
Exploiting Pipelined Executions in OpenMP

M. Gonzalez, E. Ayguade, X. Martorell and J. Labarta
Computer Architecture Department, Technical University of Catalonia,

cr. Jordi Girona 1-3, Mòdul D6, 08034 - Barcelona, Spain�
marc, eduard, xavim, jesus�@ac.upc.es

Abstract

This paper proposes a set of extensions to the OpenMP
programming model to express point–to–point synchroniza-
tion schemes. This is accomplished by defining, in the form
of directives, precedence relations among the tasks that are
originated from OpenMP work–sharing constructs. The
proposal is based on the definition of a name space that
identifies the work parceled out by these work–sharing con-
structs. Then the programmer defines the precedence re-
lations using this name space. This relieves the program-
mer from the burden of defining complex synchronization
data structures and the insertion of explicit synchronization
actions in the program that make the program difficult to
understand and maintain. The paper briefly describes the
main aspects of the runtime implementation required to sup-
port precedences relations in OpenMP. The paper focuses
on the evaluation of the proposal through its use two bench-
marks: NAS LU and ASCI Seep3d.

1 Introduction

OpenMP [8] has emerged as the standard programming
model for shared–memory parallel programming. One of
the features available in the current definition of OpenMP
is the possibility of expressing multiple–levels of paral-
lelism [3, 6, 7, 9, 10]. When applying multi–level parallel
strategies, it is common to face with the need of expressing
pipelined computations in order to exploit the available par-
allelism [11, 13, 5]. These computations are characterized
by a data dependent flow of computation that implies seri-
alization. In this direction, the specification of generic task
graphs as well as complex pipelined structures is not an easy
task in the framework of OpenMP. In order to exploit this
parallelism, the programmer has to define complex synchro-
nization data structures and use synchronization primitives
along the program, sacrificing readability and maintainabil-
ity.

In this paper we propose and evaluate an extension to the

OpenMP programming model with a set of new directives
and clauses to specify generic task graphs and an associated
assignement of work to threads.

2 Extensions to OpenMP

In this section we summarize the extensions proposed
to support the specification of complex pipelines that in-
clude tasks generated from OpenMP work–sharing con-
structs. The extensions are in the framework of nested par-
allelism and target the pipelined execution at the outer lev-
els. An initial definition of the extensions to specify prece-
dences was described in [4].

2.1 Precedence Relations

The proposal is divided in two parts. The first one con-
sists in the definition of a name space for the tasks gener-
ated by the OpenMP work–sharing constructs. The second
one consists in the definition of precedence relations among
those named tasks.

2.1.1 The NAME clause

TheNAME clause is used to provide a name to a task that
comes out of a work–sharing construct. Here follows its
syntax of use for the OpenMP work-sharing constructs:

C$OMP SECTIONS
C$OMP SECTION NAME(name_ident)
...
C$OMP END SECTIONS

C$OMP SINGLE NAME(name_ident)
...
C$OMP END SINGLE

C$OMP DO NAME(name_ident)
...
C$OMP END DO

Thename ident identifier is supplied by the programmer
and follows the same rules that are used to define variable
and constant identifiers.

1

© 2003 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. http://dx.doi.org/10.1109/ICPP.2003.1240576

In a SECTIONS construct, theNAME clause is used to
identify eachSECTION. In aSINGLE construct theNAME
clause is used in the same manner. In aDO work–sharing
construct, the NAME clause only provides a name to the
whole loop. We propose to define each iteration of the loop
as a parallel task. This means that the name space for a
parallel loop has to be large enough to identify each loop
iteration. This is done by identifying each iteration of the
parallelized loop with the identifier supplied in theNAME
clause plus the value of the loop induction variable for that
iteration. Notice that the number of tasks associated to a
DO work–sharing construct is not determined until the as-
sociateddo statement is going to be executed. This is be-
cause the number of loop iterations is not known until the
loop is executed. Depending on the loop scheduling, the
parallel tasks (iterations) are mapped to the threads. The
programmer simply defines the precedences at the iteration
level. These precedences are translated at runtime to task
precedences that will cause the appropiate thread synchro-
nizations, depending on theSCHEDULE strategy specified
to distribute iterations.

