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Abstract 
 

 
Avoiding collisions is one of the main tasks of air traffic control. The rapid 
increase in air traffic and its continued growth raises the issue of assisting air 
traffic controllers in high complex traffic scenarios, where safety and efficiency 
cannot be compromised. Predictions estimated for the future of several decades’ 
state that the current air traffic management system will not be able to withstand 
this increase in demand for air transport with the required levels of safety, 
efficiency and sustainability. Air traffic management is changing faster and faster 
towards more advanced and efficient technology, with the integration of 
automated support tools to assist air traffic controllers.  
This document presents a method to enhance the performance and efficiency of 
the air traffic controllers’ tasks: monitor and manage all aircraft flying through the 
airspace sector, performed in a centralised way. The objective is design a 
separation algorithm based on the general Rules of the Air. To achieve the goal 
of the project, Remain Well Clear and Closest Point of Approach concepts have 
been used as other sources of information. The policy algorithm is simulated in 
a controlled simulation environment. Regarding the results obtained at the end 
of this project, a reduction of the conflicts of a 99,41% is achieved compared with 
a situation without applying any instructions. The results of this project also 
include a sensitive analysis of the tuning of parameters. The performance of the 
policy model could be upgraded in the future applying Artificial Intelligence, so 
conflicts can be addressed in a much more efficient and accurate way.   
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Resum 
 

 
Garantir una separació segura entre aeronaus és una de les principals tasques 
del control del trànsit aeri. El ràpid augment del trànsit aeri i el seu creixement 
continuat planteja la qüestió d'ajudar els controladors de trànsit aeri en escenaris 
de trànsit molt complexos, on la seguretat i l'eficiència no es poden 
comprometre. Les prediccions estimades per al futur de diverses dècades 
indiquen que l'actual sistema de gestió del trànsit aeri no serà capaç de suportar 
aquest augment de la demanda de transport aeri amb els nivells de seguretat, 
eficiència i sostenibilitat requerits. La gestió del trànsit aeri està canviant cada 
cop més ràpidament cap a una tecnologia més avançada i eficient, amb la 
integració d'eines de suport automatitzades. 
Aquest document presenta un mètode per millorar el rendiment i l'eficiència de 
les tasques dels controladors de trànsit aeri: controlar i gestionar totes les 
aeronaus que volen pel sector de l'espai aeri, realitzada de manera 
centralitzada. L'objectiu és dissenyar un algoritme de separació basat en les 
Regles Generals de l'Aire. Per assolir l'objectiu del projecte, s'han utilitzat els 
conceptes de “Remain Well Clear” i “Closest Point of Approach” com a altres 
fonts d'informació. L'algoritme es simula en un entorn de simulació controlat. Pel 
que fa als resultats obtinguts al final d'aquest projecte, s'aconsegueix una 
reducció dels conflictes d'un 99,41% en comparació amb una situació sense 
aplicar cap política de separació. Els resultats d'aquest projecte també inclouen 
una anàlisi sensible de l'ajustament dels paràmetres. El rendiment del model de 
polítiques es podria millorar en el futur aplicant la Intel·ligència Artificial, de 
manera que els conflictes es puguin abordar d'una manera molt més eficient i 
precisa. 





 

 
 
 
 
 
 
 
 
 
 
 
 

I would like to offer my special thanks to my director 
Cristina Barrado Muxí for the effort and dedication in 
order to guide me along this project.  
 
Moreover, I wish to acknowledge the help provided by 
the team EMC2022 presented at the EUROCONTROL 
challenge. 
 
I extend my gratitude to my parents and my partner, 
who have given me their unconditional support and 
encouragement during all these years. 
 

 
 
 

  



  

  



 

CONTENTS 

 

INTRODUCTION .............................................................................................. 13 

CHAPTER 1. ATC PRINCIPLES AND CONFLICT MANAGEMENT .............. 15 

1.1. Air Traffic Control ............................................................................................................ 15 

1.2. Well Clear and Remain Well Clear terminology ............................................................ 17 

1.3. Rules of the Air ................................................................................................................ 17 

CHAPTER 2. MATHEMATICAL BACKGROUND AND MODELLED METRICS
 ......................................................................................................................... 19 

2.1. The simulation environment ........................................................................................... 19 
2.1.1. Action Space......................................................................................................... 19 
2.1.2. Flight modelling .................................................................................................... 19 
2.1.3. Airspace modelling ............................................................................................... 21 

2.2. Modelled metrics of the policy algorithm ..................................................................... 21 
2.2.1. Right of Way ......................................................................................................... 21 
2.2.2. Closest Point of Approach .................................................................................... 22 
2.2.3. Remain Well Clear ................................................................................................ 24 

CHAPTER 3. DETECT AND AVOID ALGORITHM DESIGN .......................... 27 

3.1. Architectural policy design ............................................................................................ 27 

3.2. Structural policy design .................................................................................................. 29 

3.3. Situational policy design ................................................................................................ 30 

CHAPTER 4. RESULTS .................................................................................. 32 

4.1. Language and tools used ............................................................................................... 32 
4.1.1. Simulation tool ...................................................................................................... 32 
4.1.2. Modelling tool........................................................................................................ 33 
4.1.3. Visualization and Analysis tool ............................................................................. 34 

4.2. Setup of the simulation ................................................................................................... 34 

4.3. Simulation results............................................................................................................ 35 
4.3.1. Sensitivity analysis results .................................................................................... 35 
4.3.2. Simulation comparison results.............................................................................. 45 

CHAPTER 5. CONCLUSIONS AND FURTHER IMPROVEMENTS ................ 49 

BIBLIOGRAPHY .............................................................................................. 51 

APPENDIX A ................................................................................................... 53 



  

 
LIST OF FIGURES 

 
 
 

Fig 1.1.   The aviation system and its components  15 

Fig 2.1.   Right of Way situations: head‐on, converging, overtaking 22 

Fig 2.2.   Distance of Closest Point of Approach scheme 23 

Fig 2.3.   Remain Well Clear scheme 24 

Fig 2.4.   Guidance bands computation scheme 26 

Fig 3.1.   Graph of file main.py  27 

Fig 3.2.   Graph of file env.py  27 

Fig 3.3.   Calls graph of file policy.py  28 

Fig 3.4.   Graph of file policy.py  28 

Fig 3.5.   Structural design of the separation policy 29 

Fig 3.6.   Situational design of the separation policy 30 

Fig 4.1.   Wandb overview screenshot 33 

Fig 4.2.   Wandb logging tools 33 

Fig 4.3.   Understand logo 34 

Fig 4.4.   Random scenario generator 34 

Fig 4.5.   Sensitive analysis: Number of flights. Legend 36 

Fig 4.6.   Sensitive analysis: Number of flights. Mean Extra  
               Distance [NM] 

36 

Fig 4.7.   Sensitive analysis: Number of flights. Mean reduction  
               conflicts (%) 

37 

Fig 4.8.   Sensitive analysis: Number of flights. Mean reduction  
               alerts (%) 

37 

Fig 4.9.   Sensitive analysis: Number of flights. ATC   
               instructions each episode 

37 

Fig 4.10. Sensitive analysis: Number of flights. Parameter  
               comparison 

38 

Fig 4.11. Sensitive analysis: Alert distance and time. Legend 39 

Fig 4.12. Sensitive analysis: Alert distance and time. Mean Extra  40 



 

               Distance [NM] 

Fig 4.13. Sensitive analysis: Alert distance and time. Mean  
               reduction conflicts (%) 

40 

Fig 4.14. Sensitive analysis: Alert distance and time. Mean  
                reduction alerts (%) 

41 

Fig 4.15. Sensitive analysis: Alert distance and time. ATC   
               instructions each episode 

41 

Fig 4.16. Sensitive analysis: Alert distance and time. Parameter  
               comparison 

41 

Fig 4.17. Sensitive analysis: Performance limitation. Legend 42 

Fig 4.18. Sensitive analysis: Performance limitation. Mean Extra  
               Distance [NM] 

43 

Fig 4.19. Sensitive analysis: Performance limitation. Mean  
               reduction conflicts (%) 

43 

Fig 4.20. Sensitive analysis: Performance limitation. Mean  
                reduction alerts (%) 

43 

Fig 4.21. Sensitive analysis: Performance limitation. ATC   
               instructions each episode 

43 

Fig 4.22. Sensitive analysis: Performance limitation. Parameter  
               comparison 

44 

Fig 4.23. Number of conflicts each episode with policy in  
               comparison without policy 

45 

Fig 4.24. Number of alerts each episode with policy in comparison  
               without policy 

46 

Fig 4.25. Minimum separation distances each episode with policy in  
               comparison without policy 

46 

Fig 4.26. ATC instructions each episode with policy in comparison  
               without policy 

47 

Fig 4.27. Extra distance flown per episode with policy in  
               comparison without policy 

47 

 
  



  

LIST OF TABLES 
 

 
 

Table 4.1. Simulation parameters  35 

Table 4.2. Simulation variables   35 

Table 4.3. Simulation variables set 45 

 
  



 

ACRONYMS, ABBREVIATIONS AND DEFINITIONS 
 
 
 

2D Two-dimensional 

AI Artificial Intelligence 

ANS Air Navigation Services 

ANSP Air Navigation Service Providers 

ATC Air Traffic Controller 

ATC Air Traffic Control 

ATCO Air Traffic Control Operators 

ATM Air Traffic Management 

ATS Air Traffic Services 

CA Collision Avoidance 

CPA Closest Point of Approach 

EASA European Union Aviation Safety Agency 

EU European Union 

ICAO International Civil Aviation Organization 

IFR Instrumental Flight Rules 

KT Knots 

NM Nautical Miles 

RL Reinforcement Learning 

RoW Right of Way 

RWC Remain Well Clear 

SERA Standardised European Rules of the Air 

VFR Visual Flight Rules 

WC Well Clear 





Introduction   13 

INTRODUCTION 
 

When the world fleet increases in size, the number of complex traffic situations 
increase and the risk of collisions must remain. Collisions could result in a 
catastrophe, causing lots of fatalities, major environmental damage and can lead 
to serious economic problems. The growing demand for air transportation 
necessitates the integration of automated support tools to assist air traffic 
controllers in managing the increase of air traffic.  

