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30 Abstract

31 With the increased access to neural networks trained to estimate body segments from images and 
32 videos, this study assessed the validity of some of these networks in enabling the assessment of body 
33 position on the bicycle. Fourteen cyclists pedalled stationarily in one session on their own bicycles 
34 whilst video was recorded from their sagittal plane. Reflective markers attached to key bony 
35 landmarks were used to manually digitise joint angles at two positions of the crank (3 o’clock and 6 
36 o’clock) extracted from the videos (Reference method). These angles were compared to 
37 measurements taken from videos generated by two deep learning-based approaches designed to 
38 automatically estimate human joints (Microsoft Research Asia-MSRA and OpenPose). Mean bias for 
39 OpenPose ranged between 0.03-1.81 whilst the MSRA method presented errors between 2.29-
40 12.15. Correlation coefficients were stronger for OpenPose than for the MSRA method in relation to 
41 the Reference method for the torso (r = 0.94 vs. 0.92), hip (r = 0.69 vs. 0.60), knee (r = 0.80 vs. 0.71) 
42 and ankle (r = 0.23 vs. 0.20). OpenPose presented better accuracy than the MSRA method in 
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43 determining body position on the bicycle but both methods seem comparable to assess implications 
44 from changes in bicycle configuration.

45 Keywords: Biomechanics, Technology, Quantitative study, Kinesiology

46

47 Introduction

48 Bicycle fitting is a method utilised to optimise the position of the bicycle to the cyclist (Bini et al., 2014), 
49 which involves a range of measurements to assess cyclists’ posture on their bicycles. Amongst the 
50 most recommended techniques to assess body position on the bicycle, analysis of joint angles from 
51 video recording has been largely used as it allows for bicycle fitting to be further individualised (Fonda 
52 et al., 2014; Swart & Holliday, 2019). However, accurate measurements of angles involve determining 
53 joint centres from manual palpation and markup of bony landmarks on the skin (Malus et al., 2021), 
54 which can be prone to errors depending on the experience of the assessor (Sinclair et al., 2014). 
55 Nevertheless, whenever markers are properly attached to bony landmarks they are considered a gold 
56 standard method.

57 The use of marker-less methods to extract joint centres from video has been attempted in several 
58 studies (Grigg et al., 2018; Needham et al., 2017; Ong et al., 2017; Serrancolí et al., 2020). Ong et al. 
59 (2017) observed differences of <1° for various joint angles using a marker-less tracking system during 
60 walking and jogging, demonstrating promising outcomes. More recently, the use of convolution neural 
61 networks (CNN) trained on large image datasets (Cao et al., 2021) improved human pose estimation 
62 and joint centre identification. These methods involve the use of images from people performing 
63 various movements (i.e. walking, jumping, dancing, etc.) that are labelled to determine body segments 
64 and joints (i.e. keypoints) and used for training a computer program to automatically identify similar 
65 patterns in new images. However, only Serrancoli et al. (2020) utilised CNN-based approaches to 
66 identify segmental movement and joint centres during cycling. This application is important as it can 
67 further allow for marker-less methods to determine cyclists’ position on the bicycle and potentially 
68 inform bicycle fitting. However, comparison with criterion methods (i.e. marker-based) is lacking given 
69 neural networks use different assumptions in determining joint centres (i.e. methods to determine 
70 body segments). This provides an opportunity to utilise pre-trained networks that can determine 
71 human body segments and joints to the analysis of cycling.

72 Body position on the bicycle has largely involved determining upper and lower limb angles at key parts 
73 of the crank cycle. As an example, the 6 o’clock (Bini, 2020; Peveler & Green, 2011; Priego Quesada et 
74 al., 2016) and the 3 o’clock positions of the crank cycle (Bini & Hume, 2016; Bini, Hume, & Croft, 2014) 
75 were utilised. The main rationale for choosing these positions is because, the 6 o’clock is close to the 
76 maximum extension of the lower limbs (Holmes et al., 1994) and the 3 o’clock is close to peak pedal 
77 power (Martin & Brown, 2009). Therefore, examining joint angles at these positions can help 
78 differentiate cycling posture (Bini, P.A. Hume, & Croft, 2014). However, the use of marker-less motion 
79 analysis methods has not been assessed in terms of their accuracy in determining cyclists’ posture. 
80 The use of marker-less as part of bicycle fitting assessment using video-calls can be helpful because 
81 the restrictions from COVID-19 have limited face-to-face non-essential activities globally. Moreover, 
82 utilising freely available pre-trained networks could accelerate the use of these automated methods 
83 by practitioners, reducing barriers such as image labelling, network retraining, etc.

