The multivariate Gaussian distribution

February 25, 2022

Covariance matrices

Gaussian random vectors

Gaussian characteristic functions Eigenvalues of the covariance matrix Uncorrelation and independence Linear combinations The multivariate Gaussian density Additional results

1/46

Covariance matrices

Let $\mathbf{X} = (X_1, X_2, \dots, X_n)^t$ be an *n*-dimensional random vector with expectation $\mathbf{m}_{\mathbf{X}} = \mathbb{E}(\mathbf{X}) = (m_{X_1}, m_{X_2}, \dots, m_{X_n})^t$.

Definition

The covariance matrix of **X** is the square $n \times n$ matrix $\mathbf{K}_{\mathbf{X}} = (k_{ij})$ defined as

$$K_X = \mathbb{E} \left((X - m_X)(X - m_X)^t \right)$$

Therefore

- ▶ If $i \neq j$, then $k_{ij} = \mathbb{E} \left((X_i m_{X_i})(X_j m_{X_i}) \right) = Cov(X_i, X_j)$.
- ► The diagonal entries are k_{ii} = E ((X_i m_X)²) = Var(X_i).

Covariance matrices

Proposition

The covariance matrix K_X is:

- symmetric, k_{ii} = Cov(X_i, X_i) = Cov(X_i, X_i) = k_{ii}.
- ▶ positive-semidefinite; that is to say, $z^t K_X z \ge 0$ for all $z = (z_1, z_2, ..., z_n)^t \in \mathbb{R}^n$.

Proof: Let $Y = z_1 X_1 + \cdots + z_n X_n = z^t X$. Notice that

$$m_Y = \mathbb{E}\left(\sum_{i=1}^n z_i X_i\right) = \sum_{i=1}^n z_i m_{X_i} = \boldsymbol{z}^t \boldsymbol{m}_X$$

and hence

$$Y - m_Y = \boldsymbol{z}^t (\boldsymbol{X} - \boldsymbol{m}_X)$$

4/46

Therefore,

$$\begin{split} z^t \mathbf{K}_X z &= z^t \mathbb{E}\left((\mathbf{X} - \mathbf{m}_X) (\mathbf{X} - \mathbf{m}_X)^t \right) z \\ &= \mathbb{E}\left(z^t \left(\mathbf{X} - \mathbf{m}_X \right) (\mathbf{X} - \mathbf{m}_X)^t z \right) \\ &= \mathbb{E}\left(((Y - \mathbf{m}_Y) (Y - \mathbf{m}_Y)^t \right) \\ &= \mathbb{E}\left((Y - \mathbf{m}_Y)^2 \right) = \mathsf{Var}(Y) \ge 0 \end{split}$$

Let us say that the "centered" random variables

$$X_1 - m_{X_1}, X_2 - m_{X_2}, \dots, X_n - m_{X_n}$$

are linearly independent (in the Linear Algebra sense) if the equality

$$\sum_{i=0}^{n} z_i \left(X_i - m_{X_i} \right) = 0$$
 (with probability 1)

implies $z_1 = z_2 = \cdots = z_n = 0$.

5/46

Covariance matrices

Theorem

The random variables

$$X_1 - m_{X_1}, X_2 - m_{X_2}, \ldots, X_n - m_{X_n}$$

are linearly independent if and only if K_X is positive-definite; that is, if and only if

$$z^t K_X z > 0$$
 for all $z \neq 0$.

Covariance matrices

Proof: Let $Y = z^t X$ and observe that

 $z^t K_X z = 0$ for some $z \neq 0$

 $\iff \operatorname{Var}(Y) = 0 \text{ for some } z \neq 0$ $\iff Y - m_Y = 0 \text{ (with probability 1) for some } z \neq 0$

$$\iff \sum_{i=1}^{n} z_i (X_i - m_{X_i}) = 0 \text{ (with probability 1)}$$

for some $\mathbf{z} = (z_1, z_2, \dots, z_n)^t \neq 0$
$$\iff X_1 - m_{X_1}, X_2 - m_{X_2}, \dots, X_n - m_{X_n}$$

are not linealy independent.

