
RouteNet-Erlang: A Graph Neural Network
for Network Performance Evaluation
Miquel Ferriol-Galmés∗, Krzysztof Rusek†, José Suárez-Varela∗, Shihan Xiao‡,

Xiang Shi‡, Xiangle Cheng‡, Bo Wu‡, Pere Barlet-Ros∗, Albert Cabellos-Aparicio∗
∗Barcelona Neural Networking Center, Universitat Politècnica de Catalunya, Spain

Corresponding email: miquel.ferriol@upc.edu
†AGH University of Science and Technology, Poland

‡Huawei Technologies Co., Ltd., China

Abstract—Network modeling is a fundamental tool in network
research, design, and operation. Arguably the most popular
method for modeling is Queuing Theory (QT). Its main limitation
is that it imposes strong assumptions on the packet arrival
process, which typically do not hold in real networks. In the
field of Deep Learning, Graph Neural Networks (GNN) have
emerged as a new technique to build data-driven models that can
learn complex and non-linear behavior. In this paper, we present
RouteNet-Erlang, a pioneering GNN architecture designed to
model computer networks. RouteNet-Erlang supports complex
traffic models, multi-queue scheduling policies, routing policies
and can provide accurate estimates in networks not seen in the
training phase. We benchmark RouteNet-Erlang against a state-
of-the-art QT model, and our results show that it outperforms
QT in all the network scenarios.

Index Terms—Network Modeling, Graph Neural Network

I. INTRODUCTION

Network modeling is central to the field of computer
networks. Models are useful in researching new protocols
and mechanisms, allowing administrators to estimate their
performance before their actual deployment in production
networks. Network models also help to find optimal network
configurations, without the need to test them in production
networks.

Queuing Theory (QT) [1] is arguably the most popular
modeling technique, where networks are represented as inter-
connected queues that are evaluated analytically. This repre-
sents a well-established framework that can model complex
and large networks. Its main limitation is that it imposes strong
assumptions on the packet arrival process, which typically
do not hold in real networks [2]. Internet traffic has been
extensively analyzed in the past two decades [3], [4], [5], [6],
[7] and, despite the community has not agreed on a universal
model, there is consensus that in general aggregated traffic
shows strong autocorrelation and a heavy-tail [8].

Another network modeling alternative is computational
models (e.g., network simulators), which provide excellent
accuracy. State-of-the-art network simulators include a wide
range of network, transport, and routing protocols, and are able

This publication is part of the Spanish I+D+i project
TRAINER-A (ref.PID2020-118011GB-C21), funded by MCIN/
AEI/10.13039/501100011033. This work is also partially funded by
the Catalan Institution for Research and Advanced Studies (ICREA) and the
Secretariat for Universities and Research of the Ministry of Business and
Knowledge of the Government of Catalonia and the European Social Fund.

to simulate realistic scenarios. However, this comes at a very
high computational cost that depends linearly on the number
of packets being simulated. As a result, they are impractical
in scenarios with realistic traffic volumes or large topologies.
In addition, and because they are computationally expensive,
they do not work well in real-time scenarios.

Machine Learning (ML) [9] provides a new breed of mecha-
nisms to model complex systems. In particular, Deep Learning
(DL) [10] has demonstrated to extract deep knowledge from
human-understandable descriptions of a system. This approach
has proven to achieve unprecedented accuracy in modeling
properties of complex systems, like proteins [11].

The main advantage of DL models is that they are data-
driven. DL models can be trained with real-world data, without
making assumptions about the system. This enables to build
models with unprecedented accuracy by effectively modeling
the entire range of non-linear and multidimensional system
characteristics. Computationally, DL is based on linear algebra
and can take advantage of massive parallelism leveraging
dedicated hardware and compilers.

Within the field of DL, Graph Neural Networks (GNN) [12]
have recently emerged as an effective technique to model
graph-structured data. GNNs are tailored to understand the
complex relationships between the elements of a graph. The
main novelty of GNNs is that their internal architecture is
dynamically assembled based on the elements and connections
of input graphs, and this enables to learn universal modeling
functions that are invariant to graph isomorphism. GNNs are
thus able to generalize over graphs, which means that they
can produce accurate estimates in different graphs not seen
during training. As we will show in this paper, this is a critical
advantage of GNNs in the context of network modeling.

The novel GNN paradigm finally allows the application of
ML in domains where data is essentially represented as graphs.
As a consequence, at the time of this writing, substantial re-
search efforts are being devoted to applying GNNs to different
fields where data is fundamentally represented as graphs, such
as chemistry [13], physics [14] and others [15] [16].

We argue that GNNs represent a new network modeling
language with attractive advantages and characteristics. GNNs
are designed to learn graphs, and computer networks are fun-
damentally graphs of connected queues. However, GNNs are
not a black-box that map data inputs to outputs, it is actually

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. http://dx.doi.org/10.1109/INFOCOM48880.2022.9796944

a modeling tool that needs to be researched and designed
to account for the core behavior of computer networks. In
contrast to more classical DL models, where the architecture is
basically defined by the number of layers and neurons, GNNs
are assembled ad-hoc, based on the elements and connections
of the input graphs. These components represent the GNN
modeling language, and they need to be carefully designed to
reflect the relevant properties of the system being modeled.

In this paper, we present RouteNet-Erlang (RouteNet-E),
a novel GNN-based architecture designed for performance
evaluation of computer networks. RouteNet-E shares the same
goals as QT models: it is also able to model a network of
queues, with different sizes and scheduling policies, while
providing accurate estimates of delay, jitter, and losses. In-
terestingly, RouteNet-E is not limited to Markovian traffic
models as QT, but rather it supports arbitrary traffic models
including more complex ones with strong autocorrelation and
high variance, which better represent the properties of real-
world traffic [8]. We also show that RouteNet-E overcomes
one of the main limitations of existing ML-based models:
generalization. RouteNet-E is able to make accurate estimates
in samples of unseen topologies one order of magnitude larger
than those seen during training.

We benchmark RouteNet-E against a state-of-the-art QT
model, over a wide variety of network samples covering
several different traffic models, from basic Poisson, to more
realistic and complex models with strong autocorrelation and
approximated heavy-tails. Our evaluation results show that
the proposed model outperforms the QT benchmark in all
the network scenarios evaluated, always producing accurate
delay predictions with a worst-case error of 6% (for QT is
68%). We also show RouteNet-E’s remarkable performance
in hundreds of random network topologies not seen during
training. Lastly, we measure its inference speed, which is in
the order of milliseconds, in line with the QT benchmark.

All datasets, code, and trained models of RouteNet-E used
in this paper are publicly available at [17].

II. CHALLENGES OF GNN-BASED NETWORK MODELING

In this section, we describe the main challenges that GNN-
based solutions need to address for network modeling. These
challenges drove the core design of RouteNet-E.