The world of aviation is changing, not only because of the evolution of technology 
and the economy, but also as a response to the needs of future society. Changes 
in air traffic management can be approached from many different perspectives. 
ATMs are changing faster and faster towards more advanced and efficient 
technology, but they still need to improve.   

Despite the COVID-19 crisis of 2020, the growth of aviation demand continues to 
increase. Air transport, especially commercial air transport, is a relatively young 
industry and current forecasts suggest that it will continue to grow over the next 
few decades.  

While it brings significant economic and social benefits, the aviation also has a 
negative impact for the society and the environment. Thus, while growing demand 
is beneficial to businesses and industries, it is not as efficient as it could be. The 
growth of this demand has created new capacity and security challenges as well 
as environmental impact, directly related to CO2 emissions. One of the problems 
to be addressed is to minimize this impact by reducing fuel consumption.  

In the last decade, the field of Artificial Intelligence (AI) and its subfields has 
grown exponentially. With the help of AI modern problems can be addressed in 
a much more efficient and accurate way. Specifically, aviation organizations, 
such as EUROCONTROL, are betting heavily on a field of artificial intelligence 
called Reinforcement Learning. This differs in its ability to solve complex and 
customized problems, being able to correct the errors that occur during the 
training process. This learning model is very similar to the learning of human 
beings. Hence, it is close to achieving perfection. 

It is in this context where this project rises. This study is part of a joint project, 
worked with Weronika Prawda, which aims to maximize two common goals: 
safety and flight efficiency. 

Specifically, in this final degree project, the proposed solution is to automate the 
air traffic system through separation policies. The aim of the study is to ensure a 
distance of separation for all aircraft throughout the flight based on the Rules of 
the Air. 

Out of the scope of this degree project, it focuses on improving the results using 
Reinforcement Learning and uses the experiences generated by the policy 
created in this same study. 
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The motivation for this final degree project came with participation in the 
EUROCONTROL Innovation Master Class Q1 2022. Specifically, in the first ‘ATM 
Innovation Masterclass’ – a student competition based on solving operational 
ATM challenges.  

 

The structure of the document is as follows:  

Chapter one introduces a theoretical background about Air Traffic Control as well 
as contains a summary of the Rules of the Air, on which the policy is based.   

Chapter two explains in detail the simulation environment used for the experiment 
and models the metrics of Right-of-way and Remain Well Clear.  

Chapter three presents the policy design from three points of view: architectural, 
structural and situational.  

Chapter four presents the main results; the performance of the different 
parameters is computed and analysed. Also, the conclusions of the project are 
exposed and some ideas to improve the performance in the future are given. 

 

The main code of the project can be downloaded from the following repository:    
https://github.com/lidiafc12/TFG_library  

https://github.com/lidiafc12/TFG_library
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CHAPTER 1. ATC PRINCIPLES AND CONFLICT 
MANAGEMENT 

 
 
One of the main technical challenges of air traffic management is how to resolve 
conflicts between aircraft. A conflict is defined as a circumstance in which two or 
more aircraft approach within a minimum distance required by regulation, 
creating a situation of danger. The distance by which an aircraft avoids obstacles 
or other aircraft is termed separation. To prevent unexpected conflicts, Air 
Navigation Service Provider (ANSP) is created. EUROCONTROL defines it as: 
[1] an organization that provides the service of managing the aircraft in flight or 
on the manoeuvring area of an aircraft and which is the legitimate holder of that 
responsibility. 

 

1.1. Air Traffic Control 

 
Air navigation services (ANS) are provided for air traffic during all phases of 
operations. These services include six categories of facilities and services: 
communication, navigation and surveillance services, meteorological services for 
air navigation, aeronautical information services, search and rescue, and ATM.  
 
ATM is the dynamic and integrated management of air traffic and airspace in a 
safe, economical and efficient way. Its components are air traffic services (ATS), 
airspace management, and air traffic flow management. 
 
The generic term “air traffic services” (ATS) covers flight information service, 
alerting service, air traffic advisory service and air traffic control (ATC) service. 
The concepts of ANS, ATM, ATS and ATC and their relationships with each other 
can be seen in Fig 1.1.  
 
 

 
 

Fig. 1.1. The aviation system and its components [2]. 
 
 



16                                                                            Air Traffic Control using separation algorithm based on Rules of the Air 

The goal of air traffic control (ATC) is to maintain an orderly and safe flow of air 
traffic. ATC aims to prevent collisions between aircraft and maintain an orderly 
flow of air traffic through communication between pilots and ATCOs. ATC 
provides area, approach and aerodrome control services. This important role for 
successful air traffic management is played by air traffic controllers (ATCOs), who 
continuously monitor all flights within the airspace sector under their 
responsibility. 

ATCOs monitor the location of aircraft in their assigned airspace and 
communicate with the pilots [3]. To prevent collisions, ATCOs provide instructions 
to pilots, which ensure each aircraft maintains a minimum separation distance at 
all times. These instructions can be changes in direction or speed to resolve side 
conflicts, and changes in flight level or ascent / descent speed to resolve vertical 
conflicts. While ATCOs must prioritize safety above all else, flight efficiency must 
also be considered, and controllers have to take into account the deviations from 
the optimal trajectory, speed or altitude. 

The effective performance of the air traffic management system depends on 
qualified professionals in air traffic management. The ATM system is evolving 
into a globally integrated and collaborative system. Therefore, air traffic 
controllers who manage and operate this system must have shared training 
wherever they work to support a cooperative system and achieve optimal 
capacity within safety limits. The importance of having a single, shared training 
increases when is considered the increase in traffic and the growing complexity 
of the systems involved. And it is the International Civil Aviation Organization 
(ICAO) that decrees these requirements, embodied in the Manual on Air Traffic 
Controller Competency-based Training and Assessment, Doc 10056 [4].  

The International Civil Aviation Organization (ICAO) is an agency of the United 
Nations Organization created in 1944 by the Convention on International Civil 
Aviation to study the problems of international civil aviation and promote unique 
regulations and standards in world aeronautics.  

Requirements that apply to ATCOs who work within Europe, are set by the 
European Aviation Safety Agency (EASA). EASA's requirements build on ICAO, 
but often go a bit further. Frequently, innovations started by EASA soon also enter 
the ICAO training structure. 

Whether the aircraft really needs to be separated by ATCOs depends on the flight 
rules under which the pilot is operating the aircraft. There are two sets of 
regulations governing all aspects of civil aviation aircraft operations, specified in 
ICAO Annex 2 - Rules of Air [5]. 

-        Visual Flight Rules (VFR) 

-        Instrument Flight Rules (IFR) 

In aviation, visual flight rules (VFRs) are a set of regulations under which a pilot 
operates an aircraft in weather conditions that are generally clear enough to allow 
the pilot to see where the aircraft is heading. Specifically, the weather must be 
better than the minimum basic defined in visual weather conditions (VMC), as 
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specified in the relevant aeronautical authority regulations. The pilot must be able 
to operate the aircraft with visual reference to the ground, and visually avoid 
obstructions and other aircraft [6].  

Instrument flight rules (IFR) are a set of regulations that dictate how aircraft are 
to be operated when the pilot is unable to navigate using visual references under 
visual flight rules. The most important concept of IFR flight is that the separation 
is maintained regardless of weather conditions. In controlled airspace, air traffic 
control (ATC) separates IFR aircraft from obstacles and other aircraft using a 
flight clearance based on route, time, distance, speed, and altitude. There are no 
specific rules for each traffic situation, but ATCOs solve the encounters based on 
the training according to ICAO requirements and their professional experience.    
 
ICAO defines airspace in several categories: A, B, C, D, E, F, G. Within this 
airspace there are different requirements in relation to what type of flights are 
allowed within airspace (IFR, IFR + VFR, VFR).  
 
ATC separation only applies to IFR flights and other traffic (IFR, VFR) within 
Class A, B and C airspace. In Class D airspace, a separation between IFR traffic, 
while only one traffic information service is provided for VFR traffic. Therefore, 
there is no separation between IFR and VFR traffic, but traffic avoidance advice 
is available upon request. In Class E, F and G airspace, ATC is not required to 
separate commercial air traffic from VFR traffic. 
 

1.2. Well Clear and Remain Well Clear terminology 

The notion of Well Clear (WC) is directly linked to the International Civil Aviation 
Organization (ICAO)’s Rules of the Air and is stated as “an aircraft shall not be 
operated in such proximity to other aircraft as to create a collision hazard”. 
Moreover, according to ICAO’s Manual on RPAS [7], RWC is “the ability to detect, 
analyse and manoeuvre to avoid a potential conflict by applying adjustments to 
the current flight path in order to prevent the conflict from developing into a 
collision hazard”.  

