

DEGREE FINAL PROJECT

 TITLE: Air Traffic Control using separation algorithm based on Rules of the Air

 DEGREE: Bachelor's degree in Aerospace Systems Engineering

 AUTHOR: Lidia Fuentes Coll

 DIRECTOR: Cristina Barrado Muxí

 DATE: June 29th, 2022

 Title: Air Traffic Control using separation algorithm based on Rules of the Air

 Author: Lidia Fuentes Coll

 Director: Cristina Barrado Muxí

 Date: June 29th, 2022

Abstract

Avoiding collisions is one of the main tasks of air traffic control. The rapid
increase in air traffic and its continued growth raises the issue of assisting air
traffic controllers in high complex traffic scenarios, where safety and efficiency
cannot be compromised. Predictions estimated for the future of several decades’
state that the current air traffic management system will not be able to withstand
this increase in demand for air transport with the required levels of safety,
efficiency and sustainability. Air traffic management is changing faster and faster
towards more advanced and efficient technology, with the integration of
automated support tools to assist air traffic controllers.
This document presents a method to enhance the performance and efficiency of
the air traffic controllers’ tasks: monitor and manage all aircraft flying through the
airspace sector, performed in a centralised way. The objective is design a
separation algorithm based on the general Rules of the Air. To achieve the goal
of the project, Remain Well Clear and Closest Point of Approach concepts have
been used as other sources of information. The policy algorithm is simulated in
a controlled simulation environment. Regarding the results obtained at the end
of this project, a reduction of the conflicts of a 99,41% is achieved compared with
a situation without applying any instructions. The results of this project also
include a sensitive analysis of the tuning of parameters. The performance of the
policy model could be upgraded in the future applying Artificial Intelligence, so
conflicts can be addressed in a much more efficient and accurate way.

 Títol: Control de trànsit aeri mitjançant algorisme de separació basat en les
 Regles de l'Aire

 Autor: Lidia Fuentes Coll

 Director: Cristina Barrado Muxí

 Data: 29 de juny del 2022

Resum

Garantir una separació segura entre aeronaus és una de les principals tasques
del control del trànsit aeri. El ràpid augment del trànsit aeri i el seu creixement
continuat planteja la qüestió d'ajudar els controladors de trànsit aeri en escenaris
de trànsit molt complexos, on la seguretat i l'eficiència no es poden
comprometre. Les prediccions estimades per al futur de diverses dècades
indiquen que l'actual sistema de gestió del trànsit aeri no serà capaç de suportar
aquest augment de la demanda de transport aeri amb els nivells de seguretat,
eficiència i sostenibilitat requerits. La gestió del trànsit aeri està canviant cada
cop més ràpidament cap a una tecnologia més avançada i eficient, amb la
integració d'eines de suport automatitzades.
Aquest document presenta un mètode per millorar el rendiment i l'eficiència de
les tasques dels controladors de trànsit aeri: controlar i gestionar totes les
aeronaus que volen pel sector de l'espai aeri, realitzada de manera
centralitzada. L'objectiu és dissenyar un algoritme de separació basat en les
Regles Generals de l'Aire. Per assolir l'objectiu del projecte, s'han utilitzat els
conceptes de “Remain Well Clear” i “Closest Point of Approach” com a altres
fonts d'informació. L'algoritme es simula en un entorn de simulació controlat. Pel
que fa als resultats obtinguts al final d'aquest projecte, s'aconsegueix una
reducció dels conflictes d'un 99,41% en comparació amb una situació sense
aplicar cap política de separació. Els resultats d'aquest projecte també inclouen
una anàlisi sensible de l'ajustament dels paràmetres. El rendiment del model de
polítiques es podria millorar en el futur aplicant la Intel·ligència Artificial, de
manera que els conflictes es puguin abordar d'una manera molt més eficient i
precisa.

I would like to offer my special thanks to my director
Cristina Barrado Muxí for the effort and dedication in
order to guide me along this project.

Moreover, I wish to acknowledge the help provided by
the team EMC2022 presented at the EUROCONTROL
challenge.

I extend my gratitude to my parents and my partner,
who have given me their unconditional support and
encouragement during all these years.

CONTENTS

INTRODUCTION .. 13

CHAPTER 1. ATC PRINCIPLES AND CONFLICT MANAGEMENT 15

1.1. Air Traffic Control .. 15

1.2. Well Clear and Remain Well Clear terminology .. 17

1.3. Rules of the Air .. 17

CHAPTER 2. MATHEMATICAL BACKGROUND AND MODELLED METRICS
 ... 19

2.1. The simulation environment ... 19
2.1.1. Action Space... 19
2.1.2. Flight modelling .. 19
2.1.3. Airspace modelling ... 21

2.2. Modelled metrics of the policy algorithm ... 21
2.2.1. Right of Way ... 21
2.2.2. Closest Point of Approach .. 22
2.2.3. Remain Well Clear .. 24

CHAPTER 3. DETECT AND AVOID ALGORITHM DESIGN 27

3.1. Architectural policy design .. 27

3.2. Structural policy design .. 29

3.3. Situational policy design .. 30

CHAPTER 4. RESULTS .. 32

4.1. Language and tools used ... 32
4.1.1. Simulation tool .. 32
4.1.2. Modelling tool.. 33
4.1.3. Visualization and Analysis tool ... 34

4.2. Setup of the simulation ... 34

4.3. Simulation results.. 35
4.3.1. Sensitivity analysis results .. 35
4.3.2. Simulation comparison results.. 45

CHAPTER 5. CONCLUSIONS AND FURTHER IMPROVEMENTS 49

BIBLIOGRAPHY .. 51

APPENDIX A ... 53

LIST OF FIGURES

Fig 1.1. The aviation system and its components 15

Fig 2.1. Right of Way situations: head‐on, converging, overtaking 22

Fig 2.2. Distance of Closest Point of Approach scheme 23

Fig 2.3. Remain Well Clear scheme 24

Fig 2.4. Guidance bands computation scheme 26

Fig 3.1. Graph of file main.py 27

Fig 3.2. Graph of file env.py 27

Fig 3.3. Calls graph of file policy.py 28

Fig 3.4. Graph of file policy.py 28

Fig 3.5. Structural design of the separation policy 29

Fig 3.6. Situational design of the separation policy 30

Fig 4.1. Wandb overview screenshot 33

Fig 4.2. Wandb logging tools 33

Fig 4.3. Understand logo 34

Fig 4.4. Random scenario generator 34

Fig 4.5. Sensitive analysis: Number of flights. Legend 36

Fig 4.6. Sensitive analysis: Number of flights. Mean Extra
 Distance [NM]

36

Fig 4.7. Sensitive analysis: Number of flights. Mean reduction
 conflicts (%)

37

Fig 4.8. Sensitive analysis: Number of flights. Mean reduction
 alerts (%)

37

Fig 4.9. Sensitive analysis: Number of flights. ATC
 instructions each episode

37

Fig 4.10. Sensitive analysis: Number of flights. Parameter
 comparison

38

Fig 4.11. Sensitive analysis: Alert distance and time. Legend 39

Fig 4.12. Sensitive analysis: Alert distance and time. Mean Extra 40

 Distance [NM]

Fig 4.13. Sensitive analysis: Alert distance and time. Mean
 reduction conflicts (%)

40

Fig 4.14. Sensitive analysis: Alert distance and time. Mean
 reduction alerts (%)

41

Fig 4.15. Sensitive analysis: Alert distance and time. ATC
 instructions each episode

41

Fig 4.16. Sensitive analysis: Alert distance and time. Parameter
 comparison

41

Fig 4.17. Sensitive analysis: Performance limitation. Legend 42

Fig 4.18. Sensitive analysis: Performance limitation. Mean Extra
 Distance [NM]

43

Fig 4.19. Sensitive analysis: Performance limitation. Mean
 reduction conflicts (%)

43

Fig 4.20. Sensitive analysis: Performance limitation. Mean
 reduction alerts (%)

43

Fig 4.21. Sensitive analysis: Performance limitation. ATC
 instructions each episode

43

Fig 4.22. Sensitive analysis: Performance limitation. Parameter
 comparison

44

Fig 4.23. Number of conflicts each episode with policy in
 comparison without policy

45

Fig 4.24. Number of alerts each episode with policy in comparison
 without policy

46

Fig 4.25. Minimum separation distances each episode with policy in
 comparison without policy

46

Fig 4.26. ATC instructions each episode with policy in comparison
 without policy

47

Fig 4.27. Extra distance flown per episode with policy in
 comparison without policy

47

LIST OF TABLES

Table 4.1. Simulation parameters 35

Table 4.2. Simulation variables 35

Table 4.3. Simulation variables set 45

ACRONYMS, ABBREVIATIONS AND DEFINITIONS

2D Two-dimensional

AI Artificial Intelligence

ANS Air Navigation Services

ANSP Air Navigation Service Providers

ATC Air Traffic Controller

ATC Air Traffic Control

ATCO Air Traffic Control Operators

ATM Air Traffic Management

ATS Air Traffic Services

CA Collision Avoidance

CPA Closest Point of Approach

EASA European Union Aviation Safety Agency

EU European Union

ICAO International Civil Aviation Organization

IFR Instrumental Flight Rules

KT Knots

NM Nautical Miles

RL Reinforcement Learning

RoW Right of Way

RWC Remain Well Clear

SERA Standardised European Rules of the Air

VFR Visual Flight Rules

WC Well Clear

Introduction 13

INTRODUCTION

When the world fleet increases in size, the number of complex traffic situations
increase and the risk of collisions must remain. Collisions could result in a
catastrophe, causing lots of fatalities, major environmental damage and can lead
to serious economic problems. The growing demand for air transportation
necessitates the integration of automated support tools to assist air traffic
controllers in managing the increase of air traffic.