Traffic models: A model is an abstraction of a system able
to distill the essential aspects of the system. Networks transport
millions of packets and, as a result, network models require a
useful abstraction for packets, that is why supporting arbitrary
stochastic traffic models is crucial. Experimental observations
show that traffic on the Internet has strong autocorrelation and
heavy-tails [8]. In this context, it is well-known that a main
limitation of QT is that it fails to provide accurate estimates
on realistic Markovian models with continuous state space, or
non-Markovian traffic models. To the best of our knowledge,
analytical models for queues with general arrival processes
are limited to infinite buffers [18], or they make some sort of
approximation (e.g., asymptotic), which greatly differs from
the actual behavior of computer networks. The challenge for

GNN-based modeling is, how to design an architecture that
can accurately model realistic traffic models?

Training and Generalization: One of the main differences
between analytical modeling (e.g., QT) and ML-based model-
ing is that the latter requires training. In ML, training involves
obtaining a representative dataset with network measurements.
The dataset needs to include a broad spectrum of network
operational regimes. In practice, this means testing how dif-
ferent congestion levels affect performance metrics (delay,
jitter, and losses), evaluating how different queuing policies
affect performance or testing different routing policies, among
others. Without this, the ML model is unable to learn and pro-
vide accurate estimates. Note that this is a common property
of all neural network architectures. Generating this training
dataset from networks in production is typically unfeasible,
as it would require to artificially generate configurations (e.g.,
queue scheduling, routing) that lead to service disruption. A
reasonable alternative is to create these datasets in controlled
testbeds, where it is possible to use different traffic models
and implement a broad set of configurations. Thus, the GNN
model can be trained on samples from this testbed, and then
be applied to real networks. Hence, the research challenge is:
how to design a GNN able to provide accurate estimates in
networks not seen during training? This includes topologies,
traffic, and configurations (e.g., queue scheduling, routing)
different from those seen in the training network testbed.

Generalization to larger networks: From a practical
standpoint, the GNN model must also generalize to larger
networks. Real-world networks include hundreds or thousands
of nodes, and building a network testbed at this scale is
typically unfeasible. As a result, the GNN model should be
able to generalize from small network testbeds to considerably
larger networks, by at least a factor of 10x. Generalizing to
larger networks – or graphs, in general – is currently an open
research challenge in the field of GNNs. We address this by
using domain-specific knowledge from computer networks,
and by proposing a novel GNN architecture that can effectively
model relevant scale-independent features of networks that
affect performance metrics.

Queues and Scheduling policies: A fundamental aspect
when modeling networks is considering the behavior of queues
(e.g., number, size), scheduling policies (e.g., WFQ, DRR),
and the mapping of traffic flows to different Quality-of-Service
classes if any. QT is a well-established technique, and models
have been developed to support a wide range of scheduling
policies [19], [20]. The challenge is, how to represent queues
and scheduling policies inside the GNN architecture?

III. BACKGROUND: GNNS

Graphs are used to represent relational information. Partic-
ularly, a graph G ∈ {V,E} comprises a set of objects V (i.e.,
vertices) and some relations between them E (i.e., edges).

GNN [12] is a family of NNs especially designed to
work with graph-structured data. These models dynamically
build their internal NN architecture based on the input graph.
For this, they use a modular NN structure that represents

Performance metrics

(e.g., delay, jitter, loss)

Topology

]
Configuration

Routing (flow-level)

Queue scheduling (interface-level)

]
Traffic model

(flow-level)

]

RouteNet-E

(GNN-based

model)

Fig. 1: Black-box representation of RouteNet-E

explicitly the elements and connections of the graph. As a
result, they support graphs of variable size and structure, and
their graph processing mechanism is invariant to node and
edge permutation, which eventually endows them with strong
generalization capabilities over graphs – also known as strong
relational inductive bias [21].

Despite GNN covers a broad family of neural networks with
different architectural variants (e.g., [12], [14], [22]), most of
them share the basic principle of an iterative message-passing
phase, where the different elements of the graph exchange
information according to their connections, and a final readout
phase uses the information encoded in graph elements to
produce the final output(s). We refer the reader to [12], [13],
[21] for a more comprehensive background on GNNs.

IV. ROUTENET-ERLANG

This section describes RouteNet-E, a novel GNN-based
solution tailored to accurately model the behavior of real
network infrastructures. RouteNet-E implements a novel three-
stage message passing algorithm that explicitly defines some
key elements for network modeling (e.g., traffic models,
queues, paths), and offers support for a wide variety of features
introduced in modern networking trends (e.g., complex QoS-
aware queuing policies, overlay routing).

Figure 1 shows a black-box representation of the proposed
GNN-based network model. The input of RouteNet-E is a
network state sample, defined by: a network topology, a set
of traffic models (flow-level), a routing scheme (flow-level), a
queuing configuration (interface-level). As output, this model
produces estimates of relevant performance metrics at a flow-
level granularity (e.g., delay, jitter, losses).

A. Model Description

RouteNet-E has two main building blocks: (1) Finding a
good representation for the network components supported by
the model – e.g., traffic models, routing, queue scheduling –,
and (2) Exploit scale-independent features of networks, in
order to achieve good generalization power to larger networks
than those seen during training, which is an important open
challenge previously discussed in Section II.
1) Representing network components and their relationships:

First, let us define a network as a set of links
L = {li : i ∈ (1, ..., nl)}, a set of queues on Q = {qi : i ∈
(1, ..., nq)}, and a set of source-destination flows F = {fi :
i ∈ (1, ..., nf)}. According to the routing configuration, flows
follow a source-destination path. Hence, we define flows as
sequences with tuples of the queues and links they traverse
fi = {(qFq(fi,0), lFl(fi,0)), ..., (qFq(fi,|fi|), lFl(fi,|fi|))}, where
Fq(fi, j) and Fl(fi, j) respectively return the index of the j-th

(output port)

Queue1

Queue2

Queue3

Link1

40Gbs
Link2

10Gbs

(output port)

Queuenq
…

Linknl-1

20Gbs

Linknl

10Gbs

Traffic model #1 → Flow1

Device1

Device3(output port)

Queue4

Queue5

Device2

Traffic model #2 → Flow2

Traffic model #3 → Flow3

Fig. 2: Schematic representation of the network model imple-
mented by RouteNet-E.

queue or link along the path of flow fi. Let us also define
Qf (qi) as a function that returns all the flows passing through
queue qi, and Lq(li) as a function that returns the queues
injecting traffic into link li – i.e., the queues at the output port
to which the link is connected.

Following the previous notation, RouteNet-E considers an
input graph with three main components: (i) the physical
links L that shape the network topology, (ii) the queues Q
at each output port of network devices, and (iii) the active
flows F in the network, which follow some specific src-
dst paths (i.e., sequences of queues and links), and whose
traffic is generated from a given traffic model. Figure 2 shows
a schematic representation of the network model internally
considered by RouteNet-E, which is derived from the several
mechanisms that affect performance in real networks. From
this model, we can extract three basic principles:

(i) The state of flows (e.g., throughput, losses) is affected
by the state of the queues and links they traverse (e.g.,
queue/link utilization).

(ii) The state of queues (e.g., occupation) depends on the state
of the flows passing through them (e.g., traffic model).

(iii) The state of links (e.g., utilization) depends on the states
of the queues at the output port of the link, and the queue
scheduling policy applied over these queues.

