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Covariance matrices

Let X = (X1,X2, . . . ,Xn)
t be an n-dimensional random vector

with expectation mX = E(X ) = (mX1 ,mX2 , . . . ,mXn
)t .

Definition

The covariance matrix of X is the square n × n matrix KX = (kij)
defined as

KX = E
(

(X − mX )(X − mX )
t
)

Therefore

◮ If i �= j , then kij = E
(

(Xi −mXi
)(Xj −mXj

)
)

= Cov(Xi ,Xj).

◮ The diagonal entries are kii = E
(

(Xi −mXi
)2
)

= Var(Xi ).
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Covariance matrices

Proposition

The covariance matrix KX is:

◮ symmetric, kij = Cov(Xi ,Xj) = Cov(Xj ,Xi ) = kji .

◮ positive-semidefinite; that is to say, z tKX z � 0 for all
z = (z1, z2, . . . , zn)

t ∈ R
n.

Proof: Let Y = z1X1 + · · ·+ znXn = z tX . Notice that

mY = E

(

n
∑

i=1

zi Xi

)

=

n
∑

i=1

zimXi
= z tmX

and hence
Y −mY = z t(X − mX )
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Covariance matrices

Therefore,

z tKX z = z t
E
(

(X − mX )(X − mX )
t
)

z

= E
(

z t (X − mX )(X − mX )
tz

)

= E
(

(Y −mY )(Y −mY )
t
)

= E
(

(Y −mY )
2
)

= Var(Y ) � 0
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Covariance matrices

Let us say that the “centered” random variables

X1 −mX1 , X2 −mX2 , . . . , Xn −mXn

are linearly independent (in the Linear Algebra sense) if the equality

n
∑

i=0

zi (Xi −mXi
) = 0 (with probability 1)

implies z1 = z2 = · · · = zn = 0.
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Covariance matrices

Theorem

The random variables

X1 −mX1 , X2 −mX2 , . . . , Xn −mXn

are linearly independent if and only if KX is positive-definite; that
is, if and only if

z tKX z > 0 for all z �= 0.
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Covariance matrices

Proof: Let Y = z tX and observe that

z tKX z = 0 for some z �= 0

⇐⇒ Var(Y ) = 0 for some z �= 0

⇐⇒ Y −mY = 0 (with probability 1) for some z �= 0

⇐⇒
n

∑

i=1

zi (Xi −mXi
) = 0 (with probability 1)

for some z = (z1, z2, . . . , zn)
t �= 0

⇐⇒ X1 −mX1 ,X2 −mX2 , . . . ,Xn −mXn

are not linealy independent.
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Linear transformations

Theorem

Let X = (X1,X2, . . . ,Xn)
t be an n-dimensional random vector, let

A be an m × n real matrix, let b be a constant real m × 1 vector,
and let Y = (Y1,Y2, . . . ,Ym)

t be the m-dimensional random
vector defined as Y = AX + b.

Then

mY = A mX + b, KY = AKX At

Observe that if A = (aij) and b = (bi ), then

Yi = ai1X1 + · · ·+ ainXn + bi , 1 � i � m
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Linear transformations

Proof: By the linearity of the expectation operator we have

mY = E(Y ) = E(AX + b) = A E(X ) + b = AmX + b

Analogously,

KY = E
(

(Y − mY )(Y − mY )
t
)

= E
(

A (X − mX )(X − mX )
t At

)

= AE
(

(X − mX )(X − mX )
t
)

At = AKXAt
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Gaussian characteristic functions

Let X1, X2, . . ., Xn be independent Gaussian random variables,
Xi ∼ N(mXi

,σ2
Xi
). Their joint characteristic function is

MX (ω1,ω2, . . . ,ωn) = MX1(ω1)MX2(ω2) · · ·MXn
(ωn)

=

n
∏

i=1

exp

(

iωimXi
− 1

2
σ2
Xi
ω2
i

)

= exp

(

n
∑

i=1

(

iωimXi
− 1

2
σ2
Xi
ω2
i

)

)

= exp

(

iωtmX − 1

2
ω

tKXω

)
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Gaussian characteristic functions

◮ ω = (ω1,ω2, . . . ,ωn)
t and mX = (mX1 , . . . ,mXn

) is the
expectation vector.

◮ Moreover,

KX =













σ2
X1

0 . . . 0

0 σ2
X2

0 . . 0

.

.

0 . . . 0 σ2
Xn













is the covariance matrix.

