ W+
0 (p, χp) and g ∈ M+

2−k

with Fourier coefficients b(n). Then the bilinear pairing from Proposition 3.4 ⟨f, g⟩ is
a weakly holomorphic modular of weight 2 for SL2(Z) which implies that the constant
term in its Fourier expansion is 0. Therefore∑

n<0

c̃(n)b(−n) = 0

Applying this for the Eisenstein series E+
2−k(τ) (it appeared in the discussion of

the Doi-Naganuma lift) we get a formula for the constant term of f . If B+
2−k(n) is

the n-th coefficient of E+
2−k(τ) after normalizing it so that the constant term is 1, we

have

c(0) = −1

2

∑
n<0

c̃(n)B+
2−k(−n)

for any f =
∑

n≥N c(n)q
n ∈ W+

0 (p, χp).
It turns out that the necessary condition is also sufficent as proven in [BB01]

(Theorem 6).

Theorem 3.13. There exists an f ∈ W+
0 (p, χp) with principal part =

∑
n<0 c(n)q

n,
if and only if c(n) = 0 if χp(n) = −1 (so it satisfies the plus space condition) and∑

n<0

c̃(n)b(−n) = 0

for every cusp form g =
∑

m>0 b(m)qm ∈ S+
2−k(p, χp).

3.2.3 Explicit computation of the Borcherds lifts

To finish this chapter, we can use all the previous results to compute some Borcherds
lifts. We will focus on the case p = 5. By a result from Hecke, the dimension of
S+
2 (p, χp) is equal to ⌊p−5

24
⌋, so S+

2 (5, χ5) is trivial so we don’t have any additional

51



CHAPTER 3. ADDITIVE AND MULTIPLICATIVE LIFTS

restrictions for the Fourier coefficients of modular forms in W+
0 (5, χ5). For any m ∈

Z+ with χ5(m) ̸= −1 there exists a unique fm =
∑

n≥−m cm(n)q
n ∈ W+

0 (5, χ5) whose
Fourier expansion starts with

fm =

{
q−m + cm(0) +O(q) if p ∤ m
1
2
q−m + cm(0) +O(q) if p | m

and those fm form a basis of W+
0 (5, χ5). The Borcherds lift Ψm of fm is a Hilbert

modular form of weight cm(0) = −B+
2 /(m) for the group ΓF and has divisor Tm. The

first few fm are computed in [BB01]. Here we show the first coefficients of three of
them (f1, f6, f10).

f1 = q−1 + 5 + 11q − 54q4 + . . .

f6 = q−6 + 10 + 264q − 136476q4 + . . .

f10 =
1

2
q−10 + 10 + 3400q + 3471300q4 + . . .

By looking at the constant terms we see that Ψ1 has weight 5 and Ψ6 and Ψ10 both
have weight 10. Observing the coefficients of

E+
2 (τ) = 1− 10q − 30q4 − 30q5 − 20q6 − 70q9 − 20q10 − 120q11 − . . .

we see that the other Ψm for low values of m have higher weights and indeed the only
three Borcherds lift of weight 10 are Ψ2

1,Ψ6 and Ψ10. Let’s compute their Borcherds
product expansions explicitly.

When there are no elements λ ∈ d−1
F such that −λλ′ = m/∆, S(m) is empty and

there is only one Weyl chamber ((R+)2) and the Weyl vector is 0. Note that S(m)
is empty when it does not exist an element λ in d−1

F such that N(λ) = −m/∆ =
m/N(

√
∆) but the norm is multiplicative, so N(

√
∆λ) = m and now

√
∆λ ∈ OF .

So S(m) is empty when there is no element of norm m in OF . That’s precisely what
happens for m = 6 and m = 10 as proven in the next Lemma.

Lemma 3.14. There are no solutions to N(x + y 1+
√
5

2
) = (x + y

2
)2 − 5(y

2
)2 = m for

m = 6 and m = 10.

Proof. Multiplying by 4 to each side we can rewrite the equation as (2x+y)2−5y2 =
4m. For m = 6, taking the equation modulo 3, we must have (2x + y)2 ≡ 2y2(
mod 3). But squares modulo 3 are either congruent to 0 or to 1, so we must have
that both 2x + y and y are multiples of 3. But then (2x + y)2 − 5y2 is a multiple of
9 while 24 is not, which is a contradiction. For m = 10, we have x2 + xy − y2 = 10
by developing the squares and dividing by 4. Since the RHS is even, so must be the
LHS. The only possibility for this to happen is that both x and y are even. But then
the LHS is a multiple of 4 while the RHS is not.

By the previous lemma, we have that

Ψ6 =
∏

ν∈d−1
F

(ν,W )>0

(
1− qν1q

ν′

2

)c̃6(5νν′)
=
∏

ν∈d−1
F

ν≫0

(
1− qν1q

ν′

2

)c̃6(5νν′)
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Ψ10 =
∏

ν∈d−1
F

(ν,W )>0

(
1− qν1q

ν′

2

)c̃10(5νν′)
=
∏

ν∈d−1
F

ν≫0

(
1− qν1q

ν′

2

)c̃10(5νν′)
For m = 1, like in example 3.11, let W be the unique Weyl chamber of index 1 that
contains (ε−1

0 , ε−1
0 ). The corresponding Weyl vector is ρ1 =

ε0√
5tr(ε0)

and the Borcherds

lift has the form

Ψ1 = qρ11 q
ρ′1
2

∏
ν∈d−1

F
ε0ν′−ε′0ν>0

(
1− qν1q

ν′

2

)c̃1(5νν′)

Note that for Ψ6 and Ψ10 we have that (ν,W ) > 0 ⇐⇒ ν ≫ 0 because we must
have tr(νw0) > 0 both for w0 = (1, ε) and for w0 = (ε, 1) for arbitrary small ε, so
ν, ν ′ > 0. And clearly if ν ≫ 0, tr(νw0) > 0 for any w0 ∈ (R+)2.

The divisors of Ψ1,Ψ6,Ψ10 are the Hirzebruch-Zagier divisors T1, T6, T10 as the
modular forms we lifted only have one non-zero coefficient c̃(n) for n < 0.

3.3 Evaluating Borcherds products numerically

If we want to evaluate numerically the values of Hilbert modular functions, it is usually
not practical to use the expression of Theorem 3.12 because the infinite product only
converges on a certain domain and even when it converges, there are other methods
that converge faster. Also, in some cases where we are doing the product over a subset
of dF that does not have a nice form, it is difficult to index the terms. The good news
is that in some cases it is possible to obtain Borcherds lift from the Doi-Naganuma
lift. In particular, it is possible to obtain Ψ2

1,Ψ6,Ψ10 from the Doi-Naganuma lift,
following the approach by Bruinier and Yang ([BY06]), and as we will see when we
use this approach in the last chapter, we will have a fast convergence. Recall that the
Doi-Naganuma lift takes modular forms on the space M+

k (p, χp) to Hilbert modular
forms and for an f =

∑
n∈Z c(n)q

n ∈ M+
k (p, χp), the Doi-Naganuma lift Φ(f)(z)

satisfies

Φ(f)(z) = −Bk

2k
c̃(0) +

∑
ν∈d−1

F
ν≫0

∑
d|ν

dk−1c̃

(
pνν ′

d2

)
qν1q

ν′

2

where z = (z1, z2),qj = e2πizj and Bk is the k-th Bernoulli number. From the previous
formula we see that Φ(f)(z1, z2) = Φ(f)(z2, z1) because we sum over ν if only if we
sum over ν ′, so the lift is symmetrical. The dimension of M+

10(5, χ5) is 3, so S
+
10(5, χ5)

has dimension 2. Let h1, h2 be a basis of it. Since the DN lift takes cusp forms to cusp
forms, Φ(h1), Φ(h2) ∈ S10(ΓF ). If we consider Φ(hj)(z, z) for SL2(Z) ⊂ ΓF using the
restriction to the diagonal trick of chapter 1, we get a classical elliptic modular form
of weight 20 for SL2(Z). Since the space of cusp forms of weight 20 has dimension
1, there is a linear combination λ1h1 + λ2h2 whose image by the lift H vanishes on
the restriction of the diagonal. But it is possible to prove that the Hirzebruch-Zagier
divisor T1 is the orbit of {(τ, τ) | τ ∈ H2} under the action of SL2(OF ), which means
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that H vanishes in all the divisor T1. Then H/Ψ1 is an holomorphic Hilbert modular
form of weight 5 for the group ΓF . Gundlach build an antisymmetric modular form
of weight 5, Θ as the product of theta functions and proved it to be a multiple of Ψ1,
so Ψ1 is antisymmetric (Ψ1(z1, z2) = −Ψ1(z2, z1)) since Θ is. Since H is symmetric,
H/Ψ1 is also antisymmetric, so it vanishes again on the diagonal and therefore on T1.
That means that H/Ψ2

1 is an holomorphic modular form of weight 0, and therefore it
is constant (we saw this on chapter 1 in Proposition 1.29). Then Ψ2

1 is a multiple of H
and therefore on the image of S+

10(5, χ5) of the Doi-Naganuma lift. The exact modular
form that maps to Ψ2

1 can be determined by looking at which linear combination of
the first coefficients of the images of h1, h2 give the first coefficients of Ψ2

1.
Now, since ΓF only has one cusp (the class number of F is 1, so that follows from

Corollary 1.9), the difference of Ψ6 and a certain multiple of the image of E+
10(τ) by

the Doi-Naganuma lift will be in S10(ΓF ) (call it Ψ6 − H ′). Like before, a certain
linear combination of h1, h2 has a Doi-Naganuma lift H ′′ such that Ψ6−H ′−H ′′ is in
S10(ΓF ) and vanishes on the diagonal and hence on T1, so using the same argument
as before, we get that it is a multiple of Ψ2

1, which is a Doi-Naganuma lift. Then Ψ6

is a Doi-Naganuma lift (for being the sum of two such lifts) and the same reasoning
works for Ψ10. The exact modular forms that lift Ψ6 and Ψ10 can be found by looking
at the first few coefficients of the Borcherds products expansion and looking at which
modular forms when lifted give the same coefficients. The exact approach would be
to lift all the elements of a basis ofM+

10(5, χ5) and find a linear combination that gives
the desired Borcherds product. The same linear combination with the basis elements
will have the desired image by the Doi-Naganuma lift (by the linearity of the lift).
This part can be a bit tedious, but can be done. However, we did not need it because
in [BY06], Bruninier and Yang already give us the three modular forms g1, g6, g10
such that DN(g1) = Ψ2

1, DN(g6) = Ψ6, DN(g10) = Ψ10. Their Fourier expansions
start with:

g1 = q4 − q5 − q6 − 18q9 + 19q10 + . . .

g6 = −132− 264q + 306360q4 − 271512q5 − 236400q6 + 1613256q9 + . . .

g10 = −132− 3400q + 4047800q4 − 3834200q5 − 5106800q6 − 55443800q9 + . . .

Therefore we can use SageMath to get a basis of M+
10(5, χ5) and find (using basic

linear algebra) the only linear combination coincides for the first few coefficients.
Once we have it must also coincide for the rest of the coefficients because it is the
only modular form in M+

10(5, χ5) satisfying those constraints.
For evaluating the Borcherds products Ψ2

1, Ψ6 and Ψ10 at points of H2, since we
have a summation formula for the Doi-Naganuma lift we can try to evaluate the first
few terms in the sum hoping that it will converge with a lot of precision. We have to
select the order in which to pick the values of the set {ν ∈ d−1

F | ν ≫ 0} so that the
convergence is as fast as possible. For a fixed ν, the inner sum is easy and finite as
we only need to sum for those d ∈ Z such that ν/d ∈ d−1

F and writting ν = x/
√
5 for

x ∈ OF , it is the same as summing over the d ∈ Z such that x/d ∈ OF . And writing

x = x1 + x2(
1+

√
5

2
) it is equivalent to d dividing both x1 and x2.

To decide the order in which we perform the summation, we will write every
ν = x/

√
5 for x ∈ OF and we will write x = x1 + x2(

1+
√
5

2
). For a given x2 there are
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only finitely many x1 that make ν ≫ 0. To see why this is true, note that

ν =
x1√
5
+
x2(1 +

√
5)

2
√
5

ν ′ = − x1√
5
+
x2(−1 +

√
5)

2
√
5

so if ν, ν ′ > 0 isolating x1 in both conditions and putting it together we need

x2
−1 +

√
5

2
> x1 > −x2

1 +
√
5

2

So we will start summing from x2 = 1 up to some limit that we call the number of
iterations which will usually be around 80 (even with 50 or even 30 we usually have
a result with a relative error of less than 10−40). And for each x2 we will sum over all
the possible values of x1.

Note that the exponents of qν1q
ν′
2 are of the form 2πi(νz1 + νz2) so for the conver-

gence we are interested in its imaginary part νℑ(z1) + ν ′ℑ(z2). But

νℑ(z1) + ν ′ℑ(z2) ≥ (ν + ν ′)min(ℑ(z1),ℑ(z2)) = x2min(ℑ(z1),ℑ(z2))

So as x2 grows qν1q
ν′
2 decreases exponentially (it decreases because e2πii = e−2π),

while the coefficients of the modular form grow slower and
∑

d|ν d
k−1 just grows like

a polynomial. Note also that from this reasoning we can deduce that the greater the
imaginary parts are, the faster the convergence should theoretically be.

In the last chapter we will use this approach to evaluate the Borcherds lifts at
CM points. Although we may not get all Borcherds lifts in this way for any real
quadratic field, the technique also works for fields other than F = Q(

√
5). For

instance, in a similar way one can obtain the 3 Borcherds products of weight 6 for
Q(

√
13), Ψ6

1,Ψ14,Ψ26 as the images of the Doi-Naganuma lift of three modular forms
in M+

6 (13, χ13) and evaluate in the same way. Actually the implementation that we
give in the appendix works for Q(

√
p) for any p ≡ 1 (mod 4), and so it works for

p = 13. We will also evaluate a few modular functions on Q(
√
13) to show it.
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Chapter 4

Complex Multiplication

For every elliptic curve, its endomorphisms ring contains Z, but in some cases it is
even bigger. The origin of the theory of Complex Multiplication comes from studying
elliptic curves whose endomorphism ring is strictly larger than Z. Those elliptic
curves are said to have Complex Multiplication, and the aim of this study was to
find a way to explicitly construct the class fields for some number fields, generalizing
the Kronecker-Weber Theorem to number fields other than Q. This problem is the
well-known Hilbert’s 12th problem, and a complete solution for imaginary quadratic
is given by elliptic curves with Complex Multiplication.

Generalizing the theory for abelian varieties helps in constructing some class fields
for other number fields (the so-called CM fields) and although it is some progress to
solve Hilbert’s 12th problem, we are still far from solving it completely.

In the following lines we summarize the main results of the theory of complex
multiplication for elliptic curves, so that it serves as an introduction for the theory
of Complex Multiplication for abelian varieties (a more general case) and for Hilbert
modular surfaces (the case we are interested in). The results we will state can be
found along with their proofs and a more extense discussion of the theory of complex
multiplication for elliptic curves in [Cox89] and [Sil94].