Linear transformations

Theorem

Let $\mathbf{X} = (X_1, X_2, \dots, X_n)^t$ be an n-dimensional random vector, let A be an $m \times n$ real matrix, let b be a constant real $m \times 1$ vector, and let $\mathbf{Y} = (Y_1, Y_2, \dots, Y_m)^t$ be the m-dimensional random vector defined as $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{b}$.

Then

$$m_Y = A m_X + b, \qquad K_Y = A K_X A^t$$

Observe that if $\mathbf{A} = (a_{ii})$ and $\mathbf{b} = (b_i)$, then

$$Y_i = a_{i1}X_1 + \cdots + a_{in}X_n + b_i$$
, $1 \le i \le m$

9/46

Gaussian characteristic functions

Let X_1, X_2, \ldots, X_n be independent Gaussian random variables, $X_i \sim N(m_X, \sigma_X^2)$. Their joint characteristic function is

$$\begin{split} \mathcal{M}_{\mathbf{X}}(\omega_1, \omega_2, \dots, \omega_n) &= \mathcal{M}_{\mathbf{X}_1}(\omega_1) \mathcal{M}_{\mathbf{X}_2}(\omega_2) \cdots \mathcal{M}_{\mathbf{X}_n}(\omega_n) \\ &= \prod_{i=1}^n \exp\left(i\omega_i m_{\mathbf{X}_i} - \frac{1}{2}\sigma_{\mathbf{X}_i}^2\omega_i^2\right) \\ &= \exp\left(\sum_{i=1}^n \left(i\omega_i m_{\mathbf{X}_i} - \frac{1}{2}\sigma_{\mathbf{X}_i}^2\omega_i^2\right)\right) \\ &= \exp\left(i\omega^i m_{\mathbf{X}_i} - \frac{1}{2}\omega^i K_{\mathbf{X}}\omega\right) \end{split}$$

Linear transformations

Proof: By the linearity of the expectation operator we have

$$m_Y = \mathbb{E}(Y) = \mathbb{E}(AX + b) = A \mathbb{E}(X) + b = Am_X + b$$

Analogously,

$$\begin{split} \mathbf{K}_{Y} &= \mathbb{E}\left((\mathbf{Y} - \mathbf{m}_{Y})(\mathbf{Y} - \mathbf{m}_{Y})^{t}\right) \\ &= \mathbb{E}\left(\mathbf{A}(\mathbf{X} - \mathbf{m}_{X})(\mathbf{X} - \mathbf{m}_{X})^{t} \mathbf{A}^{t}\right) \\ &= \mathbf{A}\mathbb{E}\left((\mathbf{X} - \mathbf{m}_{X})(\mathbf{X} - \mathbf{m}_{X})^{t}\right) \mathbf{A}^{t} = \mathbf{A}K_{X}\mathbf{A}^{t} \end{split}$$

Gaussian characteristic functions

- $\boldsymbol{\omega} = (\omega_1, \omega_2, \dots, \omega_n)^t$ and $\boldsymbol{m}_X = (m_{X_1}, \dots, m_{X_n})$ is the expectation vector.
- Moreover.

$$\boldsymbol{K}_{\boldsymbol{X}} = \begin{pmatrix} \sigma_{X_1}^2 & 0 & . & . & . & 0 \\ 0 & \sigma_{X_2}^2 & 0 & . & . & 0 \\ & & . & & \\ 0 & . & . & . & 0 & \sigma_{X_n}^2 \end{pmatrix}$$

is the covariance matrix

The matrix K_X is diagonal, because the random variables X_i , $1 \leq i \leq n$, are independent and hence $Cov(X_i, X_i) = 0$ if $i \neq j$.

Gaussian random vectors

Definition

An *n*-dimensional random vector $\mathbf{X} = (X_1, X_2, ..., X_n)^t$ is Gaussian if its characteristic function has the form

$$M_X(\omega_1, \omega_2, \dots, \omega_n) = \exp\left(i\omega^t \boldsymbol{m} - \frac{1}{2}\omega^t \boldsymbol{\kappa}\omega\right),$$

where $\boldsymbol{\omega}^t = (\omega_1, \omega_2, \dots, \omega_n)$, \boldsymbol{m} is a column $n \times 1$ vector of real numbers, and \boldsymbol{K} is a symmetric positive-semidefinite $n \times n$ matrix.

