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Abstract

Evolutionary Algorithms (EA) are useful optimization methods for exploration of the
search space, but they usually have slowness problems to exploit and converge to the
minimum with accuracy. On the other hand, gradient based methods converge faster
to local minimums, although are not so robust (e.g., flat areas and discontinuities
can cause problems) and they lack exploration capabilities.

This thesis presents and analyze four versions of a hybrid optimization method
trying to combine the virtues of Evolutionary Algorithms (EA) and gradient based
algorithms, and to overcome their corresponding drawbacks. The proposed Hybrid
Methods enable working with N optimization algorithms (called players), multiple
objective functions and design variables, and define them differently for each player.
The performance of the Hybrid Methods are compared against a gradient based
method, two Genetic Algorithms (GA) and a Particle Swarm Optimization (PSO).

Tests have been conducted with mathematical benchmark problems (synthetic tests
designed to specifically test optimization methods) and an engineering application
with high demanding computational resources, a Synthetic Jet actuator for Active
Flow Control (AFC) over a 2D Selig-Donovan 7003 (SD7003) airfoil at Reynolds
number 6× 104 and a 14 degree angle of attack. The Active Flow control problem
has been used in a single optimization problem and in a two objective optimization
problem.
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Chapter 1

Introduction

Generally speaking, optimization is a mathematical technique for finding the maxi-
mum or minimum value of a function, or set of functions, of several variables subject
to a set of constraints.

Optimization is a topic of great interest in engineering and other fields, and it is
actively researched. Aerospace engineering is traditionally one of the most interested
fields in optimization. This is because of the complexity of aircraft design, space
systems design and problems associated with air transport. The competitiveness
and exigence of the aerospace market is another major factor to invest and research
on optimization.

Nowadays, optimization has reached all engineering fields and it is widely used in
the industry and research areas. Optimization applications range from improvement
and refinement of mechanical designs to path optimization of delivery routes, or
production processes. In airspace engineering, optimization is used even in early
stages of projects, such as aircraft preliminary designs; and in advances stages of
the design process to further refine the final design.

There are different approaches when dealing with optimization problems. From
highly specialized algorithms that only address particular problems, to generic opti-
mization methods that do not require information about the problem at hand. The
highly specialized algorithms can be very efficient but only work with the optimiza-
tion problem that they where designed to solve. On the other hand, there are generic
algorithms that only require to evaluate the fitness of the proposed design during
the optimization problems. In this work Evolutionary Algorithms are considered,
as they are used daily by the author as a research engineer at Centre Internacional
de Mètodes Numèrics en Enginyeria1 (CIMNE).

In the following sections of this chapter the justification, objective and document
layout are presented.

1http://www.cimne.com
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CHAPTER 1. INTRODUCTION

1.1 Justification

Optimization is one of the main research topics at CIMNE. It is conducted by
the Aerospace Engineering Group2. The author collaborates with the Aerospace
Engineering Group since 2010 when he was member of CIMNE’s Industrial Processes
Group3. Since September 2015 the author became a full time research engineer at
the Aerospace Engineering Group and started focusing on optimization. The work
conducted by the author in the Aerospace Engineering Group on optimization can
be divided in two aspects. First, applying the in-house optimization tool to several
industrial projects and research projects in different fields and topics such as:

• Optimization of metal forming processes with finite element method.

• Design of flexible electric circuits for heating purposes.

• Tuned mass damper design to reduce fatigue on offshore wind turbines.

• Active Flow Control using plasma actuators. In this project the optimizer was
coupled with a wind tunnel to conduct the optimization through experimental
evaluation of the objective function.

among others. During this period at CIMNE, the main problems encountered when
working on optimization problems with industrial requirements are listed below:

• Expensive evaluation of objective functions, which leads to high computational
costs.

• Complex work-flows involving different software and programming languages.

• Multi-objective requirements which lead to use Evolutionary Algorithms. The
low rate of convergence of evolutionary algorithms lead to high computational
costs. The investigation on gradient based methods for multi-objective opti-
mization is currently an active field of research.

• Lack of high performance computational resources or already saturated.

The importance to have an optimization tool able to address industrial and research
problems of different fields and requirements is remarkable. For this reasons, it would
be adequate to have an unified tool containing different methods and optimization
approaches so it is not necessary to spend time linking and testing the work-flow with
different optimization tools and strategies. In addition, it is not enough to obtain
such a tool, but to study and learn when and how to use the different optimization
strategies according to the project requirements.

The second aspect of the work at CIMNE has been the maintenance and develop-
ment of the in-house optimization platform. The current version of the in-house
optimization platform is an implementation re-coded by the author from scratch,
named RMOPv2. The research group agreed to implement the software from zero
to obtain a more robust new version, easy to maintain and suitable to use it as a

2http://www.cimne.com/spacehome/2/1167
3http://www.cimne.com/spacehome/2/1159
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CHAPTER 1. INTRODUCTION

research platform. The old code was not designed to allow the research on multi-
player optimization that is proposed in this work. The architecture of the new im-
plementation was designed with this requirement in mind. Another requirement is
to facilitate the coupling with other existing software at CIMNE, namely KRATOS
Multi-physics platform4 among others. In addition, the new platform had to allow
working in industrial and research projects with high flexibility and using different
computation resources. The new platform allows implementing and testing new
algorithms with shorter coding and testing times.

During the development of research projects and when dealing with industrial prob-
lems at CIMNE, one need that kept rising was to improve the performance of the
optimizer in terms of global search capabilities and accuracy. These two aspects
usually have to be compromised and is an active line of research at the Aerospace
Engineering Group and many other research groups. Hybridization is one of the
techniques that allow to improve both aspects of the methods and is the focus of
this work.

1.2 Thesis objectives

The main objective of this work is to present the research work developed on op-
timization focused on multi-objective and multi-player methods. The research will
focus on developing and testing new optimization strategies to solve industrial ap-
plications applying hybridization techniques with multi-player strategies that use
different optimization methods. Industrial applications usually require high compu-
tational costs and limited time to perform the optimization.

1.3 Document layout

This document is organized as follows. Chapter 2 presents a review showing the
state of the art in hybridization and places this investigation into context. Next,
in Chapter 3, the proposed hybridization are explained in detail. The exposition
is complemented with the explanation of the optimization algorithms used in the
hybridization. In Chapter 4, the metrics used to evaluate the performance of the dif-
ferent optimization algorithms tested are explained and the results with the bench-
mark tests are presented. The mathematical benchmark test problems are presented
first, containing single objective and two objectives optimization test problems. The
last sections of Chapter 4 present the performance results on a Synthetic Jet de-
vice for Active Flow Control optimization problem, also with one and two objective
functions. The document closes in Chapter 5 with the conclusions, future work and
a list of publications made during the course of the investigation.

4http://www.cimne.com/kratos
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Chapter 2

State of the art

A review of the more relevant literature on optimization is presented in this chapter.
Different methods and approaches are described, and their strong points and flaws
are discussed. The objective of this chapter is to put the optimization methods used
in this study into context, not to provide a detailed description of all the optimization
methods. A section is dedicated to Hybrid Methods which are optimization methods
formed by a combination of other optimization algorithms, such as the one developed
in this study.

2.1 Optimization definition

A multi-objective optimization problem can be defined as in (2.1) in its minimization
form.



min(f1(~x), f2(~x), ..., fk(~x)), k = 1, ..., K

Subject to:

gl(~x) ≥ 0, l = 1, ..., L

hm(~x) = 0, m = 1, ...,M

Where:

~x ∈ X, X feasible set of decision variables.

fk : X → R, k = 1, ..., K

gl : X → R, l = 1, ..., L

hm : X → R, m = 1, ...,M

(2.1)

In order to clarify the nomenclature, the following definitions are stated:

Design Variables (DVs) are the set of decision variables, the independent vari-
ables of the optimization problem: ~x ∈ X.

Objective Functions (FOs) are the set of fitness functions. The functions that
express the aptitude of a set of DVs: f1(~x), f2(~x), ..., fK(~x).
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Constraints (CNs) are the set of expressions that needs to be satisfied in order to
consider the values of the DVs as feasible. It includes both types, inequality
gl and equality hm expressions.

2.2 Classification of the Optimization methods

Optimization problems are addressed from many different approaches. The selec-
tion of the optimization method to solve a problem depends on the complexity, the
continuity and the possibility to calculate the derivatives of the objective functions
involved (sensitivities). It is also possible to use different algorithms depending on
the state of the study as may require different levels of precision. In earlier stages of
a study, an optimization algorithm with more exploration capabilities may be more
suitable. As a study reaches advanced phases and the detailed design is performed a
method with more exploitation capabilities could be a better option. In Figure 2.1
a scheme of a possible classification of different optimization methods is presented.
Not all optimization methods are listed here and one could think about other possi-
ble classifications. Two main groups are normally used to classify the optimization
methods, the Meta-heuristics (stochastic methods) and the Classicals (deterministic
methods). Meta-heuristics methods are usually very robust in scenarios without
much knowledge about the shape of the objective functions, with possible disconti-
nuities and non-differentiable functions. The introduction of the Pareto-Optimality
concept allows to implement multi-objective meta-heuristics methods.

6 Optimization on industrial problems focussing on multi-player strategies
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Optimization Methods

Classical

Meta-heuristics

Trajectory Based

Population Based

Nature Inspired

Evolutionary Algorithms

Swarm Intelligence

Gradient Based

Direct Search

Genetic Algorithm

Differential Evolution

Particle Swarm Optimization

Ant Colony Optimization

Tabu Search

Greedy Search

Steepest Descent

Newton

Conjugate Gradient

SIMPLEX Search

Hooke-Jeeves

Clonal Selection

Bee Algorithm

Simulated Annealing

Estimation of Distribution Algorithm

Figure 2.1: Classification of the optimization algorithms.

Meta-heuristics methods usually perform very well in the exploration of the search
space but lack exploitation performance. They usually struggle to converge to the
exact minimum. On the other hand, Classical methods usually converge faster to
the near minimum when appropriate, showing great exploitation capabilities. The
main drawback of Classical methods is the lack of exploration capabilities and the
limitation of objective functions where are applicable. Classical methods are usually
not suitable to optimize problems with non-continuous and/or non-differentiable
objective functions. In addition, Classical methods are usually single objective.

A general description of the main methods and techniques is presented in the fol-
lowing sections.

2.2.1 Classical methods

The classical optimization techniques are useful in finding the optimum solutions
for functions that are continuous. These methods are analytical and deterministic.
These techniques are very efficient but their scope is hardly limited in practical
optimization problems. That is because most practical engineering optimization
problems are not continuous nor differentiable. Classical methods can be split into
two main groups: Direct search and Gradient based.

Optimization on industrial problems focussing on multi-player strategies 7
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Direct search

Direct search methods include methods such as the Simplex Search, which is part
of the Linear Programming methods on other classifications.

Linear programming is a set of techniques to find the best solution for a problem
with a linear objective function (single objective problems), and linear equality
and inequalities. One of the most popular methods of linear programming is the
SIMPLEX method. The restriction that the functions must be linear makes these
techniques of no use in most of the applications of interest in this work. For more
details on Linear programming see Luenberger, Ye et al. [1]. Another example of a
Direct search method is the Hooke-Jeeves method, also known as Pattern Search,
for detailed reference see [2, 3, 4, 5].

Gradient based methods

Gradient-based is another type of method that handle non-linear problems. They
use the information about the gradient to select the search direction and, iteratively
converge to the optimum solution. These methods can get stuck on local optima and
their performance highly depend on the starting solution of the iterative method.
These methods are usually efficient, especially when the gradient information can
be accurately computed. Different methods have been proposed to estimate the
gradient when it can not be computed analytically. Some gradient methods are
listed below:

• Newton’s method.

• Steepest Descent

• Conjugate gradient method.

A detailed description of these methods, and others, can be found at [6].

Traditionally, these methods are well suited for single objective optimization prob-
lems, but can also be used through different strategies, such as multi-player opti-
mization, to address multi-objective optimization problems. This approach will be
researched further because of its potential increase in performance in high demand-
ing applications.

The Conjugate Gradient has been used intensively in this study. A more detailed
explanation of the used method is explained in Section 2.3.

2.2.2 Meta-heuristics methods

Meta-heuristics methods are those which use random or pseudo-random tools to gen-
erate new variables along with successive iterations. They are capable of performing
multi-objective optimization. The use of the Pareto Optimality Criteria is accepted
as a relevant tool for the multi-objective optimization and does not impose restric-
tions on the shape of the objective function. Meta-heuristics methods can handle
multiple restrictions of any kind as well. This robustness is one of the most inter-
esting aspects of these methods. Usually, they do not require information about the

8 Optimization on industrial problems focussing on multi-player strategies



CHAPTER 2. STATE OF THE ART

gradient, but sometimes its performance can be improved using such information.
The counterpart is that they usually need more iterations to converge on problems
where other methods can be used. There are two main groups of Meta-heuristics
methods, the trajectory based and the population based.

These methods usually perform global optimization efficiently but they lack precision
in some cases. Depending on the application it may be needed or interesting to refine
the results obtained by a Meta-heuristic optimization method with other methods,
such as gradient based methods to increase the precision of the optima. For example,
Gudla and Ganguli [7] proposed a hybrid genetic-conjugate gradient to perform
achieve such functionality in an automated way. They proposed to run a Genetic
Algorithm for n iterations and then start a Conjugate Gradient to improve the
solution, all integrated in a single algorithm.

Trajectory based

Trajectory based optimization methods are based on single solutions. The algo-
rithms start with a random solution or from previous knowledge. The initial solu-
tion is updated according to information about its neighborhood. These methods
do not require information about the gradient, only information about the objective
function evaluation around the current point. The comparison of the different indi-
viduals is usually performed only between the current point and one neighbor at a
time, then the algorithm decides if the neighbor is accepted or not. If the neighbor is
accepted, the process is repeated from the new accepted point. They usually include
probabilistic methods to avoid getting trapped in local minimums. Some examples
are:

• Tabu Search (see [8, 9, 10]).

• Greedy Search (see [11]).

• Simulated Annealing (see [12, 13, 14, 15]).

Population based, nature inspired

Population based methods work with a set of individuals, the set is called a popula-
tion. The whole population is computed before generating a new set of individuals,
the offspring. Nature inspired methods are the most used population based meth-
ods. There are two main groups, the Evolutionary Algorithms, and the Swarm
Intelligence.

Evolutionary algorithms

• Genetic Algorithms (GA) (see [16, 17, 18, 19]).

• Differential Evolution (see [20, 21]).

• Clonal Evolution (see [22, 23]).

• Estimation of Distribution Algorithm (EDA). There are variations of the EDA
algorithm that take into account information of an estimated gradient, see [24].
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There are variations of EDA that take into account information about an estimated
gradient [24].

Swarm Intelligence

• Particle Swarm Optimization (PSO) (see [25]).

• Ant Colony Optimization (see [26, 27]).

• Bee Algorithm (see [28]).

In the following sections the algorithms used in this study are described with more
detail. The optimization algorithms used are a Conjugate Gradient, a Genetic Al-
gorithm and a Particle Swarm Optimization.

2.3 Conjugate Gradient

The Conjugate Gradient is a gradient based optimization method for single objective
problems, see [29]. It is a deterministic method as there are no probability variables
in its algorithm. The method starts with an initial solution to the problem, the
initial point. The method computes the gradient of the objective function at the
initial point. In most engineering applications the derivatives of the function can
not be obtained analytically, and the gradient has to be approximated, for example,
by finite differences which increases the number of function objective evaluations
needed to converge.

Once the gradient at the starting point is known a search direction is determined,
there are different proposes to do so. For example, the ones proposed by Fletcher
and Reeves [30] (also see [31]) and Polak and Ribiere [32]. After determining the
search direction a line search is conducted, which consists in finding the minimum in
that direction. To do so the starting point is modified by adding the step size to each
design variable. The step size could be held constant but usually, it is more efficient
to change the step size using the available information of the objective function and
its derivatives. There are different methods to calculate the optimal step size for
example the Golden Section Search proposed by Kiefer [33] and the Brent Method
proposed by Brent [34].

After the minimum of the line search is found the process is repeated from the
minimum point. The gradient is computed again and if it is not zero the search
direction is determined and the line search is performed until a local minimum is
found, where the gradient is zero.

2.4 Genetic algorithm

The Genetic Algorithm is a population based method inspired in the evolution of
the species. The algorithm starts generating a random population, although if some
individuals are already known can be used as the starting population. After the
population is computed (i.e., the objective functions of all individuals are evaluated)
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the operators of the method are applied to generate a new population, called the
offspring. There are typically three operators:

• Selection operator.

• Crossover operator.

• Mutation operator.

The selection operator determines which individuals are candidates to become par-
ents of the offspring, which means they will participate in the crossover operator.
Selection operators usually combine probabilistic variables and ranking methods pri-
oritizing the fittest individuals of the population. The crossover operator combines
individuals, typically in pairs, to generate another pair of new individuals. The
crossover operator also includes a probabilistic process to determine which variables
are combined between the pair of individuals. The mutation operator introduces
random changes in the individual’s design variables to increase the exploration ca-
pabilities and avoid getting trapped in local minimums. The Genetic Algorithm
implementation used in this study is based on the implementation of NSGAII by
Deb et al. [18]. The operators used at the NSGAII implementation are:

• Selection operator: µ+ λ & Crowded-Comparison Operator [18].

• Crossover operator: Simulated Binary Crossover [17].

• Mutation operator: Polynomial Mutation [19].

2.5 Particle Swarm Optimization

The Particle Swarm Optimization is another population based and nature inspired
optimization method proposed by Kennedy and Eberhart [25]. The method mim-
ics the move of certain species, for example, the bees when searching for pollen.
A swarm of particles (candidate solutions) moves around the search space explor-
ing other areas. The movement of the particles is influenced by the best solution
achieved so far and the best solution inside the current swarm. This is achieved by
updating the position of each particle in the swarm adding a velocity computed for
each particle which depends on the relative position of the mentioned best solutions
concerning the particle and in random variations. For a detailed explanation and
formulation of the method see [35, 36, 37, 38, 39].

For the two objective problems a Multi-Objective Particle Swarm Optimization
method based on the work of Coello and Lechuga [40] has been used.

