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Abstract

English:

Heliospheric magnetic flux ropes (MFRs) have been found to be a fundamental internal structure
of Interplanetary Coronal Mass Ejections (ICMEs). This work focuses on determining whether a
given free-boundary flux rope structure is stable or not, by finding the rate at which an instability
may evolve in time. The growth rate method was introduced by Linton et al. (1996) for the
kink instability, and was applied by Florido-Llinas et al. (2020) to the forecasting of rotations
in expanding ICMEs. In the present thesis, we work on the mathematical justification and the
identification of the key assumptions behind this method, as well as generalizing it to analyze other
plasma instabilities that affect the cross-section of the flux rope. Such a study has been applied
to equilibrium magnetic field configurations inspired in the Gold-Hoyle model, in an attempt to
explore whether the internal twist and Lorentz forces are related to the flux rope stability.

Català:

Les cordes de flux magnètic heliosfèriques (MFRs) són considerades les estructures internes fon-
amentals de les Ejeccions de Massa Coronal Interplanetàries (ICMEs). Aquest treball es centra
en determinar si donada una corda de flux magnètic amb frontera lliure, aquesta és estable o no,
trobant el ritme al qual una inestabilitat pot créixer en el temps. El mètode de la velocitat de
creixement va ser introdüıt per Linton et al. (1996) per la inestabilitat de tipus kink, i va ser
aplicat per Florido-Llinas et al. (2020) per la predicció de rotacions en ICMEs en expansió. En
la present tesi, treballem en la justificació matemàtica i la identificació de les assumpcions clau
darrere aquest mètode, a la vegada que el generalitzem per tal d’analitzar altres inestabilitats del
plasma que podem afectar a la secció transversal de la corda de flux magnètic. Aquest estudi ha
estat aplicat a l’equilibri de configuracions de camp magnètic inspirades en el model de Gold-Hoyle,
amb l’objectiu d’explorar si la torsió i forces de Lorentz estan relacionades amb l’estabilitat de les
cordes de flux magnètic.

Castellano:

Las cuerdas de flujo magnético heliosféricas (MFRs) son consideradas las estructuras internas
fundamentales de les Eyecciones de Masa Coronal Interplanetarias (ICMEs). Este trabajo se
centra en determinar si dada una cuerda de flujo magnético con frontera libre, esta es estable o no,
encontrando el ritmo al cual la inestabilidad puede crecer en el tiempo. El método de la velocidad
de crecimiento fue introducido por Linton et al. (1996) para la inestabilidad de tipo kink, y fue
aplicado por Florido-Llinas et al. (2020) para la predicción de rotaciones en ICMEs en expansión.
En la presente tesis, trabajamos en la justificación matemática y la identificación de las asunciones
clave detrás de este método, a la vez que lo generalizamos con el fin de analizar otras inestabilidades
del plasma que pueden afectar a la sección transversal de la cuerda de flujo magnético. Este estudio
ha sido aplicado al equilibrio de configuraciones de campo magnético inspiradas en el modelo de
Gold-Hoyle, con el objetivo de explorar si la torsión y fuerzas de Lorentz están relacionadas con la
estabilidad de las cuerdas de flujo magnético.
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Moreover, I want to thank Marta Florido Llinàs for altruistically spending time chatting with me
about her great work and answering every single one of my questions, helping me hit the ground
running during this project.

Finally, I want to extend my gratitude to the rest of individuals who have worked with me side,
helping me out whenever I needed a hand. Thank you Fernando Carcaboso Morales, Jordi Jumilla
Lorenz, Andreas J. Weiss, Mark G. Linton, and my UPC mentor, Juan Manuel Rius Casals. And
thank you to my family, who has sheared my dreams from day one. Your generosity is inspiring.



Contents

Introduction 1

1 Space plasmas and ideal MHD 2

1.1 Coronal Mass Ejections (CMEs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The Equations of Ideal Magnetohydrodynamics . . . . . . . . . . . . . . . . . . . . 5

1.3 Ideal gas law and plasma potential energy . . . . . . . . . . . . . . . . . . . . . . . 6

2 General Plasma Stability 8

2.1 Introduction to linear stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Linearized equation of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 General solutions to the equation of motion . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Inner product space of displacements . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Self-adjointness of the force operator . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Solutions to the Cauchy problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Energy integral functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.8 Growth rate of instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.9 Gateaux differentiation and quadratic forms . . . . . . . . . . . . . . . . . . . . . . 20

2.10 Determination of the growth rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.11 Potential energy for incompressible displacements . . . . . . . . . . . . . . . . . . . 23

2.12 Differential inequality with exponential growth . . . . . . . . . . . . . . . . . . . . 24

3 Cylindrical Plasma Stability 26

3.1 Magnetic flux ropes as cylindrical plasmas . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Fourier perturbation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Expansion of the generalized energy . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Optimization of the generalized energy . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 External perturbation solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Free-boundary conditions: assumptions . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7 Free-boundary conditions: equations . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Application of the method 40

4.1 Magnetic flux rope modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



4.2 The Gold-Hoyle modified model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Implementation of the growth rate method . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Determining of the dispersion relation . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Obtaining the maximum growth rate . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 Stability plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Conclusions 49



Introduction

Coronal Mass Ejections (CMEs) are the structures dominating the transport of mass and energy
from the Sun into the Heliosphere. Since their discovery in the 70s, understanding their formation
and evolution has become one of the key priorities of space research. In the recent years, several
studies are being conducted in order to understand their internal structure, and the instabilities
they may develop.

The aim of the present work is to increase our theoretical understanding of the plasma instabilities
that take place in Magnetic Flux Ropes (MFRs), the twisted flux tubes that constitute the internal
magnetic structure of CMEs. We work on trying to give a formal background and generalizing an
existing method for characterizing the stability of MFRs, which consists in finding the growth rate
at which instabilities develop in time, by using cylindrical geometry and free-to-move boundary
conditions for the equilibrium perturbation displacements. Such a method was presented in Linton
et al. (1996) for the kink instability, and was then applied in Florido-Llinas et al. (2020) to study
the potential causes of rotations in expanded CMEs.

In Chapter 1 we briefly present the context of this work, starting with CMEs themselves and
presenting the Ideal Magnetohydrodynamics framework, which is used to describe space plasmas.
Then, Chapter 2 is an attempt to provide a somewhat rigorous mathematical foundation to the
growth rate method. In Chapter 3, we continue developing the method in a cylindrical geometry,
determining the equations to analyze instabilities of any azimutal wave number m. In Chapter 4,
we provide an application of the method by using a newly developed MFR model.
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1 . Space plasmas and ideal MHD

1.1 Coronal Mass Ejections (CMEs)

Coronal Mass Ejections (CMEs) are expulsions of magnetized plasma which are ejected from the
Sun’s corona into the into the Heliosphere. Their velocities can range from 250 Km/s up to 3000
Km/s, so that Earth directed CMEs can take from 15 hours to a few days to reach us. When
a CME travels through the interplanetary medium, it is often denominated as a Interplanetary
Coronal Mass Ejection (ICME).

The most fast and virulent CMEs usually take place during the maximum of the 11-year solar
cycle, and originate in active regions of the Sun, or sunspot groups, where magnetic field lines
and stressed magnetic flux accumulate enormous amounts of magnetic energy and then release it
into the interplanetary medium through a process called reconnection. Nonetheless, the origin of
CMEs is still a problem under study, and several other processes such as the MHD kink and torus
instabilities also have been proposed as initiation mechanisms for CMEs.

Figure 1.1 shows an image of a CME eruption taken by NASA’s Solar Dynamics Observatory,
which also draws a comparison between the sizes of the ejected plasmas and the Earth. Terrifying.
But when a CME reaches our planet, the Earth’s magnetosphere shields off most of the incoming
plasmas an radiation, often causing northern lights (aurora borealis) near the Earth’s poles.

Figure 1.1: Eruption of a CME in August 31, 2012, at a speed of around 1500 Km/s. It was captured
from NASA’s Solar Dynamics Observatory (SDO). Source.

Furthermore, our space technologies and astronauts find themselves in danger during the Earth
arrival of an ICME. Hence, an accurate understanding of CME forecasting becomes a crucial
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problem for humanity, and space agencies such as NASA are spending efforts and resources to
learn more about these larce scale structures.

Some of the most recent missions with a particular focus on CME study are Parker Solar Probe
(NASA, launched 2018), Solar Orbiter (ESA-NASA, launched 2020). Their payloads are equipped
to measure several plasma variables such the magnetic fields, velocity, particle density, temperature
and pressure1. The data gathered is then processed to better understand their their dynamics and
internal configuration of CMEs. Figure 1.2 shows an example of processed data from Maśıas-
Meza et al. (2016), where CMEs are classified in three classes depending on their speed, and their
parameters are normalized and average to determine patterns in their structure.

Figure 1.2: Classification of processed ICME data acording to its velocity. From top to bottom, the plots
show the magnetic field strength, velocity, proton density, proton temperature, plasma β and normalized
magnetic-fluctuation density. The sheath of the ICME is colored in orange, and the MFR in purple. Black
and red lines are used to represent average and median values, respectively. Extracted from Maśıas-Meza
et al. (2016).

1Measured through the plasma plasma β, which is the ratio of the plasma pressure to the magnetic pressure.
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The previous plots differentiate between two key parts of an ICME: the sheath, which is a region
of compressed plasma located at the front of the CME, and the magnetic cloud, which constitutes
the rest of the structure.

Note than several key properties of CMEs are manifested in Figure 1.2:

� The magnetic field magnitude increases radically in the interior of the CME with respect to
the ambient solar wind.

� ICMEs expand while traveling through the interplanetary medium: indeed, there is a dis-
crepancy in the velocity at the front and the back part of the structure, the front velocity
being greater.

� The plasma β is smaller inside a CME, so the magnetic forces rule the structure.

Other types of key experiments in CMEs include the use of magnetometers, which measure the three
components of the magnetic field inside the structure. Such measured have revealed a characteristic
structure inside magnetic clouds, which will be fundamental to this thesis: Magnetic Flux Ropes
(MFRs). A MFR is defined as a twisted magnetic flux tube, that is, a twisted structure which has
magnetic field lines wrapped around an axis.

Magnetic flux ropes, like many other plasma structures, may be prone to develop plasma instabili-
ties which alter a previous state of equilibrium. One of these instabilities, called the kink instability,
takes place when the MFR is curled around its axis, potentially inducing a radical change in the
structure. In Linton et al. (1996), a method is developed to determine the rate at which such
instabilities grow in time in an isolated flux ropes in the surface of the Sun, potentially causing
the eruption of a CME. Such an event can be seen in Figure 1.3. Furthermore, Florido-Llinas
et al. (2020) proposed the kink instability as a mechanism behind CME rotations with respect to
the solar equator, that have been observed during their evolution (see Vourlidas et al. (2011)).
However, in order to understand these (and also more general) plasma instabilities, one should
start by introducing the main laws of physics ruling space plasmas: Ideal Magnetohydrodynamics.

Figure 1.3: CME Eruption in May 2002, associated to the occurrence of the kink instability. Extracted
from Hassanin et al. (2016).
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1.2 The Equations of Ideal Magnetohydrodynamics

A plasma is often described as an ionized gas, or a set of both charged and neutral particles
with a correlated or collective behavior. However, in this work, the Ideal Magnetohydrodynamics
(MHD) framework will be used, which simplifies the complex behavior of plasmas to the one of
an electrically conducting fluid. Hence, Ideal MHD arises from the coupling of fluid mechanics
and Maxwell equations. A very complete explanation on why plasmas show this behavior, and the
details in behind all the ideal MHD equations, can be found in Priest (2013) and Florido-Llinas
(2020). In this work, we will briefly describe them, and take them as a starting to develop further
theory in Chapter 2.

The first relevant equation is the Newton’s equation of motion for a fluid element subject to a
pressure gradient and electromagnetic forces. If it has pressure p, velocity v, current density J
and magnetic field B, the equation of motion reads

ρ
Dv

Dt
= J ×B −∇p, (1.1)

where the material derivative
D

Dt
=

∂

∂t
+ v ·∇ (1.2)

provides us with the temporal derivative of a magnitude as seen from the reference frame of the
fluid, as can be intuitively seen through the chain rule. Note that gravitational forces are being
ignored: this approximation is not always valid, it is for the studies of interest, involving the
eruption and evolution of CMEs Hassanin et al. (2016).

The next ideal MHD equation is the induction equation, relating the partial derivative of the
magnetic field B with the field itself and the fluid velocity v:

∂B

∂t
= ∇× (v ×B) (1.3)

This equation is obtained from the combination of Faraday’s and Ohm’s law, and assuming the
ideal limit of convective transport is satisfied, that is, the field lines are frozen in, or constrained
to move with the plasma. This is commonly known as Alfvén’s Theorem.

We also have Ampere’s law for non-relativistic plasmas, relating the magnetic field B and the
current density J :

∇×B = µ0J , (1.4)

and the Gauss’ law for magnetism, stating that B must have zero divergence:

∇ ·B = 0. (1.5)

On the hydrodynamics side of ideal MHD, another key equation is entropy conservation,

Dp

Dt
+ γp∇ · v = 0, (1.6)

being p the fluid pressure and γ = CP /CV the ratio of specific heats.

Finally, we have the mass conservation equation, also known as continuity equation, which states

Dρ

Dt
+ ρ∇ · v = 0, (1.7)

being ρ the mass density of the fluid. This expression for the continuity equation can be used to
understand incompressible fluids, which turn out to be relevant to the study of ideal MHD plasma
stability. Indeed, a fluid is said to be incompressible if the density of any fluid parcel (that is, any
infinitesimal volume moving with the fluid) remains constant. Thus, equation (1.7) shows a fluid
is incompressible if, and only if, ∇ · v = 0.
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1.3 Ideal gas law and plasma potential energy

A plasma is made of both charged an neutral particles, which can have different individual particle
densities ni and temperature Ti. For instance, in heliospheric measurements, the proton density
np and temperature Tp are measured, as we have seen in Figure 1.2. Then, a generalized ideal gas
law is satisfied, where p is the total plasma pressure:

p =
∑
i

nikBTi. (1.8)

In this section, we will see two results which derive from this fact, and have useful applications to
space plasmas.

Lemma 1.1. Let p be the plasma pressure, ρ its mass density, and m the mass of a proton.
Then, we have:

p =
ρ

m
kBT0, (1.9)

where T0 is a caracterstic plasma temperature, and depends on the spacial location. Fur-
thermore, for the interior of a CME, it can be approximated through

T0 ≈ 1.7 · 105K. (1.10)

Proof. The composition of the plasma in the solar wind is made of protons, electrons, and alpha
particles (helium nuclei, with mass number equal to 4u and an electrostatic charge of +2e). As
explained in Carcaboso et al. (2020), the alpha to proton ratio in the solar wind is

Nα ≈ 0.04Np. (1.11)

Furthermore, for charge neutrality of the plasma (noticing the charge of α particles is +2):

Ne = 2Nα +Np ≈ 1.08Np (1.12)

Then, the density of the plasma, neglecting the mass of the electron (me ≈ 0), can be related to
the proton density through:

ρ =
mpNp +meNe +mαNα

volume
≈ mpNp + 4mp · 0.04Np

volume
= 1.16ρp (1.13)

This relation is especially useful when reading observational data, since it uses the proton density
to obtain the fluid mass density, which is the one appearing in the ideal MHD equations, and is a
crucial parameter to an ideal MHD plasma stability analysis.