We write $\mathbf{X} \sim N(\mathbf{m}, \mathbf{K})$ or, equivalently, we say that the random variables X_1, X_2, \ldots, X_n are jointly Gaussian.

Marginal distributions

If
$$\mathbf{m} = (m_i)$$
 and $\mathbf{K} = (k_{ij})$, then

$$M_{X_j}(\omega) = M_X(0,\ldots,\omega,\ldots,0) = \exp\left(i m_j \omega - \frac{1}{2} k_{jj} \omega^2\right)$$

It can be shown that k_{jj} ≥ 0 for all j, 1 ≤ j ≤ n, because K is positive-semidefinite.

If $k_{jj} > 0$, then the component X_j is a 1-dimensional Gaussian random variable with parameters

$$\mathbb{E}(X_j) = m_j$$
, $Var(X_j) = k_j$

13/46

Marginal distributions

$$M_{X_i}(\omega) = e^{im_j\omega}$$

Hence $\mathbb{P}(X_i = m_i) = 1$ and so $X_i = m_i$ (with probability 1).

We can regard the "constant" variable X_j as a "degenerate" $N(m_i, 0)$ random variable.

Marginal distributions

Moreover,

$$m_{11;X_rX_s} = \frac{1}{i^2} \left. \frac{\partial^2 M_X(\omega_1, \omega_2, \dots, \omega_n)}{\partial \omega_r \partial \omega_s} \right|_{(0,0,\dots,0)} = k_{rs} + m_r m_s$$

Therefore

$$Cov(X_r, X_s) = k_r$$

So we conclude that K is the covariance matrix of X.

Eigenvalues of the covariance matrix

Since K_X is a symmetric matrix, it can be converted into a diagonal matrix by means of an orthogonal transformation.

There exists an orthogonal matrix C (i.e., $CC^t = C^t C = I$) such that

 $CK_X C^t = D = diag(\lambda_1, \lambda_2, \dots, \lambda_n),$

where the numbers $\lambda_i \in \mathbb{R}$ are the eigenvalues of K_X .

Equivalently,

$$K_X = C^t DC$$

Hence,

$$0 \leq z^{t} \mathcal{K}_{X} z = z^{t} (C^{t} D C) z = (Cz)^{t} D (Cz)$$
$$= y^{t} D y = \sum_{i=1}^{n} \lambda_{i} y_{i}^{2},$$

where $y = Cz \in \mathbb{R}^n$ can be arbitrarily chosen, because $z = C^t y$. We deduce that all the eigenvalues of K_X are nonnegative,

$$\lambda_1 \ge 0, \lambda_2 \ge 0, \dots, \lambda_n \ge 0$$

17 / 46

Linear independence of the components

Linear independence of the components

Proposition

Let **X** be a Gaussian random vector. Then the covariance matrix K_X is positive-definite if and only if any of the following statements hold:

- ▶ $\lambda_i > 0$ for all $1 \leq i \leq n$.
- The variables X_i − m_{Xi}, 1 ≤ i ≤ n, are linearly independent.
- ▶ det(K_X) > 0.
- K_X has an inverse.
- The multivariate density f_X(x₁, x₂,...,x_n) exists.

(Remark)

Gaussian random vectors are also defined if K_X is not invertible (i.e., if det $(K_X) = 0$).

In such cases, the Gaussian vector \boldsymbol{X} has not a density and either one has

▶ $X_i = m_i$ (with probability 1) for some $j, 1 \leq j \leq n$,

or, more generally,

b the centered variables X_i − m_{Xi}, 1 ≤ i ≤ n, are not linearly independent.

Theorem

If the random variables $X_1, X_2, ..., X_n$ are jointly Gaussian and pairwise uncorrelated, then they are jointly independent.