84 Therefore, the aim of this study was to compare a marker-based method for estimating joint angles 
85 on the bicycle (i.e. Reference) with two open-source convolutional neural networks (Cao et al., 2021; 
86 Xiao et al., 2018) designed to perform the same task automatically. Given these pre-trained networks 
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87 are normally trained using images from people performing a wide range of movements (e.g. walking, 
88 jumping, dancing, etc.), our hypothesis was that both methods should provide practically acceptable 
89 measurements of body position on the bicycle (i.e. joint angles). Therefore, broad learning obtained 
90 from both networks should be appropriate to detect body segments in cycling-related images.

91

92 Materials and methods

93 Fourteen male cyclists (33 ± 7 years of age, 176 ± 6 cm of stature and 74 ± 8 kg of body mass) ranging 
94 from recreational to competitive were assessed in a single session using their own bicycles (road, 
95 triathlon, or mountain bike). They were engaged in road, triathlon or mountain bike training covering 
96 5 ± 3 hours and 128 ± 65 km of cycling training per week at the time of the study. We based our sample 
97 size calculation at the intention to determine a minimum difference of 5 in angles, which is at the 
98 centre of the range proposed to determine body position on the bicycle (i.e. 10, Millour et al., 2019; 
99 Swart & Holliday, 2019). We also assumed that the within-cyclist’s variability in angles would be 3.4 

100 (Bini & Hume, 2016), resulting in an effect size of 1.47. Our sample size calculation involved a 
101 comparison of paired samples when  = 0.05 and the power of the test is 0.80 using G*Power 
102 statistical package (Faul et al., 2007). Before data collection, all cyclists signed an informed consent to 
103 participate in the study, which was approved by the University Human Ethics Committee (XXXXX).

104 After measurements of stature and body mass, cyclists performed 2-min of cycling on their own 
105 bicycles attached to a home cycle trainer (Active Intent Fitness Bike Trainer, NZ) at self-selected 
106 cadence. A high-speed camera (Exilim EX-FC150, Casio Computer CO, Tokyo, Japan) was positioned at 
107 the height of their saddle, 4-m away from the bicycles to record movement in the sagittal plane. 
108 Reflective markers were positioned at the acromion, greater trochanter, lateral femoral epicondyle, 
109 lateral malleolus and the head of the fifth metatarsal bone (Figure 1). Videos were recorded for 20-s 
110 at the end of the 2-min of exercise at 120 fps (640x480 of frame resolution) using automated quick 
111 shutter and anti-shake settings to minimise blur.

112 In this study, we compared the OpenPose (bottom-up) and the Microsoft Research Asia (MSRA - top-
113 down) methods, deep learning-based approach designed to estimate human pose and joint angles, in 
114 the context of bicycle fitting. The bottom-up method relies on existing data to train the network whilst 
115 the top-down method uses current learning to improve the accuracy of the network in future 
116 predictions. The MSRA method first detects the location of people in an image, and then the body 
117 segments for each detected person. Individuals and their respective body segments are detected using 
118 the Mask RCNN framework (He et al., 2020), which is a two-stage approach where in the first stage, 
119 images are scanned to determine areas likely to contain an object whilst the second stage classifies 
120 these areas and generates bounding boxes and masks (i.e. removing surroundings). To associate each 
121 person, and its body segments with detections from consecutive frames, the authors proposed a 
122 tracking algorithm that takes advantage of temporal information via optical flow technique (Teed & 
123 Deng, 2020). This involves extrapolating future position of segments during sequential movement 
124 from historical data (i.e. bottom-up approach). OpenPose introduced the concept of association 
125 scores via Part Affinity Fields (PAFs), which is a set of vector fields that determines the location and 
126 orientation of body segments. The vector fields allow the estimation of a degree of association 
127 between body segments. OpenPose computes a confidence map that informs the location of the body 
128 segments and a set of vector fields (PAFs). Finally, both the confidence map and PAFs are fused by a 
129 greedy inference strategy to estimate the final set of joints (i.e. optimisation of joint locations), for 
130 each person in the image.
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131 Video files were then imported to a customised program adapted from a freely available code. This 
132 code implements the Microsoft Research Asia (MSRA) method (Xiao et al., 2018) in MATLAB (R2021a, 
133 MathWorks Inc, Natick, MA, USA). In this study, we used a model pre-trained in the COCO Consortium 
134 (cocodataset.org) (Lin et al., 2014), which involves annotation of 250,000 people with segments 
135 identified in a broad range of movements such as walking, jumping and dancing, as examples. Video 
136 files were generated where the joint centres (i.e. keypoints) and body segments were identified by 
137 the pre-trained neural network. The same process was conducted using the OpenPose method (Cao 
138 et al., 2021), which is also pre-trained in the COCO dataset. Videos generated by the MSRA and the 
139 OpenPose methods were later utilised to manually digitise torso, hip, knee and ankle angles in two 
140 parts of the crank cycle (3 o’clock and 6 o’clock), as shown in Figure 1. As a reference method, videos 
141 with the reflective markers only were utilised. Raw videos (i.e. Reference method) and pre-trained 
142 neural network generated videos were imported to ImageJ (National Institute of Health, USA) where 
143 a single experienced assessor measured the angles across five consecutive cycles. Even though both 
144 pre-trained neural networks estimated joint coordinates, we followed a method utilised in clinics and 
145 bike fitting, where angles are manually measured from pre-located joint positions on the video (e.g. 
146 Bike Fast Fit - Video Bike Fitting). This process enables the identification of angles in key areas of the 
147 crank cycle without a requirement of tracking multiple video frames. Because the MRSA did not track 
148 the foot, the ankle angle was measured using the head of the fifth metatarsal bone marker for all 
149 methods.

