Exploiting Pipelined Executions in OpenMP

M. Gonzalez, E. Ayguade, X. Martorell and J. Labarta
Computer Architecture Department, Technical University of Catalonia,
cr. Jordi Girona 1-3, Modul D6, 08034 - Barcelona, Spain
{marc, eduard, xavim, jesp@ac.upc.es

Abstract OpenMP programming model with a set of new directives
and clauses to specify generic task graphs and an associated

This paper proposes a set of extensions to the OpenMPassignement of work to threads.
programming model to express point—to—point synchroniza-
tion schemes. This is accomplished by defining, in the form2  Extensions to OpenMP
of directives, precedence relations among the tasks that are
originated from OpenMP work-sharing constructs. The | this section we summarize the extensions proposed
proposal is based on the definition of a name space thatys support the specification of complex pipelines that in-
identifies the work parceled out by these work—sharing con-¢|yde tasks generated from OpenMP work—sharing con-
structs. Then the programmer defines the precedence rexrycts, The extensions are in the framework of nested par-
lations using this name space. This relieves the program-gjjejism and target the pipelined execution at the outer lev-

mer from the burden of defining complex synchronization g|s. An initial definition of the extensions to specify prece-
data structures and the insertion of explicit synchronization gences was described in [4].

actions in the program that make the program difficult to
understand and maintain. The paper briefly describes the2 1  Precedence Relations
main aspects of the runtime implementation required to sup-
port precedences relations in OpenMP. The paper focuses The proposal is divided in two parts. The first one con-
on the evaluation of the proposal through its use two bench-sists in the definition of a name space for the tasks gener-
marks: NAS LU and ASCI Seep3d. ated by the OpenMP work—sharing constructs. The second
one consists in the definition of precedence relations among
those named tasks.
1 Introduction
2.1.1 The NAME clause
OpenMP [8] has emerged as the standard programmingT
model for shared—memory parallel programming. One of
the features available in the current definition of OpenMP
is the possibility of expressing multiple-levels of paral-

he NAME clause is used to provide a name to a task that
comes out of a work—sharing construct. Here follows its
syntax of use for the OpenMP work-sharing constructs:

lelism [3, 6, 7, 9, 10]. When applying multi-level parallel C3OWP SECTI ONS _
strategies, it is common to face with the need of expressing CSOVP SECTI ON NAVE(nare_i dent )
pipelined computations in order to exploit the available par- C$OMP END SECTI ONS

allelism [11, 13, 5]. These computations are characterized

by a data dependent flow of computation that implies seri- CBOMP SINGLE NAME(name_i dent )
alization. In this direction, the specification of generic task C$SOVP END SI NGLE

graphs as well as complex pipelined structures is not an easy

task in the framework of OpenMP. In order to exploit this C$OVP DO NAME( nane_i dent)

parallelism, the programmer has to define complex synchro-

nization data structures and use synchronization primitives

along the program, sacrificing readability and maintainabil- Thenane_i dent identifier is supplied by the programmer

ity. and follows the same rules that are used to define variable
In this paper we propose and evaluate an extension to theand constant identifiers.

C$OVWP END DO

1

© 2003 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. http://dx.doi.org/10.1109/ICPP.2003.1240576



In a SECTI ONS construct, theNAVE clause is used to  on the work—sharing construct where the parallel task was
identify eachSECTI ON. In aSI NGLE construct theNAVE coming out from, the ask_i d presents two different for-
clause is used in the same manner. ID@Gwork—sharing  mats:
whole loop. We propose to define each iteration of the loop o ,
as a parallel task. This means that the name space for 4Vhen thet ask.i d is only composed of aane.i dent
parallel loop has to be large enough to identify each loop identifier, the parallel task corresponds to a t_ask coming
iteration. This is done by identifying each iteration of the ©ut from a SECTI ONS or SI NGLE work-sharing con-

parallelized loop with the identifier supplied in thewve ~ Struct.  In this case, th@ane.i dent corresponds to
t an identifier supplied in &NAVME clause that annotates a