On the other hand, using relations (1.11) and (1.12), and assuming the proton and alpha temper-
ature are the same,

p =
∑

nikBTi = npkB (Tp + 1.08Te + 0.04Tα) ≈ ρ

1.16mp
kB (1.04Tp + 1.08Te) , (1.14)

which is the relation we wanted to show. As can be seen in Maśıas-Meza et al. (2016), the proton
temperature Tp inside a CME depends on the point of space, but on average it is roughly given by
Tp ≈ 4 · 104K. The electron temperature can be taken as constant Te = 1.4 · 105K, as mentioned
in Section 3.2.1 of Carcaboso et al. (2020). This leads to

T0 =
1.04Tp + 1.08Te

1.16
≈

1.04 ·
(
4 · 104K

)
+ 1.08

(
1.4 · 105K

)
1.16

≈ 1.7 · 105K, (1.15)

as we wanted to show. �
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Lemma 1.2. The potential energy of a plasma occupying a volume V is given by

W =

∫
V

(
|B|2

2µ0
+

p

γ − 1

)
dV (1.16)

The potential energy stored in a plasma is made up of magnetic energy, associated to its magnetic
field, and internal energy, due to its gas nature. Firstly, the magnetic energy density, also known
as magnetic pressure, is given by

pB =
|B|2

2µ0
. (1.17)

In order to find a suitable expression for the internal energy density, let m be the number of
translational, rotational and vibrational degrees of freedom of the gas2. The equipartition theorem
states in the classical limit each degree of freedom of an ideal gas at temperature T contributes with
an amount kBT/2 to the internal energy of a gas, being kB the Boltzmann constant. Assuming
the plasma behaves as an ideal gas, its internal energy density is given by

u = m
∑
i

ni
kBTi

2
=
∑
i

nikBTi
γ − 1

(1.18)

where n is the number of atoms per unit volume, and γ = 1 + 2/m is known as the heat capacity
ratio of the gas. Therefore, introducing the pressure P , we can use the ideal gas law (1.8) to obtain

u =
p

γ − 1
. (1.19)

Finally, the potential energy of the plasma is obtained by integrating the energy density along the
plasma volume. �

2For instance, monoatomic gases posess m = 3 translational modes, and diatomic gases at room temperature
have two additional rotational modes in the plane perpendicular to the molecule’s axis, so m = 5.
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2 . General Plasma Stability

2.1 Introduction to linear stability

This chapter is aimed at determining whether an ideal MHD plasma configuration with a general
geometry, initially found in static equilibrium, is prone to develop an instability that may radi-
cally change its structure. Before going into details, we start by going through the concepts of
equilibrium and linear stability, with a special focus on ideal MHD plasmas.

An equilibrium state of a system can be defined as a configuration where the present forces balance
one another. Hence, as long as no external forces act on the system, its equilibrium state will
remain unchanged, so that any quantity φ0(r, t) describing a system in equilibrium must have only
spacial dependence, φ0(r, t) = φ0(r), or

∂φ0

∂t
= 0. (2.1)

An equilibrium state is said to be static if the system is found at rest. In the case of a fluid, this
means the flow velocity in equilibrium is zero everywhere: v0(r) = 0. An equilibrium can also be
dynamic if there is motion, which should be at constant speed to ensure force balance is satisfied.
While the assumption of a static equilibria is very plausible for laboratory fusion plasmas, its
applicability to certain astrophysical plasmas can be questionable, as stated in Goedbloed (2018).
Despite of this we will assume heliospheric magnetic flux ropes to be initially found in static
equilibria in order to be consistent with some of the literature studying their instabilities (Linton
et al. (1996), Florido-Llinas et al. (2020)), but such an assumption should be reviewed in the future.

An equilibrium state is said to be stable if any displacement induces a restoring force that makes
the system evolve back to the same equilibrium. In contrast, if the force induced by a subset of
displacements tends to amplify them and alter the morphology of the system, such an equilibrium
is said to be unstable. Note that stability can also be characterized in energetic terms: stable
equilibria are configurations which attain a minimal value of the potential energy of the system,
while the potential energy of unstable equilibrium configurations can be decreased by displacing
the system in a certain way.

Studying the stability of a system can be a tremendously difficult problem, depending on the
complexity of the equations that characterize its dynamics. In the case of a plasma governed by
ideal MHD, such equations have been explained in Chapter 1, and are summarized in Theorem
2.1 (page 9). Instead of attempting to find an exact solution to these equations, a common
approach is to perform a linear stability analysis, where only infinitesimal displacements about an
equilibrium configuration are considered, in contraposition to a non-linear stability analysis, where
finite displacements are also contemplated. In other words, the aim of linear stability is determining
whether an equilibrium state is a local minimum of the potential energy, while non-linear stability
shall determine if it is a global minimum.

When studying linear stability, one must start by defining the time-independent variables {φ0(r)}
that define the equilibrium of the system and satisfy its equations. Then, each variable is per-
turbed about the equilibrium φ0(r) through a small perturbation term φ1(r, t), that is, satisfying
φ1(r, t) � φ0(r). Using this, and plugging the total variables φ(r, t) = φ0(r) + φ1(r, t) in the
system of equations, many simplifications can be made and the linear dynamics can be obtained.
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2.2 Linearized equation of motion

In this section, the linear dynamics of an ideal MHD plasma are obtained. After being introduced
in Bernstein et al. (1958), this derivation became standard in the literature; similar explanations
can be found in Goedbloed and Poedts (2004) and Florido-Llinas (2020). We start by summarizing
the equations governing an ideal MHD plasma system.

Theorem 2.1: Ideal MHD Equations. The dynamics of an ideal MHD plasma are given
in terms of the flow velocity v, magnetic field B, pressure p and density ρ through the
following nonlinear system of partial differential equationsa:

ρ
Dv

Dt
= J ×B −∇p, ∇×B = µ0J , (Eq of motion + Ampere’s law) (2.2)

∂B

∂t
= ∇× (v ×B) , ∇ ·B = 0, (Faraday’s + Gauss’ for EM laws) (2.3)

Dp

Dt
+ γp∇ · v = 0, (Entropy conservation) (2.4)

Dρ

Dt
+ ρ∇ · v = 0. (Mass conservation) (2.5)

aThe gravity term in the equation of motion has been neglected, as explained in Chapter 1

Proof. As explained in Chapter 1, the details and derivations of these equations can be found in the
literature (Florido-Llinas (2020), Priest (2013)). These equations, when added to an appropriate
set of boundary conditions, determines the evolution of the system. To see this, one can start by
substituting Ampère’s law into the equation of motion to eliminate J , and continue by noticing
that

∂

∂t
(∇ ·B) = ∇ ·

(
∂B

∂t

)
= ∇ · (∇× (v ×B)) = 0, (2.6)

so Gauss’ law for electromagnetism only serves as an initial condition for the divergence of B.
Hence, one is left with a set of eight equations involving eight unidimensional unknown functions
to be determined. �

Theorem 2.2: Linearized equation of motion. Let ξ(r, t) be the position displacement
field of an ideal MHD plasma from a static equilibrium configuration, defined through the
equilibrium quantitiesa B, ρ and p. Then, the equation of motion

ρ
∂2ξ

∂t2
= F (ξ) (2.7)

holds, where the ideal MHD force F (ξ), representing the force done per unit volume while
displacing the plasma, is determined by ξ and the equilibrium quantities through

F (ξ) =
1

µ0
(∇×B)×Q(ξ) +

1

µ0
(∇×Q(ξ))×B + ∇ (ξ ·∇p+ γp∇ · ξ) . (2.8)

We note by Q the perturbation in the magnetic field, given by Q(ξ) = ∇× (ξ ×B).

aThe subscript of the equilibrium quantities φ0 is being dropped for simplicity.

Proof. Consider am ideal MHD plasma found in a static equilibrium state which is given by the
time-independent fields B0(r), ρ0(r) and p0(r). A static equilibrium implies v0(r) = 0. Using
Theorem 2.1, the equilibrium quantities must satisfy the relations:

J0 ×B0 = ∇p0, ∇×B0 = µ0J0, ∇ ·B0 = 0. (2.9)
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The linear stability analysis continues by considering a small Eulerian perturbation1 about the
initial equilibrium, for each of the variables of the system:

B(r, t) = B0(r) +B1(r, t), (2.10)

v(r, t) = v1(r, t), (2.11)

p(r, t) = p0(r) + p1(r, t), (2.12)

ρ(r, t) = ρ0(r) + ρ1(r, t). (2.13)

Note that the magnetic field perturbation leads to a perturbation in the current density, which is
given in terms of the former through Ampere’s law:

J(r, t) = J0(r) + J1(r, t), J1 =
1

µ0
(∇×B1) . (2.14)

Furthermore, Gauss’ law tells us that ∇ · B1 = 0. Now, we proceed to plug expressions (2.10)
through (2.14) in the ideal MHD equations. These shall be simplified by using the equilibrium
relations (2.9), as well as the fact that equilibrium variables φ0 have no time dependence. We will
also use the perturbations are small, so that only expressions up to first order in the perturbations
are considered, that is,

φ1 · θ1 ≈ 0, ϕ1 ·∇θ1 ≈ 0, ϕ1 ·∇ϑ1 ≈ 0, (2.15)

for any variables φ, θ, ϕ, ϑ. In particular, material derivatives of the perturbations are approxi-
mated by their partial derivatives. Hence, from the ideal MHD equations we get:

ρ0
∂v1

∂t
= J0 ×B1 + J1 ×B0 −∇p1, (2.16)

∂B1

∂t
= ∇× (v1 ×B0) , (2.17)

∂p1

∂t
= −v1 ·∇p0 − γp0∇ · v1. (2.18)

Note that mass conservation leads to a similar expression for ρ1, which only turns out to be useful
if gravity is being considered in the equation of motion. The next step is to define the vector field
measuring the position displacement of the plasma from its equilibrium position, which we note
by ξ(r, t), and is related to the velocity perturbation through

v1 =
∂ξ

∂t
. (2.19)

Furthermore, we set the origin in time at the point when the perturbation starts to grow but is
still imperceptible, such that

ξ(r, 0) = 0,
∂ξ

∂t
(r, 0) = v1(r, 0) 6= 0. (2.20)

We can now plug (2.19) into equations (2.17) and (2.18), integrating them in time by recalling
that, just like ξ, the perturbations B1, ρ1 and p1 are initially zero since the perturbation is yet to
develop. The following equations are obtained:

B1 = ∇× (ξ ×B0) , (2.21)

p1 = −ξ ·∇p0 − γp0∇ · ξ. (2.22)

Thus, the perturbations have been expressed in terms of just equilibrium quantities and the position
displacement ξ. These expressions can now be plugged into (2.16), together with (2.14) and (2.19),
to obtain the desired linearized equation of motion (2.7) after dropping the subscripts and writing
Q instead of B1. �

1In contraposition with a Lagrangian perturbation, which would use the reference system of the fluid in motion.
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2.3 General solutions to the equation of motion

Once the linearized equation of motion has been derived, it is time to study which displacement
ξ(r, t) are a solution it, given the appropriate initial conditions. The equation writes

ρ
∂2ξ

∂t2
= F (ξ), (2.23)

where F is the ideal MHD force operator defined in (2.8), taking the equilibrium magnetic field
B and the equilibrium pressure p as parameters. However, rather than F , the operator ρ−1F is
usually more relevant from a theoretical point of view, and the following theorem sheds some light
on why this is the case. It is also key to observe that these operators are linear in ξ, and that they
can be applied to any function of space, not necessarily time-dependent. Let’s start with a short
definition.

Definition. A function ξ : R3 × [0,+∞) → C3 is said to be separable if there is a pair of
complex-valued functions R : R3 → C3 and T : [0,+∞)→ C3 such that ξ(r, t) = R(r)T (t).

Theorem 2.3. A separable displacement ξ(r, t) is a solution to the equation of motion
(2.7) if, and only if, it can be expressed as

ξ(r, t) = ξn(r)
(
αeiωnt + βe−iωnt

)
, (2.24)

where ξn : R3 → C3 is an eigenfunction of the operator ρ−1F , and −ω2
n is its eigenvalue:

ρ−1F (ξn) = −ω2
nξn. (2.25)

The constants α, β ∈ C depend on the initial conditions.

Proof. We plug a general separable displacement ξ(r, t) = R(r)T (t) in the equation of motion:

R(r) T̈ (t) = ρ−1F (R(r))T (t), (2.26)

Such an equality must hold for any values r and t, so there must exist a constant, which we write
as −ω2

n for some ωn ∈ C, such that

ρ−1F (R(r)) = −ω2
nR(r) (2.27)

T̈ (t) = −ω2
nT (t). (2.28)

We find R(r) is an eigenfunction of ρ−1F with eigenvalue −ω2
n, so we can note R(r) = ξn(r).

Furthermore, solving the differential equation for T , we obtain that

ξ(r, t) = ξn(r)
(
αeiωnt + βe−iωnt

)
. (2.29)

Conversely, it is easy to check that any displacement of the form (2.24) is a solution to the equation
of motion:

∂2ξ

∂t2
(r, t) = −ω2

nξn(r)
(
αeiωnt + βe−iωnt

)
= ρ−1F (ξ(r, t)) (2.30)

where the linearity of ρ−1F has been employed. �

Comment. The linearity of ρ−1F also implies that any linear combination of functions of the
form (2.24),

ξ(r, t) =
∑
n

ξn(r)eiωnt, (2.31)

is a general solution to the equation of motion. Note that the summation has been re-indexed,
so that both positive and negative exponential terms are being included as different terms in the
summation. Such terms, as well as the eigenfunctions ξn, are often referred to as normal modes
since they will be shown to be orthogonal to each other with respect to a certain inner product.
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2.4 Inner product space of displacements

Once the issue of temporal variation has been tackled, one needs to describe accurately what set of
functions ξ(r) the operator ρ−1F is acting on. We will define the set of all possible displacements
to be the set of smooth functions with compact support2, C∞c (R3), which is an inner product
subspace of the Hilbert space L2

ρ(R3). Having defined an inner product between displacements
will soon prove to be of great use to develop solid theoretical grounds of this stability analysis.

Definition. An inner product space is a real or complex vector space equipped with an inner
product. A Hilbert space is an inner product space the metric space induced by which is complete,
that is, every Cauchy sequence of points in the space converges to an element of the space.

Definition. In the context of ideal MHD linear stability, the literature3 considers plasma dis-
placements belonging to the Hilbert space of square integrable vector functions over R3, weighted
by a scalar positive function ρ : R3 → [a,+∞) ⊂ R, with a > 0. This space is noted as L2

ρ(R3),
and it is constituted by the complex vector functions ξ : R3 → C3 that are square integrable with
respect to ρ, that is, satisfying ∫

ρ |ξ|2 dV <∞, (2.32)

where the volume integral is performed over R3. These functions are equipped with the weighted
inner product

〈ξ,η〉 =
1

2

∫
ρ ξ∗ · η dV for ξ,η ∈ L2

ρ(R3), (2.33)

which is guaranteed to be finite due to the Cauchy-Schwartz inequality,

〈ξ,η〉2 ≤ ‖ξ‖2‖η‖2 <∞. (2.34)

The (finite) norm of any element ξ ∈ L2
ρ(R3) has been defined as ‖ξ‖2 = 〈ξ, ξ〉.

Comment. If one provides ρ with some conditions which are not too restrictive, such as continuity
and compact support, the set of functions L2

ρ(R3) can be checked to be independent of the choice
of weight function. For this work, we will use the plasma equilibrium density ρ as a weight.

Comment. One may realize that some functions ξ ∈ L2
ρ(R3) are not suitable for the study of

plasma stability. Indeed, expression (2.8) for F requires all displacements ξ to be at least twice
differentiable in order to evaluate the force done while displacing the plasma, F (ξ). Furthermore,
some functions of this Hilbert space may take non-zero values at arbitrarily large distances of the
origin, which contradicts the intuition of what an equilibrium displacement for usually bounded
plasma structure should be. We thus need to restrict this space to a subspace of displacements
that are physically feasible.

Definition. The space of physical displacements defined in this work is C∞c (R3), the smooth
complex vector functions with compact support, often known as test functions. We are thus provid-
ing the smoothness required by the operator ρ−1F , as well as guaranteeing the perturbations are
localized, vanishing at locations that are far away from the plasma structure.

