The multivariate Gaussian distribution

February 25, 2022

Covariance matrices

Gaussian random vectors

Gaussian characteristic functions Eigenvalues of the covariance matrix Uncorrelation and independence Linear combinations The multivariate Gaussian density Additional results

1 / 46

Covariance matrices

Let $\mathbf{X} = (X_1, X_2, \ldots, X_n)^t$ be an *n*-dimensional random vector with expectation $m_X = \mathbb{E}(X) = (m_{X_1}, m_{X_2}, \ldots, m_{X_n})^t$.

Definition

The covariance matrix of **X** *is the square n* \times *n matrix* $K_X = (k_{ij})$ *de*fi*ned as*

$$
K_X = \mathbb{E} \left((X - m_X)(X - m_X)^t \right)
$$

Therefore

- ► *If* $i \neq j$, then $k_{ij} = \mathbb{E} ((X_i m_{X_i})(X_j m_{X_j})) = \text{Cov}(X_i, X_j)$.
- ▶ The diagonal entries are $k_{ii} = \mathbb{E} \left((X_i m_{X_i})^2 \right) = \text{Var}(X_i)$.

Covariance matrices

Proposition

The covariance matrix K_X *is:*

- \blacktriangleright *symmetric,* $k_{ij} = \text{Cov}(X_i, X_j) = \text{Cov}(X_i, X_i) = k_{ji}$.
- positive-semidefinite; that is to say, $z^t K_X z \geqslant 0$ for all $z = (z_1, z_2, \ldots, z_n)^t \in \mathbb{R}^n$.

Proof: Let $Y = z_1 X_1 + \cdots + z_n X_n = z^t X$. Notice that

$$
m_Y = \mathbb{E}\left(\sum_{i=1}^n z_i X_i\right) = \sum_{i=1}^n z_i m_{X_i} = \mathbf{z}^{\mathbf{t}} \mathbf{m}_X
$$

and hence

 $Y - m_Y = z^t(X - m_X)$

Therefore,

$$
z^t K_X z = z^t \mathbb{E} ((X - m_X)(X - m_X)^t) z
$$

=
$$
\mathbb{E} (z^t (X - m_X)(X - m_X)^t z)
$$

=
$$
\mathbb{E} ((Y - m_Y)(Y - m_Y)^t)
$$

=
$$
\mathbb{E} ((Y - m_Y)^2) = \text{Var}(Y) \geq 0
$$

Let us say that the "centered" random variables

$$
X_1 - m_{X_1}, X_2 - m_{X_2}, \ldots, X_n - m_{X_n}
$$

are linearly independent (in the Linear Algebra sense) if the equality

$$
\sum_{i=0}^{n} z_i (X_i - m_{X_i}) = 0
$$
 (with probability 1)

implies $z_1 = z_2 = \cdots = z_n = 0$.

5 / 46

Covariance matrices

Theorem

The random variables

$$
X_1 - m_{X_1}, X_2 - m_{X_2}, \ldots, X_n - m_{X_n}
$$

are linearly independent if and only if K_X *is positive-definite; that is, if and only if*

$$
z^t K_X z > 0 \quad \text{for all } z \neq 0.
$$

Covariance matrices

Proof: Let $Y = z^t X$ and observe that

$$
z^t K_X z = 0 \text{ for some } z \neq 0
$$

\n
$$
\iff \text{Var}(Y) = 0 \text{ for some } z \neq 0
$$

\n
$$
\iff Y - m_Y = 0 \text{ (with probability 1) for some } z \neq 0
$$

\n
$$
\iff \sum_{i=1}^n z_i (X_i - m_{X_i}) = 0 \text{ (with probability 1)}
$$

\nfor some $z = (z_1, z_2, ..., z_n)^t \neq 0$
\n
$$
\iff X_1 - m_{X_1}, X_2 - m_{X_3} - m_{X_4}
$$

\n
$$
\text{are not linearly independent.}
$$

Linear transformations

Theorem

Let $\boldsymbol{X} = (X_1, X_2, \ldots, X_n)^t$ be an *n*-dimensional random vector, let **A** be an $m \times n$ real matrix, let **b** be a constant real $m \times 1$ vector. *and let* $\mathbf{Y} = (Y_1, Y_2, \ldots, Y_m)^t$ be the m-dimensional random *vector defined as* $Y = AX + b$.