clause plus the value of the loop induction variable for tha X ;
SECTI ON/SI NGLE construct. When theane_i dent is

iteration. Notice that the number of tasks associated to a :
DO work—sharing construct is not determined until the as- followed by one expression, the parallel task corresponds to
an iteration coming from a parallelized loop. The expres-

sociateddo statement is going to be executed. This is be- ¢ ) ! _ : o
cause the number of loop iterations is not known until the SION evaluation must result in an integer value identifying a
loop is executed. Depending on the loop scheduling the SPecific iteration of the loop. The precedence relation is de-

parallel tasks (iterations) are mapped to the threads. Thdin€d between the task being executed and the parallel task
programmer simply defines the precedences at the iteratiori/t€ration) coming out from the parallelized loop with the

level. These precedences are translated at runtime to tasR@Me supplied in the precedence directive. Notice that once

precedences that will cause the appropiate thread synchrot-he precedence has been defined, the synchronization that is

nizations, depending on tHeCHEDUL E strategy specified
to distribute iterations.

going to ensure it will take place between the threads exe-
cuting the two parallel tasks involved in the precedence rela-
tion. Therefore, implicit to the precedence definition, there
o is a translation of task identifiers to the threads executing
2.1.2 The PRED and SUCC clauses and directives the tasks, depending on the scheduling that maps tasks to

Once a name space has been created, the programmeris adfyreads. Section 3 describes the runtime that performs this

to specify a precedence relation between two tasks usingranstation. _ ,
In order to handle nested parallelism, we extend the previ-

their names. — .
ous proposal. When the definition of precedences appear in

[ C$OWP] PRED(task_id[,task_id]*) [IF(exp)] the dynamic extend of a nested parallel region caused by an

[CsOWP] SUCC(task_id[,task_id]*) [IF(exp)] outerPARALLEL directives, multiple instances of the same

name definition (given by &IAME clause/directive) exist.

PRED is used to list all the task names that must release|n order to differentiate them, theame_i dent needs to
a precedence to allow the thread encounteringRRED be extended with as manyask_i d as outer levels of par-
directive to continue its execution. TIBJCC directive is allelism.
used to define all those tasks that, at this point, may con-
tinue their execution. TheF clause is used to guard the
execution of the synchronization action Expressom is Therefore, the ask_i d construct might take the following
evaluated at runtime to determine if the associ&ieHD or syntax:
SUCC directive applies. task_id = nane_ident |

As clausesPRED andSUCC apply at the beginning and name_i dent, expr
end of a task (because they appear as part of the definition of [(task_id):]*task_id
the work—sharing itself), respectively. The same keywords Figure 1 shows a multilevel example. Two nested loops
can also be used as directives, in which case they specifyhave been parallelized although they are not completely par-
the point in the source program where the precedence relaallel. Some parallelism might be exploited according to
tionship has to be fulfilled. Code beforeP&RED directive the data depedences caused by the usa(&F 1, j - 1)
can be executed without waiting for the predecessor tasksin iteration(k, j ) . Both parallel loops have been named
Code after &UCCdirective can be executed in parallel with and the appropiate precedences have been defined to en-
the successor tasks. sure that data dependendes are not violated. Notice that

The PRED andSUCC constructs always apply inside the the task name space in the innermost loopfer | oop
enclosing work—sharing construct where they appear. Any) is replicated for each iteration of the outermost loop (
work—sharing construct affected by a precedence clause opbut er | oop ). To distinguish between different instances
directive has to be named withNAMVE clause. of the same name space, a task identifier is extended with

Thet ask_i d is used to identify the parallel task af- the list of all task identifiers in the immediate upper levels
fected by a precedence definition or release. Dependingof parallelism.

name_i dent[:task_id]+



C$OVP PARALLEL DO NAME (out erl oop)
do k =1, N
C$OVP PARALLEL DO NAME (i nnerl oop)
doj =1, N
C$OWP PRED( (out er _| oop, k-1): (inner_l oop, j-1))