Comment. It is easy to prove that C∞c (R3) ⊂ L2
ρ(R3) is a complex vector space of functions,

which becomes an inner product space with the product inherited from L2
ρ(R3). Although this

new space is not a Hilbert space due to the lack of completeness, it is dense4 in its embedding
Hilbert space. In fact, if Ω ⊂ Rn an open subset, the space of test functions C∞c (Ω) is dense in
Lp(Ω) for 1 ≤ p <∞ (Hunter (2014)). This property, setting Ω = R3 and p = 2, will turn out to
be particularly useful in the following section.

Comment. The elements of C∞c (R3) are space functions but, as we have previously seen, we are
interested in time-varying plasma displacements ξ(r, t). These can be seen as trajectories within
C∞c (R3) which, for every time t0, yield a certain test function ξ(r, t0) ∈ C∞c (R3).

2A function is said to have compact support if it vanishes outside of a compact set.
3For example, Goedbloed and Poedts (2004) and Lifschitz (1989).
4A is a dense subset of a topological space X if the smallest closed subset of X which contains A is X.
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2.5 Self-adjointness of the force operator

The next step after introducing the inner product space of physical displacements is to introduce
the self-adjointness of the force operator, which constitutes one of the main pillars of ideal MHD
linear stability. Later in the section, we continue to present some of its most direct consequences.

Definition. Let S be a complex inner product space. A linear operator L : S → S is said to be
self-adjoint if it is equal to its own adjoint:

〈ξ,L(η)〉 = 〈L(ξ),η〉 (2.35)

for any ξ,η ∈ S.

Theorem 2.4. The operator ρ−1F : C∞c (R3)→ C∞c (R3) is self-adjoint.

Proof. Firstly, assuming the equilibrium variables B and p are smooth over R3, we obtain

ρ−1F (ξ) ∈ C∞(R3) for any ξ ∈ C∞c (R3). (2.36)

Furthermore, it is clear that wherever ξ vanishes, so does ρ−1F (ξ), so ρ−1F preserves compact
support, and it is well defined in C∞c (R3).

Secondly, the operator is linear. Indeed, for any α, β ∈ C and ξ,η ∈ C∞c (R3) the relation

ρ−1F (αξ + βη) = αρ−1F (ξ) + βρ−1F (η) (2.37)

holds due to the linearity of the divergence, gradient and curl operators. Finally, one is left to
prove that for any ξ,η ∈ C∞c (R3), the equality 〈ξ, ρ−1F (η)〉 = 〈ρ−1F (ξ),η〉 is satisfied, namely:

1

2

∫
ξ∗ · F (η) dV =

1

2

∫
η · F (ξ∗) dV. (2.38)

The proof of this property consists of expressing the product ξ∗ ·F (η) as a symmetric expression in
ξ∗ and η, which requires tedious and cumbersome algebraic manipulations that have been carefully
explained in sections 6.2.3 and 6.6.2 of Goedbloed and Poedts (2004). �

Lemma 2.5. Let S be a complex inner product space and L a linear operator in S. If L is
self-adjoint, its eigenvalues are real and its eigenfunctions having different eigenvalues are
orthogonal to each other.

Proof. This proof is well known and can be found in any basic algebra text book. Let ξ be an
eigenfunction of L, with λ as its eigenvalue. Then:

0 = 〈L(ξ), ξ〉 − 〈ξ,L(ξ)〉 = 〈λξ, ξ〉 − 〈ξ, λξ〉 = (λ∗ − λ) ‖ξ‖2, (2.39)

which proves λ ∈ R. Now, let η be another eigenfunction of L, with eigenvalue µ 6= λ. Using the
self-adjointness property once more:

0 = 〈L(ξ),η〉 − 〈ξ,L(η)〉 = 〈λξ, ξ〉 − 〈ξ, µη〉 = (λ− µ) 〈ξ,η〉, (2.40)

which implies the orthogonality condition 〈ξ,η〉 = 0. �

Corollary 2.6. The eigenvalues −ω2
n of ρ−1F are real. Hence, ωn must be either real

or purely imaginary. Furthermore, its eigenfunctions ξn having different eigenvalues are
orthogonal to each other (hence, they are called normal modes).
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Definition. A normal mode ξn is said to be stable or unstable depending on the sign of its
corresponding (real) eigenvalue5.

� Stable normal modes: ω2 ≥ 0. Indeed, if ω2
n > 0, then ω ∈ R, and the time evolution of the

normal mode will be oscillatory around its amplitude ξn. If ω2
n = 0, the normal mode will

remain constant. In both cases, the normal mode remains small when compared to the scale
of the system.

� Unstable normal modes: ω2
n < 0. In such case ωn is imaginary, and the normal mode will

grow exponentially, potentially inducing a larger scale instability.

Before ending this section, we present a result which is tightly related to the self-adjointness of
ρ−1F , and is key to study the Cauchy problem associated to the equation of motion.

Lemma 2.7. If the spectrum of ρ−1F : C∞c (R3) → C∞c (R3) is discrete, any function
ξ ∈ C∞c (R3) can be expressed as an infinite linear combination of its eigenfunctions {ξn}.

Proof. This is a consequence of an analysis result:

Let L be a self-adjoint operator defined on a dense domain D in a Hilbert
space H. If L has a discrete spectrum, then there exists an orthonormal set
of eigenfunctions of L that span all of H. – Karniadakis (2015).

In order to use this result, we take L = ρ−1F , D = C∞c (R3) and H = L2(R3). Indeed, we
have seen in Theorem 2.4 that ρ−1F is self-adjoint in C∞c (R3). Furthermore, as mentioned in
Section 2.4, C∞c (R3) is dense subspace of L2(R3) (Hunter (2014)). Therefore, we conclude the
eigenfunctions {ξn} span the whole space Hilbert space L2(R3). In particular, the desired result
is obtained. �

Comment. The result we have used can be seen as one of the infinite dimensional generalizations
of the spectral theorem for hermitian matrices. There are other versions which, instead of the
discrete spectrum, require the operator to be compact, see Smith (2015). Nonetheless, ρ−1F is
not likely to be compact, since operators involving differentiation are usually unbounded.

Comment. During the rest of the chapter, we will assume a discrete spectrum for ρ−1F . However,
the discrete spectrum hypothesis can also be problematic since, as explained in Goedbloed and
Poedts (2004), the ideal MHD spectrum can be continuous. One may try to determine whether
this is the case depending on the equilibrium functions B and p, but such a discussion lies beyond
the scope of this work.

2.6 Solutions to the Cauchy problem

Definition. Let f , g ∈ C∞c (R3) be a pair of initial conditions. A perturbation trajectory is a
solution ξ(r, t) to the following Cauchy problem:

ρ
∂2ξ

∂t2
= F (ξ),

ξ(r, 0) = f(r),

∂ξ

∂t
(r, 0) = g(r).

(2.41)

Comment. The existence of a solution to this problem will be proven, but the uniqueness will
be taken as an assumption. Indeed, it is reasonable to expect the initial conditions to uniquely
determine the dynamics of the system. Moreover, this step will be key to justify the following
result, which was originally presented as the completeness hypothesis in Bernstein et al. (1958).

5The fact that −ω2
n ∈ R implies that normal modes cannot be damped or exhibit overstability.
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Theorem 2.8. Every perturbation trajectory can be expressed as a superposition of normal
modes:

ξ(r, t) =
∑
n

ξn(r)
(
αne

iωnt + βne
−iωnt

)
. (2.42)

Proof. Since we have already seen in Section 2.3 that (2.42) is a general solution to the equation
of motion, we only need to verify the existence of a set of values for αn and βn that ensure ξ(r, t)
also satisfies the initial conditions. Then, using the uniqueness of solutions for the Cauchy problem
(2.41), we will conclude that any perturbation trajectory can be expressed in this form.

Hence, let f , g ∈ C∞c (R3) be the boundary conditions for the trajectory under consideration.
Lemma 2.7 can be used to express f and g in terms of the eigenfunctions ξn,

f(r) =
∑
n

γnξn(r), g(r) =
∑
n

δnξn(r), (2.43)

where γn, δn ∈ C are given complex coefficients. Imposing the initial conditions, we get a linear
system of equations which can be solved for αn, βn, assuming ωn 6= 0:

αn + βn = γn

iωn (αn − βn) = δn

}
=⇒ αn =

1

2

(
γn − i

δn
ωn

)
, βn =

1

2

(
γn + i

δn
ωn

)
. (2.44)

This concludes the proof. �

Comment. We can now find an expression for ξ(r, t) in terms of the initial conditions, by plugging
the expressions for αn and βn into (2.42), and using the following relations for x ∈ C:

cos(x) =
eix + e−ix

2
= cosh(ix), sin(x) =

eix − e−ix

2i
= −i sinh(ix). (2.45)

This leads to

ξ(r, t) =
∑
n

ξn(r)

(
γn cos (ωnt) +

δn
ωn

sin (ωnt)

)
. (2.46)

Note that for the case of an initial static equilibrium, which has been considered since the start of
this chapter, corresponds to γn = 0 for all n. Furthermore, recalling ωn is either real or imaginary,
and letting σn = |ωn| in the latter case, we get:

ξ(r, t) =
∑
ω2

n>0

ξn(r)
δn
ωn

sin (ωnt) +
∑
ω2

n<0

ξn(r)
δn
ωn

sinh (σnt) . (2.47)

Finally, if the constant δn/ωn is included as part of the eigenfunctions, a neater expression is
obtained in terms of a stabilizing term and a destabilizing one.

ξ(r, t) =
∑
ω2

n>0

ξn(r) sin (ωnt) +
∑
ω2

n<0

ξn(r) sinh (σnt) . (2.48)

Comment. The partial differential equation above may also require a boundary condition for
the solution to be fully determined. In our case, following Linton et al. (1996), we are interested
in localized free-boundary solutions, so we impose the solution should vanish at infinity. This is
automatically fulfilled by the functions ξn because of their compact support. Although an infinite
linear combination of compactly supported functions does not necessarily vanish at infinity, we will
assume this one does, so that ξ(r, t) ∈ C∞c (R3) for any time t ≥ 0.

Definition. A plasma equilibrium configuration is said to be unstable if there exists a perturbation
trajectory ξ(r, t) such that ‖ξ(r, t)‖ → +∞ as t→ +∞ (for any r), and stable otherwise.

Comment. The plasma is unstable if there is an unstable normal mode, and stable otherwise.
Indeed, if there is an unstable normal mode, there will clearly exist a trajectory with a norm
tending to infinity. Conversely, if all normal modes are stable, in Lemma 2.9 we show the norm of
the trajectory must also be bounded (under a certain convergence condition).
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Lemma 2.9. Consider a plasma in equilibrium where all normal modes are stable, ωn ∈ R.
Consider also an arbitrary perturbation trajectorya, which using the completeness result in
Theorem 2.8, it can be expressed as

ξ(t) =
∑
n

ξn
(
αne

iωnt + βne
−iωnt

)
. (2.49)

The normal modes {ξn} can be taken to be orthonormal. Then, assuming the convergence
of the series

‖α‖2 =
∑
n

|αn|2, ‖β‖2 =
∑
n

|βn|2, (2.50)

the trajectory’s norm can be bounded as ‖ξ(t)‖ ≤ ‖α‖+ ‖β‖ for all t ≥ 0.

aThe spacial dependence is omitted to ease the notation.

Proof. Developing the norm through the scalar product and using 〈ξn, ξm〉 = δnm:

‖ξ(t)‖2 =
∑
n

∣∣αneiωnt + βne
−iωnt

∣∣2 =
∑
n

(
|αn|2 + |βn|2 + αnβ

∗
ne

2iωnt + α∗nβne
−2iωnt

)
. (2.51)

Using the inequality x ≤ |x| for x ∈ R, and recalling that |y + z| ≤ |y|+ |z| for y, z ∈ C:

αnβ
∗
ne

2iωnt + α∗nβne
−2iωnt ≤

∣∣αnβ∗ne2iωnt
∣∣+
∣∣α∗nβne−2iωnt

∣∣ = 2|αn||βn|, (2.52)

which leads to

‖ξ(t)‖2 ≤
∑
n

(
|αn|2 + |βn|2 + 2|αn||βn|

)
= ‖α‖2 + ‖β‖2 + 2

∑
n

|αn||βn|. (2.53)

Note the Cauchy-Schwartz inequality for series yields

∑
n

|αn||βn| ≤

(∑
n

|αn|2
)1/2(∑

n

|βn|2
)1/2

= ‖α‖‖β‖, (2.54)

and substituting this into (2.53),

‖ξ(t)‖2 ≤ ‖α‖2 + ‖β‖2 + 2‖α‖‖β‖ = (‖α‖+ ‖β‖)2
(2.55)

as desired. �

2.7 Energy integral functionals

In this section, we introduce algebraic expressions for the kinetic energy and the change in potential
energy of the plasma, when undergoing a displacement ξ(r, t) from equilibrium. These functionals
have rich properties which turn out to be very helpful when studying ideal MHD linear stability.
We will also see how the conservation of energy in linear ideal MHD follows from the self-adjointness
of ρ−1F , making this property even more crucial.

Definition. The kinetic energy functional is given by

K(ξ) =
1

2

∫
ρ |ξ̇|2 dV = 〈ξ̇, ξ̇〉, (2.56)

where ξ̇ is short for the partial time derivative of ξ(r, t), that is, the perturbation velocity. Note
that the equilibrium has been defined to be static, so this expression represents all the kinetic
energy of the plasma.
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Definition. The potential energy functional is given by

W (ξ) = −1

2

∫
ξ∗ · F (ξ) dV = −〈ξ, ρ−1F (ξ)〉. (2.57)

This quantity represents the change in potential energy with respect to the equilibrium configu-
ration, so that the equilibrium state has been taken as the origin of potential. Unlike the kinetic
energy, this functional is defined for any ξ ∈ C∞c (R3) without the need of a time dependence.

Comment. Some texts like Goedbloed and Poedts (2004) derive the expression for the potential
energy by imposing energy conservation, but an intuition for it can also be given. Indeed, the work
done against the force F on a fixed infinitesimal volume of plasma when displacing it from its
equilibrium position by an amount ξ can be estimated to be −ξ ·F (ξ)/2, assuming the force varies
linearly over the arc length traveled, which is reasonable since the perturbation is small. Therefore,
the potential energy of the whole plasma is obtained by integrating this quantity in space. Note,
however, that a complex conjugation has been carried out in (2.57). This has no effect on real
displacements, but it is a carefully chosen generalization to complex functions in order to ensure
rich properties, such as energy conservation.

Comment. Recall that F is a linearized expression for the force acting on the plasma, so the
potential energy expression (2.57) holds only up to second order in ξ.

Lemma 2.10. The inner product of C∞c (R3) is antisymmetric.

Proof. This result is immediate by using the conjugate property of the volume integral and the
symmetry of the euclidean inner product:

〈ξ,η〉∗ =

(
1

2

∫
ρ ξ∗ · η dV

)∗
=

1

2

∫
ρ (ξ∗)

∗ · η∗ dV = 〈η, ξ〉, (2.58)

for any ξ,η ∈ C∞c (R3). �

Lemma 2.11. The kinetic energy and potential energy functionals yield real values.

Proof. It is clear that, for any perturbation trajectory, expression the kinetic energy (2.56) gives
a real value. Moreover, using the antisymmetry of the inner product of C∞c (R3), together with the
self-adjointness of ρ−1F :

W (ξ)∗ = −〈ξ, ρ−1F (ξ)〉∗ = −〈ρ−1F (ξ), ξ〉 = −〈ξ, ρ−1F (ξ)〉 = W (ξ), (2.59)

so W (ξ) ∈ R. �

Theorem 2.12. The total plasma energy is conserved during any perturbation trajectory.