Formally, these principles can be formulated as follows:

hfk = gf (hqk(0)
, hlk(0)

, ..., hqk(|fk|) , hlk(|fk|)) (1)

hqi = gq(hp1
, ..., hpm

), qi ∈ pk, k = 1, ..., j (2)
hlj = gl(hq1 , ..., hqm), qm ∈ Lq(lj) (3)

Where gf , gq and gl are some unknown functions, and hf ,
hq and hl are latent variables that encode information about
the state of flows F , queues Q, and links L respectively. Note
that these principles define a circular dependency between the
three network components (F , Q, and L) that must be solved
to find latent representations satisfying the equations above.

Based on the previous network modeling principles, we
define the architecture of RouteNet-E (see Algorithm 1). Our
GNN-based model implements a custom three-stage message-
passing algorithm that combines the states of flows, queues and
links according to Equations (1)-(3), thus aiming to resolve
the circular dependencies defined in such functions. First,
the hidden states hl, hq , and hf – represented as n-element
vectors – are initialized with some features (lines 1-3), denoted
respectively by xli , xqj and xfk . In our case, we set the initial

Algorithm 1 Internal architecture of RouteNet-E

Input: F , Q, L, xf , xq , xl

Output: hT
q , hT

l , hT
f , ŷf , ŷq , ŷl

1: for each l ∈ L do h0
l ← [xl, 0...0]

2: for each q ∈ Q do h0
q ← [xq, 0...0]

3: for each f ∈ F do h0
f ← [xf , 0...0]

4: for t = 0 to T-1 do ▷ Message Passing Phase
5: for each f ∈ F do ▷ Message Passing on Flows
6: for each (q, l) ∈ f do
7: ht

f ← FRNN(ht
f , [h

t
q , h

t
l]) ▷ Flow: Aggr. and Update

8: m̃t+1
f,q ← ht

f ▷ Flow: Message Generation

9: ht+1
f ← ht

f

10: for each q ∈ Q do ▷ Message Passing on Queues
11: Mt+1

q ←
∑

f∈Qf (q) m̃
t+1
f,q ▷ Queue: Aggregation

12: ht+1
q ← Uq(ht

q ,M
t+1
q) ▷ Queue: Update

13: m̃t+1
q ← ht+1

q ▷ Queue: Message Generation
14: for each l ∈ L do ▷ Message Passing on Links
15: for each q ∈ Lq(l) do
16: ht

l ← LRNN(ht
l , m̃

t+1
q) ▷ Link: Aggr. and Update

17: ht+1
l ← ht

l

18: ŷf ← Rf (h
T
f) ▷ Readout phase

19: ŷq ← Rq(hT
q)

features of links (xl) as: (i) the link capacity (Ci), and (ii) the
scheduling policy at the output port of the link (FIFO, SP,
WFQ, or DRR [23]), using one-hot encoding. For the initial
features of queues (xq) we include: (i) the buffer size, (ii) the
priority level (one-hot encoding), and (iii) the weight (only
for WFQ and DRR). Lastly, the initial flow features (xf) are a
descriptor of the traffic model used in the flow (Ti). Once the
states are initialized, the message-passing phase is iteratively
executed T times (loop from line 4), where T is a configurable
parameter. Each message-passing iteration is in turn divided
in three stages, that respectively represent the message passing
and update of the hidden states of flows hf (lines 5-9), queues
hq (lines 10-13), and links hl (lines 14-17).

Finally, functions Rf (line 18) and Rq (line 19) represent
independent readout functions that can be respectively applied
to the hidden states of flows hf or queues hq . In our experi-
ments in Section VI, we use Rf and Rq to predict the flow-
level delay, jitter and losses – as described later in this section.

The main motivation to use data-driven methods, such as
RouteNet-E, instead of traditional QT is to achieve accurate
modeling of complex traffic models that better reflect real-
world traffic – as previously introduced in Section II. Hence, in
RouteNet-E the representation of the traffic model descriptors
(Ti) is central to achieve accurate modeling of different traffic
patterns, and capturing their intrinsic properties. Particularly,
we define Ti as an n-element vector that includes the specific
parameters that shape each traffic model. Find more details
about the parameters of each model in section IV-B.

2) Scaling to larger networks: scale-independent features

As previously discussed in Section II, generating datasets
directly from networks in production would imply testing

configurations that may break the correct operation. As a
result, GNN-based network models should be typically trained
with data from network testbeds, which are usually much
smaller than real networks. In this context, it is essential for
our GNN to effectively scale to larger networks than those of
the training dataset – by at least a 10x factor.

GNNs have shown an unprecedented capability to general-
ize over graph-structured data [21], [15]. In the context of
generalizing to larger graphs, it is well known that these
models keep good generalization capabilities as long as the
spectral properties of graphs are similar to those seen during
training [24]. In the case of RouteNet-E, its message-passing
algorithm can analogously generalize to graphs with similar
structures to those seen during the training phase – e.g., similar
number of queues at output ports, or similar number of flows
aggregated in queues. In this vein, generating a representa-
tive dataset for RouteNet-E in small networks, covering a
wide range of graph structures, does not imply any practical
limitation to then achieve good generalization properties to
larger networks. It can be done by simply adding a broad
combination of realistic network samples with a wide variety
of traffic models, routing schemes, and queuing policies as in
the process described later in section IV-B.

However, from a practical standpoint, scaling to larger net-
works often entails a broader definition beyond the topology
size and structure. In particular, there are two main properties
we can observe as networks become larger: (i) higher link
capacities (as there is more aggregated traffic in the core
links of the network), and (ii) longer paths (as the network
diameter becomes larger). This requires devising mechanisms
to effectively scale on these two features.

Scaling to larger link capacities: If we observe the internal
architecture of RouteNet-E (Algorithm 1), we can find that
the link capacity C is only represented as an initial feature
of links’ hidden states xli . The fact that C is encoded as a
numerical feature in the model introduces inherent limitations
to scale to larger capacity values. Indeed, scaling to out-
of-distribution numerical values is widely recognized as a
generalized limiting factor among all neural networks [25],
[26]. Thus, our approach is to exploit particularities from the
network domain to find scale-independent representations that
can define link capacities and how they relate to other link-
level features that impact performance (e.g., the aggregated
traffic in the link), as the final goal of RouteNet-E is to
accurately estimate performance metrics (e.g., delay, jitter,
losses). Inspired by traditional QT methods, we aim to encode
in RouteNet-E the relative ratio between the arrival rates
on links (based on the traffic aggregated in the link), and
the service times (based on the link capacity), thus enabling
the possibility to infer the output performance metrics of
our model from scale-independent values. As a result, we
define link capacities (Caplink) as the product of a virtual
reference link capacity (Cref) and a scale factor (Sf) – i.e.,
Caplink = Cref ∗ Sf .