It is important to highlight that WC and RWC are different concepts. WC is an 
aircraft state influencing the application of the right of way rules, whereas RWC 
should be understood as separation minima between aircraft, where its main 
functions are to prevent collisions and ensure safety minima [8]. There are 
currently no accepted time or distance-based standards for what it means for two 
aircraft to be WC, that determination is left to the pilot’s discretion. 
 
 

1.3. Rules of the Air 

A very important part of the regulations presented by ICAO is the applicability of 
the rules of the air. The Rules of the Air are a set of regulations governing matters 
of air traffic (i.e., encounters of multiple aircraft, responsibilities of the pilot, the 
use of defined airways, etc.) including general rules, visual flight rules and 
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instrument flight rules. In all EU Member states, the Standardised European 
Rules of the Air are applied in both regulations.  

In ICAO Annex 2 - Rules of Air [2], the organization provides general rules of 
standards for all aviation, specifying the general rules of collision avoidance, 
among others. The Right of Way is detailed in this same sub-section, so the ICAO 
defines it as a general rule throughout aviation. Given that ATCOs working in 
Europe use the requirements defined by EASA, this study uses the rules outlined 
in the EASA documents.  

The Rules of the Air, also known as EASA eRules, are defined as a 
comprehensive, single system for structuring, sharing, and storing of rules. It is 
the single, easy-access online database for all aviation safety rules applicable to 
European airspace users. In Europe, the Standardised European Rules of the Air 
(SERA) [9] were mandated by the European Commission and developed by 
EUROCONTROL and the European Aviation Safety Agency (EASA) in 2012.  

Of utmost importance for the avoidance of collisions are the Right of Way (RoW) 
rules. These rules are a set of simple guidelines to prioritise certain aircraft and 
indicate the manoeuvre to follow in case of conflict. A summary of the relevant 
information about collision avoidance rules is provided, shown below.  

The aircraft that has the right-of-way shall maintain its heading and speed.  

An aircraft that is aware that the manoeuvrability of another aircraft is 
impaired shall give way to that aircraft. 

An aircraft that is obliged by the following rules to keep out of the way of 
another shall avoid passing over, under or in front of the other, unless it 
passes well clear and takes into account the effect of aircraft wake 
turbulence. 

Approaching head-on. When two aircraft are approaching head-on 
or approximately so and there is danger of collision, each shall alter 
its heading to the right.  

 

Converging. When two aircraft are converging at approximately the 
same level, the aircraft that has the other on its right shall give way, 
except as follows:  

 

Overtaking. An overtaking aircraft is an aircraft that approaches 
another from the rear on a line forming an angle of less than 70 
degrees with the plane of symmetry of the latter, i.e. is in such a 
position with reference to the other aircraft that at night it should be 
unable to see either of the aircraft’s left (port) or right (starboard) 
navigation lights. An aircraft that is being overtaken has the right-
of-way and the overtaking aircraft, whether climbing, descending or 
in horizontal flight, shall keep out of the way of the other aircraft by 
altering its heading to the right, and no subsequent change in the 
relative positions of the two aircraft shall absolve the overtaking 
aircraft from this obligation until it is entirely past and clear.  
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CHAPTER 2. MATHEMATICAL BACKGROUND AND 
MODELLED METRICS 

 

2.1.     The simulation environment 

 
The environment is represented as a multi-agent system in which each agent has 
a state determining its main characteristics (position, angle, speed, etc.), defined 
each time step [10]. The agents fly in a free-route environment, between an initial 
and exit point at approximately the same level, therefore the simulation control 
environment is provided in 2D. All the flights are initialized to follow a random 
linear planned path, explained in Section 4.2, from any point to a target, all inside 
the airspace sector. The objective of each agent is to respect the minimum 
separation distance with all other flights present in the environment, which stick 
to their planned route. 
 
The simulation environment is based on Gym, explained in detail in Section 
4.1.1. Each simulation is composed by a set of episodes. An episode is defined 
as a simulation of a specific situation, initialized randomly. It ends when all the 
agents have reached their target or when the step limit is reached. On the other 

hand, a step is defined as each time interval Δ𝑡. In each step the simulation states 
are updated. 
 

2.1.1. Action Space 

 
The action space used in the gym environment is used to define the actions an 
agent could take and its boundaries. With this, it is possible to state whether the 
action space is continuous or discrete depending on the states and the 
environment. In this case, the action space is continuous with one output for each 
agent: the angle. Its theoretical boundaries are [-pi, pi] radians. 
 
OUTPUT: 
The action space: Box((low=(-u.circle/2),high=(u.circle/2), 

shape=(1,)))  

 

Where 𝑢. 𝑐𝑖𝑟𝑐𝑙𝑒 is equal to 2𝜋 𝑟𝑎𝑑𝑖𝑎𝑛𝑠.  

 

2.1.2. Flight modelling 

 

Each agent 𝑖 ∈ 𝒩 is composed by a state containing the coordinates in a two-
dimensional Euclidean space (𝑥𝑖, 𝑦𝑖), the speed (𝑣𝑖), and the track with respect 
to the North (𝜒𝑖), i.e., 𝑠𝑖 = [𝑥𝑖, 𝑦𝑖, 𝑣𝑖 , 𝜒𝑖]. The state vector evolves according to: 
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𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡)sin 𝜒𝑖(𝑡)Δ𝑡

𝑦𝑖(𝑡 + 1) = 𝑦𝑖(𝑡) + 𝑣𝑖(𝑡)cos 𝜒𝑖(𝑡)Δ𝑡

𝑣𝑖(𝑡 + 1) = 𝑣𝑖(𝑡) + Δ𝑣𝑖

𝜒𝑖(𝑡 + 1) = 𝜒𝑖(𝑡) + Δ𝜒𝑖

      (1) 

where Δ𝑣𝑖 and Δ𝜒𝑖 are the speed and track changes, respectively; and Δ𝑡 is the 
step size of the simulation [10]. In this case, only the track changes are 

considered, the speed is defined as a fixed value 𝑣𝑖 throughout the episode. 

In base on the updated variables, bearing, drift, airspeed components, and 
distance to target values are computed. Some of these features are used in the 
policy algorithm. An emphasis is placed on the definition of these concepts in 
order to clarify them and better understand the experiment. 

The 𝑑𝑟𝑖𝑓𝑡 is defined as the difference between 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 and 𝑡𝑟𝑎𝑐𝑘, according to:  

 

𝑑𝑟𝑖𝑓𝑡 = 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 − 𝑡𝑟𝑎𝑐𝑘(𝜒𝑖)    (2) 

 

Being 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 the angle between current position and 𝑡𝑎𝑟𝑔𝑒𝑡:  

 

𝑑𝑥 = 𝑡𝑎𝑟𝑔𝑒𝑡. 𝑥𝑖 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑥𝑖 

𝑑𝑦 = 𝑡𝑎𝑟𝑔𝑒𝑡. 𝑦𝑖 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑦𝑖           (3) 

𝑏𝑒𝑎𝑟𝑖𝑛𝑔 =
 tan−1 (

𝑑𝑥
𝑑𝑦

) + 2𝜋

2𝜋
   

 

Where,  

𝑡𝑟𝑎𝑐𝑘 is the actual direction of the aircraft respect to the North, 
𝑡𝑎𝑟𝑔𝑒𝑡 is the output point that is intended to be reached, defined as a 
tuple: [𝑥𝑡𝑎𝑟𝑔𝑒𝑡,𝑖, 𝑦𝑡𝑎𝑟𝑔𝑒𝑡,𝑖].  

The 𝑎𝑖𝑟𝑠𝑝𝑒𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 [𝑑𝑥, 𝑑𝑦] are evolved according to:  

 

𝑑𝑥 =  𝑣𝑖 ∗  sin( 𝜒𝑖)              (4) 

𝑑𝑦 =  𝑣𝑖 ∗  cos( 𝜒𝑖) 

 

And finally, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡𝑎𝑟𝑔𝑒𝑡 is the remaining distance that the aircraft must 
travel to reach the target.  
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Each agent is parametrized by a set of constants, which includes the coordinates 

of its initial and exit points to/from the sector, (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑥𝑖, 
(𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑦𝑖) and (𝑡𝑎𝑟𝑔𝑒𝑡. 𝑥𝑖, 𝑡𝑎𝑟𝑔𝑒𝑡. 𝑦𝑖), respectively; and its minimum 
(𝑣𝑚𝑖𝑛𝑖

)  ), maximum (𝑣𝑚𝑎𝑥𝑖
) speeds and its cruise speed (vi) defined randomly 

based on its limits. It can be assumed that the speed 𝑣𝑖 is the optimal speed 

defined by the operator. 

Also, each agent is parametrized by performance limitation, analyzed in the 
sensitivity analysis. Performance limitation is defined as the maximum angle that 
agents can turn in case of conflict is predicted. It is assumed that all agents have 
the same performance limitation. 

The initial position of each agent was created by ensuring a minimum separation 

distance 𝑑min with all other agents already present in the sector. The exit point 
was created in the edges of the sector by ensuring a minimum flight distance 

𝐿min. 

 

2.1.3. Airspace modelling 

 

The airspace is parametrized by a set of constants, which are randomly initialized 
in the setup environment at the beginning of each episode. These constants are 
its minimum and maximum area. The random function, detailed in Section 4.2, 
is initialized every episode, creating different geometry-shaped polygons every 
episode. Then, all the agents were introduced randomly into the sector [10].  
 
