
TEXTAROSSA: Towards EXtreme scale Technologies and Accelerators for
euROhpc hw/Sw Supercomputing Applications for exascale

Giovanni Agosta, Daniele Cattaneo, William Fornaciari, Andrea Galimberti, Giuseppe Massari,
Federico Reghenzani, Federico Terraneo, Davide Zoni, Carlo Brandolese

DEIB – Politecnico di Milano, Italy, name.surname@polimi.it

Massimo Celino, Francesco Iannone, Paolo Palazzari, Giuseppe Zummo
ENEA, Italy, name.surname@enea.it

Massimo Bernaschi, Pasqua D’Ambra
Istituto per le Applicazioni del Calcolo (IAC) - CNR, Italy, name.surname@cnr.it

Sergio Saponara, Marco Danelutto, Massimo Torquati
University of Pisa, Italy, name.surname@unipi.it

Marco Aldinucci, Yasir Arfat, Barbara Cantalupo, Iacopo Colonnelli, Roberto Esposito,
Alberto R. Martinelli, Gianluca Mittone

University of Torino, Italy, name.surname@unito.it

Olivier Beaumont, Berenger Bramas, Lionel Eyraud-Dubois, Brice Goglin, Abdou Guermouche,
Raymond Namyst, Samuel Thibault
Inria - France, name.surname@inria.fr

Antonio Filgueras, Miquel Vidal, Carlos Alvarez, Xavier Martorell
BSC - Spain, name.surname@bsc.es

Ariel Oleksiak, Michal Kulczewski
PSNC, Poland, ariel@man.poznan.pl, kulka@man.poznan.pl

Alessandro Lonardo, Piero Vicini, Francesca Lo Cicero, Francesco Simula, Andrea Biagioni,
Paolo Cretaro, Ottorino Frezza, Pier Stanislao Paolucci, Matteo Turisini

INFN Sezione di Roma - Italy, name.surname@roma1.infn.it
Francesco Giacomini

INFN CNAF - Italy, name.surname@cnaf.infn.it
Tommaso Boccali

INFN Sezione di Pisa - Italy, name.surname@pi.infn.it
Simone Montangero

University of Padova and INFN Sezione di Padova - Italy, name.surname@pd.infn.it
Roberto Ammendola

INFN Sezione di Roma Tor Vergata - Italy, name.surname@roma2.infn.it

Abstract—To achieve high performance and high energy
efficiency on near-future exascale computing systems, three
key technology gaps needs to be bridged. These gaps include:
energy efficiency and thermal control; extreme computa-
tion efficiency via HW acceleration and new arithmetics;
methods and tools for seamless integration of reconfigurable
accelerators in heterogeneous HPC multi-node platforms.
TEXTAROSSA aims at tackling this gap through a co-design
approach to heterogeneous HPC solutions, supported by the
integration and extension of HW and SW IPs, programming
models and tools derived from European research.

1. Introduction and long-term objectives
High Performance Computing (HPC) is a vital in-

frastructure for both industry and social actors in any

country. In addition to traditional domains, such as oil &
gas, finance, or weather forecasting, HPC is increasingly
important for emerging domains such as bioinformatics,
medicine, security and surveillance, which fall in the spec-
trum of High Performance Data Analytics (HPDA) and
High Performance Computing for Artificial Intelligence
(HPC-AI). The emergence of heterogeneous HW architec-
tures and the trends towards “Green HPC” have prompted
Europe to align its research priorities in HPC along a
Strategic Research Agenda (SRA1) resulting from wide
consultations within the European Technology Platform
for HPC (ETP4HPC), the PRACE initiative2, and the

1. https://www.etp4hpc.eu/sra.html (last accessed July 2021)
2. https://https://prace-ri.eu (last accessed July 2021)

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. http://dx.doi.org/10.1109/DSD53832.2021.00051

https://www.etp4hpc.eu/sra.html
https://prace-ri.eu

Figure 1. The TEXTAROSSA Impact Strategy within the broader framework of European initiatives on HPC

PlanetHPC3 initiative.
The SRA highlights significant technology challenges

due to the need to achieve high efficiency while remain-
ing within reasonable power and energy bounds. This
challenging goal can only be addressed with an holistic
approach that takes into account multiple factors across
the HPC hardware/software stack, including the use of
application-specific, extremely efficient hardware acceler-
ators, efficient software management of resources, data
and applications, and efficient cooling systems. Together,
these components can provide the desired computational
power while keeping under control the power consumption
of the supercomputer.

To this end, the TEXTAROSSA project aims at pro-
viding key technological advances on all three aspects and
validate them on new development platforms representa-
tive of future HPC systems, using a wide range of ap-
plications from different domains, both within traditional
HPC and coming from emerging domains. In particular,
TEXTAROSSA aims implementing the above-mentioned
approach through the following technical goals.

Technical goals. 1) energy efficiency and thermal
control via innovative two-phase cooling technology at
node and rack level, fully integrated in an optimized multi-
level runtime resource management driven by power, en-
ergy, and thermal models fed by on-board sensor data;
2) sustained application performance through efficient
exploitation of highly concurrent accelerators (GPUs and
FPGAs) by focusing on data/stream locality, efficient al-
gorithms and programming models, tuned libraries and
innovative IPs; 3) seamless integration of reconfigurable
accelerators by extending field-proven tools for the design
and implementation such as Vitis and OmpSs@FPGA
to support new IPs and methodologies such as mixed-

3. https://cordis.europa.eu/project/id/248749 (last accessed July 2021)

precision computing and power monitoring and control.
4) development of new IPs for mixed-precision AI com-
puting, data compression, security, power monitoring and
control, and scheduling. 5) Integrated Development Plat-
forms by developing two architecturally different, hetero-
geneous Integrated Development Vehicles (IDVs), one as
a dedicated testbed for two-phase cooling technology, and
one supporting the wider range of project technical goals.