This representation enables to define arbitrary combinations

of scale factors and reference link capacities to define the
actual capacity of links in networks. Hence, in RouteNet-
E we introduce the capacity feature (Ci) as a 2-element
vector defined as Ci=[Cref , Sf], which is included in the
initial feature vector of links (xl). Note that this feature will
eventually be encoded in the hidden states of links (hl). In
the internal architecture of RouteNet-E (Algorithm 1), this
factor will mainly affect the update functions of flows and
links (lines 7 and 16), as they are the only ones that process
directly the hidden states of links (hl). As a result, the
RNNs approximating these update functions can potentially
learn to make accurate estimates on any combination of Cref

and Sf as long as these two features are within the range
of values observed independently for each of them during
the training phase (i.e., Sf ∈ [sfmin , sfmax] and Cref ∈
[Crefmin

, Crefmax
]). Thus, we exploit this property to devise

a custom data augmentation method, where we take samples
from small networks with limited link capacities and generate
different combinations of Cref and Sfactor that enable us to
scale accurately to considerably larger capacities. Note that in
this process, the numerical values seen by RouteNet-E (Cref

and Sfactor) are kept in the same ranges both in the training on
small networks and the posterior inference on larger networks,
thus overcoming the practical limitation of out-of-distribution
predictions [25], [26]. More details about the proposed data
augmentation process are given in Sec. IV-C.

The previous mechanism enables to keep scale-independent
features along with the message-passing phase of our model
(loop lines 4-17 in Algorithm 1), while it is still needed
to extend the scale independence to the output layer of the
model. Particularly, in this paper, we use RouteNet-E to predict
the flows’ delay, jitter, and losses. Note that the distribution
of these parameters can also vary for flows traversing links
with higher capacities, thus leading again to out-of-distribution
values. Based on the fundamentals of QT, we overcome this
potential limitation by inferring delays/jitter indirectly from
the occupation of queues in the network Oqi∈[0, 1], using the
ŷq=Rq(hq) function of RouteNet-E (Algorithm 1). Then, we
infer the flow delay/jitter as a linear combination of the waiting
times in queues (inferred from Oqi) and the transmission times
of the links the flow traverses. Note that a potential advantage
with respect to traditional QT models is that the queue
occupation estimates produced by RouteNet-E can be more
accurate, especially for complex traffic models resembling
real-world traffic – as shown later in our experimental results
of Section VI. Likewise, for packet loss, RouteNet-E predicts
directly the percentage of packets dropped with respect to
the packets that were sent by the source of the flow, thus
producing a bounded value Dfi∈[0, 1], that is estimated with
the ŷf=Rf (hf) function of Algorithm 1.
Scaling to longer paths: In the internal architecture of
RouteNet-E, the path length only affects to the RNN function
of line 7 (Algorithm 1), which collects the state of queues (hq)
and links (hl) to update flows’ states (hf). The main limitation
here is that this RNN can typically see during training shorter
link-queue sequences than those it can find then in larger

networks, that can potentially have longer paths. As a result,
we define Lmax as a configurable parameter of our model that
defines the maximum sequence length supported by this RNN.
Then, we split flows exceeding Lmax into different queue-link
sequences that are independently digested by the RNN. To
keep the state along with the whole flow, in case it is divided
into more than one sequence, we initialize the initial state of
the RNN with the output resulting from the previous sequence.

B. Simulation Setup

To train, validate and test RouteNet-E we use as
ground truth a packet-level network simulator (OMNeT++
v5.5.1 [27]), where network samples are labeled with per-
formance metrics, including the flows’ mean delay, jitter and
losses, and queue-level statistics (e.g., occupation, packet loss).
To generate these datasets, for each sample we randomly select
a combination of input features (traffic model, topology, and
queuing configuration) according to the descriptions below:

1) Traffic models: Traffic is generated using five different
models with increasing levels of complexity, which ranges
from a basic Poisson generation process to more realistic
traffic models with strong autocorrelation and heavy-tails [8].
We define below the implementation details of these models
(except for the well-known Poisson and Constant Bitrate,
whose only configurable parameter is the traffic intensity
level):

a) On-Off: This model defines two possible states (On or
Off). The lengths of On and Off periods are randomly selected
[5, 15] seconds. Likewise, during the On period, packets are
generated using an exponential distribution.

b) Autocorrelated exponentials: This model generates
autocorrelated exponentially distributed traffic staring from
the following auto-regressive (AR) process: zt+1=azt+ε,
ε∼N(0, σ2) where a∈(−1, 1) controls the level of autocorrela-
tion. The marginal distribution of z is N(0, s2 = σ2/(1−a2)),
so z can be negative. In order to construct positive inter-
arrival times, z is mapped by a nonlinear transformation:
δt = F−1

E

(
λ, FN

(
0, s2, zt

))
, where FN (0, s2, ·) and FE(λ, ·)

are respectively a CDF of the normal distribution with µ = 0
and variance s2=[3, 12], and an exponential distribution with
parameter λ=[40, 2000]. The first transformation changes the
distribution from normal to uniform on (0, 1), while the second
maps it into an exponential distribution. As a result, δt follows
an exponential distribution with autocorrelation. Such a model
can be interpreted as a copula [28].

c) Modulated exponentials: This model represents an
alternative autocorrelated model with higher complexity for
QT than the one above and is inspired by observation from [4].
Particularly, the inter-arrival times are set by a hierarchical
model. Inter-arrivals follow an exponential distribution (Exp)
whose rate is controlled by the value of a hidden AR model.
Formally, we can describe the model as δt|zt∼Exp(λt=Aezt),
where A is scaling constant and z is an AR model as in the
previous traffic model.

In all the previous models, average traffic rates on src-dst
flows are carefully set to cover low to quite high congestion

0 50 100 150 200
Epoch

0.0

0.1

0.2

M
S

E

Training

Validation

Fig. 3: Training and evaluation losses over time.

levels across different samples, where the most congested
samples have ≈3% of packet losses.

2) Queuing configuration: Each forwarding device is con-
figured with a different scheduling policy that depends on the
particular scenario of our evaluation (more details in Sec. VI).
Overall, we use four different queue scheduling policies:
First In First Out (FIFO), Strict Priority (SP), Weighted Fair
Queueing (WFQ), and Deficit Round Robin (DRR) [23]. We
consider three queues per output port (except for FIFO, with
only one queue), and queues have a size of 16 or 32 packets.
For WFQ and DRR, we define random queue weights.

3) Topologies: To train the GNN model we used two
different real-world topologies: NSFNET (14 nodes) [29], and
GEANT (24 nodes) [30]. Then, we validate the accuracy of
RouteNet-E in GBN (17 nodes) [31].

C. Training

We implement RouteNet-E in TensorFlow. All the datasets,
the code, and the trained models are publicly available [17].
To train the model, we use a custom data augmentation
approach that, given a link capacity (Caplink), covers a broad
combination of Sf and Cref values, in order to eventu-
ally make the model generalize over samples with larger
link capacities. Particularly, given a link capacity, in some
samples, we use low values of Sf with higher values of
Cref , while in other samples we make it in the opposite
way. As an illustrative example, if the model is trained over
samples with 1Gbps links, we can represent these capacities
in different samples as Caplink=10*100Mbps=1Gbps, or
Caplink=1*1Gbps=1Gbps. Thus, after training the model
should be able to make accurate inferences on samples that
combine the maximum Sf and Cref values seen during
training – i.e., Caplink=10*1Gbps=10Gbps. In practice, this
means that the model can be trained with samples with a
maximum link capacity of 1 Gbps, and then scale effectively
to samples with link capacities up to 10 Gbps. Note that these
numbers are just illustrative, while this data augmentation
method is sufficiently general to produce in the training dataset
wider ranges of Sf and Cref given a maximum link capacity.
Thus, it can be potentially exploited to represent combinations
leading to arbitrarily larger capacities.