The world of aviation is changing, not only because of the evolution of technology
and the economy, but also as a response to the needs of future society. Changes
in air traffic management can be approached from many different perspectives.
ATMs are changing faster and faster towards more advanced and efficient
technology, but they still need to improve.

Despite the COVID-19 crisis of 2020, the growth of aviation demand continues to
increase. Air transport, especially commercial air transport, is a relatively young
industry and current forecasts suggest that it will continue to grow over the next
few decades.

While it brings significant economic and social benefits, the aviation also has a
negative impact for the society and the environment. Thus, while growing demand
is beneficial to businesses and industries, it is not as efficient as it could be. The
growth of this demand has created new capacity and security challenges as well
as environmental impact, directly related to CO2 emissions. One of the problems
to be addressed is to minimize this impact by reducing fuel consumption.

In the last decade, the field of Artificial Intelligence (AI) and its subfields has
grown exponentially. With the help of AI modern problems can be addressed in
a much more efficient and accurate way. Specifically, aviation organizations,
such as EUROCONTROL, are betting heavily on a field of artificial intelligence
called Reinforcement Learning. This differs in its ability to solve complex and
customized problems, being able to correct the errors that occur during the
training process. This learning model is very similar to the learning of human
beings. Hence, it is close to achieving perfection.

It is in this context where this project rises. This study is part of a joint project,
worked with Weronika Prawda, which aims to maximize two common goals:
safety and flight efficiency.

Specifically, in this final degree project, the proposed solution is to automate the
air traffic system through separation policies. The aim of the study is to ensure a
distance of separation for all aircraft throughout the flight based on the Rules of
the Air.

Out of the scope of this degree project, it focuses on improving the results using
Reinforcement Learning and uses the experiences generated by the policy
created in this same study.

14 Air Traffic Control using separation algorithm based on Rules of the Air

The motivation for this final degree project came with participation in the
EUROCONTROL Innovation Master Class Q1 2022. Specifically, in the first ‘ATM
Innovation Masterclass’ – a student competition based on solving operational
ATM challenges.

The structure of the document is as follows:

Chapter one introduces a theoretical background about Air Traffic Control as well
as contains a summary of the Rules of the Air, on which the policy is based.

Chapter two explains in detail the simulation environment used for the experiment
and models the metrics of Right-of-way and Remain Well Clear.

Chapter three presents the policy design from three points of view: architectural,
structural and situational.

Chapter four presents the main results; the performance of the different
parameters is computed and analysed. Also, the conclusions of the project are
exposed and some ideas to improve the performance in the future are given.

The main code of the project can be downloaded from the following repository:
https://github.com/lidiafc12/TFG_library

https://github.com/lidiafc12/TFG_library

ATC principles and conflict management 15

CHAPTER 1. ATC PRINCIPLES AND CONFLICT
MANAGEMENT

One of the main technical challenges of air traffic management is how to resolve
conflicts between aircraft. A conflict is defined as a circumstance in which two or
more aircraft approach within a minimum distance required by regulation,
creating a situation of danger. The distance by which an aircraft avoids obstacles
or other aircraft is termed separation. To prevent unexpected conflicts, Air
Navigation Service Provider (ANSP) is created. EUROCONTROL defines it as:
[1] an organization that provides the service of managing the aircraft in flight or
on the manoeuvring area of an aircraft and which is the legitimate holder of that
responsibility.

1.1. Air Traffic Control

Air navigation services (ANS) are provided for air traffic during all phases of
operations. These services include six categories of facilities and services:
communication, navigation and surveillance services, meteorological services for
air navigation, aeronautical information services, search and rescue, and ATM.

ATM is the dynamic and integrated management of air traffic and airspace in a
safe, economical and efficient way. Its components are air traffic services (ATS),
airspace management, and air traffic flow management.

The generic term “air traffic services” (ATS) covers flight information service,
alerting service, air traffic advisory service and air traffic control (ATC) service.
The concepts of ANS, ATM, ATS and ATC and their relationships with each other
can be seen in Fig 1.1.

Fig. 1.1. The aviation system and its components [2].

16 Air Traffic Control using separation algorithm based on Rules of the Air

The goal of air traffic control (ATC) is to maintain an orderly and safe flow of air
traffic. ATC aims to prevent collisions between aircraft and maintain an orderly
flow of air traffic through communication between pilots and ATCOs. ATC
provides area, approach and aerodrome control services. This important role for
successful air traffic management is played by air traffic controllers (ATCOs), who
continuously monitor all flights within the airspace sector under their
responsibility.

ATCOs monitor the location of aircraft in their assigned airspace and
communicate with the pilots [3]. To prevent collisions, ATCOs provide instructions
to pilots, which ensure each aircraft maintains a minimum separation distance at
all times. These instructions can be changes in direction or speed to resolve side
conflicts, and changes in flight level or ascent / descent speed to resolve vertical
conflicts. While ATCOs must prioritize safety above all else, flight efficiency must
also be considered, and controllers have to take into account the deviations from
the optimal trajectory, speed or altitude.

The effective performance of the air traffic management system depends on
qualified professionals in air traffic management. The ATM system is evolving
into a globally integrated and collaborative system. Therefore, air traffic
controllers who manage and operate this system must have shared training
wherever they work to support a cooperative system and achieve optimal
capacity within safety limits. The importance of having a single, shared training
increases when is considered the increase in traffic and the growing complexity
of the systems involved. And it is the International Civil Aviation Organization
(ICAO) that decrees these requirements, embodied in the Manual on Air Traffic
Controller Competency-based Training and Assessment, Doc 10056 [4].

The International Civil Aviation Organization (ICAO) is an agency of the United
Nations Organization created in 1944 by the Convention on International Civil
Aviation to study the problems of international civil aviation and promote unique
regulations and standards in world aeronautics.

Requirements that apply to ATCOs who work within Europe, are set by the
European Aviation Safety Agency (EASA). EASA's requirements build on ICAO,
but often go a bit further. Frequently, innovations started by EASA soon also enter
the ICAO training structure.

Whether the aircraft really needs to be separated by ATCOs depends on the flight
rules under which the pilot is operating the aircraft. There are two sets of
regulations governing all aspects of civil aviation aircraft operations, specified in
ICAO Annex 2 - Rules of Air [5].

- Visual Flight Rules (VFR)

- Instrument Flight Rules (IFR)

In aviation, visual flight rules (VFRs) are a set of regulations under which a pilot
operates an aircraft in weather conditions that are generally clear enough to allow
the pilot to see where the aircraft is heading. Specifically, the weather must be
better than the minimum basic defined in visual weather conditions (VMC), as

ATC principles and conflict management 17

specified in the relevant aeronautical authority regulations. The pilot must be able
to operate the aircraft with visual reference to the ground, and visually avoid
obstructions and other aircraft [6].

Instrument flight rules (IFR) are a set of regulations that dictate how aircraft are
to be operated when the pilot is unable to navigate using visual references under
visual flight rules. The most important concept of IFR flight is that the separation
is maintained regardless of weather conditions. In controlled airspace, air traffic
control (ATC) separates IFR aircraft from obstacles and other aircraft using a
flight clearance based on route, time, distance, speed, and altitude. There are no
specific rules for each traffic situation, but ATCOs solve the encounters based on
the training according to ICAO requirements and their professional experience.

ICAO defines airspace in several categories: A, B, C, D, E, F, G. Within this
airspace there are different requirements in relation to what type of flights are
allowed within airspace (IFR, IFR + VFR, VFR).

ATC separation only applies to IFR flights and other traffic (IFR, VFR) within
Class A, B and C airspace. In Class D airspace, a separation between IFR traffic,
while only one traffic information service is provided for VFR traffic. Therefore,
there is no separation between IFR and VFR traffic, but traffic avoidance advice
is available upon request. In Class E, F and G airspace, ATC is not required to
separate commercial air traffic from VFR traffic.

1.2. Well Clear and Remain Well Clear terminology

The notion of Well Clear (WC) is directly linked to the International Civil Aviation
Organization (ICAO)’s Rules of the Air and is stated as “an aircraft shall not be
operated in such proximity to other aircraft as to create a collision hazard”.
Moreover, according to ICAO’s Manual on RPAS [7], RWC is “the ability to detect,
analyse and manoeuvre to avoid a potential conflict by applying adjustments to
the current flight path in order to prevent the conflict from developing into a
collision hazard”.

It is important to highlight that WC and RWC are different concepts. WC is an
aircraft state influencing the application of the right of way rules, whereas RWC
should be understood as separation minima between aircraft, where its main
functions are to prevent collisions and ensure safety minima [8]. There are
currently no accepted time or distance-based standards for what it means for two
aircraft to be WC, that determination is left to the pilot’s discretion.

1.3. Rules of the Air

A very important part of the regulations presented by ICAO is the applicability of
the rules of the air. The Rules of the Air are a set of regulations governing matters
of air traffic (i.e., encounters of multiple aircraft, responsibilities of the pilot, the
use of defined airways, etc.) including general rules, visual flight rules and

18 Air Traffic Control using separation algorithm based on Rules of the Air

instrument flight rules. In all EU Member states, the Standardised European
Rules of the Air are applied in both regulations.