2.6 Hybrid Methods

Three hybridization strategies are identified from the literature; namely, hybridiza-
tion through operators, a combination of methods, and the definition of multi-
population methods. Although sometimes two of the strategies can be combined,
one can find references for the three of them, and even some combinations.
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A good starting reference is Cheng, Gen and Tsujimura [41]. Based on Genetic Al-
gorithms, this paper is describing the hybridization of genetic operators. It provides
a list of several crossover and mutation operators. It describes the combination of
global and local methods as well (Giffler and Thompson method, bottleneck shifting
heuristic, beam search). This clear example shows that, sometimes, a local search
method could be understood as a new operator, instead of a combination of two
methods. The paper is mainly focusing on job scheduling problems, but the de-
scribed operators can be applied to any type of optimization problem. Similarly,
Wang et al. [42] is defining a new selection operator, a new mutation operator, and
local search operators. Just focusing on crossover, Weare, Burke and Elliman [43]
is defining a hybrid crossover. Its main application is to operational research, with
specific application to the definition of scheduling and timetables, but again, the ap-
plicability is not limited to that type of problem. In some cases, the hybridization of
the operators can benefit from a good knowledge about the problem to solve. Valls,
Ballestin and Quintanilla [44] is describing such hybridization, which modifies the
crossover operator according to the problem. The Peak Crossover operation does
not use randomly selected parts to combine as standard crossover does, to adapt
the variability of the design variables to what the problem requires. The paper is
also presenting an addition operator, to the standard genetic ones, called Double
justification operator. Ho et al. [45] is also presenting a hybrid GA through opera-
tor hybridization. The selection operator is improved with local search operations,
which are strongly dependent on the problem to be solved.

This first strategy to hybridize through operators can be overlapped with the com-
bination of methods depending on how the methods are used. For example, Shahidi
et al. [46] defined a self-adaptive Memetic Algorithm using a Conjugate Gradient as
a local hill climb operator where each individual of the Genetic Algorithm popula-
tion can be improved between the crossover and the selection operators. Another
work taking a similar approach to hybridize is proposed by Bautista [47]. In its
thesis, three variations of a hybrid method are presented. They combine a Genetic
Algorithm (NSGAII) with a Feasible Sequential Quadratic Programming (FSQP)
to refine the solutions.

Looking to the second strategy; the combination of two methods, Kelly Jr and Davis
[48] presents a hybrid algorithm for classification; combining a genetic algorithm with
k-nearest neighbors classification algorithm. It is a good example that hybridization
is not limited to optimization methods, since genetic algorithms are not only used
for optimization. The fact is that Genetic Algorithms are always good candidates
to be hybridized.

Jih and Hsu [49] is introducing a hybrid Genetic Algorithm for Vehicle routing ap-
plications. Two algorithms are used. Dynamic Programming is producing a first
approach to the solution, and Genetic Algorithms are taking the partial results from
Dynamic Programming as the starting point. It also defines several crossover and
mutation operators, as part of the hybridization work. To get a good overview of the
potential when combining two different methods, El-Mihoub et al. [50] is presenting
the results of combining two methods; the first one is Genetic Algorithm, and the
second one is another search and optimization technique. The Genetic Algorithm is
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used as the exploration tool, while the other method is used as a local search tool.
The assessed search methods are Lamarckian learning, Baldwinian Learning, and
a hybrid Lamarckian-Baldwinian model. The communication describes the issues
about how to benefit from the local search information, and how to find the best bal-
ance between global and local search (exploration and exploitation); including the
division of exploration and exploitation time. It states that some combinations can
produce inefficiencies in the search and premature convergence, which is an unde-
sired effect. A last examples is Kulcke and Lorenz [51] which focus on architecture
applications. It combines Genetic Algorithms (Interactive GA, more specifically)
and Gradient information to enable the creation of the geometrical features to be
used in a new design. Hassanat et al. [52] define and test several mutation opera-
tions. Finally, they propose two new mutation operators. The first one creates a
selection algorithm to operate with those selected mutation operators at the same
time, while the second selects one of those mutation operators to be used along with
the analysis. Pan et al. [53] is another example that combines two methods, a Self-
Adaptive Genetic Algorithm, and a Conjugate Gradient. They propose a further
optimization of the best individuals of the Genetic Algorithm population (it seems
that the selection operator copies the best individuals directly to the next popula-
tion). After the genetic operators are performed the best individuals are improved
with the Conjugate Gradient and the worst ones use an immigrate method (not
specified in the article) to update.

Regarding the third strategy, the one defining multiple populations working in paral-
lel and sharing genetic information, Ho et al. [45] defines a hybrid Genetic Algorithm
with multiple populations applied to Vehicle routing problems. The hybridization
strategy is a combination of hybridization of operators and defining multiple pop-
ulations since one of the populations, the GA one, is enhanced using the Iterated
Swarp Procedure (ISP) operator, and the second population combines the Clarke
and Wright saving method and Nearest Neighbor Heuristic (NNH) to enhance the
GA operators. Briefly, each population uses a different strategy to enhance the ge-
netic information. Another strategy is the one used by Berger and Barkaoui [54]
who defines two populations, one of them managing the objective functions and the
second one the restrictions of the problem. After each iteration, the genetic infor-
mation is shared to assess how good are the candidates which improve the objective
functions and also fulfill the restrictions, and vice versa. Lee et al. [55] propose
a hybrid Genetic Algorithms based on the Nash Games. Each population, called
player in this case, is taking care of a part of the problem. An additional population
is dealing with the overall problem, so the Pareto Criteria can be easily applied. It is
worth mentioning the paper by Vargas et al. [56] who analyzes a multiple population
framework (they called sub-populations), and the cooperation between two or more
populations/optimization algorithms. They analyze the state of the art and describe
the difference between single-population (panmictic or unstructured algorithms) and
multi-population or sub-population (structured). Vargas’ paper presents the imple-
mentation of a structured algorithm using GDE3, and the Multi-Objective Novelty
Algorithm. A comparison is done between several hybridization approaches; namely
Island model, stepping Stone model, neighborhood model, where the exchanged ge-
netic information belongs to the whole set of populations, adjacent populations or
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exchanges from individuals to adjacent individuals, respectively.

Neri, Cotta and Moscato [57] present a book with a compendium of Memetic Algo-
rithms implementations and examples of optimization problems solved with them.
The book offers a systematic review of the main aspects when designing and using
Memetic Algorithms which include the balancing of local and global search, the
selection of the correct operators depending on the problem characteristics among
others. Another book about hybridization is presented by Cantu-Paz [58]. This book
explains parallel Genetic Algorithms in detail. Parallel Genetic Algorithms are a
form of hybridization, as they use more than one instance of a Genetic Algorithm
which share information to achieve better solutions and a higher rate of conver-
gence. The book also addresses the problem of configuration and tuning of such
algorithms as these aspects are of great importance with multi-population and par-
allel algorithms. Another example in the same line of work is presented by Periaux,
Gonzalez and Lee [59] which introduces Game Theory concepts (Nash and Stackel-
berg Games) in the hybrid methods and present its application to aeronautics and
UAV design. Talbi [60] presents an article which classifies and describes the main
aspects of designing parallel multi-objective Evolutionary Algorithms. It addresses
the design and implementation aspects of parallel Genetic Algorithms, and explains
the differences between the different computational environments (Shared memory,
distributed memory grid computing) and how they can affect the design of the hy-
bridization to take the most advantage of the system, for example, asynchronous
and synchronous designs are discussed.

2.7 Summary

A review of the state of the art on hybridization and specifically in hybridization
using Evolutionary Algorithms with gradient based methods has been conducted.
There are two general approaches on this type of hybridization. The first one is
to treat the gradient based method as a local search operator usually referred as
Memetic Algorithms. The second approach is to use a two stage algorithm, with
the first stage being the exploration phase conducted by the EA and a second ex-
ploitation stage conducted by the gradient based method.

In this work a multiplayer strategy is proposed, where the Evolutionary Algorithm
and the gradient based method of the hybridization are treated as equals and ex-
change information to cooperate during the whole search process.
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Proposed methodology; Hybrid
Method

This chapter describes the proposed new Hybrid methods. As described in Chap-
ter 2, several approaches have been developed so far. The current proposal is based
on a multi-population multi-optimization approach based on Lee et al. [61], which
defines three populations. Each population deals with a different set of objective
functions and design variables, and hybridizes through the use of Nash Games and
Pareto optimality concept. For a problem with two objective functions Lee et al. [61]
limited their proposal to three populations or players, all of them using Genetic Al-
gorithms. The main player, called the Global player, is in charge of the optimization
of the global problem which uses two objective functions and all design variables.
The remaining two players take care of a restricted optimization problem by fixing
the values of certain design variables and only considering one of the two objective
functions, respectively. The Hybrid Method shares information between these three
players trying to achieve a higher rate of convergence. The Hybrid Methods pro-
posed here extend the capabilities to combine several optimization methods among
the players, like Gradient Based ones or Particle Swarm Optimization. The current
implementation of the code also allows to easily configure a Hybrid Method with N
players although it has not been tested.

Multi-player optimization, the third hybridization strategy explained above, consists
in creating a new optimization algorithm combining more than one optimization al-
gorithm (which are called players). The different players run their own optimization
algorithms and exchange information between them. In a multi-player optimization
method there are different aspects to define and create new methods, the main ones
are:

• The type of optimization method of each player, which overlaps with the
second strategy in the above classification.

• The way and criteria in which the information is exchanged between players.

• The design variables and objective functions that each player works with, as it
is possible to make a player optimize a subspace of the problem. Some players
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could work with a subset of the search space or work with a subset of the
objective functions.

• How much run time is allocated to each player.

Some examples of multi-player strategies are listed below:

• Nash games [62].

• Hybrid games [63, 61].

• Stackelberg games [59].

• Hierarchical optimization [64].

In this study, the main line of research is to perform multi-player optimization with
players using different optimization algorithms which is a mix of the second and
third hybridization strategies. The main difference between the proposed hybridiza-
tion and the works of Shahidi et al. [46] and Pan et al. [53] is that in this study
the Conjugate Gradient is treated as a player, not as a refinement operator. The
Conjugate Gradient player can continue its optimization process independently from
the Evolutionary Algorithm in the hybridization and the sharing of information is
handled with a Migration Strategy that considers all players equally.

As outlined in the following sections, the general algorithm and its implementation
in C++ code are very flexible. Details of the implementation are explained in
Section 3.6. The new proposed Hybrid Method combines two or more players (i.e.,
optimization algorithms) into a single optimization strategy.

The main idea of hybridization is to combine different optimization algorithms into
a single optimization strategy. In this way, the resulting hybridized method in-
corporates the main advantages of each optimization algorithm and overcomes the
individual drawbacks.

The Hybrid Method algorithm proposed here and its implementation can reproduce
the behavior of Lee et al. [61] using its configuration. The implementation and
general algorithm have been outlined to allow flexibility and as a platform for testing
different variants of the method. The main configurable aspects are:

• Number of players.

• Optimization algorithm of each player.

• Number of design variables and range for each player.

• Number of objective functions for each player.

• The solver that uses each player. This can be useful to perform a hierarchical
optimization, among others as explained in Chapter 3.2.

The algorithm of the Hybrid Method proposed in this work is divided in three main
components. Those are:

• General Algorithm: It contains the initialization of the players, the main op-
timization loop, and the post-process of the optimization. This component
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is fixed and does not depend on the different variants proposed the Hybrid
Method.

• Migration Epoch algorithm: It is the function that defines the exchange of
information between the different players. It defines which individuals are
migrated between players, under which circumstances, etc.

• Immigrate methods : The Immigrate method is a function that has to be de-
fined for each type of player. The way each optimization algorithm used as a
player can incorporate and use an individual highly depends on the internal
algorithm of each type of player. This function defines how each type of player
incorporates the individuals that immigrate.

The following sections describe in detail each component of the Hybrid Method.

3.1 General Algorithm

The General Algorithm defines the global execution of the Hybrid Method. It man-
ages the initialization, main loop, and post-process of the Hybrid Method optimiza-
tion. The General Algorithm of the Hybrid Method is summarized in Algorithm 1.
This algorithm has been implemented in C++ using Object Oriented Programming
paradigm, thus the nomenclature of the algorithm imitates the structure of the code.

The players of the algorithm are stored in a vector named players. The first step
of the algorithm is to initialize all the players (player-Initialize). In this step, the
configuration files are read and all the optimization algorithms are initialized.

After the initialization of all players, the algorithm enters the main optimization
loop. The loop is repeated until a stop criterion is met. There are four available
termination criteria. They are based on the maximum execution time, the number
of evaluations of the objective functions, convergence criteria and achieved value of
the objective functions.

Algorithm 1: General Algorithm of the Hybrid Method

players: vector with all players;
foreach player ∈ players do

player-Initialize;

while not stop criteria is met do
foreach player ∈ players do

player-Generate;
player-Compute;
MigrationEpoch(players[i]);

foreach player ∈ players do
player-PostProcess;

PostProcess;

Inside the optimization or main loop, the Hybrid Method interlaces the execution
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of its internal players. Each player runs one iteration of its optimization algorithm,
then a Migration Epoch occurs before the other player runs one iteration of its
own algorithm. One iteration of the player is defined as generating new individuals
(player-Generate) and computing them (player-Compute). For example, in a Ge-
netic Algorithm, one iteration consists of the execution of the selection, mutation,
and crossover operators to generate a new offspring and then evaluate the popu-
lation. In a Gradient Based method, the iteration could consist of computing the
gradient and performing a line search, computing all the individuals.

Once the termination criteria are met, the algorithm escapes the main loop and
executes the post-process for each player. As each player is a full optimization
algorithm it is useful to post-process them one by one (player-PostProcess). Finally,
the post-process of the Hybrid Method is conducted (PostProcess).

3.2 Migration Epoch

The Migration Epoch implementation is what defines the main functionality of the
Hybrid Method. It is the mechanism that allows the exchange of information be-
tween players. The information exchanged by the players is a selection of individuals
which contains its design variables and objective functions. In the Algorithm 1 the
Migration Epoch process is named MigrationEpoch. The definition of this process
is what defines most of the hybrid algorithms.

By changing the MigrationEpoch implementation it is possible to define different hy-
brid strategies. It defines the criteria of which individuals migrate between players,
how often they migrate, between which players, etc. By changing the implementa-
tion of this function and the number of players it is possible to obtain different hybrid
algorithms such as the proposed by Lee et al. [61] for a Nash Game hybridization
with a global Pareto Player or to obtain a hierarchical optimization using different
layers of precision as proposed by Lee et al. [64].

To obtain a hybridized Nash Game with a global Pareto Player as proposed by Lee
et al. [61] three players of Genetic Algorithm are needed. The first one is configured
with all the design variables of the problem and with the two objective functions.
The two other players only optimize a subset of design variables, which are split
between the two players. Each Nash player optimizes one of the two objective
functions and the information is exchanged between the three players. This setup is
very interesting for applications where there is a natural division between the design
variables and the objective functions. For example in multidisciplinary problems.
In that case, the Pareto Player can control the full optimization and each player can
optimize one discipline of the problem. For instance, in an optimization problem
dealing with aeroelasticity, the natural division of the design variables is to assign
the ones that affect the most the aerodynamic problem (i.e., the external shape) to
one player, and assign the design variables which have more impact in the structural
problem (i.e., the thickness and materials of the structure) to the other player. This
division brings another opportunity for improvement, as each player may not have
to perform a full evaluation of the problem to obtain the objective function which
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it is working, thus reducing the computational cost of the evaluation.

Another example of the flexibility achieved with this algorithm is the possibility
to conduct a hierarchical optimization (see [64]) by only changing the Migration
Epoch algorithm. A hierarchical optimization consists of defining different layers
of precision. At the bottom layers, the objective functions are evaluated with less
precision than at the top layers. The information is usually shared from the bottom
layers to the above ones. To define a hierarchical optimization it is needed one
player for each layer. The algorithm of each player could be the same or different
depending on the level of accuracy of the layer. It could be interesting to use an
optimization method that explores the full search space in the layer that works with
the smaller precision, for example, an Evolutionary Algorithm, and an optimization
method that converges faster but may not be able to explore the full search space,
such as a Gradient Based method, for the layers that work with more precision
and computational cost. If a Gradient Based method can not be used it could be
interesting to use population based methods tuned to perform the exploitation at
the top layers, for example reducing the mutation probability in a Genetic Algorithm
or introducing more elitism.

3.3 Immigrate methods

For the full comprehension of the hybrid algorithm, it is important to specify the
mechanism with which each player uses the information from the other optimization
algorithms. This process is defined for each player and its implementation depends
on the type of optimization algorithm, and it affects the general hybrid algorithm.
It has one input parameter, the individual that has been selected to immigrate
to this player. The function is called Immigrate and is responsible to incorporate
the individual into the player. This function is called inside the Migration Epoch
procedure.

In this study the optimization algorithms used as players are:

• Genetic Algorithm.

• Particle Swarm Optimization.

• Conjugate Gradient.

The treatment is different depending on the nature of the optimization algorithm.
The population based methods are treated differently than the non population based
methods. In the following sections the Immigrate functions used for the Genetic Al-
gorithm, the Particle Swarm Optimization, and the Conjugate Gradient are detailed.

3.3.1 Population based

Population based algorithms contain an evolutionary population. The Immigrate
process of the population based methods substitutes the design variables of the last
individual of its internal population with the immigrated one. This introduces the
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information about the immigrated individual into the population. In the next it-
eration, the design variables of this individual will be used to generate the new
offspring. Both used population based methods, the Genetic Algorithm (Evolution-
ary Algorithm) and the Particle Swarm Optimization (Swarm Intelligence) use the
same strategy for the Immigrate function.

The Genetic Algorithm and the Particle Swarm Optimization players always incor-
porate the individuals coming from other players into the population, even if it is
the same as in any previous global iteration. The stochastic nature of the Evolu-
tionary Algorithms and Swarm Intelligence can benefit from maintaining the best
individual in the population at each iteration. There is a probability that the best
individual is not selected in the genetic operators, and to keep the best individual in
the population, keeping its genetic information, can help to converge in that region.
One could think about problems with elitism, but the method can only force one
individual to remain in the population, the absolute best so far. If this happens for
too long, most probably the optimization has converged, and in case it is not con-
verged, the algorithm should still be capable to explore other regions (for example
with the mutation operator in the Genetic Algorithm) and the stochastic nature of
the population based methods.

