
1st Spanish Fluid Mechanics Conference
Cádiz, June 19-22, 2022

Flow dynamics between two concentric counter-rotating porous cylinders with radial
through-flow test
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We investigate the impact of radial mass flux on Taylor-Couette flow [1, 2] in counter-rotating
configuration, in which a Hopf bifurcation gives rise to branches of nontrivial solutions. Using
direct numerical simulation we elucidate structures, dynamics, stability, and bifurcation behavior in
qualitative and quantitative detail as a function of inner Reynolds numbers (Rei) and radial mass
flux (α) spanning a parameter space with a rich variety of solutions. Both radial inflow and strong
radial outflow stabilize the system, whereas weak radial outflow has a strong destabilizing effect.
We detected the existence of stable ribbons and mixed ribbons with low azimuthal wave number
without symmetry restriction. In addition, ribbon solutions and mixed-ribbon solutions can be stable
or unstable saddles. Furthermore, in the case of unstable saddles alternations between two different
symmetrically related saddles generate different heteroclinic cycles. For alternating stationary (in
co-moving frame) ribbons the persistence time in one saddle decreases with distance from the onset.
The persistence time for the heteroclinic cycle of alternating mixed ribbons shows a more complicated
dependence with variation in control parameters and seems to follow an intermittency scenario of
type III [3]. Depending on whether the symmetrically related solutions are stationary or time-
dependent, the heteroclinic connection can be either of oscillatory or non-oscillatory type.

SYSTEM

Consider the flow driven in the annular gap between
two independently rotating cylinders [1, 2], which can
be driven by the inner Reynolds number Rei (here outer
Reynolds number fixed Re = −125 for counter-rotating
case) and a radial Reynolds number α. Further we use
a radius ratio of 0.5 and axial periodic boundary condi-
tions , which are set to λ = 1.6 equivalent to an axial
wavenumber k = (2π/λ) = 3.927.

RESULTS

Figure 1 illustrates the (Rei, α) parameter space inves-
tigated here and provides an overview of the rich variety
solutions existing for these control parameters.

Blue and orange lines denote the well-known primary
bifurcation thresholds out of the CCF basic state for TVF
and SPI, respectively. The modifications in the stabil-
ity threshold with variation in α has been previously re-
ported [4]. Both radial inflow and strong radial outflow
destabilize the system, while a moderate radial outflow
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FIG. 1. (Rei, α) parameter space illustrating various (sta-
ble and unstable) solutions. In the hatched area, other per-
turbations, mainly with larger wavenumbers, destabilize the
solutions. See Tab. I for further explanation.

solution Region

A B[B’] C D E F G H[H’] I J K L M N O
TVF - s[u] u s s u s s[u] s s u u u u u

1-wTVF - - - - - s - - - - - - - - -
SPI s - s u s s u s u u u u u u u

wSPI - - - - - - s - - - - - - - -
1-RIB u - u u u u u u s - - - - - -

1-RIBA↔B - - - - - - - - - hc - - - - -
1-mRIBA↔B - - - - - - - - - - - hc - - -

1-mRIB - - - - - - - - - - - - s - -
1-mRIBt - - - - - - - - - - - - - a -

1-mRIBt
A↔B - - - - - - - - - - - - - a -

L1R1-MCS - - - - - - - - - - - - - - s

TABLE I. Various regions, labeled A-O, as presented in the
(Rei, α) parameter space diagram (Fig. 1) including their
stability properties: stable (s), unstable (u), non-existent (-),
heteroclinic cycle (hc), alternating (a).

(here 0 < α . 17.6) stabilizes the system. However, vari-
ation of α also alters stability and sequence of primary
bifurcating structures itself. For radial inflow and slight
radial outflow a stable helical SPI branch bifurcates pri-
mary out of CCF, while with increasing α a branch of sta-
ble toroidal TVF is the first to appear. The two thresh-
olds meet at the point of higher co-dimension) at α ≈ 3.5
where the stability is exchanged. For α & 15.2 TVF bi-
furcates only unstable. The boundaries and curves above
TVF and SPI stability thresholds separate the various re-
gions, labeled A-O, of various flow structures, as listed
in the table I including their stability properties (stable
(s), alternating (a), unstable (u), non-existent (-)).