Strategic goals. Figure 1 highlights the strategic
goals of TEXTAROSSA, set against the EuroHPC ini-
tiative and the broader framework of European research
in High Performance Computing. In particular, we high-
light the following goals: 1) alignment with the European
Processor Initiative (EPI) by testing, extending and boost-
ing key technologies applicable to future EPI evolutions;
2) supporting the objectives of EuroHPC as reported in
ETP4HPC’s Strategic Research Agenda (SRA) for open
HW and SW architecture. 3) building over European
expertise gained through past research projects as well
as through the Centers of Excellence in HPC. 4) open-
ing of new usage domains, including High Performance
Data Analytics (HPDA) and High Performance Artificial
Intelligence (HPC-AI) applications, alongside support for
traditional HPC domains.

1.1. TEXTAROSSA Consortium

To achieve the above-mentioned goals,
TEXTAROSSA, a three-year project co-funded by
the European High Performance Computing (EuroHPC)
Joint Undertaking, is led by ENEA (Italy) and aggregates
17 institutions and companies, including the linked third
parties, located in 5 European countries: CINI, an Italian
consortium grouping together three leading universities,
Politecnico di Milano, Università degli studi di Torino,

https://cordis.europa.eu/project/id/248749

and Università di Pisa, Fraunhofer (Germany), INRIA
(France), ATOS (France), E4 Computer Engineering
(Italy), BSC (Spain), PSNC (Poland), INFN (Italy),
CNR (Italy), In Quattro (Italy), Université de Bordeaux
(France), CINECA (Italy) and Universitat Politècnica
de Catalunya (UPC). The three Italian universities are
part of the lab HPC: hpc-key-technologies-and-tools of
CINI, created in 2021, that is grouping together the
main academic and research entities working in the field
of high-performance and exascale computing in Italy.
More information on the activities carried out during the
execution of TEXTAROSSA can be found in the project
website4.

1.2. Organization of the paper

The rest of this paper is organized as follows. In
Section 2, we introduce the TEXTAROSSA co-design
approach. In Section 3 we describe the key technological
innovations provided by the TEXTAROSSA project, while
in Section 4 we provide an overview of the application
use cases. In Section 5 we draw some conclusions and
highlight future research directions.

2. TEXTAROSSA Co-design approach

From a methodology point of view TEXTAROSSA
adopts a co-design process as key strategy for Fast For-
ward and Exascale computing, considering the entire sys-
tem stack from underlying technologies to applications.
The co-design process concerns five layers covering the
whole HPC stack: 1) User Application: representing a
wide range of scenarios, from mathematical libraries, to
miniApps and flagship codes for numerical modelling
with massive parallelism in HPC/HPDA/AI applications.
2) Runtime Services: ensuring that application require-
ments are dynamically satisfied and mapped onto system
resources, and including execution models with workload
handling, fault tolerance and data management. 3) Pro-
gramming Models: underlying the applications, they de-
fine the toolchains and SW development tools able to
implement applications in parallel architectures. 4) Sys-
tem Architecture: including the processor core’s micro-
architecture, the arrangement of cores within a chip, mem-
ory hierarchy, system interconnect, and storage subsys-
tems. 5) HW Platforms: concerning the HW platform at
node and rack level able to achieve performance require-
ments in terms of computing power and energy consump-
tion.

Figure 2 provides an overview of the co-design ap-
proach adopted in TEXTAROSSA, showing how the five
layers of the HPC stack are addressed in each of the four
main stages of the co-design process: 1) Gap Analysis:
to compare the current state-of-art of the technological
assets with the objectives of the project in order to identify
the gap to be filled by developments or update in co-
design process. 2) Requirements: to define specifications
and requirements of the technological solutions for de-
signing and developing. 3) Proof of Concept: to develop
HW/SW prototype solutions able to achieve the KPIs
(Key Performance Indicators) of the project objectives.

4. https://textarossa.eu (last accessed July 2021)

Figure 2. The TEXTAROSSA Co-Design Approach

Figure 3. The TEXTAROSSA key technologies

4) Benchmarking: to provide performance results of the
technological solutions by means of benchmark tools.

3. TEXTAROSSA technologies

TEXTAROSSA develops, starting from the results of
previous European research activities mentioned in Fig-
ure 1, a set of technologies to deal with each of the four
technology layers of the HPC stack, as well as applica-
tions, which will be covered in full in Section 4. Figure 3
provides an overview of the primary technology bricks
adopted by TEXTAROSSA. In the rest of this section, we
provide insights on specific technology bricks developed
within the project

https://www.consorzio-cini.it/index.php/it/laboratori-nazionali/hpc-key-technologies-and-tools
https://textarossa.eu

3.1. Programming Models & Toolchains

Vitis based HLS flow. Vitis [1] is the HLS flow
designed by Xilinx to cover all the steps required to
translate an application, described through a C/C++ pro-
gram, into a working bitstream running on an FPGA card
and communicating with a program running on the host
node. The Vitis environment allows emulating the whole
system’s behavior (host program and FPGA code) by
running and debugging the C/C++ code in a standard IDE.
Once the functional correctness has been achieved, i.e. the
program produces the expected results, the HLS engine
translates the pieces of C/C++ code mapped on the FPGA
into equivalent, optimized, hardware implementation. The
communication with the external world (host node, mem-
ory banks) is achieved through a presynthesized layer im-
plementing the interfaces (PCIe, DDR and HBM memory
banks) and the FPGA resources are accessed from the
host node through the runtime and APIs developed by
Xilinx. Vitis is largely customizable thanks to the open-
source LLVM-based front-end5 and many open-source
accelerated libraries (e.g., math, video processing, AI,
signal processing)6. In the TEXTAROSSA project, the
Vitis environment will be extended with multi-precision
arithmetic, allowing the usage of new data types based
on the Posit format, and with a communication library
used to perform inter-FPGA direct communications. The
inter-node communication layer, namely MPI, will also be
updated to transfer data without requiring memory copies
between FPGAs and hosts. Furthermore, the APIs to
access the FPGA will be used to build the TEXTAROSSA
APIs that will be defined to access homogeneously the
accelerators. Such extensions will require the integration
into the Vitis flow of the new IPs defined in the project,
thus we will develop the hardware modules, their C++
functional models and we will encode all the necessary
info needed by the HLS to properly manage (i.e. schedule
and connect) the new functionalities.