In ICAO Annex 2 - Rules of Air [2], the organization provides general rules of
standards for all aviation, specifying the general rules of collision avoidance,
among others. The Right of Way is detailed in this same sub-section, so the ICAO
defines it as a general rule throughout aviation. Given that ATCOs working in
Europe use the requirements defined by EASA, this study uses the rules outlined
in the EASA documents.

The Rules of the Air, also known as EASA eRules, are defined as a
comprehensive, single system for structuring, sharing, and storing of rules. It is
the single, easy-access online database for all aviation safety rules applicable to
European airspace users. In Europe, the Standardised European Rules of the Air
(SERA) [9] were mandated by the European Commission and developed by
EUROCONTROL and the European Aviation Safety Agency (EASA) in 2012.

Of utmost importance for the avoidance of collisions are the Right of Way (RoW)
rules. These rules are a set of simple guidelines to prioritise certain aircraft and
indicate the manoeuvre to follow in case of conflict. A summary of the relevant
information about collision avoidance rules is provided, shown below.

The aircraft that has the right-of-way shall maintain its heading and speed.

An aircraft that is aware that the manoeuvrability of another aircraft is
impaired shall give way to that aircraft.

An aircraft that is obliged by the following rules to keep out of the way of
another shall avoid passing over, under or in front of the other, unless it
passes well clear and takes into account the effect of aircraft wake
turbulence.

Approaching head-on. When two aircraft are approaching head-on
or approximately so and there is danger of collision, each shall alter
its heading to the right.

Converging. When two aircraft are converging at approximately the
same level, the aircraft that has the other on its right shall give way,
except as follows:

Overtaking. An overtaking aircraft is an aircraft that approaches
another from the rear on a line forming an angle of less than 70
degrees with the plane of symmetry of the latter, i.e. is in such a
position with reference to the other aircraft that at night it should be
unable to see either of the aircraft’s left (port) or right (starboard)
navigation lights. An aircraft that is being overtaken has the right-
of-way and the overtaking aircraft, whether climbing, descending or
in horizontal flight, shall keep out of the way of the other aircraft by
altering its heading to the right, and no subsequent change in the
relative positions of the two aircraft shall absolve the overtaking
aircraft from this obligation until it is entirely past and clear.

Mathematical modelling background and modelled metrics 19

CHAPTER 2. MATHEMATICAL BACKGROUND AND
MODELLED METRICS

2.1. The simulation environment

The environment is represented as a multi-agent system in which each agent has
a state determining its main characteristics (position, angle, speed, etc.), defined
each time step [10]. The agents fly in a free-route environment, between an initial
and exit point at approximately the same level, therefore the simulation control
environment is provided in 2D. All the flights are initialized to follow a random
linear planned path, explained in Section 4.2, from any point to a target, all inside
the airspace sector. The objective of each agent is to respect the minimum
separation distance with all other flights present in the environment, which stick
to their planned route.

The simulation environment is based on Gym, explained in detail in Section
4.1.1. Each simulation is composed by a set of episodes. An episode is defined
as a simulation of a specific situation, initialized randomly. It ends when all the
agents have reached their target or when the step limit is reached. On the other

hand, a step is defined as each time interval Δ𝑡. In each step the simulation states
are updated.

2.1.1. Action Space

The action space used in the gym environment is used to define the actions an
agent could take and its boundaries. With this, it is possible to state whether the
action space is continuous or discrete depending on the states and the
environment. In this case, the action space is continuous with one output for each
agent: the angle. Its theoretical boundaries are [-pi, pi] radians.

OUTPUT:
The action space: Box((low=(-u.circle/2),high=(u.circle/2),

shape=(1,)))

Where 𝑢. 𝑐𝑖𝑟𝑐𝑙𝑒 is equal to 2𝜋 𝑟𝑎𝑑𝑖𝑎𝑛𝑠.

2.1.2. Flight modelling

Each agent 𝑖 ∈ 𝒩 is composed by a state containing the coordinates in a two-
dimensional Euclidean space (𝑥𝑖, 𝑦𝑖), the speed (𝑣𝑖), and the track with respect
to the North (𝜒𝑖), i.e., 𝑠𝑖 = [𝑥𝑖, 𝑦𝑖, 𝑣𝑖 , 𝜒𝑖]. The state vector evolves according to:

20 Air Traffic Control using separation algorithm based on Rules of the Air

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡)sin 𝜒𝑖(𝑡)Δ𝑡

𝑦𝑖(𝑡 + 1) = 𝑦𝑖(𝑡) + 𝑣𝑖(𝑡)cos 𝜒𝑖(𝑡)Δ𝑡

𝑣𝑖(𝑡 + 1) = 𝑣𝑖(𝑡) + Δ𝑣𝑖

𝜒𝑖(𝑡 + 1) = 𝜒𝑖(𝑡) + Δ𝜒𝑖

 (1)

where Δ𝑣𝑖 and Δ𝜒𝑖 are the speed and track changes, respectively; and Δ𝑡 is the
step size of the simulation [10]. In this case, only the track changes are

considered, the speed is defined as a fixed value 𝑣𝑖 throughout the episode.

In base on the updated variables, bearing, drift, airspeed components, and
distance to target values are computed. Some of these features are used in the
policy algorithm. An emphasis is placed on the definition of these concepts in
order to clarify them and better understand the experiment.

The 𝑑𝑟𝑖𝑓𝑡 is defined as the difference between 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 and 𝑡𝑟𝑎𝑐𝑘, according to:

𝑑𝑟𝑖𝑓𝑡 = 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 − 𝑡𝑟𝑎𝑐𝑘(𝜒𝑖) (2)

Being 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 the angle between current position and 𝑡𝑎𝑟𝑔𝑒𝑡:

𝑑𝑥 = 𝑡𝑎𝑟𝑔𝑒𝑡. 𝑥𝑖 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑥𝑖

𝑑𝑦 = 𝑡𝑎𝑟𝑔𝑒𝑡. 𝑦𝑖 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑦𝑖 (3)

𝑏𝑒𝑎𝑟𝑖𝑛𝑔 =
 tan−1 (

𝑑𝑥
𝑑𝑦

) + 2𝜋

2𝜋

Where,

𝑡𝑟𝑎𝑐𝑘 is the actual direction of the aircraft respect to the North,
𝑡𝑎𝑟𝑔𝑒𝑡 is the output point that is intended to be reached, defined as a
tuple: [𝑥𝑡𝑎𝑟𝑔𝑒𝑡,𝑖, 𝑦𝑡𝑎𝑟𝑔𝑒𝑡,𝑖].

The 𝑎𝑖𝑟𝑠𝑝𝑒𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 [𝑑𝑥, 𝑑𝑦] are evolved according to:

𝑑𝑥 = 𝑣𝑖 ∗ sin(𝜒𝑖) (4)

𝑑𝑦 = 𝑣𝑖 ∗ cos(𝜒𝑖)

And finally, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡𝑎𝑟𝑔𝑒𝑡 is the remaining distance that the aircraft must
travel to reach the target.

Mathematical modelling background and modelled metrics 21

Each agent is parametrized by a set of constants, which includes the coordinates

of its initial and exit points to/from the sector, (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑥𝑖,
(𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑦𝑖) and (𝑡𝑎𝑟𝑔𝑒𝑡. 𝑥𝑖, 𝑡𝑎𝑟𝑔𝑒𝑡. 𝑦𝑖), respectively; and its minimum
(𝑣𝑚𝑖𝑛𝑖

)), maximum (𝑣𝑚𝑎𝑥𝑖
) speeds and its cruise speed (vi) defined randomly

based on its limits. It can be assumed that the speed 𝑣𝑖 is the optimal speed

defined by the operator.

Also, each agent is parametrized by performance limitation, analyzed in the
sensitivity analysis. Performance limitation is defined as the maximum angle that
agents can turn in case of conflict is predicted. It is assumed that all agents have
the same performance limitation.

The initial position of each agent was created by ensuring a minimum separation

distance 𝑑min with all other agents already present in the sector. The exit point
was created in the edges of the sector by ensuring a minimum flight distance

𝐿min.

2.1.3. Airspace modelling

The airspace is parametrized by a set of constants, which are randomly initialized
in the setup environment at the beginning of each episode. These constants are
its minimum and maximum area. The random function, detailed in Section 4.2,
is initialized every episode, creating different geometry-shaped polygons every
episode. Then, all the agents were introduced randomly into the sector [10].

2.2. Modelled metrics of the policy algorithm

2.2.1. Right of Way

The policy is based on RoW, explained in detail in section 1.3. Rules of Air, a
base code of EASA SERA-Rules to avoid conflicts. In the case of this policy, the
flights could meet in one of three different situations; head‐on, crossing, also
known as converging, or overtaking situation (see Fig 2.1.).

A head‐on situation is defined as a situation where both flights are meeting with
risk of collision on reciprocal or nearly reciprocal courses. Normally this is

interpreted to be in an interval of relative bearing of +/‐ 10 to 20 degrees from
ahead. In this case, the boundary that separates both situations, is set to +/‐ 15
degrees. Overtaking situation is defined as a situation where the overtaking flight
is approaching the other flight from a relative bearing of 110° or more on each

side. Crossing situations are all other situations, from +/‐ 15 to +/‐ 110 degrees
with risk of collision.