2.1.2 The PRED and SUCC clauses and directives

Once a name space has been created, the programmer is able
to specify a precedence relation between two tasks using
their names.

[C$OMP] PRED(task_id[,task_id]*) [IF(exp)]
[C$OMP] SUCC(task_id[,task_id]*) [IF(exp)]

PRED is used to list all the task names that must release
a precedence to allow the thread encountering thePRED
directive to continue its execution. TheSUCC directive is
used to define all those tasks that, at this point, may con-
tinue their execution. TheIF clause is used to guard the
execution of the synchronization action Expressionexp is
evaluated at runtime to determine if the associatedPRED or
SUCC directive applies.

As clauses,PRED andSUCC apply at the beginning and
end of a task (because they appear as part of the definition of
the work–sharing itself), respectively. The same keywords
can also be used as directives, in which case they specify
the point in the source program where the precedence rela-
tionship has to be fulfilled. Code before aPRED directive
can be executed without waiting for the predecessor tasks.
Code after aSUCC directive can be executed in parallel with
the successor tasks.

ThePRED andSUCC constructs always apply inside the
enclosing work–sharing construct where they appear. Any
work–sharing construct affected by a precedence clause or
directive has to be named with aNAME clause.

The task id is used to identify the parallel task af-
fected by a precedence definition or release. Depending

on the work–sharing construct where the parallel task was
coming out from, thetask id presents two different for-
mats:

task_id = name_ident | name_ident,expr

When thetask id is only composed of aname ident
identifier, the parallel task corresponds to a task coming
out from a SECTIONS or SINGLE work–sharing con-
struct. In this case, thename ident corresponds to
an identifier supplied in aNAME clause that annotates a
SECTION/SINGLE construct. When thename ident is
followed by one expression, the parallel task corresponds to
an iteration coming from a parallelized loop. The expres-
sion evaluation must result in an integer value identifying a
specific iteration of the loop. The precedence relation is de-
fined between the task being executed and the parallel task
(iteration) coming out from the parallelized loop with the
name supplied in the precedence directive. Notice that once
the precedence has been defined, the synchronization that is
going to ensure it will take place between the threads exe-
cuting the two parallel tasks involved in the precedence rela-
tion. Therefore, implicit to the precedence definition, there
is a translation of task identifiers to the threads executing
the tasks, depending on the scheduling that maps tasks to
threads. Section 3 describes the runtime that performs this
translation.
In order to handle nested parallelism, we extend the previ-
ous proposal. When the definition of precedences appear in
the dynamic extend of a nested parallel region caused by an
outerPARALLEL directives, multiple instances of the same
name definition (given by aNAME clause/directive) exist.
In order to differentiate them, thename ident needs to
be extended with as manytask id as outer levels of par-
allelism.

name_ident[:task_id]+

Therefore, thetask id construct might take the following
syntax:

task_id = name_ident |
name_ident,expr
[(task_id):]*task_id

Figure 1 shows a multilevel example. Two nested loops
have been parallelized although they are not completely par-
allel. Some parallelism might be exploited according to
the data depedences caused by the use ofA(k-1,j-1)
in iteration(k,j). Both parallel loops have been named
and the appropiate precedences have been defined to en-
sure that data dependendes are not violated. Notice that
the task name space in the innermost loop (innerloop
) is replicated for each iteration of the outermost loop (
outerloop). To distinguish between different instances
of the same name space, a task identifier is extended with
the list of all task identifiers in the immediate upper levels
of parallelism.