 

2.2. Modelled metrics of the policy algorithm 

 

2.2.1. Right of Way 

 
The policy is based on RoW, explained in detail in section 1.3. Rules of Air, a 
base code of EASA SERA-Rules to avoid conflicts. In the case of this policy, the 
flights could meet in one of three different situations; head‐on, crossing, also 
known as converging, or overtaking situation (see Fig 2.1.).  
 

A head‐on situation is defined as a situation where both flights are meeting with 
risk of collision on reciprocal or nearly reciprocal courses. Normally this is 

interpreted to be in an interval of relative bearing of +/‐ 10 to 20 degrees from 
ahead. In this case, the boundary that separates both situations, is set to +/‐ 15 
degrees. Overtaking situation is defined as a situation where the overtaking flight 
is approaching the other flight from a relative bearing of 110° or more on each 

side. Crossing situations are all other situations, from +/‐ 15 to +/‐ 110 degrees 
with risk of collision.  
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Fig. 2.1. Right of Way situations: head‐on, converging and overtaking 
 
 
 

2.2.2. Closest Point of Approach 

 
When identifying the traffic situation, each flight tries to find out the aspect to 

define the type of situation (head‐on, crossing or overtaking), and to determine 
the risk of collision based on the closest point of approach: Time to closest point 
of approach and distance to closest point of approach in order from highest to 
lowest importance. The formulation evolves according to [14]:  
 

 

𝑡𝐶𝑃𝐴 = max (0, −
𝑑𝑥𝑣𝑟𝑥+𝑑𝑦𝑣𝑟𝑦

𝑣𝑟𝑥
2 +𝑣𝑟𝑦

2 )    (5) 

 
 

𝑡𝐶𝑃𝐴 is the time to Closest Point of Approach.  

𝑑𝐶𝑃𝐴 is the distance to closest point of approach, and is defined as: 

 

𝑑𝐶𝑃𝐴 = √(𝑑𝑥 + 𝑣𝑟𝑥𝑡𝐶𝑃𝐴)2 + (𝑑𝑦 + 𝑣𝑟𝑦𝑡𝐶𝑃𝐴)
2
   (6) 

 
where,  

𝑑𝑥 = 𝑥2 − 𝑥1 is the current horizontal separation in the 𝑥 dimension, and 
𝑑𝑦 = 𝑦2 − 𝑦1 is the current horizontal separation in the 𝑦 dimension. 

𝑣𝑟𝑥 = 𝑥̇2 − 𝑥̇1 is the relative horizontal velocity in the x dimension, 
𝑣𝑟𝑦 = 𝑦̇2 − 𝑦̇1 is the relative horizontal velocity in the 𝑦 dimension, and 
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Having positive 𝑡𝐶𝑃𝐴 values means facing closure geometries. As the point of 
maximum approach approaches in time, the values of 𝑡𝐶𝑃𝐴 decrease. In cases 
where the paths are parallel or divergent 𝑡𝐶𝑃𝐴 will always be equal to 0. 

On the other hand, 𝑑𝐶𝑃𝐴 (6) provides the closest distance at which two flights will 
meet if they follow their path, see Fig 2.2. Exactly at the closest point of approach 

between two flights, the value of 𝑡𝐶𝑃𝐴 will be equal to 0 and the distance between 
them at that same instant will be equal to the value of 𝑑𝐶𝑃𝐴. 

 

 
 

Fig. 2.2. Distance of Closest Point of Approach scheme 

 
 

In the simulation experiment, the values of 𝑡𝐶𝑃𝐴 and 𝑑𝐶𝑃𝐴 are treated as variables 
and several runs are made with different values to find the ones that offers the 
best results. The range of test values is decided based on an estimation of time 
and distance travelled. 
 

The minimum value of 𝑡𝐶𝑃𝐴  range is defined by the time it takes for the agent to 
completely collide, from the 5NM conflict separation with the maximum speed, 

defined as the most unfavourable situation. The value of 𝑡𝐶𝑃𝐴𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡
  is reached 

when 𝑑𝐶𝑃𝐴, meaning that both collide. It evolves according to:  
 
 

𝑡𝐶𝑃𝐴𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡
 =  

𝑑𝑚𝑖𝑛 [𝑚]

𝑣𝑚𝑎𝑥𝑖
 [

𝑚

𝑠
]

=  35 𝑠𝑒𝑐𝑜𝑛𝑑𝑠          (7) 
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Where,  
 

𝑣𝑚𝑎𝑥𝑖
 is equal to 500 knots (257 m/s).  

𝑑𝑚𝑖𝑛 is the conflict distance set to 5 NM, equal to 9260 meters. 
 
 
Therefore, the minimum limit of the range of time and distance values for 

sensitivity analysis are set to 𝑡𝐶𝑃𝐴 = 35 𝑠  and 𝑑𝐶𝑃𝐴 = 5 𝑁𝑀.  
 
In the sensitivity study, detailed in Section 4.3.1, the variables are established in 
steps of 1 NM and 7 seconds, until the values reach the maximum limit of the 
range: 𝑡𝐶𝑃𝐴 = 140 𝑠  and 𝑑𝐶𝑃𝐴 = 20 𝑁𝑀. 
 
 

2.2.3. Remain Well Clear 

 

Once the conflicts are detected and ordered based on 𝑡𝐶𝑃𝐴 and 𝑑𝐶𝑃𝐴 from highest 
to lowest importance, is fundamental the proposal of safe manoeuvres to RWC. 
Taking into account that vertical axis is not part of this study, these bands, 
negative and positive, are calculated so that the value of the absolute minimum 
angle must never intersect the alert zone. As mentioned above, when the alert 
zone is violated or it is impossible not to intersect with it, they are called recovery 
bands and try to get as far away from the intruder as possible.  
 
In the following Fig 2.3, it is seen a staging of a conflict situation and its guidance 
bands, for the avoidance of the volume of Remain Well Clear and Collision, 
respectively.  
 

 
 

Fig. 2.3. Remain Well Clear scheme 
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The computation of safe maneuver to Remain Well Clear starts by the calculation 
of these guidance “bands”. In this case, as the environment is created as a 2D 

system between two flights i and j, there is one type of bands provided: Track 
range. The result of this computation is a float number containing an angle. This 
angle added to the current flight track, a trajectory is obtained which, in the case 
that the intruder does not change its direction, never intersects with the flight alert 
zone and always respects the separation distance.  
 
Starting from an initial situation in which the initial trajectories of two flights lead 
to a possible conflict, the distance to closest point of approach shall be less than 
the alert distance. The calculation is done by approximation. A 1-degree step 
angle is added to the original flight track, positively in the case of the right angle 
and negatively in the case of the left one. Thus, each step gradually adds a larger 
angle, consequently leading to a change of linear trajectory going out of the alert 
zone, as can be seen in Fig 2.4.  
 
At every step the difference between the radius of the circle marked by the alert 

zone and the calculated 𝑑𝐶𝑃𝐴 is computed, defined as (8):  
 
 

𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 =  𝑎𝑙𝑒𝑟𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 −  𝑑𝐶𝑃𝐴𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑟𝑎𝑐𝑘
    (8) 

 
Where,  
 

𝑑𝐶𝑃𝐴𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑟𝑎𝑐𝑘
 is the current 𝑑𝐶𝑃𝐴 computed with the track resulting from 

the sum of the previous step track and the step angle (both, left and right 
cases).  

 
 

The loop stops when the 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 is negative, which means that the calculated 
𝑑𝐶𝑃𝐴 is greater than the distance from the alert zone and therefore will never 
intersect.  
 

If the end condition is not met at any time, it shall stop when left and right angles 
reach the aircraft performance limits, being their boundaries [0, - performance 
limit] and [0, performance limit], respectively. So, if no angle is found that satisfies 
the conditions, the loop comes to an end, and the angle a gets the value of the 
aircraft performance limit, depending on whether is looking for the optimal angle, 
to the right or to the left. 
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Fig. 2.4. Guidance bands computation scheme 
 
 

Once the left (𝑎𝑛𝑔𝑙𝑒_𝑙𝑒𝑓𝑡) and right (𝑎𝑛𝑔𝑙𝑒_𝑟𝑖𝑔ℎ𝑡) angles needed to pass and not 
intersect with the alert zone have been found, is chosen which angle will be used 
to resolve the encounter. This choice is made to prioritize efficiency and speed in 
resolving conflicts. Once the conflict is resolved by calculating the angles that do 
not give rise to any encounter, the goal is for the flights to spend as little time as 
possible diverted from their course to their goal. This is done by calculating the 
difference of the tracks, according to: 
 
 

𝐴𝑛𝑔𝑙𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑜 𝑙𝑒𝑓𝑡
=  𝑎𝑏𝑠( (𝑡𝑟𝑎𝑐𝑘 𝑜𝑓 𝑓𝑙𝑖𝑔ℎ𝑡 𝑖 +  𝑎𝑛𝑔𝑙𝑒_𝑙𝑒𝑓𝑡)  −  𝑡𝑟𝑎𝑐𝑘 𝑜𝑓 𝑓𝑙𝑖𝑔ℎ𝑡 𝑗) 

𝐴𝑛𝑔𝑙𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑜 𝑟𝑖𝑔ℎ𝑡 
=  𝑎𝑏𝑠( (𝑡𝑟𝑎𝑐𝑘 𝑜𝑓 𝑓𝑙𝑖𝑔ℎ𝑡 𝑖 +  𝑎𝑛𝑔𝑙𝑒_𝑟𝑖𝑔ℎ𝑡)  −  𝑡𝑟𝑎𝑐𝑘 𝑜𝑓 𝑓𝑙𝑖𝑔ℎ𝑡 𝑗)  

 

(9) 
            
The larger angle is chosen, so that the most opposite directions are taken and 
the conflict is resolved sooner. Therefore, it is also avoided to resolve conflicts by 
establishing the trajectories in parallel, which will lead to a very slow resolution 
and could lead to multiple conflicts. In the case that only one angle has reached 
its limit, is directly taken the other angle.  
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CHAPTER 3. DETECT AND AVOID ALGORITHM DESIGN 

 

3.1.     Architectural policy design 

 
The software designed for collision avoidance defined is based on a main script: 
main.py and five secondary ones: env.py, policy.py, definitions.py, units.py and 
__init__.py. These are related and form a set of code that makes it possible to 
implement a policy for conflict resolution. The architectural design is analysed 
and presented with Understand, explained in Section 4.1.3.  
 