22 Air Traffic Control using separation algorithm based on Rules of the Air

Fig. 2.1. Right of Way situations: head‐on, converging and overtaking

2.2.2. Closest Point of Approach

When identifying the traffic situation, each flight tries to find out the aspect to

define the type of situation (head‐on, crossing or overtaking), and to determine
the risk of collision based on the closest point of approach: Time to closest point
of approach and distance to closest point of approach in order from highest to
lowest importance. The formulation evolves according to [14]:

𝑡𝐶𝑃𝐴 = max (0, −
𝑑𝑥𝑣𝑟𝑥+𝑑𝑦𝑣𝑟𝑦

𝑣𝑟𝑥
2 +𝑣𝑟𝑦

2) (5)

𝑡𝐶𝑃𝐴 is the time to Closest Point of Approach.

𝑑𝐶𝑃𝐴 is the distance to closest point of approach, and is defined as:

𝑑𝐶𝑃𝐴 = √(𝑑𝑥 + 𝑣𝑟𝑥𝑡𝐶𝑃𝐴)2 + (𝑑𝑦 + 𝑣𝑟𝑦𝑡𝐶𝑃𝐴)
2
 (6)

where,

𝑑𝑥 = 𝑥2 − 𝑥1 is the current horizontal separation in the 𝑥 dimension, and
𝑑𝑦 = 𝑦2 − 𝑦1 is the current horizontal separation in the 𝑦 dimension.

𝑣𝑟𝑥 = 𝑥̇2 − 𝑥̇1 is the relative horizontal velocity in the x dimension,
𝑣𝑟𝑦 = 𝑦̇2 − 𝑦̇1 is the relative horizontal velocity in the 𝑦 dimension, and

Mathematical modelling background and modelled metrics 23

Having positive 𝑡𝐶𝑃𝐴 values means facing closure geometries. As the point of
maximum approach approaches in time, the values of 𝑡𝐶𝑃𝐴 decrease. In cases
where the paths are parallel or divergent 𝑡𝐶𝑃𝐴 will always be equal to 0.

On the other hand, 𝑑𝐶𝑃𝐴 (6) provides the closest distance at which two flights will
meet if they follow their path, see Fig 2.2. Exactly at the closest point of approach

between two flights, the value of 𝑡𝐶𝑃𝐴 will be equal to 0 and the distance between
them at that same instant will be equal to the value of 𝑑𝐶𝑃𝐴.

Fig. 2.2. Distance of Closest Point of Approach scheme

In the simulation experiment, the values of 𝑡𝐶𝑃𝐴 and 𝑑𝐶𝑃𝐴 are treated as variables
and several runs are made with different values to find the ones that offers the
best results. The range of test values is decided based on an estimation of time
and distance travelled.

The minimum value of 𝑡𝐶𝑃𝐴 range is defined by the time it takes for the agent to
completely collide, from the 5NM conflict separation with the maximum speed,

defined as the most unfavourable situation. The value of 𝑡𝐶𝑃𝐴𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡
 is reached

when 𝑑𝐶𝑃𝐴, meaning that both collide. It evolves according to:

𝑡𝐶𝑃𝐴𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡
 =

𝑑𝑚𝑖𝑛 [𝑚]

𝑣𝑚𝑎𝑥𝑖
 [

𝑚

𝑠
]

= 35 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 (7)

24 Air Traffic Control using separation algorithm based on Rules of the Air

Where,

𝑣𝑚𝑎𝑥𝑖
 is equal to 500 knots (257 m/s).

𝑑𝑚𝑖𝑛 is the conflict distance set to 5 NM, equal to 9260 meters.

Therefore, the minimum limit of the range of time and distance values for

sensitivity analysis are set to 𝑡𝐶𝑃𝐴 = 35 𝑠 and 𝑑𝐶𝑃𝐴 = 5 𝑁𝑀.

In the sensitivity study, detailed in Section 4.3.1, the variables are established in
steps of 1 NM and 7 seconds, until the values reach the maximum limit of the
range: 𝑡𝐶𝑃𝐴 = 140 𝑠 and 𝑑𝐶𝑃𝐴 = 20 𝑁𝑀.

2.2.3. Remain Well Clear

Once the conflicts are detected and ordered based on 𝑡𝐶𝑃𝐴 and 𝑑𝐶𝑃𝐴 from highest
to lowest importance, is fundamental the proposal of safe manoeuvres to RWC.
Taking into account that vertical axis is not part of this study, these bands,
negative and positive, are calculated so that the value of the absolute minimum
angle must never intersect the alert zone. As mentioned above, when the alert
zone is violated or it is impossible not to intersect with it, they are called recovery
bands and try to get as far away from the intruder as possible.

In the following Fig 2.3, it is seen a staging of a conflict situation and its guidance
bands, for the avoidance of the volume of Remain Well Clear and Collision,
respectively.

Fig. 2.3. Remain Well Clear scheme

Mathematical modelling background and modelled metrics 25

The computation of safe maneuver to Remain Well Clear starts by the calculation
of these guidance “bands”. In this case, as the environment is created as a 2D

system between two flights i and j, there is one type of bands provided: Track
range. The result of this computation is a float number containing an angle. This
angle added to the current flight track, a trajectory is obtained which, in the case
that the intruder does not change its direction, never intersects with the flight alert
zone and always respects the separation distance.

Starting from an initial situation in which the initial trajectories of two flights lead
to a possible conflict, the distance to closest point of approach shall be less than
the alert distance. The calculation is done by approximation. A 1-degree step
angle is added to the original flight track, positively in the case of the right angle
and negatively in the case of the left one. Thus, each step gradually adds a larger
angle, consequently leading to a change of linear trajectory going out of the alert
zone, as can be seen in Fig 2.4.

At every step the difference between the radius of the circle marked by the alert

zone and the calculated 𝑑𝐶𝑃𝐴 is computed, defined as (8):

𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 = 𝑎𝑙𝑒𝑟𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑑𝐶𝑃𝐴𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑟𝑎𝑐𝑘
 (8)

Where,

𝑑𝐶𝑃𝐴𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑟𝑎𝑐𝑘
 is the current 𝑑𝐶𝑃𝐴 computed with the track resulting from

the sum of the previous step track and the step angle (both, left and right
cases).

The loop stops when the 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 is negative, which means that the calculated
𝑑𝐶𝑃𝐴 is greater than the distance from the alert zone and therefore will never
intersect.

If the end condition is not met at any time, it shall stop when left and right angles
reach the aircraft performance limits, being their boundaries [0, - performance
limit] and [0, performance limit], respectively. So, if no angle is found that satisfies
the conditions, the loop comes to an end, and the angle a gets the value of the
aircraft performance limit, depending on whether is looking for the optimal angle,
to the right or to the left.

26 Air Traffic Control using separation algorithm based on Rules of the Air

Fig. 2.4. Guidance bands computation scheme

Once the left (𝑎𝑛𝑔𝑙𝑒_𝑙𝑒𝑓𝑡) and right (𝑎𝑛𝑔𝑙𝑒_𝑟𝑖𝑔ℎ𝑡) angles needed to pass and not
intersect with the alert zone have been found, is chosen which angle will be used
to resolve the encounter. This choice is made to prioritize efficiency and speed in
resolving conflicts. Once the conflict is resolved by calculating the angles that do
not give rise to any encounter, the goal is for the flights to spend as little time as
possible diverted from their course to their goal. This is done by calculating the
difference of the tracks, according to:

𝐴𝑛𝑔𝑙𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑜 𝑙𝑒𝑓𝑡
= 𝑎𝑏𝑠((𝑡𝑟𝑎𝑐𝑘 𝑜𝑓 𝑓𝑙𝑖𝑔ℎ𝑡 𝑖 + 𝑎𝑛𝑔𝑙𝑒_𝑙𝑒𝑓𝑡) − 𝑡𝑟𝑎𝑐𝑘 𝑜𝑓 𝑓𝑙𝑖𝑔ℎ𝑡 𝑗)

𝐴𝑛𝑔𝑙𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑜 𝑟𝑖𝑔ℎ𝑡
= 𝑎𝑏𝑠((𝑡𝑟𝑎𝑐𝑘 𝑜𝑓 𝑓𝑙𝑖𝑔ℎ𝑡 𝑖 + 𝑎𝑛𝑔𝑙𝑒_𝑟𝑖𝑔ℎ𝑡) − 𝑡𝑟𝑎𝑐𝑘 𝑜𝑓 𝑓𝑙𝑖𝑔ℎ𝑡 𝑗)

(9)

The larger angle is chosen, so that the most opposite directions are taken and
the conflict is resolved sooner. Therefore, it is also avoided to resolve conflicts by
establishing the trajectories in parallel, which will lead to a very slow resolution
and could lead to multiple conflicts. In the case that only one angle has reached
its limit, is directly taken the other angle.

Detect and avoid algorithm design 27

CHAPTER 3. DETECT AND AVOID ALGORITHM DESIGN

3.1. Architectural policy design

The software designed for collision avoidance defined is based on a main script:
main.py and five secondary ones: env.py, policy.py, definitions.py, units.py and
__init__.py. These are related and form a set of code that makes it possible to
implement a policy for conflict resolution. The architectural design is analysed
and presented with Understand, explained in Section 4.1.3.