Then

$$
m_Y = A m_X + b, \qquad K_Y = A K_X A^t
$$

Observe that if $\mathbf{A} = (a_{ij})$ and $\mathbf{b} = (b_i)$, then

$$
Y_i = a_{i1}X_1 + \cdots + a_{in}X_n + b_i, \quad 1 \leqslant i \leqslant m
$$

9 / 46

Gaussian characteristic functions

Let X_1, X_2, \ldots, X_n be independent Gaussian random variables, X_i ∼ N $(m_{X_i}, \sigma_{X_i}^2)$. Their joint characteristic function is

$$
M_X(\omega_1, \omega_2, \dots, \omega_n) = M_{X_1}(\omega_1) M_{X_2}(\omega_2) \cdots M_{X_n}(\omega_n)
$$

=
$$
\prod_{i=1}^n \exp\left(i\omega_i m_{X_i} - \frac{1}{2}\sigma_X^2 \omega_i^2\right)
$$

=
$$
\exp\left(\sum_{i=1}^n \left(i\omega_i m_{X_i} - \frac{1}{2}\sigma_X^2 \omega_i^2\right)\right)
$$

=
$$
\exp\left(i\omega^i m_{X} - \frac{1}{2}\omega^i K_X \omega\right)
$$

Linear transformations

Proof: By the linearity of the expectation operator we have

$$
m_Y = \mathbb{E}(Y) = \mathbb{E}(AX + b) = A \mathbb{E}(X) + b = Am_X + b
$$

Analogously,

$$
K_Y = \mathbb{E}((Y - m_Y)(Y - m_Y)^t)
$$

= $\mathbb{E}(A(X - m_X)(X - m_X)^t A^t)$
= $A \mathbb{E}((X - m_X)(X - m_X)^t) A^t = AK_X A^t$

Gaussian characteristic functions

- $\blacktriangleright \omega = (\omega_1, \omega_2, \ldots, \omega_n)^t$ and $m_X = (m_{X_1}, \ldots, m_{X_n})$ is the expectation vector.
- **Moreover**

$$
\mathbf{K}_X = \left(\begin{array}{cccc} \sigma_{X_1}^2 & 0 & \dots & 0 \\ 0 & \sigma_{X_2}^2 & 0 & \dots & 0 \\ & & \ddots & & \\ & & & \ddots & \\ 0 & \dots & \dots & 0 & \sigma_{X_n}^2 \end{array}\right)
$$

is the covariance matrix.

The matrix K_X is diagonal, because the random variables X_i , $1 \leq i \leq n$, are independent and hence $Cov(X_i, X_j) = 0$ if $i \neq j$.

Definition

An *n*-dimensional random vector $\boldsymbol{X}=(X_1, X_2, \ldots, X_n)^t$ is Gaussian if its characteristic function has the form

$$
M_X(\omega_1, \omega_2, \ldots, \omega_n) = \exp\left(i\omega^t m - \frac{1}{2}\omega^t K \omega\right),
$$

where $\boldsymbol{\omega}^t = (\omega_1, \omega_2, \dots, \omega_n)$, **m** is a column $n \times 1$ vector of real numbers, and K is a symmetric positive-semidefinite $n \times n$ matrix.

We write $X \sim N(m, K)$ or, equivalently, we say that the random variables X_1, X_2, \ldots, X_n are jointly Gaussian.

Marginal distributions

If
$$
m = (m_j)
$$
 and $K = (k_{ij})$, then

$$
M_{X_j}(\omega) = M_X(0,\ldots,\omega,\ldots,0) = \exp\left(i m_j \omega - \frac{1}{2} k_{jj} \omega^2\right)
$$

 \blacktriangleright It can be shown that $k_{jj}\geqslant 0$ for all $j,\, 1\leqslant j\leqslant n,$ because \boldsymbol{K} is positive-semidefinite.

