The multivariate Gaussian distribution
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Covariance matrices
Let X = (X1, X2,...,X,)" be an n-dimensional random vector
with expectation my = E(X) = (mx,, mx,. - - -, mx, )"
Definition
The covariance matrix of X is the square n x n matrix Kx = (kj)
defined as
Kx = E ((X — mx)(X — mx)")

Therefore

> Ifi #j, then kj = E ((Xi — mx)(Xj — mx;)) = Cov(X;, X)).

> The diagonal entries are kij = E ((X; — mx;)?) = Var(X;).
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Covariance matrices

Proposition
The covariance matrix Kx is:
> symmetric, kj = Cov(X;, X;) = Cov(X;, X;) = kii.
» positive-semidefinite; that is to say, z'Kxz = 0 for all
z= (21,2, z,)t €R™.

Proof: Let Y = 21X + -+ + z,X, = z' X. Notice that

my =E (X":Z,X
i=1

Z zimy, = z'myx
i=1

and hence
Y —my = z'(X — mx)
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Covariance matrices

Therefore,
2tKxz = 2'E (X — mx)(X — mx)") z
=E (2" (X — mx)(X - mx)‘z)
=E((Y = my)(Y = my)")

=E((Y - my)?) =Var(Y) >0
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Covariance matrices
Theorem
The random variables
X1 —my;, Xo— mx,, . Xn — mx,
are linearly independent if and only if Kx is positive-definite; that
is, if and only if
z'Kxz >0 forallz#0.
/e

Covariance matrices

Let us say that the “centered” random variables
X1 = mxy, Xo— Mgy ooy Xp— mx,
are linearly independent (in the Linear Algebra sense) if the equality
"z (X —mx) =0 (with probability 1)
=0

implies z; = zp = -+ = z, = 0.

Covariance matrices

Proof: Let Y = z!X and observe that
2'Kxz = 0 for some z # 0
<= Var(Y) = 0 for some z # 0

<= Y —my =0 (with probability 1) for some z # 0

n
Yz (Xi—mx) =0 (with probability 1)
=1
! for some z = (21,2, ..., 2,)'#0

= Xy M, Xo — Mgy Xo — mx,
are not linealy independent.



Linear transformations

Theorem

Let X = (X1, Xz, .., Xn)* be an n-dimensional random vector, let
A be an m x n real matrix, let b be a constant real m x 1 vector,
and let Y = (Y1, Ya,..., Ym)t be the m-dimensional random
vector defined as Y = AX + b.

Then

my = Amx + b, Ky = AKx A

Observe that if A = (a;) and b = (b;), then

Yi=anXi+ - +anXy+ b, 1<i<m
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Gaussian characteristic functions

Let Xi, X2, ..., X, be independent Gaussian random variables,
2

Xj ~ N(my,, 0% ). Their joint characteristic function is

My(w1,wa, . . ) = My, (1) My (c2) - - M, (n)

1
[ (s, - 3o3?)

i=1

,
e (Z (rms - %ﬁ,g))

e (e b
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Linear transformations

Proof: By the linearity of the expectation operator we have
my = E(Y) = E(AX + b) = AE(X) + b= Amx + b
Analogously,
Ky =E((Y — my)(Y — my)")
=E(A(X —mx)(X — mx)* A")
= AE ((X — mx)(X — mx)") A" = AKxA"

Gaussian characteristic functions

> W= (w,wa, ..., wp)! and mx = (mx,,..., mx,) is the
expectation vector.
> Moreover,
2
% 0 0
0 % 0 0
Ky =
0 0 o},

is the covariance matrix.

The matrix K is diagonal, because the random variables X;,

1< i < n, are independent and hence Cov(X;, Xj) = 0if i # j.
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Gaussian random vectors

Definition
An n-dimensional random vector X = (Xy, Xa, . .., X)* is
Gaussian if its characteristic function has the form

D553 000ttty =G (iw'm - %utKuJ).

where wt = (w1,ws, ... ,wy), M is a column n x 1 vector of real
numbers, and K is a symmetric positive-semidefinite n x n matrix.

We write X ~ N(m, K) or, equivalently, we say that the random
variables Xy, Xz, ..., X, are jointly Gaussian.
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Marginal distributions

> If Ky = 0 for some j, then

M) = e

Hence P(X; = m;) = 1 and so X; = m; (with probability 1).

We can regard the “constant” variable X; as a “degenerate”
N(m;,0) random variable.
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Marginal distributions

If m = (mj) and K = (k;), then

i

1
= Mx(0,....,w,...,0) = exp (i mjw— Ek,,rﬁ)

» It can be shown that k;; > 0 for all j, 1 < j < n, because K is
positive-semidefinite.