After making some grid search experiments, we set a size
of 32 elements for all the hidden state vectors (hf , hq , hl),
and T=8 message-passing iterations. We implement FRNN ,
LRNN , and Uq as Gated Recurrent Units (GRU) [32], and
functions Rf and Rq as 2-layer fully-connected neural net-
works with ReLU activation functions. Here, it is important to

note that the whole neural network architecture of RouteNet-
E (Algorithm 1) constitutes a fully differentiable function,
so it is possible to train the model end to end. Hence, all
the different functions that shape its internal architecture are
jointly optimized during training based on RouteNet-E’s inputs
(network samples) and outputs (performance metrics).

We use a training dataset with 200,000 samples from the
NSFNET and GEANT topologies (100,000 samples each),
including a variety of traffic model descriptors (Ti), routing
schemes, and queue scheduling configurations – following
the descriptions in Section IV-B. For the validation and test
datasets, we generate 2,000 samples from the GBN topology
(1,000 samples for each dataset). We train RouteNet-E for
200 epochs – with 4,000 samples per epoch – and set the
Mean Squared Error (MSE) as loss function, using an Adam
optimizer with an initial learning rate of 0.001. Figure 3 shows
the evolution of the loss during training on delay estimates
(for the training and validation samples), which shows stable
learning along the whole training process.

V. BASELINE: QUEUING THEORY

In this section, we describe the state-of-the-art model we use
to benchmark RouteNet-E. QT applied to networking results in
a model as a function of graph-structured data. The network
is represented as a directed multigraph of queues (buffers)
while edges correspond to virtual channels along with the
physical link. The general description of Equations (1)-(3)
holds, however, the exact relations are derived analytically
from the common assumption that a system is approximated
by a Markov chain. This makes it a perfect benchmark for
RouteNet-E.

In the holistic approach, the network is modeled as a single
system, like in Jackson Networks [33] or more general BCMP
queuing networks [34]. For those systems, the product form of
the stationary distribution greatly simplifies the solution, how-
ever, the assumption of infinite buffers makes those models
unrealistic and unable to estimate packet loss ratio.

In our approach, all the queues along the path are modeled
independently. Further, we assume that arrival to each queue
is approximated by the Poisson process. Service times are
assumed to be independent and exponentially distributed.
Under those assumptions, we can derive analytical results for
queue throughput, delay distribution, and blocking probability.

The aforementioned model also suffers from circular de-
pendency. Packet loss on a particular queue depends on its
load so it also depends on the throughput of other queues
feeding this particular one. The throughput, however, depends
on packet loss so we end up with circular dependence. We
fixed this problem by a map-reduce inspired algorithm that
also emphasizes the resemblance between GNN and QT.

The algorithm consists of there functions: map_queues,
map_paths and reduce. The map_queues function updates
packet loss for each queue, given the total traffic (external
demands plus within network transfer). The function also
computes the remaining QoS parameters (jitter and delay).
The map_paths function updates the traffic knowing the packet

loss on every queue. Finally, the reduce function aggregates
per path delay, jitter, and packet loss. In the first iteration,
we assume no packet loss. Given the first approximation, we
can compute the loss probability (map_queues) and update
the intensities to account for the losses (map_paths). After
a few iterations, the algorithm converges to a fixed point
and the final values are reduced (reduce). Notice how this
approach is similar to RouteNet-E forward pass. In QT, we
use known analytical relations while in GNN those relations
are approximated by a neural network and learned from the
data.

For an M/M/1/b system, we used known formulas for
blocking probabilities and delay distribution to get average
delay and jitter. For a network with scheduling, we designed
map_queues functions based on the Markov chain model
described below. Because scheduling couples the queues,
the corresponding map_queues operates on groups of queues
assigned to the same link.

Let us begin with a strict priority scheduler. Consider p
priority class customers arriving at rate λi and requiring
service time with mean 1/µi. Each class waits in the in-
dependent virtual queue limited by bi and served in non-
preemptive FIFO order. Such a system can be modeled as
a continuous-time Markov chain on the state space SSP =
{(s, q = (q1, q2, . . . , qp)}, where s denotes the priority class
currently being served or 0 if the system is empty. The
remaining part of the state: p-tuple q encodes the number
of customers for each priority. For convenience let us define
qi+ := (q1, . . . , qi+1, . . . , qp), qi− := (q1, . . . , qi−1, . . . , qp)
and q0 = (0, . . . , 0). The model is based on [20] and modified
to allow for per-priority class buffer size. Time evolution of
the CTMC is characterized by the generator matrix Q whose
elements follow the rules:

Q[(0, q), (i, qi+)] = λi 0 < i ≤ p (4)
Q[(s, q), (s, qi+)] = λiIqi<bi 0 < i ≤ p (5)

Q[(s, q0s+), (0, q
0)] = µs 0 < s ≤ p (6)

Q[(s, q), (min{i : qi > 0}, qs−)] = µs (7)

where IA is an indicator function and Q[., .] denotes entry in
generator matrix. If neither rule matches states pair a general
rules Q[s, s′] = 0, s ̸= s′ and Q[s, s] = −∑

s′ ̸=s Q[s, s′]
apply. A similar model can be constructed for WFQ and DRR.

Since both scheduling policies approximate an ideal Gen-
eralized Processor Sharing the same model is used for WFQ
and DRR. The CTMC is similar to (4)-(7) with exception that
the queue i is served at rate µi if other queues are empty,
otherwise the rate scales proportionally to the positive weight
wi. State space SGPS is also simplified and it is formed solely
of p tuples q defined as for SP. The resulting CTMC is based
on [19] and evolves according to the following generator:

Q[q, qi+] = λiIqi<bi 0 < i ≤ p (8)

Q[q, qi−] =
Iqi>0wi∑
qi>0 wi

µi 0 < i ≤ p (9)

Given the generator matrix Q, we can develop either an
analytical solution for queue characteristics as in [19], [20] or
use a direct approach and obtain them numerically. We chose
the latter and compute packet loss delay and jitter assuming the
CTMC has reached stationary distribution π computed from
global balance equations (GBE) [33] that form a sparse linear
system. We obtained π from sparse eigenvalue decomposition
via Arnoldi method [35] with a general sparse linear solver
as a fallback in case of numerical instabilities. Given the π,
the packet loss ratio for class i (pb[i]) is the sum of all state
probabilities where queue i is full. The delay is computed
from average queue size (with respect to π) using Little’s law.
Computation of jitter requires a more sophisticated approach.
We pose this as the first passage time problem in CTMC [36].
The delay of a class i customer is the first passage time to
any state where the queue i is empty provided that no new
customers can arrive so λi = 0 for GPS or λj = 0, j ≤ i
for SP. Its conditional distribution can be calculated from Q
using Laplace transform [36]. The final delay distribution and
jitter are obtained from the total probability theorem. It is
assumed that a packet of class i observing state s at his arrival
experiences delay equal to the first passage time from the state
just after his arrival si+. From PASTA property, the probability
of such an event is π[s]/(1− pb[i]), here we condition of the
event that packet is not dropped.