The main.py file calls all other files and relates them to each other. It is
responsible for initializing (__init__.py) the named Environment class of the
env.py file and obtaining the actions of agents from policy.py, see Fig 3.1.

Fig. 3.1. Graph of file main.py

The env.py file contains all the features related to the environment, such as the
initialization function of the environment itself, the update of the states and their
rendering, and the reset for each episode. This file calls definition.py, and
units.py, which contain other functions and definitions about agent state variables
and unit conversions, see Fig 3.2.

Fig. 3.2. Graph of file env.py

The policy.py file contains all the functions related to the implementation of the
policy, the code can be seen in APPENDIX A. Its main function is policy_action,
which returns the actions of each flight according to its state of conflict, in each

28 Air Traffic Control using separation algorithm based on Rules of the Air

time step. The function calls a list of functions that calls when the function
policy_action is using, see Fig 3.3.

Fig. 3.3. Calls graph of file policy.py

The policy.py calls three scripts in order to be able to call all the necessary
functions and variables within the files, see Fig 3.4.

Fig. 3.4. Graph of file policy.py

Detect and avoid algorithm design 29

3.2. Structural policy design

At each time step during the simulation of the experiment, the policy detects
conflicts and if necessary acts to resolve them. Its structure is defined according
to the flow chart of Fig 3.5.

Fig. 3.5. Structural design of the separation policy

Observe that the policy first calculates the alert detection, then enters in a loop
that separates the flights with no alert detection, that return to its bearing, and the
flights with alert detection that enter in another loop. This loop separates the
flights weather the alert detected is new or it already exists, in this case the flights
maintain its previous step action. If there is a new alert detection, an action is
chosen to solve the conflict. And finally, these flights enter in a loop that if multiple
conflict is detected, a new action is calculated and chosen.

30 Air Traffic Control using separation algorithm based on Rules of the Air

3.3. Situational policy design

At every step of the simulation, the flights could change their track. This change,
also called a manoeuver, is a collision avoiding manoeuver. The manoeuver, also
the policy structure, could be divided into four different phases, see Fig 3.6.

Fig. 3.6. Situational design of the separation policy

The first phase, “assessment of the situation”, occurs when the flight j is sighted
closer than the alert distance. When a possible conflict is detected, the next
phase starts, called “action choice” phase, in which the action is determined and
the flight that is going to take it. Both phases occur at the same time, in the same
time step, first is the "assessment phase" and just then begins the "action choice".
When one of the flights in the encounter do an avoiding manoeuver, detailed in
Section 2.2.3, the next phase starts, called “action maintained” phase. In this,
the action is maintained until the flights leave the alert zone and, when resuming
their trajectory, the same conflict does not occur again. When there is no risk of
collision, the phase “safe situation” starts (see Fig 3.6). In this way, the flight

returns to its bearing towards the target point. In some cases, the give‐way flight

Detect and avoid algorithm design 31

could have limited possibilities to change course due to the presence of other
flights in the vicinity. In those cases, planning in advance is necessary. Conflicts
are resolved by prioritizing the time to closest point of approach.

32 Air Traffic Control using separation algorithm based on Rules of the Air

1 https://www.gymlibrary.ml/
2 https://wandb.ai/site

CHAPTER 4. RESULTS

This chapter analyses and compares the results obtained as well as explain the
tools used in the practical part.

4.1. Language and tools used

In order to put in practice, the theory models and algorithm, it’s necessary to do
a process of simulation that gives results that are analysed and compared. This
process will be performed using a skeleton of a basic 2D ATC simulator (the
environment) built on the Gym framework1, written in Python language and
PyCharm used as the development environment. The results will be analysed
using Wandb2.

4.1.1. Simulation tool

To implement the practical part, EUROCONTROL has provided a source code of
conflict resolution environment in 2D, based on Gym. All the code necessary to
run the software, including the environment of a basic 2D ATC simulator, can be
downloaded from the https://github.com/lidiafc12/TFG_library.git. Let's go into it,
explain what it consists of and what use has been given to it.

Gym is an open source Python library for developing and comparing algorithms,
especially reinforcement learning algorithms. It provides a standard API to
communicate between learning algorithms and environments, as well as a
standard set of environments compliant with that API. Each of these
environments implements the same interface, making it easy to test a single
environment using a range of different algorithms.

The interface for all Open AI Gym environments can be divided into 3 parts:

1. Initialization: Create and initialize the environment.
2. Execution: Take repeated actions in the environment. At each step

the policy acts towards the current situation of the environment, in the
case of RL, the environment provides observations to describe its new
state and the reward received as a consequence of taking the specified
action. New steps continue until the environment conditions of a
complete episode are met.

3. Termination: Clean-up and destroy the environment.

In this project, the environment is used for creating a policy that acts regarding
the actual state of each flight, The objective of the policy is solving all the conflicts
that are produced in the same environment, on an initialized random scenario,
explained in detail in Section 4.2.

Results 33

4.1.2. Modelling tool

In order to analyse results from different parameter values Wandb is used,
Wandb is an experiment tracking tool, especially for machine learning, to
visualise training and compare lots of training runs and their results. The online
tool offers countless applications, such as lightweight, interoperable tools to
quickly track experiments, version and iterate on datasets, evaluate model
performance, reproduce models, visualize results and spot regressions, and
share findings with colleagues, see Fig 4.1.

Fig. 4.1. Wandb overview screenshot

The tool also offers more benefits such as providing many tools for logging:

Fig. 4.2. Wandb logging tools

Wandb tool has been chosen because it offers speed and ease of setup, it only
requires sign up for a free account and install Wandb library through pip. The
ability to track and visualize experiments in real time, compare baselines, store
hyper-parameters used in a training run and the possibility to share your projects
and collaborate with team members.

34 Air Traffic Control using separation algorithm based on Rules of the Air

Above all, great importance is given to the large amount of content they offer for
learning and training, as well as being free and offering very powerful visualization
tools and graphics.

4.1.3. Visualization and Analysis tool

The architectural design is analysed with Understand, by SciTools, that is a
source code for visualization and analysis. From the same company they define
it like: Understand is more than just a maintenance IDE, it’s a platform full of
intelligence you can use to make your engineering life better.

Fig. 4.3. Understand logo

4.2. Setup of the simulation

Initialization is done each episode, resulting in an airspace and a set of random
flights. The airspace sector and the traffic are initialised according to Algorithm 1,
see Fig 4.4, from [10].

Fig. 4.4. Random scenario generator [10].

Results 35

4.3. Simulation results

The simulation environment used to implement the policy action is configured
with 100 episodes and limited to 500 simulation steps, using the parameters of
the environment detailed in Table 4.1.

Parameter Value

Minimum separation distance 𝒅𝒎𝒊𝒏 5 NM

Step size 𝚫𝒕 5 seconds

Minimum and maximum speeds 𝒗𝐦𝐢𝐧𝒊  , 𝒗𝐦𝐚𝐱𝒊   450 kt and 500 kt

Table 4.1. Simulation parameters

Both, shape of the airspace sector and flight plans of the agents, were randomly
initialised at every episode, aiming to develop a policy that could generalise to
any airspace geometry and traffic pattern. The airspace sector and the traffic
were initialised according to Algorithm 1, in Section 4.2.

4.3.1. Sensitivity analysis results

In order to find the best conditions that lead the best possible results when
implementing the policy, a sensitivity analysis has been carried out. In this
situation, the parameters outlined in Table 4.2 are tuned. That is, they are treated
as variables and several runs are made with different values to find the one that
offers the best results.

Parameter Possible values

Number of flights 𝓝 From 5 to 20

Alert separation distance 𝒅𝒂𝒍𝒆𝒓𝒕 From 5 to 20 NM

Alert separation time 𝒕𝒂𝒍𝒆𝒓𝒕 From 35 to 140 seconds

Aircraft performance limitation 90 to 180 degrees

Table 4.2. Simulation variables

When the sensitivity analysis is being performed with a parameter, the other
parameters have to fix values. The number of flights is set to 10 and the alert
separation time is set to 120 seconds, both extracted from [10]. The alert
separation distance is twice the conflict distance, equal to 10 NM, and finally the
aircraft performance limitation is set to 180 degrees, the widest possible range of
manoeuvre. For each simulation run, the following metrics will be shown: Mean
reduction alerts and conflicts (%), mean extra distance flown (NM), ATC
instructions per episode and a comparison of all the metrics.

36 Air Traffic Control using separation algorithm based on Rules of the Air

4.3.1.1. Parameters tuning: Number of flights

Fig. 4.5. Sensitive analysis: Number of flights. Legend

Fig. 4.6. Sensitive analysis: Number of flights. Mean extra distance [NM]

Results 37

Fig. 4.7. Sensitive analysis: Number of flights. Mean reduction conflicts (%)

Fig. 4.8. Sensitive analysis: Number of flights. Mean reduction alerts (%)

Fig. 4.9. Sensitive analysis: Number of flights. ATC instructions each episode

38 Air Traffic Control using separation algorithm based on Rules of the Air

Fig. 4.10. Sensitive analysis: Number of flights. Parameter comparison

As expected, the mean number of alerts per episode (summed across agents)
increases with the number of flights. If the number of agents increases in an

airspace sector of area A ∈ [Amin, Amax], the probability of occurring encounters
is greater, therefore the difficulty to maneuver is greater and this causes that the
alert zones of the flights are violated more constantly. Nevertheless, the mean
number of conflicts does not increase with number of flights, meaning that the
policy is scalable and robust enough to adapt to all situations created by only
implementing track changes.

