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ABSTRACT 

ORTUZAR, J. de D. (1979) Testing the theoretical accuracy of 
travel choice models using Monte Carlo simulation. Leeds: 
University of Leeds, Inst. Trans. Stud., WP 125 (unpublished) 

In recent years a considerable advance has been made in 
the construction of micro-travel demand models from choice 
theoretic principles. Within random utility theory, the structure 
of models may be shown to relate to the perceived similarity 
between discrete choice alternatives, and this aspect may be 
interpreted mathematically in terms of the correlation between 
the components of random utility functions. Several possible 
model structures have now been proposed, varying from the 
multinomial logit model (uncorrelated) through the partly 
correlated structures (hierarchical and cross-correlated logit 
kctions) to the most general form of probit model which allows 
an arbitrary variance-covariance matrix. 

In this paper, these model structures are discussed using a 
geometric interpretation of random utility theory, and the 
possibility of invoking transformations on the general probit 
model is examined. Monte Carlo simulation methods are then used 
to investigate some aspects of the trade-off between the generality 
and accuracy of correlated structures (the cross-correlated logit 
model in particular) and the greater ease with which less consistent 
structures may be implemented. In this way, the theoretical 
accuracy of the multinomial logit model is assessed. 

It is concluded that where the $enera1 probit model is too 
complex to implement, the practice of comparing the multinomial 
logit model with alternative hierarchical logit structures is 
unlikely to lead to significant errors in forecasting. 



TESTING THE THEORETICAL ACCURACY OF TRAVEL 

CHOICE MODELS USING MONTE CARLO SIMULATION 

1. INTRODUCTION 

I n  recent years considerable in te res t  has centred on the  relat ionship 

between the  structure of a t rave l  demand model and the  behavioural 

principles associated with its formation. This has ar isen not only 
- 

because of the need t o  underpin models with a consistent theoret ica l  

rat ionale,  but a lso from the  recognition of s t ruc tu ra l  ambiguities i n  

exist ing models - as,  for  example, with the  re la t i ve  posit ions of 

d is t r ibut ion and modal s p l i t  models i n  the conventional planning system 

- which can give r i s e  t o  s igni f icant ly dif ferent resu l ts  i n  policy 

analysis  en-Akiva, 1974; Williams and Senior, 1977). One par t icu lar  

framework within which t h i s  re lat ionship has been sought is tha t  provided 

by random u t i l i t y  theory ( for  a review, see Dcanencich and McFadden, 1975). 

I n  t h i s  quanta1 choice theory individuals are considered t o  associate 

with each member An; n=l, ..., N of a discrete se t  of options A,  a net 

u t i l i t y  Un; n=l, ..., N, and t o  se lect  tha t  member with the highest value 

of U. To account for  interpersonal var iat ion i n  t he  value of a t t r ibu tes  

incorporated i n  t he  u t i l i t y  functions, andtheinf luence of unobserved 

factors,  the  modeller considers the  variables (U1, ..., Un, ..., UN) t o  be 

randomly distr ibuted over the population confronted by a choice. The 

probabil i ty P tha t  an individual with part icular  character ist ics se lects  
n 

an a l ternat ive An is then simply expressed i n  terms of the  probabil i ty 

tha t  Un be greater than those values associated with a l l  other options. 

A formal choice model may be derived when t h e  density function 

f ( U )  - = f (U1, . . . , UN) of the  u t i l i t y  components is  specified. 

It has recently been recognised tha t  the  analyt ic structure of a model 

is crucial ly  re la ted t o  the  interdependency, o r  s t a t i s t i c a l  correlat ion, 

between the u t i l i t y  functions associated with each a l ternat ive - t ha t  i s ,  

with the  structure of f (U)  (Williams, 1977; Langdon 1976; Daly and 

Zachary, 1978; McFadden, 1979). A se t  of formal models now ex is ts  which 

accommodates varying degrees of "similarity" or  correlat ion between 

al ternat ives ranging from the widely used multinomial l o g i t  model (MNL), 



generated by uncorrelated distributions, through the hierarchical logit 

model (HI.,), to the generalised probit function (GP) with arbitrary 

correlation, expressed in terms of a variance - covariance matrix. 

Until recently application of the generalised probit model has 

been restricted to a small number (3 or 4)  of choice options (Haussman 

and Wise, 1978 ) . However by invoking the Clark approximation (Clark, 

19611, Daganzo et al (1977) have extended its practical range. In 

spite of the advances in its applicability there appear to be many 

practical cases in which (a) the model cannot cope (~aganzo, 1979), or 

(b) there is a need for a compromise between the generality it can 

afford m d  the greater ease with which less consistent structures may 

, be implemented. One such compromise is the cross-correlated logit (CCL) 

function (Williams, 1977). which is a closed-form model containing 

alternative HL functions as special cases. 

In this paper we wish to examine some general themes such as the 

relationship between certain utility functions and the structure of 

travel choice models; the possibility of invoking transformations in 

order to simplify models and derive conceptual links between them; the 

theoretical accuracy of particular choice models, and the problems of 

misspecification associated with model structures and utility functions. 

More specifically, we wish to address the following questions: 

i) Is it possible to apply transformations in 'utility space' in order 

to simplify 'symmetric' probit models and enable conceptual links 

to be forged with the logit family? 

ii) How serious is the absence of 'similarity effects' in the multi- 

nomial logit model? In other words, how much is the well known 

'independence from irrelevant alternatives' (IIA) property of the 

model an impediment in choice modelling? 

iii) How good an approximation to a general function is the cross- 

correlated logit model? 

iv) What is the effect of misspecification of choice models with 

respect to model structure and their utility components? 

v) Can any of the logit models display pathological response 

properties, and is it possible to recognise their symptons at the 

calibration stage? -. 



vi) Can we discriminate between contending model structures on the 

basis of goodness of statistical fit, and the character of their 

inherent elasticity parameters? In particular, does a good 

agreement to bese year data necessarily imply good response 

characteristics? 

It should be stressed at the outset that any reference to the 

accuracy of a model will refer to its consistency with the underlying 

theoretical rationale, and not necessarily to its appropriateness in 

choice modelling. 
- 

In Section 2, the basic principles of generating random utility 

models are reviewed, a geometric interpretation of the theory is 

presented, and the Monte Carlo method as a means for numerical 

evaluation of choice models is outlined. The existence and implications 

of correlation between the utility functions associated with different 

alternatives are then examined in Section 3 and the various approaches 

to its incorporation in choice models noted. In Section 4 we investigate 

the possibility of invoking transfomations in utility space as a means 

of simplifying the general probit model. Although conceptionally 

appealing in terms of its links with MNL, HL and CCL structures, the 

potential for implementing such transfomations does not, in general, 

appear practicable. 