4.1 Complex Multiplication for elliptic curves

4.1.1 The Weierstrass ℘-function and the j-invariant

Let E be an elliptic curve over C. The equation of an elliptic curve can be transformed
by doing an appropriate change of variables to be of the form y2 = 4x3+ax+b (this is
true for any elliptic curve over a field of characteristic different from 2 and 3). Every
elliptic curve of that form is isomorphic to a complex torus C/L where L is a lattice
in C. The isomorphism can be realized in the following way:

Recall that a lattice L is an additive subgroup of C which is generated by two
non-zero complex numbers ω1, ω2 that are linearly independent over R (i.e. ω1

ω2
̸∈ R),

so L = {aω1 + bω2 | a, b ∈ Z} and we denote this lattice by L = [ω1, ω2].

Definition 4.1. An elliptic function f for a lattice L is a function defined on C
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except maybe for isolated singularities, that satisfies:

1. f(z) is meromorphic on C.

2. f(z + ω) = f(z) for all ω ∈ L.

The most important elliptic function (we will see why now) is the Weierstrass ℘-
function, which is defined for a lattice L and a complex number z by:

℘L(z) =
1

z2
+

∑
ω∈L−{0}

(
1

(z − ω)2
− 1

ω2

)
The sum that defines it converges absolutely on any compact subset of C that doesn’t
contain a point in L. The importance of this function comes from the fact that it
parametrizes elliptic curves using the following theorem:

Theorem 4.2. Let ℘L(z) be the Weierstrass ℘-function for the lattice L. Then

℘′(z)2 = 4℘(z)3 − g2(L)℘(z)− g3(L)

where g2(L) and g3(L) are constants defined by

g2(L) = 60
∑

ω∈L−{0}

1

ω4
g3(L) = 140

∑
ω∈L−{0}

1

ω6

Now given a lattice L, we can consider the map ϕ : C/L → C2 given by z 7→
(℘L(z), ℘

′
L(z)), so we see that C/L ∼= E where E is the elliptic curve with equation

y2 = 4x3 − g2(L)x − g3(L). Conversely, given an elliptic curve E with equation
y2 = 4x3 + ax+ b, there exists a lattice L such that g2(L) = −a, g3(L) = −b (see for
instance [Cox89] Corollary 11.7), which means that every elliptic curve is isomorphic
to a complex torus C/L for some lattice L. But note that any lattice L = ω1Z+ω2Z
is isomorphic to a lattice of the form L = Z + ωZ where ω ∈ H by choosing ω = ω1

ω2

or ω = ω2

ω1
(whichever makes ω ∈ H), since Z + ωZ = ω−1

1 L or Z + ωZ = ω−1
2 L.

Therefore, we can identify any elliptic curve with a τ ∈ H.
Now, given a lattice L we can define the j-invariant of the lattice to be

j(L) = 1728
g2(L)

3

g2(L)3 − 27g3(L)2

where g2, g3 are defined as above. We can extend this definition to define the j-
invariant of an elliptic curve E by

j(E) = j(C/L) = j(L)

Using the definition of g2, g3 and of j for a lattice, it is easy to prove that if L′ = λL
is homothetic to L, they have the same j-invariant (see [Cox89] Theorem 10.9), so
the j-invariant of an elliptic curve is well defined.

Furthermore, we can define it on the upper half plane H by letting j(τ) = j([1, τ ])
for τ ∈ H. It turns out that j is an holomorphic function on H that is SL2(Z)-
invariant, so it is a modular function for SL2(Z). Its Fourier expansion is given by
j(τ) = 1

q
+ 744 + 196884q + . . . where q = e2πiτ .
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4.1.2 The ring of endomorphisms of an elliptic curve

The endomorphisms ring End(E) of an elliptic curve E = C/L can be identified with
{α ∈ C | αL ⊂ L} using the isomorphism between E and C/L. Clearly Z ⊂ End(E),
but there are cases in which the set End(E) is even bigger. In this case we say
that E has complex multiplication. The name comes from the fact that in this case
{α ∈ C | αL ⊂ L} is an order O in an imaginary quadratic extension of Q.

Orders in imaginary quadratic fields gives rise to lattices in a natural way. For an
order O in a imaginary quadratic field K, and a proper fractional O-ideal a, we can
write a = [α, β] for some α, β ∈ K that are linearly independent over R. Since we can
see K as a subset of C, a = [α, β] is a lattice in C, so we can define the j-invariant of
a proper fractional ideal j(a).

If an elliptic curve has complex multiplication by an order O, then E ∼= C/a for
some fractional ideal a of O. The converse is also true, and two elliptic curves C/a
and C/b are isomorphic if and only if a and b are in the same ideal class, which means
that the number of isomorphism classes of elliptic curves with complex multiplcation
by O is the class number of O. By adjoining the values of the j-invariant at the ideals
of an order to K we get the ring class field of O. More explicitly, if a is a proper
fractional ideal of O, K(j(a)) is the ring class field of O.

In particular, if we focus to the case where the order is the ring of integers OK ,
K(j(a)) is the Hilbert class field of K (the maximal unramified abelian extension
of K). Furthermore, if a1, . . . , ah are the representatives of the ideal class group of
K, we have that [Q(j(ai)) : Q] = [K(j(ai)) : K] = h for any i ∈ {1, 2, . . . , h} and
that j(a1), . . . , j(ah) are conjugate algebraic integers. The minimal polynomial of
j(ai) over Q is the one with roots j(a1), . . . , j(ah), so the independent term of this
polynomial

h∏
i=1

j(ai) ∈ Z

As a particular case, when K has class number 1, j(OK) is an integer.
Since H parametrizes classes of elliptic curves and we saw that the j-invariant is

a modular function j : H → C whose value j(τ) coincides with the value j([1, τ ]), we
can rewrite all the previous discussion for points in H. A point τ ∈ H is called a CM
point of type OK if the elliptic curve Eτ = C/(Z + Zτ) has complex multiplication
OK . Then, in view of what we just said, the values of the j-function on CM points
(known as singular moduli) are algebraic integers that generate the Hilbert class field
of K. And if we consider CM(K), all the CM points of type OK , the Galois group
Gal(H/K) acts transitively on them, and

j(CM(K)) =
∏

τ∈CM(K)

j(τ) ∈ Z
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4.2 Differences in the theory of Complex Multipli-

cation for higher dimension abelian varieties

There are some changes that need to be made to generalize the theory of Complex
Multiplication and some concepts that we have to introduce. Since the endomorphism
rings now will have higher dimension we won’t be embedding orders in imaginary
quadratic fields into them. We will embed imaginary quadratic extensions of totally
real field, which are known as CM fields. In the case of elliptic curves there is only one
canonical way to embed it because there are only two embeddings which are complex
conjugate to each other. In the general case for a variety of dimension n, we have 2n
embeddings. We will choose n of them such that no two are complex conjugate (this
will be called a CM type) and depending on the choice we will get different results
(not always).

In the case of elliptic curves the j-invariant was really important as it described
helped building the Hilbert class field, but its importance also relies on the fact that
it is the moduli space of elliptic curves (its value determines the isomorphism class of
elliptic curves). For higher dimensional abelian varieties it is hard to generalize this
because they have too many automorphisms and we can’t find a moduli space in a
similar way. However, there’s a way to solve this problem and it is by considering
abelian varieties with a polarization (in the case of elliptic curves polarizations are
unique, so we can forget about them).

Since the points on the moduli space parametrize isomorphism classes of abelian
varieties with CM, to understand the shape of the values of modular functions at
those points, we will need to understand how abelian varieties transform under au-
tomorphisms of C. We will require automorphisms σ of C on an abelian variety
(A 7→ σ(A)) to preserve the CM type. But this means that σ won’t necessarily fix
the field K. It fixes a field generate by all symmetric expresions on the values of the
CM type and it is called the reflex field of K. We won’t construct class fields for K
but for the reflex field.

In terms of the results obtained, for the general case the theory of complex multi-
plication does not generate all abelian extensions of the CM field. In some cases this
can be fixed by using a combination of complex multiplication and class field theory,
like Shimura did, but were are not gonna get into the details of that because our main
goal is not constructing all the class fields.

Now, we begin by defining one of the main objects of study in this chapter, the
CM fields (along with their CM types) and their reflex fields.

4.3 CM-fields

Definition 4.3. A CM-field K is a totally imaginary extension (i.e. it cannot be
embedded into the real numbers) of a totally real number field K0 (all of its embed-
dings into C are real). Equivalently, a CM-field is a field K = K0(

√
α) where K0 is a

totally real number field and α ∈ K0 is a totally negative element (i.e. the image of
α for all embeddings of K0 into C is a negative real).
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Example 4.4. For the n-th root of unity ξ = e2πi/n (n > 2), Q(ξ) is a totally
imaginary quadratic extension of the totally real field Q(ξ + ξ−1), and therefore it is
a CM-field.

Now, we proceed to prove a characterization of CM-fields that will be very useful
to prove that certain number fields that will appear later are CM-fields.

Proposition 4.5. A number field K is a CM-field if only if the next two conditions
are both satisfied

(i) Complex conjugation induces a non-trivial automorphism of K

(ii) Every embedding of K into C commutes with complex conjugation

Proof. Assume that K = K0(
√
α) is a CM-field which, by definition, is an imaginary

quadratic extension of the totally real fieldK0 and write an element z ofK as x+y
√
α

where x, y ∈ K0 ⊂ R and α < 0 is also a real number. Then, clearly z = x−y
√
α ∈ K

(where . denotes complex conjugation) and the first condition is satisfied. Let’s see
the second condition. Pick an embedding σ of K into C. Then σ(x), σ(y) are both
real numbers as they belong to K0. And σ(

√
α) satisfies σ(

√
α)2 = σ(α) which is a

negative real number (recall that α is totally negative real number by the definition
of CM field), so σ(

√
α) is the square root of a negative real. Then we have

σ(z) = σ(x) + σ(
√
α)σ(y) = σ(x)− σ(

√
α)σ(y) = σ(z)

so conjugation commutes with any embedding and the second condition is proved.
Assume now that the two conditions are satisfied and let K0 be the field that is

fixed by complex conjugation. Note that it is properly contained in K as we know
by the first condition that complex conjugation is a non-trivial automorphism, which
means that not all elements of K are fixed by it. Since complex conjugation is an
automorphism of order 2, we have that [K : K0] = 2 and therefore, K = K0(

√
α) for

α ∈ K0. So we only need to see that α is totally negative and that K0 is totally real.
For an embedding σ from K0 to C and any x ∈ K0, by the second condition, we have

σ(x) = σ(x) = σ(x)

where the last equality comes from the fact that K0 is fixed by complex conjugation
and therefore x = x. But from σ(x) = σ(x) we deduce that σ(x) ∈ R. Since that’s
true for any x ∈ K0 and any embedding, K0 is totally real. Finally, if we extend σ
to an embedding of K into C, we have that σ(

√
α)2 = σ(α). If for some σ, σ(α) was

non-negative, σ(
√
α) would be real, and therefore

σ(
√
α) = σ(

√
α) = σ(

√
α)

meaning that
√
α is real since an embedding is injective. But this is a contradiction,

since the first condition says that conjugation induces a non-trivial automorphism on
K. Therefore, σ(α) < 0 for all σ and α is totally negative. This finishes the proof of
the proposition.
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As a consequence of this proposition, it is easy to see that the following two results
are true.

Lemma 4.6. The composite of CM-fields is a CM-field.

Proof. Any embedding on the composite of two fields F1, F2 induces an embedding
in those two fields, so complex conjugation induces a non-trivial embedding on the
composite (it is not trivial on F1, F2) and every embedding commutes with com-
plex multiplication because it induces an embedding on F1 and another on F2 that
commute with complex conjugation.

Lemma 4.7. The Galois closure of a CM-field is a CM-field.

Proof. Let K be a CM-field and L its Galois closure. L clearly satisfies condition one
in Proposition 4.5 because by restricting it to K it is non-trivial, and so it must be
true for L. Let’s check the second condition. WriteK = Q(α1) and L = Q(α1, . . . , αr)
where α1, . . . , αr are the roots of the minimal polynomial of α1. For every j, there
is an embedding ϕj that sends α1 to αj. Take any σ ∈ Gal(L/Q) we want to see
that it commutes with complex conjugation, so it is enough to see that for every αj,

σ(αj) = σ(αj). But

σ(αj) = σ(ϕj(α1)) = σ(ϕj(α1)) = σ(ϕj(α1)) = σ(αj)

because both ϕj and σ ◦ ϕj are embeddings from K to C, so they commute with
complex conjugation. This proves the second condition and the lemma.

4.3.1 CM-types

Definition 4.8. For a CM-field K a CM-type Φ = {ϕ1, ϕ2, . . . , ϕn} on K is a set of
complex embeddings such that no two of them are complex conjugates of each other
and for any embedding ϕ, either ϕ or ϕ ∈ Φ. Equivalently, Φ = {ϕ1, ϕ2, . . . , ϕn} and
Φ = {ϕ1, ϕ2, . . . , ϕn} are a partition of the embeddings of K into C.

We say that (K,Φ) is a CM-type to make clear with respect to which CM field
but sometimes we also refer to Φ as the CM type.

Definition 4.9. For a CM-type (K,Φ) and for every x ∈ K, we define the determi-
nant and the trace to be:

det(Φ(x)) =
n∏

j=1

ϕj(x)

tr(Φ(x)) =
n∑

j=1

ϕj(x)

Definition 4.10. Two CM types Φ1,Φ2 of K are called equivalent if there is an
automorphism K such that Φ2 = Φ1 ◦ σ.
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Definition 4.11. We say that a CM type (K,Φ) is primitive if it is not induced by

a CM type on a proper CM subfield K̃ ⊂ K. That is, we can’t define the CM type
(K,Φ) by picking a CM type (K̃, Φ̃) and choosing the set of embeddings from K into

C such that when restricted to K̃ lie in Φ̃.

We will give some examples of primitive and non-primitive CM types when we
talk about quartic CM fields (and actually characterize all of them).

4.3.2 Reflex field

Let (K,Φ) be a CM-type. In the following lines we are going to describe how we
can associate to it another pair of CM field and CM-type, called the reflex of (K,Φ).
To start, we define the field of the associated pair, the reflex field. There are two
equivalent definitions and we will see both. The first one gives an explicit formula
and the second an interpretation using Galois Theory.

Definition 4.12. The reflex field Kr for a CM-type (K,Φ) is defined to be the field
generated by adjoining tr(Φ(x)) to Q for all x ∈ K. Explicitly:

Kr = Q
(
{tr(Φ(x))}x∈K

)
= Q

{ n∑
j=1

ϕj(x)

}
x∈K


Proposition 4.13. The reflex field Kr is a CM-field.