3.3.2 Non-Population based methods

The non-population based methods, such as gradient based methods have to handle
the incoming individuals differently. As these methods do not have an internal
population the individual can not be incorporated into it.

The Immigrate function of the Conjugate Gradient sets the incoming individual as
the starting point of its algorithm and restarts the step size to its default value.
In the next iteration the algorithm will compute the gradient at this point, then
compute the search direction and perform the line search in that direction.

In order not to repeat computations, the Conjugate Gradient player only performs a
new iteration when the immigrant individual is different than in the previous global
iteration.

3.4 Tested Hybrid Methods

The new proposed Hybrid Method shares information between the players, in a
multi-directional way, to overcome the main drawbacks of the composing optimiza-
tion algorithms used alone. It tries to achieve a fast rate of convergence and avoid
getting stuck at local minima. It can also be interpreted as if each method is a
pre-conditioner of the other, and the pre-conditioner is applied between iterations.

The Hybrid Methods presented in this study have been tested with the combination
of three different optimization algorithms which are a Genetic Algorithm, a Particle
Swarm Optimization, and a Conjugate Gradient. Different tests have been per-
formed with two and three players, depending on the number of objective functions
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of the test problem. In all cases, the first player has been an Evolutionary Algo-
rithm (Genetic Algorithm or Particle Swarm Optimization), see [38, 65, 25]. The
main goal of this player is to explore the full search space. For that purpose, the
Evolutionary Algorithms are suitable and widely used, as they are robust methods
that do not get stuck at local minimums.

The other players are intended to perform the exploitation of the promising regions
found by the first one. One additional player is added for each objective function of
the problem which is responsible for the exploitation of the local search space. The
selected optimization method for the exploitation is the Conjugate Gradient [29]. For
the test cases with a single objective function, two players are used, an Evolutionary
Algorithm and a Conjugate Gradient both working with all the design variables and
the same objective function. For the test cases with two objective functions, three
players are used. The first one is with the Evolutionary Algorithm working with
both objective functions. The other two players are Conjugate Gradients and each
player works with one of the objective functions.

As emphasized in previous sections, for each player, the internal operation and
operators are applied before the MigrationEpoch.

For the Genetic Algorithm player, the genetic operators of selection, crossover, and
mutation are performed inside the Generate process, which yields a new popula-
tion, known as the offspring. After the population is computed the MigrationEpoch
process is called and, after that, the Conjugate Gradient runs an iteration of its
algorithm starting with the migrated individual. The process repeats until the stop
criteria is met.

Two different versions of the new Migration Epoch have been tested, with the two
mentioned Evolutionary Algorithms as the first players. The general algorithm of
both versions is that explained above and schematized in Algorithm 1. The Immi-
grate functions which are the ones explained at Section 3.3.1 and Section 3.3.2 for
each player. The Migration Epoch procedure is what distinguishes the two slightly
different versions of the studied Hybrid Method. The algorithm of the Migration
Epoch procedures, for the two versions of the Migration Epoch, are presented in
Section 3.4.1 and Section 3.4.2. The two versions are named H0 and H1, respec-
tively.

The configuration of the optimization algorithms is detailed in Section 3.5. The
same configuration is used when used as players and when optimizing with the
method alone. The configuration of the Hybrid Method is explained in more detail
in Section 3.5.

3.4.1 Migration Epoch H0

In this section the version H0 of the Migration Epoch is detailed. The algorithm is
summarized in Algorithm 2. As explained before the first player is an Evolutionary
Algorithm. The players are stored in a vector, so the first player is player[0]. The
next players, player[i] for i > 0, are the Conjugate Gradient players, one for each
objective function.
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The algorithm of the Migration Epoch H0 starts evaluating an if/else condition,
see Algorithm 2. This first condition establishes when an exchange of information
between players (i.e., migration of individuals) occurs without comparing the values
of the objective functions of the players. That means that there is the possibility to
migrate some individuals without taking into account if the individual to migrate is
better or not than the ones already in the player of destination. If the condition of
the first if is met, an exchange of information is performed through the Immigrate
function of the players. The condition establishes that at the first iteration (iter ==
0 ) the migration always will occur. Another condition is set with an or dependence,
which establishes that if the last player that has been evaluated is the first one
(players[0]) there will be a migration too. When one of these two conditions is met
the best individual of the first player is migrated to the Conjugate Gradient players,
which will be used as a starting point for its optimization process.

If the first conditional is not met, a second if condition is evaluated taking into
account the values of the objective functions achieved so far. The inner if condition
compares the objective function of the last evaluated player (this-player) against the
objective function of the first player, which in this case is an Evolutionary Algorithm.
The condition this-player-Bestfits < players[0]-Bestfits is clear in a single-objective
optimization case, as it is a direct comparison between values of the objective func-
tion. On the other hand, for a multi-objective optimization case, the comparison is
not direct, as different objective functions cannot be compared between them. In
the case of a multi-objective function, the algorithm tracks which objective func-
tion is shared between each player and conducts the comparison accordingly. If
the objective function of this-player is better (lower) than the first player this in-
dividual is migrated to the rest of players. The algorithm and implementation are
extended to N players and M number of objective functions and track this auto-
matically according to its configuration. For clarity, in the case of two objective
functions, the first objective function of the first player (GA) is compared against
the objective function of the second player (CG). The second function of the first
player (GA) is compared with the objective function of the third player (CG). The
implemented Conjugate Gradient is single objective, in any case, a player with a
Conjugate Gradient optimizes two objective functions.

If the objective function of this-individual is not better, the inner else part of the
algorithm is conducted. In the function GetMinBestfits a search for the best indi-
vidual (Bestfit) among all players is performed, and the individual is migrated to
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this-player, the last player that was executed.

Algorithm 2: Migration Epoch version H0.

After computing a full iteration of a player the MigrationEpoch(this-player)
function does:

if iter = 0 or this-player = players[0] then
foreach player ∈ players do

player-Immigrate(this-player-Bestfits);

else
if this-player-Bestfits < players[0]-Bestfits then

foreach player ∈ players do
player-Immigrate(this-player-Bestfits);

else
Bestfit = GetMinBestfits;
this-player-Immigrate(Bestfit);

Following the General Algorithm explained in Section 3.1, the Hybrid Method ini-
tially runs the Evolutionary Algorithm player. After the first iteration, the best
individual found by the Evolutionary Algorithm is transferred to the Conjugate
Gradient player (first if of the Algorithm 2, because of the condition: iter ==
0 ) which yields to calling the Immigrate function before the first iteration of the
Conjugate Gradient players. The player-Bestfits is the individual with the best ob-
jective function found so far for the last player executed. It is updated every time
a better individual is found and each player has its own. The Conjugate Gradient
player uses this individual as the starting point of its internal algorithm, as defined
in the Immigrate function, for its own iteration. The iteration of the Conjugate
Gradient consists of computing the gradient at the location of the starting point
and performing a line search. After the iteration of the Conjugate Gradient players,
another Migration Epoch occurs. If the best individual found by the Conjugate
Gradients outperforms the best individual found by the Genetic Algorithm, then
the best individual of the Conjugate Gradient is sent to the Genetic Algorithm.

3.4.2 Migration Epoch H1

The version H1 of the Migration Epoch is a slight modification of the H0. The
modified algorithm is detailed in Algorithm 3. The only difference between both is
that the condition of the first if of the algorithm has been changed. As explained
above, this condition controls the exchange of information between players without
taking into account if the objective functions have improved. The condition this-
player == players[0] has been removed, thus the migration of individuals without
the comparison of the objective functions only takes place in the first iteration. The
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rest of the algorithm remains the same.

Algorithm 3: Migration Epoch version 1.

After computing an iteration of a player the MigrationEpoch(this-player)
function does:

if iter = 0 then
foreach player ∈ players do

player-Inmigrate(this-player-Bestfits);

else
if this-player-Bestfits < players[0]-Bestfits then

foreach player ∈ players do
player-Inmigrate(this-player-Bestfits);

else
Bestfit = GetMinBestfits;
this-player-Inmigrate(Bestfit);

In the version H0 of the algorithm, due to the first conditional (this-player ==
players[0]) each time that the Evolutionary Algorithm performs an iteration the
rest of the players, the Conjugate Gradient players, are transferred a new individual
from the Evolutionary Algorithm, without taking into account if this individual is
better than the one that the Conjugate Gradient is currently working. This does that
the Conjugate Gradient interrupts its search even if it was going in a good direction
and may change completely the region of the search space for the next step of the
Conjugate Gradient. This has the possible effect that the Conjugate Gradient can
only perform one iteration of the method and then has to restart from the new
individual. The Conjugate Gradient computes the gradient at the starting point,
then computes the search direction and makes a line search. Once the minimum in
that direction is found, one iteration is finished. In the next iteration, it recomputes
the gradient again from the last point and repeats the process. This behavior may
not be possible with the condition of the Migration Epoch H0.

With the elimination of this condition, the version H1 of the algorithm, the Con-
jugate Gradient is allowed to continue its iterations as it would do running alone,
and only change the location if of the search if another region is more promising.
As discussed in the Chapter 4 the performance of the two versions of the Hybrid
Method depends on the application case.

3.5 Configuration of the optimization algorithms

and Hybrid Method

In this section, the configuration of the different optimization algorithms used in this
study is presented. The configuration of the optimization algorithms, when used as
players inside the Hybrid Method, is the same as when running alone.
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The General Algorithm and Immigrate function have been maintained the same
through all tests. Four different combinations have been tested combining the Mi-
gration Epoch version and the optimization algorithm used by each player. In all
cases, the first player is a population based algorithm. The additional players are
Conjugate Gradients and there is one for each objective function. In Table 3.1
the nomenclature for the different combinations of Migration Epoch versions and
Evolutionary Algorithms is presented.

Table 3.1: Nomenclature of the Hybrid Methods versions.

Name Migration Epoch
Exploration Exploitation

(1st player) One player for each FO

H0-LG H0 LAMU GRAD

H1-LG H1 LAMU GRAD

H0-PG H0 MOPSO GRAD

H1-PG H1 MOPSO GRAD

The LAMU method is a modified version of the NSGAII algorithm, see Section 3.5.3
for more details.

3.5.1 Hybrid Method single objective configuration

In this section the configuration of the tested Hybrid Methods for the single objective
optimization cases is detailed. As explained above, the Hybrid Method for the
single objective optimization case uses 2 players. The first one is a population
based algorithm. As explained in Table 3.1, a Genetic Algorithm and a Particle
Swarm Optimization have been tested. Both players optimize the full problem, so
they optimize the same objective function and work with all the design variables
of the test problem. The General Algorithm of the Hybrid Methods for the single
objective configuration is detailed in Figure 3.1. It is the particularization of the
General Algorithm explained in Section 3.1.
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Player 1

Genetic Algorithm

- Generate

- Compute

Initialize

Conjugate Gradient

Initialize

Initialize

Genetic Algorithm

Player 2

Conjugate Gradient

- Generate

- Compute

Termination

criteria?

No

Yes

Post-processStop

Start

Migration Epoch

Bestfit migrates

Migration Epoch

Bestfit migrates

Figure 3.1: General Algorithm of the tested Hybrid Method with 1 objective func-
tion.

The first step is to initialize both players. After the initialization, the optimization
loop is started. Inside the optimization loop, the first player (i.e., the population
based algorithm) is run for one iteration. After the computation of its population is
finished, a Migration Epoch occurs. In the Migration Epoch the best individual is
transferred to the Conjugate Gradient player. The Conjugate Gradient player com-
putes the gradient around the transferred individual and performs the line search,
which completes an iteration of the Conjugate Gradient player. Then, another
Emigration Epoch is conducted, and the best individual found by the Conjugate
Gradient can migrate to the first player, according to the Migration Epoch imple-
mentation as explained in Section 3.4.1 and Section 3.4.2. This sequence is repeated
until the termination criteria is met. Finally, the post process of the optimization
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is performed.

3.5.2 Hybrid Method two objective configuration

The configuration of the Hybrid Methods for the two objective test cases has a total
of three players. The first player is a population based optimization algorithm that
optimizes the full problem. It optimizes the two objective functions and uses all the
design variables. The other two players are Conjugate Gradients. Each Conjugate
Gradient deals with one of the objective functions and all the design variables. The
particularization of the General Algorithm to this configuration is schematized in
Figure 3.2.

Player 1

Genetic Algorithm

Works with f1 and f2

- Generate

- Compute

Initialize

Conjugate Gradient

Initialize

Initialize

Genetic Algorithm

Player 2

Conjugate Gradient

Works with f1

- Generate

- Compute

Termination

criteria?

No

Yes

Post-processStop

Start

Migration Epoch

Bestfit migrates

Migration Epoch

Bestfit migrates

Player 3

Conjugate Gradient

Works with f2

- Generate

- Compute

Migration Epoch

Bestfit migrates

Figure 3.2: General Algorithm of the tested Hybrid Method with 1 objective func-
tion.
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The workflow of the algorithm is the same as the explained for the one objective
function case, but adding the evaluation of the third player and another Migration
Epoch before closing the main loop. The comparison of the objective functions is
performed taking into account which player optimizes which objective function. It
is not possible to compare different optimization functions between them. The first
objective function of the first player is compared with the objective function of the
second player and the second objective function of the first player is compared with
the objective function of the third player.

3.5.3 Genetic Algorithm configuration

The Genetic Algorithm is configurable in the type of operators for the crossover,
mutation, and selection operators as explained in Section 2.4. In addition, the
operators themselves can have configurable parameters. The configuration of the
Genetic Algorithm is specified in Table 3.2.

Table 3.2: Configuration of the Genetic Algorithm.

Parameter Value/Type

Selection operator µ+ λ & Crowded-Comparison Operator [18]

Crossover operator Simulated Binary Crossover [17]

Mutation operator Polynomial Mutation [19]

Probability of crossover 0.9

Probability of mutation 0.1

Population size 20

This configuration is common in both Genetic algorithms used in this study. The
algorithm of NSGAII has not been modified, the only modification made in its
code is to add a routine to save a file with all computed individuals during the
optimization, which allows obtaining the full Pareto front and the convergence.

As detailed in Table 3.1, the Hybrid Methods use a modified version of the NSGAII
algorithm, which is called LAMU, and takes its name from the µ + λ strategy of
the selection operator. The modifications increase the flexibility to pair it with an
external evaluation tool, parallelize the computation of the population and commu-
nicate with a High Throughput Computing environment, see HTCondor [66], among
other minor features. A more relevant modification is that it tracks the individuals
that are already computed and are transferred to the offspring population without
mutation or crossover being applied. With this information, the program avoids
repeating the calculation thus it does not count as an evaluation. This feature is
really valuable in optimization cases with high computational costs.

28 Optimization on industrial problems focussing on multi-player strategies



CHAPTER 3. PROPOSED METHODOLOGY; HYBRID METHOD

3.5.4 Particle Swarm Optimization configuration

The Particle Swarm Optimization has fewer configuration options than the Genetic
Algorithm. The implementation used here has only three configurable values, the
inertia weight and the two acceleration constants which are usually set to the same
value, as explained in Section 2.5. The configuration of the Particle Swarm Opti-
mization is specified in Table 3.3.

Table 3.3: Configuration of the Particle Swarm Optimization.

Parameter Value

Inertia weight (ω) 0.4

Acceleration constants (c1 and c2) 1.0

Population size 20

3.5.5 Conjugate Gradient configuration

The Conjugate Gradient algorithm is explained in Section 2.3. The configuration of
the Conjugate Gradient is specified in Table 3.4.

Table 3.4: Configuration of the Conjugate Gradient algorithm.

Parameter Value/Type

Search Direction Method Fletcher-Reeves [31]

Optimal Step Size Method Golden Section [34]

Epsilon for numerical diferentiation 1.0× 10−6

First step size 1.0× 10−3

Optimal step size tolerance 1.0× 10−3

In figures and tables of Chapter 4 the Conjugate Gradient method is abbreviated
as GRAD.

3.6 Implementation notes

The implementation of the Hybrid Method is coded in C++ and it follows the Object
Oriented Programming paradigm. An abstract class named OptimizationAlgorithm
serves as a base class for the implementation of each optimization method. The
Genetic Algorithm, the Particle Swarm Optimization, and the Conjugate Gradient
are coded in classes that derive from the OptimizationAlgorithm class.

The main methods of the class OptimizationAlgorithm are those outlined in Algo-
rithm 1. Those are the Initialize, Generate, Compute and PostProcess methods.
The Immigrate method also belongs to the OptimizationAlgorithm and has to be
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defined for each derived optimization method in order to enable the possibility to
use such algorithm as a player of a Hybrid Method.

This architecture allows the flexibility to create different instances of each optimiza-
tion method and store them in a vector of OptimizationAlgorithm pointers. This
vector is named players. The last piece of the main code is a function that performs
the calls detailed in the Algorithm 1.

The implementation has more code and functionality to read configuration files,
write files with results, post-process results, restart optimizations, etc. which are
not relevant to the main optimization algorithm discussed in this work.

3.7 Summary

In this chapter the proposed new Hybrid Method has been explained in detail. The
three main components of the Hybrid Methods are the General Algorithm, the Mi-
grationEpoch algorithm and the Immigrate method of each player. The General
Algorithm is the same for all the versions studied of the Hybrid Methods. Two
versions of the MigrationEpoch algorithm have been defined (H0 and H1 ). Four
versions of the Hybrid Method have been defined which are combination of the two
versions of the Migration Epoch and the optimization algorithm used by the explo-
ration player, which uses a Genetic Algorithm or a Particle Swarm Optimization,
see Table 3.1.
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Chapter 4

Test cases and applications

In this section, the performance of the presented hybrid optimization methodology
to some relevant benchmark problems and real-word applications is compared with
other existing optimization methods. The benchmark problems are mainly math-
ematical functions with specific particularities of interest. They are considered as
reference benchmark test cases for several researchers. The criteria to present these
benchmark problems is the number of objective functions; leading to two categories;
namely single or multi-objective problems.

Regarding the real-world application, an aeronautical engineering problem that the
author had the opportunity to work with is described.