C$OMP PARALLEL DO NAME (outerloop)
do k = 1, N

C$OMP PARALLEL DO NAME (innerloop)
do j = 1, N

C$OMP PRED((outer_loop,k-1):(inner_loop, j-1))
...
A(k,j)=A(k-1,j-1)*A(k,j)
...

C$OMP SUCC((outer_loop,k+1):(inner_loop, j+1))
enddo

enddo

Figure 1. Example of multilevel code with
precedences.

3 Runtime Support

In this section we describe the support required from the
runtime system to efficiently implement the language ex-
tensions that specify precedence relations. The runtime
system usually offers mechanisms to create/resume paral-
lelism plus some basic synchronization mechanisms such
as mutual exclusive execution (critical regions), ordered ex-
ecutions (ticketing) and global synchronizations (barriers).
All these functionalities, including support for multiple lev-
els of parallelism, are provided by the NthLib library [7]
supporting the code generated by the NanosCompiler [3].
The proposal in this paper requires explicit point–to–point
synchronization mechanisms, so the following subsections
describe the most important implementation aspects of the
precedences module in the NthLib library.

3.1 Thread Identification

Any runtime system supporting the standard OpenMP spec-
ification has to be able to identify each thread in a parallel
region. The standard defines that this identifier has to be
an integer number in the range[0...numthreads-1].
Obviously, our runtime system is compliant with this re-
quirement. We call this identifier theLocal Thread
Identifier.
When dealing with nested parallelism it is possible to de-
fine a parent/son relationship between threads. We say that
a thread isson of a parent thread when the first one
has been spawned by the second one. Due to the nest-
ing of severalPARALLEL constructs, theLocal Thread
Identifier is not unique anymore. To avoid this,
the runtime system supports what we call theGlobal
Thread Identifier. This identifier is composed of
all the Local Thread Identifier of its ancestor
threads. TheGlobal Thread Identifier can be
understood as a coordinates that locate each thread in the
parallelism tree.

3.2 Work–Sharing Descriptor

For each named work–sharing, a work–sharing descriptor (
ws desc) is allocated by the runtime. Depending on the
type of the work–sharing construct, thews desc contains
different information. In case of aDO work–sharing con-
struct it contains the lower and upper bounds of the induc-
tion variable, the iteration step, the scheduling applied, and
the number of threads currently executing the loop. Once
a thread participating in the execution of the loop starts
executing, thews desc descriptor is initialized with all
the information mentioned above. In case of aSECTION
or SINGLE construct, similar information is stored in the
ws desc.
As it has been showed in section 2, nested parallelism
might cause that several instances of the same work–
sharing construct execute concurrently. In the case where
the work–sharing construct is named by the programmer,
the runtime has to be able of distinguish from all its in-
stances. This is achieved by defining an unique identifier
for work–sharings similary to what has been defined for
threads: a work–sharing construct can be identified with
the identifier supplied in theNAME clause plus theGlobal
Thread Identifier of any of the threads executing it,
but removing theirLocal Thread Identifier in the
Global Thread Identifier.
Nested parallelism also causes problems related to the
amount of memory used by the runtime to represent all in-
stances of the same work–sharing construct. Suppose the
source code in figure 1. Following the parallelism defini-
tion, each thread in the outermost level of parallelism will
create several instances of the sameinnerloop work–
sharing. The number of instances depends on the num-
ber of iterations assigned to each thread in the outermost
level. The runtime should allocate enoughws desc for
representing them, what would lead to the fact that the
amount of memory depends on the number of iterations
of theouterloop loop. This is something that our run-
time implementation wants to avoid. As the instances
of the innerloop caused by a thread executing in the
outerloop will be executed one ofter another, the run-
time can allocate only onews desc for all of them and
reuse it. This memory reuse suppose an appropiate opti-
mization to bound the amount of allocated memory.
As it was mentioned before the necessary information for
the translation mechanism is contained in thews desc.
This information summarizes the per thread work–sharing
state and allows the runtime to know whether the work-
sharing has been initialized or not, which threads have
started executing it or have finished their execution. For
a SECTION or SINGLE construct, theLocal Thread
Identifier of the thread executing the construct is
stored in thews desc. In case aDO work–sharing con-

struct, thews desc contains the current iteration being ex-
ecuted per each participating thread.