3.2 Work—Sharing Descriptor

For each named work—sharing, a work—sharing descriptor (
o ws_desc ) is allocated by the runtime. Depending on the
Ak, j)=A(k-1,j-1)*A(k,]) type of the work—sharing construct, tihws _desc contains
o ) ) different information. In case of BO work—sharing con-
@ngnsgocq(out er_l oop, k+1): (inner_loop, j+1)) struct it contains the lower and upper bounds of the induc-
enddo tion variable, the iteration step, the scheduling applied, and
the number of threads currently executing the loop. Once
a thread participating in the execution of the loop starts
executing, thens _desc descriptor is initialized with all
the information mentioned above. In case dBECTI ON
or SI NGLE construct, similar information is stored in the
ws_desc.
As it has been showed in section 2, nested parallelism
might cause that several instances of the same work—
In this section we describe the support required from the sharing construct execute concurrently. In the case where
runtime system to efficiently implement the language ex- the work—sharing construct is named by the programmer,
tensions that specify precedence relations. The runtimethe runtime has to be able of distinguish from all its in-
system usually offers mechanisms to create/resume paralstances. This is achieved by defining an unique identifier
lelism plus some basic synchronization mechanisms suchfor work—sharings similary to what has been defined for
as mutual exclusive execution (critical regions), ordered ex-threads: a work—sharing construct can be identified with
ecutions (ticketing) and global synchronizations (barriers). the identifier supplied in thHAVE clause plus thél obal
All these functionalities, including support for multiple lev- Thread | denti fi er of any of the threads executing i,
els of parallelism, are provided by the NthLib library [7] butremovingtheitocal Thread |dentifi er inthe
supporting the code generated by the NanosCompiler [3].d obal Thread Identifier.
The proposal in this paper requires explicit point-to—point Nested parallelism also causes problems related to the
synchronization mechanisms, so the following subsectionsamount of memory used by the runtime to represent all in-
describe the most important implementation aspects of thestances of the same work—sharing construct. Suppose the

Figure 1. Example of multilevel code with
precedences.

3 Runtime Support

precedences module in the NthLib library. source code in figure 1. Following the parallelism defini-
tion, each thread in the outermost level of parallelism will
31 Thread Identification create several instances of the samrmner | oop work—

sharing. The number of instances depends on the num-

ber of iterations assigned to each thread in the outermost
Any runtime system supporting the standard OpenMP specdevel. The runtime should allocate enoughk_desc for
ification has to be able to identify each thread in a parallel representing them, what would lead to the fact that the
region. The standard defines that this identifier has to beamount of memory depends on the number of iterations

an integer number in the ran§®. . . nunt hr eads- 1] . of theout er | oop loop. This is something that our run-

Obviously, our runtime system is compliant with this re- time implementation wants to avoid. As the instances
quirement. We call this identifier theocal Thread of thei nnerl oop caused by a thread executing in the
| dentifier. out er | oop will be executed one ofter another, the run-

When dealing with nested parallelism it is possible to de- time can allocate only ones _desc for all of them and
fine a parent/son relationship between threads. We say thateuse it. This memory reuse suppose an appropiate opti-
a thread isson of a par ent thread when the first one mization to bound the amount of allocated memory.

has been spawned by the second one. Due to the nestAs it was mentioned before the necessary information for

ing of severaPARALLEL constructs, theocal Thr ead the translation mechanism is contained in e desc.
I dentifier is not uniqgue anymore. To avoid this, This information summarizes the per thread work—sharing
the runtime system supports what we call Beobal state and allows the runtime to know whether the work-