All optimization algorithms were allowed to run with the same amount of evaluations
of the objective functions, although some graphics are cut at different numbers of
evaluations to show the detail needed to evaluate the results. Some runs stopped
without using all available evaluations of the objective functions, this happens for
two reasons. The first one is that the algorithm is not able to improve although it
keeps trying and exploring the search space. The second reason is that the algorithm
gets trapped in a local minimum and is not able to generate new individuals. This
happens frequently with the Conjugate Gradient. In some cases, it also has been
observed with the Particle Swarm Optimization where the algorithm gets trapped
in some sort of elitism and is not able to generate an offspring different from the
previous population.

4.1 Performance measures

The evaluation and comparison of the performance of different optimization methods
in single-optimization problems are relatively straightforward. The convergence of
the method can be used as a metric. The convergence is the relation between
the number of evaluations of the objective function performed by the optimization
method with the best value of the objective function achieved so far.

The other aspect to take into account is the robustness of the method. Meta-
heuristics methods work with probability variables which makes them behave dif-
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ferently depending on the seed. For this reason, a single run of the method is not
representative of the method’s performance, as this single run could be in the best
or worst extreme of its behavior and not be representative. To consider this in the
evaluation of the performance multiple runs have to be conducted and the variability
is taken into account in the analysis. In the deterministic methods, even if there are
no probability variables, the solution depends on the starting point of the method.
For functions with different local minimums, this is relevant as the algorithm may
converge to a local minimum and not to a global minimum.

In multi-objective problems, the evaluation of the performance is more difficult as
the solution of each optimization method contains multiple individuals. As stated
by Deb et al. [67], in multi-objective optimization there are two goals. The first one
is to converge to the Pareto optimal solution, which means to get as close as possible
to the region of the optimal solutions in a multi-dimensional space. The second one
is to achieve a spread solution across the whole Pareto Front and not only converge
to some regions.

To take into account both goals a single metric is not adequate. Different metrics
have been proposed, for example see Zitzler [68], Fonseca and Fleming [69] and Deb
[16]. In this study, the metric used to evaluate the convergence is the convergence
metric proposed by Deb [16] which is detailed in Section 4.1.1. The metric used to
evaluate the spread of the solution is also proposed by Deb [16] and is detailed in
Section 4.1.2.

The convergence of the solution is evaluated with the number of iterations of the
optimization method or with the number of evaluations of the objective functions. In
this study and in all test cases the convergence is evaluated considering the number
of objective functions evaluations. There are two reasons for that decision. The first
one is that the optimization algorithms evaluated in this study are very different,
in how they operate internally and the number of evaluations they perform at each
iteration, thus it is not fair to compare them with the number of iterations. The other
reason is that in cases with high computational costs the bottleneck of the process
is the evaluation of the objective functions and not the cost of the optimization
algorithm internal operations.

4.1.1 Distance metric

The distance metric Υ gives a measure of the convergence in a multi objective
optimization problem. A set of the Pareto optimal solutions are required to be
known. This requirement limits the applicability of this metric to problems where
the exact solution is known.

The metric is calculated following this procedure:

1. Obtain a set of points of the Pareto optimal front.

2. For each individual of the solution obtained by the optimization algorithm:
Compute the minimum Euclidean distance between this point and the rest of
points of the Pareto optimal front.
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3. The average of the distances of the step 2 is the value of the Υ metric.

To take into account the robustness of each optimization method multiple runs
have to be conducted. The average and standard deviation of the results gives the
information to evaluate the robustness of the method.

Υ takes a value of zero when the solution has converged to the exact reference Pareto
optimal set. Even if the solution is on the Pareto optimal space, but its points are
between the reference ones, the metric does not evaluate to 0. For more detail on
the distance metric refer to [67].

4.1.2 Spread metric

The spread metric ∆ gives a measure on how uniformly distributed are the solutions
across the Pareto front. The equation of the metric is defined as

∆ =

df + dl +
N−1∑
i=1

|di − d|

df + dl + (N − 1)d
(4.1)

where df and dl are the Euclidean distances between the solutions at the extremes
of the obtained non-dominated solution and the extremes of the Pareto optimal set.
The extreme solutions are the best individuals when ranked by a single objective
function inside a set of non-dominated solutions. dl is the distance between the
individual with the best f1 value in the non-dominated set of solutions and the best
f1 value of the Pareto optimal set (the exact solution). dl is the equivalent distance
considering f2. di are the distances between consecutive individuals of the non-
dominated solutions. d is the average distance between the points in the solution.
And finally N is the number of individuals in the non-dominated solution.

∆ takes a value of zero for the most widely and uniform distribution as it measures
the non-uniformity of the solution. The metric increases its value when the distance
between two adjacent non-dominated solutions is different than the mean value of
the distances. For more detail on the spread metric refer to [67].

4.2 Single-objective mathematical test cases

A set of single-objective benchmark problems have been selected from the literature
in order to compare the performance of the proposed methodologies through a sys-
tematic analysis. The reader will identify from simple functions with several design
variables to complex ones with few design variables, and some intermediate cases.
The selection has been done to cover a broad spectrum of possibilities, although the
factor the author acknowledges the limitation in the number of the selected functions
in comparison to the large amount of available ones in the literature.

The Genetic Algorithms, the Particle Swarm Optimization and the Hybrid Methods
have been run twelve independent times to take into account the robustness of each
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method. The Conjugate Gradient has been run 20 times, one starting at each point
of the first population of the first genetic Algorithm run to take into account the
high dependence on the initial solution.

4.2.1 Ackley function

The Ackley function was proposed in 1987 by Ackley [70]. It is a non-convex func-
tion well-known as an optimization benchmark. The corresponding benchmark test
presents a single objective problem but, on the other hand, the number of design
variable can be set up from 1 to d. The interest of the function remains on the
complex shape of the function itself. The shape has a valley on the center, with the
global minimum, and a lot of additional local minimums around it. The objective
function of the problem is defined as

f(x) = −a exp

−b
√√√√1

d

d∑
i=1

x2
i

− exp

(
1

d

d∑
i=1

cos(cxi)

)
+ a+ exp(1)

a = 20

b = 0.2

c = 2π

(4.2)

The Ackley function is usually evaluated in the range

xi ∈ [−32.768, 32.768], for all i = 1, ..., d

and the global minimum is located at

f(x∗) = 0, at x∗ = (0, ..., 0).

Figure 4.1 shows the shape of the function with 2 design variables as it has been
used in the tests and a detail around the global minimum.
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Figure 4.1: (a) Ackley function and (b) zoomed view of the minimum location.

Figure 4.2 presents the convergence for the Ackley function of all independent runs
grouped by the optimization method. Of the 20 runs made with the Conjugate
Gradient only one really converged near the global minimum achieving a value of
the objective function of f = 10−4. This result could have been anticipated as the
function has a lot of local minimums and the Conjugate Gradient does not have the
mechanism to escape from them. The NSGAII algorithm achieved a similar value
in all runs, and even improved it (f = 10−5) in some of them. The downside of the
NSGAII algorithm is the high number of evaluation needed to achieve this result.
The LAMU Genetic Algorithm achieved slightly better results than the NSGAII,
probably because of the tracking of already computed individuals. The Particle
Swarm Optimization is the non-hybrid method that better performs as it achieved
the exact solution (f = 10−14) in around 1250 objective function evaluations in all
runs demonstrating a great accuracy and robustness.

The Hybrid Methods performed extremely well reaching the exact solution (f =
10−14) after about 25 objective function evaluations. The Hybrid Method could
take perfectly take advantage of the strong points of each player. Both Evolutionary
Algorithms found a sufficiently close point to the global minimum in the very first
generation. The Conjugate Gradient could reach the global optimum in the first
iteration. In this test case there is no discussion that the Hybrid Methods over
performed the others, both in accuracy and robustness.
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Figure 4.2: Convergence of each solver for all runs of the Ackley function.
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Figure 4.3 presents the convergence of all runs and solvers in the same graphic. Fig-
ure 4.4 shows the mean value of the convergence for each method and the Table 4.1
shows the mean and standard deviation of the results.
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Figure 4.3: Ackley function convergence.
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Figure 4.4: Ackley function means convergence.
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Method fbest σfbest

LAMU 3.361× 10−6 1.099× 10−11

H0-LG 4.441× 10−16 0.000

H1-LG 4.441× 10−16 0.000

PSO 1.628× 10−15 5.355× 10−30

H0-PG 4.441× 10−16 0.000

H1-PG 4.441× 10−16 0.000

GRAD 1.562× 101 4.959× 101

NSGAII 6.644× 10−6 1.783× 10−11

Table 4.1: Mean and standard deviation of the best result comparison for the ACK-
LEY problem.

4.2.2 Levy function

The Levy function [71] has different valleys in one direction but has a slight gradient
in the other. This presents a challenge for both evolutionary and gradient based
algorithms. The function can be used with d variables and in this study two have
been used. Figure 4.5 shows the shape of the function. The objective function of
the problem is defined as

f(x) = sin2(πω1) +
d−1∑
i=1

(ωi − 1)2
[
1 + 10 sin2(πωi + 1)

]
+

+ (ωd − 1)2
[
1 + sin2(2πωd)

]
ωi = 1 +

xi − 1

4
for all i = 1, ..., d

(4.3)

The Levy function is usually evaluated in the range

xi ∈ [−10, 10], for all i = 1, ..., d

and the global minimum is located at

f(x∗) = 0, at x∗ = (1, ..., 1).

38 Optimization on industrial problems focussing on multi-player strategies



CHAPTER 4. TEST CASES AND APPLICATIONS

x

10
5

0
5

10

y

10
5

0
5

10

0

20

40

60

80

LEVY function

10

20

30

40

50

60

70

80

Figure 4.5: Levy function.

Figure 4.6 presents the convergence for the Levy function of all independent runs
grouped by the optimization method. The Particle Swarm Optimization has clearly
outperformed the other optimization methods in this test case. It reached the global
optimum in all runs, consistently and with the higher rate of convergence. The
Conjugate Gradient performance shown in this case is the best so far with 6 out
of 20 runs achieving the global minimum with high accuracy, but it still shows a
high dependence on the starting point, as expected. The two Genetic Algorithms
performed very similar between them, achieving the global minimum in all cases,
but without the impressive accuracy shown by the Particle Swarm Optimization.
The LAMU algorithm shows a slight higher accuracy than the NSGAII.
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Figure 4.6: Convergence of each solver for all runs of the Levy function.
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The Hybrid Methods which contain the Particle Swarm Optimization player (H0-PG
and H1-PG) have performed worst than the pure PSO Method. On the other hand
the ones that contain the LAMU player have improved the pure algorithm in both
accuracy and rate of convergence. Figure 4.7 presents the convergence of all runs
and solvers in the same graphic. Figure 4.8 shows the mean value of the convergence
for each method and the Table 4.2 shows the mean and standard deviation of the
results.
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Figure 4.7: Levy function convergence.

0 1000 2000 3000 4000 5000 6000
Evaluation

10 27

10 23

10 19

10 15

10 11

10 7

10 3

101

f

LEVY - Means Convergence

LAMU
H0-LG
H1-LG
PSO
H0-PG
H1-PG
GRAD
NSGAII

Figure 4.8: Levy function means convergence.
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Method fbest σfbest

LAMU 4.281× 10−7 1.639× 10−13

H0-LG 2.152× 10−26 5.509× 10−51

H1-LG 9.743× 10−28 9.880× 10−54

PSO 6.642× 10−26 4.074× 10−50

H0-PG 5.809× 10−29 4.047× 10−56

H1-PG 9.565× 10−30 1.074× 10−57

GRAD 3.817 1.370× 101

NSGAII 1.785× 10−6 6.319× 10−12

Table 4.2: Mean and standard deviation of the best result comparison for the LEVY
problem.

4.2.3 Eggholder function

The Eggholder function was proposed by Mishra [72]. It is a complex function due
to its multiple valleys and a large number of local minimums. The function defines
a single objective function with two design variables. Figure 4.9 shows the shape of
the function. The objective function of the problem is defined as

f(x) = −(x2 + 47) sin

(√∣∣∣x2 +
x1

2
+ 47

∣∣∣)− x1 sin
(√
|x1 − (x2 + 47)|

)
(4.4)

The Eggholder function is usually evaluated in the range

xi ∈ [−512, 512], for all i = 1, 2.

and the global minimum is located at

f(x∗) = −959.6407, at x∗ = (512, 404.2319).
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Figure 4.9: Eggholder function.

Figure 4.10 presents the convergence for the Eggholder function of all independent
runs grouped by the optimization method. Only 1 of the 20 runs made with the
Conjugate Gradient really converged to the global minimum. This result can be
anticipated as the function has a lot of local minimums and the Conjugate Gradient
dos not have the mechanism to escape from them. Considering that most of the runs
stopped early and only 3 runs took a large number of iterations to finish, the method
did not performed poorly, although it only achieved the global minimum once, the
total amount of objective evaluations is not too big. The NSGAII algorithm achieved
the global minimum in 2 of the 12 runs. In another 2 runs it got close in terms of
the objective function value. The downside of the NSGAII algorithm is the high
number of evaluations needed to achieve this result. The LAMU Genetic Algorithm
achieved slightly better results than the NSGAII, probably because of the tracking
of already computed individuals. In this test case the Particle Swarm Optimization
was outperformed by the Genetic Algorithms, as it got stuck in local minimums.
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Figure 4.10: Convergence of each solver for all runs of the Eggholder function.

In this test case the Hybrid Methods did not stood out as in the previous one. Its
performance is comparable to those of the Evolutionary Algorithms tested. Con-
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sidering the means of the convergence, graphic in Figure 4.12, it shows a slight
improvement in accuracy by the H0-LG and H1-LG Hybrid Methods over the rest
of the algorithms. It also shows that the Hybrid Methods based which contain the
Particle Swarm Optimization (H0-PG and H1-PG) also improves the performance
over the pure Particle Swarm Optimization. Figure 4.11 presents the convergence
of all runs and solvers in the same graphic. Table 4.3 shows the mean and standard
deviation of the results.
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Figure 4.11: Eggholder function convergence.
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Figure 4.12: Eggholder function means convergence.
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Method fbest σfbest

LAMU −8.483× 102 7.283× 103

H0-LG −8.721× 102 6.703× 103

H1-LG −8.677× 102 1.291× 104

PSO −7.923× 102 1.871× 104

H0-PG −8.208× 102 8.458× 103

H1-PG −8.417× 102 9.848× 103

GRAD −4.959× 102 1.217× 105

NSGAII −8.332× 102 9.219× 103

Table 4.3: Mean and standard deviation of the best result comparison for the EGG
problem.

4.2.4 Holder table function

The Holder table function [72] is a complex function with a large number of local
minima in the center of the search space. The function has four global minima
located at the four corners of the search space. The shape of the function is shown
in Figure 4.13. The objective function of the problem is defined as

f(x) = −

∣∣∣∣∣sin(x1) cos(x2) exp

(∣∣∣∣∣1−
√
x2

1 + x2
2

π

∣∣∣∣∣
)∣∣∣∣∣ (4.5)

The Holder table function is usually evaluated in the range

xi ∈ [−10, 10], for all i = 1, 2.

and the four global minimums which are located at

f(x∗) = −19.2085, at x∗ =(8.05502, 9.66459),

(8.05502,−9.66459),

(−8.05502, 9.66459),

(−8.05502,−9.66459).
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Figure 4.13: Holder table function.

Figure 4.14 presents the convergence for the Holder table function of all independent
runs grouped by the optimization method. Only 2 of the 20 runs made with the
Conjugate Gradient really converged to one of the 4 possible global minimum. This
result could have been anticipated as the function has a lot of local minimums and
the Conjugate Gradient dos not have the mechanism to escape from them. In this
case, the runs of the Conjugate gradient took longer to converge to local minimums
consuming more resources than in the previous test case. The NSGAII algorithm
achieved the global minimum in all of the runs, as well as the LAMU algorithm,
although the LAMU method shows less accuracy than the NSGAII in this test case.
The Particle Swarm Optimization also achieved a global minimum in all runs and
slightly outperformed the Genetic Algorithms in terms of accuracy.
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Figure 4.14: Convergence of each solver for all runs of the Holder table function.

In this test case the Hybrid Methods performed better in terms of accuracy and
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similar in the rate of convergence with a similar behavior than the Evolutionary
Algorithms but increasing the accuracy, as expected because of the Conjugate Gra-
dient contribution. Although, two Hybrid Methods have a run that did not reach
the Global Minimums, the H0-LG and H1-PG. Figure 4.15 presents the convergence
of all runs and solvers in the same graphic. Figure 4.16 shows the mean value of
the convergence for each method and the Table 4.4 shows the mean and standard
deviation of the results.
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Figure 4.15: Holder table function convergence.
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Figure 4.16: Holder table function means convergence.
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Method fbest σfbest

LAMU −1.921× 101 1.905× 10−5

H0-LG −1.920× 101 4.759× 10−4

H1-LG −1.921× 101 0.000

PSO −1.921× 101 7.014× 10−9

H0-PG −1.921× 101 0.000

H1-PG −1.921× 101 2.552× 10−10

GRAD −9.334 4.092× 101

NSGAII −1.921× 101 1.486× 10−5

Table 4.4: Mean and standard deviation of the best result comparison for the HOLD-
ERTABLE problem.

4.2.5 Michalewicz function

The Michalewicz function [73] is a multimodal function that can be used with d
variables and in this study two have been used. It has a single global minimum near
the center of the search space but has d! local minimums. Surrounding the valley
that contains the global minimum the function is flat with the exemption of some
lineal valleys in both directions which generates near local minimums with the value
of the gradient close to zero, this increasing the difficulty to find the global minimum.
Figure 4.17 shows the shape of the function for two variables. The objective function
of the problem is defined as

f(x) = −
d∑
i=1

sin(xi) sin2m

(
ix2
i

π

)
(4.6)

The recommended value of m is 10 and it is usually evaluated in the range

xi ∈ [0, π], for all i = 1, ..., d.

The location of the global minimum depends on the number of variables

at d = 2 : f(x∗) = −1.8013, at x∗ = (2.20, 1.57)

at d = 5 : f(x∗) = −4.687658

at d = 10 : f(x∗) = −9.66015.

50 Optimization on industrial problems focussing on multi-player strategies



CHAPTER 4. TEST CASES AND APPLICATIONS

x

0.0 0.5 1.0 1.5 2.0 2.5 3.0

y

0.0
0.5

1.0
1.5

2.0
2.5

3.0

1.75
1.50
1.25
1.00
0.75
0.50
0.25

0.00

Michalewicz function

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Figure 4.17: Michalewicz function.