The numerical tests to determine the theoretical accuracy of the 

alternative logit structures in a general choice context are then 

described in detail in Section 5. 

2. THE GENERATION OF M D O M  UTILITY MODELS 

Formally, we can express the model generator equations of rando~ 

utility theory as follows: 

P = Prob (Un > Unl ,V Ant EA) n (2.1) 

in which f(U) is the joint distribution function of (U1, . . . , UN) and 

Rn is that region of utility space defined by 



Rn: Un L Unt vAnl EA (2.3) 

Un L 0 (2.4) 

In this paper we shall be concerned only with those cases in which a 

trip is actually made. The non-negativity restriction (2.4) will thus 

be considered inoperative. For the distribution functions considered 

later this will involve a negligible inconsistency, which does not 

affect the argument to be presented. 

To derive an explicit probabilistic choice model we need to know 

both the form of f(1) and an expression for the utility functions in 

terms of the attributes of alternatives in the set A. 

We shall take the components Un to be of the following form: 

Un = un (g.$) + E, (2.5) 

in which is the so-called 'representative' utility of the population n - 
Q confronted by the choice, and E~ is a stochastic residual. U is n 
normally taken to be linear in terms of the attributes Z' characterising n 
A . That is: n 

The vector of parameters g is estimated from observed choices. It 

remains to specify the distribution function f(g) or equivalently that 

of the stochastic residuals g. 

A geometric interpretation of the theory may readily be derived 

from expression (2.2). In the utility space%& bounded by the components 

(U1, . . . , U ) , the probability Pn is, for normalised f (g), the total N 
density of points in the region Rn bounded by the hyperplanes defined by: 

and 
U = U V AneA 
n n' 

This can be more easily seen in the convenient cartesian space. In 

Figure l(a) we illustrate the fundamental utility distributions 

associated with binary choice (Williams, 1977). It is important to 



distinguish those distributions g (U ) and g2(U )'which are associated 
1 1  2 

with the population Q confronted by the choice between alternatives 

A1 and A2, from gl(ul) and g2(u2) which are the "choice specific" 

distributions of utility, for those members of Q who have selected 

options A1 and A2 respectively. The sum of these last two distributions 

is termed the distribution of maximum utility g,(U), and the three 

functions are formally defined as follows: 

We shall also write the distribution of maximum utilities in the form 

- 
and we note here that the mean value of this distribution, U,, has great 

significance in the evaluation problem (Williams, 1977). 

The geometric interpretation of this simple choice process, which 

is an extension of that provided by Robertson (1977), is given in Figure 

l(b). For identical and independent distributions (IID), f(g) has a - 
circularly symmetric shape centred on and U2. The line OZ divides 1 
the positive quadrant into the regions R1 and R2, and P1 and P2 comprise 

of those corresponding portions of the distribution in these regions. 

The distinction between g(U1) and the choice specific distribution g(U ) 1 
can readily be seen in terms of the respective projections onto the U 1 
axis of the density function f(g), and that portion of f(g) bounded by 

OZ and the U1 axis. I 

An important class of random utility models includes those generated 

by IID utility distributions for which we can decompose f(E) as follows: 
N 

(1) Because they are identical in the figure, we have labelled them 
g(U1) and g(U2), respectively. 
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Here g(Un) is the d is t r ibut ion of the u t i l i t y  component associated w i t h  

A . The expression f o r  Pn can now be writ ten 
n 

h i s s i o n  of t he  constraint (2.4) allows the lower l i m i t s  of 

integration t o  be extended t o  minus in f in i ty .  

It is by now widely known tha t  the much favoured multinomial l og i t  

model (MNL) 

is  an I I D  model generated from Weibull (Gnedenko) probabil i ty 

d istr ibut ions ( ~ h a r l e s  Rivers Associates, 1972) fo r  which 

This i s  a skewed unimodal distr ibut ion,  i n  which the dispersion parameter 

A i s  inversely re la ted t o  the standard deviation, a, as  follows 

( Cochrane , 1975 ) : 

Similarly simple probit models are generated from I I D  Normal distr ibut ions.  

For a number of special  d istr ibut ions,  it is  possible t o  evaluate 

the integral  (2.2) t o  produce analyt ical  expressions for  Pn, such as the 

MNL i n  equation (2.15). In  general, however, we have t o  resor t  t o  some 

form of numerical method. One such approach involves Monte Carlo 

simulation. A s  f a r  as we are aware the  first application of t h i s  method 

t o  the solution of random u t i l i t y  models is  t ha t  of Albright, Lerman and 

Manski (1977). i n  the development of an estimation program fo r  the general 

probit model. However, and i n  most cases independently, t he  power of t he  

approach has at t racted numerous applications recently (Bonsall, 1979; 

Chicago Area Transportation Study, 1979; Horowitz, 1978; Kreibich, 1979; 

Manski and Lerman, 1978; Ortuzar, 1978; Robertson, 1977; Robertson and 

Kennedy, 1979; W i l l i a m s  and &uzar, 1979) but c lear ly its roots can be 

traced back t o  certain stochastic assignment methods (Burrel l ,  1968). 



In t h i s  approach we follow t rad i t ion  (~ammersley and Handscomb, 

1965); a sample of s i ze  S is created, and each ' individual' member t ,  

of S, is  confronted by the  choice between A1, ..., %. Using a random 

number generator a set of u t i l i t y  values (U1, . . . , u ~ )  is drawn from 

f ( ~ ) ,  - and the  member t is  assigned t o  tha t  option with the  maximum 

associated u t i l i t y .  For large S, the  proportion Sn of ' individuals' 

assigned t o  option An w i l l  approximate t o  Pn, which is  given by 

In the  simple Cartesian u t i l i t y  plane examined before, t he  method 

involves randm sampling of points from f(U1, U2). For a given sampled 
t t  observation (U1. U2) ,  the  corresponding ' individual' w i l l  be assigned 

t o  A1 or  A2 according t o  the  region i n  which the 'point' may be found. 

t t  t t  if U > U2, i .e.  (U1,U2) sR1, assign t o  A1 1 
(2.19) 

t t  t t  if U < U2, i . e .  (U1,u2) cR2, assign t o  A2 1 

To t e s t  the  accuracy of t he  method with sample s ize ,  the  numerical 

solut ion of a bop t i on  l og i t  model was compared with the  analyt ic  solution. 