Thread Identifier. This identifier is composed of sharing has been initialized or not, which threads have
all the Local Thread ldentifier of its ancestor started executing it or have finished their execution. For
threads. Thed obal Thread Identifier can be a SECTI ON or SI NGLE construct, thedLocal Thr ead
understood as a coordinates that locate each thread in thédent i fi er of the thread executing the construct is
parallelism tree. stored in thens_desc. In case aDO work—sharing con-



struct, theans _desc contains the currentiteration being ex- constructs, one counter has to be allocated in the prece-

ecuted per each participating thread. dence descriptor. When the precedence involvB®and
a SECTI ONconstructs, the runtime has to allocate as many
3.3 Thread Synchronization. counters as threads execute the parallel loop, each one to

support the comunication between the thread executing the

For each pair of named work—sharings that generate paraI-SECTI ON construct and any of the threads executing the

lel tasks related with precedence relations, the runtime al'!sohan;inwzggs?rgéfsciﬂinﬁ;{iiae“Egslr:\éozﬁ) ch'?eb;vcr’rz;rix of
locates a precedence descriptor. The precedence descri c_ountegrs (with as r'nan rows and columns as the number
tor includes information describing the work—sharings con- of threads executin inyeach loop). In particular, as man
structs plus some amount of memory to be used for the syn- . 9 p). Inp ' y
L . counters as pairs consumer/producer need to be allocated.
chronizations. When a thread executing on a named work—
sharing construct encounters a SUCC/PRED directive, ac-
cess to the precedence descriptor and obtains a memory 103.4 Taskld—Thread Translation.

cation to synchronize. The memory location is used as a

deptr_endence counter. Wa|t|ntg I;OtL? prece;dence; release g, yhis section we describe the basic data structures and
runtime means an increment of this counter and spinNiNg e icas available to perform the translation between the
until the counter becomes less than one. The release of § ,| i ¢ supplied by the programmer and the thread ex-

precedence means a decrement of the same counter. ecutin_g the task. Routint hf t ask_t 0.t hr ead imple-

Routinesnt hf def prec and nthf freeprec are ments the translation mechanism in the runtime library. It
provided to define/release precedences at runtime. Thereceives ans_desc as argument and returns thecal
main arguments for these routines are a precedence dep,. o1 el |dentifier ofthe thread executing the tar-

scriptor plus thed obal Thread Identifier ofthe :
thread to synchronize with. For ea@RED directive/cl gett ask d.
read fo synchronize with. Fore INeCtvVEICIaUSe,  Three main problems have to be faced by the runtime:

the compiler injects a call to routinet hf _def _prec. h h lati hani is invoked
This routine increments the counter contained in the prece-a) When the translation mechanism is invoked over a

dence descriptor and spins until the counter reaches zer \'Ns_desc.that_hag not been initialized yet, thg runtime has
For eachSUCC directive/clause, the compiler injects a call to deal with this situation because the translation will not be
to routinent hf _f r ee_pr ec. This routine mainly decre- possible _unt|l t_hews_desc IS tgtally deflne_d.

ments the counter contained in the precedence descriptor. P) When invoking the translation mechanism ovexzcon-

A thread encountering BRED or SUCC directive is forced struct, it is possible that thes _desc is totally defined, but

to synchronize with the thread executing thesk_i d in the iteration required has not started its execution yet. The
the directive. The runtime is in charge of supplying a mem- translation can be performed, but in case another translation

ory address to make possible the synchronization. ThelS required to traverse the next level of parallelism, it has to
runtime uses th&l obal Parallel Identifier of be ensured that this translation is performed over the cor-

the target thread of the synchronization and combines'€ct instarjtation of the work—sharing construct required in
it with the G obal Parallel Identifier of the thetask.d suppliedby the programmer.

thread invoking the runtime to synchronize. B@hobal c) In the same context d) , it is possible that the iteration
Parallel Identifier are used as a sort of coordi- thatwas required in the first translation was already execut-
nates to establish the memory location. In order to get theind. Then another problem might appear. In case this itera-
d obal Parallel Identifier ofthetargetthread, tionends before the second translation finishes, the second
the runtime translates eatlask i d in the directive to a  translation has to be invalidated because it is possible that
Local Parallel ldentifier ofthe thread execut- has been performed ovema_desc corresponding to the
ing that task. The way the runtime produces this translationinstantation of a task not involved in the synchronization in
is explained in the next section. Therefore, during a syn- course. The runtime has to be able to detect this situation
chronization, two different phases might be distinguished: a and offer correct actions to deal with it.