Figure 4.18 presents the convergence for the Michalewicz function of all independent
runs grouped by the optimization method. The Conjugate Gradient performance
shown in this case is also as expected. It shows a strong dependence on the starting
point. The run that fell into the global minimum valley shows a lot of accuracy as it
successfully reached the global minimum with a high rate of convergence. One of the
starting points fell into one of the canals and slowly reached the global minimum,
the rest where trapped in the flat areas of the function. The Particle Swarm Op-
timization and the Genetic Algorithms (the three Evolutionary Algorithms) show
a similar behavior in the three aspects, accuracy, robustness and rate of conver-
gence. The three of them have a similar accuracy, although the LAMU algorithm
is performing slightly worst in this case and aspect. One run of each of the three
Evolutionary Algorithms failed to converge to the minimum in the firsts ≈ 600 ob-
jective function evaluations, although, the Genetic Algorithm converged at ≈ 6000
objective function evaluations, see Figure 4.19.
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Figure 4.18: Convergence of each solver for all runs of the Michalewicz function.

In this test case the Hybrid Methods have performed worst than the Evolutionary
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Algorithms, as 2 runs of each Hybrid Method test have failed to converge in the
firsts ≈ 300 objective function evaluations. Although they achieved the convergence
of those cases at between ≈ 10k to 15k objective function evaluations, except for
one run of the H1-PG that did not converge. Figure 4.19 presents the convergence
of all runs and solvers in the same graphic. Figure 4.20 shows the mean value
of the convergence for each method, and can be noticed that the mean value of
the Hybrid Methods, with the exception of the H1-PG, is highly penalized by the
run that did not converge, along with the LAMU algorithm achieve a slightly higher
mean accuracy at the expense of more evaluations, thus over performing the particle
Swarm in this aspect. Table 4.5 shows the mean and standard deviation of the
results.
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Figure 4.19: Michalewicz function convergence.
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Figure 4.20: Michalewicz function means convergence.

Method fbest σfbest

LAMU −1.801 1.058× 10−14

H0-LG −1.801 0.000

H1-LG −1.801 0.000

PSO −1.735 5.351× 10−2

H0-PG −1.752 2.874× 10−2

H1-PG −1.619 1.118× 10−1

GRAD −6.780× 10−1 3.638× 10−1

NSGAII −1.752 2.874× 10−2

Table 4.5: Mean and standard deviation of the best result comparison for the
MICHALEWICZ problem.

4.2.6 Rosenbrock function

The Rosenbrock function was introduced by Rosenbrock [74]. It is a non-convex
function that can be used with d variables and in this study two have been used. It
has a single global minimum near the center of the search space. The function is very
flat near the global minimum which makes the gradient evaluation producing values
close to zero, this increasing the difficulty to find the global minimum. Figure 4.21
shows the shape of the function for two variables and a detail near the minimum.
The objective function of the problem is defined as
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f(x) =
d−1∑
i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2

]
(4.7)

The Rosenbrock function is usually evaluated in the range

xi ∈ [−5, 10], for all i = 1, ..., d

and the global minimum is located at

f(x∗) = 0, at x∗ = (1, ..., d).
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Figure 4.21: (a) Rosenbrock function and (b) zoomed view of the minimum location.

Figure 4.22 presents the convergence for the Rosenbrock function of all independent
runs grouped by the optimization method. The Conjugate Gradient performance
shown in this test case is the best so far with about 10 out of 20 runs getting
really close to the global minimum, but it still shows a high dependence on the
starting point, as expected. . The higher performance on this function with respect
to the other ones, is because the Rosenbrock function has a single valley. In this
test case the difficulty for the Conjugate Gradient is that although there is a single
minimum the function is very flat around it. This makes the gradient evaluation
producing values close to zero, thus making it difficult to estimate an appropriate
step size as it tends to zero along with the gradient. The Evolutionary Algorithms
are behaving similarly. The NSGAII has performed better in this test case with
higher accuracy and robustness. The Particle Swarm Optimization and LAMU
method are performing very similar, with poor accuracy on most runs.

Some runs of the Hybrid Methods based on the Genetic Algorithm (i.e. H0-LG
and H1-LG) are achieving a slower rate of convergence at the beginning of the op-
timizations but are being more robust and accurate as the number of evaluations

Optimization on industrial problems focussing on multi-player strategies 55



CHAPTER 4. TEST CASES AND APPLICATIONS

increase, and there is only one run of each method one run that is not as converged
as the others. The Hybrid Methods are spending more evaluations in the Conjugate
Gradient player as it slowly improves the objective function value until a better
individual is found closer to the global minimum, which is slowing the initial con-
vergence down as the Genetic Algorithm is capable to find a better starting with less
objective functions evaluations. The two Hybrid Methods with the Particle Swarm
Optimization players (i.e. H0-PG and H1-PG) are performing with less robustness
than the based on the GA. One run of the H0-PG and two of the H1-PG got stuck
at f = 1.
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Figure 4.22: Convergence of each solver for all runs of the Rosenbrock function.

Optimization on industrial problems focussing on multi-player strategies 57



CHAPTER 4. TEST CASES AND APPLICATIONS

Figure 4.23 presents the convergence of all runs and solvers in the same graphic.
Figure 4.24 shows the mean value of the convergence for each method, and can
be noticed the outstanding accuracy of the NSGAII in this test case. The Hybrid
Methods with the Genetic Algorithm as one of the players is achieving a similar mean
accuracy than the NSGAII. In this test case the Hybrid Methods also improves the
performance of both Evolutionary Algorithms running alone. The H0-LG achieved a
the best overall accuracy passed the 5000 objective functions evaluations. Table 4.6
shows the mean and standard deviation of the results.
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Figure 4.23: Rosenbrock function convergence.
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Figure 4.24: Rosenbrock function means convergence.
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Method fbest σfbest

LAMU 6.876× 10−1 1.894

H0-LG 3.013× 10−3 7.624× 10−5

H1-LG 1.804× 10−2 3.651× 10−3

PSO 2.732× 10−1 2.769× 10−1

H0-PG 8.374× 10−2 8.326× 10−2

H1-PG 1.678× 10−1 1.511× 10−1

GRAD 1.108× 104 1.724× 108

NSGAII 1.360× 10−2 3.648× 10−4

Table 4.6: Mean and standard deviation of the best result comparison for the Rosen-
brock problem.

4.2.7 Summary

The optimization algorithms have been tested in six single objective mathematical
benchmark tests. In the Ackley problem the Hybrid Methods clearly outperformed
the rest of the methods in accuracy and rate of convergence. In this case the Hybrid
Methods increased the performance of the optimization methods that internally uses.
The Particle Swarm optimization performed better than both Genetic Algorithms
in this case.

The method that performed better in the Levy benchmark is the Particle Swarm
Optimization. The Hybrid Methods that contain the PSO (i.e. H0-PG and H1-PG)
performed worst in the rate of convergence, although they reached the solution with
the same accuracy as the PSO but needed more evaluations. The Hybrid Methods
that contain the Genetic Algorithm (i.e. H0-LG and H1-LG) improved the pure
Genetic Algorithm in rate of convergence and accuracy.

Regarding the Eggholder problem, the Particle Swarm Optimization method per-
formed worst, as did not find the global minimums consistently. The Hybrid Meth-
ods based on the PSO (i.e. H0-PG and H1-PG) improved its performance. The
Genetic Algorithm performed better than the PSO and the H0-PG and H1-PG hy-
brid methods. The Hybrid Methods based on the GA (i.e H0-LG and H1-LG) also
improved its based Evolutionary Algorithm and are the methods that performed
better in this benchmark.

All method performed similarly in the Holder table benchmark, although three Hy-
brid Methods, the H0-LG, H1-LG and H1-PG performed slightly worst in terms of
rate of convergence specially on the first iterations.

In the Michalewicz benchmark the Particle Swarm Optimizaiton and H1-PG per-
formed worst than than the rest of Hybrids and Evolutionary Algorithms as one run
of each method did not converge to the global minimum. The LAMU method is the
algorithm the performed best in this case. The NSGAII and the rest of the Hybrid
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methods performed slightly worst than the NSGAII in terms rate of convergence.

The NSGAII is the method that achieved the highest initial rate of convergence in
the Rosenbrock benchmark, although the H0-LG achieved a better accuracy passed
the 5000 evaluations. The Hybrid Methods based on the GA (i.e. H0-LG and
H1-LG) performed better than the based on the Particle Swarm Optimization.

4.3 Multi-objective mathematical test cases

As proposed for the single-objective test problems, a set of multi-objective bench-
mark problems have been selected from the literature in order to compare perfor-
mance (mainly convergence) and accuracy of the proposed methodologies. Again,
the reader will identify from simple functions with several design variables, to com-
plex functions with few design variables, and some intermediate cases. The reader
will also realize that all the selected problems present two objective functions. Con-
sidering the fact that these problems have been used to test the performance of the
presented hybrid optimization method, it has been considered that an increase of
the number of objective functions would have increased the complexity of the results
making more difficult their interpretation.

Each optimization algorithm has been executed 12 times for each test problem.

4.3.1 ZDT1

The ZDT1 is a convex synthetic test problem proposed by Zitzler, Deb and Thiele
[75]. It can be used with n design variables and it has 2 objective functions. In this
tests it has been configured with n = 30 variables. The problem is defined as

ZDT1 :


Minimize f1(x1) = x1

Minimize f2(x) = g · h
Domain 0 ≤ xi ≤ 1 , i = 1, 2, · · · , n

(4.8a)

g(x2, . . . , xn) = 1 + 9
n∑
i=2

xi
n− 1

(4.8b)

h(f1, g) = 1−

√
f1

g
(4.8c)

The Pareto optimal front complies with g(x) = 1 which yields

f2 = 1−
√
f1 (4.9)

Figure 4.25 presents the mean convergence of the two objective functions achieved
by each optimization algorithm within its 12 runs. This information only gives in-
formation on the extremes of the Pareto front. All the optimization algorithms have
converged to the best-f1 extreme of the Pareto optimal front with high precision and
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accuracy, see Figure 4.25a. For the best-f2 extreme the Particle Swarm Optimiza-
tion method and the Hybrid Methods that have a MOPSO player (i.e., H0-PG and
H1-PG), are fairly far from the optimal extreme. The two Genetic Algorithms got
close to the optimum in average at the end of the optimization (3000 objective func-
tions evaluations). The Hybrid Methods based on the Genetic Algorithm presents
a high rate of convergence and converged to the exact extreme of f2 at around 600
objective functions evaluations.
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Figure 4.25: Mean convergence (ZDT1).

The Pareto fronts obtained by the 12 runs of each optimization algorithm are pre-
sented in Figure 4.26. Each figure contains all individuals from the Pareto fronts
of each optimization test run, thus some individuals are dominated by individuals
from another optimization run. The graphics show the robustness of each method
and in some cases allow to visualize which region of the Pareto front are captured
with better precision between different runs.

The Particle Swarm Optimization and the Hybrid Methods based on it (i.e., H0-PG
and H1-PG) show a lack of robustness as the different runs created Pareto fronts far
one from each other, with scattered bands. The NSGAII, the LAMU method and
the Hybrid Methods based on the Genetic Algorithm (i.e., H0-LG and H1-LG) are
performing much better than the others with more robustness, although the Hybrid
Methods have less density of individuals in the central region of the Pareto front as
shown in Figures 4.26d and 4.26f.
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Figure 4.26: Pareto front of each solver for all runs of the ZDT1 function.
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Figure 4.27 and Table 4.7 presents the mean value of the performance metrics and
the standard deviation for each optimization algorithm. The metrics have been
computed for each one of the 12 runs of each optimization algorithm. With the
values of the metrics the mean and standard deviation have been calculated for each
optimization algorithm.

According to the distance metric (Table 4.7) the optimization algorithm that achieved
a better convergence to the Pareto optimal front is the H1-LG with a value of
Υ = 0.006, closely followed by the H0-LG Υ = 0.01. The two Genetic Algorithms
also performed well: LAMU method Υ = 0.049 and NSGAII Υ = 0.071. These
methods also demonstrated a high robustness with low values of the standard devi-
ation compared to the other methods.
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Figure 4.27: ZDT1 metrics.

The best spread metric is achieved by the LAMU method which performed ∆ =
0.588.

Method Υ σΥ ∆ σ∆

LAMU 0.049 6.22× 10−5 0.588 4.52× 10−2

H0-LG 0.010 4.49× 10−5 1.066 1.03× 10−1

H1-LG 0.006 4.11× 10−6 1.018 8.56× 10−2

MOPSO 1.438 1.79× 10−2 0.844 1.09× 10−2

H0-PG 1.962 3.25× 10−2 0.867 2.02× 10−2

H1-PG 1.808 2.30× 10−2 0.848 1.36× 10−2

NSGA2 0.071 2.22× 10−4 1.519 4.53× 10−2

Table 4.7: Solver metrics comparison for ZDT1 problem.

Figure 4.28a presents the Pareto fronts of all runs, as stated before the Hybrid Meth-
ods based on the Genetic Algorithm are not performing well as a some individuals of
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these methods are dominated by the other methods. Figure 4.28b presents the non-
dominated solutions among the different runs for each solver. For each optimization
method the solutions of their runs are joined in a single population. With this
population the dominance is computed to obtain the global set of non-dominated
individuals achieved by each optimization method. Figure 4.28b clearly shows the
difference in performance between the different optimization methods.
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Figure 4.28: (a) Overlapped Pareto fronts from all runs. (b) Non-dominated so-
lutions of the combined Pareto fronts of all runs for each optimization method.
(ZDT1).

4.3.2 ZDT2

The ZDT2 is a non-convex synthetic test problem proposed by Zitzler, Deb and
Thiele [75]. It can be used with n design variables and it has 2 objective functions.
In this tests it has been configured with n = 30 variables. The problem is defined
as

ZDT2 :


Minimize f1(x1) = x1

Minimize f2(x) = g · h
Domain 0 ≤ xi ≤ 1 , i = 1, 2, · · · , n

(4.10a)

g(x2, . . . , xn) = 1 + 9
n∑
i=2

xi
n− 1

(4.10b)

h(f1, g) = 1−
(
f1

g

)2

(4.10c)

The Pareto optimal front complies with g(x) = 1 which yields

f2 = 1− (f1)2 (4.11)
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The behavior and performance of the optimization algorithms in the ZDT2 test
problem is very similar to the observed in the ZDT1 case.

Figure 4.29 presents the mean convergence of the two objective functions achieved
by each optimization algorithm within its 12 runs. This information only gives in-
formation on the extremes of the Pareto front. All the optimization algorithms have
converged to the best-f1 extreme of the Pareto optimal front with high precision and
accuracy, see Figure 4.29a. For the best-f2 extreme the Particle Swarm Optimiza-
tion method and the Hybrid Methods that have a MOPSO player (i.e., H0-PG and
H1-PG), are fairly far from the optimal extreme. The two Genetic Algorithms got
close to the optimum in average at the end of the optimization (3000 objective func-
tions evaluations). The Hybrid Methods based on the Genetic Algorithm presents
a high rate of convergence and converged to the exact extreme of f2 at around 1000
objective functions evaluations.
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Figure 4.29: Mean convergence (ZDT2).

The Pareto fronts obtained by the 12 runs of each optimization algorithm are pre-
sented in Figure 4.30. Each figure contains all individuals from the Pareto fronts
of each optimization test run, thus some individuals are dominated by individuals
from another optimization run. The graphics show the robustness of each method
and in some cases allow to visualize which region of the Pareto front are captured
with better precision between different runs.

The Particle Swarm Optimization and the Hybrid Methods based on it (i.e., H0-PG
and H1-PG) show a lack of robustness as the different runs created Pareto fronts far
one from each other, with scattered bands in the MOPSO and scattered points in the
MOPSO based Hybrid Methods. The NSGAII, the LAMU method and the Hybrid
Methods based on the Genetic Algorithm (i.e., H0-LG and H1-LG) are performing
much better than the others with more robustness, although the Hybrid Methods
have less density of individuals in the central region of the Pareto front as shown in
Figures 4.30d and 4.30f.
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Figure 4.30: Pareto front of each solver for all runs of the ZDT2 function.
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Figure 4.31 and Table 4.8 presents the mean value of the performance metrics and
the standard deviation for each optimization algorithm. The metrics have been
computed for each one of the 12 runs of each optimization algorithm. With the
values of the metrics the mean and standard deviation have been calculated for each
optimization algorithm.

According to the distance metric (Table 4.8) the optimization algorithm that achieved
a better convergence to the Pareto optimal front is the H0-LG with a value of
Υ = 0.005, closely followed by the H1-LG Υ = 0.006. The two Genetic Algorithms
also performed well: LAMU method Υ = 0.040 and NSGAII Υ = 0.079. These
methods also demonstrated a high robustness with low values of the standard devi-
ation compared to the other methods.
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Figure 4.31: ZDT2 metrics.

The best spread metric is achieved by the LAMU method which performed ∆ = 0.79.

Method Υ σΥ ∆ σ∆

LAMU 0.040 1.15× 10−4 0.790 1.34× 10−1

H0-LG 0.005 2.48× 10−6 1.205 1.04× 10−1

H1-LG 0.006 6.77× 10−6 1.224 1.22× 10−1

MOPSO 2.454 6.57× 10−2 0.984 2.85× 10−2

H0-PG 2.626 3.10× 10−2 0.982 2.34× 10−2

H1-PG 2.530 5.17× 10−2 0.976 1.77× 10−2

NSGA2 0.079 3.12× 10−4 1.499 1.78× 10−1

Table 4.8: Solver metrics comparison for ZDT2 problem.

Figure 4.32a presents the Pareto fronts of all runs, as stated before the Hybrid Meth-
ods based on the Genetic Algorithm are not performing well as a some individuals of
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these methods are dominated by the other methods. Figure 4.32b presents the non-
dominated solutions among the different runs for each solver. For each optimization
method the solutions of their runs are joined in a single population. With this
population the dominance is computed to obtain the global set of non-dominated
individuals achieved by each optimization method. Figure 4.32b clearly shows the
difference in performance between the different optimization methods.
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Figure 4.32: (a) Overlapped Pareto fronts from all runs. (b) Non-dominated so-
lutions of the combined Pareto fronts of all runs for each optimization method.
(ZDT2).