For a sample of s i ze  S, the  choice probabi l i t ies P' were determined by n 
drawing random values from four I I D  Weibull functions, with given means - - - - 
(ul, U2, U3, Uq)  and standard deviation 0. Tnese numerically derived 

probabi l i t ies were then f i t t e d  by a l og i t  function 

S i n  which the  parameter A was estimated by the  usual maximum l ikel ihood 

method (Domencich and McFadden, 1975). In Figure 2, we show the  

empirically derived relat ionship between the  variance of A~ with the 

s ize  of the  sample S. I n  order t o  examine the accuracy of the  numerical 

solution under dif ferent conditions, we repeated t h i s  procedure for  a 

binary l og i t  model and di f ferent  values of the  difference between mean 

u t i l i t i e s .  A s  it can be seen, t he  c loser the  options (smaller difference 

i n  mean u t i l i t i e s ) ,  the  l e s s  s tab le  the  simulation becomes. I n  the  



numerical t e s t s  described i n  later sections the  sample s i ze  was fixed 

at S = 30,000. (2 

We now proceed t o  consider more complex choice contexts i n  which 

the  presence of correlat ion between u t i l i t y  functions is  centra l  t o  the  

s t ructura l  develoment of t he  models. 

3. ATTRIBUTE CORRELATION AM) MODEL STRUCTURES 
- 

For the  u t i l i t y  d istr ibut ions Un; n=l, ..., N we can define a 

variance-covariance matrix & w i t h  elements C given by: 
nn' 

= E  (en E ) V A n , A n t  EA n' (3.1) 

i n  which E(.) denotes an expectation value. In the  case of I I D  u t i l i t y  

components the matrix has, by construction, a simple diagonal form 

where I i s  the uni t  matrix of dinension N,  and u t he  common standard - 
deviation of the  distr ibut ions g(U), t ha t  is  

It is one of the intentions of t h i s  work t o  determine the extent t o  

which t h i s  very simple structure const i tutes a rea l  res t r i c t ion  t o  choice 

modelling. 

The multinomial l o g i t  (Y~ IL )  model (2.15) generated from I I D  Weibull 

d istr ibut ions,  which is  therefore characterised by a matrix with the  

diagonal structure (3.2), has been very widely applied i n  mode choice, 

and nore recently destination choice modelling ( f o r  a review, see Spear 

1977). It is now well known, however, tha t  the model suf fers  a 

res t r i c t i ve  property of cross-substitution, the  'independence from 

(2) Manski and Lerman (1976)-have examined the  simulation approach 
carefully and have proposed l e s s  naive stopping rules for  more 
ef f ic ient  programs. 



irrelevant alternatives' ( I IA)  property, whereby the ratio 

is independent of the utility values associated with other options. 

The IIA property, once seen as a positive advantage to be exploited 

in 'new option' situations, is now recognised to be a potential hazard 

when certain alternatives are more 'similar' than others in the set A. 

In random utility theory this notion of 'similarity' is interpreted in 

tens of the presence of off-diagonal elements in the matrix 2. - 
In certain applications, specific forms for the utility functions 

tend to suggest themselves. Consider 'two dimensional' choice contexts 

involving, for example, combinations of destination (D) and mode ( ! I ) .  

Alternatives in each dimension will be denoted by (Dl, . , D ,  ..., DN) 

and (y, .. . ,X . . ..,:$*), respectively, and the combination of my 
dimensions produces the 1P.J discrete choice options (Dl 5, . . ., D M n m' 
....Dd$l), which comprise the set A. The general element An is now 

D M which might be a specific destination-mode combination for the 
n m 

purpose of performi~g an activity. 

For such choice contexts we shall be particularly interested in 

utility functions of the form 

U(n,m) = U + U + Urn 
n m V Dn!ImcA (3.5) 

here U and U may, for example, correspond to destination and mode n m 
specific utilities, respectively, while U might be the travel disutility 

nm 
associated with D M combination. This form was used in the shopping n m 
model developed by Ben Akiva (1974), and in a number of other applications 

in the United States since that time. 

Writing U(n,m) in terms of a 'representative' term b(n,m) and 

a stochastic residual ~(n,m) we have 

u(n,m) = E(n,m) + ~(n.m) (3.6) 



i n  which 

and 

- 

We sha l l  now assume t h a t  the  residuals E ~ ,  E~ and E~ are  separatelx 

I I D ,  with 

i n  which 6 is the  Kronecker de l ta .  The elements of now become - 

and the  matrix is expressed i n  Figure 3, together with those corresponding 

t o  the  residual structures 

~ ( n , m )  = cm + (3.13) 

which are c lear ly  special  cases of t h a t  defined i n  Equation (3.8). It 

is  readi ly seen tha t  the  source of correlat ion i n  'multiple dimension' 

cases is  the  existence of a ccamnon term or  'dimension spec i f ic '  element 

(Un or  Urn) i n  the u t i l i t y  function. For the four cases (3.81, (3.11) - (3.13) 



we have developed i n  Figure 3, a p ic to r ia l  representation of the  structure 

of the  z - matrix with correlat ion between a l ternat ives incorporated through 

common bonds as shown. This is  the  basis for  a representation of t he  

choice model i t s e l f  (Williams, 1977). I n  the  f i r s t  case both oD and oM 

are zero and a diagonal C matrix resu l ts .  This case which is consistent - 
with Equation (3.11) w i l l  correspond t o  the  W L  model (2.15) i f  the  

u t i l i t y  functions a re  drawn from I I D  Weibull d istr ibut ions.  It i s  c lear  

tha t  the  use of t he  u t i l i t y  'function (3.5) i n  a KNL model of the  form 

(2.15) w i l l  be inconsistent because the  appropriate z - matrix, corresponding 

t o  tha t  u t i l i t y  function, i s  not of the  diagonal form involved i n  the  

generation of the model. 

Before t reat ing the  more general case (3.8),  which is  consistent 

with the  u t i l i t y  function (3.5) and which corresponds t o  the  fourth 2 - 
matrix of Figure 3, we sha l l  consider the derivation of a hierarchical  

o r  nested model f r o m  a function consistent with the residual  structure 

and which corresponds t o  the  second representation i n  Figure 3. In t h i s  

case the  component o vanishes and the two parameters oD and oDM allow M 
di f ferent  degrees of cross-substitution between intra and inter- branch 

al ternat ives i n  the  ' t ree '  form shown i n  Figure 3(b) ;  tha t  is, between 

Dn Mm and DnMm, , i n  t he  former case, and between D ?I and D ,M i n  the  
n m n m' 

l a t t e r .  It may be shown (Williams, 1977) tha t  P(n,m), t he  probabil i ty 

of select ing D M can be writ ten 
n m 

P(n,m) = Pn.Pm (3.15) 

i n  which 

Prim = Prob (Unm > Urn,, Wml EM) 



and 

Pn = Prob (Un + Unw > Unl + Unl+ , Y Dd ED) (3.17) 

with 

If the components Urn are Weibull distributed variables w(u.~~~,A) 
with mean if + y/A (where y is Euler's constant), and standard deviation nm 
K / ( ~ A  ), then it is readily shown (Cochrane, 1975) that Un, is also 

Weibull distributed, with mean 

and standard deviation given by 

The marginal distribution P is then derived from the sum of n 
Weibull distributed variables Un+ and variables Un, derived from some 

distribution r(~,<), n=l, ..., N to be specified. 