Proof. Let ξ(r, t) be a perturbation trajectory. We compute the time derivative of the kinetic
energy while using the time derivatives commute with the volume integrals6, allowing us to use
the common product rule:

d

dt
K(ξ) =

d

dt
〈ξ̇, ξ̇〉 = 〈ξ̇, ξ̈〉+ 〈ξ̈, ξ̇〉 = 〈ξ̇, ρ−1F (ξ)〉+ 〈ρ−1F (ξ), ξ̇〉. (2.60)

Recalling the self-adjointness of ρ−1F , and using the product rule once again, we get:

d

dt
K(ξ) = 〈ξ̇, ρ−1F (ξ)〉+ 〈ξ, ρ−1F (ξ̇)〉 =

d

dt
〈ξ, ρ−1F (ξ)〉 = − d

dt
W (ξ). (2.61)

6This is guaranteed by the smoothness of ξ(r, t).
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In the previous calculation, we have used the smoothness of ξ and the Schwartz theorem to compute
the time derivative of F (ξ) through F (ξ̇). We thus conclude the total plasma energy K(ξ)+W (ξ)
remains constant over time. �

2.8 Growth rate of instabilities

In this section, we introduce the growth rate that can be associated to a given equilibrium config-
uration, and we will show why it is an ideal tool to understand its linear stability, as done in the
literature like Linton et al. (1996) and Florido-Llinas et al. (2020).

Comment. From now on, we will let {ξn} be an orthonormal set of normal modes that generate
the test function space C∞c (R3). This can be done because, as seen in Corollary 2.5, any pair
of normal modes with different eigenvalue are orthogonal to each other. Furthermore, orthogonal
normal modes with the same eigenvalue can be found by using the Gram-Schmidt method to obtain
an orthogonal basis of the corresponding eigenspace.

Definition. The minimal mode is the normal mode ξn with a lowest corresponding value of ω2
n.

In such case, we use the notation ξ0 and ω2
0 respectively.

Comment. The existence of a minimal mode will be assumed with no proof in this work, al-
though one may study which conditions should be imposed on ρ−1F , and hence on the equilibrium
quantities, to guarantee its existence. Moreover, uniqueness will be assumed in order to simplify
the explanation, but the argument could be adapted to not rely on this assumption.

Comment. Recalling that a plasma configuration is unstable if there is an unstable normal mode,
such condition can be rephrased as ω2

0 < 0. Hence, the problem of characterizing the stability of
an equilibrium configuration is reduced to determining the sign of ω2

0 .

Theorem 2.13. The global minimum of the potential energy functional W : C∞c (R3)→ R
over all normalized test functions is ω2

0 , and it is attained at ξ0:

W (ξ0) = min
‖ξ‖=1

W (ξ) = ω2
0 . (2.62)

Proof. Let ξ ∈ C∞c (R3) be any test functions, which can be expressed as a combination of normal
modes as

ξ =
∑
n

anξn (2.63)

with an ∈ C. Then, the potential energy change due to ξ is:

W (ξ) = −〈ξ, ρ−1F (ξ)〉 = −
∑
n,m

a∗nam〈ξn, ρ−1F (ξm)〉 =
∑
n,m

a∗namω
2
m〈ξn, ξm〉 (2.64)

=
∑
n,m

a∗namω
2
mδnm =

∑
n

|an|2ω2
n. (2.65)

From this we obtain that W (ξ0) = ω2
0 . On the other hand, the normalization condition for ξ is

‖ξ‖2 =
∑
n

|an|2 = 1. (2.66)

Hence we obtain
W (ξ) =

∑
n

|an|2ω2
n ≥ ω2

0

∑
n

|an|2 = W (ξ0), (2.67)

which proves the desired result. This derivation was first presented in Bernstein et al. (1958), and
has become fundamental to study the linear stability of ideal MHD plasmas. �
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Comment. Notice that ω0 is also related to the potential energy of displacements that are not
normalized:

ω2
0 = min

‖ξ‖=1
W (ξ) = min

ξ
W

(
ξ

‖ξ‖

)
= min

ξ

W (ξ)

‖ξ‖2
. (2.68)

Definition. The growth rate of an unstable plasma equilibrium configuration is given by

σ =
√
−ω2

0 . (2.69)

which is a positive real number due to ω2
0 < 0. It is the maximum rate at which an instability can

develop in time, as justified in Theorem 2.15, with help of a preliminary lemma.

Lemma 2.14. Let I : C∞c (R3)→ R be the norm squared operator,

I(ξ) =
1

2

∫
ρ |ξ|2 dV = ‖ξ‖2. (2.70)

Let I(t) = I(ξ(·, t)) be the norm squared along any perturbation trajectory. Then:

Ï(t) = 2K(t)− 2W (t) = 4K(t)− 2H = 2H − 4W (t). (2.71)

Where K(t) and W (t) are the kinetic and potential energy, and H is the (conserved) total
energy.

Proof. The proof is straightforward, starting from I(t) = 〈ξ(t), ξ(t)〉:

Ï = 2
d

dt

(
〈ξ̇(t), ξ(t)〉

)
= 2

(
〈ξ̇(t), ξ̇(t)〉+ 〈 ¨ξ(t), ξ(t)〉

)
= 2K(t)− 2W (t). (2.72)

The other equalities follow from H = K(t) +W (t). �

Definition. Let f, g : [0,+∞)→ R. We say that:

� f(t) grows at least as g(t) if there exist k ∈ R and t0 ≥ 0 such that f(t) ≥ kg(t) for all t ≥ t0.

� f(t) grows at most as g(t) if there exist k ∈ R and t0 ≥ 0 such that f(t) ≤ kg(t) for all t ≥ t0.

� f(t) grows exactly as g(t) if the two conditions above are fulfilled.

Theorem 2.15. In an unstable plasma equilibrium, the norm ‖ξ(t)‖ grows at most as eσt.
Furthermore, with appropriate initial conditions, it grows exactly as eσt.

Proof. We have seen in (2.68) that, for any ξ ∈ C∞c (R3),

σ2 ≥ −W (ξ)

I(ξ)
. (2.73)

Hence, given a perturbation trajectory, and starting from (2.71):

Ï(t) = 2H − 4W (t) ≤ 2H + 4σ2I(t). (2.74)

From this follows that I(t) grows at most as e2σt: although this seems intuitive, a rigorous proof
is provided at the end of this chapter, in Section 2.12. Hence, there is some k > 0 such that

‖ξ(t)‖2 ≥ ke2σt =⇒ ‖ξ(t)‖ ≥
√
keσt for t ≥ 0, (2.75)

so the norm grows at most as eσt.
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The trajectory which will be shown to attain such exponential growth starts with the minimal
mode, and is excited with an initial velocity proportional to it:

ξ(0) = ξ0, ξ̇(0) = σξ0. (2.76)

We proceed to find the (conserved) energy during the trajectory by evaluating its initial energy:

H = K(0) +W (0) = σ2I(ξ0) +W (ξ0) = σ2 + ω2
0 = 0. (2.77)

On the other hand, using the Cauchy-Schwartz inequality followed by (2.71):

İ(t)2 = 4〈ξ̇(t), ξ(t)〉2 ≤ 4I(t)K(t) = I(t)Ï(t). (2.78)

This inequality can be rearranged and integrated, recalling that I(0) = 1 and İ(0) = 2σ:∫ t

0

İ(s)

I(s)
ds ≤

∫ t

0

Ï(s)

İ(s)
ds =⇒ ln

I(t)

I(0)
≤ ln

İ(t)

İ(0)
=⇒ İ(t)

I(t)
≥ 2σ. (2.79)

Integrating the last equation we find that I(t) ≥ I(0) e2σt and hence ‖ξ(t)‖ ≥ ‖ξ(0)‖eσt for t ≥ 0.
This proof was originally presented in Laval et al. (1965). �

Comment. In Section 2.2 we fixed the origin in time t = 0 at a time when equilibrium is being
perturbed with a non-zero velocity, but still ξ(0) = 0. Nonetheless, there still could be a t0 > 0 at
which ξ(t0) = ξ0 and ξ̇ = σξ0. In that case, an instability would continue to grow as eσt.

Comment. In a nutshell, we have introduced the concept of growth rate σ in a plasma equilibrium
and we have seen in Theorem 2.15 its tight relation to the speed at which instabilities evolve in
time. Furthermore, as seen in Theorem 2.13, σ can be determined via a constrained minimization
of the potential energy functional over the normalized test functions of C∞c (R3):

σ2 = − min
‖ξ‖=1

W (ξ). (2.80)

2.9 Gateaux differentiation and quadratic forms

In this section we provide some preliminary tools to tackle the minimization (2.80), in the context
of calculus of variations in an arbitrary complex inner product space S, such as C∞c (R3).

Definition. Let ϕ : S → R. The Gateaux variation of ϕ at ξ ∈ S in the direction of η ∈ S is

δηϕ(ξ) = lim
ε→0

ϕ(ξ + εη)− ϕ(ξ)

ε
=

d

dε
ϕ(ξ + εη)

∣∣∣∣
ε=0

, (2.81)

whenever such limit converges; if so, we say ϕ is Gateaux differentiable at ξ. If this is the case for
any ξ ∈ S, we just say ϕ is Gateaux differentiable. As explained in Ananthasuresh (2021), this is
a generalization of the directional derivatives in the finite-dimensional differential calculus.

Lemma 2.16. Let ξ ∈ S be a local extremum of ϕ : S → R. Assume ϕ is Gateaux
differentiable at ξ ∈ S. Then, all Gateaux variations of ϕ at ξ vanish:

δηϕ(ξ) = 0 for η ∈ S. (2.82)

In such case, we say ξ is a stationary point of ϕ.

Proof. The proof is analogous to the one for directional derivatives in differential calculus, and
can be found in Ananthasuresh (2021). �
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Definition. A function B : S×S → R is said to be a bilinear form if it is conjugate linear on the
first variable and linear on the second variable, i.e.

B{λξ1 + µξ2,η} = λ∗B{ξ1,η}+ µ∗B{ξ2,η}, (2.83)

B{ξ, λη1 + µη2} = λB{ξ,η1}+ µB{ξ,η2}, (2.84)

for any λ, µ ∈ C and ξi,ηi ∈ S. A bilinear form is symmetric if its arguments are interchangeable:

B{ξ,η} = B{η, ξ}, (2.85)

for any ξ,η ∈ S. Any inner product is an example of a symmetric bilinear form.

Definition. A function ϕ : S → R is said to be a quadratic form if there is a symmetric bilinear
form B : S × S → R such that ϕ(ξ) = B{ξ, ξ} for any ξ ∈ S. Given a quadratic form ϕ(·), we
will refer to its symmetric bilinear form as ϕ{·, ·}. For example, the norm squared I(ξ) = ‖ξ‖2 is
a quadratic form with the dot product I{ξ,η} = 〈ξ,η〉 as a symmetric bilinear form. Any linear
combination of quadratic forms is also a quadratic form.

Lemma 2.17. The potential energy W : C∞c (R3) → R is a quadratic form in the inner
product space of test functions.

Proof. We define the symmetric bilinear form candidate

W{ξ,η} = −〈ξ, ρ−1F (η)〉 for ξ,η ∈ C∞c (R3). (2.86)

Indeed, the potential energy operator was defined in (2.57) as W (ξ) = −〈ξ, ρ−1F (ξ)〉 = W{ξ, ξ}.
The bilinearity follows automatically from the bilinearity of the inner product and the linearity of
ρ−1F . Finally, we can prove the symmetry of W{·, ·} by using self-adjointness of ρ−1F :

W{ξ,η} = −〈ξ, ρ−1F (η)〉 = −〈ρ−1F (ξ),η〉 = −〈η, ρ−1F (ξ)〉 = W{η, ξ}. (2.87)

In conclusion, W{·, ·} is a symmetric bilinear form, making W (·) a quadratic form. �

Lemma 2.18. Any quadratic form ϕ : S → R is Gateaux differentiable, and its Gateaux
variation at ξ ∈ S in the direction η ∈ S is given by

δηϕ(ξ) = 2ϕ{ξ,η}. (2.88)

Proof. Let ε > 0 and η ∈ S. Expanding the bilinear form ϕ:

ϕ(ξ + εη) = ϕ(ξ) + 2εϕ{ξ,η}+ ε2ϕ(η). (2.89)

Therefore, the Gateaux variation of ϕ in the direction of η is

δηϕ(ξ) =
d

dε
ϕ(ξ + εη)

∣∣∣∣
ε=0

= 2ϕ{ξ,η}, (2.90)

as we wanted to prove. �
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2.10 Determination of the growth rate

In this section we make further steps towards the constrained minimization of the potential energy
functional, in a view to determine the growth rate σ corresponding to a plasma equilibrium.

Comment. When studying plasma stability, it is common to fix the boundary conditions of the
displacements ξ : Ω ⊂ R3 → C3 through

ξ|∂Ω = h, for h : ∂Ω→ C3, (2.91)

where h is continuous over ∂Ω. The boundary conditions vary depending on the context of the
stability analysis being carried out.

Definition. Let Ω ⊂ Rn be an open bounded subset with a smooth boundary ∂Ω. Consider
f, g : Ω×Rm×Rn×m → R to be C1 functions, and the functionals F ,G : C1(Ω;Rm)→ R given by

F(ξ) =

∫
Ω

f(r, ξ(r),Dξ(r)) dV, G(ξ) =

∫
Ω

g(r, ξ(r),Dξ(r)) dV. (2.92)

An isoperimetric problem7 seeks the local minima of F over the class of admissible functions A,
consisting in functions normalized through G and satisfying a continuous boundary condition h:

A = {ξ ∈ C1(Ω;Rm) such that G(ξ) = 1 and ξ|∂Ω = h}. (2.93)

Comment. A very common approach to isoperimetric problems consists in using Lagrange mul-
tipliers, which help transform a constrained minimization problem into the optimization of a new
function which is free of constraints, as can be seen in the following result.

Lagrange multiplier rule for variational problems. Let ξ0 be a solution to the
isoperimetric problem defined above. Assume there exists η ∈ C∞c (Ω;Rm)
such that δηϕ(ξ0) 6= 0. Then, there exists a Lagrange multiplier λ ∈ R such
that ξ0 is a stationary point of the functional U : C1(Ω;Rm)→ R defined as

U(ξ) = F(ξ) + λG(ξ). (2.94)

Extracted from page 53 of the magnificent Cristoferi (2016).

We will use a slightly different version of this result, where Ω = Rn instead of a bounded set,
and we consider smooth complex functions with compact support ξ ∈ C∞c (Ω;Cm), such that the
boundary condition for ξ is to vanish at infinity. The proof of this version will not be covered, but
it should be very similar to the proof of the preceding result.

Theorem 2.19. The minimal mode ξ0 is a stationary point of the generalized energy
functional U : C∞c (R3)→ R, which is given by

U(ξ) = W (ξ) + λI(ξ), (2.95)

where the Lagrange multiplier is related to the growth rate via λ = σ2.

Proof. We start by using the Lagrange multiplier rule, letting F = W be the potential energy
and G = I the norm squared functional. We take ξ0 to be the minimal mode, since it is a local
(in fact, global) minimum of W constrained to I(ξ) = 1, and satisfying our boundary condition of
vanishing at infinity. Furthermore, applying this result requires verifying the hypothesis that there
exists a η ∈ C∞c (R3) such that δηI(ξ0) 6= 0. Indeed, letting η = ξ0, and using the expression for

7This is due to the famous mathematical problem of finding the shape of the closed plane curve which, fixing
the perimeter, maximizes the area enclosed in it.
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the Gateaux variation of a quadratic form (2.88) we get

δηI(ξ0) = 2I{ξ0,η} = 2I(ξ0) = 2 6= 0. (2.96)

Hence, there exists a Lagrange multiplier λ such that ξ0 is a stationary point of the functional
U(ξ) = W (ξ) + λI(ξ), so that

δηU(ξ0) = 0 for η ∈ C∞c (R3). (2.97)

We recall U is a quadratic form in C∞c (R3), since it is a linear combination of quadratic forms.
Then, letting η = ξ0:

δηU(ξ0) = 2U{ξ0,η} = 2U(ξ0) = 2 (W (ξ0) + λI(ξ0)) = 2
(
−σ2 + λ)

)
= 0, (2.98)

yielding λ = σ2 as desired. �

Comment. Although the minimal mode ξ0 satisfies a sufficient condition for being a local mini-
mum of U it has not been discussed whether this is the case or not, and it should not be relevant
for the application of this method. However, it can easily proven that it is never a local maximum.
Indeed, the second-order Gateaux variation of U in the directions η1,η2 ∈ C∞c (R3) is given by

δη1η2U(ξ) = δη1(δη2U(ξ)) =
d

dε
2U{ξ,η2}

∣∣∣∣
ε=0

= 2U{η1,η2}. (2.99)

As expected from the finite dimensional case, the second-order differentiation of a quadratic form
yields a constant function of ξ. Letting both directions be the same, η1 = η2 = η, we get

δη1η2
U = 2U(η) = 2

(
W (η) + σ2I(η)

)
= 2I(η)

(
W (η)

I(η)
+ σ2

)
≥ 0, (2.100)

which is incompatible with U having any local maxima. �

Comment. The generalized energy may have more than one stationary point. If a minimal mode
needs to be determined, one can evaluate at each normalized stationary point of U , and choose
one that gives the smallest value.