Transl ati on Phase where all the ask_i d aretrans-  Our implementation faces a) and b) by applying block-
lated toLocal Parallel ldentifier in order to ing mechanisms, but achieves the fact of never blocking a
build thed obal Parall el I|dentifier ofthe tar- thread that is releasing a precedence. The c) situation is
get thread; and 8y nchr oni zat i on Phase where the solved by a binding mechanism that binds a thread that has
memory location is determined and the synchronization performed a translation to thves _desc where the transla-
takes place ( increment or decrement of the dependencdion has been done.

counter). For more details on this subject, a complete description of
When a precedence is defined between a pa8&@TI ON this mechanism can be found in [5].



!'$onp parall el default(shared) subroutine blts(...)
1'$onmp& private(k,iam

I'$onp master i am = onp_get _t hread_num()
nt hr eadnumronp_get _num t hreads()-1 if (iamgt.0 .and. iam/le.nthreadnum
if (nthreadnumgt.jend-jst) nei gh=i am 1
1 nt hr eadnumrj end- j st do while (isync(neigh).eq.0)
!'$onp end naster I'$onmp flush(isync)
iam = onp_get_thread_num() end do
isync(iam =0 i sync(nei gh) =0
1'$onmp barrier I'$onmp flush(isync)
do k =2, nz -1 endi f
call jacld(k) ! $onp do
call blts( isizl, isiz2, do j=jst,jend
1 isiz3, ..
2 nx, ny, nz, Kk, enddo
3 onega, 1'$onp end do nowait
4 rsd, tv, if (iam.lt. nthreadnun) then
5 a, b, c, d, do while (isync(iam .eq. 1)
6 ist, iend, jst, I'$onmp flush(isync)
7 j end, nx0, ny0) end do
end do isync(iam =1
1'$onp end parall el I'$onmp flush(isync)
endi f
Figure 2. Source code for NAS LU application. end

Figure 3. Source code for NAS LU application.
4 Evaluation

We have tested our run—time implementation on a SGI Ori-
gin2000 with 64 R10000 processors (250 Mhz) and Irix
6.5. The parallel code is automatically generated using the

NanosCompiler [3] to transform the source code annotatedrhjs version corresponds to the one distributed in the NAS
with the new precedence directives to run on NthLib [7].  penchmarks. It exploits loop level parallelism in the outer-
most dimensionk). As this loop is not completely paral-
lel, the benchmark contains the necessary thread synchro-
41 NASLU nizations to preserve the dependences inktftgmension.
These synchronizations are coded by the programmer in the

. . o ) source code using vectors allocated in the application ad-
LUis a simulated CFD application that comes with the NAS  j o4¢ space. Once a thread working ok ieration has

benchmarks. It uses a symmetric successive over-relaxatiorberformed some iterations on theoop, signals the thread
(SSOR) method to solve a diagonal system resulting from, o ing onk+1 iteration for the same set ¢f iterations
a finite—difference discretization of the Navier-Stokes equa- ;4 allows its execution. Thus. a pipeline is created.

tions. Two parallel regions are defined for the solver com-

putation. Both have the same structure in terms of data desFigures 2 and 3 show the structure of the source code for
pendences, so only one will be described. The computationthis version. Notice that the programmer has to introduce
is performed over a three dimensional matrix, by the nest of the FLUSH construct to ensure memory consistency for the

4.1.1 Single level omp

threedo loops, one per dimension. The matrix sizeSik integer vector sync used for synchronization. The vector

* 31 * 31 elements. The computation defines that there is not padded, so false sharing problems may appear in the
is a dependence from the eleménd, j , i) to elements  synchronization execution degradating performance. The
(k+1,j,i), (k,j+1,i) and(k,j,i+1). We have lefmost bar in figure 6 shows the performance numbers for

evaluated three different versions of the LU benchmark for this version in terms of speed—up. Notice that for this ver-
class W. Two versions using a single level parallel strategy, sion only up to 31 processors might be used, akthmp
and a third version exploiting two levels of parallelism. only contains 31 iterations.