Of special interest are the three regions in which
various (m)RIB are stable, unstable, stationary or
time-dependent: J: 1-RIBA↔B ; L: 1-RIBt

A↔B ; N: 1-
mRIBt

A↔B ;

Figure 2 illustrates the time-periodic change from 1-
RIBA via transitional M0-flow towards 1-RIBB and vice
versa. Both 1-RIBA and 1-RIBB have identical kinetic
energy, Ekin, and Fourier spectra. Within the transi-
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FIG. 2. Visualization of 1-RIBA↔B . Shown are dynamics
with time of (a) Ekin and u1 [u2 (light gray)], (b) modes
|um,n|; Fourier spectrum (m,n) of (c) 1-RIBA,B and (d) M0-
flow, respectively. (e)-(h) Phase portraits spanned by u1, u2

and u3. Control parameters: α = 12, Rei = 102.

tional M0-flow Ekin almost vanishes. Analogously, the
time series of |um,n| illustrate the elimination of all he-
lical modes m > 1 within the M0-flow, leaving only the
toroidal m = 0 mode.

However, we emphasize that although the M0-flow only
contains m = 0 modes, it is crucially different from clas-
sical TVF, which consists of a toroidal closed vortex. For
our parameters TVF branches super-critically and is sta-
ble, co-existing with other solutions (see Fig. and 1).
The M0-flow does not contain toroidal closed vortices
and additionally it is not axisymmetric. Instead, M0-
flow retains the symmetries of RIB, which are given by
the symmetry group Z2.

The main dynamics during the transition from 1-RIBA

towards 1-RIBB can be described as an annihilation and
regeneration of a vortex pairs (in the axial direction).
First the vortex pairs of 1-RIBA relocate in its axial po-
sition (direction), while moving closer together which re-
sults in stretch and compression in the annulus. With
increasing time the compression of the vortex pairs even-
tually results in an annihilation of these vortices, while at
the same time two new vortices are generated, which then
expand into the annulus. The newly-formed vortex pair
is shifted about λ/4 in axial direction and grows to es-

tablish again a temporal solution 1-RIBB . Hereafter the
system remains for a time that depends on the param-
eters in 1-RIBB , before eventually the scenario restarts
with a similar back switch to 1-RIBA. The process re-
peats as long no other external parameters, e.g. α or Rei
are changed.

The phase portraits Fig. 2(e-h) illustrate the connec-
tions, i.e. limit cycles, of 1-RIBA and 1-RIBB . The color
coding corresponds to the time series presented in Fig.
2(a, b). The local quantities u1 and u2 vs u3 highlight
a perpendicular orientation for 1-RIBA and 1-RIBB , re-
spectively, resulting in a clover-leaf shape in the corre-
sponding phase portraits (Fig. 2(e-h), with the transi-
tional M0-flow in the core region at the clover-leaf inter-
section.

CONCLUSIONS

The main results can be summarized as follows.

1. Stable ribbons (1-RIBs) at low Reynolds numbers
with the smallest (helical) azimuthal wavenumber
m = ±1 [2].

2. Stable mixed ribbons (1-mRIBs) as well as stable
mixed-cross-spirals (MCS)[5] without symmetry re-
strictions. Thereby mRIBs can appear either sta-
tionary (1-mRIB) or time-dependent (1-mRIBt).

3. Heteroclinic cycles between two saddles 1-RIBA↔B ,

1-mRIBA↔B as well as alternation 1-mRIB
(t)
A↔B .

4. The heteroclinic connection between the two sym-
metrically related states can be either of oscillatory

type (for 1-mRIB
(t)
A↔B) or of non-oscillatory type

(for 1-RIBA↔B) [6].

5. For 1-mRIBt
A↔B a more complex intermittency

scenario is observed, which seems to be type III
intermittency [7].

6. The (Rei, α) parameter space (Fig. 1) illustrates a
rich variety of flow structures.
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