150 ***Figure 1***

151 Differences in mean angles from each cyclist between manually placed markers and joint position 
152 predicted by the neural network methods in relation to the Reference method were determined using 
153 paired samples t-tests for each crank position. Magnitude of differences were assessed using Cohen’s 
154 effect sizes (d). Whenever p < 0.05 and d > 0.80, practically important differences were assumed from 
155 the data. Mean bias and confidence interval for the differences (CI95) were calculated as part of the 
156 Bland-Altman method (Bland & Altman, 1986) and Pearson correlations were computed to assess 
157 association between methods. R values were ranked as poor (0–0.5), moderate (0.5–0.75), good 
158 (0.75–0.90), and excellent (> 0.9) (Dancey & Reidy, 2004). Statistical analyses were conducted using 
159 customised spreadsheets (Excel, Microsoft Inc, USA) and GraphPad Prism (Version 9.0.2, GraphPad 
160 Software, San Diego, California USA).

161

162 Results

163 Significant differences were observed between angles from the MSRA method in comparison to the 
164 Reference method, at the 3 o’clock crank position, for the torso (p < 0.01, d = 0.38), hip (p < 0.01, d = 
165 1.93), knee (p < 0.01, d = 1.52) and ankle (p = 0.01, d = 1.05). No differences though were observed 
166 between angles from the OpenPose and the Reference method (torso p = 0.09, hip p = 0.12, knee p = 
167 0.69, ankle p = 0.36). Angular data are presented in Table 1.

168 **Table 1***

169 Mean bias [CI95] between angles from the MSRA method compared to the Reference method at the 
170 3 o’clock position was -2.6 [-8.0;2.8] for the torso, 8.9 [0.8; 16.9] for the hip, 12.1 [-0.3; 24.6] for 
171 the knee and 7.8 [-11.3; 26.9] for the ankle. Mean bias [CI95] between angles from the OpenPose 
172 method in comparison to the Reference method at the 3 o’clock position was 1.5 [-4.6;7.6] for the 
173 torso, 1.4 [-4.9; 7.8] for the hip, 0.4 [-7.7; 8.6] for the knee and -1.5 [-13.3; 10.2] for the ankle. 
174 Correlation coefficients were stronger for the OpenPose method than for the MSRA method in relation 
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175 to the Reference method for the torso (r = 0.94 vs. 0.92 - excellent), hip (r = 0.69 vs. 0.60 - moderate), 
176 knee (r = 0.80 - good vs. 0.71 - moderate) and ankle (r = 0.23 vs. 0.20 - poor). Bland-Altman’s plots 
177 illustrate these outcomes in Figure 2.