Comment. The Lagrange multiplier, and thus the growth rate σ, can be determined algebraically
by finding the stationary points of U and then imposing the boundary conditions. In Chapter 3
we provide an example of this analysis for a plasma equilibrium with a cylindrical geometry.

2.11 Potential energy for incompressible displacements

The problem of minimizing the generalized energy functional U still seems very complex due to
the cumbersome expression of W in terms of the displacement ξ. Lemma 2.20 will help us in this
endeavor.

Comment. First, we recall from Chapter 1 that, due to the continuity equation (1.7), incom-
pressible fluids are the ones satisfying ∇ · v = 0. In the case of a static equilibria being displaced,
this means

∇ · ∂ξ
∂t

=
∂

∂t
(∇ · ξ) = 0. (2.101)

Recalling that trajectories satisfy ξ(r, 0) = 0, the previous equation can be integrated in time to
give the condition ∇ · ξ = 0.

Definition. A displacement ξ ∈ C∞c (R3) is said to be incompressible if

∇ · ξ = 0. (2.102)
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Lemma 2.20. The following expression holds for the potential energy functional:

W (ξ) =
1

2

∫ [
|Q|2

µ0
− ξ∗ · (J ×Q) + ξ∗ ·∇p(∇ · ξ) + γp(∇ · ξ)2

]
dV (2.103)

Furthermore, the most unstable displacements are incompressible, that is, ∇ ·ξ = 0. Hence,
the stability analysis is unaltered by considering only incompressible displacements, and
using the expression:

W (ξ) =
1

2µ0

∫ (
|Q|2 − ξ∗ · (∇×B)×Q

)
dV (2.104)

Proof. It consists in developing the expression of W and applying integral theorems, and can be
found in several text books such as Priest (2013). An alternate derivation, which which is quite
interesting from the physics point of view since it starts from expression (1.16) for the potential
energy, can also be found in Nishikawa and Wakatani (2000). �

2.12 Differential inequality with exponential growth

This section is auxiliary for the proof of Theorem 2.15.

Lemma 2.21. Let y : [0,+∞)→ R be a smooth function which satisfies the homogeneous
differential inequality

ÿ(t) ≤ α2y(t) for t ≥ 0, (2.105)

for some α > 0. Then, y(t) grows at most as eαt.

Proof. We introduce the change of variable

z(t) = ln y(t)− αt. (2.106)

If we show that z is bounded by some value Z ∈ R, then it will follow that

y(t) ≤
(
eZ
)
eαt for t ≥ 0, (2.107)

and the proof will be done. We thus proceed to compute the derivatives of z:

ż(t) =
ẏ(t)

y(t)
− α, z̈(t) =

ÿ(t)

y(t)
− ẏ(t)2

y(t)2
(2.108)

Using the hypothesis (2.105), one can reach a differential inequality involving only z, which can be
recast and integrated:

z̈ + (ż + α)
2 ≤ α2 =⇒ z̈

ż
+ ż ≤ −2α =⇒ ln ż + z ≤ c1 − 2αt, (2.109)

being c1 ∈ R a constant. Note that ln ż+z = ln (żez), so the previous relation can be exponentiated
and integrated once more:

żez ≤ ec1−2αt =⇒ ez ≤ c2 −
1

2α
ec1−2ωt ≤ c2 (2.110)

for some c2 ∈ R. Hence, z is bounded by Z = ln c2. �
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Corollary 2.22. Let I : [0,+∞)→ R be a smooth function which satisfies the differential
inequality

Ï(t) ≤ 4σ2I(t) + 2H for t ≥ 0, (2.111)

where σ > 0 and H ∈ R. Then, I(t) grows at least as e2σt.

Proof. The non-homogeneous inequality (2.111) can be transformed into an homogeneous one by
a simple change of variable,

y(t) = I(t) +
H

2σ2
, (2.112)

which leads to
ÿ ≤ (2σ)

2
y for t ≥ 0. (2.113)

Using Lemma 2.21, there exists k ∈ R such that y(t) ≤ ke2σt for t ≥ 0. Then:

I(t) = y(t)− H

2σ2
≤ ke2σt +

|H|
2σ2
≤
(
k +
|H|
2σ2

)
e2σt, (2.114)

which proves the desired result. �
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3 . Cylindrical Plasma Stability

3.1 Magnetic flux ropes as cylindrical plasmas

In this section we continue to develop the growth rate method by adapting it to a cylindrical
plasma with a boundary that is free to move, so it can be applied to the study of instabilities
in heliospheric MFRs. Starting from the baseline method in Linton et al. (1996), which focuses
on the kink instability of twisted flux tubes, we generalize it by considering a more general set of
plasma instabilities and an arbitrary radial density profile.

The first step in this analysis is to consider a plasma structure with cylindrical symmetry. Such
an assumption starts from the intuition of carrying out a local approximation of the flux ropes in
CMEs, which usually have rather toroidal shapes with the ends connected to the surface of the
Sun, as illustrated in Figure 3.1. Moreover, cylindrical models have recently been used to fit MFRs
(see Nieves-Chinchilla et al. (2016)) and study their stability (Florido-Llinas et al. (2020)). Indeed,
it is common to carry out a simplified analysis which can later be further explored by making more
realistic assumptions, such as using a more complex but appropriate geometry.

Figure 3.1: Image of a coronal mass ejection, taken from the Solar and Heliospheric Observatory (SOHO,
ESA/NASA) on December, 2002. Captured using a coronagraph, which blocks the solar disc in order to
sense the light emitted from the corona. Source.
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Hence, during the following sections, we consider a plasma volume V , which is a cylindrical shell
of length L, inner radius a and outer radius b, with 0 ≥ a < b ≥ +∞. This geometry will be of use
to simultaneously study the interior of the flux rope, setting [a, b] = [0, R], and its exterior, with
[a, b] = [R,+∞], being R the radius of the structure.

We also consider the plasma equilibrium configuration has cylindrical symmetry, i.e. both rota-
tional and axial symmetry. The latter can be justified by considering the cylinder is long compared
to its cross section. As seen previously, an ideal MHD plasma equilibrium is characterized by the
quantities B, p, ρ. We can now proceed to discuss the equilibrium variables in a cylindrical plasma,
under the only assumption of cylindrical symmetry.

Lemma 3.1. The general expression for a cylindrically symmetrical magnetic field config-
uration B is given by B(r) = (0, Bθ(r), Bz(r)).

Proof. If B has cylindrical symmetry, it cannot have any dependence on θ and z, so it can
be expressed as B(r) = (Br(r), Bθ(r), Bz(r)). Recalling the expression for the divergence in
cylindrical coordinates

∇ ·B =
1

r

∂(rBr)

∂r
+

1

r

∂Bθ
∂θ

+
∂Bz
∂z

, (3.1)

the divergence-free condition becomes a first order differential equation:

dBr
dr

+
Br
r

= 0. (3.2)

Its general solution is Br(r) = C/r, for some constant C ∈ R. The magnetic field cannot be
unbounded at the cylinder axis, so C = 0, and thus B(r) = (0, Bθ(r), Bz(r)). �

For now, no more assumptions will be made on the equilibrium magnetic field: the modeling of
the magnetic field will be covered in Chapter 4.

On the other hand, the pressure profile will not be used, since it does not play a key role in the
stability analysis developed in Chapter 2. However, we should be mindful that it is determined up
to a constant by the magnetic field, as previously discussed in Section 2.2:

∇p = J ×B (3.3)

where J is given in terms of B through Ampere’s law.

Figure 3.2: Cylindrical approximation of the MFR of a CME. Art by Marta Florido.
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Regarding the equilibrium density ρ, in Linton et al. (1996) and Florido-Llinas et al. (2020) it is
assumed to be constant everywhere. However, spacecraft data shows that MFRs have a variable
density profile, so future stability studies need to be able to account for more complex density
distributions. For this reason, the theoretical background of this method will continue to be
developed for an arbitrary radial density ρ(r). Nonetheless, a constant density will be assumed
after Section 3.6 in a view to simplify the analysis.

3.2 Fourier perturbation analysis

A key first step to determine the growth rate corresponding to a plasma equilibrium configuration,
is consider displacements of the form

ξ(r, θ, z) = (ξr(r), ξθ(r), ξz(r)) e
i(mθ+kz), (3.4)

where m ∈ Z and k ∈ R are the azimutal and axial wave numbers, respectively. This way, we
restrict the optimization of the generalized energy U to a subset of the space of test functions,
which really simplifies the calculations. There is really no formal justification for this assumption,
but it is by far the most popular approach to tackle plasma stability in cylindrical systems, as can
be seen in several publications and textbooks (for instance, see Freidberg (2007), Priest (2013)).

Nevertheless, an intuition for it can be sought using Fourier analysis. Using the axial symmetry in
z, as well as the rotational symmetry in z, any displacement ξ satisfying the appropriate Dirichlet
conditions can be expanded as a Fourier transform in z and a Fourier series in θ:

ξ(r, θ, z) =

+∞∑
m=−∞

∫ +∞

−∞
dk ξmk(r)ei(mθ+kz) (3.5)

Then, assuming perturbations of the form (3.4) can be thought of as analyzing one Fourier harmonic
at a time.

One of the key features of this approach is that each value of the azimutal wave number m yields
a class of displacements with a different geometrical interpretation. Hence, we often refer to m as
the order of the instability. Some key examples are the following (Gsponer (2009)):

� Sausage instability (m = 0): the lack of angular dependence creates a displacement which
conserves the a circular cross-section, with a radius that oscillates with z.

� Kink instability (m = 1): its angular dependence causes the cylinder become a helix itself.

� Filamentation mode (m = 2): the cross-section is displaced towards an elliptical shape.

� Filamentation mode (m = 3): the cross-section is displaced towards a pear-like shape.

Figure 3.3: Sketch of the sausage and kink instability. Extracted from Freidberg (2007).

In general, higher values of m lead to more complex cross-section distortions. Note that negative
values of m are also aloud, inverting the angular dependence, but yielding a very similar behavior.
For example, m = −1 corresponds to the kink instability with an inverted chirality. In fact, it is
deduced from (3.4) that the displacements with wave numbers (m, k) and (−m,−k) are totally
equivalent up to a translation in space.
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The development of an MHD stability analysis of a cylindrical plasma system under perturbations
of this type was first studied in Newcomb (1960), via the application of the Energy Principle by
Bernstein et al. (1958). One of Newcomb’s key conclusions was the following result:

Instability comparison theorem. The displacements which lead to a greater
decrease in the potential energy with respect to the equilibrium configuration
are those with |m| = 1. Hence, if a linear pinch is stable for m = 1 and k ∈ R,
it must also be stable for all values of m. Newcomb (1960).

The previous theorem is based on the traditional definition of stability, where any perturbation
which decreases the potential energy of the system in equilibrium is regarded as unstable. However,
Goedbloed (1974) introduced a more modern and practical definition for stability, called σ-stability,
which is also more restrictive. An equilibrium is said to be σ-stable if all the instabilities grow at
most as eσt, where σ > 0 is fixed.

Indeed, a growth rate analysis can find instabilities with very slowly growing exponential growths
with a time constant that can be way larger than the time scale of the system being considered.
Such a a situation can be classified as σ-stable by fixing a sufficiently large σ. In Chapter 4,
we will use the methods developed during the following sections to evaluate the applicability of
Newcomb’s comparison theorem to this new conception of stability: are the kink modes m = 1 the
most σ-stable?

Finally, we will also assume the perturbation displacements are incompressible. This is a legitimate
assumption, taking into account Lemma 2.20. Note that the incompressibility condition ∇ · ξ = 0
can be expressed in cylindrical coordinates as:

∇ · ξ =
1

r

d(rξr)

dr
+ i

m

r
ξθ + ikξz = 0. (3.6)

Lemma 3.2. Consider the perturbation displacement in cylindrical coordinates,

ξ(r, θ, z) = (ξr(r), ξθ(r), ξz(r)) e
i(mθ+kz). (3.7)

We assume the phase of each component of ξ does not change with r, and that the functions
|ξθ| and r|ξz| are linearly independent. Then, we can take ξr to be a real function of r, and
the components ξθ, ξz to be imaginary. In particular,

|ξ|2 = (ξr)
2

+ (iξθ)
2

+ (iξz)
2
. (3.8)

Proof. Without loss of generality, we can take ξr ∈ R, since a global phase does not affect the
calculations that will be made in the rest of this work. Then, incompressibility (3.6) leads to the
condition

<
(m
r
ξθ + kξz

)
=
m

r
|ξθ| cosϕθ + k|ξz| cosϕz = 0, (3.9)

where < notes the real part and ϕ denotes the phase of each component. Multiplying the equation
by r, the linear independence condition yields cosϕθ = cosϕz = 0, so ξθ and ξz are imaginary. �

3.3 Expansion of the generalized energy

The aim of this section is to, given the equilibrium quantities, obtain the generalized energy U as
a functional of a general cylindrical perturbation displacement, given in cylindrical coordinates by

ξ(r, θ, z) = (ξr(r), ξθ(r), ξz(r)) e
i(mθ+kz) = ξ̃(r)ei(mθ+kz), (3.10)
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and with an equilibrium magnetic field given by

B(r) = (0, Bθ(r), Bz(r)) (3.11)

The equations obtained will be a generalization of the ones in Linton et al. (1996). We start by
finding a suitable expression for the perturbed magnetic field Q = ∇× (ξ ×B).