!'$onp parall el default(shared)
! $onmp& private(kl, k2, bk, a, b, c, d)
1$omp do nanme (I _bk)
do bk = 1, nbl ocksk
do bj =1, nbl ocksj
!'$omp pred (I_bk, bk-1)
do bi =1, nbl ocks
call jacld(bk,bj,bi,a,b,c,d)
call blts( isizl, isiz2, isiz3,

> nx, ny, nz, bk, bj,bi,
> onega, rsd, tv,
> a, b, c, d,
> ist, iend, jst, jend,
> nx0, nyO0)

enddo ! bi
I'$onp succ (I _bk, bk+1)

enddo ! bj

end do !bk

!'$omp end do nowait
1'$onp end parall el

Figure 4. NAS LU application single level par-
allelism and precedences.

4.1.2 Single level with precedences

!'$onp parallel default(shared)
!'$omp& private(kl, k2, bk, tv, a, b, c, d)
!'$onp do nane (I _bk)
do bk = 1, nbl ocksk
!'$onmp parallel
!'$onp do nane (l_bj) private(bi, k)
do bj =1, nbl ocksj
do bi =1, nbl ocksi
1'$omp pred((l_bk, bk-1): (I _bj,bj))
1'$onmp pred(l_bj, bj-1)
call jacld(bk,bj,bi,a,b,c,d)
call blts(isizl, isiz2, isiz3

> nx, ny, nz, bk, bj,bi
> onega,

> rsd, tv,

> a, b, c, d,

> ist, iend, jst, jend,
> nx0, nyO0)

1'$onmp succ(l _bj, bj +1)
!'$onp succ( (!l _bk, bk+1): (I _bj,bj))
enddo !'b
enddo ! bj
I'$onp enddo nowai t
! $omp end parall el
enddo ! bk
I'$onp enddo nowai t
! $omp end parall el

Figure 5. NAS LU application with two levels
of parallelism and precedences.

This version follows a similar parallel strategy as the 4.1.3 Two levels with precedences

Singl e | evel onp version. To design this version, ) ) ) ) )
the extensions described in Section 2 have been intro-TNis version exploits near all the parallelism present in the

duced in the source code replacing the original synchro-computation. Figure 5 shows the new source code with
nization code. False sharing problems disappear and thdrecedence directives. In this version, once a thread ends
programmer has not to be aware about memory consistS computation on a blockbk, bj , bi) compos.,ed by a
tency issues as both things are handled by the runtime sysS€t ofk, j andi iterations, signals two threads: the ones
tem. A blocking scheduling to thle, j , i do loops has that are going to work on the blockdk+1, bj , bi') and
been done and only the blockédloop has been paral- (PK.bj +1,bi). . . _
lelized. The blocking allows the programmer to control Notice that this version, as it is exploting more parallelism,
the amount of work performed between two thread syn- iS able to take advantage of more than 31 processors, and
chronizations. Figure 4 shows the new source code with€ven more than that, it is able to fill the pipeline faster
precedence directives. The middle bar in figure 6 showsthan theSingle | _evel onp and Single |evel _
the performance numbers for this version. Notice that it be- PT €cedences versions. The performance numbers in

haves very similar to th&i ngl e | evel onp version, rightmost bar in figure 6 show .that thewo | evells
so no performance is lost due to possible runtime over-Pr €ceédences reaches the maximum speed-up with 49
heads. Both versior& ngl e | evel onp andSi ngl e threads, 20% more than the best performance in the

| evel nt h are not exploiting all the available parallelism Si ngl e I evel precedences versions.