4.3.3 ZDT3

The ZDT3 is a convex and disconnected synthetic test problem proposed by Zitzler,
Deb and Thiele [75]. It can be used with n design variables and it has 2 objective
functions. In this tests it has been configured with n = 30 variables. The problem
is defined as

ZDT3 :


Minimize f1(x1) = x1

Minimize f2(x) = g · h
Domain 0 ≤ xi ≤ 1 , i = 1, 2, · · · , n

(4.12a)

g(x2, . . . , xn) = 1 + 9
n∑
i=2

xi
n− 1

(4.12b)

h(f1, g) = 1−

√
f1

g
− f1

g
sin (10πf1) (4.12c)

The Pareto optimal front complies with g(x) = 1 which yields

f2 = 1−
√
f1 − f1 sin (10πf1) (4.13)
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The behavior and performance of the optimization algorithms in the ZDT3 test
problem is very similar to the observed in the ZDT1 and ZDT2 test problems.

Figure 4.33 presents the mean convergence of the two objective functions achieved
by each optimization algorithm within its 12 runs. This information only gives in-
formation on the extremes of the Pareto front. All the optimization algorithms have
converged to the best-f1 extreme of the Pareto optimal front with high precision
and accuracy, see Figure 4.33a. For the best-f2 extreme the Particle Swarm Opti-
mization method and the Hybrid Methods that have a MOPSO player (i.e., H0-PG
and H1-PG), are fairly far from the optimal extreme. The two Genetic Algorithms
and the Hybrid Methods based on the Genetic Algorithm got close to the optimum
in average at the end of the optimization (3000 objective functions evaluations).
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Figure 4.33: Mean convergence (ZDT3).

The Pareto fronts obtained by the 12 runs of each optimization algorithm are pre-
sented in Figure 4.34. Each figure contains all individuals from the Pareto fronts
of each optimization test run, thus some individuals are dominated by individuals
from another optimization run. The graphics show the robustness of each method
and in some cases allow to visualize which region of the Pareto front are captured
with better precision between different runs.

The Particle Swarm Optimization and the Hybrid Methods based on it (i.e., H0-PG
and H1-PG) show a lack of robustness as the different runs created Pareto fronts far
one from each other, with scattered bands in the MOPSO and scattered points in the
MOPSO based Hybrid Methods. The NSGAII, the LAMU method and the Hybrid
Methods based on the Genetic Algorithm (i.e., H0-LG and H1-LG) are performing
much better than the others with more robustness, although as in the ZDT2 test
problem the Hybrid Methods have less density of individuals in the central region
of the Pareto front as shown in Figures 4.34d and 4.34f.
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Figure 4.34: Pareto front of each solver for all runs of the ZDT3 function.
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Figure 4.35 and Table 4.9 presents the mean value of the performance metrics and
the standard deviation for each optimization algorithm. The metrics have been
computed for each one of the 12 runs of each optimization algorithm. With the
values of the metrics the mean and standard deviation have been calculated for each
optimization algorithm.

According to the distance metric (Table 4.9) the optimization algorithm that achieved
a better convergence to the Pareto optimal front is the H0-LG with a value of
Υ = 0.007, closely followed by the H1-LG Υ = 0.01. The two Genetic Algorithms
also performed well: LAMU method Υ = 0.022 and NSGAII Υ = 0.028. These
methods also demonstrated a high robustness with low values of the standard devi-
ation compared to the other methods.
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Figure 4.35: ZDT3 metrics.

The best spread metric is achieved by the LAMU method which performed ∆ = 0.79.

Method Υ σΥ ∆ σ∆

LAMU 0.022 1.02× 10−4 0.748 3.78× 10−2

H0-LG 0.010 3.67× 10−5 1.002 1.57× 10−1

H1-LG 0.007 4.06× 10−5 1.068 1.97× 10−1

MOPSO 1.436 1.06× 10−1 0.884 2.26× 10−2

H0-PG 2.127 4.94× 10−2 0.885 2.78× 10−2

H1-PG 1.920 2.59× 10−2 0.890 2.50× 10−2

NSGA2 0.028 8.37× 10−5 1.573 6.35× 10−2

Table 4.9: Solver metrics comparison for ZDT3 problem.

Figure 4.36a presents the Pareto fronts of all runs, as stated before the Hybrid Meth-
ods based on the Genetic Algorithm are not performing well as a some individuals of
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these methods are dominated by the other methods. Figure 4.36b presents the non-
dominated solutions among the different runs for each solver. For each optimization
method the solutions of their runs are joined in a single population. With this
population the dominance is computed to obtain the global set of non-dominated
individuals achieved by each optimization method. Figure 4.36b clearly shows the
difference in performance between the different optimization methods.
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Figure 4.36: (a) Overlapped Pareto fronts from all runs. (b) Non-dominated so-
lutions of the combined Pareto fronts of all runs for each optimization method.
(ZDT3).

4.3.4 ZDT4

The ZDT4 is a non-convex synthetic test problem proposed by Zitzler, Deb and
Thiele [75]. It can be used with n design variables and it has 2 objective functions.
In this tests it has been configured with n = 10 variables. The problem is defined
as

ZDT4 :


Minimize f1(x1) = x1

Minimize f2(x) = g · h
Domain 0 ≤ xi ≤ 1 , i = 1, 2, · · · , n

(4.14a)

g(x2, . . . , xn) = 1 + 10(n− 1) +
n∑
i=2

(
x2
i − 10 cos(4πxi)

)
(4.14b)

h(f1, g) = 1−

√
f1

g
(4.14c)

The Pareto optimal front complies with g(x) = 1 which yields

f2 = 1−
√
f1 (4.15)
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The behavior and performance of the optimization algorithms in the ZDT4 test
problem is very similar to the observed in the ZDT1, ZDT2 and ZDT3 test problems.

Figure 4.37 presents the mean convergence of the two objective functions achieved
by each optimization algorithm within its 12 runs. This information only gives in-
formation on the extremes of the Pareto front. All the optimization algorithms have
converged to the best-f1 extreme of the Pareto optimal front with high precision and
accuracy, see Figure 4.37a. For the best-f2 extreme the Particle Swarm Optimiza-
tion method and the Hybrid Methods that have a MOPSO player (i.e., H0-PG and
H1-PG), are fairly far from the optimal extreme. The two Genetic Algorithms got
close to the optimum in average at the end of the optimization (3000 objective func-
tions evaluations). The Hybrid Methods based on the Genetic Algorithm presents
a high rate of convergence and converged to the exact extreme of f2 at around 600
objective functions evaluations.

0 500 1000 1500 2000 2500 3000
Evaluation

0.0

0.1

0.2

0.3

0.4

0.5

f 1

ZDT4 - Means Convergence
LAMU
H0-LG
H1-LG
MOPSO
H0-PG
H1-PG
NSGAII

(a) f1 convergence.

0 500 1000 1500 2000 2500 3000
Evaluation

0

25

50

75

100

125

150

f 2
ZDT4 - Means Convergence

LAMU
H0-LG
H1-LG
MOPSO
H0-PG
H1-PG
NSGAII

(b) f2 convergence.

Figure 4.37: Mean convergence (ZDT4).

The Pareto fronts obtained by the 12 runs of each optimization algorithm are pre-
sented in Figure 4.38. Each figure contains all individuals from the Pareto fronts
of each optimization test run, thus some individuals are dominated by individuals
from another optimization run. The graphics show the robustness of each method
and in some cases allow to visualize which region of the Pareto front are captured
with better precision between different runs.

The Particle Swarm Optimization and the Hybrid Methods based on it (i.e., H0-PG
and H1-PG) show a lack of robustness as the different runs created Pareto fronts far
one from each other, with scattered bands in the MOPSO and scattered points in the
MOPSO based Hybrid Methods. The NSGAII, the LAMU method and the Hybrid
Methods based on the Genetic Algorithm (i.e., H0-LG and H1-LG) are performing
much better than the others with more robustness.
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Figure 4.38: Pareto front of each solver for all runs of the ZDT4 function.
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Figure 4.39 and Table 4.10 presents the mean value of the performance metrics and
the standard deviation for each optimization algorithm. The metrics have been
computed for each one of the 12 runs of each optimization algorithm. With the
values of the metrics the mean and standard deviation have been calculated for each
optimization algorithm.

According to the distance metric (Table 4.10) the optimization algorithm that
achieved a better convergence to the Pareto optimal front is the H0-LG with a
value of Υ = 0.045, closely followed by the H1-LG Υ = 0.058. The two Genetic
Algorithms also performed well: LAMU method Υ = 2.337 and NSGAII Υ = 5.77.
These methods also demonstrated a high robustness with low values of the standard
deviation compared to the other methods.
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Figure 4.39: ZDT4 metrics.

The best spread metric is achieved by the H1-PG method which performed ∆ =
0.982, although in this case is irrelevant, as the method is not performing well
and all the individuals in the solution od this method is dominated by the Genetic
Algorithm ones and the Hybrid Methods based on the Genetic Algorithm (i.e., H0-
LG and H1-LG).

Method Υ σΥ ∆ σ∆

LAMU 2.337 1.92 1.057 1.16× 10−1

H0-LG 0.045 8.87× 10−3 1.331 9.68× 10−2

H1-LG 0.058 7.15× 10−3 1.304 1.24× 10−1

MOPSO 23.352 1.12× 102 0.991 1.28× 10−2

H0-PG 31.209 1.34× 102 0.986 1.80× 10−2

H1-PG 30.470 1.50× 102 0.982 4.34× 10−2

NSGA2 6.709 5.77 1.140 6.91× 10−2

Table 4.10: Solver metrics comparison for ZDT4 problem.
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Figure 4.40a presents the Pareto fronts of all runs, as stated before the Hybrid Meth-
ods based on the Genetic Algorithm are not performing well as a some individuals of
these methods are dominated by the other methods. Figure 4.40b presents the non-
dominated solutions among the different runs for each solver. For each optimization
method the solutions of their runs are joined in a single population. With this
population the dominance is computed to obtain the global set of non-dominated
individuals achieved by each optimization method. Figure 4.40b clearly shows the
difference in performance between the different optimization methods.
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Figure 4.40: (a) Overlapped Pareto fronts from all runs. (b) Non-dominated so-
lutions of the combined Pareto fronts of all runs for each optimization method.
(ZDT4).

4.3.5 ZDT6

The ZDT6 is a non-convex and non-uniformly spaced synthetic test problem pro-
posed by Zitzler, Deb and Thiele [75]. It can be used with n design variables and it
has 2 objective functions. In this tests it has been configured with n = 10 variables.
The problem is defined as

ZDT4 :


Minimize f1(x1) = 1− exp(−4x1) sin6(6πx1)

Minimize f2(x) = g · h
Domain 0 ≤ xi ≤ 1 , i = 1, 2, · · · , n

(4.16a)

g(x2, . . . , xn) = 1 + 9

(∑n
i=2 xi
n− 1

)0.25

(4.16b)

h(f1, g) = 1−
(
f1

g

)2

(4.16c)

The Pareto optimal front complies with g(x) = 1 which yields

f2 = 1− (f1)2 (4.17)
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The behavior and performance of the optimization algorithms in the ZDT6 test
problem is very similar to the observed in the ZDT1, ZDT2, ZDT3 and ZDT4 test
problems.

Figure 4.41 presents the mean convergence of the two objective functions achieved
by each optimization algorithm within its 12 runs. This information only gives in-
formation on the extremes of the Pareto front. All the optimization algorithms have
converged to the best-f1 extreme of the Pareto optimal front with high precision and
accuracy, see Figure 4.41a. For the best-f2 extreme the Particle Swarm Optimiza-
tion method and the Hybrid Methods that have a MOPSO player (i.e., H0-PG and
H1-PG), are fairly far from the optimal extreme. The two Genetic Algorithms got
close to the optimum in average at the end of the optimization (3000 objective func-
tions evaluations). The Hybrid Methods based on the Genetic Algorithm presents
a high rate of convergence and converged to the exact extreme of f2 at around 250
objective functions evaluations.
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(a) f1 convergence.
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Figure 4.41: Mean convergence (ZDT6).

The Pareto fronts obtained by the 12 runs of each optimization algorithm are pre-
sented in Figure 4.42. Each figure contains all individuals from the Pareto fronts
of each optimization test run, thus some individuals are dominated by individuals
from another optimization run. The graphics show the robustness of each method
and in some cases allow to visualize which region of the Pareto front are captured
with better precision between different runs.

The Particle Swarm Optimization and the Hybrid Methods based on it (i.e., H0-PG
and H1-PG) show a lack of robustness as the different runs created Pareto fronts far
one from each other, with scattered bands in the MOPSO and scattered points in the
MOPSO based Hybrid Methods. The NSGAII, the LAMU method and the Hybrid
Methods based on the Genetic Algorithm (i.e., H0-LG and H1-LG) are performing
much better than the others with more robustness.
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Figure 4.42: Pareto front of each solver for all runs of the ZDT6 function.
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Figure 4.43 and Table 4.11 presents the mean value of the performance metrics and
the standard deviation for each optimization algorithm. The metrics have been
computed for each one of the 12 runs of each optimization algorithm. With the
values of the metrics the mean and standard deviation have been calculated for each
optimization algorithm.

According to the distance metric (Table 4.11) the optimization algorithm that
achieved a better convergence to the Pareto optimal front is the H0-LG with a
value of Υ = 0.045, closely followed by the H1-LG Υ = 0.058. The two Genetic
Algorithms also performed well: LAMU method Υ = 2.337 and NSGAII Υ = 5.77.
These methods also demonstrated a high robustness with low values of the standard
deviation compared to the other methods.
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Figure 4.43: ZDT6 metrics.

The best spread metric is achieved by the H1-PG method which performed ∆ =
0.982, although in this case is irrelevant, as the method is not performing well
and all the individuals in the solution od this method is dominated by the Genetic
Algorithm ones and the Hybrid Methods based on the Genetic Algorithm (i.e., H0-
LG and H1-LG).

Method Υ σΥ ∆ σ∆

LAMU 0.208 2.20× 10−3 0.816 8.81× 10−2

H0-LG 0.006 6.69× 10−5 1.499 6.63× 10−2

H1-LG 0.005 4.81× 10−5 1.469 6.74× 10−2

MOPSO 3.708 2.86 0.995 2.77× 10−2

H0-PG 5.028 3.57× 10−1 0.974 2.42× 10−2

H1-PG 5.101 1.99× 10−1 0.983 2.80× 10−2

NSGA2 0.256 4.99× 10−3 1.310 7.60× 10−2

Table 4.11: Solver metrics comparison for ZDT6 problem.
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Figure 4.44a presents the Pareto fronts of all runs, as stated before the Hybrid Meth-
ods based on the Genetic Algorithm are not performing well as a some individuals of
these methods are dominated by the other methods. Figure 4.44b presents the non-
dominated solutions among the different runs for each solver. For each optimization
method the solutions of their runs are joined in a single population. With this
population the dominance is computed to obtain the global set of non-dominated
individuals achieved by each optimization method. Figure 4.44b clearly shows the
difference in performance between the different optimization methods.
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Figure 4.44: (a) Overlapped Pareto fronts from all runs. (b) Non-dominated so-
lutions of the combined Pareto fronts of all runs for each optimization method.
(ZDT6).

4.3.6 FON

The Fonseca-Fleming problem (FON) [76, 67] is a non-convex two objective opti-
mization problem. The Pareto optimal front is continuous. In the tests of this study
three design variables have been used for the FON test problem. The corresponding
optimization problem is defined as

FON :


Minimize f1(x) = 1− exp

[
−
∑n

i=1

(
xi − 1√

n

)2
]

Minimize f2(x) = 1− exp
[
−
∑n

i=1

(
xi + 1√

n

)2
]

Domain −4 ≤ xi ≤ 4 , i = 1, 2, · · · , n

(4.18)

and the Pareto optimal region is

x∗0 = x∗1 = x∗i ... = x∗n ∈
[
−1√
n
,

1√
n

]
, i = 1, 2, · · · , n.

Figure 4.45 presents the mean convergence through the minimum of the two ob-
jective functions achieved by each optimization algorithm within its 12 runs. This
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information only gives information about the extremes of the Pareto front. All opti-
mization algorithms have achieved a similar rate of convergence for the first objective
function, see Figure 4.45a. The Particle Swarm Optimization has not achieved the
same accuracy as the rest of the optimization algorithms. Regarding the second
objective function the Evolutionary Algorithms have achieved a higher initial rate
of convergence, but the two Hybrid Methods with the Genetic Algorithm as a player
(i.e., H0-LG and H1-LG) have converged to the extreme faster and more accurately
as they finally achieved a higher rate of convergence.
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(a) f1 convergence.
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Figure 4.45: Mean convergence (FON).

The Pareto fronts obtained by the 12 runs of each optimization algorithm are pre-
sented in Figure 4.46. Each figure contains all individuals from all the the Pareto
fronts of each optimization test run, thus some individuals are dominated by indi-
viduals from another optimization run. The graphics show the robustness of each
method and in some cases allow to visualize which region of the Pareto front are
captured with better precision between different runs.

The two Hybrid Methods with the Genetic Algorithm as a player (i.e., H0-LG and
H1-LG), although they captured the extremes of the Pareto front, are the less ac-
curate and precise finding the rest of the Pareto optimal front. The Particle Swarm
Optimization seems the method with better precision as the metric confirms, which
is discussed below.
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Figure 4.46: Pareto front of each solver for all runs of the FON function.
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Figure 4.47 and Table 4.12 presents the mean value of the performance metrics and
the standard deviation for each optimization algorithm. The metrics have been
computed for each one of the 12 runs of each optimization algorithm. With the
values of the metrics the mean and standard deviation have been calculated for each
optimization algorithm.

According to the distance metric (Table 4.12) the optimization algorithm that
achieved a better convergence to the Pareto optimal front is the Particle Swarm
Optimization with a value of Υ = 0.005. It is also the most robust optimization
method with with the best standard deviation. The NSGAII method (Υ = 0.008)
performed slightly better than the LAMU method Υ = 0.01. The Hybrid Methods
have performed worst that its Evolutionary Algorithms running alone, specially in
the distance metric.
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Figure 4.47: FON metrics.