Proof:

$$Cov(X_i, X_j) = 0 \Longrightarrow K_X = diag(\sigma_{X_1}^2, \sigma_{X_2}^2, \dots, \sigma_{X_n}^2)$$

Therefore

$$\begin{split} M_X(\omega_1, \omega_2, \dots, \omega_n) &= \exp\left(i\omega^* m_X - \frac{1}{2}\omega^* K_X \omega\right) \\ &= \exp\left(\sum_{k=1}^n \left(i\omega_k m_{X_k} - \frac{1}{2}\sigma_{X_k}^2 \omega_k^2\right)\right) \\ &= \prod_{k=1}^n \exp\left(i\omega_k m_{X_k} - \frac{1}{2}\sigma_{X_k}^2 \omega_k^2\right) \\ &= M_X(\omega_1) M_X(\omega_2) \cdots M_X(\omega_n) \end{split}$$

21/46

Linear combinations

Theorem

Let **X** be an n-dimensional Gaussian random vector, let **A** be an $m \times n$ real matrix, let **b** be a constant real $m \times 1$ vector, and let $\mathbf{Y} = \mathbf{AX} + \mathbf{b}$.

Then, Y is an m-dimensional Gaussian random vector with

$$m_Y = A m_X + b$$
, $K_Y = A K_X A^{i}$

▶ If $m \leq n$, **A** has full rang m, and **X** has a probability density $f_X(x_1, ..., x_n)$, then the Gaussian random vector **Y** also has a density $f_Y(y_1, ..., y_m)$.

Linear combinations

Proof: It only remains to be proved that \boldsymbol{Y} is Gaussian.

$$\begin{split} M_{Y}(\omega_{1},\omega_{2},\ldots,\omega_{n}) &= \mathbb{E}\left(e^{i\omega^{t}Y}\right) \\ &= \mathbb{E}\left(e^{i\omega^{t}(\mathbf{AX}+b)}\right) = e^{i\omega^{t}b}M_{X}(\omega^{t}\mathbf{A}) \\ &= \exp\left(i\omega^{t}b\right) \cdot \exp\left(i\left(\omega^{t}\mathbf{A})\mathbf{m}_{X}\right) - \frac{1}{2}\left(\omega^{t}\mathbf{A})\mathbf{K}_{X}(\omega^{t}\mathbf{A})^{t}\right) \\ &= \exp\left(i\omega^{t}b\right) \cdot \exp\left(i\omega^{t}(\mathbf{Am}_{X}) - \frac{1}{2}\omega^{t}(\mathbf{AK}_{X}\mathbf{A}^{t})\omega\right) \\ &= \exp\left(i\omega^{t}(\mathbf{Am}_{X}+b) - \frac{1}{2}\omega^{t}(\mathbf{AK}_{X}\mathbf{A}^{t})\omega\right) \\ &= \exp\left(i\omega^{t}\mathbf{m}_{Y} - \frac{1}{2}\omega^{t}\mathbf{K}_{Y}\omega\right) \end{split}$$

Theorem

The n-dimensional random vector $\mathbf{X} = (X_1, \dots, X_n)^t$ is Gaussian if and only if the 1-dimensional random variable

$$Y = a_1 X_1 + \cdots + a_n X_n = a^t X$$

is Gaussian for all $\mathbf{a} = (a_1, a_2, \dots a_n)^t \in \mathbb{R}^n$.

Linear combinations

Proof: If \boldsymbol{X} is Gaussian so is \boldsymbol{Y} .

Reciprocally, suppose that for all $\omega^t = (\omega_1, \dots, \omega_n) \in \mathbb{R}^n$, the random variable $Y = \omega^t X$ is Gaussian.

Since

$$m_Y = \omega^t m_X$$
, $\sigma_Y^2 = \omega^t K_X \omega$

we have

٨

$$\begin{split} f_X(\omega_1,\ldots,\omega_n) &= \mathbb{E}\left(e^{i\omega^* X}\right) = \mathbb{E}\left(e^{iY}\right) \\ &= M_Y(1) = \exp\left(im_Y - \frac{1}{2}\sigma_Y^2\right) \\ &= \exp\left(i\omega^* m_X - \frac{1}{2}\omega^* K_X\omega\right) \end{split}$$