StarPU, OmpSs. Task-based programming models
(like OmpSs7 [2] and StarPU8 [3]) address the chal-
lenges to program on heterogeneous computing nodes
while achieving high productivity by providing higher-
level abstractions that could help the programmer to gen-
erate high-performance code. For example: making the
memory allocation and data copies automatic; providing
the programmer with facilities to perform blocking from
inside the accelerators; automating the code generation
of the CPU and FPGA binaries, provided the C/C++
implementation, by transparently running open or vendor
tools; allowing the use of parallelism based on tasking
(instead of kernel invocations); providing support for data-
dependent tasks, and managing the execution based on
such data dependencies and/or providing FPGA execu-
tion trace generation support; choosing the computation
resource that provides the best execution compromise for
a given task and situation [4]. This makes the program-
ming environment completely hide the target architectures,
providing a clean, high-level, abstract interface to the

5. https://github.com/Xilinx/HLS (last accessed July 2021)
6. https://xilinx.github.io/Vitis Libraries (last accessed July 2021)
7. https://github.com/bsc-pm-ompss-at-fpga (last accessed July 2021)
8. https://starpu.gitlabpages.inria.fr (last accessed July 2021)

programmers, and incorporating all the intelligence on
management and scheduling into the runtime system. We
plan to move part of the runtime work to a fast hardware
task scheduler [5] to further enhance the performance of
these programming models.

Training Deep Neural Network (DNN) is a memory-
intensive operation. Indeed, the training algorithms of
most DNNs require to store both the model weights
and the forward activations in order to perform back-
propagation. In practice, training is performed automat-
ically and transparently to the user through autograd
tools for back-propagation. Unfortunately, the memory
limitation of current HW often prevents data scientists
from considering larger models, larger image sizes or
larger batch sizes, especially in recent NLP models [6].
Our goal is to extend StarPU to enable inference and
learning, taking advantage of both the heterogeneity of the
architecture to place layers and the memory architecture to
minimize transfers. In particular, we will rely on the Ro-
ToR framework 9 [7] which allows to control the memory
consumption and to minimize the energy consumed by the
data exchanges.

Several problems should be solved to use FPGAs
more efficiently and control energy consumption. In the
TEXTAROSSA project, we will extend these two task-
based runtime systems, OmpSs and StarPU, which use
different approaches to support FPGA. This will allow
the integrated development vehicle to benefit from their
existing features, but also to study their complementarity
while validating the robustness of the new HW against
different runtime systems.

FastFlow. Stream processing is gaining increasing
industrial attention for real-time data analytics and data-
driven applications [8]. FastFlow [9] is a C++ program-
ming library targeting multi/many-cores. It offers both a
set of high-level ready-to-use parallel pattern implemen-
tations and a set of mechanisms and composable com-
ponents (called building blocks) to support low-latency
and high-throughput data-flow streaming networks. Fast-
Flow simplifies the development of parallel applications
modeled as a structured, directed graph of processing
nodes. The graph of concurrent nodes is constructed by
the assembly of sequential and parallel building blocks
and higher-level components (i.e., parallel patterns) mod-
eling recurrent schemas of parallel computations (e.g.,
pipeline, task-farm, parallel-for, etc.). FastFlow efficiency
stems from the optimized implementation of the base
communication and synchronization mechanisms and its
layered software design. Besides, stream processing is
the natural paradigm for event-driven distributed appli-
cations that need to communicate with each other via
message passing. Finally, some data streaming paradigms
are naturally suited for implementation on reconfigurable
platforms [10], e.g. the dataflow/actor paradigm. In TEX-
TAROSSA, we aim at exploiting reconfigurable platforms
to accelerate HPDA tasks leveraging the FastFlow frame-
work [11].

Streamflow. The StreamFlow framework [12],
[13] is a container-native Workflow Management System
(WMS) written in Python 3 and based on the Common
Workflow Language (CWL) Standard [14]. StreamFlow

9. https://gitlab.inria.fr/hiepacs/rotor (last accessed July 2021)

https://github.com/Xilinx/HLS
https://xilinx.github.io/Vitis_Libraries
https://github.com/bsc-pm-ompss-at-fpga
https://starpu.gitlabpages.inria.fr
https://gitlab.inria.fr/hiepacs/rotor

has been designed around two main principles: 1) Allow-
ing the execution of tasks in multi-container environments,
in order to support concurrent execution of multiple com-
municating tasks in a multi-agent ecosystem; 2) Relaxing
the requirement of a single shared data space, in order
to allow for hybrid workflow executions on top of multi-
cloud or hybrid cloud/HPC infrastructures. StreamFlow
source code is available on GitHub under the LGPLv3
license. A Python package is downloadable from PyPI
and Docker containers can be found on Docker Hub. More
details about the tool and its applications can be found in
the StreamFlow website10.