3.3 Thread Synchronization.

For each pair of named work–sharings that generate paral-
lel tasks related with precedence relations, the runtime al-
locates a precedence descriptor. The precedence descrip-
tor includes information describing the work–sharings con-
structs plus some amount of memory to be used for the syn-
chronizations. When a thread executing on a named work–
sharing construct encounters a SUCC/PRED directive, ac-
cess to the precedence descriptor and obtains a memory lo-
cation to synchronize. The memory location is used as a
dependence counter. Waiting for a precedence release at
runtime means an increment of this counter and spinning
until the counter becomes less than one. The release of a
precedence means a decrement of the same counter.
Routinesnthf def prec and nthf free prec are
provided to define/release precedences at runtime. The
main arguments for these routines are a precedence de-
scriptor plus theGlobal Thread Identifier of the
thread to synchronize with. For eachPRED directive/clause,
the compiler injects a call to routinenthf def prec.
This routine increments the counter contained in the prece-
dence descriptor and spins until the counter reaches zero.
For eachSUCC directive/clause, the compiler injects a call
to routinenthf free prec. This routine mainly decre-
ments the counter contained in the precedence descriptor.
A thread encountering aPRED or SUCC directive is forced
to synchronize with the thread executing thetask id in
the directive. The runtime is in charge of supplying a mem-
ory address to make possible the synchronization. The
runtime uses theGlobal Parallel Identifier of
the target thread of the synchronization and combines
it with the Global Parallel Identifier of the
thread invoking the runtime to synchronize. BothGlobal
Parallel Identifier are used as a sort of coordi-
nates to establish the memory location. In order to get the
Global Parallel Identifier of the target thread,
the runtime translates eachtask id in the directive to a
Local Parallel Identifier of the thread execut-
ing that task. The way the runtime produces this translation
is explained in the next section. Therefore, during a syn-
chronization, two different phases might be distinguished: a
Translation Phase where all thetask id are trans-
lated toLocal Parallel Identifier in order to
build theGlobal Parallel Identifier of the tar-
get thread; and aSynchronization Phase where the
memory location is determined and the synchronization
takes place (increment or decrement of the dependence
counter).
When a precedence is defined between a pair ofSECTION

constructs, one counter has to be allocated in the prece-
dence descriptor. When the precedence involves aDO and
aSECTION constructs, the runtime has to allocate as many
counters as threads execute the parallel loop, each one to
support the comunication between the thread executing the
SECTION construct and any of the threads executing the
loop. When a precedence relation involves twoDO work–
sharing constructs, the runtime has to allocate a matrix of
counters (with as many rows and columns as the number
of threads executing in each loop). In particular, as many
counters as pairs consumer/producer need to be allocated.

3.4 TaskId–Thread Translation.

In this section we describe the basic data structures and
services available to perform the translation between the
task id supplied by the programmer and the thread ex-
ecuting the task. Routinenthf task to thread imple-
ments the translation mechanism in the runtime library. It
receives aws desc as argument and returns theLocal
Parallel Identifier of the thread executing the tar-
gettask id.
Three main problems have to be faced by the runtime:
a) When the translation mechanism is invoked over a
ws desc that has not been initialized yet, the runtime has
to deal with this situation because the translation will not be
possible until thews desc is totally defined.
b) When invoking the translation mechanism over aDO con-
struct, it is possible that thews desc is totally defined, but
the iteration required has not started its execution yet. The
translation can be performed, but in case another translation
is required to traverse the next level of parallelism, it has to
be ensured that this translation is performed over the cor-
rect instantation of the work–sharing construct required in
thetask id supplied by the programmer.
c) In the same context ofb), it is possible that the iteration
that was required in the first translation was already execut-
ing. Then another problem might appear. In case this itera-
tion ends before the second translation finishes, the second
translation has to be invalidated because it is possible that
has been performed over aws desc corresponding to the
instantation of a task not involved in the synchronization in
course. The runtime has to be able to detect this situation
and offer correct actions to deal with it.
Our implementation faces a) and b) by applying block-
ing mechanisms, but achieves the fact of never blocking a
thread that is releasing a precedence. The c) situation is
solved by a binding mechanism that binds a thread that has
performed a translation to thews desc where the transla-
tion has been done.
For more details on this subject, a complete description of
this mechanism can be found in [5].