Now the hierarchical logit (HL) model (~illiams, 1977; Daly and 

Zachary, 1978; McFadden, 1979) 

can be generated by specifying that r(~,&) be that distribution of a 

variate which is formed from the difference between random variables 
- (3) drawn from Weibull functions W(U, En + tnr, 6) and W(U, Una, A). 

Because Un and Un, are independent, the variance of their sum is 

given by 

... ... . . . . . . . . . . .. ... ... . . . . . . ... . . . 
(3) A logistic distribution (Ibmencich and McFadden, 1975). 
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When uD = 0, the model collapses to the MNL, characterised by the 

single parameter A. It can be seen that for a consistent model (and for 

T(U, 5 ) to have a non-negative variance), we require (~illiams, 1977) n 

This condition is of particular importance, and its violation may 

imply cross-elasticities of the wrong sign. Violation has, in fact, 

been observed in conventional transport models (Williams and Senior, 

1977). We will come back to this concept later when discussing the 

pathological response properties of certain mis-specified models. 

In the simulation tests to be described in Section 5, in which the 

model corresponding to Equation (3.8) is derived numerically, cn, cm 

and E~~ will themselves be taken as Weibull functions, and it is necessary 

to know what approximations are made if the resultant model is assumed 

to be of HL form. In fact, the only approximation is involved in the 

marginal probability Pn, because the sum of the two Weibull variates, 

drawn from the distributions W(U, Gn,, A) and W(U, T, n/(&-uD)) is 

itself distributed Weibull. 

For an example with N = M = 2, the parameters f? and A (the latter 

should be exact) were estimated from the logit function (3.21) by 

Maximum Likelihood, and their ratio was plotted against the standard 

deviation u associated with the residuals E and compared with the 
D n' 

theoretical values in Equation (3.22). The results of this exercise 

are shown in Figure 4. It can be seen that a reasonably good 

approximation is obtained. 

We now turn to consider the choice model generated from the utility 

function (3.5). Because of the form of the random residuals, (3.8), 

we can say immediately that this model should contain as special cases 

the MNL and alternative HL functions. As far as the author is aware no 

explicit analytic function has been obtained for such a structure. 

Clearly one could appeal to the probit form and exploit the Clark 

approximation (Clark, 1961), but this would for medium size problems 

still be unmanageable. Alternatively, we could try to exploit the very 

symmetric structure of Z (as shown in Figure 3(d)) and attempt to - - 
transform the probit model into an equivalent MNL model. In fact, this 

will be the subject of the next section. 
-. 
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The cross-correlated logit function (CCL) was an ad-hoc model 

proposed by Williams (197'1')'~) as a closed form approximation which 

corresponded to the utility function (3.5). It is defined by the 

equations 

where - 

t - (0-A)- un = un + - B 'n* 

U'f = - (A-A) - um + - m x 'm* 

2 2 
It maybe checked that as uD and uM, the variances of the residuals 

E and cm, tend to zero the respective hierarchical logit models are n 
formed. If both variances are zero, the CCL collapses to the multinomial 

logit form (2.15). 

In summary, we note that within the framework of random utility 

theory in which behaviour is governed by rational choice between discrete 

alternatives, the structure of the model is determined uniquely by the 

underlying utility functions, and the structure of correlation or 

similarity between alternative choices is the essential feature which 

dictates the complexity of the model. Varying degrees of similarity 

may be accommodated within the logit family. The first three cases in 

Figure 3 involve utility maximisations in which the variance-covariance 

... . . . ... ... ... ... ... . . . ... . . , ... . . . 
(4) In that paper (section 5.3.2, pp 321-323), the function was denoted 

General Choice Model. Mere recently, and in deference to the general 
probit model and to the class of General Extreme Value (GEV) models 
(McFadden, 1979), the function has been rechristened appropriately. 



matrices - g are  special cases of the  cross-correlated s t ructure,  with a 

E matrix and p ic to r ia l  representation summarised i n  Figure 3(d).  I n  - - 
Section 5 we w i l l  present a se t  of simulation t e s t s  on s t ruc tu ra l  

misspecification designed t o  examine some speci f ic  questions concerning 

how good an approximation t o  (3.5) is the three parameters CCL model, 

and what potent ia l  e r ro rs  can be introduced by using the s ingle parameter 

MNL and two parameters HL models instead. F i r s t ,  however, we w i l l  examine 

the  general probit model and the  scope for  applying transformations i n  

order t o  produce more t ractab le  models. 

4. THE GENERAL PROBIT MODEL, STRUCTURE AND !tWNSFORMATIOiYS 

In random u t i l i t y  theory, the  density function which generates the 

general probit  model (GP); for  choice between N al ternat ives is  given by: 

We sha l l  immediately transform Equation (4 .1)  from g- space i n to  - space 

using Equation (2 .5) ,  giving 

1 
-N/2 - a  T -1 

1 f ( ~ ) =  - (2n) IgI =PI-zg  & 5) (4.2) 

I f  we define 
- - - 
Unnr = Un, - Un (4.3; 

then resort ing t o  Equation (2.2) the  model can be s ta ted  as 
- - - 
Uln + En U2n + En m U ~ n  + En 

Pn = I I ... I . . .  I f(g) (4.4) 
-m -m -m -m 

Although the GP(4.4) i s  more general i n  i t s  theoret ica l  statement, 

it i s  considerably more cumbersome than the MNL or  HL t o  implement. The 

d i f f i cu l t i es  of achieving a solut ion t o  the  GP by d i rect  nmer ica l  

integrat ion for  other than 'small' problems, involving 3 or 4 options 

(Hausman and Wise, 1978) are well  known, and have led t o  the formulation 

of approximate solut ion schemes. One method involves Monte Carlo 

simulation d i rect ly  t o  evaluate the  model (Albright e t  a l ,  1977). 



The method is elegant, theoretically appealing and has the advantage 

of being completely general, in the sense that in principle any function 

can be integrated. However, it is not well suited for optimisation 

purposes near the neighbourhood of the optimum, it is biased, and very 

slow and expensive to use. (Bouthelier, 1978). 

The second method, due to Daganzo et a1 (1977) invokes the Clark 

(1961) approximation, which essentially involves the replacement of the 

maxi di urn of bivariate normal variables by one normally distributed variable. 

By repeated application of the Clark approximation, the multiple integral 

in Equation (4.4) may be reduced to a particular univariate integral. 