Note that the maximum achieved mean value of extra distance traveled all the
agents during an episode is 292 NM (see Fig 4.6) corresponding to the case with
20 agents, in which all aircraft reach their target with many deviations but with the
aim of maintaining safe separation during the whole episode.

Fig 4.9. also shows how the total number of ATC instructions per episode rises
exponentially as the number of flights increases. Similar conclusions can be
obtained for the extra distance flown per episode.

Results 39

4.3.1.2. Parameters tuning: Alert distance and time

The alert separation distance (𝑎𝑙𝑒𝑟𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) and alert separation time
(𝑎𝑙𝑒𝑟𝑡_𝑡𝑖𝑚𝑒) parameters are analyzed together. Proportional values have been
assigned to both parameters, so that the detection of the alert occurs either
sooner or later.

Fig. 4.11. Sensitive analysis: Alert distance and time. Legend

40 Air Traffic Control using separation algorithm based on Rules of the Air

Fig. 4.12. Sensitive analysis: Alert distance and time. Mean extra distance [NM]

Fig. 4.13. Sensitive analysis: Alert distance and time. Mean reduction conflicts

(%)

Results 41

Fig. 4.14. Sensitive analysis: Alert distance and time. Mean reduction alerts

Fig. 4.15. Sensitive analysis: Alert distance and time. ATC instructions each
episode

Fig. 4.16. Sensitive analysis: Alert distance and time. Parameter comparison

42 Air Traffic Control using separation algorithm based on Rules of the Air

Fig 4.12 shows how the extra distance flown per episode increase as the alert
separation distance and time is increased. Similar conclusions can be obtained
for the number of ATC instructions per episode, which can be seen in Fig 4.15.

When observing the conflict reduction (%) in Fig 4.13, it is fairly clear the small
variability over the cases, regardless of the case where the alert distance is 5 NM
or close, equal or almost equal to the conflict separation distance. In the case of
5 NM, there is no physical alert zone, as an aircraft less than 5 NM away is
violating the conflict zone.

In spite of that, when the alert reduction (%) is observed, there is a clear
downward trend in increasing the time and distance of the alert, that is, detecting
the conflict sooner. This can happen because when detecting alerts earlier, it is
easier for multiple conflicts to occur and it is more difficult to maneuver avoiding
the alert zones of neighboring flights.

4.3.1.3. Parameters tuning: Maximum turning performance limitation

Fig. 4.17. Sensitive analysis: Performance limitation. Legend

Results 43

Fig. 4.18. Sensitive analysis: Performance limitation. Mean extra distance [NM]

Fig. 4.19. Sensitive analysis: Performance limitation. Mean reduction conflicts (%)

Fig. 4.20. Sensitive analysis: Performance limitation. Mean reduction alerts (%)

44 Air Traffic Control using separation algorithm based on Rules of the Air

Fig. 4.21. Sensitive analysis: Performance limitation. ATC instructions each
episode

Fig. 4.22. Sensitive analysis: Performance limitation [rad]. Parameter comparison

In this case, it can be seen that the reduction alerts and conflicts (%) present a
similar downwards trend as aircraft performance limitation is decreased, meaning
that as the manoeuvring limit decreases, agents have more difficulty resolving
the conflict (Fig 4.19 and Fig 4.20).

As expected, similar conclusions are extracted from the extra distance flown, that
increases as the aircraft performance limit decreases, leaving a lower angle of
manoeuvre.

By looking at Fig 4.22 can be affirmed the conclusions extracted above. It can be
seen that, for greater manoeuvre ranges lead to larger reduction alerts and
conflicts and shorter extra distances.

When observing the sum of ATC instructions for each episode, see Fig 4.21, it is
fairly clear the small variability over the cases, a clear trend cannot be
seen. From this it can be concluded that there is no increase in ATC instructions
when the manoeuvring range is reduced. That is, when the limit of manoeuvre
decreases, the number of conflicts increases with the same number of actions.
After analysing the results of the experiments carried out with different values of
the parameters, the values that have given the best results are chosen, in terms
of safety and efficiency.

Results 45

Note that the number of flights, regardless of the results, is set to a value of 10.
In this way more realistic results are extracted and more content is generated to
be studied and improved.

The Table 4.3 on this section show the different parameter combination chosen
and their optimal values.

Parameter Value set

Number of flights 𝓝 10

Alert separation distance 𝒅𝒂𝒍𝒆𝒓𝒕 10 NM

Alert separation time 𝒕𝒂𝒍𝒆𝒓𝒕 70 seconds

Aircraft performance limitation 180 degrees

Table 4.3. Simulation variables set

4.3.2. Simulation comparison results

Once the parameters are set to the optimal values, the results of the simulation
implementing the policy will be seen in comparison to the same situations without
applying the policy. The environment simulation is configured with 500 episodes.

Fig. 4.23. Number of conflicts each episode with policy in comparison without
policy

46 Air Traffic Control using separation algorithm based on Rules of the Air

Fig. 4.24. Number of alerts each episode with policy in comparison without
policy

Fig. 4.25. Minimum separation distances each episode with policy in
comparison without policy

Results 47

Fig. 4.26. ATC instructions each episode with policy in comparison without
policy

Fig. 4.27. Extra distance flown per episode with policy in comparison without
policy

This section shows the comparison between the simulation done applying the
policy and without applying it, as well as the performance metrics calculated.

The figures show a clear attenuation of the conflicts and their alerts when the
policy is applied. The mean of overall run conflict and alert reduction values are
99,41% and 87,95%, respectively. More specifically, a simulation of 500 different
episodes has been made and only 5 conflicts have occurred. Attenuation is also
appreciated on the duration of the conflicts and alerts, that is, how many time
steps the flights are within the conflict or alert zone.

As expected, the minimum separation distances found in each episode without
applying the policy are smaller and more often violate the conflict zone than in
the policy enforcement simulation, as can be seen in Fig 4.25. This metric gives
us information about the severity of the most serious conflicts that have occurred
in each episode. Note that the minimum recorded value is 1876 meters, since if
it were a real situation the planes would not have collided.

48 Air Traffic Control using separation algorithm based on Rules of the Air

Fig 4.26 shows the sum of the ATC instructions given during each episode and
also the maximum number of instructions given for the same flight during the
episode. Note that the maximum ATC instructions that can be achieved in an
episode are 71, 29 of which were headed for the same flight. Both numbers may
be considered as high workload value for ATCOs and pilots. These values
correspond to the case where multiple encounters occur and it has been more
difficult to find a solution.

When observing the extra distance flown, it is fairly clear the high variability over
the cases. Nevertheless, a high smooth is applied to be able to appreciate the
convergence of the feature, being the mean value 44 NM, where can be seen in
Fig 4.27. This extra distance is an approximately 27% additional flight distance
per aircraft of the planned distance.

Organització del treball 49

CHAPTER 5. CONCLUSIONS AND FURTHER
IMPROVEMENTS

This document proposes a method to enhance the performance and efficiency of
the air traffic controllers’ tasks designing a separation policy algorithm based on
the general Rules of the Air.

Parameter tuning has proven to be very effective, as it has allowed us to improve
the results. The choice of parameters has been made by analyzing the graphs
obtained from the sensitive analysis, each one separately. In the TFG, the
discretisation level of the parameter values was coarse due to limitations in time
for project finalisation, but a finer level of discretisation could give better results.

The results with the adjusted parameters suggest that the policy model proposed
herein can assist air traffic controllers to manage air traffic in high-density traffic
scenarios. By applying the algorithm, a reduction of the conflicts of 99.41% is
achieved compared with a situation without applying any instructions. This result
could be improved by implementing other separation techniques, such as
separating agents vertically (which entails 3D implementation) or applying speed
changes to resolve predicted conflicts.

It should be noted that the scenarios simulated in this study have a very high
capacity sector. Specifically, 2 times more than the average capacity of IFR flights
handled by ATCOs in 2018 [15]. Also it should be considered that in the
simulation in this study only lateral separation is used to manage conflicts. In real
traffic scenarios, the vertical separation is also used by ATCOs, and the airspace
is considered as a volume sector.

The implementation of the policy causes, for each aircraft, an average additional
distance flown of 44 NM over the average distance without applying the
separation policy of about 165 NM, which represents an increase of 27%.
Average fuel burn of newest aircraft, assuming European regional flights, is 3

kg/km, which represents 10 kg CO₂/km of emissions [11]. Taking into account
that the average flight distance in Europe is approximately 900 km [12], is
achieved an inefficiency traffic control in terms of fuel consumption of 9%.
Regarding flight efficiency, it can be concluded that the algorithm used achieves
an inefficiency similar to that of the current ATC [13].

A negative factor of the policy is the number of instructions that the ATC should
give to resolve conflicts. Is achieved a maximum of 71 ATC instructions in a single
episode, 29 of which are given to the same aircraft. An average of 7 ATC
instructions are given in each episode. It can be seen that the algorithm is not
entirely efficient. Most conflicts occur when there are multiple encounters. The
high number of ATC instructions occurs when it is very difficult to find a solution
that resolves all potential conflicts.

50 Air Traffic Control using separation algorithm based on Rules of the Air

Looking at the high values, can be predicted the high workload they would have,
not only the ATCO but also the pilot, in resolving conflicts with the proposed
separation algorithm. As an improvement for the future, it is suggested to define
a workload limit for both pilots and ATCOs in high-density traffic scenarios, thus
obtaining a more efficient algorithm that would be directly related to the

consumption of flights and CO₂ emissions.