VI. EVALUATION

In this section, we evaluate the performance of RouteNet-E
in a wide range of relevant scenarios. We seek to understand:
1) Can RouteNet-E model complex traffic models? What is
the accuracy with realistic models with strong autocorrelation
and heavy-tails?
2) Is RouteNet-E able to understand more complex multi-
queue scheduling policies? What is the accuracy compared
to QT?
3) Is RouteNet-E able to generalize to unseen network con-
figurations and traffic loads? Also, can it generalize to larger
networks?
4) How fast is RouteNet-E compared to the QT benchmark?
Does it allow for real-time operation?

A. Evaluation Methodology

To analyze the accuracy of RouteNet-E (Sec. IV) and
benchmark it against the state-of-the-art queuing theory model
(Sec. V), we use the following methodology. In all the
experiments the ground-truth is obtained with a packet-level
simulator (see Sec. IV-B for details). Unless noted otherwise,
in each evaluation we perform 50k experiments with a random
configuration (src-dst routing, traffic intensity, per-interface
scheduling policy, and queue length) and compute the mean
average delay, jitter, and losses. Then, we compute the error
of RouteNet-E’s and QT’s estimates. For a fair comparison,
we use samples of the GBN topology, which is not included
during training (see Sec. IV-C for training details). Finally,
depending on the experiment we use different traffic models
(Sec. IV-B) and a wide range of realistic topologies.

-100% -50% 0% 50% 100%
Relative Error [(y − ŷ)/y × 100]

0.0

0.2

0.4

0.6

0.8

1
C

D
F

Mean Absolute Relative Error
Delay - RouteNet-E: 2.28%
Delay - QT: 17.99%

Jitter - RouteNet-E: 6.58%
Jitter - QT: 71.98%

Delay - RouteNet-E

Delay - QT

Jitter - RouteNet-E

Jitter - QT

(a) Poisson

-100% -50% 0% 50% 100%
Relative Error [(y − ŷ)/y × 100]

0.0

0.2

0.4

0.6

0.8

1

C
D

F

Mean Absolute Relative Error
Delay - RouteNet-E: 4.62%
Delay - QT: 22.43%

Jitter - RouteNet-E: 6.05%
Jitter - QT: 99.01%

Delay - RouteNet-E

Delay - QT

Jitter - RouteNet-E

Jitter - QT

(b) Constant bitrate

-100% -50% 0% 50% 100%
Relative Error [(y − ŷ)/y × 100]

0.0

0.2

0.4

0.6

0.8

1

C
D

F

Mean Absolute Relative Error
Delay - RouteNet-E: 4.27%
Delay - QT: 23.10%

Jitter - RouteNet-E: 8.58%
Jitter - QT: 69.41%

Delay - RouteNet-E

Delay - QT

Jitter - RouteNet-E

Jitter - QT

(c) On-Off

-100% -50% 0% 50% 100%
Relative Error [(y − ŷ)/y × 100]

0.0

0.2

0.4

0.6

0.8

1

C
D

F

Mean Absolute Relative Error
Delay - RouteNet-E: 3.24%
Delay - QT: 21.11%

Jitter - RouteNet-E: 11.95%
Jitter - QT: 74.38%

Delay - RouteNet-E

Delay - QT

Jitter - RouteNet-E

Jitter - QT

(d) Autocorrelated exponentials

-100% -50% 0% 50% 100%
Relative Error [(y − ŷ)/y × 100]

0.0

0.2

0.4

0.6

0.8

1

C
D

F Mean Absolute Relative Error
Delay - RouteNet-E: 6.00%
Delay - QT: 68.10%

Jitter - RouteNet-E: 8.17%
Jitter - QT: 91.41%

Delay - RouteNet-E

Delay - QT

Jitter - RouteNet-E

Jitter - QT

(e) Modulated exponentials

-100% -50% 0% 50% 100%
Relative Error [(y − ŷ)/y × 100]

0.0

0.2

0.4

0.6

0.8

1

C
D

F Mean Absolute Relative Error
Delay - RouteNet-E: 3.52%
Delay - QT: 35.15%

Jitter - RouteNet-E: 11.21%
Jitter - QT: 69.17%

Delay - RouteNet-E

Delay - QT

Jitter - RouteNet-E

Jitter - QT

(f) All traffic models multiplexed

Fig. 4: CDF of the relative error for RouteNet-E and QT with different traffic models. Top row shows models with discrete
state space, bottom row includes continuous state space. Each figure also shows numbers of the mean absolute relative error.

B. Traffic Models

This section focuses on analyzing the accuracy of RouteNet-
E in a wide range of traffic models. The experiment is
organized such that we add complexity to the traffic model
by changing its first and second-order statistics (i.e., variance
and autocorrelation). With this, we use challenging models
that are good approximations to those seen in Internet links.

Figure 4 shows the CDF of the relative error (in %) for all
the traffic models under evaluation. We plot the error for the
delay and jitter estimates of both, RouteNet-E and QT. As we
can observe, RouteNet-E achieves excellent results, producing
very accurate estimates of delay and jitter in all traffic models,
with a worst-case error below 6% for delay and 12% for jitter
(mean absolute relative error).

As expected, QT results in unacceptable performance in
continuous-state traffic models (up to 68% for delay), while
it achieves moderate accuracy for discrete-state models. Inter-
estingly, QT shows poor accuracy across all the experiments
estimating jitter. The reason for this is that QT assumes
independence between queues in the network. Hence, the
estimator used for jitter is the sum of the individual delay
variance of queues along flow paths, which ignores possible
covariance effects between queues.

It is remarkable that RouteNet-E is also accurate even with
non-Markovian traffic models (On-Off, Figure 4c) and with
challenging models that approximate strong autocorrelation
(Autocorrelated Exponentials, Figure 4d). For the latter, it
has been shown in the literature that the TCP protocol gen-
erates traffic with autocorrelation for a finite range of time-
scales [37]. In this scenario, RouteNet-E estimates the delay
with a mean error of 3.24%.

Figure 4e plots the accuracy for the Modulated Exponentials
model, this emulates observations found at Internet links [8]
by approximating a heavy-tail. In this scenario, RouteNet-E

still produces very accurate estimates. It is worth noting that
this traffic model could be made even more difficult for QT
by increasing both the variance and the autocorrelation factor.

The key to RouteNet-E’s performance is that it has been
trained for such traffic models. As discussed in Section IV, we
have parameterized the models and trained the GNN to learn
the interaction between the traffic, the queues, and the resulting
performance metrics. The experiments depicted in Figure 4
show that RouteNet-E can generalize to traffic, providing good
accuracy even for traffic models with parameters not seen in
training. RouteNet-E is designed to be an extensive model,
adding a new traffic model is as simple as pasteurizing it and
including it in training.