*If k*jj > 0*, then the component X*^j *is a 1-dimensional Gaussian random variable with parameters*

$$
\mathbb{E}(X_j) = m_j, \quad \text{Var}(X_j) = k_{jj}
$$

13 / 46

Marginal distributions

If $k_{ij} = 0$ for some *j*, then

$$
M_{X_j}(\omega)=e^{im_j\omega}
$$

Hence $\mathbb{P}(X_i = m_i) = 1$ and so $X_i = m_i$ (with probability 1).

We can regard the "constant" variable X_j as a "degenerate" N(m_i , 0) random variable.

Marginal distributions

Moreover,

$$
m_{11;X_rX_s} = \frac{1}{i^2} \left. \frac{\partial^2 M_X(\omega_1, \omega_2, \dots, \omega_n)}{\partial \omega_r \partial \omega_s} \right|_{(0,0,\dots,0)} = k_{rs} + m_r m_s
$$

Therefore

$$
\mathsf{Cov}(X_r,X_s)=k_{rs}
$$

 \triangleright So we conclude that K is the covariance matrix of X.

Eigenvalues of the covariance matrix

Since K_{Y} is a symmetric matrix, it can be converted into a diagonal matrix by means of an orthogonal transformation.

There exists an orthogonal matrix C (i.e., $CC^t = C^tC = I$) such that

$$
CK_XC^t=D=\mathrm{diag}(\lambda_1,\lambda_2,\ldots,\lambda_n),
$$

where the numbers $\lambda_i \in \mathbb{R}$ are the eigenvalues of K_X .

Equivalently,

$$
K_X = C^tDC
$$

Hence,

$$
0 \leqslant z^t K_X z = z^t (C^t DC) z = (Cz)^t D (Cz)
$$

$$
= y^t Dy = \sum_{i=1}^n \lambda_i y_i^2,
$$

where $y = Cz \in \mathbb{R}^n$ can be arbitrarily chosen, because $z = C^t y$. We deduce that all the eigenvalues of K_X are nonnegative,

 $\lambda_1 \geqslant 0, \lambda_2 \geqslant 0, \ldots, \lambda_n \geqslant 0$

17 / 46

Linear independence of the components

Linear independence of the components

Proposition

Let X *be a Gaussian random vector. Then the covariance matrix* K^X *is positive-de*fi*nite if and only if any of the following statements hold:*

- \blacktriangleright $\lambda_i > 0$ for all $1 \le i \le n$.
- ◮ *The variables X*ⁱ [−] *^m*Xⁱ *,* 1 *i n, are linearly independent.*
- \blacktriangleright det(K_Y) > 0*.*
- K_X has an inverse.
- \blacktriangleright *The multivariate density fx* (*x*₁, *x*₂, . . . , *x*_n) *exists.*

(Remark)

Gaussian random vectors are also defined if K_{\times} *is not invertible* $(i.e., if det(K_X) = 0)$.

In such cases, the Gaussian vector X *has not a density and either one has*

▶ $X_i = m_i$ *(with probability 1) for some j,* $1 \leq i \leq n$,

or, more generally,

► *the centered variables* $X_i - m_{X_i}$, $1 \leqslant i \leqslant n$, are not linearly *independent.*

Theorem

If the random variables X_1 *,* X_2 *, ...,* X_n *are jointly Gaussian and pairwise uncorrelated, then they are jointly independent.*

Proof:

$$
Cov(X_i, X_j) = 0 \Longrightarrow \mathbf{K}_X = diag(\sigma_{X_1}^2, \sigma_{X_2}^2, \dots, \sigma_{X_n}^2)
$$