The main.py file calls all other files and relates them to each other. It is 
responsible for initializing (__init__.py) the named Environment class of the 
env.py file and obtaining the actions of agents from policy.py, see Fig 3.1. 
 

 
 

Fig. 3.1. Graph of file main.py  
 
 
The env.py file contains all the features related to the environment, such as the 
initialization function of the environment itself, the update of the states and their 
rendering, and the reset for each episode. This file calls definition.py, and 
units.py, which contain other functions and definitions about agent state variables 
and unit conversions, see Fig 3.2. 
 

 
 

Fig. 3.2. Graph of file env.py  

 
The policy.py file contains all the functions related to the implementation of the 
policy, the code can be seen in APPENDIX A. Its main function is policy_action, 
which returns the actions of each flight according to its state of conflict, in each 
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time step. The function calls a list of functions that calls when the function 
policy_action is using, see Fig 3.3. 
 

 
 

Fig. 3.3. Calls graph of file policy.py  
 

 
The policy.py calls three scripts in order to be able to call all the necessary 
functions and variables within the files, see Fig 3.4. 
 

 

 
Fig. 3.4. Graph of file policy.py  

 



Detect and avoid algorithm design  29 

3.2.     Structural policy design 

 
At each time step during the simulation of the experiment, the policy detects 
conflicts and if necessary acts to resolve them. Its structure is defined according 
to the flow chart of Fig 3.5.  
 
 

 
 

Fig. 3.5. Structural design of the separation policy 

 
 
Observe that the policy first calculates the alert detection, then enters in a loop 
that separates the flights with no alert detection, that return to its bearing, and the 
flights with alert detection that enter in another loop. This loop separates the 
flights weather the alert detected is new or it already exists, in this case the flights 
maintain its previous step action. If there is a new alert detection, an action is 
chosen to solve the conflict. And finally, these flights enter in a loop that if multiple 
conflict is detected, a new action is calculated and chosen.    
 



30                                                                            Air Traffic Control using separation algorithm based on Rules of the Air 

 

3.3.     Situational policy design 

At every step of the simulation, the flights could change their track. This change, 
also called a manoeuver, is a collision avoiding manoeuver. The manoeuver, also 
the policy structure, could be divided into four different phases, see Fig 3.6.  

 

 

 

Fig. 3.6. Situational design of the separation policy 
 
 
The first phase, “assessment of the situation”, occurs when the flight j is sighted 
closer than the alert distance. When a possible conflict is detected, the next 
phase starts, called “action choice” phase, in which the action is determined and 
the flight that is going to take it. Both phases occur at the same time, in the same 
time step, first is the "assessment phase" and just then begins the "action choice". 
When one of the flights in the encounter do an avoiding manoeuver, detailed in 
Section 2.2.3, the next phase starts, called “action maintained” phase. In this, 
the action is maintained until the flights leave the alert zone and, when resuming 
their trajectory, the same conflict does not occur again. When there is no risk of 
collision, the phase “safe situation” starts (see Fig 3.6). In this way, the flight 

returns to its bearing towards the target point. In some cases, the give‐way flight 
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could have limited possibilities to change course due to the presence of other 
flights in the vicinity. In those cases, planning in advance is necessary. Conflicts 
are resolved by prioritizing the time to closest point of approach. 
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1 https://www.gymlibrary.ml/  
2 https://wandb.ai/site  

CHAPTER 4. RESULTS 

 

This chapter analyses and compares the results obtained as well as explain the 
tools used in the practical part.  

4.1.     Language and tools used 

 
In order to put in practice, the theory models and algorithm, it’s necessary to do 
a process of simulation that gives results that are analysed and compared. This 
process will be performed using a skeleton of a basic 2D ATC simulator (the 
environment) built on the Gym framework1, written in Python language and 
PyCharm used as the development environment. The results will be analysed 
using Wandb2.  
 

4.1.1. Simulation tool 

 
To implement the practical part, EUROCONTROL has provided a source code of 
conflict resolution environment in 2D, based on Gym. All the code necessary to 
run the software, including the environment of a basic 2D ATC simulator, can be 
downloaded from the https://github.com/lidiafc12/TFG_library.git. Let's go into it, 
explain what it consists of and what use has been given to it.  
 

Gym is an open source Python library for developing and comparing algorithms, 
especially reinforcement learning algorithms. It provides a standard API to 
communicate between learning algorithms and environments, as well as a 
standard set of environments compliant with that API. Each of these 
environments implements the same interface, making it easy to test a single 
environment using a range of different algorithms.  
 

The interface for all Open AI Gym environments can be divided into 3 parts: 
 

1. Initialization: Create and initialize the environment. 
2. Execution: Take repeated actions in the environment. At each step 

the policy acts towards the current situation of the environment, in the 
case of RL, the environment provides observations to describe its new 
state and the reward received as a consequence of taking the specified 
action. New steps continue until the environment conditions of a 
complete episode are met.  

3. Termination: Clean-up and destroy the environment. 
 

In this project, the environment is used for creating a policy that acts regarding 
the actual state of each flight, The objective of the policy is solving all the conflicts 
that are produced in the same environment, on an initialized random scenario, 
explained in detail in Section 4.2.  
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4.1.2. Modelling tool 

 
In order to analyse results from different parameter values Wandb is used, 
Wandb is an experiment tracking tool, especially for machine learning, to 
visualise training and compare lots of training runs and their results. The online 
tool offers countless applications, such as lightweight, interoperable tools to 
quickly track experiments, version and iterate on datasets, evaluate model 
performance, reproduce models, visualize results and spot regressions, and 
share findings with colleagues, see Fig 4.1.  
 

 
 

Fig. 4.1. Wandb overview screenshot 
 

 

The tool also offers more benefits such as providing many tools for logging:  

 

 
 

Fig. 4.2. Wandb logging tools 

 
 
Wandb tool has been chosen because it offers speed and ease of setup, it only 
requires sign up for a free account and install Wandb library through pip. The 
ability to track and visualize experiments in real time, compare baselines, store 
hyper-parameters used in a training run and the possibility to share your projects 
and collaborate with team members.  
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Above all, great importance is given to the large amount of content they offer for 
learning and training, as well as being free and offering very powerful visualization 
tools and graphics. 
 

4.1.3. Visualization and Analysis tool 

 
The architectural design is analysed with Understand, by SciTools, that is a 
source code for visualization and analysis. From the same company they define 
it like: Understand is more than just a maintenance IDE, it’s a platform full of 
intelligence you can use to make your engineering life better.  
 

 
 

Fig. 4.3. Understand logo 
 

4.2.     Setup of the simulation 

 
Initialization is done each episode, resulting in an airspace and a set of random 
flights. The airspace sector and the traffic are initialised according to Algorithm 1, 
see Fig 4.4, from [10].  
 

 
 

Fig. 4.4. Random scenario generator [10].  
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4.3.     Simulation results 

 
The simulation environment used to implement the policy action is configured 
with 100 episodes and limited to 500 simulation steps, using the parameters of 
the environment detailed in Table 4.1.  
 

Parameter Value 

Minimum separation distance 𝒅𝒎𝒊𝒏 5 NM 

Step size 𝚫𝒕 5 seconds 

Minimum and maximum speeds 𝒗𝐦𝐢𝐧𝒊  , 𝒗𝐦𝐚𝐱𝒊    450 kt and 500 kt 

 

Table 4.1. Simulation parameters  
 

Both, shape of the airspace sector and flight plans of the agents, were randomly 
initialised at every episode, aiming to develop a policy that could generalise to 
any airspace geometry and traffic pattern. The airspace sector and the traffic 
were initialised according to Algorithm 1, in Section 4.2. 
 
 

4.3.1. Sensitivity analysis results 

 
In order to find the best conditions that lead the best possible results when 
implementing the policy, a sensitivity analysis has been carried out. In this 
situation, the parameters outlined in Table 4.2 are tuned. That is, they are treated 
as variables and several runs are made with different values to find the one that 
offers the best results.  
 