Proof. First of all note that Kr is a finite extension of Q. That’s true because if
L/Q is the Galois closure of K, then Kr ⊂ L (since we have that ϕ(x) ∈ L for any
x ∈ K and any embedding ϕ : K ↪−→ C) and the Galois closure is always a finite
extension. Now let’s use Proposition 4.5 to prove that Kr is a CM field. We just
need to check that both conditions are satisfied. To prove the first one, just note
that since K is a CM-field, conjugation commutes with every embedding, so for any
x ∈ K, tr(Φ(x)) = tr(Φ(x)) ∈ Kr (since x ∈ K), and therefore complex conjugation
induces an automorphism on Kr. It is non-trivial because if it wasn’t, we would have
tr(Φ(x)) = tr(Φ(x)) for all x ∈ K, so we would have

tr(Φ(x)) = tr(Φ(x)) ⇐⇒
n∑

i=1

ϕi(x) =
n∑

i=1

ϕi(x) ⇐⇒
n∑

i=1

((ϕi ◦ h)− ϕi)(x) = 0

where h denotes complex conjugation. However, this means that
∑n

i=1((ϕi◦h)−ϕi) =
0 but by the Dirichlet theorem of independence of characters (see [Mil21] Theorem
5.14), we must have that Φ ◦ h = Φ which is a contradiction since Φ is a CM-type.

To see the second condition for Kr, take any σ ∈ Aut(C), and note that applying
the second condition for K, we have:

σ(tr(Φ(x))) =
n∑

i=1

(σ ◦ ϕi)(x) =
n∑

i=1

(σ ◦ ϕi)(x) =
n∑

i=1

σ(ϕi(x)) = σ(tr(Φ(x))
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since (σ ◦ ϕi) is an embedding from K into C and hence it commutes with complex
conjugation, and the same applies to ϕi. Therefore K

r satisfies the second condition
and is a CM-field.

Next, we will use Galois theory to give an equivalent definition for the reflex field
Kr that will be helpful to define the reflex type of (K,Φ). Let L be the Galois closure
of K/Q and G its Galois group. In the proof of the previous proposition, we saw that
Kr ⊂ L. Let H and H ′ denote the subgroups of G that fix K and Kr (fundamental
theorem of Galois theory). We get the following diagrams of extensions and of the
groups that fix them:

Q

K Kr

L

G

H H ′

{1}

For every element σ of G, we have that σ|K ∈ Φ ∪ Φ since that’s the set of
embeddings of K into C. And those are all the possible embeddings of K, because
every embedding of K can be extended to an element σ ∈ G. Denote by ϕ̃i the
extension of ϕi ∈ Φ to an embedding of L, which is an automorphism since L is a
Galois extension.

Now if we pick two automorphisms, σ, σ′ ∈ G that agree on K, then σ−1σ′ fixes
K, so σ−1σ′ ∈ H =⇒ σ′H = σH, which means that if we descompose G into
right cosets σH, two elements are in the same coset if when restricted to K they give

the same embedding. Therefore since all the elements {ϕ̃1, ϕ̃2, . . . , ϕ̃n, ϕ̃1, . . . ϕ̃n} are
different when restricted to K (they are extensions of different embeddings), we can
write G in the following way:

G =
n⋃

i=1

ϕ̃iH ∪
n⋃

i=1

ϕ̃iH = S ∪ S

where S =
⋃n

i=1 ϕ̃iH, and all unions are disjoint, so S ∩ S = ∅.
With the following proposition, we are going to characterize H ′, and therefore Kr

as it is the field fixed by H ′.

Proposition 4.14. Let H,H ′ and G be the groups defined above (fixing K,Kr and

Q, respectively) and let S =
⋃n

i=1 ϕ̃iH where the ϕ̃i are extensions of the embeddings
of K to automorphisms of L. Then

H ′ = {g ∈ G | gS = S}
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Proof. If g ∈ G and Sg = S, we want to see that g ∈ H ′, or equivalently, that g fixes
Kr. But clearly g fixes Q, so it is enough to see that g fixes tr(Φ(x)) for all x ∈ K.
But from gS = S, we deduce that that g just permutes the cosets of S, and since
restricted to K all elements in a coset give the same embedding, we have that

tr(Φ(x)) =
n∑

i=1

ϕ̃i(x) =
n∑

i=1

(g ◦ ϕ̃i)(x) = g ◦ tr(Φ(x))

because recall that ϕ̃i(x) = ϕi(x) for x ∈ K.
Conversely, if g ∈ H ′, it means that for any x ∈ K

n∑
i=1

ϕ̃i(x) =
n∑

i=1

(g ◦ ϕ̃i)(x)

and now we can apply Dirichlet’s independence of characters theorem for embeddings
to get that gS = S.

With this proposition, we can characterize the reflex field of a CM-type (K,Φ) as
the fixed field for the automorphisms σ ∈ Aut(L/Q) such that σ ◦Φ = Φ (where the
composition is done elementwise). So we can view it as the field that is generated by
adjoining any symmetric polynomial expression in (ϕ1(x), . . . , ϕn(x)). To be clear, if
f is a symmetric polynomial in n variables, then for any σ ∈ H ′ and any x ∈ K, we
have that σ(f(ϕ1(x), . . . , ϕn(x))) = f(ϕ1(x), . . . , ϕn(x)) because σ permutes the ϕi.
And clearly, we don’t need to adjoin anything else as

Kr = Q
(
{tr(Φ(x))}x∈K

)
and tr(Φ(x)) is a symmetric polynomial expression of the type we mentioned before.

Now we can proceed to define the reflex type. Proposition 4.14 implies that
H ′ = {g ∈ G | S−1g = S−1} where S−1 = {σ−1 | σ ∈ S}. The elements of S−1 are
elements of G, so if we consider their restriction on Kr and remove duplicates, we
get ψ1, ψ2, . . . , ψm, distinct embeddings of Kr into C. Call ψ̃i one of the elements of
S−1 (if there is only one there is no choice) such that when restricted to Kr gives ψi.
Then by these observations

S−1 ⊂
m⋃
i=1

ψ̃iH
′ ⊂ S−1H ′ = S−1 =⇒ S−1 =

m⋃
i=1

ψ̃iH
′

Recall that from Lemma 4.7, the Galois closure of a CM-field is also a CM-field,
so complex conjugation commutes with all elements, which tells us that σ ∈ S =⇒
σ−1 ∈ S−1 and if σ ∈ S, then σ−1 ∈ S

−1
= S−1 (due to the commutation of

conjugation with any element of G), so

G = S−1 ∪ S−1 and S−1 ∩ S−1 = ∅

so ψ1, . . . , ψm, ψ1, . . . , ψm are all the embeddings of Kr into C so {ψ1, . . . , ψm} is a
CM-type Φr on Kr. Then [Kr : Q] = [G : H ′] = 2m is the degree of the reflex field
over Q.
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Definition 4.15. The type (Kr,Φr) defined above is called the reflex type of (K,Φ).

Note that we found an explicit way to build Φr by finding the inverses of the ele-
ments of Φ as elements of the Galois group of the Galois closure, and then restricting
them to Kr.

Example 4.16. Suppose that (K,Φ) is a CM-type and K/Q is Galois. Then L = K
in all the previous discussion and H = {1}, so S = Φ = {ϕ1, . . . , ϕn} and S−1 =
{ϕ−1

1 , . . . , ϕ−1
n }. We know that Kr ⊂ K, so Φr ⊂ S−1 but we can’t say much more if

we don’t know anything else about Φ. However, in some concrete cases we can say
something else. For instance, if K = Q(α) is a quadratic imaginary extension of Q,
then we know that K = Kr and Φ = Φr. More generally, if K is Galois and Φ is
primitive, (Kr,Φr) = (K,Φ−1).

4.3.3 Type norm map

We proceed to define the type norm map for a CM type Φ of a CM field K.

Definition 4.17. Let K be a CM field and Φ a CM type of K. The type norm map
NΦ : K → Kr is defined by

x 7→
∏
ϕ∈Φ

ϕ(x)

Lemma 4.18. The type norm map is well defined, i.e. its image lies on Kr, the
reflex field of K.

Proof. Let L be the Galois closure of K. In the prove of the equivalent definition of
the reflex field, we saw that Kr ⊂ L. To prove that the image of the type norm lies
on Kr, we only need to see that it is fixed by the elements σ ∈ Gal(L/Kr), which are
the elements in the group H ′ that appeared in the discussion of the definition of the
reflex field using Galois theory. But that is just Proposition 4.14.

Lemma 4.19. Let Φ be a CM type on a CM field K with Galois closure L, and
denote by IK the group of ideals of K. The type norm map induces homomorphisms
NΦ : IK → IKr and NΦ : Cl(K) → Cl(Kr) (on the class group) mapping

a 7→ a′ where a′OL =
∏
ϕ∈Φ

ϕ(a)OL

Note that we have to include the ring of integers of the Galois closure so that the
ideals and their image are both ideals of the same field. For the proof of this lemma,
see [Shi98], proposition 29 in section 8.3.

As it is shown by [Str10] in Lemma 7.2, the reflex field of the reflex field of K is
a subfield of K and in the particular case that Φ is primitive, they are exactly equal
(the reflex type of the reflex type also coincides in this case). Therefore we can also
define a dual type norm map NΦr : Kr → K, which is well defined (and it can also
be extended to an homomorphism of ideals and classes of ideals).

65



CHAPTER 4. COMPLEX MULTIPLICATION

It is not hard to see that

NΦ(x)NΦ(x) = NK/Q(x) for all x ∈ K∗

NΦ(a)NΦ(a) = NK/Q(a) for all a ∈ IK
(4.1)

since the left hand side is the product of the images by all the embeddings of K.
We will use this fact later to see that a certain map is well defined.

Now we proceed to study quartic CM fields. We will motivate why later but they
will be a central object in the chapter.

4.4 Quartic CM fields

The first step is to characterize all the possibilities for quartic CM fields. The totally
real subfield associated to a CM field of degree 4 must be a degree 2 real field, and
therefore, it must be a real quadratic field of the form F = Q(

√
d) for d > 0 (we used

D in the first chapter to avoid the confusion with matrix entries, but for the rest of
the chapter we will use d). Now the CM field K must be equal to F (

√
α) for α ∈ F , a

totally negative element which can be written as α = r+s
√
d for r, s ∈ Q. It turns out

that depending on α there are 3 types of CM extensions (biquadratic, cyclic Galois

and non-Galois), as we will see now. First we distinguish whether K = F (
√
r + s

√
d)

is Galois or not.
If K is Galois there are two possibilities for the Galois group of K as there are

only two groups of order 4. It can be Z/4Z or Z/2Z× Z/2Z.

Case 1: Gal(K/Q) = Z/2Z× Z/2Z.

There exists an element ρ ∈ Gal(K/Q) that corresponds to complex conjugation, and
another element of order 2 that we will call σ. The Galois group is Gal(F/Q) =
{1, σ, ρ, σρ} and contains three subgroups of order 2: G1 = {1, ρ}, G2 = {1, σ},
G3 = {1, ρσ}. The group G1 consists of the elements of K that are fixed by complex
conjugation, so it is Q(

√
d). Since the field fixed by G2 has degree two, it is of the

form Q(
√
a) for some a ∈ Q such that a < 0. If it was positive it would also be fixed

by G1. Now Q(
√
d,
√
a) contains both Q(

√
d) and Q(

√
a) but clearly it is not equal

to any of them since Q(
√
d) is totally real and Q(

√
d,
√
a) is not and

√
d ̸∈ Q(

√
a)

because that would mean
√
d = x + y

√
a =⇒ d = x2 + y2a + 2xy

√
a which is

impossible unless xy = 0. And y = 0 =⇒
√
d ∈ Q, x = 0 =⇒

√
d = y

√
a which is

not real. So we have that K = Q(
√
d,
√
a), and the third subfield of order two must

be Q(
√
ad). The diagram of the corresponding subextensions is given on the left. On

the right we can see the group that fixes each field according to Galois theory.
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Q

F = Q(
√
d) Q(

√
da)Q(

√
a)

K = Q(
√
d,
√
a)

{1, ρ, σ, σρ}

{1, ρ} {1, σ}{1, ρσ}

{1}

Case 2: Gal(K/Q) = Z/4Z.

The group is cyclic so it is generated by one element σ, and Gal(K/Q) = {1, σ, σ2 =
ρ, σ3} (ρ, complex conjugation, must be σ2 because it is the only embedding of order
2). If K = F (

√
α) where α = r + s

√
d, the minimal polynomial of

√
α over Q is a

degree 4 polynomial and the Galois group permutes the roots of this polynomial. It

is not hard to find this polynomial because x =
√
r + s

√
d =⇒ x2 − r = s

√
d =⇒

(x2 − r)2 = s2d =⇒ x4 − 2rx2 + r2 − s2d = 0. It is a monic polynomial with
coefficients in Q of degree 4, and hence it must be the minimum polynomial of α.
The roots of this polynomial are given by

x2 =
2r ±

√
4r2 − 4(r2 − s2d)

2
⇐⇒ x = ±

√
r ± s

√
d

So σ must send
√
α =

√
r + s

√
d to one of the other roots. Since α is totally negative,

it can’t send it to −
√
r + s

√
d because that corresponds to complex conjugation

(σ2 = ρ). It turns out that we can define σ to be the embedding that sends
√
α

to any of the other two options. Let σ(
√
α) = σ(

√
r + s

√
d) =

√
r − s

√
d =

√
α′,

which means that both
√
α and

√
α′ belong to K. Then σ(σ(

√
α)) = −α (since σ2 is

complex conjugation and α is pure imaginary. So σ(
√
α′) = −α.

Case 3: K/Q is not Galois.

In a similar way to the previous case, we get that the roots of the minimal polynomial

of
√
α =

√
r + s

√
d are ±

√
r ± s

√
d. The difference now is that

√
r − s

√
d ̸∈ K (as

this would mean that all the roots belong to K and K would be Galois). Therefore,
F (

√
α) ̸= F (

√
α′). Note that αα′ = r2 − s2d > 0 since α is totally negative and√

r2 − s2d ̸∈ F because then
√
r − s

√
d =

√
r2−s2d√
r+s

√
d
∈ F (

√
r + s

√
d) = K contra-

dicting our assumption. Therefore, Q(
√
αα′) is a quadratic extension different from

F = Q(
√
d)). Let L = Q(

√
α,

√
α′). Then L is normal because so is Q and adjoining

normal elements gives a normal extension (
√
α,

√
α′ are normal because their minimal

polynomial is the one that we have previously seen and decomposes in linear factors
over L because their roots are

√
α,

√
α′,−

√
α,−

√
α′). But since L = K(

√
r2 − s2d)
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because
√
r − s

√
d =

√
r2−s2d√
r+s

√
d
and

√
r + s

√
d already belong to K, we have that

[L : K] = 2 and therefore, [L : Q] = [L : K][K : Q] = 8. The Galois group of L
permutes the 4 elements {±

√
α,±

√
α′}, but not every permutation is valid. It con-

sists of eight automorphisms that map (
√
α,

√
α′) to (±

√
α,±

√
α′), (±

√
α,∓

√
α′),

(±
√
α′,±

√
α) and (±

√
α′,∓

√
α). Gal(L/Q) is isomorphic to D4 the dihedral group

of symmetries of a square. The isomorphism can be realized by letting σ and τ be
the automorphisms that map (

√
α,

√
α′) to (

√
α′,−

√
α) and (

√
α′,

√
α), respectively.