Therefore

$$
M_X(\omega_1, \omega_2, \dots, \omega_n) = \exp\left(i\omega^t m_X - \frac{1}{2}\omega^t K_X \omega\right)
$$

$$
= \exp\left(\sum_{k=1}^n \left(i\omega_k m_{X_k} - \frac{1}{2}\sigma_{X_k}^2 \omega_k^2\right)\right)
$$

$$
= \prod_{k=1}^n \exp\left(i\omega_k m_{X_k} - \frac{1}{2}\sigma_{X_k}^2 \omega_k^2\right)
$$

$$
= M_{X_k}(\omega_1) M_{X_k}(\omega_2) \cdots M_{X_n}(\omega_n)
$$

21 / 46

Linear combinations

Theorem

Let X *be an n-dimensional Gaussian random vector, let* A *be an* $m \times n$ real matrix, let **b** be a constant real $m \times 1$ vector, and let $Y = AX + b$.

Then, Y *is an m-dimensional Gaussian random vector with*

$$
m_Y = A m_X + b, \qquad K_Y = AK_XA^t
$$

If $m \leq n$, **A** has full rang m, and **X** has a probability density $f_X(x_1, \ldots, x_n)$, then the Gaussian random vector Y also has a density $f_Y(y_1, \ldots, y_m)$.

Linear combinations

Proof: It only remains to be proved that Y is Gaussian.

$$
M_Y(\omega_1, \omega_2, ..., \omega_n) = \mathbb{E}\left(e^{i\omega^t Y}\right)
$$

\n
$$
= \mathbb{E}\left(e^{i\omega^t (AX+b)}\right) = e^{i\omega^t b} M_X(\omega^t A)
$$

\n
$$
= \exp\left(i\omega^t b\right) \cdot \exp\left(i(\omega^t A) m_X\right) - \frac{1}{2} \langle \omega^t A \rangle K_X(\omega^t A)^t \rangle
$$

\n
$$
= \exp\left(i\omega^t b\right) \cdot \exp\left(i\omega^t (A m_X) - \frac{1}{2}\omega^t (A K_X A^t) \omega\right)
$$

\n
$$
= \exp\left(i\omega^t (A m_X + b) - \frac{1}{2}\omega^t (A K_X A^t) \omega\right)
$$

\n
$$
= \exp\left(i\omega^t m_Y - \frac{1}{2}\omega^t K_Y \omega\right)
$$

Theorem

The n-dimensional random vector $\mathbf{X} = (X_1, \ldots, X_n)^t$ *is Gaussian if and only if the 1-dimensional random variable*

$$
Y = a_1X_1 + \cdots + a_nX_n = \boldsymbol{a}^t\boldsymbol{X}
$$

is Gaussian for all
$$
\mathbf{a} = (a_1, a_2, \dots a_n)^t \in \mathbb{R}^n
$$
.

Linear combinations

Proof: If X is Gaussian so is *Y* .

Reciprocally, suppose that for all $\boldsymbol{\omega}^t = (\omega_1, \dots, \omega_n) \in \mathbb{R}^n$, the random variable $Y = \omega^t X$ is Gaussian.

Since

$$
m_Y = \omega^t \mathbf{m}_X, \qquad \sigma_Y^2 = \omega^t \mathbf{K}_X \omega
$$

we have

$$
M_X(\omega_1, ..., \omega_n) = \mathbb{E}\left(e^{i\omega^*X}\right) = \mathbb{E}\left(e^{iY}\right)
$$

$$
= M_Y(1) = \exp\left(i m_Y - \frac{1}{2}\sigma_Y^2\right)
$$

$$
= \exp\left(i\omega^* m_X - \frac{1}{2}\omega^* K_X \omega\right)
$$

25 / 46

Linear combinations

Let K be a positive-semidefinite symmetric matrix and set:

$$
\mathbf{CKC}^t = \mathbf{D} = \text{diag}(\lambda_1, \dots, \lambda_n), \quad \lambda_i \geq 0
$$

$$
\mathbf{D}^{1/2} = \text{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})
$$

$$
\mathbf{K}^{1/2} = \mathbf{C}^t \mathbf{D}^{1/2} \mathbf{C}
$$

Then $\mathbf{D}^{1/2}\mathbf{D}^{1/2}=\mathbf{D}$, the matrix $\mathbf{K}^{1/2}$ is symmetric, and