Compiler Technology for Mixed-Precision Sup-
port. Error-tolerating applications are increasingly com-
mon in HPC. Proposals have been made at the HW level
to take advantage of inherent perceptual limitations, re-
dundant data, or reduced precision input [15], as well as to
reduce system costs or improve power efficiency [16]. At
the same time, works on floating-point to fixed-point con-
version tools [17], [18] allow us to trade-off the algorithm
exactness for a more efficient implementation. Finally,
new data types are emerging including BFloat16 [19]
and Posit [20]. BFloat16 (Brain Floating Point) is used
in upcoming Intel AI processors (NERVANA), XEON
processors, Google Cloud TPU and ARMv8.6-A, as well
as in RISC-V extensions [21]. Posit are a new compressed
floating-point data format for which University of Pisa
has developed a SW library called CppPosit [22], [23].
From the first results of applying the CppPosit library to
AI/DNN problems, Posit can lead to the same processing
accuracy of float but with a data compression from a
factor 2 to 4 [22], [23]. This means that applying Posit to
the application cases (HPC, HPDA and AI/CNN) has the
potential to reduce data storage issues and allows for fast
data movement. In TEXTAROSSA, we aim at exploiting
and extending the tools for precision tuning developed
as part of the H2020 FETHPC ANTAREX project [24]
to cover a wider range of target platforms, targeting FP-
GAs through integration with the TEXTAROSSA High
Level Synthesis (HLS) toolchain. These tools, collected
in the TAFFO framework [25], [26] are implemented as
a set of plugins for the LLVM compiler, and, based on
programmer hints expressed as attributes, perform value
range analysis, data type and code conversion, and static
estimation of the performance impact. We aim at im-
proving the performance estimation by exploiting recent
analysis techniques [27] as well as deeper understanding
of the target processor pipeline, by expanding the use of
the tools to heterogeneous systems with reconfigurable
components, and by considering emerging data types such
as Posit and Bfloat16.

3.2. Runtime Services: Energy/Power Manage-
ment

Power consumption represents one of the most re-
markable cost items in the balance of the overall costs
of an HPC center. With exascale computing platforms a
linear increment of power consumption with computing
power (due to the end of Dennard’s scaling) becomes

10. https://streamflow.di.unito.it (last accessed July 2021)

unsustainable. An energy-efficient exascale HPC infras-
tructure, much like current supercomputers, will rely on
heterogeneous computing resources. Energy efficiency can
then be guaranteed only if, on the SW side, we can
rely on a suitable (hierarchical) resource management
framework. Although the state-of-the-art already includes
some solutions, recent projects, like MANGO [28] and
RECIPE [29], show that optimized solutions need to
take into account the platform-specific characteristics and
control knobs to profile the applications at design-time
and monitor them at runtime [30], [31], enabling more
accurate resource mappings [32], [33]. Furthermore, an
integration of the resource manager with the programming
model allows dynamically tuning the numerical accuracy
(precision) of the tasks, with respect to the actual appli-
cation requirements and power/energy constraints. Given
the reference HW platform and the application use cases,
the TEXTAROSSA project would represent an extremely
interesting testbed for exploring novel power and energy
management solutions, at the HW but also at the SW level.
At the HW level, a specific support will be introduced to
automatically instrument the computing platform with ad-
hoc power monitors [34] and controllers [30], [31], in or-
der to reduce the response time of the power management
dramatically, while increasing the effectiveness of the
thermal management. On the software side, starting from
an already existing resource management framework [35],
we aim to extend it with the support for the new HW
and, of course, new resource management policies, along
with the integration of the precision tuning tool. Overall,
this would allow us to explore all the possibilities offered
by the platform, and the application-side integration, to
increase the FLOPS-per-Watt ratio, with respect to state-
of-the-art solutions in HPC.

3.3. Posit Hardware Accelerators

Within EPI, the Stencil and Tensor Accelerator (STX),
based on RISC-V core, enables energy-efficiency for ap-
plications where the main computational kernels work
on discretized grids and perform a series of operations
like convolutions. It implements several floating point
units able to work on fp32, fp16, fp8 IEEE and bfloat16
floating-point formats. To increase performance, one could
try to reduce the number of bits in the floating point
representation. But when reducing the precision of the
used arithmetic, iterating over many timesteps, the deriva-
tions may become unstable and hence affect the final
result of the simulations. The novel Posit binary arithmetic
format can offer higher precision while using less bits than
standard IEEE floating-point numbers. Recent literature
shows [22], [23] that 16bit Posit can leverage comparable
results like fp32 and Posit with 8bit precision outperform
in terms of accuracy fp16 (for CNN 8bit Posit can leverage
comparable results like fp32). Calculations can be done
even with simple bit manipulations on the Posit format
without extraction, further decreasing the complexity of
the operations. It is thus possible to enhance memory
bandwidth, and lower level cache utilization, power foot-
print, and throughput of the arithmetic units.

Within TEXTAROSSA, a RISC-V unit will be ex-
tended with support for alternative data representa-
tions, including fine-grained reduced precision floating

https://streamflow.di.unito.it

Figure 4. Schematic of the two-phase cooling system (left) and its
embedding in a server (right).

point [21] and Posit arithmetic. To complement the hard-
ware IP developments, the LLVM compiler, also adopted
in EPI, will be extended for Posit and data compression
support and real-world HPC applications and CNN kernels
will be ported to leverage the IP. Fast software co-design
will be enabled through software implementation of Posit
in the CppPosit library11. The novel IP will be ported
to FPGAs for benchmarking. Both techniques have not
been implemented on top of a completely co-designed
accelerator so far and will provide a huge benefit for the
European IP portfolio.