Then Gal(L/Q) is generated by σ and τ and they satisfy σ4 = τ 2 = 1, σ2 = ρ (com-
plex conjugation) and τσ = σ3τ . The subgroup {1, τσ} has order 2 and hence fixes a
subfield of L of degree 4, since (τσ)(

√
α) =

√
α, K = F (

√
α) is the subfield fixed by

{1, στ}.

Note that in the first two cases,
√
α′ ∈ K, so L = F (

√
α,

√
α′) is the Galois

closure of K in all three cases. Then the previous discussion can be summarized in
the following way:

Let F = Q(
√
d) be a real quadratic field. Let K be a CM extension of F , i.e.

K = F (
√
α) where α ∈ F is a totally negative element. Then L = F (

√
α,

√
α′) is the

Galois closure of K and there are three possibilities for the Galois group of L.

Gal(L/Q) =


Z/2Z× Z/2Z, if K/Q is biquadratic

Z/4Z, if K/Q is cyclic

D4, if K/Q is not Galois

It would be nice if we were able to identify in which of the three cases are we just
by looking at α = r+ s

√
d and it turns out that it is possible by the following lemma

Lemma 4.20. Let F̃ = Q(
√
αα′) where α′ is the conjugate of α in F .

(i) K/Q is biquadratic if an only if F̃ = Q

(ii) K/Q is cyclic if an only if F̃ = F

(iii) K/Q is non-Galois if an only if F̃ ̸= F is a real quadratic field.

Proof. We have seen that the three possibilities enumerated in this lemma are all the
possibilities for K. Therefore, we just need to proof the direct implications and we
will automatically have that the converse are true.

If K/Q is biquadratic, α = r ∈ Q (s = 0), so
√
αα′ = α and F̃ = Q.

If K/Q is cyclic, we have that F̃ = Q(
√
r2 − s2d) = Q(

√
αα′) is a real quadratic

field and is a subfield of K = Q(
√
α) = Q(

√
α,

√
α′), but since the Galois group is

cyclic of order 4, there is only one subgroup of order 2, so there is only one subfield of
degree 2, which is fixed by {1, σ2 = ρ}. Therefore F̃ = Q(

√
d) It can’t happen that

F̃ = Q because this would mean that
√
αα′ ∈ Q and then σ(

√
αα′) =

√
αα′. But

we saw in the second case of the discussion that σ is such that σ(
√
α) =

√
α′ and

σ(
√
α′) = −

√
α, so σ(

√
αα′) = −

√
αα′ and

√
αα′ ̸∈ Q.
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If K/Q is not Galois, then F̃ = Q(
√
αα′) is a real quadratic field because αα′ > 0

since α is totally negative. It can’t be Q because then
√
αα′ ∈ Q =⇒

√
α′ ∈ Q(α)

which is not the case in view of the previous discussion. We must see also that
F̃ ̸= Q(

√
d) so we must see that

√
αα′ ̸∈ Q(

√
d). Assume that this is the case for

the sake of contradiction, then
√
αα′ ∈ Q(

√
d) ⊂ K, but

√
α ∈ K =⇒

√
α′ ∈ K

which contradicts that we are in the non-Galois case. Hence F̃ is a real quadratic
field different from F = Q(

√
d).

Thus, we have seen that there are 3 different types of quartic CM fields. The next
step would be to study the possibilities for the CM types of those fields.

4.4.1 Possibilities for the CM type of a quartic CM field

Let K be a quartic CM field. Since its degree over Q is 4, there are 4 complex
embeddings into C which come in conjugate pairs. Therefore we can let the set of
embeddings be {ϕ1, ϕ2, ϕ1, ϕ2}. There are four possible CM types Φ1 = {ϕ1, ϕ2},
Φ2 = {ϕ1, ϕ2}, Φ2 = {ϕ1, ϕ2} and Φ1 = {ϕ1, ϕ2}. We denote the first two by Φ1 and
Φ2 and by an abuse of notation, the others are their conjugates (conjugate of each
element). Note that Φ1 and Φ1 are equivalent (Definition 4.10) and the same happens
for the other two.

Case 1: If K = Q(
√
d,
√
a) for d > 0 and a < 0 is biquadratic, the embeddings

are determined by the images of
√
d and

√
a. We can let ϕ1 be the identity on K and

ϕ2 be such that ϕ2(
√
d) = −

√
d and ϕ2(

√
a) =

√
a and this together with the four

possible pairs of non-conjugate embeddings determines all CM types.
Note that Q(

√
a) ⊂ K is also a CM field with two CM types: {ϕ1|Q(

√
a)} and

{ϕ1|Q(
√
a)}. Φ1 = {ϕ1, ϕ2} is induced by the first one and Φ1 = {ϕ1, ϕ2} by the second

one.
By looking at Q(

√
ad) ⊂ K we find that the other two CM types are induced by

the 2 CM types on Q(
√
ad). Therefore there are two equivalence classes of CM-types

and none of them is primitive.
Case 2: If K = Q(

√
α) is cyclic Galois for α ∈ Q(

√
d) a totally negative element,

the embeddings are determined by the image of
√
α. There is one embedding σ such

that σ(
√
α) =

√
α′. The four possible CM types are all equivalent since Φ1 = {1, σ},

Φ2 = {σ2, σ} = Φ1 ◦ σ, Φ1 = {σ2, σ3} = Φ1 ◦ σ2 and Φ2 = {1 = σ4, σ3} = Φ1 ◦ σ3.
All of them are primitive since K has no proper imaginary quadratic subfield and
therefore the CM types can’t be induced by CM types on proper CM subfields (if it
had an imaginary quadratic subfield it would be fixed by a subgroup of order 2, but
the only such group is {1, σ2} which fixes the real quadratic subfield).

Case 3: If K = Q(
√
α) is non-Galois for α ∈ Q(

√
d) a totally negative element,

the embeddings are also determined by the image of
√
α and by letting ϕ1 be the

identity on K and ϕ2 be such that ϕ2(
√
α) =

√
α′, we get the four possible CM types

Φ1,Φ2,Φ1,Φ2. The difference with the previous case is that ϕ2 is not an automorphism
because K is not Galois, so the equivalence classes of CM types go in pairs again and
Φ1,Φ2 are not equivalent. They are all primitive because as before, K does not
contain a proper CM subfield (it would be an imaginary quadratic extension). It
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doesn’t contain one because it would be a fixed field by a subgroup or order 4 of the
Galois group of L, the Galois closure of K. There are 3 such groups but only one
contains a subgroup that fixes K, therefore only this one can fix a subfield of K.
However the fixed field by this group is the real quadratic subfield Q(

√
d).

In view of the above discussion we see that a CM type (K,Φ) for a quartic CM field
is primitive if and only if K is not biquadratic. This will be an important distinction
to make in the following sections.

4.4.2 Possibilities for reflex field of a quartic CM field

The last step on our study of quartic CM fields is to find their reflex field Kr which
will be useful when we compute the values of modular functions at CM points.

Case 1: If K = Q(
√
d,
√
a) for d > 0 and a < 0 is biquadratic, the elements of

K can be written as λ1 + λ2
√
d + λ3

√
a + λ4

√
ad for λi ∈ Q. Recall that the reflex

field Kr is generated over Q by the elements tr(Φ(x)) for x ∈ K. If Φ = {ϕ1, ϕ2} (as
defined before), the reflex field is generated by elements of the form 2λ1+2λ3

√
a over

Q, so Kr = Q(
√
a). If Φ = {ϕ1, ϕ2}, the reflex field is generated by elements of the

form 2λ1 + 2λ4
√
ad over Q, so Kr = Q(

√
da). Similarly {ϕ1, ϕ2} and {ϕ1, ϕ2} have

Q(
√
ad) and Q(

√
a) as their reflex fields, respectively. Note that if two CM types are

equivalent, then they have the same reflex field because of the definition of the reflex
field as Q

(
{tr(Φ(x))}x∈K

)
.

Case 2: If K = Q(
√
α) is cyclic Galois for α ∈ Q(

√
d) totally negative, the

elements of K can be written as λ1+λ2
√
α+λ3

√
α
2
+λ4

√
α
3
for λi ∈ Q. If Φ = {1, σ}

where σ is such that σ(
√
α) =

√
α′, the reflex field is generated by elements of the

form 2λ1 + λ2(
√
α +

√
α′) + λ3(α + α′) + λ4(

√
α
3
+

√
α′3) over Q. Since 2λ1 and

2λ3(α + α′) ∈ Q, the reflex field Kr is generated by
√
α +

√
α′ and

√
α
3
+

√
α′3 =

(
√
α +

√
α′)(α + α′ −

√
αα′), so it is also the field generated over Q by

√
α +

√
α′

and
√
αα′. By Lemma 4.20, Q(

√
αα′) = Q(

√
d), so Kr is generated by

√
α +

√
α′

over Q(
√
d). But then, since α−α′ ∈ Q(

√
d) and

√
α−

√
α′ = α−α′

√
α+

√
α′ , we have that

the reflex is generated by
√
α+

√
α′,

√
α−

√
α′ and

√
d over Q, so it is generated by√

α,
√
α′ and

√
d. Therefore Kr = Q(

√
α) = K as

√
α′ and

√
d already belong to K.

The other CM types are equivalent of the form Φσ, Φσ2, Φσ3 and since σ is an
automorphism of K, {x | x ∈ K} = {σ(x) | x ∈ K}, so the reflex of all of them is the
same. The totally real subfield of Kr is F r = Q(

√
d).

Case 3: Lastly, if K = Q(
√
α) is non-Galois for α ∈ Q(

√
d) totally negative, and

we consider the CM type Φ = {1, σ} where σ(
√
α) =

√
α′, like in the previous case, we

get that the reflex field is generated by (
√
α+

√
α′) and (

√
α
3
+
√
α′3) or equivalently,

by (
√
α+

√
α′) and (

√
αα′). Now since (

√
α+

√
α′)2 = 2(

√
αα′)+α+α′, we see that

(
√
αα′) ∈ Q(

√
α +

√
α′) so the reflex field Kr = Q(

√
α +

√
α′). And for Φ = {1, σ},

the reflex field is generated by
√
α −

√
α′, α + α′ and

√
α
3 −

√
α′3. The second is

rational, and dividing the third by the first generator, we see that α +
√
αα′ + α′

and
√
α −

√
α′ generate the reflex field Kr. But (

√
α −

√
α′)2 = α + α′ − 2

√
αα′ so√

αα′ adds nothing more and Kr is just Q(
√
α−

√
α′). For the conjugate CM types
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the reflex is the same that for the original CM type. Note that in both cases Kr is a
quartic CM field as x4− 2x2(α+α′)+α2+(α′)2+αα′is the minimal polynomial over
Q of the element that geneartes Kr. The totally real subfield of Kr is F r = Q(

√
αα′).

4.5 Abelian varieties with Complex Multiplication

The importance of CM fields comes from the fact that we can embed them into the
endomorphism ring of abelian varieties with complex multiplication in a similar way
to what happened with elliptic curves and imaginary quadratic fields. For that reason
we need to introduce the basics of abelian varieties. We want get too much into the
geometric details, just a basic notion for completeness.

Definition 4.21. An abelian variety over a field k is a projective variety with a
commutative group law.

When k = C, the abelian variety is isomorphic to a complex torus. More con-
cretely, if A is an n-dimensional abelian variety over C, it is isomorphic to Cn/L
where L ⊂ Cn is a lattice of rank 2n. Note that when n = 1 we are in the case of
elliptic curves and as we have already discussed, they are isomorphic to a complex
torus C/L where L is a lattice in C. For elliptic curves, the converse is also true. Any
complex torus is isomorphic to an elliptic curve. However, this converse is not always
true for dimension n > 1.

Definition 4.22. Let A and B be abelian varities. An homomorphism λ : A → B
is a rational map between A and B that also preserves the group structure (it is a
group homomorphism). When A and B are of the same dimension, we say that λ is
an isogeny. If A = B, it is called an endomorphism.

We denote by Hom(A,B) and End(A) the ring of homomorphisms of A to B
and the ring of endomorphism of A, respectively. When there is an isogeny from
A to B there is also one from B to A, and we say that A and B are isogenous.
This defined an equivalence relation of isogenic varieties. Given an isogeny between
A and B it induces an homomorphism between the complex torus to which A and
B are isomorphic, which is an homomorphism between Cn/L1 and Cn/L2. This
last homomorphism at the same time induces a linear map λ : Cn → Cn such that
λ(L1) ⊂ L2. All those induced correspondences can be summarized by the following
isomorphism:

Hom(A,B) ∼= {M ∈Mn(C) |ML1 ⊂ L2}

where Mn(C) is the set of n× n matrices with coefficients in C.
Recall that we said that when n > 1, the complex torus Cn/L does not always

define a projective variety, but this fact is true if there exists a Riemann form on
Cn/L.

Definition 4.23. A bilinear form E(x, y) with values in R is a Riemann form on
Cn/L if it satisfies
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(i) E(x, y) ∈ Z for all x, y ∈ L

(ii) E(x, y) = −E(y, x)

(iii) (x, y) 7→ E(ix, y) is a positive symmetric form (not necessarily strictly positive,
it can be degenerate)

If a torus has a Riemann form, we say that is polarized and in this case it is true
that the complex torus is isomorphic to an abelian variety. There are other ways to
define a polarization for a generic abelian variety when we don’t have the isomorphism
with a complex torus, but we are not going to get into this geometric details.

Now that we have the basic facts that we will need about abelian varieties and
their endomorphism rings, we can start with the definitions related to Complex Mul-
tiplication. The endomorphism ring of an abelian variety A always has dimension
lower or equal to 2 dim(A). In the cases where equality holds, the abelian variety has
Complex Multiplication. The precise definition is the following one.

Definition 4.24. Let K be a CM field of degree 2n. An abelian variety A of di-
mension n has CM by K if there is an embedding ι : K → End(A) ⊗ Q. We
sometimes just refer to the abelian variety A but we can also say that the pair (A, ι)
has complex multiplication by K when we want to make explicit the embedding ι
from K into End(A)⊗Q. We say that (A, ι) has CM by OK if the same holds with
ι−1(End(A)) = OK .

Note that we don’t need i to determine if an abelian variety has CM, as all the
information is needed is included in A, but when we have a pair (A, ι), ι contains the
information of how we embed K into End(A)⊗Q. Once this is clear, it makes sense
to define abelian varieties (A, ι) with CM of type (K,Φ) for a certain CM-type.