25/46

Linear combinations

Let K be a positive-semidefinite symmetric matrix and set:

$$\begin{split} \mathcal{C}\mathcal{K}\mathcal{C}^t &= \mathcal{D} = \operatorname{diag}(\lambda_1, \dots, \lambda_n), \quad \lambda_i \geq 0 \\ \mathcal{D}^{1/2} &= \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n}) \\ \mathcal{K}^{1/2} &= \mathcal{C}^t \mathcal{D}^{1/2} \mathcal{C} \end{split}$$

Then $D^{1/2}D^{1/2} = D$, the matrix $K^{1/2}$ is symmetric, and

$$\begin{aligned} \mathbf{K}^{1/2} \mathbf{K}^{1/2} &= (C^t D^{1/2} C) (C^t D^{1/2} C) \\ &= C^t D^{1/2} (C C^t) D^{1/2} C \\ &= C^t (D^{1/2} D^{1/2}) C = C^t D C = \mathbf{K} \end{aligned}$$

Linear combinations

Proposition

Let **Z** be a random vector whose components Z_1, \ldots, Z_n are independent $\mathbb{N}(0, 1)$ -distributed random variables, let **K** be a $n \times n$ positive-semidefinite symmetric matrix, let **m** be a $n \times 1$ real constant vector, and set $\mathbf{X} = \mathbf{K}^{1/2}\mathbf{Z} + \mathbf{m}$. Then $\mathbf{X} \sim \mathbb{N}(\mathbf{m}, \mathbf{K})$.

Proof: Notice that $\mathbb{E}(\mathbf{X}) = \mathbf{K}^{1/2} \mathbb{E}(\mathbf{Z}) + \mathbf{m} = \mathbf{m}$. It only remains to be proved that the covariance matrix of \mathbf{X} is \mathbf{K} . Indeed,

$$K_X = K^{1/2} K_Z (K^{1/2})^t = K^{1/2} I (K^{1/2})^t = K^{1/2} K^{1/2} = K$$

The multivariate Gaussian density

Let $\mathbf{Z} \sim N(0, \mathbf{I})$ and $\mathbf{X} = \mathbf{K}^{1/2}\mathbf{Z} + \mathbf{m}$, where \mathbf{K} is an $n \times n$ positive-definite symmetric matrix (hence det(\mathbf{K}) > 0).

We know that $\mathbf{X} \sim N(\mathbf{m}, \mathbf{K})$. Let us find $f_X(x_1, x_2, \dots, x_n)$.

We have

$$\begin{split} f_{Z}(z_{1},z_{2},\ldots,z_{n}) &= f_{Z_{1}}(z_{1})f_{Z_{2}}(z_{2})\cdots f_{Z_{n}}(z_{n}) \\ &= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z_{i}^{2}} = \frac{1}{(2\pi)^{n/2}} e^{-\frac{1}{2}z^{i}z} \end{split}$$

Let $\mathbf{K}^{-1/2} = (\mathbf{K}^{1/2})^{-1}$. The matrix $\mathbf{K}^{-1/2}$ is symmetric and, moreover,

$$K^{-1/2}K^{-1/2} = K^{-1/2}$$

▶ The equation x = K^{1/2}z + m has a unique solution

$$z = K^{-1/2}(x - m)$$

The jacobian of the transformation is

$$J(z_1, z_2, \dots, z_n) = \det(\mathbf{K}^{1/2}) = \sqrt{\det(\mathbf{K})}$$

29/46

The multivariate Gaussian density

In this way, by the transformation theorem we have

$$\begin{split} f_X(x_1, x_2, \dots, x_n) &= \frac{f_Z(x_1, x_2, \dots, x_n)}{|f_Z(x_1, x_2, \dots, x_n)|}\Big|_{x=K^{-1/2}(x-m)} \\ &= \frac{1}{(2\pi)^{n/2}} \sqrt{\det(K)} e^{-\frac{1}{2}(K^{-1/2}(x-m))'(K^{-1/2}(x-m))} \\ &= \frac{1}{(2\pi)^{n/2}} \sqrt{\det(K)} e^{-\frac{1}{2}(x-m)'(K^{-1/2})'K^{-1/2}(x-m)} \\ &= \frac{1}{(2\pi)^{n/2}} \sqrt{\det(K)} e^{-\frac{1}{2}(x-m)'K^{-1}(x-m)} \end{split}$$