3.4. Hardware Platform Optimization

HPC systems have historically always been limited by
thermal considerations and computing architecture needs
both optimized heat dissipation solutions and run-time
thermal control policies to operate reliably and efficiently.
InQuattro has developed an innovative thermal manage-
ment solution (patent pending) based on two-phase me-
chanically pumped loops, which uses a flow boiling heat
transfer for cooling electronics in a more efficient way.
This would allow the use of the latent heat of vapor-
ization so that flow rates would be significantly reduced,
temperature gradients would be small, and heat transfer
coefficients could be large compared to liquid cooling
and air cooling systems. Two-phase cooling systems using
evaporation and condensation are known to be the best
way to meet demanding cooling requirements in terms of
compactness, weight and energy-consumption. A possible
configuration of the two-phase cooling system for a single
node is shown in Figure 4.

The two-phase cooling system will be adapted to
node(s) provided by E4 and ATOS and developed with
the objective to serve an entire rack. In TEXTAROSSA,
the innovative cooling system will be customized to fit
the requirements of node and rack levels for exascale
applications. It is foreseen to develop two solutions of the
two-phase cooling system that could be patented during
the project on the principal components of the cooling
system (evaporator, condenser). This innovative technol-
ogy is expected to improve the cooling efficiency up to
70% compared to traditional air cooling, and up to 30%
compared to existing liquid cooling and will be tested on
both ATOS and E4 infrastructures.

Both the design of cooling solutions and thermal con-
trol policies critically relies on thermal models, which
in turn rely on experimental validation data. Thermal
simulators for CPUs/MPSoCs have been proposed, but
they can only represent a limited range of heat dissipation
solutions, and are not easy to extend towards two-phase

11. https://github.com/eruffaldi/cppPosit (last accessed July 2021)

liquid cooling solutions or to encompass the simulation
of an entire rack. In TEXTAROSSA, we will design and
validate thermal models taking advantage of equation-
based object-oriented modeling languages to increase the
abstraction level of thermal models [36], thus overcoming
the inflexibility of current simulators, and simplifying the
design of nonlinear thermal models to account for two
phase liquid cooling. For model validation, we will use a
thermal test chip platform [37] to capture accurate thermal
maps of chips connected to the proposed heat dissipation
solution, considering spatial and temporal temperature
variations and hot spots. The collected experimental data
will be used to validate the thermal models and for
the design of the policies. Through a multilevel thermal
control strategy we aim to overcome the complexity of
controlling an HPC platform from node to system level
with minimal overhead. As the fastest temperature gra-
dients occur at the silicon active layer, we will use fast
event-based control loops [38] acting on DVFS to limit
the maximum operating temperature of compute elements.
These inner control loop will in turn interact with higher
level control loops operating the two phase cooling infras-
tructure of the node, which is comparatively slower and
has higher overheads but has the capability to increase
the heat transfer coefficient on-demand, thus allowing to
relieve the need to reduce frequency using DVFS, in
turn improving performance. A further supervisory control
layer will allow to set the desired temperatures at the
rack level based on reliability metrics. Multilevel control
allows thus to partition the system level control problem
into multiple interacting control loops, each optimized for
the specific thermal dynamics to control.

3.5. Low-latency Communication between FP-
GAs

The usage of FPGAs as accelerators is getting so
widespread that even big cloud providers are now in-
stalling reconfigurable devices in their instances (e.g. on
Microsoft Azure and Amazon EC2). Interaction of hun-
dreds to thousands of FPGAs require a scalable approach
to hold them together, allowing a low latency connection
among them, but a definitive approach has to be found
to let users make the most of their flexibility and in the
meanwhile easing the usage for software developers. As
an example, the latest version of the Microsoft Catapult
fabric, puts a Stratix 10 device between each NIC on
the X86 servers and the ToR switch, enabling a fast path
for accelerators to communicate among themselves with
a few microseconds latency. The Brainwave project [39]
leverages this architecture to provide a deep learning
platform for real-time AI inference on the cloud. While
this framework offers a very friendly interface for users
to deploy their models on top of this architecture, it loses
the flexibility of delivering the cores as black boxes, and
providing an implementation of only a few pre-trained
models. Our approach, on the other hand, let users full
control of the platform, allowing the implementation of
custom processing tasks on FPGAs, still maintaining ease
of usage by supplying a set of interfaces to integrate
with the HLS tools developed in the project. Thus will
allow developers to define a scalable application using
a streaming programming model (Kahn Process Network

https://github.com/eruffaldi/cppPosit

[40]) that can be efficiently deployed on a multi-FPGAs
system. TEXTAROSSA will develop a communication IP
and its SW stack, providing the implementation of a direct
network that allows low-latency communication between
processing tasks deployed on FPGAs, even hosted in
different computing nodes. The communication IP will be
based on the ExaNet IPs (switch, router, high-speed chan-
nels [41]) developed in ExaNeSt H2020 project [42] and
EuroEXA H2020 [43]. The direct communication between
tasks deployed on FPGAs will avoid the involvement of
the CPUs and system bus resources in the data transfers,
improving the platform’s energy efficiency and reducing
communication latency.

4. TEXTAROSSA applications

In this section, we briefly provide an overview of
the use case applications adopted in TEXTAROSSA. To
address the variety of application domains of future Ex-
ascale systems, TEXTAROSSA applications include ba-
sic mathematical building blocks (MathLib), traditional
HPC applications (UrbanAir, TNM, HEP, and RTM), and
applications from emerging domains (RAIDER, DPSNN,
Danger Detection).