When the correlation between variables is non-negative, this approximation 

which has been extensively examined by Manski and Lerman (19781, using 

Monte Carlo simulation, is apparently accurate to a few per cent, for up 

to 20 alternatives. However, problems with the possible existence of 

multiple optima associated with the likelihood function of GP models, for 

more than 2 alternatives, have recently been reported (Daganzo, 1979). 

These imply that in general, there is no guarantee that the model can be 

calibrated. The program and documentation of a powerful algorithm for 

calibrating the GP model, using this method, are now widely available 

(Daganzo and Schoenfeld , 1978 ) . 
When encountering normally distributed variables, it has often been 

the case that a transformation to a co-ordinate system in which the 

structure of variation in a data set is more appropriately described, has 

provided not only insight into the nature of factors giving rise to the 

variation, but has also formed the basis for approximation schemes. 

hincipal component analysis is perhaps the best such example. (For a very 

didactic treatment of transformation theory in multivariate analysis, see 

Green and Carroll, 1976). Moreover, it is well known that the MNL and 

an uncorrelated, equal variance probit model (with suitably normalised 

standard deviation) are almost indistinguishable. That is, if we could 

transform general probit models into equivalent functions with diagonal 

variance-covariance matrices, it might be possible to establish conceptual 

links with the logit family, and in the process erase the burden of 

numerical integration. 

If this were not enough motivation, consider that the hierarchical 

logit (3.21) may be written as-a MNL function with transformed utilities 

and parameters of the underlying distributions: 



The reader can check this by reorganising and using Equation 

(3.19). In fact, this should not be too surprising, since McFadden (1979) 

has shown that any model derived from extreme value (Weibull) or 

generalised extreme value functions may be written as an equivalent 

multinomial logit model. In this group follow, for example, the hedonic 

demand models developed recently by Charles Rivers Associates (Cordell 

and Reddy, 1977). 

Let us first examine and illustrate the power of transformations in 

the convenient cartesian two dimensional space. 

Equation (4.4) reduces in two dimensions simply to: 

where p is the coefficient of correlation, and C is given by 
2 

- 

(4.7) 

Figure 5(a) presents a pictorial representation of f(g) in g-space 

for the general variance-covariance matrix (4.7). 02 ,  the iso-utility 

line, is defined by 

02:  u = u 2  1 (4.8) 
and the region of integration R is defined by 1 

Figure 5(b) presents a pictorial representation of the density function 
.. 

in - U- space defined by the transformation 
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In this transformed space the line OZ, which defines the region of 

integration is given by 

- .. - 
02:  cru + U 2 = a U  +U1 2 2 1 1  (4.11) 

and consequently the region of integration is: 
a 

-- f U1 d - 

Recall that we are searching for transformations that will restore the 

symmetry of the independent case. The next move possible is to apply a 

rotation in order to have the elipse-shaped density function oriented 

along the new axes of the co-ordinate system. Figure 5(c) presents a 

pictorial representation of the probability density function in this new .. 
space fi defined by 

Notice that this transformation requires algebraic operations which 

entangle the previous axes. The region of integration is this time 

defined by: 
- - a u l f m  

The symmetry will be restored by a h the r  compression of the axes. 

It can easily be seen that this is achieved by: 
.. .. 

Tl = U1 ) 

h-p 
1 
) 

z 1 (1.151 
T2 = u2 ) 

) 
Jl+p 1 



The corresponding pictorial representation is given in Figure 5(d), and 

the region of integration is defined by 

-OD 6T1 6 w ) 
1 

I$: 6 T2 s h-p (a1-a2) T f i 2 a 2  ) (hel6) 
1 + 1 

6 (a1+a2) fl+p (a1+a2) 

Appendix 1 gives a matrix treatment of the problem, and shows 

how the inverse of the variance-covariance matrix defining the quadratic 

form of the bivariate normal is gradually transformed from the general 

expression 

to the simple expression of the independent equal variance model 

after the three transformations defined by Equations (4.10), (4.13) and 

(4.15). 

Notice that because all the transformations are linear the iso-utility 

line OC remains a line throughout; indeed it is given by 

Now, the structural and numerical characteristics of the variance- 

covariance matrix C are dependent on the coordinate system (utility space) - 
in which it is measured. It is natural, therefore, to enquire about the 
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form of the basic problem i n  the  new space i n  which the transformed - 
matrix - i s  diagonal. We should not expect the benefi t  of an analyt ical ly 

simpler density function t o  be obtained a t  zero cost, for  the region 

of integration R over which An is preferred i n  Equation (2.2), w i l l  n' 
a lso be transformed. 

In general, under the  transfomation 

the expression for  P given in  Equation (2.2) n 

becomes 

in  which h(T) is the transformed density function, J is the Jacobian and 

Rn, the new region of integration. 

In the probit model (4.4),  the algebraic manipulations and geometric 

interpretat ions of the required transformations are essent ia l ly  those of 

principal component analysis. The surfaces of constant density i n  g-space 

are t h i s  time el l ipsoids,  given by the quadratic form. 

T z-l 
E = constant Q F = E =  - (4.22) 

We wish t o  invoke an orthogonal transformation 

T = 4 g  - (4.23) 

such tha t  the vectors 11, V+, ..., xN, which are the columns of :, are - 
the the principal axes of the el l ipsoid.  In the new coordinate system, - 
the transformed matrix L, - i s  writ ten 



in which A1, ..., AN are the eigenvalues of C.  - The eigenvalues and 

corresponding eigenvectors are determined from the usual equation 

Z v r =  A fl = - r = 1, ..., N r -  (4.25) 

The quadratic form (4.22) may now be written 

and the transformed probit model becomes 

the Jacobian of the ~rthogonal'~) transformation being unity. 

The transformed region of integration becomes 

which is quite an unhospitable region involving all components of 

T on both sides of the inequality without possibilities of simplification, - 
and therefore rendering useless the effort to decompose the multivariate 

density function (4.1) into the product of univariate functions (4.27). 

Notice that this is not the case in the binomial context. Consider 

equation (4.6) and define 

... . A .  . . . ... ... ... ... . . . . . . .., ... . . . . . . 
(5) Variance covariance matrices are especially well-behaved. They are 

square, symmetric and positive semidefinite. All their eigenvalues 
are real and non-negative, the transformations that diagonalise them 
are orthogonal, and further, their inverse is equal to their transpose. 
(Green and Carroll, 1976). 



then it can be seen tha t  Equation (4.6) reduces t o  

tha t  is, by means of t he  transformation (4.29) the multiple in tegra l  (4.6)  
has been separated i n  i t s  two components, and el has been eliminated from 

the  upper l i m i t  of integrat ion of the  second integral .  Note a lso  tha t  

is  precisely n2 , the  variance of the  newly defined var iable n2 = c2-el. 
"2 

By making another transformation, namely 

equation (4.30) fur ther reduces to :  

where the  f i r s t  integral  equals 1 and the  second i s  none other than the  

standardised normal cumulative d is t r ibut ion 5 ( . ) , with tabulated values. 