To showcase this, consider the experiment shown in Fig-
ure 4f, where we run 100k experiments with samples where
each src-dst pair uses a random traffic model with random
parameters. Effectively, we multiplex all traffic models in a
single network topology. As the figure shows, RouteNet-E
is able to model this scenario in the presence of complex
interactions of various multiplexed traffic models.

C. Scheduling Policies

With this experiment, we aim to validate that RouteNet-E
is able to model the behavior of queues. For this we use 100K
samples of the GBN topology, each router port is configured
with three different queues and with a randomly selected
scheduling policy (FIFO, WFQ, DRR, SP). For WFQ and
DRR, the set of weights is also randomly assigned. Moreover,
each src-dst path is assigned a Quality-of-Service class that
maps traffic flows to specific queues. In order to provide a
fair benchmark with QT, we use only Poisson traffic.

Table I summarizes the results, which are grouped for
various traffic intensities, from low-loaded to highly-congested
scenarios, where the mean packet loss rate is around 3%. As

Delay Jitter Loss
Low Med High Low Med High Low Med High

RouteNet-E 2.0% 2.2% 3.3% 4.8% 6.2% 10.6% 12.61% 12.7% 12.66%
QT 13.0% 17.3% 25.1% 49.0% 53.2% 59.6% 61.83% 59.3% 57.9%

TABLE I: Results for Scheduling Policies

[50,99] [100,149] [150,199] [200,249] [250,300]
Topology Size

0%

5%

10%

15%

20%

A
bs

ol
ut

e
R

el
at

iv
e

E
rr

or

Fig. 5: Absolute relative
error vs. topology size.

[10,30] [31,50] [51,70]
Topology Size (number of nodes)

0

100

200

T
im

e
(m

ill
is

ec
on

ds
) RouteNet-E

QT

Fig. 6: Execution time
vs. topology size.

we can observe, RouteNet-E outperforms QT, obtaining highly
accurate estimates for all the evaluated metrics.

D. Generalization to larger topologies

The previous experiments have shown that RouteNet-E
achieves remarkable accuracy in performance evaluation un-
der different traffic models (Sec. VI-B) as well as complex
scheduling policies (Sec. VI-C). As we have discussed in
Section II, ML-based network models must generalize to
unseen and larger networks to become a practical solution.
In this vein, RouteNet-E was carefully designed to address
this challenge (see Sec. IV-A for details).

In this set of experiments, we evaluate RouteNet-E in a
wide range of networks considerably larger than the ones
seen during training. Specifically, the model has been trained
with topologies between 25 and 50 nodes and tested with
topologies from 50 to 300 nodes. All these networks have
been artificially generated using the Power-Law Out-Degree
algorithm described in [38], where the ranges of the α and β
parameters have been extrapolated from real-world topologies
of the Internet Topology Zoo repository [39]. Link capacities
and the generated traffic volume is scaled accordingly.

Figure 5 shows how RouteNet-E generalizes to larger
topologies not seen in training. Specifically, the boxplots show
the absolute relative error with respect to the topology size.
As expected, RouteNet-E obtains better accuracy in topologies
that are closer to the ones seen during the training phase (50
to 99 nodes), achieving an average error of 4.5% (green line).
As the topology size increases, the average error stabilizes
to ≈ 10%. Note that this value is even lower than the one
obtained by the QT model, which achieves a mean error of
12.6% in samples with Poisson traffic (Fig. 4a). We could
not test larger topologies (>300) in our cluster (180 nodes),
as packet-level simulations – used for the ground-truth – are
sequential in nature, and, with our traffic configurations, have
exponential complexity with respect to the topology size.

Generalization is an open challenge in the field of GNN. As
discussed in Sec. IV, we have addressed this by using domain-
specific knowledge and data augmentation. Particularly, we
infer delay/jitter from queues’ occupation and apply our scale-
independent method to generalize to larger topologies.

E. Inference Speed

Finally, in this section, we evaluate the inference speed of
RouteNet-E. Fast models are especially appealing for network
control and management, as they can be deployed in real-
time scenarios. For this, we have measured the execution
times [Intel(R) Xeon(R) Gold 5220 CPU @ 2.20GHz] of
the experiments in the previous section, for both QT and
RouteNet-E. The results (Figure 6) show that both models
operate in the order of milliseconds. In particular, RouteNet-E
goes from a few milliseconds for small topologies to a few
hundred for the larger ones.

VII. RELATED WORK

The use of Deep Learning (DL) for network modeling has
recently attracted the interest of the networking community.
This idea was initially suggested by Wang, et al. [40]. The au-
thors survey different techniques and discuss data-driven mod-
els that can learn real networks. Initial attempts to instantiate
this idea use fully connected neural networks (e.g. [41], [42]).
Such early attempts do not generalize to networks not seen
in training, are not tested with realistic traffic models, and do
not model queues. More recent works propose more elaborated
neural network models, like Variational Auto-encoders [43] or
ConvNN [44]. However, they have similar limitations.

Finally, some early pioneering works use GNN in the field
of computer networks [45], [46], [47]. However, they use a
basic GNN architecture that considers a simplified model of
the network, ignoring traffic models, queuing policies, and the
critical property of generalizing to larger networks.

VIII. DISCUSSION AND CONCLUDING REMARKS

In this paper, we have presented RouteNet-E, a new tool
for network modeling. RouteNet-E has shown remarkable
accuracy in all the scenarios, outperforming a state-of-the-art
QT model. RouteNet-E also overcomes the main limitation of
QT, and it is able to model challenging traffic models. More
importantly, the proposed model addresses the main drawback
of existing ML-based models, and it is able to provide accurate
estimates in larger networks (≈10x).

RouteNet-E provides unprecedented accuracy in network
performance evaluation. However, in contrast to QT, it does not
help understand the behavior of the network being modeled.
The knowledge learned by RouteNet-E during training is
not human-understandable. This is a common issue for all
ML-based models, and substantial research efforts are being
devoted to producing explainable ML models [47]. However,
this is still an open research problem.

RouteNet-E’s performance enables network optimization,
planning, and operation in real-time scenarios. It also rep-
resents an open-source extensible model. We hope that the
community will use it as a baseline to incorporate additional
network components, such as other scheduling policies, traffic
models, etc.

REFERENCES

[1] R. B. Cooper, “Queueing theory,” in Proceedings of the ACM’81
conference, 1981, pp. 119–122.

[2] Z. Xu et al., “Experience-driven networking: A deep reinforcement
learning based approach,” in IEEE INFOCOM, 2018, pp. 1871–1879.

[3] A. Arfeen, K. Pawlikowski, D. McNickle, and A. Willig, “The role of the
weibull distribution in modelling traffic in internet access and backbone
core networks,” Journal of network and computer applications, vol. 141,
pp. 1–22, 2019.

[4] T. Karagiannis et al., “A nonstationary poisson view of internet traffic,”
in IEEE INFOCOM, vol. 3, 2004, pp. 1558–1569.

[5] T. Karagiannis, M. Molle, and M. Faloutsos, “Long-range dependence
ten years of internet traffic modeling,” IEEE internet computing, vol. 8,
no. 5, pp. 57–64, 2004.