in the computation. After computingan eleméit, j , i),

the computation can continue on elemefist1,j,i), 4.2 USDOE ASCI Sweep3D

(k,j+1,i) and(k,j,i+1) in parallel. Those versions

only exploit the parallelism between tigé&+1, j ,i) and The Sweep3D benchmark uses a multidimensional wave-
(k,j+1,i) elements. front algorithm for discrete ordinates deterministic par-



20. do k=1, nk
do j =1, nj
15.0 do mFl, 6
do i=1,ni
el = Single Level omp phl J k(J ’ k' [T) :phl J k(J ’ k’ rr) IS
g_ 10.0-] = Singe Level nin phiik(i,k, m=phiik(i,k,m+. ..
@ phiij(i,j,m=phiij(i,j,m+..
enddo
5.0 do i =1, ni
face(i,j,k)=face(i,j,k)+
1 phi j k(j, k, m) +phiik(i,k, m+
00 L] 2 phiij(i,j,m
4 9 16 25 36 49 64 enddo
enddo
Figure 6. Performance for LU NAS applica- enddo
tion. -
enddo
enddo

ticle transport simulation. The main input data is a 3
dimensional array nameflace. The core computation
presents six reductions in all dimensions, what forbits the
parallelization of the computation in any of the dimen-
sions. Figure 7 shows the structure of the source code.
Three nested loops implement the computation along thefactor of 2, so 25 blocks are defined. When running on

3 dimensional input matrix. Each (i,j,k) element in the 25 processors the application reaches a speedup around 13.
3 dimensional array has to be computed after elementsThe2l sweep version can be executed with more threads,
(i-1,j,k),(i,j-1,k) and(i,j,k-1) because of as a second level of parallelism is exploited. This version
the reductions in each dimension. We have followed the reaches its maximum speed—-up when executing with 40

Figure 7. Main core for the source code of
SWEEP3D application.

same strategy as in the LU benchmarck. The ldopp threads: 17.6, about a 25% more of performance. As in
andi have been blocked. Thus, a blo¢ki , bj , bk) the case of the NAS LU benchmark, the SWEEP3D code
now has to be computed after blockbi - 1, bj , bk), was a completely sequential code from the point of view

(bi, bj-1,bk) and(bi, bj, bk-1). Loopsbk and of the current OpenMP definition. With the new proposed
bj have been parallelized and named. The computationdirectives this code can be parallelized.

for each(bi, bj, bk) block is enclosed by the prece-
dence directives that ensures a correct execution. Notice

that the proposed parallelization forces us to introduce some

changes in the access to the reduction planes. Because of 150
the blocking algorithm, now the reduction planes are ac-

cessed in a way that the dimension that is consecutively al- ]

20.

= 1l sweep

10.01 = 21 sweep

SpeedUp

located in memory has been cutted and distributed among
different threads. This leads to false sharing problems that
completely sinks performance. To avoid this problem, we

have been forced to change the memory allocation of the
reductions planes.

As in the case for the LU application, two different parallel 00~
strategies can be implemented: a parallel version just ex-
ploiting one level of parallelisml{ sweep), where only

the bk loop is parallelized, and a parallel version that ex-
ploits two levels of parallelism by parallelizing loojk
andbj (21 sweep). We have tested the two versions of
the benchmark with an input matrix of 50x50x50 elements. The NAS LU and SWEEP3D benchmarks allow us
Figure 8 shows the performance numbers for the SWEEP3Dto demonstrate the need to enlarge the synchronization
application. Versionll sweep works with a blocking  schemes in the OpenMP programming model. We have

Figure 8. Performance for SWEEP3D applica-
tion.



seen that the kind of requiered synchronizations can be in-
cluded in the programming model without critical changes

in it. The experiences with those benchmarks also showed
that nested parallelism can be combined with the new
synchronization schemes without introducing unacceptable[4
runtime overheads.

5 Conclusions

In this paper we have presented a set of extensions to the5]
OpenMP programming model oriented towards the specifi-
cation of explicit point—to—point synchronizations.