In t h i s  case then, the  binary probit  model 



is very simple and efficient to use while still being completely general, 

both in terms of correlation among alternatives and standard deviations 

of the marginal distributions. A workable version of the model, along 

these lines, but for three alternatives has recently been put forward by 

Hausman and Wise (1978). Unfortunately, this method is also non-generalizable. 

Before abandoning the transformation theory, let us examine probit 
- 

models corresponding to symmetric variance-covariance matrices, appropriate 

to the utility functions. 

I 

and U(n,m) = Un + Um + Unm 

as depicted in Figure 3. The block diagonal structure of in these cases - 
imply that the eigenvalues and eigenvectors of the matrix, will not mix 

many utility components from the 'branch' associated with D and from n 
other branches. Although this occurs, there is a l s ~  considerable degeneracy 

in the system characteristics, some eigenvalues being not unique. Consider 

the model (3.14) in the simplest 2 x 2 case. The - matrix is given by 

2 
"D + 'DM 'D 0 0 

C = - - (4.34) 

0 

0 0 u 2 aD2 + OD 

D 

Solving for the eigenvalues h yields the equation 

(4.35) 

which simply reduces to 

2 4 
+{(a + 'EM - uDl = 0 - D (4.36) 

the degeneracy already apparent. The solution of Equation (4.35) is simply: 
2 2 

h1 = 2uD + % 
2 - 

h2 = 'DM 
(4.37) 

S = hl 



In conclusion, it has been shown tha t  it i s  possible t o  define 

sui table transformations tha t  allow one t o  restore the  s imp l i c i t j  of 

the integrand of independent equal variance models, t o  a r j  more general 

function, although i n  the  case of models incorporating correlat ion 

among many a l ternat ives,  the method does not commenrl i t s e l f  because 

the l imi ts  of integrat ion of Equation (4 .4 )  become a function of the 

u t i l i t i e s  of several,  if not a l l ,  the options. lieither does the method 

work for  simpler symmetric matrix structures,  the problem tinis t i ne  

being highlighted by the high degeneracy of the eigenvalues of the  

matrix. 

5. THE THEORETICAL ACCURACY OF kLTERIIATITJE LOGIT 140D2L STFUCTJ3SS 

In Sections 2 and 3 ,  we outl ined a theory of choice behavio-a-, 

random u t i l i t y  theory. Within i t s  framework the behaviour of i n i i -~ idua l s  

is  governed by ra t ional  decision-making among discrete alternati-res, 

('homo economicus'), the structure of models i s  determine* uniq-iely by 

the underpinning u t i l i t y  functions, and the structure of correlat ion 

or s imi lar i ty  between a l ternat ive choices i s  the  essent ia l  featlz-e which 

d ic ta tes the  complexity of the model. 

I f  it i s  accepted tha t  individuals select  a l ternat ives and responrl 

t o  changes i n  a manner which approximates the assmptions cf ti;:. t h ~ o r y ,  

there are two immediate pract ica l  consequences. F i r s t l y  as t h ~  tLree 

model structures i n  Figure 3 ( a ) ,  ( b )  and ( c ) ,  (!4!:L ard two a l ternat ive 

HL models) are a l l  special  cases of the  more general str ' icture i n  Bigure 

3(d) ( i n  which oD, oIq and aDM are a l l  non-zero), any str31ctural 

ambiguity, a s  referred t o  ea r l i e r  i n  the paper, may be obr ia te i  i f  t hs  

l a t e r  model i s  implemented. 

Secondly, i f  a par t icu lar  model, say the hierarcsical  s t r - ~ c t u r e  is 

Equation (3.21) is adopted for  forecasting demand response, the composite 

u t i l i t i e s  (3.19) and estimated e las t i c i t y  paraueters 0 an i  A ,  m;st be 

consistent with the  theoret ica l  conditions underginning the rodel i . 5 .  

sa t is fy  inequali ty (3.23). It has been found i n  S r i t i s h  Trans?ort 

Studies which have employed a HL of t h i s  forn, tha t  e i ther  condition 

(3.19) or the  parameter re la t ion 0 d A have been violate8. Tnese 

violat ions can give r i s e  t o  hyghly unreal is t ic  respocse ?ro?ert ies of 

the models, as discussed by Williams and Senior (1977:. 



While a theory of model structure (and corresponding evaluation 

measures (~illiams, 1977)) now exists which is consistent with rational 

choice behaviour, there are many theoretical and practical issues which 

remain to be resolved. The cross-correlated logit model or general 

probit model appropriate to the utility structure (3.5) have yet to be 

implemented, and it has been suggested that one should implement all 

three special structures 3 .11 )  (3.12) and (3.13) and select that which 

yields the best statistical fit g& is consistent with the theoretical 

conditions outlined in previous sections. (Ben Akiva, 1977; Senior and 

Williams, 1977). It remains to assess the extent of mis-specification 

involved in the implementation of a particular model in circumstances 

for which a more general representation is appropriate. In this context, 

Monte Carlo methods provide a very handy tool. (6) 

We are now in a position to present a set of simulation tests on - 

structural mis-specification which are designed to examine the following 

questions: 

(i) How good an approximation is the three parameter CCL model 

to the exact model generated from Equation (3.5) through 

utility maximisations? 

(ii) What potential errors are made by invoking the single parameter 

MNL and two parameter HL models, which accommodate restricted 

degrees of similarity between alternatives, to an appropriate 

three parameter specification? 

Figure 6 depicts the experimental scheme. Data was generated by 

direct simulation from utility functions of the form (3.5) for a simple 

2 x 2 case. A whole range of models was tested, which can be 

conveniently divided into two classes: 

- theoretical, i.e. with specified parameters based on 

knowledge of the values of the underlying standard deviations; 

- calibrated, i.e. with parameters fitted by maximum likelihood. 

The first class contains the four logit models discussed before (MNL, 

two alternative HL structures and CCL) and the second only the first 

three. (7) Because the 'calibrated' versions always performed better 

... ... ... . . . ... ... ... . . . ... ... ... 
Williams and Ortuzar (1979) have used the method outlined here 
to test the effects of theoretical mis-representation allowed 
by the relaxation of some of the assumptions associated with the 
decision process of 'homu-economicus'. 
In fact, it is precisely the difficulty of calibrating a CCL 
model that has prevented its implementation. 



than the 'theoretical' we will consider only the former 

from now on. 