4.1. MathLib

One of the basic guidelines in energy efficient comput-
ing is the optimization and the acceleration of algorithms
and SW libraries that provide a reduction of the elapsed
time of HPC applications and thus a significant cut in
energy consumption. The new power-to-solution metrics
requires a rethinking of many computational kernels of
HPC applications looking for a trade-off between the
reduction of the total energy and the minimization of the
time-to-solution, promoting scalability. Within this con-
text, extensions and improvements of high-performance
algorithms and SW libraries for kernels in numerical linear
algebra [44], [45] and graph computation, such as itera-
tive [46], [47], [48], [49] and direct linear solvers, edge
weighted graph matching, and fast multipole methods [50]
will be deployed.

4.2. HPDA and HPC-AI Applications

Real-time AI-based Data analytics on hetERo-
geneous distributed systems (RAIDER). Leveraging on
the experience gained on the design of the GPU-RICH
system for the NA62 experiment at CERN [51], a proof-
of concept of a real-time AI-based data analytics on
heterogeneous distributed systems shall be designed. The
application setup deploys a set of data streams from
sensors as input to a Deep Neural Network, implemented
over a pool of heterogeneous processing layers, that is
in charge of performing the data analysis. Data from
different streams are recombined through the processing
layers through the network infrastructure.

Brain Simulation (DPSNN). The Distributed and
Plastic Spiking Neural Network (DPSNN) application was
developed by INFN to model brain cortex behaviour [52],
[53] and more recently to study sleep-related learning
activities [54]. It is a scalable neural network simulation

C++/MPI code for HPC platforms at extreme scales. It
simulates the spiking dynamics of the brain cortex by
slicing it into a grid of cortical columns populated with
neurons and their interconnecting synapses.

Smart Cities (Danger Detection). In the context
of smart cities the distributed video surveillance systems
provide a huge amount of data for processing with AI
techniques. A design activity shall be carried out for a
real-time danger alarm system (e.g. smoke/fire detection
in smart transportation or smart cities context). The system
is composed of a network of smart cameras where an AI
algorithm is implemented on an EDGE server implement-
ing a preprocessing stage plus a CNN.

4.3. Traditional HPC Applications

Air Pollution (UrbanAir). The UrbanAir con-
cerns the modelling and forecasting of the concentration
and dispersion of pollutants. It is a 3D multiscale model
that combines a numerical weather prediction (NWP)
model, running at larger scale (e.g. mesoscale), with a
city-scale geophysical flow solver (EULAG) for accurate
prediction of contaminant (e.g. NO2, PM2.5, PM10) trans-
portation through the street corridors, over buildings and
obstacles. A design activity shall be carried out to use
mixed-precision computing and energy-efficient accelera-
tors for faster response while preserving results accuracy.

Quantum Simulation (TNM). The Tensor Net-
work Method (TNM) is a class of powerful numerical
methods developed to study the equilibrium and out-of-
equilibrium properties of strongly correlated many- body
quantum systems [55]. TNM are complementary to Monte
Carlo methods as they do not suffer from the sign problem.
A design activity shall be performed to overcome current
TNM limitations studying how pushing the simulation
boundaries towards high-dimensional systems with the
support of HPC infrastructure. We aim to perform the
first scalable 2D and 3D simulations of LGT in and out
of equilibrium.

High Energy Physics (HEP). HEP community
has built a collection of high-level SW frameworks largely
used for simulation and data analysis of the LHC ex-
periments. They include widespread libraries like Geant4
and Fluka for particle-matter simulation, the use of high-
level analysis tools like those in ROOT, and simulation
packages of high energy collisions. A design activity
shall be focused to optimize these SW frameworks for
the realization of code bases able to execute on multiple
architectures, including the next generations of pre- and
exascale EU HPCs.

Biomedical Application (HPC-Drugs). Ligand
binding affinity predictions carried out with Molecular
Dynamics simulation is one of the main research focus
in computational chemistry today due its potential impact
in industrial drug discovery. A design activity shall be
carried out for HPC-backed pharmaceutical applications
based on n-body kernel functions running in specialized
cores of GPU and FPGA, relying on recently discovered
non-equilibrium thermodynamics theorems and capable
of delivering absolute binding free energies of drug-size
molecules in a predictable wall-clock time with a credible
confidence interval, hence bypassing the limitations of

the traditional equilibrium-based Free Energy Perturbation
(FEP) alchemical approaches [56].

Reverse Time Migration (RTM). The Reverse
Time Migration application and mini-kernels are used
within EPI to co-design the STX Accelerator and have
been ported to FPGAs within the EuroEXA project. The
respective kernels will be analysed to which extent they
can leverage the new, energy-efficient, capabilities like
Posit arithmetic and lossy compression to enhance per-
formance and energy efficiency. The RTM kernels are
stencil-based kernels. Hence, they provide conclusions on
many stencil based applications. Reverse Time Migration
by FHG for HPC applications to Oil & Gas and Geo-
Services.

5. Conclusions

The TEXTAROSSA project aims to achieve a broad
impact on the HPC field both in pre-exascale and exascale
scenarios. The TEXTAROSSA consortium will develop
new IPs, algorithms, methods and software components
for HPC-AI, HPC and HPDA applications, mostly Open
Source and able to be adopted as standalone building
blocks or to interoperate with other Exascale-ready com-
ponents. Through the participation of three supercomput-
ing centers in the consortium, the proposed technologies
will be tested by and known to the HPC community.

Acknowledgements

This work is supported by the TEXTAROSSA project
G.A. n.956831, as part of the EuroHPC initiative.

References

[1] V. Kathail, “Xilinx vitis unified software platform,” in Proceed-
ings of the 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 173–174, 2020.

[2] A. Duran et al., “Ompss: a proposal for programming heteroge-
neous multi-core architectures,” Parallel processing letters, vol. 21,
no. 02, pp. 173–193, 2011.