!$omp parallel default(shared)
!$omp& private(k,iam)
!$omp master

mthreadnum=omp_get_num_threads()-1
if (mthreadnum.gt.jend-jst)

1 mthreadnum=jend-jst
!$omp end master

iam = omp_get_thread_num()
isync(iam) = 0

!$omp barrier
do k = 2, nz -1

call jacld(k)
call blts(isiz1, isiz2,

1 isiz3,
2 nx, ny, nz, k,
3 omega,
4 rsd, tv,
5 a, b, c, d,
6 ist, iend, jst,
7 jend,nx0, ny0)

end do
!$omp end parallel

Figure 2. Source code for NAS LU application.

4 Evaluation

We have tested our run–time implementation on a SGI Ori-
gin2000 with 64 R10000 processors (250 Mhz) and Irix
6.5. The parallel code is automatically generated using the
NanosCompiler [3] to transform the source code annotated
with the new precedence directives to run on NthLib [7].

4.1 NAS LU

LU is a simulated CFD application that comes with the NAS
benchmarks. It uses a symmetric successive over-relaxation
(SSOR) method to solve a diagonal system resulting from
a finite–difference discretization of the Navier-Stokes equa-
tions. Two parallel regions are defined for the solver com-
putation. Both have the same structure in terms of data de-
pendences, so only one will be described. The computation
is performed over a three dimensional matrix, by the nest of
threedo loops, one per dimension. The matrix size is31
* 31 * 31 elements. The computation defines that there
is a dependence from the element(k,j,i) to elements
(k+1,j,i), (k,j+1,i) and(k,j,i+1). We have
evaluated three different versions of the LU benchmark for
class W. Two versions using a single level parallel strategy,
and a third version exploiting two levels of parallelism.

subroutine blts(...)
...
iam = omp_get_thread_num()
if (iam.gt.0 .and. iam.le.mthreadnum)

neigh=iam-1
do while (isync(neigh).eq.0)

!$omp flush(isync)
end do
isync(neigh)=0

!$omp flush(isync)
endif
!$omp do
do j=jst,jend
...

enddo
!$omp end do nowait
if (iam .lt. mthreadnum) then

do while (isync(iam) .eq. 1)
!$omp flush(isync)

end do
isync(iam) = 1

!$omp flush(isync)
endif
...
end

Figure 3. Source code for NAS LU application.

4.1.1 Single level omp

This version corresponds to the one distributed in the NAS
benchmarks. It exploits loop level parallelism in the outer-
most dimension (k). As this loop is not completely paral-
lel, the benchmark contains the necessary thread synchro-
nizations to preserve the dependences in thek dimension.
These synchronizations are coded by the programmer in the
source code using vectors allocated in the application ad-
dress space. Once a thread working on ak iteration has
performed some iterations on thej loop, signals the thread
working onk+1 iteration for the same set ofj iterations
and allows its execution. Thus, a pipeline is created.