[6] E. Kresch and S. Kulkarni, “A poisson based bursty model of internet
traffic,” in IEEE International Conference on Computer and Information
Technology, 2011, pp. 255–260.

[7] V. Paxson and S. Floyd, “Wide area traffic: the failure of poisson
modeling,” IEEE/ACM Transactions on networking, vol. 3, no. 3, pp.
226–244, 1995.

[8] J. Popoola and R. Ipinyomi, “Empirical performance of weibull self-
similar tele-traffic model,” International Journal of Engineering and
Applied Sciences, vol. 4, no. 8, p. 257389, 2017.

[9] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[10] Y. LeCun et al., “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–
444, 2015.

[11] J. Jumper et al., “Highly accurate protein structure prediction with
AlphaFold,” Nature, 2021, (Accelerated article preview).

[12] F. Scarselli, M. Gori et al., “The graph neural network model,” IEEE
Transactions on Neural Networks, vol. 20, no. 1, pp. 61–80, 2008.

[13] J. Gilmer et al., “Neural message passing for quantum chemistry,” arXiv
preprint arXiv:1704.01212, 2017.

[14] P. Battaglia et al., “Interaction networks for learning about objects,
relations and physics,” in Advances in neural information processing
systems, 2016, pp. 4502–4510.

[15] J. Zhou et al., “Graph neural networks: A review of methods and
applications,” arXiv preprint arXiv:1812.08434, 2018.

[16] O. Lange and L. Perez, “Traffic prediction with advanced Graph
Neural Networks,” 2020. [Online]. Available: https://deepmind.com/
blog/article/traffic-prediction-with-advanced-graph-neural-networks

[17] M. Ferriol-Galmés et al., “Routenet-erlang,”
https://github.com/BNN-UPC/Papers/wiki/RouteNet_Erlang, 2021.

[18] I. Norros, “A storage model with self-similar input,” Queueing
Systems, vol. 16, no. 3, pp. 387–396, 1994. [Online]. Available:
https://doi.org/10.1007/BF01158964

[19] A. Al-Sawaai et al., “Performance evaluation of weighted fair queu-
ing system using matrix geometric method,” in IFIP NETWORKING.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 66–78.

[20] A. S. Kapadia, M. F. Kazmi, and A. Mitchell, “Analysis of a finite
capacity non preemptive priority queue,” Computers & Operations
Research, vol. 11, no. 3, pp. 337–343, 1984.

[21] P. W. Battaglia et al., “Relational inductive biases, deep learning, and
graph networks,” arXiv preprint arXiv:1806.01261, 2018.

[22] D. Raposo et al., “Discovering objects and their relations from entangled
scene representations,” arXiv preprint arXiv:1702.05068, 2017.

[23] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit
round-robin,” IEEE/ACM Transactions on networking, vol. 4, no. 3, pp.
375–385, 1996.

[24] L. Ruiz, L. Chamon, and A. Ribeiro, “Graph neural networks and the
transferability of graph neural networks,” Advances in Neural Informa-
tion Processing Systems, vol. 33, 2020.

[25] L. Engstrom, B. Tran, D. Tsipras, L. Schmidt, and A. Madry, “Exploring
the landscape of spatial robustness,” in International Conference on
Machine Learning, 2019, pp. 1802–1811.

[26] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep
neural networks,” IEEE Transactions on Evolutionary Computation,
vol. 23, no. 5, pp. 828–841, 2019.

[27] A. Varga, “Discrete event simulation system,” in European Simulation
Multiconference (ESM), 2001, pp. 1–7.

[28] R. Nelsen, An Introduction to Copulas, ser. Lecture notes in statistics.
Springer, 1999.

[29] X. Hei, J. Zhang et al., “Wavelength converter placement in least-load-
routing-based optical networks using genetic algorithms,” Journal of
Optical Networking, vol. 3, no. 5, pp. 363–378, 2004.

[30] F. Barreto et al., “Fast emergency paths schema to overcome transient
link failures in ospf routing,” arXiv preprint arXiv:1204.2465, 2012.

[31] J. Pedro, J. Santos, and J. Pires, “Performance evaluation of integrated
otn/dwdm networks with single-stage multiplexing of optical channel
data units,” in International Conference on Transparent Optical Net-
works, 2011, pp. 1–4.

[32] J. Chung et al., “Empirical evaluation of gated recurrent neural networks
on sequence modeling,” 2014.

[33] F. P. Kelly, Reversibility and Stochastic Networks. Cambridge Univer-
sity Press, 2011.

[34] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios, “Open,
closed, and mixed networks of queues with different classes of
customers,” J. ACM, vol. 22, no. 2, p. 248–260, Apr. 1975. [Online].
Available: https://doi.org/10.1145/321879.321887

[35] W. J. Stewart, Numerical Methods for Computing Stationary
Distributions of Finite Irreducible Markov Chains. Boston,
MA: Springer US, 2000, pp. 81–111. [Online]. Available:
https://doi.org/10.1007/978-1-4757-4828-4_4

[36] M. Kijima, Markov Processes for Stochastic Modeling, ser. Stochastic
Modeling Series. New York, NY: Springer-Science+Business Media,
B.V., 1997.

[37] D. R. Figueiredo, B. Liu, V. Misra, and D. Towsley, “On the autocor-
relation structure of tcp traffic,” Computer Networks, vol. 40, no. 3, pp.
339–361, 2002.

[38] C. R. Palmer and J. G. Steffan, “Generating network topologies that
obey power laws,” in IEEE Global Telecommunications Conference
(GLOBECOM), vol. 1, 2000, pp. 434–438.

[39] S. Knight, H. Nguyen et al., “The internet topology zoo,” IEEE JSAC,
vol. 29, no. 9, pp. 1765 –1775, 2011.

[40] M. Wang et al., “Machine learning for networking: Workflow, advances
and opportunities,” IEEE Network, vol. 32, no. 2, pp. 92–99, 2017.

[41] A. Valadarsky et al., “Learning to route,” in ACM workshop on hot
topics in networks, 2017, pp. 185–191.

[42] A. Mestres et al., “Understanding the modeling of computer network
delays using neural networks,” in ACM SIGCOMM BigDAMA workshop,
2018, pp. 46–52.

[43] S. Xiao et al., “Deep-q: Traffic-driven qos inference using deep gener-
ative network,” in ACM SIGCOMM Workshop on Network Meets AI &
ML, 2018, pp. 67–73.

[44] X. Chen et al., “Deep-rmsa: A deep-reinforcement-learning routing,
modulation and spectrum assignment agent for elastic optical networks,”
in 2018 Optical Fiber Communications Conference and Exposition
(OFC), 2018, pp. 1–3.

[45] F. Geyer and S. Bondorf, “Deeptma: Predicting effective contention
models for network calculus using graph neural networks,” in IEEE
INFOCOM, 2019, pp. 1009–1017.

[46] K. Rusek, J. Suárez-Varela et al., “Unveiling the potential of graph
neural networks for network modeling and optimization in sdn,” in ACM
Symposium on SDN Research, 2019, pp. 140–151.

[47] Z. Meng et al., “Interpreting deep learning-based networking systems,”
in ACM SIGCOMM, 2020, pp. 154–171.