If kjj > 0, then the component X; is a 1-dimensional Gaussian
random variable with parameters

E(X) = m;, Var(X) = kj
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Marginal distributions

Moreover,
1 PMx(wi,w,....w,
mixx, = = g = ks + myms
f Dy Ds (00,-0)
Therefore

Cov(X, Xs) = ke

> So we conclude that K is the covariance matrix of X.



Eigenvalues of the covariance matrix

Since Kx is a symmetric matrix, it can be converted into a
diagonal matrix by means of an orthogonal transformation.

There exists an orthogonal matrix C (i.e., CC* = C!C = I) such
that
CKxC' = D = diag(\1, o, .-, A\n),

where the numbers \; € R are the eigenvalues of Kx.

Equivalently,
Kx = C'DC
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Linear independence of the components

Proposition

Let X be a Gaussian random vector. Then the covariance matrix
Ky is positive-definite if and only if any of the following
statements hold:

> \i>0foralll1<i<n.

> The variables X; — mx., 1 < i < n, are linearly independent.
> det(Kx) > 0.

» Kx has an inverse.

>

The multivariate density fx(x1,%a, . .., xy) exists.
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Eigenvalues of the covariance matrix

Hence,
0< z'Kxz = 2(C'DC)z = (Cz)' D (Cz)
»

=y'Dy = Ayl
i=1
where y = Cz € R" can be arbitrarily chosen, because z = C'y.

We deduce that all the eigenvalues of Kx are nonnegative,
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Linear independence of the components

(Remark)

Gaussian random vectors are also defined if Kx is not invertible
(ie., if det(Kx) = 0).
In such cases, the Gaussian vector X has not a density and either
one has

» X; = mj (with probability 1) for some j, 1 < j < n,
or, more generally,

> the centered variables X; — mx, 1 < i < n, are not linearly
independent.



Uncorrelation and independence

Theorem

If the random variables X1, Xa, ..., X, are jointly Gaussian and
pairwise uncorrelated, then they are jointly independent.

Proof:

Cov(X;, Xj) = 0 = Kx = diag(0%,.0%,.....0%,)

214

Linear combinations

Theorem

Let X be an n-dimensional Gaussian random vector, let A be an
m x n real matrix, let b be a constant real m x 1 vector, and let
Y =AX +b.

Then, Y is an m-dimensional Gaussian random vector with

my = Amx + b, Ky = AKx A"

> If m< n, A has full rang m, and X has a probability density
fx (X1 s Xn), then the Gaussian random vector Y also has a
density fy(y1, ..., Ym)-
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Uncorrelation and independence

Therefore

Mx(wr.wa, ...

o) = e it St )

1
< lwk’"Xk - Evik“’i))
,
. 1
e (mek _ En;sz)
k=1

= My, (w1)Mx; (w2) - - - M, (wn)

Linear combinations

Proof: It only remains to be proved that Y is Gaussian

swn) =E (Emw)
_E (s,'u'(AX+b)> ="' My (w'A)

My (w2, ...

— exp(iw'b) - exp (i (W AYmy) — %(W‘A)KX(M)'>

= exp (iw'b) - exp (iw‘(AmX) - % w‘(AKXA’)w>

|
(

= exp

it (Amy 4 b) 5 w’(AKXA’)w)

1
jwtmy — Ew‘Kyw)
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Linear combinations

Theorem

The n-dimensional random vector X = (Xy, ..., Xy)t is Gaussian if

and only if the 1-dimensional random variable
Y =aiXi+ -+ anXn = a'X

is Gaussian for all a = (a1, a,...a,)" € R".
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Linear combinations

Let K be a positive-semidefinite symmetric matrix and set:

CKC' = D = diag(M. ... \). A >0
D2 = diag(v/M1, ., V/An)
K2 — ctpii2c

Then DY/2D/2 = D, the matrix K%/2 is symmetric, and
K2KY2 = (ctDY2C)(CtDY2C)
_ Ct01/'2(cct)Dl,’2C
= C{(DY?’DY?)C = C'DC= K
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Linear combinations

Proof: If X is Gaussian so is Y’

Reciprocally, suppose that for all w® = (w1, ...,w,) € R", the

random variable Y = w'X is Gaussian.
Since

my = wimy, 0% = wKxw

we have
Mx(wr,- . wn) = E (e’“'x) -E (e'Y)
1
= My(1) = exp <Imy - Eo?,)

1
=exp (iu'mx - Ew‘Kxu)

Linear combinations

Proposition

Let Z be a random vector whose components Zi. . ... Z, are
independent N(0, 1)-distributed random variables, let K be a n x n
positive-semidefinite symmetric matrix, let m be a n x 1 real
constant vector, and set X = KY/2Z + m.

Then X ~ N(m, K).