Figures 2 and 3 show the structure of the source code for
this version. Notice that the programmer has to introduce
the FLUSH construct to ensure memory consistency for the
integer vectorisync used for synchronization. The vector
is not padded, so false sharing problems may appear in the
synchronization execution degradating performance. The
lefmost bar in figure 6 shows the performance numbers for
this version in terms of speed–up. Notice that for this ver-
sion only up to 31 processors might be used, as thek loop
only contains 31 iterations.

...
!$omp parallel default(shared)
!$omp& private(k1,k2,bk,a,b,c,d)
!$omp do name (l_bk)

do bk = 1, nblocksk
do bj=1,nblocksj

!$omp pred (l_bk, bk-1)
do bi=1,nblocksi
call jacld(bk,bj,bi,a,b,c,d)
call blts(isiz1, isiz2, isiz3,

> nx, ny, nz, bk,bj,bi,
> omega,rsd, tv,
> a, b, c, d,
> ist, iend, jst, jend,
> nx0, ny0)

enddo !bi
!$omp succ (l_bk, bk+1)

enddo !bj
end do !bk

!$omp end do nowait
!$omp end parallel

...

Figure 4. NAS LU application single level par-
allelism and precedences.

4.1.2 Single level with precedences

This version follows a similar parallel strategy as the
Single level omp version. To design this version,
the extensions described in Section 2 have been intro-
duced in the source code replacing the original synchro-
nization code. False sharing problems disappear and the
programmer has not to be aware about memory consis-
tency issues as both things are handled by the runtime sys-
tem. A blocking scheduling to thek,j,i do loops has
been done and only the blockedk loop has been paral-
lelized. The blocking allows the programmer to control
the amount of work performed between two thread syn-
chronizations. Figure 4 shows the new source code with
precedence directives. The middle bar in figure 6 shows
the performance numbers for this version. Notice that it be-
haves very similar to theSingle level omp version,
so no performance is lost due to possible runtime over-
heads. Both versionsSingle level omp andSingle
level nth are not exploiting all the available parallelism
in the computation. After computing an element(k,j,i),
the computation can continue on elements(k+1,j,i),
(k,j+1,i) and(k,j,i+1) in parallel. Those versions
only exploit the parallelism between the(k+1,j,i) and
(k,j+1,i) elements.

!$omp parallel default(shared)
!$omp& private(k1,k2,bk,tv,a,b,c,d)
!$omp do name (l_bk)

do bk = 1, nblocksk
!$omp parallel
!$omp do name (l_bj) private(bi,k)

do bj=1,nblocksj
do bi=1,nblocksi

!$omp pred((l_bk,bk-1):(l_bj,bj))
!$omp pred(l_bj,bj-1)

call jacld(bk,bj,bi,a,b,c,d)
call blts(isiz1, isiz2, isiz3,

> nx, ny, nz, bk,bj,bi,
> omega,
> rsd, tv,
> a, b, c, d,
> ist, iend, jst, jend,
> nx0, ny0)

!$omp succ(l_bj,bj+1)
!$omp succ((l_bk,bk+1):(l_bj,bj))

enddo !bi
enddo !bj

!$omp enddo nowait
!$omp end parallel

enddo !bk
!$omp enddo nowait
!$omp end parallel

Figure 5. NAS LU application with two levels
of parallelism and precedences.

4.1.3 Two levels with precedences

This version exploits near all the parallelism present in the
computation. Figure 5 shows the new source code with
precedence directives. In this version, once a thread ends
its computation on a block(bk,bj,bi) composed by a
set ofk, j andi iterations, signals two threads: the ones
that are going to work on the blocks(bk+1,bj,bi) and
(bk,bj+1,bi).
Notice that this version, as it is exploting more parallelism,
is able to take advantage of more than 31 processors, and
even more than that, it is able to fill the pipeline faster
than the Single level omp and Single level
precedences versions. The performance numbers in
rightmost bar in figure 6 show that theTwo levels
precedences reaches the maximum speed–up with 49
threads, 20% more than the best performance in the
Single level precedences versions.