The multivariate Gaussian density

Proposition

Let $X \sim N(m, K)$ where det(K) > 0. Then X has a density f_X such that

$$f_X(x_1, x_2, \dots, x_n) \\ = \frac{1}{(2\pi)^{n/2} \sqrt{\det(\boldsymbol{K})}} \cdot \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{m})^t \, \boldsymbol{K}^{-1}(\boldsymbol{x} - \boldsymbol{m})\right)$$

The multivariate Gaussian density

For instance, for n = 2 we obtain:

$$f_{XY}(x,y) = \frac{1}{2\pi \sqrt{1-\rho^2}} \sigma_X \sigma_Y \exp\left(-\frac{1}{2} \cdot \frac{1}{1-\rho^2} \cdot a(x,y)\right),$$

where

$$\mathsf{a}(x,y) = \left(\frac{x-m_X}{\sigma_X}\right)^2 - 2\rho \, \frac{x-m_X}{\sigma_X} \cdot \frac{y-m_Y}{\sigma_Y} + \left(\frac{y-m_Y}{\sigma_Y}\right)^2$$

33/46

Multidimensional Gaussian density

 $\sigma_X = \sigma_Y \qquad \rho = 0.5$

The multivariate Gaussian density

 $\sigma_X = \sigma_Y \qquad \rho = 0.9$

The multivariate Gaussian density

 $\sigma_X = 2\sigma_Y \qquad \rho = 0.7$

Conditional densities

Let X, Y be jointly Gaussian. Then,

$$\begin{split} f_{Y|X}(y|X=x) &= \frac{f_{XY}(x,y)}{f_X(x)} \\ &= \frac{1}{\sqrt{2\pi}\sqrt{1-\rho^2} \sigma_Y} \exp\left(-\frac{1}{2}\left(\frac{y-m_{Y|X}}{\sigma_{Y|X}}\right)^2\right) \end{split}$$

m_{Y|X} is the expected value of Y given X:

$$m_{Y|X} = \mathbb{E}(Y|X = x) = \rho \frac{\sigma_Y}{\sigma_X}(x - m_X) + m_Y$$

• $\sigma_{Y|X}^2 = (1 - \rho^2) \sigma_Y^2$.

37 / 46

Additional results

Theorem

Let $X \sim N(m, K)$ with det(K) > 0. Then the random variable

$$(X - m)^{t} K^{-1} (X - m)$$

follows a $\chi^2(n)$ -distribution, where n is de dimension of X.

For instance, for n = 2, the random variable

$$\frac{1}{1-\rho^2}\left(\left(\frac{X_1-m_1}{\sigma_1}\right)^2-2\rho \; \frac{X_1-m_1}{\sigma_1}\cdot \frac{X_2-m_2}{\sigma_2}+\left(\frac{X_2-m_2}{\sigma_2}\right)^2\right)$$

is $\chi^2(2)$ -distributed.

Additional results

Proof: Consider $\mathbf{Y} = \mathbf{K}^{-1/2}(\mathbf{X} - \mathbf{m})$. Then,

$$\begin{split} \mathbb{E}(\mathbf{Y}) &= \mathbb{E}\left(K^{-1/2}(\mathbf{X}-\mathbf{m})\right) = K^{-1/2}\mathbb{E}((\mathbf{X}-\mathbf{m})) = \mathbf{0} \\ K_{\mathbf{Y}} &= \mathbb{E}\left(\mathbf{Y}\mathbf{Y}^{t}\right) = \mathbb{E}\left(K^{-1/2}(\mathbf{X}-\mathbf{m})(\mathbf{X}-\mathbf{m})^{t}(K^{-1/2})^{t}\right) \\ &= \mathbb{E}\left(K^{-1/2}(\mathbf{X}-\mathbf{m})(\mathbf{X}-\mathbf{m})^{t}K^{-1/2}\right) \\ &= K^{-1/2}\mathbb{E}\left((\mathbf{X}-\mathbf{m})(\mathbf{X}-\mathbf{m})^{t}\right)K^{-1/2} \\ &= K^{-1/2}\mathcal{K}K^{-1/2} = (K^{-1/2}K^{1/2}(K^{1/2}K^{-1/2}) = \mathbf{J} \end{split}$$