The matrix KX is diagonal, because the random variables Xi ,
1 � i � n, are independent and hence Cov(Xi ,Xj) = 0 if i �= j .
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Gaussian random vectors

Definition

An n-dimensional random vector X = (X1,X2, . . . ,Xn)
t is

Gaussian if its characteristic function has the form

MX (ω1,ω2, . . . ,ωn) = exp

(

iωtm − 1

2
ω

tKω

)

,

where ω
t = (ω1,ω2, . . . ,ωn), m is a column n × 1 vector of real

numbers, and K is a symmetric positive-semidefinite n × n matrix.

We write X ∼ N(m,K) or, equivalently, we say that the random
variables X1, X2, . . ., Xn are jointly Gaussian.
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Marginal distributions

If m = (mj) and K = (kij), then

MXj
(ω) = MX (0, . . . ,ω, . . . , 0) = exp

(

i mj ω − 1

2
kjj ω

2

)

◮ It can be shown that kjj � 0 for all j , 1 � j � n, because K is
positive-semidefinite.

If kjj > 0, then the component Xj is a 1-dimensional Gaussian
random variable with parameters

E(Xj) = mj , Var(Xj) = kjj
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Marginal distributions

◮ If kjj = 0 for some j , then

MXj
(ω) = e imjω

Hence P(Xj = mj) = 1 and so Xj = mj (with probability 1).

We can regard the “constant” variable Xj as a “degenerate”
N(mj , 0) random variable.
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Marginal distributions

Moreover,

m11;XrXs
=

1

i2
∂2MX (ω1,ω2, . . . ,ωn)

∂ωr ∂ωs

∣

∣

∣

∣

(0,0,...,0)

= krs +mrms

Therefore
Cov(Xr ,Xs) = krs

◮ So we conclude that K is the covariance matrix of X .
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Eigenvalues of the covariance matrix

Since KX is a symmetric matrix, it can be converted into a
diagonal matrix by means of an orthogonal transformation.

There exists an orthogonal matrix C (i.e., CC t = C tC = I ) such
that

CKXC t = D = diag(λ1,λ2, . . . ,λn),

where the numbers λi ∈ R are the eigenvalues of KX .

Equivalently,
KX = C tDC
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Eigenvalues of the covariance matrix

Hence,

0 � z tKX z = z t(C tDC )z = (Cz)tD (Cz)

= y tDy =

n
∑

i=1

λiy
2
i ,

where y = Cz ∈ R
n can be arbitrarily chosen, because z = C ty .

We deduce that all the eigenvalues of KX are nonnegative,

λ1 � 0,λ2 � 0, . . . ,λn � 0
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Linear independence of the components

Proposition

Let X be a Gaussian random vector. Then the covariance matrix
KX is positive-definite if and only if any of the following
statements hold:

◮ λi > 0 for all 1 � i � n.

◮ The variables Xi −mXi
, 1 � i � n, are linearly independent.

◮ det(KX ) > 0.

◮ KX has an inverse.

◮ The multivariate density fX (x1, x2, . . . , xn) exists.
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Linear independence of the components

(Remark)

Gaussian random vectors are also defined if KX is not invertible
(i.e., if det(KX ) = 0).

In such cases, the Gaussian vector X has not a density and either
one has

◮ Xj = mj (with probability 1) for some j, 1 � j � n,

or, more generally,

◮ the centered variables Xi −mXi
, 1 � i � n, are not linearly

independent.
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Uncorrelation and independence

Theorem

If the random variables X1, X2, . . ., Xn are jointly Gaussian and
pairwise uncorrelated, then they are jointly independent.

Proof:

Cov(Xi ,Xj) = 0 =⇒ KX = diag(σ2
X1
,σ2

X2
, . . . ,σ2

Xn
)
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Uncorrelation and independence

Therefore

MX (ω1,ω2, . . . ,ωn) = exp

(

iωtmX − 1

2
ω

tKXω

)

= exp

(

n
∑

k=1

(

iωkmXk
− 1

2
σ2
Xk
ω2
k

)

)

=

n
∏

k=1

exp

(

iωkmXk
− 1

2
σ2
Xk
ω2
k

)

= MX1(ω1)MX2(ω2) · · ·MXn
(ωn)
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Linear combinations

Theorem

Let X be an n-dimensional Gaussian random vector, let A be an
m × n real matrix, let b be a constant real m × 1 vector, and let
Y = AX + b.

Then, Y is an m-dimensional Gaussian random vector with

mY = AmX + b, KY = AKXAt

◮ If m � n, A has full rang m, and X has a probability density
fX (x1, . . . , xn), then the Gaussian random vector Y also has a
density fY (y1, . . . , ym).
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Linear combinations

Proof: It only remains to be proved that Y is Gaussian.