The simulated data sets consisted of the mean utilities and 

aggregate shares of each alternative. The MNL(~) ( 4  options) parameter A 

was estimated by maximum likelihood (using a Newton Raphson procedure 

described in Appendix 2) and the EII,(l0) models were calibrated heuristically 

and similarly as a series of binary logit models; the appropriate 

composite utilities providing a link between the two levels in the 

hierarchy. 

Having estimated or theoretically determined the parameters of the 

models for a given data set (base data), a second set of data was 

generated for a particular change in the values of the mean utilities 
- new - Old + 1) consistent with the effects of a particular policy. (say U = U r n  

This second set, the 'design year data' was compared with the 

predictions of the models for the same change in mean utility values. 

By this means, the response properties of the models were also assessed. 

The complete mechanism is depicted in Figure 6; it can be seen that it 

can easily be adapted to test not only structural mis-specification as 

we did here, but more profound problems of theoretical mis-representation 

(Williams and Ortuzar, 1979). 

The simulation tests involved variation of the co-ordinates 

(uD, uM, uDM). A standardisation or 'normalisation' condition to bound 

the joint variation of these quantities, of the following form was used: 

2 u2 + o + u2 = constant D M DM (5.1) 

and a particular co-ordinate (OD& a a , uM. uDM) corresponds to a particular 

simulation test. To illustrate the possible combinations of these three 

quantities, we appealed to that property of equilateral triangles whereby 

the sum of perpendicular distances to the three sides from an interior 

(8) The approximations involved in the models preventing the specified 
parameters to replicate the data as closely as the fitted parameters. 

(9) In a first set oftests the mean utility in Equation (2.15) was taken 
as U = U + U + Unm. In a second set of tests, we examined the n m 
effect of omitting a particular component, say by putting & = 0. 

(10) In the first set of tests, the mean gtili* in the lower hierarchy 
of Equation (3.21) was taken as U = Um + Unm (and correspondingly - 
Un + t,, for the alternafive form). In the second set of tests the 
.. - - 

effect of omitting a particular component, say Um = 0, could easily 
be tested. 



point is a constant, equal to the height of the triangle. Any test 

point may thus be identified with a point in or on the boundary of the 

triangle, as shown in Figure 7(a). At interior points a three parameter 

model (such as the CCL model) is necessary to capture the full range of 

cross substitution implied by the utility function (3.5). On the 

boundaries CB and CA the alternate HL models for which oM = 0 and oD = 0 

respectively, are appropriate (see Figures 3(b) and (c) ) .  It is only 

at the vertex C (i .e. oD = aM = 0) that the MNL is an appropriate 

specification. 

In addition to test points randomly sampled from within the triangle, 

four particular co-ordinate test points, as shown in Figure 7(b), were 

selected for the presentation of results. Recall that in all tests two 

alternatives were taken in each of the D and M dimensions, allowing a 

four alternative choice model to be generated. 

The general performance of the four models for these test points (11) 

is shown in Figure 7(c). We have restricted ourselves to a comparative 

quality assessment of the fit, in that it is the relative performance of 

the models in which interest lies. (12) A visual display of the meaning 

of this informal assessment, in the form of a particular set of base and 

response results for the four models used to fit data generated from 

test point 2 in Figure 7(b), is shown in Figure 7(d). 

Under conditions of change, points in the second and fourth 

quadrants of the right hand side of Figure 7(d) are deemed pathological 

because the change in behaviour predicted by the model is opposite to 

that simulated. We found that this behaviour is associated with the r 

violation of the condition (3.23) in hierarchical logit specifications. 

If, for example, oD >> oM, then the HL specification MID corresponding 

to oM > oD will involve pathological behaviour. The condition, however, 

(11) Results are shown for the first set of test only, i.e. when it 
was assumed complete knowledge of the mean utilities. I 

(12) The performance measures used were average relative errors (ARE) I 
defined as: N 

ARE = $ c { 1 psim - ?dl /?dl 
i=l 1 - 

xnd a izeasure, defined as : 

Td = modelled share of option i, i = 1,. . . ,N 



appears also to depend on the underlying representative utility 

values. (13) 

If we further examine the performance of the models as reported 

in Figure 7(c), we note that the CCL appears to be a good approximation 

to the general fuuction (3.5). Its superiority to the other logit 

forms was especially apparent when the three coordinates oD, uM and 

u were different from zero and from each other. The most surprising DM 
and welcome outcome, however, was the remarkably robust performance 

of the MNL, even at interior points of the triangle and especially when 

uD uM. AS expected the IIA property was a considerable impediment 

near the sides of the triangle, except in the immediate region of 

point C. 

The last point to note in this section is, that out of the 

estimated models (MNL and two HL forms), that with the best base fit 

consistently provided a good estimate of the response to change: 

this would seem to lend some theoretical/numerical support for the 

suggestion of Ben Akiva (1977) that results of alternative HL and 

MNL models could be compared and the appropriate model selected 

according to the estimated value of the 'similarity' parameter, 

which in our notation is 6 / A .  

We offer no apologies for the fact that the simulation tests 1 
were confined to a 2 x 2 example (4 options). We believe that the 1 
results and conclusions in next section, would not be qualitatively 

modified when the number of alternatives are increased, because the 

structure of the variance-covariance matrix itself was the focus of the 

mis-specification tests. The dependence of the results on the number 

of options could, of course, be tested. (14) 

... ... ... ... ... ... . . . ... ... . . . ... ... 

(13) In the second series of tests the effect of omitting a 
particular utility ccanponent - by putting im = 0, for example- 
was determined. All results were inferior to their counterparts 

in the first series, as would be expected because the number of 
'degrees of freedom' of the model specifications had been 
reduced. The performance of HL (asymmetric in nature) was 
particularly suspect and pathological behaviour became more 
prevalant. - 

(14) More important, in exercises of this kind, is to make sure that the 
process converges. We found it was necessary to smple 30,000 
observations to get consistent results. The reader is referred 
to Section 2. 



6. CONCLUSIONS 

In this paper we have presented the essential features of random 

utility theory, both formally and in a geometric framework which 

provides a clear interpretation of the nature of choice. 

We have studied the role of correlation and how the form of the 

utility function uniquely determines the structure of models, their 

complexity being dictated precisely by the structure of similarity 

or correlaticnbetween the alternatives. In this way, we have been 

able to present the basic assumptions of the most popular models, 

multinomial logit, general probit and hierarchical logit, and 

discuss their implications. 

The general probit model is the more conceptually appealing 

of model forms, although unfortunately the least tractable of them 

for more than small problems, and even then with some yet unknown 

properties. We have investigated the possibility of invoking 

transformations in utility space as a means of simplifying it. We have 

shown that it is indeed possible to define suitable transformations 

that allow one to restore the simplicity of the integrand of independent 

'equal variance' models to any more general model, although in the 

case of models incorporating correlation among many alternatives, 

what is gained on the joundabouts is lost on the swings because 

of the non-separability of the multiple integral (4.27) which in 

turn is due to the unhospitable form of the region of integration (4.28). 