Definition 4.25. We say that (A, ι) has type (K,Φ) if it has CM by K and the
representation of End(A)⊗Q is equivalent to the direct sum ϕ1⊕ϕ2⊕ . . .⊕ϕn of the
n embeddings in the CM type, that is when we view End(A) as a matrix in Mn(C),
it can be diagonalized and the components in the diagonal are the images by the Φ.

Let our abelian variety be defined over k and denote by k its algebraic closure.
For an element σ ∈ Gal(k/Q) we define

σι : K → End(τA)⊗Q
x 7→ σ(ι(x))

And we write σ(A, ι) for the variety (σA, σι). From the definition we get the following
Lemma ([Str10], Lemma 4.2 in chapter 1).

Lemma 4.26. If σ ∈ Gal(k/Q) and (A, ι) has type Φ, σ(A, ι) has type σΦ.

Definition 4.27. An abelian variety A is called simple if it is not isogenous to a
product of lower-dimensional abelian varieties.
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Theorem 3.5 in chapter 1 of [Lan83] states that a CM type is primitive if and only
if the abelian varieties whose endomorphism algebra is K is simple. In the quartic
CM field case, the variety is not simple if and only if K is biquadratic. In this case,
since we must have 2 dim(A) = 4 = dim(K) for an abelian variety A to have complex
multiplication by K, we must have that A is a product of two elliptic curves. As
we pointed out before, this will be an important distinction to make in the following
sections.

4.6 Moduli space of abelian surfaces with CM

Recall that SL2(Z)\H parametrizes isomorphism classes of elliptic curves. This fact
allowed us to evaluate the modular function j at the points corresponding to those
elliptic curves and get the nice algebraic numbers that we already discussed. Similarly,
we need a result that relates classes of abelian varieties with CM with points in a
modular surface. If we consider the Hilbert modular surface Y (ΓF ) = SL2(OF )\H2, a
result by Goren ([Gor02]) states that it parametrizes classes of triples (A, ι,m) where

(i) A is an abelian surface over C

(ii) ι : OF → End(A) is a real multiplication by OF

(iii) m : (PA, P
+
A ) → (d−1

F , d−1,+
F ) is an OF -linear isomorphism between the polariza-

tion module PA = Homsym
OF

(A,A∨) of A and d−1
F , taking the positive elements

to the positive elements.

An abelian variety A of dimension n has real multiplication when we can embed a
totally real field F of degree n into End(A)⊗Q. So if an abelian variety has complex
multiplication by a CM field, it has real multiplication by its totally real subfield
which menas that principally polarized abelian varieties with complex multiplication
by OK are a special case of principally polarized abelian varieties with real multipli-
cation by OF , so we can identify principally polarized abelian surfaces with complex
multiplication with a subset of Y (ΓF ). We don’t focus too much on the details about
the third part of the statement. We just need to know that we work with principally
polarized abelian surfaces and we can think of it in terms of the Riemann form of
Definition 4.23.

Now that we saw this result we can see why we focused on quartic CM fields:
because the Hilbert modular surface parametrizes abelian surfaces (with some extra
conditions) and those have complex multiplication by a quartic CM field. Therefore
from now, we will just focus on principally polarized abelian surfaces with CM and
quartic CM fields and abandon any more general notion of those concepts. Further-
more, for simplicity we will assume that the totally real subfield of our quartic CM
field has narrow class number 1 although many things still work in more general cases.
We do this assumption as the numerical computations that we will perform will be
for those cases and proving some results is much easier.
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4.7 CM points

We now introduce the definition of CM points for quartic CM field of narrow class
number 1. There are two equivalent definitions, one given by the previous result and
another related to ideals of K.

Definition 4.28. Let Φ = (ϕ1, ϕ2) be a CM type ofK. We call a point z = (A, ι,m) ∈
Y (ΓF ) a CM point of type (K,Φ) if one of the following two equivalent conditions is
satisfied:

(i) There exists τ ∈ K such that Φ(τ) = (ϕ1(τ), ϕ2(τ)) = z as a point in H2 and
OF + τOF is a fractional ideal of K.

(ii) (A, ι) is an abelian variety of type (K,Φ) with CM by ι′ : OK ↪−→ End(A) such
that ι = ι′|OF

.

Sometimes we will make an abuse by calling both z ∈ H2 and τ ∈ K CM points,
but it will be clear to what of the two objects we are refering when we do this.

Definition 4.29. A CM cycle of type (K,Φ) is the 0-cycle in Y (ΓF ) of CM points
of type (K,Φ). It is denoted by CM(K,Φ,OF ).

In the next section we will see how to relate the two equivalent definitions. More
precisely, we will see how to relate CM points (thought as principally polarized abelian
surfaces with complex multiplication) with ideals of K and from here we will see how
we can represent those principally polarized abelian surfaces by points of Y (ΓF ) =
SL2(OF )\H2 (how to explicitly obtain the coordinates).

4.8 Abelian surfaces with CM by OK

For this section we mainly follow [Str10].
Let Φ = (ϕ1, ϕ2) be a primitive CM-type for a quartic CM field K. Let a be a

fractional ideal of OK . Then, since [K : Q] = 4, the ideal a has dimension 4 over Z
and so does Φ(a) = (ϕ1(a), ϕ2(a)) since it is completely determined by a. Since the 4
elements that generate a over Z are linearly independent, we can consider the lattice
Φ(a) and the quotient C2/Φ(a) which is a complex torus and an abelian surface. Let
D−1

K be the inverse of the different ideal of K. That is

D−1
K = {x ∈ K | trK/Q(xOK) ⊂ Z}

Assume that the ideal (aaDK)
−1 is principal and generated by an element ξ ∈ K,

such that Φ(ξ) ∈ (iR+)2 (the positive imaginary axis). Consider the map EΦ,ξ :
C2 × C2 → R defined by

EΦ,ξ(z, w) = ϕ1(ξ)(z1w1 − z1w1) + ϕ2(ξ)(z2w2 − z2w2)

It clearly satisfies EΦ,ξ(z, w) = −EΦ,ξ(w, z) and

(z, w) 7→ EΦ,ξ(iz, w) = −iϕ1(ξ)(z1w1 + z1w1)− iϕ2(ξ)(z2w2 + z2w2)
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is symmetric and satisfies

(z, z) 7→ EΦ,ξ(iz, z) = −2iϕ1(ξ)(z1z1)− 2iϕ2(ξ)(z2z2) > 0

because zjzj is just the norm of a complex number and Φ(ξ) ∈ (iR+)2. Furthermore,
the restriction of EΦ,ξ to Φ(K)×Φ(K) gives a map EΦ,ξ : Φ(K)×Φ(K) → Q defined
by

EΦ,ξ(Φ(α),Φ(β)) = ϕ1(ξ)ϕ1(αβ − αβ) + ϕ2(ξ)ϕ2(αβ − αβ) = trK/Q(ξαβ)

for α, β in K, and it is integer valued on Φ(a) × Φ(a) because since ξ generates
(aaDK)

−1, any element of the form ξαβ for α, β ∈ a is in D−1
K and by the definition,

its trace is integral. Therefore, EΦ,ξ defines a Riemann form on C2/Φ(a) (and therefore
a principal polarization).

The principally polarized abelian surface A(Φ, a, ξ) := (C2/Φ(a), EΦ,ξ) has com-
plex multiplication by OK and conversely, any abelian surface with complex mul-
tiplication by OK is isomorphic to A(Φ, a, ξ) for some triple (Φ, a, ξ) (see [Str10]
Theorem 5.2 in chapter 1). Two principally polarized abelian surfaces of the same
type A(Φ, a1, ξ1) and A(Φ, a2, ξ2) are isomorphic if there exists λ ∈ K∗ such that
a2 = λa1 and ξ2 = (λλ)−1ξ1. This result is true even if Φ is not primitive but the
converse is only true when Φ is primitive, so in the biquadratic case we may have
isomorphic principally polarized abelian surfaces with CM by OK , A(Φ, a1, ξ1) and
A(Φ, a2, ξ) such that a λ satisfying the previous relation doesn’t exist (that’s also
Theorem 5.2 in [Str10]).

Two principally polarized abelian surfaces of different types A(Φ1, a1, ξ1) and
A(Φ2, a2, ξ) are isomorphic if there exists σ ∈ Aut(K) such that Φ1 ◦ σ = Φ2 and
A(Φ1, σ(a2), σ(ξ2)) is isomorphic to A(Φ1, a1, ξ1). We say that two pairs (Φ1, a1, ξ1)
and (Φ2, a2, ξ2) are equivalent when they give rise to isomorphic principally polarized
abelian surfaces.

Now it is starting to be clear how we can relate classes of principally polarized
abelian surfaces with classes of ideals of K, because every polarized abelian surface
is isomorphic to A(Φ, a, ξ) for some a. However, it could be the case that for two
principally polarized abelian varieties A(Φ, a1, ξ1) and A(Φ, a2, ξ2) such that a1 and
a2 are in the same ideal class no λ ∈ K∗ relating the two existed, and they would not
be isomorphic. We can always choose λ ∈ K∗ so that a2 = λa1 but maybe the choice
does not give ξ2 = (λλ)−1ξ1, so we need some result that assures us that this is always
the case, and therefore an ideal class will be associated to just one isomorphism class
of principally polarized abelian varieties with CM by OK . We will prove this when
the narrow class number of F , the totally real subfield of K is 1 and from now on we
will always assume this.

Proposition 4.30. Assume that K is a quartic CM field with totally real subfield
F of class number 1 and that Φ is a CM type of K. Then the principally polarized
abelian varieties A(Φ, a1, ξ1) and A(Φ, a2, ξ2) are isomorphic if a1 and a2 are in the
same ideal class (the result is still true is the CM type is not primitive).
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Proof. Choosing a proper λ, we can get an A(Φ, a1, ξ
′) isomorphic to A(Φ, a2, ξ2).

But then from the fact that ξ1 and ξ′ generate the same ideal we know that they
are related by a unit u ∈ O∗

K (ξ1 = uξ′). Since Φ(ξ1) ∈ (iR+)2 and Φ(ξ′) ∈ (iR+)2,
this unit has to be real, and hence from O∗

F . But now, this unit has to be totally
positive because since restricting Φ to F gives the two possible embeddings of F , we
wouldn’t have Φ(ξ1) ∈ (iR+)2 and Φ(uξ′) ∈ (iR+)2 if this wasn’t the case. But then
if ξ1 = uξ′ for a totally positive unit, u must be a square of a unit (the narrow class
number 1 assumption assures that the fundamental unit has norm −1) and there
exists λ ∈ O∗

F ⊂ K such that a1 = λa1 and ξ1 = (λλ)−1ξ′ = λ−2ξ′, so they are
isomorphic. And so are A(Φ, a1, ξ1) and A(Φ, a2, ξ2).

Note also that it is not necessarily the case that to each ideal class we can associate
an isomorphism class of abelian varieties, because for this to happen we need the
additional condition that (aaDK)

−1 is principal. Actually, if F does not have class
number 1, there are some classes of ideals such that (aaDK)

−1 is not principal. The
total number of pairs (Φ, A) such that Φ is a CM type and and A an isomorphism
class of principally polarized abelian varieties with CM by OK and type Φ is

hK
hF

|O∗
F/NK/F (O∗

K)|

where hk, hF are the class numbers of K and F , respectively. That’s Proposition
5.3 in Chapter 1 in [Str10]. But in the case where F has narrow class number 1 (in
particular has class number 1) (aaDK)

−1 is always principal and we have a bijection
between classes of ideals ofK and isomorphism classes of principally polarized abelian
varieties with CM by OK of a fixed type. That it is always principal comes from two
facts that DK is principal by a straightforward application of Theorem 4 in [Wam99]
because F has class number 1. And that looking at prime ideals p dividing a and
considering whether (p ∩ F )OK splits, ramifies or it is inert, we can see that in all
cases pp is principal.

Therefore, this section gives sense to the definition of CM point that we gave
before. The only thing that’s left is to see that there exists a τ ∈ K such that
Φ(τ) ∈ H2 and OF + τOF is an ideal in the same class of a.

A similar result (but not the same) is true for any totally real field F , but recall
that we were focusing on the case were F has narrow class number 1.

Lemma 4.31. Given a class of pairs [a, ξ] representing an abelian variety with CM
by (K,Φ), there is a decomposition

a = αOF + βOF

such that τ = α
β
∈ K∗ satisfies Φ(τ) ∈ H2 and z = Φ(τ) represents the class [a, ξ] in

Y (ΓF ).

Proof. Since a is a projective module of rank 2 over the Dedekind domain OF , there
exist α, β ∈ K∗ such that

a = αOF + βOF
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Note that (a/β, (ββ)ξ) ∈ [a, ξ] so the ideal

a

β
=
α

β
OF +OF

gives rise to an abelian surface in the same isomorphism class. Now consider y =
α/β ∈ K∗ and the four elements in K∗ in the set {±y,±yε0} where ε0 is the funda-
mental unit of F (which has norm −1 because of the narrow class number 1 assump-
tion). Then for any τ ∈ {±y,±yε0}, τOF +OF is the same ideal a/β and one of the
elements satisfies the condition that Φ(τ) ∈ H2. That’s true because since the two
embeddings are not complex conjugate, when restricted to F they give the two real
embeddings. Therefore ϕ1(ε0)ϕ2(ε0) = −1, which means that ϕ1(ε0) and ϕ2(ε0) have
different signs. Now if ℑ(ϕ1(y)),ℑ(ϕ2(y)) have the same sign, we do nothing. Other-
wise we consider yε0, and the embeddings give the same sign for the imaginary part.
If it is positive, we found the desired τ . Otherwise we multiply it by −1. In any case
we proved that the τ from the statement exists. Since the abelian variety A(Φ, a, ξ)
is isomorphic to A(Φ, a/β, ββξ), z = Φ(τ) represents the class [a, ξ] in Y (ΓF ).

From the fact that the Hilbert modular surface parametrizes abelian varieties with
real multiplication (of which complex multiplication is a particular case) and the way
we found to represent them with coordinates in H2, we gave sense to the definition of
CM point of type (K,Φ) for a CM field K of degree 4. Moreover, since the Hilbert
modular surface is the quotient of H2 by the action of SL2(OF ), we expect that two
fractional ideals of OK of the form τ1OF +OF and τ2OF +OF are in the same ideal
class if and only if Φ(τ1) and Φ(τ2) are equivalent under the action of SL2(OF ). We
can check that with straightforward computations:

When we restrict the two embeddings of the same type to F we get the two totally
real embeddings of F . Without loss of generality assume that ϕ1|F = id, so that ϕ2|F is

the conjugation in F . Then we have (ϕ1(τ1), ϕ2(τ1)) =

(
xϕ1(τ2) + y

zϕ1(τ2) + t
,
x′ϕ2(τ2) + y′

z′ϕ2(τ2) + t′

)
=(

ϕ1

(
xτ2 + y

zτ2 + t

)
, ϕ2

(
xτ2 + y

zτ2 + t

))
for

(
x y
z t

)
∈ SL2(OF ), so Φ(τ1) and Φ(τ2) are

equivalent under the action of SL2(OF ) if and only if τ1 and τ2 are equivalent under the
action of SL2(OF ). But if τ1 =

xτ2+y
zτ2+t

, then the ideals a1 = τ1OF +OF = xτ2+y
zτ2+t

OF +OF

and a2 = τ2OF+OF are in the same equivalence class. More concretely with have that
(τ2z+t)a1 = a2 as fractional OK-ideals. The inclusion (τ2z+t)a1 ⊂ a2 is clear because
for every a, b ∈ OF , (xτ2 + y)a+ (zτ2 + t)b = τ2(xa+ zb) + ya+ tb ∈ τ2OF +OF . For
the other inclusion, we just need to see that for every a, b ∈ OF , there exist r, s ∈ OF

such that (xτ2+ y)r+(zτ2+ t)s = τ2a+ b. But this is equivalent to having a solution
of (

x z
y t

)(
r
s

)
=

(
a
b

)
for every pair a, b ∈ OF . And that’s true because ( x z

y t ) is invertible for being the
transpose of an element in SL2(OF ) (and hence an element of SL2(OF )).