The best spread metric is also achieved by the Particle Swarm Optimization method,
see Figure 4.47b. Followed by the LAMU Genetic Algorithm method and NSGAII.
The spread metric of the Hybrid Methods are very similar to the one of the Evo-
lutionary Algorithm that is composed by as a player, although they have a slightly
worst performance in the spread metric.

Method Υ σΥ ∆ σ∆

LAMU 0.010 4.82× 10−6 1.093 6.16× 10−2

H0-LG 0.021 3.78× 10−5 1.211 5.86× 10−2

H1-LG 0.022 2.49× 10−5 1.235 5.31× 10−2

MOPSO 0.002 4.47× 10−8 0.533 3.20× 10−2

H0-PG 0.006 1.80× 10−6 0.552 3.90× 10−2

H1-PG 0.005 1.98× 10−6 0.584 5.42× 10−2

NSGA2 0.008 1.39× 10−6 1.609 3.77× 10−2

Table 4.12: Solver metrics comparison for FON problem.
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Figure 4.48a presents the Pareto fronts of all runs. As stated before, the Hybrid
Methods based on the Genetic Algorithm are not performing well as some individ-
uals of these methods are dominated by the other methods. Figure 4.48b presents
the non-dominated solutions among the different runs for each solver. For each
optimization method the solutions of their runs are joined in a single population.
With this population the dominance is computed to obtain the global set of non-
dominated individuals achieved by each optimization method. As it can be seen
in Figure 4.48b several individuals of the Pareto fronts of the H0-LG and H1-LG
methods are dominated by individuals of other methods.
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Figure 4.48: (a) Overlapped Pareto fronts from all runs. (b) Non-dominated so-
lutions of the combined Pareto fronts of all runs for each optimization method.
(FON).

4.3.7 KUR

The KUR problem was proposed by Kursawe [77]. Deb [19] also provides a detailed
study of this test problem. It is a non-convex problem with a disconnected Pareto
optimal front. The problem has three variables and two objective functions. The
problem is defined as

KUR :


Minimize f1(x) =

∑2
i=1

[
−10 exp

(
−0.2

√
x2
i + x2

i+1

)]
Minimize f2(x) =

∑3
i=1

[
|xi|0.8 + 5 sin (x3

i )
]

Domain −5 ≤ xi ≤ 5 , i = 1, 2, 3

(4.19)

The Pareto optimal front complies with

exp (−0.2x∗3)
[
15 (x∗1)2 cos (x∗1)3 − 0.8 (−x∗3)−0.2] =

exp (−0.2x∗1)
[
15 (x∗3)2 cos (x∗3)3 − 0.8 (−x∗3)−0.2] . (4.20)

Figure 4.49 presents the mean convergence of the two objective functions achieved
by each optimization algorithm within its 12 runs. This information only gives

84 Optimization on industrial problems focussing on multi-player strategies



CHAPTER 4. TEST CASES AND APPLICATIONS

information on the extremes of the Pareto front. The Evolutionary Algorithms
have achieved a similar rate of convergence for the first objective function, see Fig-
ure 4.49a. The Particle Swarm Optimization has not achieved the same precision as
the rest of the optimization algorithms. The four Hybrid Methods have converged
extremely fast to the minimum of the first objective function. Regarding the sec-
ond objective function all optimization algorithms have achieved a similar rate of
convergence. The two Hybrid Methods based on the Particle Swarm Optimization
(i.e., H0-PG and H1-PG) and the Particle Swarm Optimization have not reached
the extreme of the Pareto optimal front. The Hybrid Methods based on the Ge-
netic Algorithm (i.e., H0-LG and H1-LG) have not converged to the Pareto optimal
extreme of f2, but obtained better results than the other two Hybrid Methods.
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Figure 4.49: Mean convergence (KUR).

The Pareto fronts obtained by the 12 runs of each optimization algorithm are pre-
sented in Figure 4.50. Each figure contains all individuals from the Pareto fronts
of each optimization test run, thus some individuals are dominated by individuals
from another optimization run. The graphics show the robustness of each method
and in some cases allow to visualize which region of the Pareto front are captured
with better precision between different runs.

The Hybrid Methods are the least precise (least robust) as the dispersion of the
individuals from the Pareto front is higher than the Evolutionary Algorithms results.
The three Evolutionary Algorithm performed fairly similar although the LAMU
method has more dispersion near the best values of the f2 (see bottom-right of the
graphic Figure 4.50b).
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Figure 4.50: Pareto front of each solver for all runs of the KUR function.
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Figure 4.51 and Table 4.13 presents the mean value of the performance metrics and
the standard deviation for each optimization algorithm. The metrics have been
computed for each one of the 12 runs of each optimization algorithm. With the
values of the metrics the mean and standard deviation have been calculated for each
optimization algorithm.

According to the distance metric (Table 4.13) the optimization algorithm that
achieved a better convergence to the Pareto optimal front is the NSGAII with a
value of Υ = 0.061, closely followed by the Particle Swarm Optimization Υ = 0.076
and the LAMU method Υ = 0.082. The NSGAII and Particle Swarm Optimization
methods over performed the other methods with the best accuracy and also preci-
sion with the lower values of the standard deviation as well. The Hybrid Methods
performed worst than their based Evolutionary Algorithm in terms of the distance
metric mean and standard deviation.
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Figure 4.51: KUR metrics.

The best spread metric is also achieved by the Particle Swarm Optimization method,
see Figure 4.51b. Followed by the LAMU Genetic Algorithm method and NSGAII.
The spread metric of the Hybrid Methods are very similar to the one of the Evolu-
tionary Algorithm that is composed by as a player, although in the Genetic Algo-
rithm ones have a slightly worst performance in the spread metric.
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Method Υ σΥ ∆ σ∆

LAMU 0.082 7.59× 10−3 1.169 8.22× 10−2

H0-LG 0.244 5.92× 10−2 1.352 1.30× 10−1

H1-LG 0.172 2.66× 10−2 1.233 1.95× 10−1

MOPSO 0.076 7.21× 10−4 0.715 1.16× 10−1

H0-PG 0.293 7.83× 10−2 0.724 1.09× 10−1

H1-PG 0.314 4.39× 10−2 0.721 1.13× 10−1

NSGA2 0.061 7.87× 10−4 1.639 4.65× 10−2

Table 4.13: Solver metrics comparison for KUR problem.

Figure 4.52a presents the Pareto fronts of all runs. As stated before the Hybrid
Methods based on the Genetic Algorithm are not performing well as a some individ-
uals of these methods are dominated by the other methods. Figure 4.52b presents
the non-dominated solutions among the different runs for each solver. For each
optimization method the solutions of their runs are joined in a single population.
With this population the dominance is computed to obtain the global set of non-
dominated individuals achieved by each optimization method. As it can be seen in
Figure 4.52b several individuals of the Pareto fronts of the four Hybrid Methods are
dominated by individuals of other methods.
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Figure 4.52: (a) Overlapped Pareto fronts from all runs. (b) Non-dominated so-
lutions of the combined Pareto fronts of all runs for each optimization method.
(KUR).

4.3.8 POL

Poloni et al. [78] proposed another non-convex test problem with a disconnected
Pareto optimal front. The problem has two objective functions and two design
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variables. The problem is defined as

POL :


Minimize f1(x) = 1 + (A1 −B1)2 + (A2 −B2)2

Minimize f2(x) = (x1 + 3)2 + (x2 + 1)2

Domain −π ≤ xi ≤ π , i = 1, 2

(4.21a)

A1 = 0.5 ∗ sin(1)− 2.0 cos(1) + sin(2)− 1.5 cos(2) (4.21b)

A2 = 1.5 sin(1)− cos(1) + 2.0 sin(2)− 0.5 cos(2) (4.21c)

B1 = 0.5 sin(x1)− 2.0 cos(x1) + sin(x2)− 1.5 cos(x1) (4.21d)

B2 = 1.5 sin(x1)− cos(x1) + 2.0 sin(x2)− 0.5 cos(x2) (4.21e)

For the Pareto optimal front solution refer to [19].

Figure 4.53 presents the mean convergence of the two objective functions achieved
by each optimization algorithm within its 12 runs. This information only gives
information on the extremes of the Pareto front. The Evolutionary Algorithms
have achieved a similar rate of convergence for the first objective function, see Fig-
ure 4.53a. In this test case all optimization algorithms have achieved the Pareto
optimal front extremes in both functions.
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Figure 4.53: Mean convergence (POL).

The Pareto fronts obtained by the 12 runs of each optimization algorithm are pre-
sented in Figure 4.54. Each figure contains all individuals from the Pareto fronts
of each optimization test run, thus some individuals are dominated by individuals
from another optimization run. The graphics show the robustness of each method
and in some cases allow to visualize which region of the Pareto front are captured
with better precision between different runs.

The Hybrid Methods based on the Genetic Algorithm (i.e., H0-LG and H1-LG) and
the LAMU method are the least precise (least robust) as there is more dispersion
of individuals away from the Pareto front. The other Hybrid Methods based on the
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Particle Swarm Optimization performs better in terms of robustness than the other
Hybrid Methods.
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Figure 4.54: Pareto front of each solver for all runs of the POL function.
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Figure 4.55 and Table 4.14 presents the mean value of the performance metrics and
the standard deviation for each optimization algorithm. The metrics have been
computed for each one of the 12 runs of each optimization algorithm. With the
values of the metrics the mean and standard deviation have been calculated for each
optimization algorithm.

According to the distance metric (Table 4.14) the optimization algorithm that
achieved a better convergence to the Pareto optimal front is the Particle Swarm
Optimization with a value of Υ = 0.051, closely followed by the Hybrid Methods
based on the Particle Swarm Optimization (i.e., H0-PG Υ = 0.066 and H1-PG
Υ = 0.109) and the LAMU method Υ = 0.134. The LAMU method and the Hybrid
Methods based on the Genetic Algorithm performed significantly worst in accuracy
and precision.
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Figure 4.55: POL metrics.

The best spread metric is achieved by the H0-PG method which performed ∆ =
1.074 slightly better than the Particle Swarm Optimization and the H1-PG method,
see Figure 4.55b. The rest of the methods performed similarly between them with
a spread metric ∆ ≈ 1.4.

Method Υ σΥ ∆ σ∆

LAMU 0.208 6.05× 10−2 1.397 6.58× 10−2

H0-LG 0.378 1.99× 10−1 1.450 7.89× 10−2

H1-LG 0.409 9.57× 10−2 1.441 5.63× 10−2

MOPSO 0.051 1.84× 10−3 1.121 7.68× 10−2

H0-PG 0.066 1.10× 10−3 1.074 6.75× 10−2

H1-PG 0.109 1.37× 10−2 1.133 8.90× 10−2

NSGA2 0.134 1.66× 10−2 1.590 3.85× 10−2

Table 4.14: Solver metrics comparison for POL problem.
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Figure 4.56a presents the Pareto fronts of all runs, as stated before the Hybrid Meth-
ods based on the Genetic Algorithm are not performing well as a some individuals of
these methods are dominated by the other methods. Figure 4.56b presents the non-
dominated solutions among the different runs for each solver. For each optimization
method the solutions of their runs are joined in a single population. With this
population the dominance is computed to obtain the global set of non-dominated
individuals achieved by each optimization method.
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Figure 4.56: (a) Overlapped Pareto fronts from all runs. (b) Non-dominated so-
lutions of the combined Pareto fronts of all runs for each optimization method.
(POL).

4.3.9 Summary

The Hybrid Methods performed extremely well in the family of functions ZDT1,
ZDT2, ZDT3, ZDT4 and ZDT6, specially the hybrids based on the Genetic Algo-
rithm which increased the rate of convergence of the Evolutionary Algorithm. The
spread metric of the Hybrid Methods based on the GA (i.e. H0-LG and H1-LG)
is higher (worst) than the achieved by the LAMU method in this functions, but if
the results are closely analyzed the spread metric is penalizing the high density of
non-dominated solutions on some regions of the Pareto front and not the lack of
solutions. The Hybrid Methods based on the GA dominate the rest of the methods
with more density of solutions, so in this case the spread metric is not indicative
that a higher metric is better.

In the FON, KUR and POL benchmarks the Hybrid Methods performed worst than
the pure Evolutionary Algorithms as the hybrid non-dominated solutions where
highly dominated by the ones from the pure methods, although the convergence at
the extremes was captured faster by the hybrids. This is probably because once the
exact extremes where found by the hybrids they kept dedicating resources to that
regions and not allowing to explore the rest of the search space.
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4.4 Optimization of Synthetic Jet device for ac-

tive flow control

In order to evaluate the performance of the proposed Hybrid Methods when applied
to an industrial interest test case, it has been compared against two classical opti-
mization methods, a plain conjugate gradient and a plain genetic algorithm. The
conjugate gradient method is the same that forms part of the Hybrid Method, but
running on its own. The genetic algorithm used to compare the hybrid algorithm
is also the same that forms part of the Hybrid Method, but running alone too. To
take into account the random component of the genetic algorithm and the strong
dependence on the starting point of the conjugate gradient, multiple optimizations
with each algorithm have been conducted.

The optimization methods have been tested against the same test case. The test
case consists on an optimization of an active flow control optimization problem
based on the work of [79]. The objective of that work is to determine the optimum
parameters of the Synthetic Jet Actuator design at different angles of attack in a
multiple objective optimization problem. The test case details for the comparison
of optimization algorithms are presented in Section 4.4.1.

4.4.1 Test case description

The test case focuses on the optimization of an active flow control device, more
precisely a synthetic jet actuator. The device is tested on a SD7003 airfoil at an
angle of attack of 14 degrees. For the comparison between the optimization algo-
rithms, which is the main objective of this work, a single optimization problem and
a two objectives problem have been defined. Both problems use the same 5 design
variables.

At high angles of attack the synthetic jet can greatly affect the flow structure im-
proving the lift coefficient. The synthetic jet actuator, if set properly, can help to
reattach the flow to the airfoil or almost avoid the flow to detach.

The design variables are the same as the previous work by [79], for a full explanation
and detail of the synthetic jet actuator design variables meaning refer to [79]. The
five design variables are:

F+ Non-dimensional frequency.

Cµ Momentum coefficient.

θ Jet inclination angle.

x/C Non-dimensional jet position.

h/C Non-dimensional jet width.

The evaluation range of each design variable is shown in Table 4.15. The same
ranges are used with all optimization algorithms.
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Table 4.15: Active flow control design variables and their evaluation ranges.

Design variable Minimum value Maximum value

F+ 0.1 10

Cµ 0.0001 0.02

θo 5 175

x/C 0.001 0.3

h/C 0.005 0.015

The flow has been solved with an unsteady Reynolds averaged Navier-Stokes model
(URANS), using the OpenFOAM software. Other models like Direct Numerical
Simulation (DNS) or Large Eddy Simulation (LES) could be used to solve the syn-
thetic jet simulation, but its computational cost is too high to perform so many
optimizations with the available resources. In addition, there is no need to use such
precise solvers to evaluate the performance of the Hybrid Method. More details on
the solver used can be consulted at [79], as this study uses the same model.

The mesh used, see Figure 4.57a, is one of the meshes previously evaluated in [79]
although having a smaller number of cells 34,448 than the final one employed in
that paper, the maximum y+ after the simulation was y+ = 1. The mesh nearby the
synthetic jet actuator is presented in Figure 4.57b. The run time of the simulation
has been adjusted to 30 time units, which as shown in [79] is sufficient to reach
convergence. It is important to notice, that this study is not about the synthetic jet
actuator optimization, but to compare the optimization algorithms in a real world
application with a significant computational cost and complexity. The study of the
physical problem is not the main purpose of this study, which justifies reducing the
precision of each CFD simulation in order to reduce the overall computational cost.

(a) Full mesh of the domain. (b) Mesh nearby the synthetic
jet actuator.

Figure 4.57: Entire mesh domain (a) and zoomed view of the jet location (b).

In Figure 4.58, the temporal averaged streamlines and pressure field for the non-
actuated case is presented. This configuration is called the baseline. From the
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streamlines it can be seen that the flow is fully separated, the airfoil is under stall
conditions.

Figure 4.58: Averaged streamlines and pressure field of baseline case (Cl = 0.80).

The time to solve the flow problem is around 15 hours for each individual, although
not all cases takes the same amount of time as it depends on the exact conditions and
the convergence of the iterative solver. With the solution of the flow the objective
functions can be computed. The hardware used to compute this optimizations are
four Intel(R) Xeon(R) CPU E7- 4860 @ 2.27GHz, which gives a total of 40 cores
(80 threads) with 224 GB in a shred memory configuration. The solver of the flow
has been configured to use a single thread. The optimizer used multiple cores to
evaluate individuals in parallel.

Two set of optimizations have been conducted to test the algorithms, a single ob-
jective optimization and a two objectives optimization which are described in the
following sections.

4.4.2 One objective function results

This section introduces the results obtained for the single objective test case. The
objective of the design problem is to maximize the lift coefficient Cl, to do so the
objective function of the minimization problem is set to

f = −Cl (4.22)

This case has been run two times with the LAMU method, two times each of the
two Hybrid Methods based on it (i.e. H0-LG and H1-LG), six times the Conjugate
Gradient and two the Particle Swarm Optimization. The rest of the algorithms have
not been tested with this problem due to the high computational resources that it
requires. The rest of the algorithms have not been tested in this case due to the
high computational cost, the available resources and time.

The convergence of the different optimization algorithms are shown in Figure 4.59.
The results shown in the graph of Figure 4.59 reflect the problems encountered by
the gradient based method. Most runs of the conjugate gradient, initially, improve
faster than the genetic algorithm but then get stuck between Cl ≈ 1.35 and Cl ≈
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1.45 (except for two runs that get stuck at Cl ≈ 0.8 and Cl ≈ 1.25, respectively).
Those lift coefficient values are achieved with almost 100 evaluations of the objective
function for each optimization of the conjugate gradient. The strong dependence
of the conjugate gradient on the starting point is also reflected on these results, as
it presents much different solutions between runs than the other methods. In all
cases, the conjugate gradient method was stopped because the algorithm found a
local minimum and could not compute the gradient to further improve the results.

On the other hand, the genetic algorithm provides optimal solutions similar to the
conjugate gradient, but with a higher computational cost, approximately 4 times
higher. Both runs of the genetic algorithm achieve values of the objective function
in the range of the conjugate gradient results. One of the runs achieves a better
objective function than all of the conjugate gradient runs, with a value of Cl = 1.49.
It is important to note that the genetic algorithm optimizations could run additional
iterations and achieve better results, but with a high computational cost.
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Figure 4.59: Comparative of the convergence of the different optimization methods.