Lemma 3.3. The perturbed magnetic field is given by

Q =

(
iF ξ̃ − r d

dr

(
Bθ
r

)
ξr θ̂ −

dBz
dr

ξr ẑ

)
ei(mθ+kz) (3.12)

where we define
F =

m

r
Bθ + kBz. (3.13)

Proof. Notice that, using the well known vector calculus identity

Q = ∇× (ξ ×B) = (∇ ·B) ξ − (∇ · ξ)B + (B ·∇) ξ − (ξ ·∇)B, (3.14)

added to Gauss’ law ∇ ·B = 0 and the incompressibility condition ∇ · ξ = 0, yields

Q = (B ·∇) ξ − (ξ ·∇)B. (3.15)

These terms can be computed using the following expression for general vector fields given in
cylindrical coordinates by A = (Ar, Aθ, Az) and B = (Br, Bθ, Bz):

(A ·∇)B = Ar
∂B

∂r
+
Aθ
r

∂B

∂θ
+Az

∂B

∂z
− 1

r
AθBθ r̂ +

1

r
AθBr θ̂. (3.16)

We thus proceed to compute

(B ·∇) ξ =
Bθ
r

∂ξ

∂θ
+Bz

∂ξ

∂z
− 1

r
Bθξθe

i(mθ+kz)r̂ +
1

r
Bθξre

i(mθ+kz)θ̂

=

(
i
m

r
Bθξ̃ + ikBz ξ̃ −

1

r
Bθξθr̂ +

1

r
Bθξrθ̂

)
ei(mθ+kz) (3.17)

and

(ξ ·∇)B =

(
ξr
∂B

∂r
− 1

r
Bθξθr̂

)
ei(mθ+kz) (3.18)

which lead to the desired result

Q =

(
iF ξ̃ −

(
dBθ
dr
− Bθ

r

)
ξr θ̂ −

dBz
dr

ξr ẑ

)
ei(mθ+kz). (3.19)

Note that an alternative expression for Q can also be found using its definition instead of vector
calculus identities, but result (3.12) ends up being more convenient. �

Lemma 3.4. The generalized energy can be expressed in terms of the displacement com-
ponents through the integral expression

U(ξr, ξθ, ξz) =
πL

µ0

∫ b

a

(
r
(
F 2 + λρ

)
|ξ|2 + 4iFBθξrξθ + Θξ2

r

)
dr, (3.20)

where the following parameter has been conveniently defined:

Θ =
2B2

θ

r
− dB2

θ

dr
.
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Proof. The potential energy and norm are given by

W (ξ) =
1

2µ0

∫
V

(
|Q|2 − ξ∗ · (∇×B)×Q

)
dV, I(ξ) =

1

2µ0

∫
V

ρ|ξ|2dV. (3.21)

Hence, the generalized energy is given by

U(ξ) = W (ξ) + λI(ξ) =
1

2µ0

∫
V

(
|Q|2 − ξ∗ · (∇×B)×Q+ λρ|ξ|2

)
dV. (3.22)

Note that Lemma 3.3 shows that Q can be expressed as

Q(r, θ, z) = Q̃(r) ei(mθ+kz), (3.23)

so that the θ and z dependence of the three terms in equation (3.22) vanishes, and the whole
integrand is only a function of r. Thus, we integrate over the cylinder as∫

V

u(r)dV =

∫ b

a

ru(r) dr

∫ 2π

0

dθ

∫ L

0

dz = 2πL

∫ b

a

ru(r)dr, (3.24)

which leads to

U(ξ) =
πL

µ0

∫ b

a

r
(
|Q|2 − ξ∗ · (∇×B)×Q+ λρ|ξ|2

)
dr. (3.25)

We must now expand each of the three terms in the integral in terms of ξr, ξθ and ξz. The third
term can be found immediately using Lemma 3.2. We now compute the first term by expanding
|Q|2 starting from (3.12):

|Q|2 = Q∗ ·Q =

(
−iF ξ̃∗ − r d

dr

(
Bθ
r

)
ξr θ̂ −

dBz
dr

ξr ẑ

)
·
(
iF ξ̃ − r d

dr

(
Bθ
r

)
ξr θ̂ −

dBz
dr

ξr ẑ

)
= F 2|ξ|2 − 2iFξr

(
r

d

dr

(
Bθ
r

)
ξθ +

dBz
dr

ξz

)
+ ξ2

r

((
dBz
dr

)2

+

(
r

d

dr

(
Bθ
r

))2
)
. (3.26)

In order to evaluate the second term in the integral, we start by computing the curl of B in
cylindrical coordinates:

∇×B =
1

r

∣∣∣∣∣∣
r̂ rθ̂ ẑ
∂r ∂θ ∂z
Br rBθ Bz

∣∣∣∣∣∣ =
1

r

∣∣∣∣∣∣
r̂ rθ̂ ẑ
dr 0 0
0 rBθ Bz

∣∣∣∣∣∣ = −dBz
dr

θ̂ +
1

r

d

dr
(rBθ) ẑ. (3.27)

Now, we proceed to evaluate:

−ξ∗· (∇×B)×Q = −ξ̃∗ ·
(
−dBz

dr
θ̂ +

1

r

d

dr
(rBθ) ẑ

)
×
(
iF ξ̃ − r d

dr

(
Bθ
r

)
ξr θ̂ −

dBz
dr

ξr ẑ

)
= 2iFξr

(
dBz
dr

ξz +
1

r

d

dr
(rBθ) ξθ

)
− ξ2

r

((
dBz
dr

)2

+
d

dr
(rBθ)

d

dr

(
Bθ
r

))
. (3.28)

In the last calculation, the following triple products have been performed:

ξ̃∗ ·
(
θ̂ × ξ̃

)
=

∣∣∣∣∣∣
ξr −ξθ −ξz
0 1 0
ξr ξθ ξz

∣∣∣∣∣∣ = 2ξrξz , ξ̃∗ ·
(
ẑ × ξ̃

)
=

∣∣∣∣∣∣
ξr −ξθ −ξz
0 0 1
ξr ξθ ξz

∣∣∣∣∣∣ = −2ξrξθ. (3.29)

When plugging equations (3.26) and (3.28) into (3.25), it is easy to check that several terms vanish
and equation (3.20) is finally obtained. �

31



Lemma 3.5. If k 6= 0, the squared modulus of ξ can be expressed in terms of ξr and ξθ
through the following relation:

|ξ|2 = ξ2
r − ξ2

θ +
1

k2

(
1

r

d(rξr)

dr
+ i

m

r
ξθ

)2

(3.30)

Proof. Starting from the incompressibility condition for ξ in cylindrical coordinates, (3.6), the
square of the axial component ξz can be expressed in terms of ξr and ξθ, provided k 6= 0:

ξ2
z = − 1

k2

(
1

r

d(rξr)

dr
+ i

m

r
ξθ

)2

. (3.31)

Thus, using relation (3.8) we get the desired expression for |ξ|2 in terms of ξr and ξθ only. �

Comment. Note this expression for ξ2
z can be plugged into (3.20) to immediately obtain the

generalized energy as a functional of two functions only, as will be seen in Theorem 3.6.

Notation. We will use the dot notation ϕ̇(r) to denote the (radial) derivative of a function ϕ of
one variable. This does not lead to any confusion, since no time variations are being considered.

Theorem 3.6. The generalized energy is given in terms of ξr and ξθ as an integral functional

U(ξr, ξθ) =

∫ b

a

L(r, ξr, ξθ, ξ̇r) dr. (3.32)

where the integrand L(r, ξr, ξθ, ξ̇r) is given by

L =
πL

µ0

[
r
(
F 2 + λρ

)(
ξ2
r − ξ2

θ +
1

k2

(
1

r

d(rξr)

dr
+ i

m

r
ξθ

)2
)

+ 4iFBθξrξθ + Θξ2
r

]
.

3.4 Optimization of the generalized energy

Now that an expression for U(ξr, ξθ) has been obtained, we proceed to find its stationary points
in order to determine, in virtue of Theorem 2.19, the growth rate of the instabilities for the given
configuration. The following result of calculus of variations will be the key tool used in this
optimization:

Lemma 3.7. Let [ξi] = (ξ1, . . . , ξn) be a tuple of smooth scalar complex functions of one
variable r, satisfying given boundary conditions, and consider a smooth real-valued integral
functional

U [ξi] =

∫ a

0

L(r, [ξi], [ξ̇i]) dr. (3.33)

Then, tuple of paths [ξi] that make U stationary is given by the Euler-Lagrange equations:

∂L
∂ξi
− d

dr

(
∂L
∂ξ̇i

)
= 0. (3.34)

Proof. This is a generalization of the well-known Euler-Lagrange theorem result, and its proof
can be found in the literature about variations of integral functionals that depend on several
one-variable functions. �
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Theorem 3.8. Let (ξ∗r , ξ
∗
θ ) be an extreme value of the generalized energy U(ξr, ξθ). Then,

the component ξ∗θ is given in terms of ξ∗r and its radial derivative through

ξ∗θ =
im

m2 + r2k2

(
rξ̇∗r + ξ∗r +

2k2rFBθ
m (F 2 + λρ)

ξ∗r

)
, (3.35)

and ξ∗r can be found as an extremum of the integral functional

U(ξr) =
πL

µ0

∫ b

a

(
f ξ̇r

2
+ hξ̇rξr + gξ2

r

)
dr, (3.36)

where the following functions of r have been defined:

f =
r3(F 2 + λρ)

m2 + k2r2
, h =

2r2(F 2 + λρ)− 4mrFBθ
m2 + k2r2

,

g =

(
1 +

1

m2 + k2r2

)
r(F 2 + λρ)− 1

m2 + k2r2

(
4mFBθ +

4F 2B2
θk

2r

F 2 + λρ

)
+ Θ.

Proof. A particular case of the previous lemma is that, if L does not depend on ξ̇θ, then at an
optimum we must have ∂L/∂ξθ = 0. Thus, starting from expression (3.32), we impose

∂L
∂ξθ

=
2πLr

µ0

[(
F 2 + λρ

)( im

r2k2

d

dr
(rξr)−

(
1 +

m2

r2k2

)
ξθ

)
+

2iFBθ
r

ξr

]
= 0, (3.37)

When isolating ξθ from the previous expression, expression (3.35) is immediately obtained.

In order complete the optimization of U(ξr, ξθ), it is enough to plug this expression into (3.32)
as ξθ, and optimize the resulting single-input functional U(ξr). One is only left to prove this
functional is indeed given by (3.36). One way of starting this calculation is by expressing (3.35) as

ξθ = αrξ̇r + βξr, (3.38)

where the imaginary dimensional constants A and B (with units of length) are given by

α =
im

m2 + k2r2
, β = α

(
1 +

2k2rFBθ
m(F 2 + λρ)

)
. (3.39)

Now, one can immediately obtain that U(ξr) has the form (3.36), where

f =
r(F 2 + λρ)

k2

[
1 + 2imα− (m2 + k2r2)α2

]
h = 4irFBθα+

2(F 2 + λρ)

k2

[
1 + im(α+ β)− (m2 + k2r2)αβ

]
g = 4iFBθβ +

F 2 + λρ

k2r

[
1 + k2r2 + 2imβ − (m2 + k2r2)β2

]
+ Θ

When these expressions are expanded using (3.39), several terms cancel out and the desired result
is easily obtained. �

Notation. Now that the analysis is reduced to just the radial component of ξ, we will use ξ
instead of ξr for a lighter notation.
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Theorem 3.9. The radial component ξ∗ of the extrema of U is a solution to the second-
order differential equation

d

dr

(
f ξ̇
)
− g̃ ξ = 0, (3.40)

being f as previously defined, and g̃ given by the expression

g̃ =

(
1− m2 − k2r2

(m2 + k2r2)
2

)
r
(
F 2 + λρ

)
− k2r2

m2 + k2r2

[
4mFBθ
m2 + k2r2

+
λ

k2
ρ̇+

d|B|2

dr
+

2B2
θ

r

(
2F 2

F 2 + λρ
− 1

)]
(3.41)

Proof. We use the Euler-Lagrange lemma, this time for single-input integral functionals. Thus,
letting

L(ξ, ξ̇) =
πL

µ0

(
f ξ̇2 + hξ̇ξ + gξ2

)
, (3.42)

the optimal is given by
∂L
∂ξ
− d

dr

(
∂L
∂ξ̇

)
= 0. (3.43)

We compute the partial derivatives:

∂L
∂ξ

=
πL

µ0

(
2gξ + hξ̇

)
∂L
∂ξ̇

=
πL

µ0

(
2f ξ̇ + hξ

)
Thus, the Euler-Lagrange equation is

2gξ + hξ̇ − d

dr

(
2f ξ̇ + hξ

)
= 0, (3.44)

which can be recast using the product rule into

d

dr

(
f ξ̇
)
−
(
g − 1

2
ḣ

)
ξr = 0. (3.45)

This is of the form (3.40), being g̃ = g− ḣ/2, so we are left to prove g̃ is indeed given by expression
(3.41). This can first be done by using the expression of h, together with

Ḟ =
m

r2

(
rḂθ −Bθ

)
+ kḂz (3.46)

to show that:

ḣ

2
=

1

m2 + k2r2

(
2m2r(F 2 + λρ)

m2 + k2r2
+ r2λρ̇− 4m3FBθ

m2 + k2r2
+ k2r2 dB2

z

dr
+m2Θ

)
(3.47)

Then, when subtracting this from g to obtain g̃, several terms can be simplified to obtain the
desired result, (3.41). �

Comment. Equation (3.40) is our version of equation (14) in Linton et al. (1996), and they can
be checked to match for m = 1 and ρ̇ = 0.
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3.5 External perturbation solution

The aim of this section is to solve the Euler-Lagrange equation analytically for r in a given interval
I ⊂ [0,+∞), under the assumption of constant density (ρ̇ = 0) and no magnetic field (B = 0).
Indeed, as justified in Section 3.6, these conditions will later be assumed for the environment of
a magnetic flux rope, and will turn out to be useful to study its stability. We start by stating a
useful mathematical about a very special type of functions:

Lemma 3.10. The general real solution to the modified Bessel equation of order ν ∈ R,

r2ÿ + rẏ −
(
ν2 + k2r2

)
y = 0, (3.48)

is given by
y(r) = αKν (|k|r) + β Iν (|k|r) , α, β ∈ R, (3.49)

where Iν and Kν are the modified Bessel functions of first and second kind, respectively.
Some key properties of these functions are:

1. Asymptotic behavior:

Iν(x) ∼ 1√
2πx

ex, Kν(x) ∼
√

π

2x
e−x, for x→ +∞. (3.50)

2. Derivative recurrence formulas:

İν(x) = Iν−1(x)− ν

x
Iν(x), K̇ν(x) = −Kν−1(x)− ν

x
Kν(x), for ν ∈ R. (3.51)

Proof. These well-known results can be found in any text on ordinary differential equations, such
as Harris (2014) or Zakharov (2009). �

Theorem 3.11. The general solution to the Euler-Lagrange equation (3.40) in conditions
of constant density and zero magnetic field is given by

ξ(r) = α K̇m (|k|r) + β ˙Im (|k|r) , α, β ∈ R. (3.52)

where K̇m and ˙Im are the first derivatives of the m-th order modified Bessel functions.

Proof. In the conditions stated above, the functions f and g̃ in (3.40) are greatly simplified to:

f =
λρr3

m2 + k2r2
, g̃ =

(
1− m2 − k2r2

(m2 + k2r2)
2

)
rλρ. (3.53)

Using the product rule for (fξ) and simplifying some terms, equation (3.40) can be rewritten as a
second order linear differential equation:

r2ξ̈ +

(
1 +

2m2

m2 + k2r2

)
rξ̇ −

(
m2 + k2r2 − m2 − k2r2

m2 + k2r2

)
ξ = 0. (3.54)

In order to find the solutions to this ODE, we will use a happy idea, which starts by letting y be
a solution of the modified Bessel equation of order m:

r2ÿ + rẏ −
(
m2 + k2r2

)
y = 0. (3.55)

Then, y can be expressed in terms of its derivatives as

y =
r

m2 + k2r2
(rÿ + ẏ) . (3.56)
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On the other hand, (3.55) can be differentiated to obtain

r2...
y + 3rÿ +

(
1−

(
m2 + k2r2

))
ẏ − 2rk2y = 0. (3.57)

Plugging (3.56) into (3.57), rearranging terms and letting ξ = ẏ, we obtain a second order ODE
in ξ which coincides with (3.54). However, we know that two linearly independent solutions to
(3.55) are the modified bessel functions: y = Im (|k|r) and y = Km (|k|r). This gives us the general
solution to the second-order ODE (3.54):

ξ(r) = α K̇m (|k|r) + β ˙Im (|k|r) , (3.58)

for some α, β ∈ R. �

3.6 Free-boundary conditions: assumptions

In this section, we present some additional assumptions that are used in Linton et al. (1996) before
imposing the free-boundary conditions to determine the growth rate of the configuration. While
we will follow them too, we present them here and compare them to some real data gathered
from space missions. The following plots have been extracted from Maśıas-Meza et al. (2016), and
display the result of processing and averaging data regarding more that 40 coronal mass ejection
events.

Figure 3.4: The top plot shows the magnetic field modulus, and the bottom shows the proton density,
both as a function of time (expressed in units normalized to the event duration). The sheath of the CMEs is
shaded with an orange background, and the blue background corresponds to the MFR structure. Extracted
from Maśıas-Meza et al. (2016).