4.2 US DOE ASCI Sweep3D

The Sweep3D benchmark uses a multidimensional wave-
front algorithm for discrete ordinates deterministic par-

4 9 16 25 36 49 64
0.0

5.0

10.0

15.0

20.0

S
pe

ed
U

p

Single Level omp
Single Level nth
Two Levels nth

Figure 6. Performance for LU NAS applica-
tion.

ticle transport simulation. The main input data is a 3
dimensional array namedface. The core computation
presents six reductions in all dimensions, what forbits the
parallelization of the computation in any of the dimen-
sions. Figure 7 shows the structure of the source code.
Three nested loops implement the computation along the
3 dimensional input matrix. Each (i,j,k) element in the
3 dimensional array has to be computed after elements
(i-1,j,k), (i,j-1,k) and(i,j,k-1) because of
the reductions in each dimension. We have followed the
same strategy as in the LU benchmarck. The loopsk, j
andi have been blocked. Thus, a block(bi,bj,bk)
now has to be computed after blocks(bi-1,bj,bk),
(bi,bj-1,bk) and(bi,bj,bk-1). Loopsbk and
bj have been parallelized and named. The computation
for each(bi,bj,bk) block is enclosed by the prece-
dence directives that ensures a correct execution. Notice
that the proposed parallelization forces us to introduce some
changes in the access to the reduction planes. Because of
the blocking algorithm, now the reduction planes are ac-
cessed in a way that the dimension that is consecutively al-
located in memory has been cutted and distributed among
different threads. This leads to false sharing problems that
completely sinks performance. To avoid this problem, we
have been forced to change the memory allocation of the
reductions planes.

As in the case for the LU application, two different parallel
strategies can be implemented: a parallel version just ex-
ploiting one level of parallelism (1l sweep), where only
thebk loop is parallelized, and a parallel version that ex-
ploits two levels of parallelism by parallelizing loopsbk
andbj (2l sweep). We have tested the two versions of
the benchmark with an input matrix of 50x50x50 elements.
Figure 8 shows the performance numbers for the SWEEP3D
application. Version1l sweep works with a blocking

do k=1,nk
do j=1,nj
...
do m=1,6
do i=1,ni
phijk(j,k,m)=phijk(j,k,m)+...
phiik(i,k,m)=phiik(i,k,m)+...
phiij(i,j,m)=phiij(i,j,m)+...

enddo
do i=1,ni
face(i,j,k)=face(i,j,k)+

1 phijk(j,k,m)+phiik(i,k,m)+
2 phiij(i,j,m)

enddo
enddo
enddo
...
enddo
enddo

Figure 7. Main core for the source code of
SWEEP3D application.

factor of 2, so 25 blocks are defined. When running on
25 processors the application reaches a speedup around 13.
The2l sweep version can be executed with more threads,
as a second level of parallelism is exploited. This version
reaches its maximum speed–up when executing with 40
threads: 17.6, about a 25% more of performance. As in
the case of the NAS LU benchmark, the SWEEP3D code
was a completely sequential code from the point of view
of the current OpenMP definition. With the new proposed
directives this code can be parallelized.

25 30 40 50
0.0

5.0

10.0

15.0

20.0

S
pe

ed
U

p

1l sweep
2l sweep

Figure 8. Performance for SWEEP3D applica-
tion.

The NAS LU and SWEEP3D benchmarks allow us
to demonstrate the need to enlarge the synchronization
schemes in the OpenMP programming model. We have

seen that the kind of requiered synchronizations can be in-
cluded in the programming model without critical changes
in it. The experiences with those benchmarks also showed
that nested parallelism can be combined with the new
synchronization schemes without introducing unacceptable
runtime overheads.