[3] C. Augonnet et al., “Starpu: a unified platform for task scheduling
on heterogeneous multicore architectures,” Concurrency and Com-
putation: Practice and Experience, vol. 23, no. 2, pp. 187–198,
2011.

[4] J. Bosch et al., “Application acceleration on fpgas with
ompss@fpga,” in FPT 2018, Naha, Okinawa, Japan, December
10-14, 2018, pp. 70–77, 2018.

[5] X. Tan et al., “A hardware runtime for task-based program-
ming models,” IEEE Trans. Par. Distributed Syst., vol. 30, no. 9,
pp. 1932–1946, 2019.

[6] J. Devlin et al., “Bert: Pre-training of deep bidirectional transform-
ers for language understanding,” arXiv preprint arXiv:1810.04805,
2018.

[7] O. Beaumont et al., “Optimal checkpointing for heterogeneous
chains: how to train deep neural networks with limited memory,”
Report RR-9302, Inria Bordeaux Sud-Ouest, Nov. 2019.

[8] M. Aldinucci, S. Ruggieri, and M. Torquati, “Porting decision tree
algorithms to multicore using FastFlow,” in Conference in Machine
Learning and Knowledge Discovery in Databases (ECML PKDD),
vol. 6321 of LNCS, pp. 7–23, Sept. 2010.

[9] M. Aldinucci et al., “Fastflow: high-level and efficient streaming on
multi-core,” in Programming Multi-core and Many-core Computing
Systems, Parallel and Distributed Computing, ch. 13, 2017.

[10] S. Neuendorffer and K. Vissers, “Streaming systems in fpgas,”
in Embedded Computer Systems: Architectures, Modeling, and
Simulation, pp. 147–156, 2008.

[11] M. Aldinucci et al., “Design patterns percolating to parallel pro-
gramming framework implementation,” International Journal of
Parallel Programming, vol. 42, no. 6, pp. 1012–1031, 2014.

[12] I. Colonnelli et al., “Streamflow: cross-breeding cloud with HPC,”
IEEE Transactions on Emerging Topics in Computing, 2020.

[13] I. Colonnelli et al., “HPC Application Cloudification: The Stream-
Flow Toolkit,” in PARMA-DITAM HiPEAC workshop, 2021),
vol. 88 of OASIcs, (Dagstuhl, Germany), pp. 5:1–5:13, 2021.

[14] P. Amstutz et al., “Common workflow language, v1. 0,” 2016.

[15] P. Stanley-Marbell et al., “Exploiting errors for efficiency: A survey
from circuits to applications,” ACM Comp Surveys, vol. 53, no. 3,
2020.

[16] S. Venkataramani et al., “Approximate computing and the quest
for computing efficiency,” in 2015 52nd ACM/EDAC/IEEE Design
Automation Conference (DAC), pp. 1–6, IEEE, 2015.

[17] S. Cherubin and G. Agosta, “Tools for reduced precision compu-
tation: a survey,” ACM Computing Surveys, vol. 53, Apr 2020.

[18] D. Cattaneo et al., “Embedded operating system optimization
through floating to fixed point compiler transformation,” in 21st
Euromicro Conf on Digital System Design, pp. 172–176, 2018.

[19] N. Burgess et al., “Bfloat16 processing for neural networks,” in
2019 IEEE 26th Symposium on Computer Arithmetic (ARITH),
pp. 88–91, IEEE, 2019.

[20] J. L. Gustafson and I. T. Yonemoto, “Beating floating point at
its own game: Posit arithmetic,” Supercomputing Frontiers and
Innovations, vol. 4, no. 2, pp. 71–86, 2017.

[21] D. Zoni, A. Galimberti, and W. Fornaciari, “An fpu design template
to optimize the accuracy-efficiency-area trade-off,” Sustainable
Computing: Informatics and Systems, vol. 29, p. 100450, 2021.

[22] M. Cococcioni et al., “Vectorizing posit operations on risc-v for
faster deep neural networks: experiments and comparison with arm
sve,” Neural Computing and Applications, pp. 1–11, 2021.

[23] M. Cococcioni et al., “A fast approximation of the hyperbolic
tangent when using posit numbers and its application to deep
neural networks,” in International Conference on Applications in
Electronics Pervading Industry, Environment and Society, pp. 213–
221, 2019.

[24] C. Silvano et al., “The antarex domain specific language for
high performance computing,” Microprocessors and Microsystems,
vol. 68, pp. 58–73, 2019.

[25] S. Cherubin, D. Cattaneo, M. Chiari, A. Di Bello, and G. Agosta,
“TAFFO: Tuning assistant for floating to fixed point optimization,”
IEEE Embedded Systems Letters, 2019.

[26] S. Cherubin et al., “Dynamic precision autotuning with taffo,” ACM
Trans. Archit. Code Optim., vol. 17, May 2020.

[27] E. Darulova and V. Kuncak, “Towards a compiler for reals,” ACM
Trans. Program. Lang. Syst., vol. 39, pp. 8:1–8:28, Mar. 2017.

[28] J. Flich et al., “Exploring manycore architectures for next-
generation HPC systems through the MANGO approach,” Micro-
processors and Microsystems, vol. 61, pp. 154 – 170, 2018.

[29] G. Agosta et al., “The RECIPE Approach to Challenges in Deeply
Heterogeneous High Performance Systems,” Microprocessors &
Microsystems, 2020.

[30] D. Zoni, L. Cremona, and W. Fornaciari, “All-digital control-
theoretic scheme to optimize energy budget and allocation in multi-
cores,” IEEE Transactions on Computers, vol. 69, no. 5, pp. 706–
721, 2020.

[31] D. Zoni, L. Cremona, and W. Fornaciari, “All-digital energy-
constrained controller for general-purpose accelerators and cpus,”
IEEE Embedded Systems Letters, vol. 12, no. 1, pp. 17–20, 2020.