Parameter Possible values 

Number of flights 𝓝  From 5 to 20 

Alert separation distance 𝒅𝒂𝒍𝒆𝒓𝒕 From 5 to 20 NM 

Alert separation time 𝒕𝒂𝒍𝒆𝒓𝒕 From 35 to 140 seconds 

Aircraft performance limitation 90 to 180 degrees 

 

Table 4.2. Simulation variables   
 

When the sensitivity analysis is being performed with a parameter, the other 
parameters have to fix values. The number of flights is set to 10 and the alert 
separation time is set to 120 seconds, both extracted from [10]. The alert 
separation distance is twice the conflict distance, equal to 10 NM, and finally the 
aircraft performance limitation is set to 180 degrees, the widest possible range of 
manoeuvre. For each simulation run, the following metrics will be shown: Mean 
reduction alerts and conflicts (%), mean extra distance flown (NM), ATC 
instructions per episode and a comparison of all the metrics. 
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4.3.1.1. Parameters tuning: Number of flights 

 

 
 

Fig. 4.5. Sensitive analysis: Number of flights. Legend 
 

 

 
Fig. 4.6. Sensitive analysis: Number of flights. Mean extra distance [NM] 
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Fig. 4.7. Sensitive analysis: Number of flights. Mean reduction conflicts (%) 

 
 

 
 

Fig. 4.8. Sensitive analysis: Number of flights. Mean reduction alerts (%) 
 

 

 

 
 

Fig. 4.9. Sensitive analysis: Number of flights. ATC instructions each episode 
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Fig. 4.10. Sensitive analysis: Number of flights. Parameter comparison 
 
 
As expected, the mean number of alerts per episode (summed across agents) 
increases with the number of flights. If the number of agents increases in an 

airspace sector of area A ∈ [Amin, Amax], the probability of occurring encounters 
is greater, therefore the difficulty to maneuver is greater and this causes that the 
alert zones of the flights are violated more constantly. Nevertheless, the mean 
number of conflicts does not increase with number of flights, meaning that the 
policy is scalable and robust enough to adapt to all situations created by only 
implementing track changes.  
 

Note that the maximum achieved mean value of extra distance traveled all the 
agents during an episode is 292 NM (see Fig 4.6) corresponding to the case with 
20 agents, in which all aircraft reach their target with many deviations but with the 
aim of maintaining safe separation during the whole episode.  
 

Fig 4.9. also shows how the total number of ATC instructions per episode rises 
exponentially as the number of flights increases. Similar conclusions can be 
obtained for the extra distance flown per episode.  
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4.3.1.2. Parameters tuning: Alert distance and time 

 

The alert separation distance (𝑎𝑙𝑒𝑟𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) and alert separation time 
(𝑎𝑙𝑒𝑟𝑡_𝑡𝑖𝑚𝑒) parameters are analyzed together. Proportional values have been 
assigned to both parameters, so that the detection of the alert occurs either 
sooner or later. 
 

 
 

Fig. 4.11. Sensitive analysis: Alert distance and time. Legend 
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Fig. 4.12. Sensitive analysis: Alert distance and time. Mean extra distance [NM] 
 
 

 
 
Fig. 4.13. Sensitive analysis: Alert distance and time. Mean reduction conflicts 

(%) 
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Fig. 4.14. Sensitive analysis: Alert distance and time. Mean reduction alerts 

 

 

 
 

Fig. 4.15. Sensitive analysis: Alert distance and time. ATC instructions each 
episode 

 

 
Fig. 4.16. Sensitive analysis: Alert distance and time. Parameter comparison 
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Fig 4.12 shows how the extra distance flown per episode increase as the alert 
separation distance and time is increased. Similar conclusions can be obtained 
for the number of ATC instructions per episode, which can be seen in Fig 4.15.  
 

When observing the conflict reduction (%) in Fig 4.13, it is fairly clear the small 
variability over the cases, regardless of the case where the alert distance is 5 NM 
or close, equal or almost equal to the conflict separation distance. In the case of 
5 NM, there is no physical alert zone, as an aircraft less than 5 NM away is 
violating the conflict zone.  
 

In spite of that, when the alert reduction (%) is observed, there is a clear 
downward trend in increasing the time and distance of the alert, that is, detecting 
the conflict sooner.  This can happen because when detecting alerts earlier, it is 
easier for multiple conflicts to occur and it is more difficult to maneuver avoiding 
the alert zones of neighboring flights. 
 
 

4.3.1.3. Parameters tuning: Maximum turning performance limitation 

 

 
 

Fig. 4.17. Sensitive analysis: Performance limitation. Legend 
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Fig. 4.18. Sensitive analysis: Performance limitation. Mean extra distance [NM] 
 
 

 
Fig. 4.19. Sensitive analysis: Performance limitation. Mean reduction conflicts (%) 

 
 

 
Fig. 4.20. Sensitive analysis: Performance limitation. Mean reduction alerts (%) 
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Fig. 4.21. Sensitive analysis: Performance limitation. ATC instructions each 
episode 

 
 

 
Fig. 4.22. Sensitive analysis: Performance limitation [rad]. Parameter comparison 
 
 
 
In this case, it can be seen that the reduction alerts and conflicts (%) present a 
similar downwards trend as aircraft performance limitation is decreased, meaning 
that as the manoeuvring limit decreases, agents have more difficulty resolving 
the conflict (Fig 4.19 and Fig 4.20). 
 

As expected, similar conclusions are extracted from the extra distance flown, that 
increases as the aircraft performance limit decreases, leaving a lower angle of 
manoeuvre.  
 

By looking at Fig 4.22 can be affirmed the conclusions extracted above. It can be 
seen that, for greater manoeuvre ranges lead to larger reduction alerts and 
conflicts and shorter extra distances.  
 

When observing the sum of ATC instructions for each episode, see Fig 4.21, it is 
fairly clear the small variability over the cases, a clear trend cannot be 
seen.  From this it can be concluded that there is no increase in ATC instructions 
when the manoeuvring range is reduced. That is, when the limit of manoeuvre 
decreases, the number of conflicts increases with the same number of actions.  
After analysing the results of the experiments carried out with different values of 
the parameters, the values that have given the best results are chosen, in terms 
of safety and efficiency. 
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Note that the number of flights, regardless of the results, is set to a value of 10. 
In this way more realistic results are extracted and more content is generated to 
be studied and improved. 
 

The Table 4.3 on this section show the different parameter combination chosen 
and their optimal values.   
 
 

Parameter Value set 

Number of flights 𝓝  10 

Alert separation distance 𝒅𝒂𝒍𝒆𝒓𝒕 10 NM 

Alert separation time 𝒕𝒂𝒍𝒆𝒓𝒕 70 seconds 

Aircraft performance limitation 180 degrees 

 

Table 4.3. Simulation variables set 
 
 

4.3.2. Simulation comparison results 

 
Once the parameters are set to the optimal values, the results of the simulation 
implementing the policy will be seen in comparison to the same situations without 
applying the policy. The environment simulation is configured with 500 episodes. 
 
 

 
 

Fig. 4.23. Number of conflicts each episode with policy in comparison without 
policy 
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Fig. 4.24. Number of alerts each episode with policy in comparison without 
policy 

 
 

 
 

Fig. 4.25. Minimum separation distances each episode with policy in 
comparison without policy 
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Fig. 4.26. ATC instructions each episode with policy in comparison without 
policy 

 

 

 
 

Fig. 4.27. Extra distance flown per episode with policy in comparison without 
policy 

 
 
This section shows the comparison between the simulation done applying the 
policy and without applying it, as well as the performance metrics calculated. 
 

The figures show a clear attenuation of the conflicts and their alerts when the 
policy is applied. The mean of overall run conflict and alert reduction values are 
99,41% and 87,95%, respectively. More specifically, a simulation of 500 different 
episodes has been made and only 5 conflicts have occurred. Attenuation is also 
appreciated on the duration of the conflicts and alerts, that is, how many time 
steps the flights are within the conflict or alert zone.  
 

As expected, the minimum separation distances found in each episode without 
applying the policy are smaller and more often violate the conflict zone than in 
the policy enforcement simulation, as can be seen in Fig 4.25. This metric gives 
us information about the severity of the most serious conflicts that have occurred 
in each episode. Note that the minimum recorded value is 1876 meters, since if 
it were a real situation the planes would not have collided.  
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Fig 4.26 shows the sum of the ATC instructions given during each episode and 
also the maximum number of instructions given for the same flight during the 
episode. Note that the maximum ATC instructions that can be achieved in an 
episode are 71, 29 of which were headed for the same flight. Both numbers may 
be considered as high workload value for ATCOs and pilots. These values 
correspond to the case where multiple encounters occur and it has been more 
difficult to find a solution. 
 

When observing the extra distance flown, it is fairly clear the high variability over 
the cases. Nevertheless, a high smooth is applied to be able to appreciate the 
convergence of the feature, being the mean value 44 NM, where can be seen in 
Fig 4.27. This extra distance is an approximately 27% additional flight distance 
per aircraft of the planned distance.  
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CHAPTER 5. CONCLUSIONS AND FURTHER 
IMPROVEMENTS 

 
 
This document proposes a method to enhance the performance and efficiency of 
the air traffic controllers’ tasks designing a separation policy algorithm based on 
the general Rules of the Air.  
 
Parameter tuning has proven to be very effective, as it has allowed us to improve 
the results. The choice of parameters has been made by analyzing the graphs 
obtained from the sensitive analysis, each one separately. In the TFG, the 
discretisation level of the parameter values was coarse due to limitations in time 
for project finalisation, but a finer level of discretisation could give better results. 
 
The results with the adjusted parameters suggest that the policy model proposed 
herein can assist air traffic controllers to manage air traffic in high-density traffic 
scenarios. By applying the algorithm, a reduction of the conflicts of 99.41% is 
achieved compared with a situation without applying any instructions. This result 
could be improved by implementing other separation techniques, such as 
separating agents vertically (which entails 3D implementation) or applying speed 
changes to resolve predicted conflicts. 
 
It should be noted that the scenarios simulated in this study have a very high 
capacity sector. Specifically, 2 times more than the average capacity of IFR flights 
handled by ATCOs in 2018 [15]. Also it should be considered that in the 
simulation in this study only lateral separation is used to manage conflicts. In real 
traffic scenarios, the vertical separation is also used by ATCOs, and the airspace 
is considered as a volume sector. 
 