5 Conclusions

In this paper we have presented a set of extensions to the
OpenMP programming model oriented towards the specifi-
cation of explicit point–to–point synchronizations.
We have detected that current OpenMP standard includes
very simple synchronization constructs. When the available
parallelism in an application is not expressable with current
OpenMP constructs, the programmer is forced to explic-
itly program the thread synchronizations in the application
code. We show that it is necessary to enlarge the OpenMP
standard to allow the programmer the specification of the
necessary thread synchronizations due to data dependences.
We have tested our proposal with two applications, all of
them parallelized with OpenMP. The evaluation has showed
the lack of generic synchronization mechanisms, powerful
enough to support the needs of the tested applications. In
the paper we have demonstrated that our proposal covers the
mentioned needs without introducing deep changes in the
OpenMP programming model. The evaluation showed that
with the proposed extensions, programmers can get from 10
to 30 percent of performance improvement.
The evaluation shows that our proposal and runtime imple-
mentation offers enough expressiveness and does not intro-
duce large overheads due to runtime implementation.

Acknowledgments

This research has been supported by the Ministry of Science
and Technology of Spain and the European Union (FEDER
funds) under contract TIC2001-0995-C02-01.

References

[1] B. Chamberlain, C. Lewis and L. Snyder. Array Lan-
guage Support for Wavefront and Pipelined Computa-
tions In Workshop on Languages and Compilers for
Parallel Computing, August 1999.

[2] I. Foster, B. Avalani, A. Choudhary and M. Xu. A
Compilation System that Integrates High Performance
Fortran and Fortran M. InScalable High Performance
Computing Conference, Knoxville (TN), May 1994.

[3] M. Gonzalez, J. Oliver, X. Martorell, E. Ayguade,
J. Labarta and N. Navarro. OpenMP Extensions for

Thread Groups and Their Runtime Support. InWork-
shop on Languages and Compilers for Parallel Com-
puting, August 2000.

[4] M. Gonzalez, E. Ayguadé, X. Martorell, J. Labarta,
N. Navarro and J. Oliver. Precedence Relations in
the OpenMP Programming Model. Second European
Workshop on OpenMP, EWOMP 2000 (September
2000).

[5] M. Gonzalez, E. Ayguadé, X. Martorell and J. Labarta.
Defining and Supporting Pipelined Executions in
OpenMP. Workshop on OpenMP Applications and
Tools (WOMPAT’01) August 2001.

[6] T. Gross, D. O’Halloran and J. Subhlok. Task Paral-
lelism in a High Performance Fortran Framework. In
IEEE Parallel and Distributed Technology, vol.2, no.3,
Fall 1994.

[7] X. Martorell, E. Ayguadé, J.I. Navarro, J. Corbalán,
M. González and J. Labarta. Thread Fork/join Tech-
niques for Multi–level Parallelism Exploitation in
NUMA Multiprocessors. In13th Int. Conference on
Supercomputing ICS’99, Rhodes (Greece), June 1999.

[8] OpenMP Organization. OpenMP Fortran Application
Interface, v. 2.0, www.openmp.org, June 2000.

[9] A. Radulescu, C. Nicolescu, A.J.C. van Gemund,
and P.P Jonker CPR: Mixed task and data paral-
lel scheduling for distributed systems. 15th Interna-
tional Parallel and Distributed Processing Symposium
(IPDPS’2001), Apr. 2001

[10] S. Ramaswamy. Simultaneous Exploitation of Task
and Data Parallelism in Regular Scientific Computa-
tions. Ph.D. Thesis, University of Illinois at Urbana–
Champaign, 1996.

[11] T. Rauber and G. Runge. Compiler support for task
scheduling in hierarchical execution models. Journal
of Systems Architecture, 45:483-503, 1998

[12] Silicon Graphics Computer Systems SGI. Origin 200
and Origin 2000 Technical Report, 1996.

[13] J.Subhlok, J.M. Stichnoth, D.R O’Hallaron, and T.
Gross. Optimal use of mixed task and data parallelism
for pipelined computations. Journal of Parallel and
Distributed Computing, 60:297-319, 2000