[32] G. Massari et al., “Predictive resource management for next-
generation high-performance computing heterogeneous platforms,”
in SAMOS’19, Jul 2019.

[33] C. Brandolese, S. Corbetta, and W. Fornaciari, “Software energy
estimation based on statistical characterization of intermediate
compilation code,” in IEEE/ACM International Symposium on Low
Power Electronics and Design, pp. 333–338, 2011.

[34] D. Zoni et al., “Powertap: All-digital power meter modeling for
run-time power monitoring,” Microprocessors and Microsystems,
vol. 63, pp. 128–139, 2018.

[35] P. Bellasi, G. Massari, and W. Fornaciari, “Effective runtime re-
source management using linux control groups with the barbe-
quertrm framework,” ACM Trans. Embed. Comput. Syst., vol. 14,
pp. 39:1–39:17, Mar. 2015.

[36] F. Terraneo et al., “3D-ICE 3.0: efficient nonlinear MPSoC ther-
mal simulation with pluggable heat sink models,” IEEE Trans on
Computer-Aided Design of Integrated Circuits and Systems, pp. 1–
1, 2021.

[37] F. Terraneo et al., “An Open-Hardware Platform for MPSoC Ther-
mal Modeling,” in SAMOS’19, pp. 184–196, 2019.

[38] A. Leva et al., “Event-based power/performance-aware thermal
management for high-density microprocessors,” IEEE Trans on
Control Systems Technology, vol. 26, no. 2, pp. 535–550, 2018.

[39] E. Chung and Alii, “Serving dnns in real time at datacenter scale
with project brainwave,” IEEE Micro, vol. 38, no. 2, pp. 8–20,
2018.

[40] G. Kahn, “The semantics of a simple language for parallel pro-
gramming,” in Information Processing, 6th IFIP Congress 1974,
pp. 471–475, 1974.

[41] R. Ammendola et al., “Large scale low power computing system:
Status of network design in exanest and euroexa projects,” Ad-
vances in Parallel Computing, vol. 32, pp. 750–759, 2018.

[42] M. Katevenis, R. Ammendola, et al., “Next generation of exascale-
class systems: Exanest project and the status of its interconnect and
storage development,” Microprocessors and Microsystems, vol. 61,
pp. 58 – 71, 2018.

[43] Biagioni, Andrea et al., “Euroexa custom switch: an innovative
fpga-based system for extreme scale computing in europe,” EPJ
Web Conf., vol. 245, p. 09004, 2020.

[44] E. Agullo et al., “Achieving high performance on supercomputers
with a sequential task-based programming model,” IEEE TPDS,
2017.

[45] T. Cojean et al., “Resource aggregation for task-based cholesky
factorization on top of modern architectures,” Parallel Computing,
vol. 83, pp. 73–92, 2019.

[46] M. Bernaschi et al., “A factored sparse approximate inverse precon-
ditioned conjugate gradient solver on graphics processing units,”
SIAM Journal on Scientific Computing, vol. 38, no. 1, pp. C53–
C72, 2016.

[47] M. Bernaschi, P. D’Ambra, and D. Pasquini, “AMG based on
compatible weighted matching for GPUs,” Parallel Computing,
vol. 92, p. 102599, 2020.

[48] M. Bernaschi, P. D’Ambra, and D. Pasquini, “BootCMatchG: An
adaptive algebraic multigrid linear solver for GPUs,” Software
Impacts, vol. 6, p. 100041, 2020.

[49] P. D’Ambra and S. Filippone, “A parallel generalized relaxation
method for high-performance image segmentation on GPUs,” J.
of Computational and Applied Mathematics, vol. 293, pp. 35–44,
2016.

[50] E. Agullo et al., “Task-based fmm for heterogeneous architectures,”
Concurrency and Computation: Practice and Experience, vol. 28,
no. 9, pp. 2608–2629, 2016.

[51] R. Ammendola et al., “NaNet: a flexible and configurable low-
latency NIC for real-time trigger systems based on GPUs,” Journal
of Instrumentation, vol. 9, no. 02, p. C02023, 2014.

[52] E. Pastorelli et al., “Gaussian and exponential lateral connectivity
on distributed spiking neural network simulation,” in 26th Euromi-
cro PDP, pp. 658–665, IEEE, 2018.

[53] R. Ammendola et al., “The brain on low power architectures-
efficient simulation of cortical slow waves and asynchronous
states,” Advances in Parallel Computing, vol. 32, p. 760=769, 2018.

[54] C. Capone et al., “Sleep-like slow oscillations improve visual clas-
sification through synaptic homeostasis and memory association in
a thalamo-cortical model,” Scientific reports, vol. 9, no. 1, pp. 1–
11, 2019.

[55] A. Omran et al., “Generation and manipulation of schrödinger cat
states in rydberg atom arrays,” Science, vol. 365, no. 6453, pp. 570–
574, 2019.

[56] M. Macchiagodena et al., “Virtual double-system single-box: A
nonequilibrium alchemical technique for absolute binding free
energy calculations: Application to ligands of the sars-cov-2 main
protease,” Journal of Chemical Theory and Computation, vol. 16,
no. 11, 2020.

	Introduction and long-term objectives
	TEXTAROSSA Consortium
	Organization of the paper

	TEXTAROSSA Co-design approach
	TEXTAROSSA technologies
	Programming Models & Toolchains
	Runtime Services: Energy/Power Management
	Posit Hardware Accelerators
	Hardware Platform Optimization
	Low-latency Communication between FPGAs

	TEXTAROSSA applications
	MathLib
	HPDA and HPC-AI Applications
	Traditional HPC Applications

	Conclusions
	References