$$
K^{1/2}K^{1/2} = (CtD1/2C)(CtD1/2C)
$$

= $CtD1/2(CCt)D1/2C$
= $Ct(D1/2D1/2)C = CtDC = K$

Linear combinations

Proposition

Let Z *be a random vector whose components Z*1, . . . , *Z*ⁿ *are independent* $N(0, 1)$ *-distributed random variables, let* K *be a n* \times *n positive-semide*fi*nite symmetric matrix, let* m *be a n* × 1 *real constant vector, and set* $X = K^{1/2}Z + m$. *Then* $X \sim N(m, K)$.

Proof: Notice that $\mathbb{E}(\boldsymbol{X}) = \boldsymbol{K}^{1/2} \mathbb{E}(\boldsymbol{Z}) + \boldsymbol{m} = \boldsymbol{m}$. It only remains to be proved that the covariance matrix of X is K . Indeed,

$$
\mathbf{K}_X = \mathbf{K}^{1/2} \, \mathbf{K}_Z \, (\mathbf{K}^{1/2})^t = \mathbf{K}^{1/2} \, \mathbf{I} \, (\mathbf{K}^{1/2})^t = \mathbf{K}^{1/2} \mathbf{K}^{1/2} = \mathbf{K}
$$

The multivariate Gaussian density

Let $\mathbf{Z} \sim \mathsf{N}(0, \mathbf{I})$ and $\mathbf{X} = \mathbf{K}^{1/2}\mathbf{Z} + \mathbf{m}$, where \mathbf{K} is an $n \times n$ positive-definite symmetric matrix (hence $det(K) > 0$).

We know that $X \sim N(m, K)$. Let us find $f_X(x_1, x_2, \ldots, x_n)$.

We have

$$
f_2(z_1, z_2, \dots, z_n) = f_{2_1}(z_1) f_{2_2}(z_2) \cdots f_{2_n}(z_n)
$$

=
$$
\prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} z_i^2} = \frac{1}{(2\pi)^{n/2}} e^{-\frac{1}{2} z^i z}
$$

Let $K^{-1/2} = (K^{1/2})^{-1}$. The matrix $K^{-1/2}$ is symmetric and, moreover,

$$
K^{-1/2}K^{-1/2}=K^{-1}
$$

The equation $x = K^{1/2}z + m$ has a unique solution

$$
z = K^{-1/2}(x-m)
$$

▶ The iacobian of the transformation is

$$
J(z_1, z_2, \ldots, z_n) = \det(\mathbf{K}^{1/2}) = \sqrt{\det(\mathbf{K})}
$$

29 / 46

The multivariate Gaussian density

In this way, by the transformation theorem we have

$$
f_{\mathbf{X}}(x_1, x_2,..., x_n) = \frac{f_{\mathbf{Z}}(z_1, z_2,..., z_n)}{|J(z_1, z_2,..., z_n)|}\Big|_{\mathbf{z} = \mathbf{K}^{-1/2}(\mathbf{x} - \mathbf{m})}
$$

\n
$$
= \frac{1}{(2\pi)^{n/2} \sqrt{\det(\mathbf{K})}} e^{-\frac{1}{2}(\mathbf{K}^{-1/2}(\mathbf{x} - \mathbf{m}))^t(\mathbf{K}^{-1/2}(\mathbf{x} - \mathbf{m}))}
$$

\n
$$
= \frac{1}{(2\pi)^{n/2} \sqrt{\det(\mathbf{K})}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{m})^t(\mathbf{K}^{-1/2})^t(\mathbf{x} - \mathbf{m})}
$$

\n
$$
= \frac{1}{(2\pi)^{n/2} \sqrt{\det(\mathbf{K})}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{m})^t(\mathbf{K}^{-1}(\mathbf{x} - \mathbf{m}))}
$$