The implementation of the policy causes, for each aircraft, an average additional 
distance flown of 44 NM over the average distance without applying the 
separation policy of about 165 NM, which represents an increase of 27%. 
Average fuel burn of newest aircraft, assuming European regional flights, is 3 

kg/km, which represents 10 kg CO₂/km of emissions [11]. Taking into account 
that the average flight distance in Europe is approximately 900 km [12], is 
achieved an inefficiency traffic control in terms of fuel consumption of 9%. 
Regarding flight efficiency, it can be concluded that the algorithm used achieves 
an inefficiency similar to that of the current ATC [13].  
 
A negative factor of the policy is the number of instructions that the ATC should 
give to resolve conflicts. Is achieved a maximum of 71 ATC instructions in a single 
episode, 29 of which are given to the same aircraft. An average of 7 ATC 
instructions are given in each episode. It can be seen that the algorithm is not 
entirely efficient. Most conflicts occur when there are multiple encounters. The 
high number of ATC instructions occurs when it is very difficult to find a solution 
that resolves all potential conflicts. 
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Looking at the high values, can be predicted the high workload they would have, 
not only the ATCO but also the pilot, in resolving conflicts with the proposed 
separation algorithm. As an improvement for the future, it is suggested to define 
a workload limit for both pilots and ATCOs in high-density traffic scenarios, thus 
obtaining a more efficient algorithm that would be directly related to the 

consumption of flights and CO₂ emissions. 
 
The policy solution opts to prioritize efficiency by selecting the shortest distance 
to the destination. In case of maneuver, the early return is made towards the 
nominal trajectory, regardless of its position in the airspace sector. In order to 
obtain more realistic results is suggested the inclusion of the early return to 
defined airways by ATCOs. 
 
It is concluded that the designed separation policy provides good results but it 
would not be acceptable for direct implementation as a single tool. Other 
separation techniques such as those mentioned above, could be implemented 
together with the separation model proposed herein. Therefore, more capacity 
could be reached within the airspace sectors, ensuring the required levels of 
safety and efficiency. 
 
The future work of this project should be mainly focused on further improving the 
effectiveness and reliability of the separation model. To do so, a potential 
proposal would be an implementation of a tool based on multi-agent 
reinforcement learning in the model would lead to better results, improving safety 
and efficiency.  
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APPENDIX A 
 

Solution code from mathematical software: 
 

Part 1 – policy.py 
 
""" 

Policy module 

""" 

import math 

from collections import deque 

import gym 

from typing import List 

from atcenv.definitions import * 

from atcenv.env import * 

from atcenv import Environment 

import numpy as np 

import torch 

import torch.nn as nn 

import torch.nn.functional as F 

 

 

def position_angles(env, i: int, j: int) -> tuple: 

    """ """ 

    """ Respect to flight: i """ 

    dx_i = env.flights[j].position.x - env.flights[i].position.x 

    dy_i = env.flights[j].position.y - env.flights[i].position.y 

    compass_i = math.atan2(dx_i, dy_i) 

    compass_i = (compass_i + u.circle) % u.circle 

 

    angle_i = compass_i - env.flights[i].track 

    if angle_i > math.pi: 

        angle_i = -(u.circle - angle_i) 

    elif angle_i < -math.pi: 

        angle_i = u.circle + angle_i 

 

    """ Respect to flight: j """ 

    dx_j = env.flights[i].position.x - env.flights[j].position.x 

    dy_j = env.flights[i].position.y - env.flights[j].position.y 

    compass_j = math.atan2(dx_j, dy_j) 

    compass_j = (compass_j + u.circle) % u.circle 

 

    angle_j = compass_j - env.flights[j].track 

    if angle_j > math.pi: 

        angle_j = -(u.circle - angle_j) 

    elif angle_j < -math.pi: 

        angle_j = u.circle + angle_j 

 

    return angle_i, angle_j 

    ########################################################## 

 

 

def t_cpa(env, i: int, j: int) -> float: 

    """ 

    Time to get the closest point of approach of a flight i to j 

    :return: time to the closest point of approach, done with straight formula 

    """ 

    dx = env.flights[j].position.x - env.flights[i].position.x 

    dy = env.flights[j].position.y - env.flights[i].position.y 

 

    """ Computing relative velocity contemplating bearing """ 

    # vrx = (env.flights[j].airspeed * math.sin(env.flights[j].bearing)) - 

(env.flights[i].airspeed * math.sin(env.flights[i].bearing)) 

    # vry = (env.flights[j].airspeed * math.cos(env.flights[j].bearing)) - 

(env.flights[i].airspeed * math.cos(env.flights[i].bearing)) 



  

  

 

    """ Computing relative velocity contemplating track --> x """ 

    vrx = env.flights[j].components[0] - env.flights[i].components[0] 

    vry = env.flights[j].components[1] - env.flights[i].components[1] 

 

    if i == j: 

        tcpa = 0 

    else: 

        tcpa = max(0, -(dx * vrx + dy * vry) / (vrx ** 2 + vry ** 2)) 

 

    return tcpa 

    ########################################################## 

 

 

def d_cpa(env, i: int, j: int) -> float: 

    """ 

    Distance to get the closest point of approach of a flight i to j 

    :return: distance to the closest point of approach 

    """ 

    dx = env.flights[j].position.x - env.flights[i].position.x 

    dy = env.flights[j].position.y - env.flights[i].position.y 

    vrx = env.flights[j].components[0] - env.flights[i].components[0] 

    vry = env.flights[j].components[1] - env.flights[i].components[1] 

    if i == j: 

        dcpa = 0 

    else: 

        tcpa = t_cpa(env, i, j) 

        dcpa = math.sqrt((dx + vrx * tcpa) ** 2 + (dy + vry * tcpa) ** 2) 

 

    return dcpa 

    ########################################################## 

 

 

def t_cpa_bearing(env, i: int, j: int) -> float: 

    """ 

    Time to get the closest point of approach of a flight i to j following its 

bearing 

    :return: time to the closest point of approach, done with straight formula 

    """ 

    track_i = env.flights[i].track + env.flights[i].drift 

    track_j = env.flights[j].track + env.flights[j].drift 

 

    """ Computing relative velocity contemplating bearing """ 

    dx = env.flights[j].position.x - env.flights[i].position.x 

    dy = env.flights[j].position.y - env.flights[i].position.y 

 

    """ Computing relative velocity contemplating track --> x """ 

    vrx = env.flights[j].airspeed * math.sin(track_j) - 

env.flights[i].airspeed * math.sin(track_i) 

    vry = env.flights[j].airspeed * math.cos(track_j) - 

env.flights[i].airspeed * math.cos(track_i) 

 

    if i == j: 

        tcpa_bearing = 0 

    else: 

        tcpa_bearing = max(0, -(dx * vrx + dy * vry) / (vrx ** 2 + vry ** 2)) 

 

    return tcpa_bearing 

    ########################################################## 

 

 

def d_cpa_bearing(env, i: int, j: int) -> float: 

    """ 

    Distance to get the closest point of approach of a flight i to j following 

its bearing 

    :return: distance to the closest point of approach 

    """ 

    track_i = env.flights[i].track + env.flights[i].drift 



 

 

    track_j = env.flights[j].track + env.flights[j].drift 

    dx = env.flights[j].position.x - env.flights[i].position.x 

    dy = env.flights[j].position.y - env.flights[i].position.y 

    vrx = env.flights[j].airspeed * math.sin(track_j) - 

env.flights[i].airspeed * math.sin(track_i) 

    vry = env.flights[j].airspeed * math.cos(track_j) - 

env.flights[i].airspeed * math.cos(track_i) 

 

    if i == j: 

        dcpa_bearing = 0 

    else: 

        tcpa = t_cpa_bearing(env, i, j) 

        dcpa_bearing = math.sqrt((dx + vrx * tcpa) ** 2 + (dy + vry * tcpa) ** 

2) 

 

    return dcpa_bearing 

    ########################################################## 

 

 

def safe_turn_angle(env, i: int, j: int) -> float: 

    angle_right = 0 

    while angle_right < env.performance_limitation: 

        track = env.flights[i].track + angle_right 

        dx = env.flights[j].position.x - env.flights[i].position.x 

        dy = env.flights[j].position.y - env.flights[i].position.y 

        vrx = env.flights[j].components[0] - env.flights[i].airspeed * 

math.sin(track) 

        vry = env.flights[j].components[1] - env.flights[i].airspeed * 

math.cos(track) 

        tcpa = max(0, -(dx * vrx + dy * vry) / (vrx ** 2 + vry ** 2)) 

        dcpa = math.sqrt((dx + vrx * tcpa) ** 2 + (dy + vry * tcpa) ** 2) 

 

        tol = env.alert_distance - dcpa 

        if tol < 0 or tcpa == 0: 

            break 

        angle_right = angle_right + (1 * (u.circle / 360)) 

 

    angle_left = 0 

    while angle_left > - env.performance_limitation: 

        track = env.flights[i].track + angle_left 

        dx = env.flights[j].position.x - env.flights[i].position.x 

        dy = env.flights[j].position.y - env.flights[i].position.y 

        vrx = env.flights[j].components[0] - env.flights[i].airspeed * 

math.sin(track) 

        vry = env.flights[j].components[1] - env.flights[i].airspeed * 

math.cos(track) 

        tcpa = max(0, -(dx * vrx + dy * vry) / (vrx ** 2 + vry ** 2)) 

        dcpa = math.sqrt((dx + vrx * tcpa) ** 2 + (dy + vry * tcpa) ** 2) 