The Hybrid Method is the method that achieved better results, outperforming all
runs of the other algorithms in both of its runs. During the first iterations, it
achieved a convergence rate similar to the conjugate gradient. But, the improvement
of the solution has continued, avoiding being trapped in any local minimum. It is
also the most robust, as both runs are very similar in its performance. Both Hybrid
Method runs outperformed all the other optimization methods with a Cl = 1.52 and
Cl = 1.54. One run of the genetic algorithm achieved a comparable solution (Cl =
1.49) but it took more than twice the computational cost of the Hybrid Method.
Case 3 with a lift coefficient of Cl = 1.49, obtained by the genetic algorithm with
around 375 objective function evaluations, improves the baseline lift coefficient by
86%. Cases 4 and 5, obtained by the Hybrid Method runs achieved a lift coefficient
of Cl = 1.52 and Cl = 1.54 respectively. Both runs needed around 125 objective
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functions evaluations, which is 67% the number of evaluations of case 3 with an
increase of lift coefficient of 90% and 93% respectively, from the baseline.

Looking at these results, one can conclude that the proposed Hybrid Method H0-LG
performs much more robustly than the conjugate gradient method and much faster
than the genetic algorithms in this test problem.

Flow results and AFC performance

This subsection provides a comparison between the characteristics of the flow field
corresponding to each of the optimal solutions labeled in Figure 4.59. The lift
coefficient and design variables of each of the optimal solutions are presented in
Table 4.16. For a full explanation of the flow structure and details on the synthetic
jet actuator performance, the reader should have a look at [79].

Table 4.16: Values of the lift coefficient and design variables of the 5 labeled cases.

Case Cl F+ Cµ θo x/C h/C

1 0.79 5.9 1.74× 10−02 120.0 1.00× 10−03 1.0× 10−02

2 1.39 0.3 1.47× 10−02 24.0 1.00× 10−03 1.4× 10−02

3 1.49 3.2 1.92× 10−02 8.0 2.00× 10−02 5.0× 10−03

4 1.52 6.7 2.00× 10−02 7.0 2.60× 10−02 5.0× 10−03

5 1.54 9.9 2.00× 10−02 5.0 1.97× 10−02 5.0× 10−03

As explained in the Section 4.4.1, the flow without the synthetic jet actuator is
fully detached, see Figure 4.58. The objective of the synthetic jet actuator is to
prevent or minimize flow separation. The averaged streamlines and pressure field
of the optimized cases are presented and discussed in this section. The flow field
corresponding to Case 1 is presented in Figure 4.60. Despite the fact the flow
separation is slightly delayed versus the baseline case, a large vortical structure is
still observed over the airfoil. In fact, the lift coefficient is worst for this particular
case than the one obtained in the baseline case.

Figure 4.60: Averaged streamlines and pressure field of the Case 1 (Cl = 0.79).

In Figure 4.61 the averaged streamlines and pressure field obtained from case 2
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is presented. It shows a late reattachment of the flow, which improves the lift
coefficient of the baseline by 74%. This solution has been obtained by one of the
genetic algorithm’s runs with around 400 evaluations of the objective function. The
resulting lift coefficient is Cl = 1.39.

Figure 4.61: Averaged streamlines and pressure field of the Case 2 (Cl = 1.39).

The averaged streamlines and pressure fields of cases 3, 4 and 5 are presented in
Figures 4.62, 4.63 and 4.64, respectively. All of them show a complete flow reattach-
ment, with very minor differences in the size of the laminar bubble appearing close
to the airfoil leading edge. The bubbles are in fact located near the synthetic jet
position, just downstream of it, as can be seen in the above mentioned figures. The
optimization of the flow control actuation parameters has managed to successfully
reattached the flow along the entire airfoil chord.

Figure 4.62: Averaged streamlines and pressure field of the Case 3 (Cl = 1.49).

Figure 4.63: Averaged streamlines and pressure field of the Case 4 (Cl = 1.52).
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Figure 4.64: Averaged streamlines and pressure field of the Case 5 (Cl = 1.54).

4.4.3 Two objective functions results

This section introduces the results obtained for the two objectives AFC test case.
The objective of the design problem is to maximize the lift coefficient Cl and the
airfoil efficiency η which is defined as the lift to drag ratio

η =
Cl
Cd

(4.23)

To do so the objective functions of the minimization problem are set to

Minimize :

{
f1 = −Cl
f2 = −η

(4.24)

This case has been run with the LAMU method and the two Hybrid Methods based
on it (i.e. H0-LG and H1-LG). The rest of the algorithms have not been tested with
this problem due to the high computational resources that it requires. Each of the
three methods have been run two times with different seeds. All runs performed
around 200 evaluations.

Figure 4.65 shows the convergence of each objective function and the mean values.
In this test problem the mean values should not be taken with too thoroughness as
they are calculated with only 2 samples. The method that performed worst in the
extremes is the H0-LG specially in the airfoil efficiency η objective function. In the
Cl objective function the LAMU and H1-LG methods performed similarly as both
methods have achieved similar results. It appears to be a local minimum at around
Cl = 1.4 which all methods found in one run. In the other run, the LAMU method
achieved a Cl = 1.496 and the H1-LG method achieved a Cl = 1.524.
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Figure 4.65: Convergence of the Active Flow Control with 2 objective functions. (b)
has the same legend as (a).

Figure 4.66 show all the individuals from all methods and runs in the objective
functions space. The H0-LG method is the method with the worst performance in
this case. It did not got close to the extremes of the Pareto front as showed above
and in the objective functions space did not perform well either as all individuals
are far from the optimal ones found by the other methods. The Genetic algorithm
is the method that more space has explored, see the top left region of Figure 4.66
which only has been explored by the LAMU method. The bottom left region of the
objective functions space has been explored by the LAMU and the H1-LG methods,
although the Hybrid Method achieved better solutions in that area.
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Figure 4.66: Individuals of all tests in the objective function space.

The non-dominated solutions of each run are plotted in Figure 4.67a. It is clear
that the H0-LG is the algorithm that performed worst as it did not found the
regions where the best individuals are and most of its individuals are dominated
by the ones of the other methods. The H1-LG found a solution that dominates all
other solutions, with Cl = 1.254 and η = 23.6, its design variables are presented at
Table 4.17. Figure 4.67b shows the non-dominated solutions of the joint populations
for the 2 runs of each method.

1.5 1.4 1.3 1.2 1.1
Cl

22.5

20.0

17.5

15.0

12.5

10.0

7.5 AFC 2 obj - 14deg - PARETO from files

LAMU run 1
LAMU run 2
H0-LG run 1
H0-LG run 2
H1-LG run 1
H1-LG run 2

(a)

1.5 1.4 1.3 1.2 1.1
Cl

22.5

20.0

17.5

15.0

12.5

10.0

7.5AFC 2 obj - 14deg - combined parteo from all runs

LAMU
H0-LG
H1-LG

(b)

Figure 4.67: Non-dominated solutions. (a) Overlapped Pareto fronts from all runs.
(b) Non-dominated solutions of the combined Pareto fronts of all runs for each
optimization method.

The Pareto front obtained by the H1-LG method in this optimization does not
have the shape that is expected, as a single point dominates the rest of solutions
and the non-dominated solution is composed by a single individual. The Genetic
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Algorithm did find a more conventional Pareto front containing multiple points
with a trade off between the maximum lift coefficient and the maximum airfoil
efficiency. In the work of Tousi et al. [79] a Pareto front with multiple non-dominated
solutions is obtained. The main differences between the configuration of the test
case and the one in the article are that the mesh in this work is coarser to decrease
the computational cost as it has been run with three different algorithms, and the
optimization of the article performed 400 objective functions evaluations in front of
the 200 evaluations that performed the algorithms in this study. Another difference
is the range of the x/c, although the non-dominated solutions have similar values in
both studies (x/c ≈ 2 × 10−2). This will be studied further to determine which of
this differences cause the differences in the solutions. Even if there are differences
with the study from Tousi et al. [79] the comparison in this study is still valid as
all optimization algorithms have used the exact same mesh and configuration which
makes the comparison between algorithms fair.

Table 4.17: Values of the lift coefficient, airfoil efficiency and design variables of the
overall best individual found by the H1-LG Hybrid Method.

Cl η F+ Cµ θo x/C h/C

1.524 23.6 9.3 2× 10−02 8.34 2.23× 10−01 7.19× 10−02

The method that has performed better is the H1-LG as it has achieved the most
optimal solution in one of the two runs, and has also performed the best in the
average of the two runs.

4.4.4 Summary

The single objective AFC problem has been solved by the LAMU, H0-LG, H1-LG,
PSO and Conjugate gradient. The rest of methods have not been tested in this case
due to the high computational resources that it requires. The H0-LG has solved the
the single objective AFC problem very efficiently in comparison with the rest of the
methods. It has achieves the highest rate of convergence, the highest robustness and
the combines successfully the best characteristics of both optimization algorithms.
It outperformed the rest of the algorithms in convergence rate, robustness and accu-
racy. The H1-LG has not performed so well in this case, actually worst it performed
worst than the GA. The increase of robustness is provided by the genetic algorithm
player which avoid local minimums.

The two objective AFC problem has been solved by the LAMU, H0-LG and H1-LG.
In the two objective AFC problem, the method that has performed better is the H1-
LG which has obtained a single solution that dominates all the solutions obtained
by the rest of the methods. The H0-LG has performed worst than the pure Genetic
Algorithm.

The strategy to exchange information between the two optimization algorithms pro-
posed in this Hybrid Method has proven efficient to overcome the main drawbacks
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of both classical optimization methods and the result is an optimization method
capable of exploring and exploiting the full search space.
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Chapter 5

Final remarks

In this chapter, the conclusions of the work are discussed, the future work is pre-
sented and the publications related to this work are listed.

5.1 Conclusions

Industrial optimization problems are usually high computational demanding and
can be challenging to obtain satisfactory results in a reasonable time span. In high
demanding problems the efficiency of the optimization algorithms becomes one of
the main requirements to select one optimization method. The behavior of the
optimization algorithms are highly dependent on the test problem and in some
industrial problems there is little to no information about the characteristics of the
objective functions of the problem. Evolutionary algorithms usually works well in
the scenarios where there is not much information about the objective functions,
but they usually have slowness problems to converge to the exact minimum.

The expected behavior of Evolutionary Algorithms and the Conjugate Gradient has
been confirmed throughout the single objective mathematical benchmarks. The
Conjugate Gradient performed with a lack of robustness in all cases, and only some
runs that started in the global valley converged to the global minimum. The Evo-
lutionary Algorithms have also have shown the expected behavior, finding good
solutions in most cases and runs, although not always with high accuracy.

Two metrics have been used to measure the performance of the optimization algo-
rithms in the two objective mathematical benchmarks. The distance metric, that
calculates a mean Euclidean distance of the non-dominated solutions to a sample
of the exact solutions, and the spread metric, which measures how uniformly dis-
tributed are the non-dominated solutions across the Pareto front. The distance
metric has proven to give a very valuable information, as the comparison between
methods using this method is intuitive and there is a strong correlation with the
graphical interpretation of the non-dominated solutions plot in the objective space.
The spread metric has proven to not be very reliable for performance comparisons,
as may penalize methods with higher density of points on some regions, although
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the overall density is higher. In this case it is possible to increase its spread metric
dropping some solutions from the higher density regions, and if there are enough
non-dominated solutions the rest of the performance evaluation may not be affected.
For this reason, the conclusion is that the spread metric gives a good measure of the
uniformity of the non-dominated solutions, but a higher value does not mean that
one method is worst than another.

Four different version of the Hybrid Method have been implemented and tested
successfully in both mathematical benchmarks and engineering applications. The
proposed Hybrid Methods have proven very efficient and robust in most cases, al-
though there is not a single version of the Hybrid Method, nor a pure Evolutionary
Algorithm, that performed the best across all tests. The results of each optimization
method are highly dependent on the problem.

In the two objective functions problems the proposed Hybrid Methods have consis-
tently helped to improve the convergence of the extremes of the Pareto front. The
convergence of the rest of the Pareto front regions has not been improved consis-
tently through all tests. The Hybrid Methods have solved the ZDT family problems
with much more efficiency than the pure Evolutionary Algorithms tested. In the
KUR, FON and POL problems the results in the whole Pareto front where worst
than the pure Evolutionary Algorithms.

The AFC problem which is a CFD problem with 5 design variables has been solved
successfully with the proposed Hybrid Methods. The best results of the single objec-
tive problem have been achieved with the H0-LG algorithm over performing the EA
algorithms in both runs showing a high robustness and rate of convergence. It has
showed a great convergence rate, similar to a gradient based method, but without
the lack of robustness that usually comes with gradient based methods applied to
complex applications without good initial solutions. The increase in robustness is
provided by the Genetic Algorithm player which avoids local minimums. The strat-
egy to exchange information between the two optimization algorithms proposed in
this Hybrid Method has proven efficient to overcome the main drawbacks of both
classical optimization methods, and the result is an optimization method capable
of exploring and exploiting the full search space. The best results of the two ob-
jective problem have been achieved with the H1-LG algorithm which has found a
single solution that dominates all the solutions proposed by the other methods. The
Hybrid Methods successfully combines the best characteristics of both optimization
algorithms, although the performance is dependent on the problem.

The new implementation of the CIMNE’s in-house optimization tool RMOPv2 is a
result of this thesis. The tool will be used as a research platform in hybridization
to further test the developed algorithms and to develop new ones. It also will be
used and further tested as a production tool in the industrial and research projects
to come.
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5.2 Future work

The future work aims at deepen the comprehension of all the generated results
and understand the difference in performance of the Hybrid Methods between the
different test cases to modify the algorithms and search for more universal methods
that behaves better in a wider sample of benchmarks.

One specific point of research is already identified in the KUR, FON and POL
benchmarks, where the Hybrid Methods wasted many evaluations in the extremes
of the Pareto front without achieving further improvements. A strategy to detect
the convergence of the extremes solutions may help to improve the performance in
those cases. A possible improvement is to stop the Conjugate Gradient when this is
detected and allocate all resources to the Evolutionary Algorithm player. Another
possible approach is to change the the objective function of the Conjugate Gradient
to exploit other regions of the Pareto front, for example using a weighted sum of the
two objectives as the Conjugate Gradient objective. The weights could be changed
during the optimization process, for example when the convergence for a particular
weights is detected.

Another aspect to improve is the restart capability of the methods. It has not been
discussed before, because it does not directly affect the optimization algorithm, but
when dealing with optimizations that takes months to compute, as the Active Flow
Control problem, power outages become a real problem. A restart routine had to be
implemented during the evaluation of the AFC tests. A more thought out strategy
should be developed to allow a restart of the Hybrid Methods with less loss of
information as it has become a problem during the development of the work.

The evaluation of the performance comparison could be improved including the Hy-
pervolume indicator [80, 81] and to include statistical significance tests, for example
see . In single objective problems, for example see [82] for reference. In the single
objective problems, use the best value of each independent run and for the multi-
objective problems use the Hypervolume indicator as the metrics for the significance
tests.

The Hybrid Methods based on the Genetic Algorithm could be modified to use a
single objective Genetic Algorithm, instead of the LAMU method which is based on
the NSGAII, to solve the single objective problems.

The mutation probability used in this study has been fixed to Pm = 0.1. The
influence of this value should be tested against the usually recommended value of
Pm = 1/(number of design variables).

Finally, the algorithm could be tested in optimization problems with restrictions.
In that case, the Conjugate Gradient player will have to be studied carefully as the
current algorithm is not capable to handle restrictions, and it may be necessary to
make some modification or to test other local search strategies.
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3. Nerea Mangado, Jordi Pons-Prats, Mart́ı Coma, Pavel Mistŕık, Gemma Piella,
Mario Ceresa and Miguel A Gonzalez Ballester. “Computational evaluation of
cochlear implant surgery outcomes accounting for uncertainty and parameter
variability”. In: Frontiers in physiology 9 (2018), p. 498

5.3.2 Book Chapters

1. Jordi Pons-Prats, Mart́ı Coma, Jaume Betran, Xavier Roca and Gabriel Bugeda.
“Industrial application of genetic algorithms to cost reduction of a wind turbine
equipped with a tuned mass damper”. In: Evolutionary and Deterministic
Methods for Design Optimization and Control With Applications to Industrial
and Societal Problems. Springer, 2019, pp. 419–436

5.3.3 Contribution to conferences

A list of publications made by the author in the optimization field is presented
below.

During the PhD candidature:

1. Mart́ı Coma, Navid Monshi Tousi, Jordi Pons-Prats, Josep M. Bergada and
Gabriel Bugeda. “Performance of hybrid optimization methods applied to
active flow control devices”. In: AeroBest (July 2021). Lisbon, Online.

2. J. Pons-Prats, M. Coma and G. Bugeda. “Optimization hybridization with
multiple populations and optimization methods”. In: Eurogen 2019 (Sept.
2019). Guimares, Portugal.
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CHAPTER 5. FINAL REMARKS

3. M. Coma, J. Pons-Prats and G. Bugeda. “Hybrid optimization methods”.
In: Congreso de Métodos Numéricos en Ingenieŕıa (CMN) 2019 (July 2019).
Guimares, Portugal.

4. M. Coma, J. Pons-Prats and G. Bugeda. “Programming strategies for high
performance Genetic Algorithms for demanding applications, Nash and Hybrid
games revisited”. In: Eurogen 2017 (Sept. 2017). Madrid.

5. J. Pons-Prats, M. Coma, J. Betran, X. Roca and G. Bugeda. “Industrial Ap-
plication of Genetic Algorithms to cost reduction of a Wind Turbine equipped
with a Tuned Mass Damper”. In: Eurogen 2017 (Sept. 2017). Madrid.

Previously to start the PhD candidature:

6. Dong-Seop Lee, M. Coma, H. Espinoza, O. Fruitós and J. Pons-Prats. “Multi-
objective design optimisation of a 3D-rail stamping process using a robust
multi-objective optimisation platform (RMOP)”. in: International Confer-
ence on Computational Plasticity XII. Fundamentals and Applications (2013),
pp. 1–12
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