The multivariate Gaussian density

Proposition

Let X ∼ N(*m*, *K*) *where* det(*K*) > 0*. Then X has a density* f_X *such that*

$$
f_X(x_1, x_2, \ldots, x_n) = \frac{1}{(2\pi)^{n/2}\sqrt{\det(\mathbf{K})}} \cdot \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{m})^{\mathrm{t}} \, \mathbf{K}^{-1}(\mathbf{x} - \mathbf{m})\right)
$$

The multivariate Gaussian density

For instance, for $n = 2$ we obtain:

$$
f_{XY}(x,y)=\frac{1}{2\pi\,\sqrt{1-\rho^2}\,\sigma_X\sigma_Y}\,\exp{\left(-\frac{1}{2}\cdot\frac{1}{1-\rho^2}\cdot a(x,y)\right)},
$$

where

$$
a(x,y) = \left(\frac{x - m_X}{\sigma_X}\right)^2 - 2\rho \frac{x - m_X}{\sigma_X} \cdot \frac{y - m_Y}{\sigma_Y} + \left(\frac{y - m_Y}{\sigma_Y}\right)^2
$$

The multivariate Gaussian density

33 / 46

Multidimensional Gaussian density

 $\sigma_X = \sigma_Y$ $\rho = 0.5$

The multivariate Gaussian density

The multivariate Gaussian density

37 / 46

Additional results

Theorem

Let X ∼ N(m, K) *with* det(K) > 0*. Then the random variable*

$$
(\boldsymbol{X}-\boldsymbol{m})^t\boldsymbol{K}^{-1}(\boldsymbol{X}-\boldsymbol{m})
$$

follows a $\chi^2(n)$ -distribution, where *n* is de dimension of **X**.

For instance, for $n = 2$, the random variable

$$
\frac{1}{1-\rho^2}\left(\left(\frac{X_1-m_1}{\sigma_1}\right)^2-2\rho\;\frac{X_1-m_1}{\sigma_1}\cdot\frac{X_2-m_2}{\sigma_2}+\left(\frac{X_2-m_2}{\sigma_2}\right)^2\right)
$$

is $\chi^2(2)$ -distributed.

Conditional densities

Let *X*, *Y* be jointly Gaussian. Then,

$$
f_{Y|X}(y|X = x) = \frac{f_{XY}(x, y)}{f_X(x)}
$$

=
$$
\frac{1}{\sqrt{2\pi}\sqrt{1 - \rho^2} \sigma_Y} \exp\left(-\frac{1}{2}\left(\frac{y - m_{Y|X}}{\sigma_{Y|X}}\right)^2\right)
$$

 \blacktriangleright $m_{Y|X}$ is the expected value of *Y* given *X*:

$$
m_{Y|X} = \mathbb{E}(Y|X=x) = \rho \frac{\sigma_Y}{\sigma_X}(x-m_X) + m_Y
$$

 $\blacktriangleright \sigma_{Y|X}^2 = (1 - \rho^2) \sigma_Y^2$.

38 / 46

Additional results

Proof: Consider $Y = K^{-1/2}(X - m)$. Then,

$$
\mathbb{E}(\mathbf{Y}) = \mathbb{E} \left(\mathbf{K}^{-1/2} (\mathbf{X} - m) \right) = \mathbf{K}^{-1/2} \mathbb{E}((\mathbf{X} - m)) = 0
$$
\n
$$
\mathbf{K}_{\mathcal{Y}} = \mathbb{E} \left(\mathbf{Y} \mathbf{Y}^t \right) = \mathbb{E} \left(\mathbf{K}^{-1/2} (\mathbf{X} - m) (\mathbf{X} - m)^t (\mathbf{K}^{-1/2})^t \right)
$$
\n
$$
= \mathbb{E} \left(\mathbf{K}^{-1/2} (\mathbf{X} - m) (\mathbf{X} - m)^t \mathbf{K}^{-1/2} \right)
$$
\n
$$
= \mathbf{K}^{-1/2} \mathbb{E} \left((\mathbf{X} - m) (\mathbf{X} - m)^t \right) \mathbf{K}^{-1/2}
$$
\n
$$
= \mathbf{K}^{-1/2} \mathbf{K} \mathbf{K}^{-1/2} = (\mathbf{K}^{-1/2} \mathbf{K}^{1/2}) (\mathbf{K}^{1/2} \mathbf{K}^{-1/2}) = I
$$