 

        tol = env.alert_distance - dcpa 

        if tol < 0 or tcpa == 0: 

            break 

        angle_left = angle_left - (1 * (u.circle / 360)) 

 

    """ Choosing whether turn right or turn left """ 

    if angle_right != env.performance_limitation and angle_left != 

env.performance_limitation: 

        # Computing right track and verify: 0 < angle < 2*phi 

        track_right = env.flights[i].track + angle_right 

        if track_right > u.circle: 

            track_right = track_right - u.circle 

        # Computing left track and verify: 0 < angle < 2*phi 

        track_left = env.flights[i].track + angle_left 

        if track_left < 0: 

            track_left = track_left + u.circle 

        # Computing... 

        dif_right = abs(track_right - env.flights[j].track) 

        dif_left = abs(track_left - env.flights[j].track) 



  

  

 

        if dif_right > dif_left: 

            angle_safe_turn = angle_right 

        else: 

            angle_safe_turn = angle_left 

    else: 

        angle_safe_turn = min(abs(angle_right), abs(angle_left)) 

        if angle_safe_turn == abs(angle_left): 

            angle_safe_turn = angle_left 

    # When a solution is not encountered 

    if angle_right == env.performance_limitation and angle_left == 

env.performance_limitation: 

        print('FLight ', i, 'has not encountered a safe turn angle') 

 

    return angle_safe_turn 

    ########################################################## 

 

 

def safe_turn_MULTIPLE_angle(env, angle_safe_turn, list_i, i) -> float: 

 

    """ The action of i will be the maximum between angles of the closest 

flight and others """ 

    previous_angle = angle_safe_turn 

    n = 1 

    while n < len(list_i): 

        k = list_i[n] 

        angle_safe_turn_multiple = safe_turn_angle(env, i, k) 

 

        max_multiple_angle = max(abs(previous_angle), 

abs(angle_safe_turn_multiple)) 

        if max_multiple_angle == abs(previous_angle): 

            max_multiple_angle = previous_angle 

        if max_multiple_angle == abs(angle_safe_turn_multiple): 

            max_multiple_angle = angle_safe_turn_multiple 

 

        previous_angle = max_multiple_angle 

        n += 1 

 

    return max_multiple_angle 

    ########################################################## 

 

 

def alert_detection(env, previous_distances, previous_actions, 

current_distances, FirstStepConflict, InConflict) -> List: 

 

    """ Creating a matrix with ALL flights and its closest conflicts ordered 

by time, and actualizing conflict parameters """ 

    FlightsInConflictWith = [] 

    for i in range(env.num_flights): 

        num = [] 

        time = [] 

        for j in range(env.num_flights): 

            if i not in env.done and j not in env.done and i != j: 

                tcpa = t_cpa(env, i, j) 

                dcpa = d_cpa(env, i, j) 

                tcpa_bearing = t_cpa_bearing(env, i, j) 

                dcpa_bearing = d_cpa_bearing(env, i, j) 

                if (tcpa < env.alert_time and dcpa < env.alert_distance < 

previous_distances[i, j]) or ( 

                        current_distances[i, j] < env.alert_distance < 

previous_distances[i, j]) or (previous_actions[i] == 

env.performance_limitation) or ( 

                        current_distances[i, j] < env.alert_distance and 

current_distances[i, j] <= previous_distances[i, j]): 

                    InConflict[i] = True 

                    FirstStepConflict[i] = True 

                    FirstStepConflict[j] = True 

                    time.append(tcpa) 



 

 

                    num.append(j) 

                else: 

                    if (tcpa_bearing < env.alert_time and dcpa_bearing < 

env.alert_distance) or current_distances[i, j] < env.alert_distance: 

                        InConflict[i] = True 

                        time.append(tcpa_bearing) 

                        num.append(j) 

 

        tcpa_sorted = [x for _, x in sorted(zip(time, num))] 

        FlightsInConflictWith.append(tcpa_sorted) 

 

    return FlightsInConflictWith 

    ########################################################## 

 

 

def SERA_rules_application(env, i, j, angle_i, angle_j, actions, 

angle_safe_turn) -> None: 

 

    """ Looking at the conditions and, in consequence, applying the actions""" 

    approach = u.circle / 24  # 15º 

    converge = (110 / 360) * u.circle  # 110º 

 

    ############### 

    # APPROACHING # 

    ############### 

    # When two aircraft are approaching head-on or approximately so and there 

is danger of 

    # collision, each shall alter its heading to the right. 

    if abs(angle_i) < approach and abs(angle_j) < approach: 

        actions[i] = angle_safe_turn / 2 

        actions[j] = angle_safe_turn / 2 

 

    ############## 

    # CONVERGING # 

    ############## 

    # When two aircraft are converging at approximately the same level, the 

aircraft that has 

    # the other on its right shall give way. 

    elif approach <= abs(angle_i) <= converge or approach <= abs(angle_j) <= 

converge: 

 

        if angle_i > 0: 

            if angle_j > 0: 

                if env.flights[i].airspeed > env.flights[j].airspeed: 

                    actions[i] = angle_safe_turn 

            else: 

                actions[i] = angle_safe_turn 

 

        elif angle_i <= 0: 

            if angle_j <= 0: 

                if env.flights[i].airspeed > env.flights[j].airspeed: 

                    actions[i] = angle_safe_turn 

 

    ############## 

    # OVERTAKING # 

    ############## 

    # An aircraft that is being overtaken has the right-of-way and the 

overtaking aircraft 

    # shall keep out of the way of the other aircraft by altering its heading 

to the right, and no subsequent change in the relative positions of 

    # the two aircraft shall absolve the overtaking aircraft from this 

obligation until it is entirely past and clear 

    # In all circumstances, the faster flight that is overtaking shall give 

way 

    elif abs(angle_j) > converge or abs(angle_i) > converge: 

 

        if env.flights[i].airspeed > env.flights[j].airspeed: 

            actions[i] = angle_safe_turn 



  

  

 

    return None 

    ########################################################## 

 

 

""" POLICY DEFINITION """ 

 

 

def policy_action(memory, env) -> List: 

    actions = [0] * env.num_flights 

    FirstStepConflict = [False] * env.num_flights 

    InConflict = [False] * env.num_flights 

    previous_distances, previous_actions = memory.pop() 

    current_distances = env.distances_matrix() 

 

    FlightsInConflictWith = alert_detection(env, previous_distances, 

previous_actions, current_distances, FirstStepConflict, InConflict) 

 

    """ For each flight i, the conflict between i and its closest flight j is 

solved modifying the action i """ 

    for i in range(env.num_flights): 

        if i not in env.done: 

 

            list_i = FlightsInConflictWith[i] 

            if not InConflict[i]: 

                """ NO CONFLICT """ 

                actions[i] = env.flights[i].drift 

 

            if InConflict[i]: 

                """ CONFLICT """ 

                if not FirstStepConflict[i]: 

                    """ Solving the conflict, in process """ 

                    actions[i] = 0 

 

                if FirstStepConflict[i]: 

                    """ First step in the conflict """ 

 

                    """ Solving the most important conflict: The closest 

conflict in terms of time (tcpa) """ 

                    j = list_i[0] 

                    angle_safe_turn = safe_turn_angle(env, i, j) 

 

                    if env.airspace.polygon.contains(env.flights[i].position) 

and env.airspace.polygon.contains( 

                            env.flights[j].position): 

 

                        """ Computing the angle formed by the position of the 

intruder flight in respect of it's own track """ 

                        angle_i, angle_j = position_angles(env, i, j) 

 

                        """ Applying the SERA Rules """ 

                        SERA_rules_application(env, i, j, angle_i, angle_j, 

actions, angle_safe_turn) 

 

                    if len(list_i) > 1: 

                        """ If there is a multiple conflict, is solved 

calculating the maximum angle that solves all """ 

 

                        actions[i] = safe_turn_MULTIPLE_angle(env, 

angle_safe_turn, list_i, i) 

 

    return actions 

 

 

class PrioritizedReplayBuffer: 

    def __init__(self, maxlen): 

        self.buffer = deque(maxlen=maxlen) 

        self.priorities = deque(maxlen=maxlen) 



 

 

 

    def add(self, experience): 

        self.buffer.append(experience) 

        self.priorities.append(max(self.priorities, default=1)) 

 

    def get_probabilities(self, priority_scale): 

        scaled_priorities = np.array(self.priorities) ** priority_scale 

        sample_probabilities = scaled_priorities / sum(scaled_priorities) 

        return sample_probabilities 

 

    def get_importance(self, probabilities): 

        importance = 1 / len(self.buffer) * 1 / probabilities 

        importance_normalized = importance / max(importance) 

        return importance_normalized 

 

    def sample(self, batch_size, priority_scale=1.0): 

        sample_size = min(len(self.buffer), batch_size) 

        sample_probs = self.get_probabilities(priority_scale) 

        sample_indices = random.choices(range(len(self.buffer)), 

k=sample_size, weights=sample_probs) 

        samples = np.array(self.buffer)[sample_indices] 

        importance = self.get_importance(sample_probs[sample_indices]) 

        return map(list, zip(*samples)), importance, sample_indices 

 

    def set_priorities(self, indices, errors, offset=0.1): 

        for i, e in zip(indices, errors): 

            self.priorities[i] = abs(e) + offset 

 
 
  



  

  

 