MY (ω1,ω2, . . . ,ωn) = E

(

e iω
tY

)

= E

(

e iω
t(AX+b)

)

= e iω
tb MX (ω

tA)

= exp (iωtb) · exp

(

i (ωtA)mX )−
1

2
(ωtA)KX (ω

tA)t
)

= exp (iωtb) · exp

(

i ωt(AmX )−
1

2
ω

t(AKXAt)ω

)

= exp

(

i ωt(AmX + b)− 1

2
ω

t(AKXAt)ω

)

= exp

(

i ωtmY − 1

2
ω

tKYω

)
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Linear combinations

Theorem

The n-dimensional random vector X = (X1, . . . ,Xn)
t is Gaussian if

and only if the 1-dimensional random variable

Y = a1X1 + · · ·+ anXn = atX

is Gaussian for all a = (a1, a2, . . . an)
t ∈ R

n.
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Linear combinations

Proof: If X is Gaussian so is Y .

Reciprocally, suppose that for all ωt = (ω1, . . . ,ωn) ∈ R
n, the

random variable Y = ω
tX is Gaussian.

Since
mY = ω

tmX , σ2
Y = ω

tKXω

we have

MX (ω1, . . . ,ωn) = E

(

e iω
tX

)

= E

(

e iY
)

= MY (1) = exp

(

imY − 1

2
σ2
Y

)

= exp

(

iωtmX − 1

2
ω

tKXω

)

26 / 46

Linear combinations

Let K be a positive-semidefinite symmetric matrix and set:

CKC t = D = diag(λ1, . . . ,λn), λi � 0

D1/2 = diag(
√

λ1, . . . ,

√

λn)

K 1/2 = C tD1/2C

Then D1/2D1/2 = D, the matrix K 1/2 is symmetric, and

K 1/2K 1/2 = (C tD1/2C)(C tD1/2C)

= C tD1/2(CC t)D1/2C

= C t(D1/2D1/2)C = C tDC = K
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Linear combinations

Proposition

Let Z be a random vector whose components Z1, . . . ,Zn are
independent N(0, 1)-distributed random variables, let K be a n × n
positive-semidefinite symmetric matrix, let m be a n × 1 real
constant vector, and set X = K 1/2Z + m.

Then X ∼ N(m,K).

Proof: Notice that E(X ) = K 1/2
E(Z ) + m = m. It only remains

to be proved that the covariance matrix of X is K . Indeed,

KX = K 1/2 KZ (K 1/2)t = K 1/2 I (K 1/2)t = K 1/2K 1/2 = K
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The multivariate Gaussian density

Let Z ∼ N(0, I ) and X = K 1/2Z + m, where K is an n × n
positive-definite symmetric matrix (hence det(K) > 0).

We know that X ∼ N(m,K). Let us find fX (x1, x2, . . . , xn).

We have

fZ (z1, z2, . . . , zn) = fZ1(z1)fZ2(z2) · · · fZn
(zn)

=

n
∏

i=1

1√
2π

e−
1
2
z2
i =

1

(2π)n/2
e−

1
2
z tz
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The multivariate Gaussian density

Let K−1/2 = (K 1/2)−1. The matrix K−1/2 is symmetric and,
moreover,

K−1/2K−1/2 = K−1

◮ The equation x = K 1/2z + m has a unique solution

z = K−1/2(x − m)

◮ The jacobian of the transformation is

J(z1, z2, . . . , zn) = det(K 1/2) =
√

det(K )
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The multivariate Gaussian density

In this way, by the transformation theorem we have

fX (x1, x2, . . . , xn) =
fZ (z1, z2, . . . , zn)

|J(z1, z2, . . . , zn)|

∣

∣

∣

∣

z=K−1/2(x−m)

=
1

(2π)n/2
√

det(K )
e−

1
2(K

−1/2(x−m))
t
(K−1/2(x−m))

=
1

(2π)n/2
√

det(K )
e−

1
2
(x−m)t (K−1/2)

t
K−1/2(x−m)

=
1

(2π)n/2
√

det(K )
e−

1
2
(x−m)t K−1(x−m)
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The multivariate Gaussian density

Proposition

Let X ∼ N(m,K) where det(K ) > 0. Then X has a density fX
such that

fX (x1, x2, . . . , xn)

=
1

(2π)n/2
√

det(K )
· exp

(

−1

2
(x − m)t K−1(x − m)

)
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The multivariate Gaussian density

For instance, for n = 2 we obtain:

fXY (x , y) =
1

2π
√

1− ρ2 σXσY
exp

(

−1

2
·

1

1− ρ2
· a(x , y)