Although transformations certainly give more insight into the problem, 

the potential for implementing them, even in the case of models with 

symmetric variance-covariance matrices, does not appear practicable. 

The results of the simulation tests are consistent with the 

following conclusions: 

i) The cross-correlatedlogit model is a good theoretical 

approximation to the three parameter utility lunction (3.5). 

The superiority to other logit forms is especially apparent when 

the standard deviations oD, oM and oDM are rather different from 

zero and from each other. However its estimation is very complex 

(Williams, 1977) and for this reason it does not commend itself. 



ii) The multinomial l o g i t  model performs reasonably well at 

i n te r io r  points of the  t r iang le  (indeed it i s  considerably 

more robust than we had anticipated) and t h i s  is  par t icu lar ly  

t rue  when o - oM. Its maximum error  occurs near the  s ides of D 
the  t r iangle (except i n  the  immediate region of point C )  

where the 'independence from ir re levant a l ternat ives'  

property is a considerable impediment. 

iii) A good base f i t  does not necessarily imply a good response 

model, after all every modelkal ibrates ' .  However, out of 

the three a l ternat ive l og i t  st ructures (multinomial l og i t  and 

two hierarchical  l og i t  forms), the model which provides the 

best base f i t  provides a good estimate of the  response t o  change. 

i v )  A mis-specified model ( typ ica l  case is the  inappropriate 

hierarchical  l og i t  form) w i l l  tend t o  display pathological 

behaviour i n  a response context. However it is  possible t o  

recognise the  symptoms a t  the cal ibrat ion stage, by examining 

the consistency conditions (eg. ru le (3.23)). 

In these t e s t s  we examined the  capabil i ty of extended members 

of the l og i t  family t o  accomodate the  structure of s imi lar i ty  between 

al ternat ives embodied i n  the u t i l i t y  function (3.5).  The general 

probit function would be appropriate i n  this '  case, and indeed t o  more 

general u t i l i t y  forms. Horowitz (1978) has, i n  fac t ,  examineQthe 

potent ia l  mis-specification problems of the multinomial l og i t  model 

when compared with a 3- al ternat ive probit model. H i s  resu l ts  a re  

complementary and consistent with ours, i n  the sense tha t  i n  moat 

pract ica l  cases, the  greater ease with which l e s s  consistent structures - 
provided they a re  robust enough t o  cope re la t i ve ly  well with not serious 

mis-specification -may be implemented, w i l l  win the day. 

Final ly the powerful too l  employed i n  our analysis, Monte Carlo 

simulation, deserves an especial word of praise. We noted the  increasing 

appl icat ion of the method i n  the transport f ie ld ,  but we bel ieve tha t  

our part icular  use here, creating a r t i f i c i a l  data se ts  on which the  

ef fects of speci f ic  model mis-specifications can be tested i n  a control led 

manner, indicates one way ahead t o  at tack the problem of model evaluation. 

Indeed, it has already been u:ed i n  a more ambitious project t o  t e s t  for  

theoret ica l  misrepresentation and t o  assess the  va l id i t y  of cross-sectional 

models i n  general ( W i l l i a m s  and Ortuzar,1979). 
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F I G U R E S  



a.) Fundamental distributions. 

b) Geometric interpretation. 

FIGURE 1 : U tilit distributions for indepent 1 
mode Y with equal standard I 

deviations. 



FIGURE 2: Sampling errors in parameter 
estimution. 
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FIGURE 3 : The st'ructure ice models: 



a set of special - cases. 
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FIGURE 5:  Transformations of the general 
probit - model in two di mensions. 
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c.) Model performance at different test points. 
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APPENDIX 1 

i ,.'" . , 

If U1 and U2 q e  jointly distributed bivariate normal, with means 

and G2, standard deviation a; and a2 and correlation coefficient p,  
1 , . 

then the quadratic form (QF) of f(U1, U2) is given by 

the region of integration is defined by R1: U2 < U1 

QF = I - 4 (g - g)T - z-I (g - 1)) (All 

In this appendix a matrix treatment of the general transformation 

indicated in the text will be given, both to show that the process is 

easily generalizable to more dimensions and to show how each transformation 

in turn, affects the corresponding inverse variance-covariance matrix 

defining the QF at each stage. 

where 1 = 

First a general statement about how a transformation works in matrix 

terms will be given. It is worth remembering that the QF, by definition, 

is a scalar, that is, its value is invariable to the transformations, only 

changing the components that define it. 

u - G1 
; (g - 1 )  = 

1 

In general a transformtion can be represented by a matrix A acting = 
upon a vector such as in ( ~ 2 )  and over a matrix such as in ( ~ 3 ) .  

The QF in the new space defined by r has the general form: 

Q F ' = I - 9 L T f 1 1 1  - - (A41 

We will show now that QF' is indeed equal to QF 



Replacing (A2), (A51 and (A6) in to  (~4)  we get 

T T - 1  - -1 
and noting tha t  A (1 ) - 2 = L A ,  the  un i t  matrix, and tha t  by - - - - - 
definit ion any matrix or  vector g when pre- o r  post-mult ipl ied by 2 - 
remains unaffected, we show tha t  

QF' = QF ( A 8 )  

In the  remainder of the  appendix we w i l l  present each transformation 

of the general case i n  the tex t  and the form of the  inverse of the  variance 

-covariance matrix involved. 

a )  The f i r s t  transformation: (4.10) 

1 0 

, i n  t h i s  case LT = - (A9) 

0 



b) The second transformation: (4.13) 

therefore i-' = fi - 

and 

c ) The last transformation: (4.15) 

2-1 h-p 
therefore - - 



APPENDIX 2 

The multinomial logit model has an analytic closed form given by: 

where 

P'!'Od = modelled share of alternative j, j = 1, . . . , N .  
J - - u.  
J 

= mean or representative utility of 

alternative j, j = 1, ...% N.  

A = parameter to be estimated 

In this Appendix we will consider the maximum likelihood estimation 
s im of A given the values of f i .  and the simulated shares P , of each 

J j 
alternative j. We will use a standard Newton Raphson search mechanism. 

(k) at In this simple case, the log-likelihood function of A , 
iteration k, is given by 

and the first derivative with respect to A (k) is 

Now the Newton Raphson solution involves defining a next best estimate 

for the parameter, A (k+l) 3 as 

and the maximum likelihood estimate will be that found when the process 

converges (which always does, Domencich and McFadden, 19751, that is 

when 

A (k+l) = A (k) -. . 
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