The policy solution opts to prioritize efficiency by selecting the shortest distance
to the destination. In case of maneuver, the early return is made towards the
nominal trajectory, regardless of its position in the airspace sector. In order to
obtain more realistic results is suggested the inclusion of the early return to
defined airways by ATCOs.

It is concluded that the designed separation policy provides good results but it
would not be acceptable for direct implementation as a single tool. Other
separation techniques such as those mentioned above, could be implemented
together with the separation model proposed herein. Therefore, more capacity
could be reached within the airspace sectors, ensuring the required levels of
safety and efficiency.

The future work of this project should be mainly focused on further improving the
effectiveness and reliability of the separation model. To do so, a potential
proposal would be an implementation of a tool based on multi-agent
reinforcement learning in the model would lead to better results, improving safety
and efficiency.

Bibliography 51

BIBLIOGRAPHY

[1] EUROCONTROL, “EATM Glossary of Terms”. [Online]. Available:

http://www.eurocontrol.int/eatm/gallery/content/public/library/terms.pdf

[2] ICAO, “Doc 4444, Procedures for Air Navigation Services — Air Traffic
Management,” Sixteenth Edition, 2016.

[3] Dušan Teodorović, Milan Janić, “Transportation Engineering (Second
Edition),” Chapter 6 - Traffic Control, pages 293-403, Butterworth-
Heinemann, 2022.

[4] ICAO, “Doc 10056, Manual on Air Traffic Controller Competency-based
Training and Assessment,” First Edition, 2017.

[5] ICAO, “Annex 2, Rules of the Air,” Tenth Edition July 2005.

[6] FAA, “Part 91 - General operating and flight rules,” [Online]. Available:
https://www.ecfr.gov/current/title-14/chapter-I/subchapter-F/part-91

[7] ICAO, “Doc 10019, Manual on Remotely Piloted Aircraft Systems
(RPAS),” First Edition, 2015.

[8] Guido Manfredi, yannick Jestin. “Are You Clear About “Well Clear”?”.
ICUAS’18, International Conference on Unmanned Aircraft Systems,
Jun 2018, Dallas, United States. ff10.1109/ICUAS.2018.8453405ff.
ffhal-01859067f

[9] EASA, “Easy Access Rules for Standardised European Rules of the Air
(SERA),” March, 2022.

[10] Ramon Dalmau & Eric Allard, “Air Traffic Control Using Message
Passing Neural Networks and Multi-Agent Reinforcement Learning”.
Network (NET) Research Unit EUROCONTROL - Experimental Centre
(EEC), 2022.

[11] Brandon Graver, Ph.D., Kevin Zhang, Dan Rutherford, Ph.D."CO2
emissions from commercial aviation, 2018," September, 2019.
International Council on Clean Transportation.

[12] EUROCONTROL, “Data Snapshot #30 on the daily utilisation of aircraft
by type, “ 17 May 2022.

[13] EUROCONTROL, “Inefficiency in the European air traffic management
network resulting in an average additional fuel burn of 8.6%-11.2%, “ 8
December 2020.

[14] Ueno, Seiya & Higuchi, Takehiro, “Collision Avoidance Law Using
Information Amount,” 2011

[15] Adrià Julià Alonso & Dr. Jose Maria Sallan, “ Free routing airspace
implementation in Spain,” Final degree project – UPC, September 2020

ANNEX

 TITLE: Air Traffic Control using separation algorithm based on Rules of the Air

 DEGREE: Bachelor's degree in Aerospace Systems Engineering

 AUTHOR: Lidia Fuentes Coll

 DIRECTOR: Cristina Barrado Muxí

 DATE: June 29th, 2022

APPENDIX A

Solution code from mathematical software:

Part 1 – policy.py

"""

Policy module

"""

import math

from collections import deque

import gym

from typing import List

from atcenv.definitions import *

from atcenv.env import *

from atcenv import Environment

import numpy as np

import torch

import torch.nn as nn

import torch.nn.functional as F

def position_angles(env, i: int, j: int) -> tuple:

 """ """

 """ Respect to flight: i """

 dx_i = env.flights[j].position.x - env.flights[i].position.x

 dy_i = env.flights[j].position.y - env.flights[i].position.y

 compass_i = math.atan2(dx_i, dy_i)

 compass_i = (compass_i + u.circle) % u.circle

 angle_i = compass_i - env.flights[i].track

 if angle_i > math.pi:

 angle_i = -(u.circle - angle_i)

 elif angle_i < -math.pi:

 angle_i = u.circle + angle_i

 """ Respect to flight: j """

 dx_j = env.flights[i].position.x - env.flights[j].position.x

 dy_j = env.flights[i].position.y - env.flights[j].position.y

 compass_j = math.atan2(dx_j, dy_j)

 compass_j = (compass_j + u.circle) % u.circle

 angle_j = compass_j - env.flights[j].track

 if angle_j > math.pi:

 angle_j = -(u.circle - angle_j)

 elif angle_j < -math.pi:

 angle_j = u.circle + angle_j

 return angle_i, angle_j

 ##

def t_cpa(env, i: int, j: int) -> float:

 """

 Time to get the closest point of approach of a flight i to j

 :return: time to the closest point of approach, done with straight formula

 """

 dx = env.flights[j].position.x - env.flights[i].position.x

 dy = env.flights[j].position.y - env.flights[i].position.y

 """ Computing relative velocity contemplating bearing """

 # vrx = (env.flights[j].airspeed * math.sin(env.flights[j].bearing)) -

(env.flights[i].airspeed * math.sin(env.flights[i].bearing))

 # vry = (env.flights[j].airspeed * math.cos(env.flights[j].bearing)) -

(env.flights[i].airspeed * math.cos(env.flights[i].bearing))

 """ Computing relative velocity contemplating track --> x """

 vrx = env.flights[j].components[0] - env.flights[i].components[0]

 vry = env.flights[j].components[1] - env.flights[i].components[1]

 if i == j:

 tcpa = 0

 else:

 tcpa = max(0, -(dx * vrx + dy * vry) / (vrx ** 2 + vry ** 2))

 return tcpa

 ##

def d_cpa(env, i: int, j: int) -> float:

 """

 Distance to get the closest point of approach of a flight i to j

 :return: distance to the closest point of approach

 """

 dx = env.flights[j].position.x - env.flights[i].position.x

 dy = env.flights[j].position.y - env.flights[i].position.y

 vrx = env.flights[j].components[0] - env.flights[i].components[0]

 vry = env.flights[j].components[1] - env.flights[i].components[1]

 if i == j:

 dcpa = 0

 else:

 tcpa = t_cpa(env, i, j)

 dcpa = math.sqrt((dx + vrx * tcpa) ** 2 + (dy + vry * tcpa) ** 2)

 return dcpa

 ##

def t_cpa_bearing(env, i: int, j: int) -> float:

 """

 Time to get the closest point of approach of a flight i to j following its

bearing

 :return: time to the closest point of approach, done with straight formula

 """

 track_i = env.flights[i].track + env.flights[i].drift

 track_j = env.flights[j].track + env.flights[j].drift

 """ Computing relative velocity contemplating bearing """

 dx = env.flights[j].position.x - env.flights[i].position.x

 dy = env.flights[j].position.y - env.flights[i].position.y

 """ Computing relative velocity contemplating track --> x """

 vrx = env.flights[j].airspeed * math.sin(track_j) -

env.flights[i].airspeed * math.sin(track_i)

 vry = env.flights[j].airspeed * math.cos(track_j) -

env.flights[i].airspeed * math.cos(track_i)

 if i == j:

 tcpa_bearing = 0

 else:

 tcpa_bearing = max(0, -(dx * vrx + dy * vry) / (vrx ** 2 + vry ** 2))

 return tcpa_bearing

 ##

def d_cpa_bearing(env, i: int, j: int) -> float:

 """

 Distance to get the closest point of approach of a flight i to j following

its bearing

 :return: distance to the closest point of approach

 """

 track_i = env.flights[i].track + env.flights[i].drift

 track_j = env.flights[j].track + env.flights[j].drift

 dx = env.flights[j].position.x - env.flights[i].position.x

 dy = env.flights[j].position.y - env.flights[i].position.y

 vrx = env.flights[j].airspeed * math.sin(track_j) -

env.flights[i].airspeed * math.sin(track_i)

 vry = env.flights[j].airspeed * math.cos(track_j) -

env.flights[i].airspeed * math.cos(track_i)

 if i == j:

 dcpa_bearing = 0

 else:

 tcpa = t_cpa_bearing(env, i, j)

 dcpa_bearing = math.sqrt((dx + vrx * tcpa) ** 2 + (dy + vry * tcpa) **

2)

 return dcpa_bearing

 ##

def safe_turn_angle(env, i: int, j: int) -> float:

 angle_right = 0

 while angle_right < env.performance_limitation:

 track = env.flights[i].track + angle_right

 dx = env.flights[j].position.x - env.flights[i].position.x

 dy = env.flights[j].position.y - env.flights[i].position.y

 vrx = env.flights[j].components[0] - env.flights[i].airspeed *

math.sin(track)

 vry = env.flights[j].components[1] - env.flights[i].airspeed *

math.cos(track)

 tcpa = max(0, -(dx * vrx + dy * vry) / (vrx ** 2 + vry ** 2))

 dcpa = math.sqrt((dx + vrx * tcpa) ** 2 + (dy + vry * tcpa) ** 2)

 tol = env.alert_distance - dcpa

 if tol < 0 or tcpa == 0:

 break

 angle_right = angle_right + (1 * (u.circle / 360))

 angle_left = 0

 while angle_left > - env.performance_limitation:

 track = env.flights[i].track + angle_left

 dx = env.flights[j].position.x - env.flights[i].position.x

 dy = env.flights[j].position.y - env.flights[i].position.y

 vrx = env.flights[j].components[0] - env.flights[i].airspeed *

math.sin(track)

 vry = env.flights[j].components[1] - env.flights[i].airspeed *

math.cos(track)

 tcpa = max(0, -(dx * vrx + dy * vry) / (vrx ** 2 + vry ** 2))

 dcpa = math.sqrt((dx + vrx * tcpa) ** 2 + (dy + vry * tcpa) ** 2)

 tol = env.alert_distance - dcpa

 if tol < 0 or tcpa == 0:

 break

 angle_left = angle_left - (1 * (u.circle / 360))