)

,

where

a(x , y) =

(

x −mX

σX

)2

− 2ρ
x −mX

σX
·
y −mY

σY
+

(

y −mY

σY

)2
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The multivariate Gaussian density

σX = σY ρ = 0
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2
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0
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0

2
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Multidimensional Gaussian density

σX = σY ρ = 0.5
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0
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0

2
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The multivariate Gaussian density

σX = σY ρ = 0.9
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0

2

-2

0

2

0

0.1

0.2
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-2

0

2
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The multivariate Gaussian density

σX = 2σY ρ = 0.7

-4

-2

0

2

4

-2

0

2

0

0.025

0.05

0.075

0.1

-4

-2

0

2

4

37 / 46

Conditional densities

Let X , Y be jointly Gaussian. Then,

fY |X (y |X = x) =
fXY (x , y)

fX (x)

=
1√

2π
√

1− ρ2 σY
exp

(

−1

2

(

y −mY |X

σY |X

)2
)

◮ mY |X is the expected value of Y given X :

mY |X = E(Y |X = x) = ρ
σY

σX
(x −mX ) +mY

◮ σ2
Y |X = (1− ρ2) σ2

Y .
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Additional results

Theorem

Let X ∼ N(m,K) with det(K ) > 0. Then the random variable

(X − m)tK−1(X − m)

follows a χ2(n)-distribution, where n is de dimension of X .

For instance, for n = 2, the random variable

1

1− ρ2

(

(

X1 −m1

σ1

)2

− 2ρ
X1 −m1

σ1
·
X2 −m2

σ2
+

(

X2 −m2

σ2

)2
)

is χ2(2)-distributed.
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Additional results

Proof: Consider Y = K−1/2(X − m). Then,

E(Y ) = E

(

K−1/2(X − m)
)

= K−1/2
E((X − m)) = 0

KY = E
(

YY t
)

= E

(

K−1/2(X − m)(X − m)t(K−1/2)t
)

= E

(

K−1/2(X − m)(X − m)tK−1/2
)

= K−1/2
E
(

(X − m)(X − m)t
)

K−1/2

= K−1/2KK−1/2 = (K−1/2K 1/2)(K 1/2K−1/2) = I
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Additional results

That is, Y = K−1/2(X − m) ∼ N(0, I ). Therefore,

(X − m)tK−1(X − m)

= (X − m)tK−1/2K−1/2(X − m) = Y tY =

n
∑

i=1

Y 2
i

is a (1-dimensional) random variable following a χ2(n)-distribution,
because the variables Yi , 1 � i � n, are independent and
N(0, 1)-distributed.
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Additional results

Theorem

Let X ∼ N(m,K) and set Y = CX , where C is an ortogonal
matrix such that CKC t = D = diag(λ1, . . . ,λn).

Then, Y ∼ N(Cm,D).

In particular, the components of Y are independent and

Var(Yk) = λk , k = 1, . . . , n

Remark: It may occur that some eigenvalue is equal to 0, in which
case the corresponding component is degenerate.

42 / 46

Additional results

Theorem

Let X ∼ N(m,σ2I ), where σ2 > 0. Let C be an arbitrary
ortogonal matrix, and set Y = CX . Then, Y ∼ N(Cm,σ2I ).

In particular, the components of Y are independent Gaussian
random variables with the same variance σ2.

Proof:
KY = CKXC t = C(σ2I )C t = σ2CC t = σ2I
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Additional results

Theorem

Let X ∼ N(m,K), and suppose that K can be partitioned
(possibly after reordering the components) as follows:

K =













K1

K2 0
· · ·

0 · · ·
Kp













.

Then, X can be partitioned into vectors X (1), X (2), . . ., X (p),
where Ki is the covariance matrix of X (i), i = 1, 2, . . . , p, and in
such a way that the random vectors X (1), X (2), . . ., X (p) are
independent.
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Example

Let X = (X1,X2,X3)
t be a Gaussian vector with m = (0, 0, 0)t and

K =





1 0 0
0 2 4
0 4 9





Then X1 and (X2,X3) are independent.
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Example

Indeed,

MX (ω1,ω2,ω3) = exp

(

iωtm − 1

2
ω

tKω

)

= exp



−1

2
(ω1,ω2,ω3)





1 0 0
0 2 4
0 4 9









ω1

ω2

ω3









= exp

(

−1

2
ω2
1

)

· exp

(

−1

2
(ω2,ω3)

(

2 4
4 9

)(

ω2

ω3

))

= MX1(ω1) ·MX2X3(ω2,ω3)
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