Conversely, if τ1OF +OF and τ2OF +OF are in the same ideal class, we have that
τ1OF + OF = λ(τ2OF + OF ) for some λ ∈ K∗. That means that xτ1 + y = λτ2 ∈
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has a solution for x, y ∈ OF and the same for zτ1 + t = λ. Dividing the first by the
second one, we get that there exist x, y, z, t ∈ OF such that: τ2 =

xτ1+y
zτ1+t

. Analogously,

we get that there exist a, b, c, d ∈ OF such that τ1 =
aτ2+b
cτ2+d

. Therefore,(
x y
z t

)
=

(
a b
c d

)−1

and the matrices are each other’s inverse and have coefficients in OF , so they are in
GL2(OF ).

Note that we know that the two matrices above have totally positive determinant
because, from the fact that Φ(τ1),Φ(τ2) ∈ H2, we know that ϕj(τ1) and ϕj(τ2) have
the same sign for the imaginary part for ϕj ∈ Φ. But we have

ℑ(ϕj(τ1)) = ℑ(aϕj(τ2) + b

cϕj(τ2) + d
) = ℑ((aϕj(τ2) + b)(cϕj(τ2) + d)

(cϕj(τ2) + d)(cϕj(τ2) + d)
) =

= ℑ((aϕj(τ2) + b)(cϕj(τ2) + d)

|cϕj(τ2) + d|2
) = ℑ(ac|ϕj(τ2)|2 + adϕj(τ2) + bcϕj(τ2) + bd

|cϕj(τ2) + d|2
) =

=
ℑ(ac|ϕj(τ2)|2 + adϕj(τ2) + bcϕj(τ2) + bd)

|cϕj(τ2) + d|2
=

ℑ(adϕj(τ2) + bcϕj(τ2))

|cϕj(τ2) + d|2
=

=
1

|cϕj(τ2) + d|2
ℑ(adϕj(τ2)− bcϕj(τ2)) =

(ad− bc)ℑ(ϕj(τ2))

|cϕj(τ2) + d|2

which means that ϕ1(τ1) and ϕ1(τ2) have the same sign if and only if the determinant
is positive. But now, doing the same for ϕ2 and the conjugate matrix in F , we get
that a′d′ − b′c′ is also positive, so the determinant is totally positive, and invertible,
and therefore it is a square of the fundamental unit (call it ε2k0 ). That means that(

a/εk0 b/εk0
c/εk0 d/εk0

)
∈ SL2(OF )

and gives the same action that ( a b
c d ), so τ1 and τ2 are SL2(OF )-equivalent.

So far we have seen that each ideal class of K determines a unique CM point in
SL2(OF )\H2, so the number of CM points in a cycle is equal to the class number of
K, and if we consider them as points in τ ∈ K, then each τ of the CM cycle generates
gives an ideal OF + τOF in a different class of the ideal class group.

The interest on CM cycles comes from a result of Shimura (which is usually known
as the first Main Theorem of Complex Multiplication and that we will see shortly)
that tells us the fact that the field of moduli for CM(K,Φ,OF ) is the reflex field Kr,
so evaluating certain modular functions at CM cycles gives values Kr. Furthermore,
this result also tells us that evaluating modular functions at a unique CM point gives
values in an algebraic extension of Kr. When we evaluate a modular function at all
the possible CM cycles (for a fixed K we consider the cycle for each possible CM
type) and multiply the results, those numbers are rational numbers. Sometimes, we
even get integers with nice factorizations (integers with lots of divisors).
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Remark 4.32. When we say certain modular functions it is because not any modular
function works. For instance if f is a modular function whose values at certain points
are algebraic, then πf is also a modular function and now its values at the same
points are obviously not algebraic. Therefore, those modular forms have to be of a
especial form. We want them to be a rational function on SL2(OF )\H2. We will not
get into the details of what this means because it would be really tedious, but the
remark is necessary. For our purposes, we just need to know that the functions we
will use (quotients of Borcherds lifts) satisfy those assumptions, and their values at
CM points will be algebraic.

4.8.1 First Main Theorem of Complex Multiplication

Here we state the first Main Theorem of Complex Multiplication in the words of
Shimura (it can be found [Shi98], page 112, Main Theorem 1).

Theorem 4.33. Let (K,Φ) be a primitive CM type and (Kr,Φr) be its reflex. Let
H be the group of all the ideals a of K such that there exists an element µ ∈ Kr

such that NΦ(a) = (µ) and N(a) = µµ where N(a) is the ideal norm. Let (A, i) be
an abelian variety with CM by OK and C a polarization of A. Let k0 be the field of
moduli of (A, C). Then H is an ideal group of K and the composite of the fields k0
and Kr is the unramified class field over Kr corresponding to the ideal group I/H
where I denotes the set of all the ideals of K.

We don’t get into the details of what is the field of moduli that appears in the
statement, because we are not really interested in that part of the Theorem. We just
need to know that there exits some number field k0, and not exactly how it is defined
(it is the fixed field by the group of automorphisms that when applied to an abelian
variety give another that is isomorphic).

The proof of this Theorem contains the explicit Galois action which we will discuss
in the next section. But we wanted to state the theorem before to do the following
remark.

Remark 4.34. One of the hypothesis of the Theorem is that the CM type is primitive.
However, a year later, in [Shi62], Proposition 1, Shimura proved that this condition is
not necessary. Therefore, it is still true that for a biquadratic CM field we get values
on the reflex field when we evaluate modular functions on the CM cycle. Since the
original prove was not meant for this case, in the following discussion of the Galois
action we will still consider the CM type to be primitive, but the main result it is
still valid as we will check when we compute the values of modular functions at the
end of the chapter.

4.8.2 The Shimura class group and the CM-action

Now we can discuss the CM action on the proof of the first Main Theorem of Complex
Multiplication.
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LetK be a primitive quartic CM-field (all its CM-types are primitive) and let Φ be
a CM-type of K. Also let A be a principally polarized abelian surface with complex
multiplication by OK of CM-type Φ. Denote by F the real quadratic subfield of K.

We define a group C(K) called the Shimura class group as

{(a, α) | a is a fractional OK-ideal with aa = (α) and α ∈ F is totally positive}/ ∼

where the equivalence relation is the following: Two pairs (a, α) and (b, β) are equiva-
lent if and only if there exists an element u ∈ K∗ such that b = ua and β = uuα. The
multiplication in the group is defined component wise, i.e. (a, α) · (b, β) = (ab, αβ),
so the class of (OK , 1) is the neutral element of C(K).

We can define a natural action of C(K) on CM(K,Φ,OF ), the set of isomorphism
classes of principally polarized abelian surfaces that have CM by OK of a fixed CM-
type Φ in the following way:

(b, β) · A(Φ, a, ξ) = A(Φ, b−1a, βξ)

Note that since ξ is a generator of (aaDK)
−1, βξ is a generator of β(aaDK)

−1 =
(b−1ab−1aDK)

−1 and from the fact that β is totally positive, we have Φ(βξ) ∈ (iR+)2

so the action is well defined (it is also compatible with the equivalence relations we
defined). For every pair of principally polarized abelian surfaces A(Φ, a1, ξ1) and
A(Φ, a2, ξ2) there exists a unique class in the Shimura class group that sends one to
the other, so the action is regular ([Shi98], section 14.6) The class is explicitly given

by (a−1
2 a1, α̃) where α̃ is the totally positive generator of a−1

2 a1a
−1
2 a1.

Consider the natural map induced by the type norm map m : Cl(Kr) → C(K)
defined by

b 7→ (NΦr(b), N(b))

This map is well defined by equation (4.1) below the definition of the type norm map.
By Class Field Theory, if we let HKr be the Hilbert Class Field of Kr, we have

the following isomorphism:

Gal(HKr/Kr) ∼= Cl(Kr)

which induces a map m : Gal(HKr/Kr) → C(K). This map doesn’t need to be
injective, but has a kernel H. By [Shi98] this kernel H consists of the elements
that fix the field of moduli k0 of any abelian variety of type (K,Φ) and the quotient
of Gal(HKr/Kr) with H gives an injective homomorphism between Gal(k0K

r/Kr)
and C(K). With this injective map and the action of C(K) on CM(K,Φ,OF ), we
have described the Galois action of Gal(k0K

r/Kr) on CM(K,Φ,OF ). There exist
examples where the kernel H described above is not trivial, which means that the
composite of Kr and k0 doesn’t generate the whole Hilbert Class field.

Thanks to the action of the Shimura class group we know that CM(K,Φ,OF ) is
defined over Kr, so the values of Hilbert modular functions (that are rational over
the Hilbert modular surface) on CM points of CM(K,Φ,OF ) lie on Kr (thanks to
Remark 4.34 that is also true in the biquadratic case). However, we can say even
more.
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Lemma 4.35. Let Φ be a primitive CM type of a CM field K and let σ ∈ Aut(K).
Then

CM(K,Φ,OF ) = CM(K,Φ ◦ σ,OF )

In particular, since complex conjugation define an automorphism,

CM(K,Φ,OF ) = CM(K,Φ,OF )

Proof. Let [a, ξ] ∈ CM(K,Φ,OF ), then by Lemma 4.31 we have that

a = αOF + βOF

with z = Φ(α/β) ∈ H2 and z represents the class [a, ξ] in Y (ΓF ). We have that

σ−1(a) = σ−1(α)OF + σ−1(β)OF

and (Φ ◦ σ)(σ−1(α)/σ−1(β)) = Φ(α/β) = z. We have σ(D−1
K ) = D−1

K because any
automorphism fixes the ring of integers and the trace of an element is the trace of the
image of the same element by any automorphism (the automorphism permutes the
embeddings). Since ξ generates (aaDK)

−1, σ−1(ξ)u generates (σ−1(a)σ−1(a)DK)
−1

where u is any unit of K∗. And u can be chosen so that Φ(σ−1(ξ)u) ∈ (R+)2 (in an
analogous way to what we did in Lemma 4.31).

Therefore [a, ξ] for the type Φ and [σ−1(a), σ−1(ξ)u] for the type Φ ◦ σ give the
same point z ∈ Y (ΓF ). Since the map a 7→ σ−1(a) is an automorphism on the ideal
class group, we have

CM(K,Φ,OF ) = CM(K,Φ ◦ σ,OF )

As we said before, for a fixed CM type Φ, CM(K,Φ,OF ) is defined over Kr (even
in the non-primitive case). Assume that Φ is primitive and let Q be the algebraic clo-
sure of Q. Then CM(K,Φ,OF ) is fixed by Gal(Q/Kr). Proposition 5.5 in chapter 3 of
[Lan83] states that A(Φ, a, ξ) = A(Φ, a, ξ), so complex conjugation on CM(K,Φ,OF )
just permutes the elements, which means that CM(K,Φ,OF ) is fixed by Gal(Q/F r)
and the cycle is defined over F r the totally real subfield corresponding to Kr.

But we can say even more. In the non-Galois case we have two equivalence classes
of CM types (let’s call Φ1 and Φ2 its representatives). We know that CM(K,Φ1,OF )
and CM(K,Φ2,OF ) are both defined over F r. If we pick σ ∈ Gal(Q/Q) such that σ
is not trivial on F r, then the CM type σ ◦Φ1 is equivalent to Φ2 and by Lemma 4.26
we have that σCM(K,Φ1,OF ) = CM(K, σ ◦Φ1,OF ) = CM(K,Φ2,OF ). So they are
Galois conjugate to each other.

In the Galois case we have that all the CM types are equivalent and by Lemma
4.35, for an automorphism σ ∈ Gal(Q/Q), we have that σCM(K,Φ,OF ) = CM(K, σ◦
Φ,OF ) = CM(K,Φ,OF ) which means that CM(K,Φ,OF ) is defined over Q. The
last equality is true because σ ◦Φ is also a CM type (we don’t need to specify which
one) and therefore it is equivalent to Φ. Note that in the usual definition of equiv-
alence, σ acts on the right, so we must check that σ ◦ Φ is a CM type. But that is
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true as long as σ ◦ ϕ1 ̸= ρ ◦ σ ◦ ϕ2 where ρ denotes complex conjugation. But since ρ
commutes with any automorphism of K because K is a CM field (Proposition 4.5),
we have that

σ ◦ ϕ1 ̸= ρ ◦ σ ◦ ϕ2 ⇐⇒ σ ◦ ϕ1 ̸= σ ◦ ρ ◦ ϕ2 ⇐⇒ ϕ1 ̸= ρ ◦ ϕ2

which is true because Φ is a CM type.
Summarizing we have the following. There are 3 possibilities for quartic CM fields

K:

• IfK is Galois, the 4 CM types are equivalent and the 4 CM cycles CM(K,Φ,OF )
are the same and defined over Q

• If K is non-Galois, there are two classes of equivalent CM types (let’s call one
representative of each Φ1 and Φ2). The two CM cycles CM(K,Φ1,OF ) and
CM(K,Φ2,OF ) are defined over F r and are Galois conjugate to each other,
which means that CM(K,Φ1,OF ) + CM(K,Φ2,OF ) is defined over Q.

• If K is biquadratic there are two classes of equivalent CM types. The CM
cycles CM(K,Φ1,OF ) and CM(K,Φ2,OF ) are defined over Kr (which is an
imaginary quadratic field that depends on the CM type Φ).

Now, that we have all the theory that we need we can start with the computational
part. We will first see the algorithm to enumerate all the CM points of a given type
for a quartic CM field and then we will evaluate modular functions on them using the
algorithm in the end of Chapter 3. We will also comment the results obtained and
relate them to the theory.

4.9 Algorithm to enumerate all CM points of a

given type for a quartic CM field

In this section we describe the algorithm in [Cas14] which is a modification of the one
given by [Str10] to compute all CM points in the cycle CM(K,Φ,OF ).