Proof: Notice that E(X) = K/2E(Z) + m = m. It only remains
to be proved that the covariance matrix of X is K. Indeed,

Kx = KY2 Kz (KY2)t = KY2 | (KY2)t = KY2KY2 = K
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The multivariate Gaussian density

Let Z ~ N(0,1) and X = KY2Z + m, where K is an n x n
positive-definite symmetric matrix (hence det(K) > 0)

We know that X ~ N(m, K). Let us find fx(x1,x2,. .., Xn).
We have
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The multivariate Gaussian density

In this way, by the transformation theorem we have

fx(x1, %2

Zo)l | =k-1/2(x-m)

L LK) (K xem)
(2m)"/2 \/det(K)

_ 1 by (K1Y Koy
(2m)"/2/det(K)

b eemikiem)
(2m)"/2/det(K)
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The multivariate Gaussian density

Let K~1/2 = (K/2)~1, The matrix K~1/2 is symmetric and,
moreover,
K12K-1/2 = k-1
> The equation x = K/2z + m has a unique solution
z=KV?(x —m)

> The jacobian of the transformation is

Hz1. 25, 2) = det(KV/2) = \/det(K)

The multivariate Gaussian density

Proposition

Let X ~ N(m, K) where det(K) > 0. Then X has a density fx
such that

Y A
1 1 e
" eryaew) P (’E“ =@ = m))



The multivariate Gaussian density

For instance, for n = 2 we obtain:

1

favly) = R
) S T oy T2 T )
where
X — mx 2 X—mx y—my y—my 2
) = () gp 2y (1o
X X Y Y
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Multidimensional Gaussian density
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The multivariate Gaussian density
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The multivariate Gaussian density

ox=20y p=07

Additional results
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Theorem

Let X ~ N(m, K) with det(K) > 0. Then the random variable

(X —m) K~} (X —m)

of X.

follows a x2(n)-distribution, where n is de

For instance, for n = 2, the random variable

is x?(2)-distributed.

1 X1 —m\? X1 — X —
Lom)T L, Ximm Xemma
-2 o1 o1 2

(<:2))
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Conditional densities

Let X, Y be jointly Gaussian. Then,

fxv(x.y)

syl =) = 2L

1 1 (y — my, x)z
= exp | -2
V2ry/1—-p2 oy 2 Ty|x
> my)x is the expected value of Y given X:

o
my;x = E(Y|X =x)=p ﬁx mx) + my

> oy =(1-p) 3.

Additional results

Proof: Consider Y = K~1/2(X — m). Then,
B(Y) =E (K 13X — m)) = K~ V2E((X — m)) =0
Ky =E(YY!) =E (K’”Q(X —m)(X — m)’(K’”z)’)
=B (KTV2X — m)(X — m)K1/2)

=K V2E((X — m)(X — m)t) K~1/2
— K V2KK12 = (K’”QKI/Z)(KI"QK’I/Q) —
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Additional results

That is, Y = K~/2(X — m) ~ N(0,1). Therefore,
(X — m)tK~}(X — m)
n
=(X—m)'KPKA(X—m) =YY =3V
=1
is a (1-dimensional) random variable following a x?(n)-distribution,

because the variables Y;, 1 < i < n, are independent and
N(0, 1)-distributed.
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Additional results

Theorem

Let X ~ N(m,021), where 02 > 0. Let C be an arbitrary
ortogonal matrix, and set Y = CX. Then, Y ~ N(Cm,o21).

In particular, the components of Y are independent Gaussian
random variables with the same variance o2.

Proof:
Ky = CKxC' = C(0®1)C* = o2CC* = 01
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Additional results

Theorem

Let X ~ N(m, K) and set Y = CX, where C is an ortogonal

matrix such that CKC® = D = diag(\1,. . -, An)-
Then, Y ~ N(Cm, D).

In particular, the components of Y are independent and

Var(Ye) =M, k=1,...,n

Remark: It may occur that some eigenvalue is equal to 0, in which

case the cor di is d

Additional results

Theorem

Let X ~ N(m, K), and suppose that K can be partitioned
(possibly after reordering the components) as follows:

Ky

Then, X can be partitioned into vectors X(*), X(), .

where K; is the covariance matrix of X), i = 1,2,
such a way that the random vectors X, X@), .
independent.

LX),
p, and in
. XP) are
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Example

Let X = (X1, X, X3)" be a Gaussian vector with m = (0,0,0)* and

100
K=(02 4
049

Then X; and (X2, X3) are independent.
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Example

Indeed,

1
Mx (w1, w2, w3) = exp (iutm — Ew'Kw)

1 100 w
=op | 5(wnew) | 02 4 w
049 ws

o) (1)

= My, (w1) - My, (w2, w3)

w2

w3

)