 """ Choosing whether turn right or turn left """

 if angle_right != env.performance_limitation and angle_left !=

env.performance_limitation:

 # Computing right track and verify: 0 < angle < 2*phi

 track_right = env.flights[i].track + angle_right

 if track_right > u.circle:

 track_right = track_right - u.circle

 # Computing left track and verify: 0 < angle < 2*phi

 track_left = env.flights[i].track + angle_left

 if track_left < 0:

 track_left = track_left + u.circle

 # Computing...

 dif_right = abs(track_right - env.flights[j].track)

 dif_left = abs(track_left - env.flights[j].track)

 if dif_right > dif_left:

 angle_safe_turn = angle_right

 else:

 angle_safe_turn = angle_left

 else:

 angle_safe_turn = min(abs(angle_right), abs(angle_left))

 if angle_safe_turn == abs(angle_left):

 angle_safe_turn = angle_left

 # When a solution is not encountered

 if angle_right == env.performance_limitation and angle_left ==

env.performance_limitation:

 print('FLight ', i, 'has not encountered a safe turn angle')

 return angle_safe_turn

 ##

def safe_turn_MULTIPLE_angle(env, angle_safe_turn, list_i, i) -> float:

 """ The action of i will be the maximum between angles of the closest

flight and others """

 previous_angle = angle_safe_turn

 n = 1

 while n < len(list_i):

 k = list_i[n]

 angle_safe_turn_multiple = safe_turn_angle(env, i, k)

 max_multiple_angle = max(abs(previous_angle),

abs(angle_safe_turn_multiple))

 if max_multiple_angle == abs(previous_angle):

 max_multiple_angle = previous_angle

 if max_multiple_angle == abs(angle_safe_turn_multiple):

 max_multiple_angle = angle_safe_turn_multiple

 previous_angle = max_multiple_angle

 n += 1

 return max_multiple_angle

 ##

def alert_detection(env, previous_distances, previous_actions,

current_distances, FirstStepConflict, InConflict) -> List:

 """ Creating a matrix with ALL flights and its closest conflicts ordered

by time, and actualizing conflict parameters """

 FlightsInConflictWith = []

 for i in range(env.num_flights):

 num = []

 time = []

 for j in range(env.num_flights):

 if i not in env.done and j not in env.done and i != j:

 tcpa = t_cpa(env, i, j)

 dcpa = d_cpa(env, i, j)

 tcpa_bearing = t_cpa_bearing(env, i, j)

 dcpa_bearing = d_cpa_bearing(env, i, j)

 if (tcpa < env.alert_time and dcpa < env.alert_distance <

previous_distances[i, j]) or (

 current_distances[i, j] < env.alert_distance <

previous_distances[i, j]) or (previous_actions[i] ==

env.performance_limitation) or (

 current_distances[i, j] < env.alert_distance and

current_distances[i, j] <= previous_distances[i, j]):

 InConflict[i] = True

 FirstStepConflict[i] = True

 FirstStepConflict[j] = True

 time.append(tcpa)

 num.append(j)

 else:

 if (tcpa_bearing < env.alert_time and dcpa_bearing <

env.alert_distance) or current_distances[i, j] < env.alert_distance:

 InConflict[i] = True

 time.append(tcpa_bearing)

 num.append(j)

 tcpa_sorted = [x for _, x in sorted(zip(time, num))]

 FlightsInConflictWith.append(tcpa_sorted)

 return FlightsInConflictWith

 ##

def SERA_rules_application(env, i, j, angle_i, angle_j, actions,

angle_safe_turn) -> None:

 """ Looking at the conditions and, in consequence, applying the actions"""

 approach = u.circle / 24 # 15º

 converge = (110 / 360) * u.circle # 110º

 ###############

 # APPROACHING #

 ###############

 # When two aircraft are approaching head-on or approximately so and there

is danger of

 # collision, each shall alter its heading to the right.

 if abs(angle_i) < approach and abs(angle_j) < approach:

 actions[i] = angle_safe_turn / 2

 actions[j] = angle_safe_turn / 2

 ##############

 # CONVERGING #

 ##############

 # When two aircraft are converging at approximately the same level, the

aircraft that has

 # the other on its right shall give way.

 elif approach <= abs(angle_i) <= converge or approach <= abs(angle_j) <=

converge:

 if angle_i > 0:

 if angle_j > 0:

 if env.flights[i].airspeed > env.flights[j].airspeed:

 actions[i] = angle_safe_turn

 else:

 actions[i] = angle_safe_turn

 elif angle_i <= 0:

 if angle_j <= 0:

 if env.flights[i].airspeed > env.flights[j].airspeed:

 actions[i] = angle_safe_turn

 ##############

 # OVERTAKING #

 ##############

 # An aircraft that is being overtaken has the right-of-way and the

overtaking aircraft

 # shall keep out of the way of the other aircraft by altering its heading

to the right, and no subsequent change in the relative positions of

 # the two aircraft shall absolve the overtaking aircraft from this

obligation until it is entirely past and clear

 # In all circumstances, the faster flight that is overtaking shall give

way

 elif abs(angle_j) > converge or abs(angle_i) > converge:

 if env.flights[i].airspeed > env.flights[j].airspeed:

 actions[i] = angle_safe_turn

 return None

 ##

""" POLICY DEFINITION """

def policy_action(memory, env) -> List:

 actions = [0] * env.num_flights

 FirstStepConflict = [False] * env.num_flights

 InConflict = [False] * env.num_flights

 previous_distances, previous_actions = memory.pop()

 current_distances = env.distances_matrix()

 FlightsInConflictWith = alert_detection(env, previous_distances,

previous_actions, current_distances, FirstStepConflict, InConflict)

 """ For each flight i, the conflict between i and its closest flight j is

solved modifying the action i """

 for i in range(env.num_flights):

 if i not in env.done:

 list_i = FlightsInConflictWith[i]

 if not InConflict[i]:

 """ NO CONFLICT """

 actions[i] = env.flights[i].drift

 if InConflict[i]:

 """ CONFLICT """

 if not FirstStepConflict[i]:

 """ Solving the conflict, in process """

 actions[i] = 0

 if FirstStepConflict[i]:

 """ First step in the conflict """

 """ Solving the most important conflict: The closest

conflict in terms of time (tcpa) """

 j = list_i[0]

 angle_safe_turn = safe_turn_angle(env, i, j)

 if env.airspace.polygon.contains(env.flights[i].position)

and env.airspace.polygon.contains(

 env.flights[j].position):

 """ Computing the angle formed by the position of the

intruder flight in respect of it's own track """

 angle_i, angle_j = position_angles(env, i, j)

 """ Applying the SERA Rules """

 SERA_rules_application(env, i, j, angle_i, angle_j,

actions, angle_safe_turn)

 if len(list_i) > 1:

 """ If there is a multiple conflict, is solved

calculating the maximum angle that solves all """

 actions[i] = safe_turn_MULTIPLE_angle(env,

angle_safe_turn, list_i, i)

 return actions

class PrioritizedReplayBuffer:

 def __init__(self, maxlen):

 self.buffer = deque(maxlen=maxlen)

 self.priorities = deque(maxlen=maxlen)

 def add(self, experience):

 self.buffer.append(experience)

 self.priorities.append(max(self.priorities, default=1))

 def get_probabilities(self, priority_scale):

 scaled_priorities = np.array(self.priorities) ** priority_scale

 sample_probabilities = scaled_priorities / sum(scaled_priorities)

 return sample_probabilities

 def get_importance(self, probabilities):

 importance = 1 / len(self.buffer) * 1 / probabilities

 importance_normalized = importance / max(importance)

 return importance_normalized

 def sample(self, batch_size, priority_scale=1.0):

 sample_size = min(len(self.buffer), batch_size)

 sample_probs = self.get_probabilities(priority_scale)

 sample_indices = random.choices(range(len(self.buffer)),

k=sample_size, weights=sample_probs)

 samples = np.array(self.buffer)[sample_indices]

 importance = self.get_importance(sample_probs[sample_indices])

 return map(list, zip(*samples)), importance, sample_indices

 def set_priorities(self, indices, errors, offset=0.1):

 for i, e in zip(indices, errors):

 self.priorities[i] = abs(e) + offset