The first key assumption consists in stating that, beyond the distance r = R, the plasma volume
merges with the embedding solar wind, which has a magnetic field Bwind = 0 for r > R. This is
not a perfect assumption: observations show the magnetic field in the solar wind usually around
|Bwind| ≈ 5nT 1, while the magnetic field inside the MFR is found in the range of 10nT to
15nT , as seen in Figure 3.4, and can be even larger when closer to the Sun. Although these
quantities are comparable to the field in the solar wind, they are several times larger, making this
assumption somehow reasonable. Furthermore, it is also convenient, since a vanishing external
field has cylindrical symmetry, so the Euler-Lagrange equation (3.40) can be also be applied to
that region.

1This value changes a lot overtime, depending on the solar cycle.
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Another key assumption in Linton et al. (1996) is that the magnetic field B discontinuously drops
to zero at r = R. Of course, this is just an approximation of reality, but observations shown in 3.4
closely match the idea that B drastically decreases near the boundary of the magnetic flux rope.
This is particularly true in the sheath of the CME, while in the tail it’s just a continuous but quite
steep transition towards the field in the solar wind.

Finally, the last assumption consists in considering a constant density, ρ(r) = ρ0, for all r > 0. This
can be justified using the following plot in Figure 3.4 for the proton density (number of protons
per unit volume), which except in the case of the sheath, the density in the MFR matches quite
well the one in the solar wind. Note that, using a value of np = 5 particles per cm3, we can use
equation (1.13) to estimate the fluid density in the flux rope as:

ρ0 ≈ 1.16 ρp = 1.16mpnp ≈ 9.7 · 10−24g/cm3. (3.59)

3.7 Free-boundary conditions: equations

Now, we are in conditions of obtaining boundary condition equations from Linton et al. (1996),
but generalized for instabilities of any order m. As can be seen in the assumptions previously
explained, no particular boundary condition is being assigned to ξ: indeed, the true boundary
condition is set and infinity, and is requiring that the perturbation is localized:

lim
r→∞

ξ(r) = 0. (3.60)

Indeed, this can be seen as a consequence of the displacements having compact support, as
developed theoretically in Chapter 2. Moreover, the perturbation displacement as a function
ξ : R3 → R3 is required to be smooth, with the exception of the MFR boundary, where a discon-
tinuity in the magnetic field is accounted for with a discontinuity in ξ̇2.

Lemma 3.12. Let f be a piece-wise smooth function with only one discontinuity at r = R.
For simplicity, we use the following notation for the lateral limits:

f(R) = lim
ε→0+

f(R− ε), fwind = lim
ε→0+

f(R+ ε) (3.61)

Let g be a continuous function. Then, the following equality holds:

lim
ε→0+

∫ R+ε

R−ε
g(r)ḟ(r) dr = g(R) (fwind − f(R)) . (3.62)

Proof. Using the continuity of f for r 6= R, it is immediate the approximation

f(r) ≈ (fwind − f(R))χ(r −R) + f(R) (3.63)

for r ∈ (R− ε,R+ ε) becomes arbitrarily accurate when ε→ 0, so

lim
ε→0+

∫ R+ε

R−ε
g(r)ḟ(r)dr = lim

ε→0+

∫ R+ε

R−ε
g(r) [(fwind − f(R)) χ̇(r −R) + f(R)] dr. (3.64)

Now, using the following property for the Dirac delta δ = χ̇,∫ R+ε

R−ε
g(r)δ(r) dr = g(R) for all ε > 0, (3.65)

2Although in Chapter 2 the theory assumes the displacements are smooth over R3, a similar reasoning could be
used to prove the same results imposing smoothness for ξ in R3 \∂V , the open set of R3 that excludes the boundary
of the magnetic flux rope.
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the desired result is immediately obtained. �

Lemma 3.13. Following the notation introduced in (3.61), the boundary condition for ξ
at the magnetic flux rope boundary r = R is given by

k2|B(R)|2ξ(R) +
(
F 2(R) + λρ

)
R ξ̇(R)− λρR ξ̇wind = 0. (3.66)

Proof. Applying the previous section’s separately for r < R and r > R, we find the Euler-Lagrange
equation (3.40) must hold independently for r < R and r > R. The point r = R has measure zero,
so for any small ε > 0: ∫ R+ε

R−ε

[
d

dr

(
f ξ̇
)
− g̃ ξ

]
dr = 0, (3.67)

and in particular,

lim
ε→0+

∫ R+ε

R−ε

[
d

dr

(
f ξ̇
)]

dr − lim
ε→0+

∫ R+ε

R−ε
g̃ ξ dr = 0. (3.68)

We proceed to compute both limits separately. The first one can be found using the fundamental
theorem of calculus:

lim
ε→0+

∫ R+ε

R−ε

[
d

dr

(
f ξ̇
)]

dr = lim
ε→0+

[
f ξ̇
]R+ε

R−ε
=

R3

m2 + k2R2

[
λρ ξ̇wind −

(
F 2(R) + λρ

)
ξ̇(R)

]
(3.69)

On the other hand, using the previous lemma:

lim
ε→0+

∫ R+ε

R−ε
g̃ ξ dr = lim

ε→0+

∫ R+ε

R−ε

(
−k2r2

m2 + k2r2
ξ

)
d|B|2

dr
dr =

k2R2 |B(R)|2

m2 + k2R2
ξ(R). (3.70)

The proof is completed by plugging these expressions into (3.68) and rearranging the terms. �

Theorem 3.14. The boundary condition at r = R for the Euler-Lagrange equation (3.40)
is given by[

k2|B(R)|2 − λρ|k|R K̈m (|k|R)

K̇m (|k|R)

]
ξ(R) +

(
F 2(R) + λρ

)
R ξ̇(R) = 0, (3.71)

which can also be expressed in terms of modified Bessel functions as[
k2|B(R)|2 + λρ

(
1 +

(
m2 + k2R2

)
Km(|k|R)

|k|RKm−1(|k|R) +mKm(|k|R)

)]
ξ(R) +

(
F 2(R) + λρ

)
Rξ̇(R) = 0.

Proof. Firstly, we want to find an expression for ξ̇wind in terms of the internal values of ξ. Note
that, using result (3.52), the perturbation can be solved for r > R: there must exist an α ∈ R such
that

ξ(r) = α K̇m (|k|r) (3.72)

Indeed, this must be the case for the perturbation to be localized, since property (3.50) shows that
K̇m vanishes when r →∞, while ˙Im diverges. This expression can be differentiated to obtain

ξ̇(r) = α|k| K̈m (|k|r) , (3.73)

and continuity of ξ at r = R yields

ξ̇wind = α|k| K̈m (|k|R) = |k| K̈m (|k|R)

K̇m (|k|R)
ξ(R). (3.74)
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The boundary condition (3.71) is now immediately obtained by plugging this expression into (3.66).
The second expression can be obtained using the modified Bessel equation (3.48) for y = Km (|k|r)
and evaluating it at r = R:

K̈m (|k|R)

K̇m (|k|R)
= − 1

|k|R

(
1−

(
m2 + k2r2

)
Km (|k|R)

|k|RK̇m (|k|R)

)
. (3.75)

Now, using the derivative recurrence formula (3.51) for K̇m, yields

− |k|R K̈m (|k|R)

K̇m (|k|R)
= 1 +

(
m2 + k2r2

)
Km(|k|R)

|k|RKm−1(|k|R) +mKm(|k|R)
, (3.76)

as we wanted to prove. �

Comment. It should be observed that, as expected, this method is invariant to a change in sign
of the wave numbers. Indeed, if we change (m, k) to (−m,−k), both the Euler-Lagrange equation
(3.40) and the boundary condition (3.66) remain unaltered. Hence, as was explained commented
in Section 3.2, the analysis can restricted to the perturbations with non-negative azimutal wave
numbers, m ≥ 0.
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4 . Application of the method

4.1 Magnetic flux rope modeling

The stability analysis that has been developed in the previous chapters starts by fixing a given
equilibrium magnetic field configuration B(r). In this section we describe the internal magnetic
structures that are commonly found in CMEs, while presenting some models that will be funda-
mental to our study of flux rope stability via the application of the growth rate method.

As mentioned in Chapter 1, measurements of the heliospheric magnetic fields are constantly made
in situ via the magnetometers equipped in spacecrafts currently orbiting the Sun. This is the case,
for instance, of Solar Orbiter’s MAG instrument, or Parker Solar Probe’s FIELDS. When a CME
takes place and propagates through the Solar System, the instruments that find themselves in the
way measure the magnetic field along their path one-dimensional, which can then be used to infer
the whole structure of the flux rope. A common way to do so is by using the Grad-Shafranov
reconstruction method, which starts by assuming an ideal MHD equilibrium configuration (2.9),
and then solves numerically a PDE to obtain the magnetic potential, and hence the magnetic field,
throughout the whole flux rope cross-section (Hu and Sonnerup (2001), Möstl et al. (2009)).

The patterns observed in the reconstructed magnetic field data are then used by scientists to
develop models describing the internal magnetic configuration of MFRs at equilibrium. Such
models give the axial and azimutal components of the field in terms of certain parameters, which
can be tweaked to account for the diversity of possible flux rope profiles. The models we will
work with assume cylindrical symmetry, as introduced in Section 3.1, and give the magnetic field
in terms of the normalized distance to the axis r = r/R, being R the radius of the flux rope1.
Another very common parameter is the amplitude of the magnetic field B0, which coincides with
the maximum axial field and provides the model with dimensions, serving as a scale factor.

One of the key models recently used for MFR fittings is the Circular-Cylindrical (CC) model
introduced in Nieves-Chinchilla et al. (2016), which has served as a basis for many publications,
including recent papers which have generalized it to describe geometries with distorted cross-
sections and arbitrarily curved axis (Nieves-Chinchilla et al. (2018), Weiss et al. (2022)). After
fixing integers2 n ≥ 1 and m ≥ 0, the CC model has two parameters Cnm, τ > 0 which determine
the magnetic field. Its axial component has a maximum value of B0 at the axis and decreases from
there, while the azimutal is zero at the axis and increases with the distance from it.

Bz(r) = B0

(
1− 1

τ
rn+1

)
, Bθ(r) =

B0

τCnm
rm+1. (4.1)

This model is particularly relevant to this work since the recent Florido-Llinas et al. (2020) uses the
growth rate method to study the combinations of parameters (Cnm, τ) that lead to an equilibrium
magnetic field that are kink unstable. The results are summarized in the following plot in Figure
4.1: it shows that configurations given by small values of Cnm and τ are kink unstable, while
higher values of the parameters yield kink stable configurations.

1During observations, the radius R is fitted along with the rest of the model parameters.
2The values n = 1 and m = 0 are the most used within flux rope fittings.
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Figure 4.1: Kink stability analysis of the CC Nieves-Chinchilla model, from Florido-Llinas et al. (2020).

The unstable configurations in the plot can be checked to correlate very well with the ones that
exhibit the highest degree of twist around the axis. This is in agreement with Knizhnik et al.
(2018), which explains how the kink instability tends to occur in flux ropes that are highly twisted.
The configurations which were found to be unstable, however, also coincide with the ones having
higher Lorentz forces J × B inside the flux rope. In fact, Florido-Llinas et al. (2020) suggests
the presence of Lorentz forces, particularly if they are present in different directions and there are
inward forces near the edge, could be related to the occurrence of such instabilities.

4.2 The Gold-Hoyle modified model

In order to further explore the conclusions in Florido-Llinas et al. (2020) and identify the key
drivers behind the kink instability, as well as behind the instabilities of other azimutal wave num-
bers m, we require a model which can lead to both highly twisted and force-rich magnetic field
configurations, but not necessarily for the same combinations of parameters. Then, we will be
able to perform a similar analysis to the one in Figure 4.1 to characterize the stability of each
configuration and, therefore, identify the MFR properties that may be triggering the development
of plasma instabilities. We start by giving a brief introduction to the twist and Lorentz forces in
a MFR with cylindrical geometry, in a view to introduce the model that we have developed.

The twist of a MFR is defined as the angle around the axis covered by the magnetic field lines,
measured per unit length. The twist is noted by Q, and it is a function of the distance to the axis
due to the radial dependence of the magnetic field. Basic geometrical considerations lead to the
following expression3 of the twist:

Q(r) =
Bϕ(r)

rBz(r)
. (4.2)

On the other hand, the Lorentz forces in the flux rope, as previously explained, are given by the
cross product of the current density J ×B, with J = ∇×B/µ0 due to Ampere’s law (1.4). In a
cylindrical MFR, the Lorentz force can be expressed in terms of just the distance to the axis, and

3See Florido-Llinas (2020) for a detailed explanation.
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an automatic calculation shows it has only a radial component:

J ×B = −
(

1

2

dB2
z

dr
+
Bθ
r

d

dr
(rBθ)

)
r̂. (4.3)

Hence, an evaluation of the sign of its radial gives information about whether it is directed outwards
(positive) or inwards (negative).

Now we are in conditions of defining the cylindrical magnetic field model that will be used in this
work. Other than the field amplitude B0, the cylindrical magnetic field model we now introduce
has two adimensional parameters: q and α. For α = 1 we recover the Gold-Hoyle model, first
presented in Gold and Hoyle (1960), which is well known for giving a uniformly-twisted4 force-free
magnetic field. The field components in the Gold-Hoyle modified model are defined as

Bz(r) =
B0

1 + q2r2 , Bθ(r) = qrαBz(r). (4.4)

The following plot shows a comparison between both models field models, for parameter combina-
tions which yield similar structures: Let’s take a closer look into the physical interpretation of the

Figure 4.2: Comparison between the CC model from Nieves-Chinchilla et al. (2016) and the Gold-Hoyle
modified model introduced in this work.

parameters we have introduced in (4.4). We call q the twist parameter. Indeed, using expression
(4.2), we see the Gold-Hoyle model (α = 1) has constant twist is Q = q/R, so q is an adimensional
interpretation of the twist. Furthermore, if α 6= 1, q is still directly proportional to the twist at
any axial distance:

Q(r) = qrα−1/R. (4.5)

Furthermore, we call α the force parameter, since its change from α = 1 leads to the presence of
forces in the structure. Indeed, letting α = 1 and starting from (4.4), the radial current density
distribution is found to be

µ0J(r) = ∇×B(r) =
2q

1 + q2r2
B(r), (4.6)

so using Ampere’s law we obtain J is parallel to B, and the Lorentz forces vanish: J ×B = 0.
Hence, for α = 1, the structure is force-free. However, if we start to increase α, magnetic forces
come into play. A quick analysis shows that increasing the value of α by fixing q always leads to an
increase in the Lorentz forces, which are mostly directed outwards except for the region near the

4That is, the twist Q(r) is a constant function.
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edge, where they are pointed towards the interior, which Florido-Llinas et al. (2020) pointed out
as a potential indicator of kink unstable structures. Moreover, increasing the value of α decreases
the twist in the structure. These properties, which are shown in Figure 4.3, make the Gold-Hoyle
modified model an appropriate tool to conduct our analysis.

Figure 4.3: MFR Lorentz forces (with µ0 = 1) and twist for the Gold-Hoyle modified model.

Note that the sign of q only changes the flux rope chirality, so we can restrict the analysis to q > 0
without loss of generality. Moreover, we consider only α ≥ 1 since having α < 1 would imply
through (4.5) an unbounded twist near the axis, which contradicts MFR observations.

4.3 Implementation of the growth rate method

In this section we apply the method developed in Chapter 3 to characterize the instabilities of
the cylindrical magnetic flux rope configurations given by the Gold-Hoyle modified model. The
stability analysis starts by recalling equation (3.71), which is of the form

D(λ; k) = 0 (4.7)

for a given function D : R → R, the dispersion function, which has λ as a variable, and takes the
axial number k ∈ R as a parameter. This function also requires other inputs, starting with the
equilibrium magnetic field components Bθ and Bz, which are parametrized via α and q via the
expressions of the model, (4.4). The value of the azimutal wave number m ∈ Z, determining the
type of instability, is also a given parameter. Furthermore, we set B0 = 1, ρ = 1 and R = 1 to
simplify the analysis: the results can therefore be thought of as being expressed in a new system
of units, which is perfectly valid to obtain qualitative conclusions and identify instability patterns.