A quartic abelian CM field K = F (
√
α) (α ∈ OF ) is given where F = Q(

√
d) for

d > 0 is a totally real quadratic field of narrow class number equal to 1 and α ∈ OF

is totally negative.
The algorithm outputs representatives for CM(K,Φ,OF ). As we have seen so

far, it is enough for our algorithm to output a list z1, z2, . . . , zh (where h is the class
number of K) such that the h ideals zjOF +OF are representatives of the h distinct
equivalence classes in the ideal class group of K and Φ(zj) ∈ H2. The steps are of
the algorithm are:

1. Compute representatives for the ideal class group of K.

2. Compute an integral base forOK and write each element on the base as xi+
√
αyi

where xi, yi ∈ F .
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3. Compute all elements a ∈ OF up to multiplication by (O∗
F )

2 such that

|NF/Q(a)| ≤ p
√

|NF/Q(α)|
6

π2

4. Compute a set of representatives Sa of OF/(a)

5. For every pair (a, b) and every pair (xi, yi) computed in step 2, check if yia, xi+
yib, xi − yib, yi

α−b2

a
∈ OF . Remove those pairs that don’t satisfy at least one of

the conditions.

6. For every pair (a, b) that is left, let

z =

√
α− b

a

be the candidate to be a CM point. Check if Φ(z) ∈ H2 for our CM type and
if we don’t have yet any CM point for the ideal class of OF + zOF . If so, add
z to the list of CM points and continue for the other ideal classes until we have
one point for each class.

The logic behind the algorithm is the following. If α ∈ OF , then there exists a
monic polynomial p(x) of degree 2 that has α as one of its roots. Then p(x2) is a monic
polynomial of degree 4 with

√
α as one of its roots, which means that

√
α ∈ OK . For

every ideal class of OK there is one representative that can be written as zOF +OF for
z ∈ K such that Φ(z) ∈ H2 (that’s just Lemma 4.31). If for some such z, zOF +OF

is an OK-ideal, then since 1 ∈ OF and (zOF + OF )OK = zOF + OF , we have that
OK ⊂ zOF + OF which means that

√
α ∈ zOF + OF . Therefore,

√
α = za + b for

a, b ∈ OF and z can be chosen of the form

z =

√
α− b

a

for a, b ∈ OF . But note that z and z+ c for c ∈ OF are equivalent under the action of
SL2(OF ) so they give the same CM point class, and therefore b can be chosen in the
set of representatives of OF/(a). Furthermore, transforming z by

(
ε 0
0 ε−1

)
∈ SL2(OF )

where ε ∈ O∗
F we see that a can be chosen in a fundamental domain for multiplication

by (O∗
F )

2. Streng proves that there exists an a in a certain fundamental domain and
elements in this domain satisfiy the inequality of step 3 (Lemma 6.5 in Chapter 2 of
[Str10]). There are infinitely many values of a that satisfy the inequality, but finitely
many if we pick all the a’s in a fundamental domain for multiplication by (O∗

F )
2.

Step 6 is clear as we just need to choose one z such that Φ(z) ∈ H2 for each ideal
class of K (that’s why we compute representatives in step 1). The only step that is
not so clear is 5 and it is in the algorithm for the following reason. For a given z ∈ K
there is no guarantee that zOF + OF is an OK-ideal. The sum of two elements is
clearly inside it but it is not clear that (zOF +OF )OK = zOF +OF holds. Clearly,
the inclusion (zOF + OF )OK ⊃ zOF + OF is true, but the other does not need to
be true. Note that in step 2 we compute an integral basis of OK , so it is enough to
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check that (zOF +OF )(xi+ yi
√
α) ⊂ zOF +OF for the elements of the integral basis

of OK . Actually it is a necessary condition that z(xi + yi
√
α) = zr + s for r, s ∈ OF

and (xi + yi
√
α) = zr + s for different r, s ∈ OF both hold. But this condition is

also sufficient because then every OF -linear combination will satisfy it. By writting
z =

√
α−b
a

from (xi + yi
√
α) = zr + s we get

xi + yi
√
α =

√
α− b

a
r + s ⇐⇒ axi + ayi

√
α =

√
αr − br + as

And the parts with
√
α multiplying must coincide so we deduce the value of r and

substituting it we get the value of s: ayi = r and xi + byi = s. Since r and s where
any values in OF , we just get as necessary conditions ayi, xi + yib ∈ OF . Doing the
same with the other necessary condition we get

√
α− b

a
(xi+yi

√
α) =

√
α− b

a
r+ s ⇐⇒ (

√
α− b)(xi+yi

√
α) =

√
αr− br+ sa ⇐⇒

⇐⇒
√
αxi + yiα− bxi − byi

√
α =

√
αr − br + sa

from where we get xi − byi = r and substituting the value of r we get that yi(α −
b2)a−1 = s, giving the 2 other conditions in step 5.

Regarding the implementation, most of the steps can be done straightforward
using SageMath methods. The trickiest part is step 3. To compute all elements a
with a bounded norm, up to multiplication by a positive unit, we compute all ideals
(a) (which have the same norm as a) and if a is an element that generates this ideal,
return ±a,±aε where ε is a unit of negative norm. Finding all ideals of a bounded
norm is easy if we find all prime ideals up to a certain norm and then create all possible
products. To find all prime ideals, we just observe that a prime ideal p has norm a
power of a prime, and it must divide the ideal generated by some prime p, because
since OF/p is a finite field, it has characteristic p for some prime p, so p+p = 0+p in
OF/p and (p) ⊂ p. Therefore we consider all primes p below our bound, and factor
the ideal generated by p using SageMath methods. Once we have all prime ideals
that satisfy the bound, we brute force all the possible products that still satisfy the
bound. The implementation of the algorithm can be found in the appendix.

In the following table we show some examples of CM cycles found using this
implementation of the algorithm. We include cases for the 3 possibilities of CM field
K (biquadratic, cyclic and non-Galois). For space reasons we include examples with
low class number but everything works the same for higher class number fields. Note
that the CM points depend on the CM type, so we must specify it. We will consider
only two different CM-types, Φ1 = (ϕ1, ϕ2),Φ2 = (ϕ1, ϕ2) where ϕ1 is the identity and
ϕ2 is the other embedding that maps

√
α to

√
α, because the other CM types are

equivalent.
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(K,Φ) hK CM points

(
Q
(√

5,
√
−3
)
,Φ1

)
1

1

2
(
√
−3−

√
5)

(
Q
(√

5,
√
−3
)
,Φ2

)
1

1

4
(
√
−15 +

√
−3−

√
5− 5)

(
Q
(√

5,
√
−11

)
,Φ1

)
2

1

2
(
√
−11−

√
5)

1

4
(
√
−11−

√
5)

(
Q
(√

5,
√
−11

)
,Φ2

)
2

1

4
(
√
−55 +

√
−11−

√
5− 5)

√
−55

10
−

√
5

5
− 3

2(
Q
(√

−5 +
√
5
)
,Φ1

)
2

√
−5 +

√
5

1

2

√
−5 +

√
5

(
Q
(√

−5 +
√
5
)
,Φ2

)
2

1

2
(
√
5 + 1)

√
−5 +

√
5

1

4
(
√
5 + 1)

√
−5 +

√
5

(
Q
(√

−11 + 4
√
5
)
,Φ1

)
1

1

2
(
√

−11 + 4
√
5−

√
5)

(
Q
(√

−11 + 4
√
5
)
,Φ2

)
1

1

4
((
√
5 + 1)

√
−11 + 4

√
5−

√
5− 5)

(
Q
(√

−65 + 18
√
13
)
,Φ1

)
1

1

6
((
√
13 + 4)

√
−65 + 18

√
13− 4

√
13− 13)

(
Q
(√

−65 + 18
√
13
)
,Φ2

)
1

1

4
((
√
13 + 3)

√
−65 + 18

√
13− 3

√
13− 13)

Table 4.1: CM points for quartic CM fields

4.10 Evaluating Hilbert modular functions at CM

points

From the previous chapter we know how to evaluate certain Borcherds products
at CM points. We saw that sometimes the Borcherds lift can be obtained as the
Doi-Naganuma lift which makes computations much easier. Now, if we divide two
Borcherds products of the same weight (Ψ6/Ψ

2
1, for instance) we get a Hilbert modu-

lar function, and using the theory we have seen, we know that its value at CM points
are algebraic numbers. Furthermore, the product of all the values of a cycle (the value
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of the function on the cycle) are algebraic numbers of very small degree (at most 2
since they lie on F r, the totally real subfield of the reflex for the non-biquadratic
case) and in some cases rational numbers. Our goal is to check those results given
by the theory of Complex Multiplication numerically. Note that even if our result
is known to be a rational and we have 100 decimal digits of precision, since Q is
dense in R and the precision of the computer is finite, we can find infinitely many
rational as close as we wish to the value we obtain. In some cases, if we know that
the denominator of our rational number is bounded (we will see some proven results
related to this), we may be able to get a unique value. However, this will not be
the case every time, so to know the exact values we will rely on some heuristics. For
instance, when a number is less than 10−50 away from an integer, it’s ”safe” to assume
it to be an integer. Similar things will happen when we know that a value belongs
to an algebraic extension. There are infinitely many numbers in that extension as
close as we wish to our approximation, but makes sense to assume that the minimal
polynomial will not have really large coefficients and that SageMath method algdep
will help us determining the exact value of the modular function. This function of
SageMath accepts a complex number z, and two integers n and m and tries to find
a polynomial of degree at most n such that a number that coincides with z up to an
error of 10−m is a root of it. In the case where we try to find a degree 1 polynomial,
this can be done by using continuous fractions, but for higher degrees, the internal
implementation of algdep is harder.

To discuss the numerical values obtained, we split the CM points depending on
whether K is biquadratic, cyclic or non-Galois and discuss some of the results. We
also add a table at the end of the case with some more values that we don’t discuss.
Thanks to Lemma 4.20 we can easily identify in which case we are just by looking
at α ∈ F , the square of the element we adjoint to F to get K = F (

√
α). We have

4 embeddings from K into C and we will denote them by {ϕ1, ϕ2, ϕ1, ϕ2}. ϕ1 will
always be the identity and ϕ2 will be the embedding such that ℑ(ϕ2(

√
α)) > 0. The

four CM types will be denoted by Φ1 = (ϕ1, ϕ2), Φ2 = (ϕ1, ϕ2), Φ2 = (ϕ1, ϕ2) and
Φ2 = (ϕ1, ϕ2).

K is cyclic

According to Lemma 4.20, for K to be cyclic Galois that α = x + y
√
D satisfies

that
√
x2 −Dy2 = k

√
D for some k ∈ Q, so x2 − Dy2 = Dk2. Let’s start with

some examples for D = 5. Note that (x, y, k) = (5/2, 1/2, 1) gives a solution, so

K = F (
√
(−5 +

√
5)/2) is Galois cyclic and note that (−5 +

√
5)/2 ∈ OF . The class

number of K is one, so there is only one point. We have 4 possible CM types but
they are all equivalent, so we should we get the same result for all of them. That’s
exactly what happens if we try numerically. The results of evaluating Ψ6/Ψ

2
1 and

Ψ10/Ψ
2
1 doing 80 iterations of the outer sum for evaluating the Doi-Naganuma are

(after approximating) 248832 = 210 · 35 and 3200000 = 210 · 55. The actual values
where complex numbers whose imaginary part was in the order of 10−300 and the real
part was off by less than 10−100. In this case, the result is not only a rational but
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also an integer. Furthermore, it satisfies the formula given by Bruinier and Yang in
[BY06].

In this article Bruinier and Yang tried to find a formula for the values of Hilbert
modular functions similar to those obtained by Gross and Zagier for the different of
the values of the j-invariant on two points. The problem is so difficult that they just
found the answer for concrete cases. They focused on the non-biquadratic case. They
assumed that F = Q(

√
p) for a prime number p such that p ≡ 1 (mod 4) and that

the discriminant of K = F (
√
α) is p2q where q ≡ 1 (mod 4) is also prime. The nice

thing about the formula is that it gives as a direct corollary that the values of the
modular functions have prime factors that are bounded by some constant. Although
we don’t have a similar formula for other cases, it is reasonable to expect that other
cases will also give results with small prime factors and as we will see that is exactly
what happens (also for the non-Galois and the biquadratic case).

We can now check a case where the class number of K is greater than 1. Let

K = F

(√
(−15 + 3

√
5)/2

)
, which has class number 4. If we compute Ψ6/Ψ

2
1 at the

4 CM points and compute the polynomial they satisfy, we get a polynomial with non-
integer coefficients. However, they must be rational and by using algdep SageMath
method on them, we see that they are close to rational numbers with denominator
961. Actually by multiplying the coefficients by 961, we see that they turn out to be
off to an integer by less than 10−100. The polynomial is that the CM values satisfy is

P (x) = 961x4 − 10444049220446208x3 + 40014899595339074371584x2

−31912775580262825055162990592x+ 5459483196066431777635689232859136

Its roots can be computed exactly and turn out to be 5433946808832±2430134784000
√
5

and 1726935552/961±435456000/961
√
5 so they all belong to F r. In particular, they

belong to any extension of the reflex of K, Kr = Q(
√
α +

√
α′). Note that all

those numbers have norms which have lots of factors, and in particular, the product
of the CM values (independent term of the polynomial divided by 961) factors as
236 · 316 · 31−2 · 412 · 691 · 1051 · 1171 · 1291.

Finally for F = Q(
√
13) we can also use the same technique to get the Borcherds

products Ψ6
1,Ψ14,Ψ26 and the values obtained for the Galois extension of class number

1, Q
(√

−65 + 18
√
13
)
are 26 · 7 and 26 · 132 for Ψ14/Ψ

6
1 and Ψ26/Ψ

6
1, respectively.

In the following table we summarize the products of the CM values on the cycle
CM(K,Φ,OF ) for Φ = (ϕ1, ϕ2) of the commented cases and some other cyclic Galois
examples that we add.
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K hK
Ψ6

Ψ2
1

(CM(K,Φ,OF ))
Ψ10

Ψ2
1

(CM(K,Φ,OF ))

Q
(√

−5+
√
5

2

)
1 210 · 35 210 · 55

Q
(√

−15+3
√
5

2

)
4

236 · 316 · 31−2 · 412·
691 · 1051 · 1171 · 1291 −236 · 520 · 359 · 599 · 719

Q
(√

−5 +
√
5
)

2 220 · 310 · 331 · 571 −218 · 510 · 199 · 239

Q
(√

−65 + 26
√
5
)

2
220 · 310 · 31−2 · 41−2 · 792·
241 · 541 · 1021 · 1201

220 · 510 · 132 · 41−2·
269 · 809 · 829

K hK
Ψ14

Ψ6
1

(CM(K,Φ,OF ))
Ψ26

Ψ6
1

(CM(K,Φ,OF ))

Q
(√

−65 + 18
√
13
)

2 26 · 7 26 · 132

Table 4.2: CM values for Galois quartic CM fields

K is non-Galois

In this case we have two pairs of equivalent CM types, and evaluating the modular
function on just one cycle doesn’t assure us that we will get a rational value, like
before. If we let Φ1 = (ϕ1, ϕ2) (with the choice that we said at the beginning of the
section) and Φ2 = (ϕ1, ϕ2), then the product of the CM values for all the points in
CM(K,Φ1,OF ) + CM(K,Φ2,OF ) is rational, and the product of the values for one
of the products belongs to the totally real subfield of the reflex field F r = Q(

√
αα′)

if we let K = F (
√
α).