That is, $Y = K^{-1/2}(X - m) \sim N(0, I)$. Therefore,

$$
(\mathbf{X} - \mathbf{m})^{\mathsf{t}} \mathbf{K}^{-1} (\mathbf{X} - \mathbf{m})
$$

= (\mathbf{X} - \mathbf{m})^{\mathsf{t}} \mathbf{K}^{-1/2} \mathbf{K}^{-1/2} (\mathbf{X} - \mathbf{m}) = \mathbf{Y}^{\mathsf{t}} \mathbf{Y} = \sum_{i=1}^{n} Y_i^2

is a (1-dimensional) random variable following a $\chi^2(n)$ -distribution, because the variables Y_i , $1 \le i \le n$, are independent and N(0, 1)-distributed.

Theorem

Let X ∼ N(m, K) *and set* Y = CX*, where* C *is an ortogonal matrix such that* $CKC^t = D = diag(\lambda_1, \ldots, \lambda_n)$.

Then, Y ∼ N(Cm, D)*. In particular, the components of* Y *are independent and*

$$
Var(Y_k) = \lambda_k, \quad k = 1, \ldots, n
$$

Remark: It may occur that some eigenvalue is equal to 0, in which case the corresponding component is degenerate.

41 / 46

Additional results

Theorem

Let X ∼ N(*m*, $σ$ ²*I*)*, where* $σ$ ² > 0*. Let C be an arbitrary ortogonal matrix, and set* $Y = CX$ *. Then,* $Y \sim N(Cm, \sigma^2 I)$ *. In particular, the components of* Y *are independent Gaussian random variables with the same variance* σ^2 .

Proof:

$$
K_Y = C K_X C^t = C(\sigma^2 I) C^t = \sigma^2 C C^t = \sigma^2 I
$$

Additional results

Theorem

Let X ∼ N(m, K)*, and suppose that* K *can be partitioned (possibly after reordering the components) as follows:*

$$
K = \begin{pmatrix} K_1 & & & & \\ & K_2 & & 0 & \\ & & \cdots & & \\ & & & \ddots & \\ & & & & K_p \end{pmatrix}.
$$

Then, X can be partitioned into vectors $X^{(1)}$, $X^{(2)}$, ..., $X^{(p)}$, where K_i *is the covariance matrix of* $X^{(i)}$ *, i* = 1, 2, ..., *p*, and *in such a way that the random vectors* $X^{(1)}$, $X^{(2)}$, ..., $X^{(p)}$ are *independent.*

Example

Indeed,

Let
$$
X = (X_1, X_2, X_3)^t
$$
 be a Gaussian vector with $m = (0, 0, 0)^t$ and

$$
\mathbf{K} = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 4 & 9 \end{array} \right)
$$

Then X_1 and (X_2, X_3) are independent.

$$
\begin{split} M_X(\omega_1,\omega_2,\omega_3) &= \exp\left(i\omega^t m - \frac{1}{2}\omega^t K\omega\right) \\ &= \exp\left(-\frac{1}{2}(\omega_1,\omega_2,\omega_3)\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 4 & 9 \end{array}\right)\left(\begin{array}{c} \omega_1 \\ \omega_2 \\ \omega_3 \end{array}\right)\right) \\ &= \exp\left(-\frac{1}{2}\omega_1^2\right) \cdot \exp\left(-\frac{1}{2}(\omega_2,\omega_3)\left(\begin{array}{cc} 2 & 4 \\ 4 & 9 \end{array}\right)\left(\begin{array}{c} \omega_2 \\ \omega_3 \end{array}\right)\right) \\ &= M_{X_0}(\omega_1) \cdot M_{X_0 X_0}(\omega_2,\omega_3) \end{split}
$$

45 / 46