We have detected that current OpenMP standard includes
very simple synchronization constructs. When the available
parallelism in an application is not expressable with current [6]
OpenMP constructs, the programmer is forced to explic-
itly program the thread synchronizations in the application
code. We show that it is necessary to enlarge the OpenMP
standard to allow the programmer the specification of the [7]
necessary thread synchronizations due to data dependences.
We have tested our proposal with two applications, all of
them parallelized with OpenMP. The evaluation has showed
the lack of generic synchronization mechanisms, powerful
enough to support the needs of the tested applications. In
the paper we have demonstrated that our proposal covers th]
mentioned needs without introducing deep changes in the
OpenMP programming model. The evaluation showed that
with the proposed extensions, programmers can get from 10[9]
to 30 percent of performance improvement.

The evaluation shows that our proposal and runtime imple-
mentation offers enough expressiveness and does not intro-
duce large overheads due to runtime implementation.

[10]
Acknowledgments

This research has been supported by the Ministry of Science
and Technology of Spain and the European Union (FEDER [11]
funds) under contract TIC2001-0995-C02-01.

References
[12]

[1] B. Chamberlain, C. Lewis and L. Snyder. Array Lan-
guage Support for Wavefront and Pipelined Computa- [13]
tions InWorkshop on Languages and Compilers for

Parallel Computing August 1999.

[2] | Foster, B. Avalani, A. Choudhary and M. Xu. A
Compilation System that Integrates High Performance
Fortran and Fortran M. I8calable High Performance

Computing Conferenc&noxville (TN), May 1994.

[3] M. Gonzalez, J. Oliver, X. Martorell, E. Ayguade,

J. Labarta and N. Navarro. OpenMP Extensions for

Thread Groups and Their Runtime SupportWork-
shop on Languages and Compilers for Parallel Com-
puting, August 2000.

M. Gonzalez, E. Ayguadé, X. Martorell, J. Labarta,
N. Navarro and J. Oliver. Precedence Relations in
the OpenMP Programming Model. Second European
Workshop on OpenMP, EWOMP 2000 (September
2000).

M. Gonzalez, E. Ayguadé, X. Martorell and J. Labarta.
Defining and Supporting Pipelined Executions in
OpenMP. Workshop on OpenMP Applications and
Tools (WOMPAT'01) August 2001.

T. Gross, D. O’'Halloran and J. Subhlok. Task Paral-
lelism in a High Performance Fortran Framework. In
IEEE Parallel and Distributed Technology, vol.2, no.3,
Fall 1994.

X. Martorell, E. Ayguadé, J.I. Navarro, J. Corbalan,
M. Gonzalez and J. Labarta. Thread Fork/join Tech-
nigues for Multi-level Parallelism Exploitation in
NUMA Multiprocessors. Inl3th Int. Conference on
Supercomputing ICS’9®Rhodes (Greece), June 1999.

OpenMP Organization. OpenMP Fortran Application
Interface, v. 2.0, www.openmp.org, June 2000.

A. Radulescu, C. Nicolescu, A.J.C. van Gemund,
and P.P Jonker CPR: Mixed task and data paral-
lel scheduling for distributed systems. 15th Interna-
tional Parallel and Distributed Processing Symposium
(IPDPS’2001), Apr. 2001

S. Ramaswamy. Simultaneous Exploitation of Task
and Data Parallelism in Regular Scientific Computa-
tions. Ph.D. Thesis, University of lllinois at Urbana—
Champaign, 1996.

T. Rauber and G. Runge. Compiler support for task
scheduling in hierarchical execution models. Journal
of Systems Architecture, 45:483-503, 1998

Silicon Graphics Computer Systems SGI. Origin 200
and Origin 2000 Technical Report, 1996.

J.Subhlok, J.M. Stichnoth, D.R O’Hallaron, and T.
Gross. Optimal use of mixed task and data parallelism
for pipelined computations. Journal of Parallel and
Distributed Computing, 60:297-319, 2000