Let α = −4 +
√
5. Note that

√
αα′ =

√
11, so by Lemma 4.20 we are in

the non Galois case. The class number of K = F (
√
α) is 2, so we have two CM

points for each CM type. Let’s consider the modular function Ψ10/Ψ
2
1. The value

Ψ10/Ψ
2
1(CM(K,Φ1,OF )) doesn’t have to be rational and by using algdep it does not

seem to be the case. However if we try to look for a degree 2 polynomial that vanishes
at our CM value, we get the following polynomial:

x2 − 11077177225773056x+ 25353855120179200000000000000000

whose roots are 5538588612886528 ± 695577503858688
√
11. The one with the posi-

tive sign coincides with the numerical value with an error of less than 10−130. There-
fore Ψ10/Ψ

2
1(CM(K,Φ1,OF )) ∈ Q(

√
11), which is the totally real subfield of Kr =

Q(
√
α +

√
α′) the reflex field of K.

As we could expect, for the other CM type we get Ψ10/Ψ
2
1(CM(K,Φ2,OF )) =

5538588612886528− 695577503858688
√
11 and therefore the product of the two CM

values is the integer 25353855120179200000000000000000. For Ψ6/Ψ
2
1 we have that

Ψ6/Ψ
2
1(CM(K,Φ1,OF )) = 471547166588928+55168371523584

√
11, Ψ6/Ψ

2
1(CM(K,Φ2,OF )) =

471547166588928 − 55168371523584
√
11 and its product is the integer that can be

found on the next table. For space reasons, we denote CM(K,Φ,OF ) by CM(K,Φ)
omitting the OF .
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K hK
Ψ6

Ψ2
1

(CM(K,Φ1) + CM(K,Φ2))
Ψ10

Ψ2
1

(CM(K,Φ1) + CM(K,Φ2))

Q
(√

−4 +
√
5
)

2 236 · 320 · 43 · 211 · 283 · 307 236 · 517 · 127 · 1512 · 167

Q
(√

−26 + 11
√
5
)

4
272 · 340 · 23−2 · 292 · 372·
47−2 · 673 · 163 · 2292

2772 · 859 · 1483 · 1987 · 2011

272 · 535 · 233 · 292 · 47−1·
732 · 227 · 607 · 9112 · 967 · 1087

Q
(√

−21 + 2
√
5
)

1 220 · 310 · 312 · 37 · 229 220 · 512 · 17 · 113

Q
(√

−31 + 8
√
5
)

5
266 · 350 · 13−2 · 372 · 1312 · 1372
·1512 · 1732 · 229 · 613 · 997 · 1153

266 · 544 · 592 · 712 · 157·
2412 · 317 · 5412 · 577 · 641

Table 4.3: CM values for non-Galois quartic CM fields

K is biquadratic

In this case the CM types are not primitive but we still know that the values fall on
a quadratic field, that depends on the CM type. If K = Q(

√
d,
√
α) with d > 0 and

α < 0 integers, then we may have Kr = Q(
√
α) or Kr = Q(

√
αd) depending on the

CM type.
In the biquadratic case we also have two pairs of equivalent CM types (conjugate

pairs are always equivalent). As before, we will let Φ1 = (ϕ1, ϕ2) and Φ2 = (ϕ1, ϕ2)
represent those equivalent pairs where ϕ1 is the identity and ϕ2 is the embedding that
satisfies ϕ2(

√
α) =

√
α other than the identity.

For the case Q
(√

5,
√
−11

)
which has class number 2 and the CM type Φ2, we

get that the polynomial whose roots are the values of
Ψ10

Ψ2
1

on CM(K,Φ2,OF ) is

x2 +
986328125

11
x+ 275421142578125

and therefore the exact values are −49316406/11 ± 409765625
√
5/22 which lie on

F = Q(
√
5). For

Ψ6

Ψ2
1

the polynomial whose roots are the CM values on the cycle is

x2 − 117654039x+ 28827586046349

whose exact roots also lie in Q(
√
5) and are 117654039/2±−52396875

√
5/2.

A last interesting case is Q
(√

5,
√
−23

)
which has class number 3. All the CM

values for
Ψ6

Ψ2
1

are rational and two of them are equal. They are 504476024832 and

2615721984/3887 (twice). For
Ψ10

Ψ2
1

two of the values are 0 and the other is the rational

number 11552000000000/23.
One of the differences that we observe in the biquadratic case is that for Φ1 in

several cases Ψ2
1 vanishes while the other Borcherds lift don’t. Moreover in some

cases we get that if K has class number 2, for instance, for one point in the cycle Ψ2
1

vanishes while for the others doesn’t and for the other point we get a nice integer. An
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example of this would be Q(
√
5,
√
−11) where one point gives 214 ·13 as its CM value

for Ψ6/Ψ
2
1 and the other vanishes at Ψ2

1 but not at Ψ6. The fact that Ψ2
1 vanishes

on a CM point means that it belongs to the Hirzebruch-Zagier divisor T1. We only
present the table for Φ2 as for Φ1 we have plenty of zeros. From the results on that
table we observe that Ψ6 does not seem to vanish, so the CM points don’t belong to
T6, but in some cases Ψ10 vanishes, which suggests that depending on α, there is a
CM point in T10 or not.

K hK
Ψ6

Ψ2
1

(CM(K,Φ2))
Ψ10

Ψ2
1

(CM(K,Φ2))

Q
(√

5,
√
−1
)

1 29 · 192 0

Q
(√

5,
√
−2
)

1 28 · 36 · 43 0

Q
(√

5,
√
−3
)

1 34 · 133 59

Q
(√

5,
√
−7
)

1 216 · 37 0

Q
(√

5,
√
−11

)
2 312 · 232 · 412 · 61 517 · 192

Q
(√

5,
√
−19

)
4

172 · 192 · 232 · 292 · 472·
592 · 792 · 892 · 109 534 · 172 · 29 · 312

Q
(√

5,
√
−23

)
3 242 · 322 · 13−3 · 192 · 23−2 · 732 0

Q
(√

5,
√
−43

)
7

139 · 174 · 192 · 232 · 294 · 432·
532 · 712 · 892 · 1032 · 1732 · 1932 566 · 134 · 175 · 19−2 · 232 · 61

Table 4.4: CM values for biquadratic CM fields

90



Appendix

Implementation of the algorithm to enumerate the

CM points

The following implementation in SageMath returns the images of the CM points by
the CM type in a list for a quartic CM field whose totally real subfield has narrow
class number 1. Note that the CM points are not unique (they are up to the action
of SL2(OF )) so the same algorithm may get different outcomes on different machines
or different versions of SageMath.

1 p = 5

2 var(’X’)

3 F.<sqrt_p > = NumberField(X^2-p, embedding = 1)

4 q = F( -17+2* sqrt_p)

5 K.<sqrt_q > = F.extension(X^2-q)

6

7 embdsKtoK = Hom(K, K).list()

8 embdsKtoC = K.complex_embeddings(prec =1000)

9

10 for emb in embdsKtoK:

11 if emb(sqrt_p) == sqrt_p:

12 if emb(sqrt_q) == sqrt_q:

13 id_emb = emb

14 else:

15 conj_emb = emb

16

17 for emb in embdsKtoC:

18 if emb(sqrt_p).real() > 0:

19 if emb(sqrt_q).imag() > 0:

20 phi1 = emb

21 evaluate = emb

22 else:

23 phi1conj = emb

24 else:

25 if emb(sqrt_q).imag() > 0:

26 phi2 = emb

27 else:

28 phi2conj = emb

29

30

31 # Compute a set of representatives of the ideal class group of K.

32 C = K.class_group ().list()
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33 representatives_ideal_class = [x.ideal () for x in C]

34

35 # Compute an integral basis of OK.

36 OF = F.ring_of_integers ()

37 OK = K.ring_of_integers ()

38 basisOK = OK.basis()

39

40 # Write each element in the integral basis of OK in the form x + y*

sqrt_q

41 x = [( conj_emb(bb)+bb)/2 for bb in basisOK]

42 y = [(-conj_emb(bb)+bb)/(2* sqrt_q) for bb in basisOK]

43

44 def generate(prime_ideals , bound , pos , I, nrm_id):

45 if pos >= len(prime_ideals):

46 return [I]

47 id_p = prime_ideals[pos]

48 nrm_p = id_p.absolute_norm ()

49 expon = 0

50 ans = []

51 while nrm_id *(nrm_p^expon) <= bound:

52 ans += generate(prime_ideals , bound , pos+1, I*(id_p^expon),

nrm_id *(nrm_p^expon))

53 expon += 1

54 return ans

55

56

57 # Generate prime ideals of bounded norm

58 upper_bound = sqrt(abs(q.absolute_norm ()))*p*6/(pi^2)

59 prime = 2

60 prime_ideals = []

61 while prime < upper_bound:

62 I = F.ideal(prime)

63 decomp = I.factor ()

64 for fact in decomp:

65 if fact [0]. absolute_norm () <= upper_bound:

66 prime_ideals.append(fact [0])

67 prime = next_prime(prime)

68

69 # Generate all ideals of bounded norm as a product of prime ideals

70 ideals_bound = generate(prime_ideals , upper_bound , 0, F.ideal (1), 1)

71

72

73 def representatives(gens , order_gens , pos , val):

74 if pos >= len(gens):

75 return [val.lift()]

76 ans = []

77 for i in range(order_gens[pos]):

78 ans += representatives(gens , order_gens , pos+1, val+i*gens[

pos])

79 return ans

80

81 # Generate all candidate pairs (a,b)

82 candidate_pairs = []

83 fund_unit = F.unit_group ().gens()[1]
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84 for I in ideals_bound:

85 a = I.gens_reduced ()[0]

86 R = QuotientRing(OF, I, ’w’)

87 gens = list(R.gens())

88 order_gens = []

89 for g in gens:

90 o = 1

91 while o*g != 0: o += 1

92 order_gens.append(o)

93 reps = list(Set(representatives(gens , order_gens , 0, 0)))

94 for b in reps:

95 candidate_pairs.append ((a, b))

96 candidate_pairs.append((-a, b))

97 candidate_pairs.append ((a*fund_unit , b))

98 candidate_pairs.append((-a*fund_unit , b))

99

100

101 def is_integralofF(x):

102 minpolyQ = x.absolute_minpoly ()

103 if minpolyQ.degree () > 2: return False

104 coeffs = minpolyQ.coefficients ()

105 for coef in coeffs:

106 if not coef.is_integral ():

107 return False

108 return (minpolyQ.leading_coefficient () == 1)

109

110 # Filter the pairs that don’t give a z such that z*O_F+O_F is an O_K

ideal

111 filtered_cand = []

112 for cand in candidate_pairs:

113 a, b = cand

114 valid = True

115 for i in range(len(x)):

116 if (not is_integralofF(y[i]*a) or (not is_integralofF(x[i]+y

[i]*b)) or (not is_integralofF(x[i]-y[i]*b)) or (not

is_integralofF(y[i]*(q-b*b)/a))):

117 valid = False

118 break

119

120 if valid:

121 filtered_cand.append(cand)

122

123 # Keep a CM point for each ideal class

124 cm_pts_found = [0]* len(representatives_ideal_class)

125

126 for cand in filtered_cand:

127 z = (sqrt_q -cand [1])/cand [0]

128 if (phi1(z).imag() > 0.0 and phi2(z).imag() > 0.0):

129 for idx in range(len(representatives_ideal_class)):

130 if K.ideal(1,z).ideal_class_log () ==

representatives_ideal_class[idx]. ideal_class_log ():

131 cm_pts_found[idx] = z

132

133
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134 print(len(cm_pts_found)," CM points:", cm_pts_found)

135 cm_pts_H2 = [(phi1(cm_pt), phi2(cm_pt)) for cm_pt in cm_pts_found]

136 print("Image by the CM type:", cm_pts_H2)

Implementation of the algorithm to evaluate the

Borcherds lift

The following implementation in SageMath uses the Doi-Naganuma lift to evaluate
certain Borcherds lifts. The first part computes the modular forms that we will lift.
As it is right now, it will compute the lift for p = 5 but it can be changed for instance
for p = 13. However, it is assumed that p ≡ 1 (mod 4).

The current code will be very slow because of the 3 lines that compute the coef-
ficients of the three modular forms in the plus space g1, g6, g10. It is recommended
to precompute the coefficients and save them on a text file so that every time that a
computation must be done this part can be executed instantly.

1 # Get the 3 modular forms of the plus space whose image

2 # by the Doi -Naganuma lift gives the Borcherds lifts

3 chi = DirichletGroup(p)[2]

4 weight = 10

5 m = ModularForms(chi , weight)

6 m1 , m2 , m3, m4, m5, m6 = m.gens()

7 g1 = m4

8 g6 = ( -108972864* m1 +124723618560* m4 +6600* m6)/412751 -132* m5

9 g10 = ( -1403360000* m1 +1669006720000* m4 +6600* m6)/412751 -132* m5

10 g1_coeffs = g1 [0:10000]

11 g6_coeffs = g6 [0:10000]

12 g10_coeffs = g10 [0:10000]

13

14 ITERS = 80

15

16 # Computes the Doi -Naganuma lift

17 def DNlift(p, weight , z1 , z2 , LIM , g):

18 sq = sqrt(p)

19 S = -bernoulli(weight)*g[0]/( weight)

20 for x2 in range(1, LIM):

21 LOW = ceil(-x2*(1+sq)/2)

22 HI = floor(x2*(sq -1) /2)

23 for x1 in range(LOW , HI+1):

24 innersum = 0

25 lim_d = min(abs(x1), x2)

26 if lim_d == 0: lim_d = x2

27 for d in range(1, lim_d +1):

28 if x1%d == 0 and x2%d == 0:

29 mult = 1

30 if ((x2*x2*((p-1) /4)-x1*(x1+x2))//(d*d))%p == 0:

mult = 2

31 innersum += d^(weight -1)*g[(x2*x2*((p-1)/4)-x1*(

x1+x2))//(d*d)]*mult
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32 S += innersum*exp(numerical_approx (2*pi*sqrt(-1)*(z1*(x1

/sq+x2 *(1/2+1/(2* sq)))+z2*(-x1/sq+x2 *(1/2 -1/(2* sq)))), digits

=1000))

33 return S

34

35 VALUE = 1

36 VALUES = []

37 for (z1 ,z2) in cm_pts_H2:

38 S1 = DNlift(p, weight , z1 , z2 , ITERS , g1_coeffs)

39 S2 = DNlift(p, weight , z1 , z2 , ITERS , g6_coeffs)

40 res = numerical_approx(S2/S1 , digits =1000)

41 VALUE *= res

42 VALUES.append(res)

43 print(VALUE)

44 print(VALUES)
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