Given the value of λ, before evaluating D(λ; k) one needs to determine the value of ξ(R) and ξ̇(R)
by solving the Euler-Lagrange equation (3.40), which gives the radial component5 of the minimal
mode6. Before solving the ODE, boundary conditions for ξ and ξ̇ must be set. Similarly to the
analyses carried out by Linton et al. (1996) and Florido-Llinas et al. (2020), we impose the following
boundary conditions at the axis: {

ξ(0) = 1,

ξ̇(0) = 0.
(4.8)

5Although this is the only component that will be required for this analysis, the others can be obtained through
relations (3.31) and (3.35).

6This mode is not minimal in the same strict sense as introduced in Chapter 2, since we are assuming certain
values of m and k which limit the set of displacement perturbations being considered to the ones given by (3.4).
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Indeed, the second condition is necessary to satisfy the smoothness of the displacement at the
axis. Furthermore, the solutions to the Euler-Lagrange equation (3.40) are determined up to a
scale factor, since it is linear and homogeneous, so the solution will be scaled by the value of ξ(0).
Hence, setting ξ(0) = 1 is enough since finding the zeros of the dispersion function only requires
to find the value of ξ̇(R)/ξ(R), which is independent of any scale factor in the solution. The
numerical resolution of this initial value problem, as well as the codes used for this analysis, have
been developed in Python and can be found in this Github repository7.

Following the procedure indicated above, the dispersion function can be evaluated for any λ ∈ R,
and its zeros can be found. If there exists a λ > 0 such that D(λ; k) = 0. Then, the structure
is unstable to displacements of axial wave number k, with growth rate σ =

√
λ, which are auto-

matically obtained by finding the zero of the dispersion equation. If more than one zero is found,
the highest one is chosen: indeed, as shown in Theorem 2.15, σ should be an upper bound for the
exponential growth of the instabilities in a given configuration. Then, the dispersion relation can
be defined to be the one-to-one function assigning λ = σ2 to each unstable k:

λ(k) = D−1(0; k). (4.9)

For convenience, will work with λ instead of σ and often refer to it as the growth rate.

4.4 Determining of the dispersion relation

The implementation of this method has given different results depending on the type of instability.
For m = 0, no zeros of the dispersion function have been found for any value of k, suggesting
that the sausage instability does not take place for cylindrical plasmas with the magnetic structure
we are considering. We have also been able to check that, for displacements with m < 0, the
stability results are identical to the ones obtained for m > 0, except for a change in the sign of k,
as expected. Therefore, the following analysis only focuses in instabilities with m ≥ 1.

One of the first really interesting results has been that the wave numbers k leading to the most
rapidly growing instabilities have been found to be related with the twist parameter of the magnetic
field through:

k ≈ −mq. (4.10)

This can be observed in the following plots of the dispersion function for m = 1 and m = 2:

Figure 4.4: Dispersion function for m = 1 (left) and m = 2 (right), and several values of k ≈ −mq.

7The Python functions used to solve the Euler-Lagrange equation have been adapted from the codes developed
in Florido-Llinas et al. (2020) to study the kink instability.
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As can be seen in Figure 4.4, for the arbitrary parameters (α = 1, q = 0.3), when k is increased
starting at −mq, the zero of the dispersion increases, reaches a maximum (which corresponds to
the green curve in both plots), and then decreases again, rapidly tending to zero. Furthermore,
the values of k for which instabilities are being found can be validated with the literature: as
explained in Linton et al. (1996), the studies (including theirs) on the kink instabilities of Gold-
Hoyle configurations have found instabilities in the near neighborhood of k > −q. This coincides is
found in agreement with our results. Moreover, for each value of k, the dispersion function grows
without bound for large values of λ, so the dispersion function does not have any greater roots
than the ones shown in Figure 4.4.

Furthermore, as explained in equation (4.9), the dispersion equation can be solved for λ by finding
the root of the dispersion function, leading to the dispersion relation λ(k). The results are shown
below, and they are compared for different values of the twist parameter q:

Figure 4.5: Dispersion relation for the Gold-Hoyle model, compared for m = 1, 2 and for different values
of the twist q.

The first relevant conclusion that stands out from the plots in Figure 4.5 is that there is a quite
small range of values of k, quite close to −mq, which lead to instabilities: outside of such range,
the growth rate rapidly drops to zero, becoming insignificant when compared with the maximum
growth rate that can be attained. Moreover, when comparing the plots to each other, we see
that the growth rates are larger for m = 1 than m = 2, implying that, in a force-free Gold-Hoyle
configuration (α = 1), the kink instability develops way faster than the elliptical instability.

4.5 Obtaining the maximum growth rate

We also observe in each of the plots in Figure 4.5 how an increase in the twist parameter q leads to
a uniform increase of the growth rates, as well as a wider range of wave numbers k leading to an
instability. This is in agreement with the literature, as pointed out in Section 4.1: highly twisted
structures should be the more kink unstable. This same statement also seems to transfer well to
instabilities of higher order m, as can be seen in the m = 2 plot.

However, it is difficult to study the relationship between growth rate and q with so many variables to
account for. Since all the dispersion relation curves seem to have similar shapes, its information can
be condensed into just one quantity, for which we will choose their maximum value. We therefore
proceed to define a new metric, the maximum growth rate, which allows us to eliminate the k
parameter and assign a single growth rate to every magnetic field configuration (α, q), provided
the order m of the instability:
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λmax = max
k∈R

λ(k) = max
k∈R

D−1(0; k). (4.11)

This magnitude will also be referred to as the growth rate of the configuration. We now show the
results of determining the maximum growth rate when changing the twist parameter q, comparing
the results in the same plot for instabilities of different order m. On top of that, we display the first
stability results for a structure which is not force-free, increasing the force parameter to α = 1.5.

Figure 4.6: Maximum growth rate for magnetic field configurations with α = 1.0 (force-free) and α = 1.5
(with Lorentz forces), and increasing twist parameter. The results are compared for instabilities of different
order, m.

In these plots we see in a more clear way how increasing the twist of a MFR leads to an increase
in the growth rate of its instabilities of any order m. The plot in the left, representing force-
free Gold-Hoyle structures, shows a clear dominance of the kink instability with respect to other
instabilities for any flux rope twist: when m increases, the growth rates become smaller, as was
already expected from the results obtained in Figure 4.5 for m = 1 and m = 2.

Nevertheless, the plot on the right, which illustrates a structure in the presence of Lorentz forces,
shows that when the twist parameter is high enough the dominance of the kink instability no longer
holds, and higher order instabilities evolve faster in time. This result is particularly relevant, since
it provides a counter-example to the generalization of the comparison theorem proven in Newcomb
(1960) (explained in Section 3.2) to the modern notion of σ-stability which was later introduced in
Goedbloed (1974). Indeed, we see that our magnetic field configurations for α = 1.5 and q ≥ 0.4
are more σ-stable to kink perturbations than to displacements of higher order m. However, this
only happens if q is high enough: for small values of the twist parameter, the kink instability
remains dominant.

Notice that the vertical axis in Figure 4.5 has a logarithmic scale due to the very rapid increase of
the growth rate for small values of q. However, when the flux rope gets more and more twisted, the
growth rate does not increase as fast and seems to reach a roughly stationary value. The fact that
such a relation is increasing means we can define a unique value of q at which a given threshold
growth rate λ0 is reached. Such a threshold, which should be chosen appropriately depending on
the time scale of the system under study, can be used to define a σ-stability: any configuration
with a growth rate higher than λ0 is unstable, while smaller growth rates are regarded as stable
despite of the time evolution being exponential. Using this procedure, stability plots like the one
shown in Figure 4.1 for the kink instabilities the Nieves-Chinchilla et al. (2016) CC model can be
obtained for instabilities of any order m in the Gold-Hoyle modified magnetic field configurations.
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4.6 Stability plots

The critical q at which the growth rate λmax coincides with the threshold λ0 can be found efficiently
using a dichotomic search algorithm and the intermediate value theorem, using the increasing
behavior of the function λmax(q;α) shown in Figure 4.6 for different values of α and m. In order
for the procedure to work, a suitable initial interval containing the critical value of q is required, as
well as a tolerance which dictates to which degree of precision to which q shall be determined. This
method determines a stability curve q(α), which separates stable configurations (below the curve)
from unstable ones (found above). Some of the results we have obtained are presented below:

Figure 4.7: Stability curves for different stability thresholds (left) and different types of instability (right).
The pairs (α, q) lying above a stability curve are considered stable, while the ones below are unstable.

The plot on the left shows the kink stability curves for different arbitrary thresholds. Starting at
α = 1 with the force-free configurations, a small increase of the force parameter leads to a very
sudden increase in the value of the critical q, which means that such configurations are way more
stable than the force-free ones. The maximum stability is reached for α ≈ 1.05, and a further
increase in the forces in the structure leads to a lower stability. For α > 1.3, the curve steadily
increases, but this time the growing behavior continues quite linearly for way larger values of
α. Because of this reason, we name the phenomenon taking place for α ≈ 1.05 as superstability.
Although the range of values of α that are relevant to MFR fittings are of the order of α ∈ [1, 5],
we have decided to show the stability curves in the range α ∈ [1, 1.5] to illustrate the superstability
that takes place with more precision.

A first result obtained from this first plot is that the most kink unstable configurations for the
Gold-Hoyle modified model, fixing the parameter q, are the ones that are force-free (α = 1). In
general, fixing q while increasing α, which leads to an increase in the Lorentz forces while decreasing
the twist, has a stabilizing effect. This happens even though such forces, as shown in Figure 4.3,
are found in opposite directions and directed inwards near the edge of flux rope. This suggests that
the instabilities found in Florido-Llinas et al. (2020) for the CC model are in fact more related to
the high twist of such configurations than to the internal Lorentz forces in the flux rope structure.

Now, let’s examine the plot to the right of Figure 4.7, comparing different types of instability for
the same threshold λ0. Although for α = 1 the kink instability dominates with the largest growth
rate, as seen in Figure 4.6, a very small increase in the force parameter rapidly makes the kink
perturbations the most stable of all. Hence, we see a dominance of the cross-section instabilities
m = 2 and m = 3 for almost all the configurations being represented except for the force-free ones.
This suggests that Lorentz forces tend to enhance the growth rates of higher order instabilities
with respect to the kink instability, affecting the geometrical evolution of instabilities.
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A perhaps more illustrative way to understand the previous plots is to compare the stability curves
with the actual values of the twist and Lorentz forces within the MFR. These magnitudes depend
on the distance to the axis, so a reasonable way to quantify them numerically is by averaging their
absolute value over the cross section of the flux rope. This can be done through simple integration:

〈f(α, q)〉 =
1

S

∫
f dS =

1

π

∫ 2π

0

dθ

∫ 1

0

rf(r;α, q) dr = 2

∫ 1

0

rf(r;α, q) dr, (4.12)

where f(r) can be the twist Q(r) or the Lorentz force modulus |J ×B|(r). The results are shown
below, compared to the stability curves for several values of m.

Figure 4.8: Stability curves for different instability types, compared to both average twist and average
Lorentz forces within the MFR. The arbitrary growth rate threshold λ = 10−7 is being employed. The
units of the Lorentz force are such that µ0 = 1.

The first plot shows how, in general, the highly twisted configurations are unstable to perturbations
of all azimutal wave numbers m. Moreover, for larger values of α, there seems to be a good
correlation between the stability curve and the level curves of the average twist, which reinforces
the backs the statement that the average twist is generally a good indicator of MFR stability. On
the other hand, the plot to the right reinforces what we already knew: there are configurations
with no forces that are unstable, while other parametric regions leading to much higher forces that
are found to be stable.

Finally, the superstability shown in the stability curves for α ≈ 1.05 is still to be discussed. For
what has been seen so far, the twist within the flux rope seems to have the highest relation to
the instabilities taking place in MFRs. If we look at the twist distribution for the values of α
corresponding to this superstability, see Figure 4.3, we can see the twist is zero at the axis but
very rapidly increases towards q. Hence, it could be that sudden changes in the internal twist
could cause the MFR to be particularly stable. It is also key to notice the superstability area
is particularly force-free, which also suggests that the twist of the MFR could be causing such
phenomenon. Nevertheless, other potential drivers of instabilities should also be considered before
drawing any definite conclusions on the matter.
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5 . Conclusions

In this work, we have worked on the determination of growth rates for the instabilities of a cylin-
drical MFR with a free boundary, following both fundamental and practical approaches.

On the theoretical side, a quite robust justification of the growth rate method for a plasma with
arbitrary geometry has been given. One of the new features of this work has been to consider
displacements belonging to the space of test functions, which has proven to be an appropriate
setting to study localized smooth perturbations of the equilibrium. However, several assumptions
have been made with no proof, such as the uniqueness of solutions for the equation of motion, the
existence of a minimal mode and the discreteness of the spectra of the ideal MHD force operator.
In the future, it would be interesting to evaluate whether these assumptions hold, or if they can
be relaxed by providing a simpler justification of the method.

Moreover, all the equations in the method developed in Linton et al. (1996) have been successfully
reproduced, and they have been adapted to contemplate flux ropes with an arbitrary density distri-
bution and instabilities of any azimutal wave number m. Nevertheless, the validity of considering
Fourier harmonic displacements in order to carry out the optimization of the generalized energy
has not been rigorously justified, and would be a topic worth thinking about in the future.

Then, the method has been applied to our modification of the Gold-Hoyle model, leading to several
conclusions regarding instabilities of all orders m. The sausage instability (m = 0) has been found
to be stable. On the other hand, instabilities have been found for all m ≥ 1, and displacements
with negative order have been shown to exhibit symmetrical behavior, as expected. The growth
rates of such instabilities have been shown to be maximum for axial wave numbers k ≈ −mq,
which can be regarded as a generalization of a well known result for the kink instabilities in the
Gold-Hoyle model.

The behavior of the instabilities when increasing the twist parameter q has been an increase in
the growth rate of instabilities of every order, which has allowed us to define stability curves for
given growth rate thresholds λ0, providing us with a simple way to analyze the stability of each
equilibrium magnetic field configuration (α, q). When increasing the force parameter α from the
force-free setting α = 1, two important conclusions have been reached. Firstly, we have seen
that the presence of Lorentz forces within a magnetic flux rope structure, even if they are in
opposite directions and oriented inwards near the edge, does not necessarily lead to more unstable
configurations, despite the hypothesis suggested in Florido-Llinas et al. (2020).

Secondly, the presence of Lorentz forces has lead to an inversion in dominance between the different
classes m of instability: in a force-free configuration the kink instabilities were dominant, but when
setting α > 1 we saw that larger values of m can attain even higher growth rates. This can be
though of as a counter example to the potential generalization of the comparison theorem from
Newcomb (1960), adapting it to the modern stability definition introduced in Goedbloed (1974).

A superstability phenomenon has been observed at α ≈ 1.05 for all kinds of instability, although
it became less prominent for larger values of m. An explanation for this has been purposed, based
on a hypothetical stabilizing effect of MFR configurations with a large increase in twist near the
axis. However, there is not a great basis for that assumption, and should definitely be explored in
the future by using other MFR models which lead to a similar twist. It would be very insightful
to design another MFR model starting from a force-free configuration, such as the well known
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Lindquist model, and evaluate which of our conclusions transfer well to it.

Finally, other longer term goals for this method include trying to predict growth rates in inter-
pretable units, and compare them with CME observations. It would also be key to adapt the
equations to more complex geometries, such as curved axis and distorted cross-section, and even
non-symmetrical geometries, which allowed to conduct a proper modeling of the solar wind’s mag-
netic field outside the MFR.
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