40 / 46

That is, $\mathbf{Y} = \mathbf{K}^{-1/2} (\mathbf{X} - \mathbf{m}) \sim N(0, \mathbf{I})$. Therefore,

$$(\boldsymbol{X} - \boldsymbol{m})^t \boldsymbol{K}^{-1} (\boldsymbol{X} - \boldsymbol{m})$$

= $(\boldsymbol{X} - \boldsymbol{m})^t \boldsymbol{K}^{-1/2} \boldsymbol{K}^{-1/2} (\boldsymbol{X} - \boldsymbol{m}) = \boldsymbol{Y}^t \boldsymbol{Y} = \sum_{i=1}^n \boldsymbol{Y}$

is a (1-dimensional) random variable following a $\chi^2(n)$ -distribution, because the variables Y_i , $1 \le i \le n$, are independent and N(0, 1)-distributed.

Theorem

Let $X \sim N(m, K)$ and set Y = CX, where C is an ortogonal matrix such that $CKC^{\tau} = D = \text{diag}(\lambda_1, \dots, \lambda_n)$. Then, $Y \sim N(Cm, D)$. In particular, the components of Y are independent and

$$Var(Y_k) = \lambda_k, \quad k = 1, \dots, n$$

Remark: It may occur that some eigenvalue is equal to 0, in which case the corresponding component is degenerate.

41/46

Additional results

Theorem

Let $X \sim N(m, \sigma^2 I)$, where $\sigma^2 > 0$. Let C be an arbitrary ortogonal matrix, and set Y = CX. Then, $Y \sim N(Cm, \sigma^2 I)$. In particular, the components of Y are independent Gaussian random variables with the same variance σ^2 .

Proof:

$$K_Y = CK_XC^t = C(\sigma^2 I)C^t = \sigma^2 CC^t = \sigma^2 I$$

Additional results

Theorem

Let $X \sim N(m, K)$, and suppose that K can be partitioned (possibly after reordering the components) as follows:

$$\boldsymbol{\mathcal{K}} = \left(\begin{array}{ccc} \boldsymbol{\mathcal{K}}_1 & & & \\ & \boldsymbol{\mathcal{K}}_2 & & 0 \\ & & \cdots & \\ & 0 & & \cdots & \\ & & & \boldsymbol{\mathcal{K}}_p \end{array} \right).$$

Then, **X** can be partitioned into vectors $\mathbf{X}^{(1)}$, $\mathbf{X}^{(2)}$, ..., $\mathbf{X}^{(p)}$, where \mathbf{K}_i is the covariance matrix of $\mathbf{X}^{(i)}$, $i = 1, 2, \ldots, p$, and in such a way that the random vectors $\mathbf{X}^{(1)}$, $\mathbf{X}^{(2)}$, ..., $\mathbf{X}^{(p)}$ are independent.

Example

Indeed,

$$\begin{split} M_{\mathbf{X}}(\omega_1, \omega_2, \omega_3) &= \exp\left(i\omega^t \mathbf{m} - \frac{1}{2}\omega^t \mathbf{K}\omega\right) \\ &= \exp\left(-\frac{1}{2}(\omega_1, \omega_2, \omega_3) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 4 & 9 \end{pmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix}\right) \\ &= \exp\left(-\frac{1}{2}\omega_1^2\right) \cdot \exp\left(-\frac{1}{2}(\omega_2, \omega_3) \begin{pmatrix} 2 & 4 \\ 4 & 9 \end{pmatrix} \begin{pmatrix} \omega_2 \\ \omega_3 \end{pmatrix}\right) \\ &= M_1(\omega_1) M_2(\omega_1(\omega_2)) \end{split}$$

 $= M_{X_1}(\omega_1) \cdot M_{X_2X_3}(\omega_2,\omega_3)$

45 / 46

46 / 46

Let $\mathbf{X} = (X_1, X_2, X_3)^t$ be a Gaussian vector with $\mathbf{m} = (0, 0, 0)^t$ and $\mathbf{K} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 4 & 9 \end{pmatrix}$

Then X_1 and (X_2, X_3) are independent.