178 ***Figure 2***

179 Significant differences were observed between angles from the MSRA method in comparison to the 
180 Reference method, at the 6 o’clock crank position, for the torso (p < 0.01, d = 0.67), hip (p = 0.01, d = 
181 0.52) and knee (p = 0.02, d = 0.46). No differences were observed for the ankle (p = 0.10). No 
182 differences were observed between angles from the OpenPose method and the Reference method 
183 (torso p = 0.08, hip p = 0.97, knee p = 0.09, ankle p = 0.28). Angular data are presented in Table 1.

184 Mean bias [CI95] between angles from the MSRA method in comparison to the Reference method at 
185 the 6 o’clock position was -4.4 [-12.8; 3.9] for the torso, 2.3 [-2.9; 7.5] for the hip, 4.3 [-7.7; 16.3] 
186 for the knee and 3.3 [-10.7; 17.4] for the ankle. Mean bias [CI95] between angles from the OpenPose 
187 method in comparison to the Reference method at the 6 o’clock position was 1.81 [-5.1; 8.7] for the 
188 torso, -0.1 [-4.3; 4.3] for the hip, 1.5 [-4.8; 8.0] for the knee and -1.2 [-9.1; 6.7] for the ankle. 
189 Correlation coefficients were stronger for the OpenPose method than for the MSRA method in relation 
190 to the Reference method for the torso (r = 0.94 - excellent vs. 0.79 - good), hip (r = 0.86 vs. 0.82 - 
191 good), knee (r = 0.91 - excellent vs. 0.82 - good) and ankle (r = 0.87 vs. 0.75 - good). Bland-Altman’s 
192 plots illustrate these outcomes in Figure 3.

193 ***Figure 3***

194

195 Discussion

196 The purpose of this study was to compare joint angles on the bicycle assessed using pre-trained neural 
197 networks with outputs from a marker-based method. The hypothesis was that both methods would 
198 provide practically acceptable measurements of joint angles due to similarities in body position. The 
199 data demonstrated that the OpenPose method presented greater accuracy than the MSRA method in 
200 determining body position on the bicycle. Mean bias for the OpenPose method ranged between 0.03-
201 1.81 whilst the MSRA method presented errors between 2.29-12.15. Ong et al. (2017) observed 
202 differences of < 1° for various joint angles using a marker-less tracking system during walking and 
203 jogging. During cycling, intra-session errors in joint angles have been shown to vary between < 1-3° 
204 (Bini & Hume, 2020), which suggests that differences between the OpenPose method could be 
205 negligible but the MSRA method presented larger errors. These findings are novel because they 
206 demonstrate that an automated marker-less method (i.e. OpenPose) can accurately determine joint 
207 angles and help assess body position on the bicycle.

208 The assessment of joint angles during bicycle fitting is based on the fact that changes in bicycle 
209 configuration affect movement patterns (Bini, Hume, & Kilding, 2014; Menard et al., 2020). This means 
210 that, accuracy in determining joint angles is important to ensure that the position of the cyclist on the 
211 bicycle aligns with the intention of the fitting process. Differently though, changes in joint angles of 
212 ~10-14° when saddle position is modified have not been associated with changes in internal forces 
213 (Bini & Hume, 2014). This indicates that, errors in determining knee angles may not result in large 
214 differences in bicycle configuration. It is also possible that errors in determining bicycle configuration 
215 (e.g. using the MSRA method) may not result in differences in perceived comfort (Bini, 2020; Priego 
216 Quesada et al., 2016). We can also speculate that these errors may only affect internal forces in parts 
217 of the crank cycle where joint loads are low (Bini, 2021). Therefore, further studies are needed to 
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218 explore the implications of determining saddle position, for example, using automated marker-less 
219 methods. This is particularly important in light of the poor correlation between both methods and the 
220 Reference method for the ankle joint at the 3 o’clock position.

221 In this study, joint angles were measured in two key positions of the crank cycle, which limits the 
222 conclusion on whether automated methods can accurately track motion. It is possible that, in some 
223 parts of the crank cycle, errors in identifying body segments may be larger. As an example, the 3 
224 o’clock position presented larger errors than the 6 o’clock position for the MSRA method, which can 
225 be potentially associated with the right and left limbs having a very distinct position at the 6 o’clock 
226 but a more similar position at the 3 o’clock, leading the automated method to swap sides of the 
227 skeleton. This though was not the case for the OpenPose method as errors were not largely different 
228 between crank positions. As neural networks are normally trained using a broad range of images or 
229 people moving (i.e. walking, jumping, dancing, etc.), the straight leg observed at the 6 o’clock 
230 potentially increases the accuracy of the networks to determine the skeleton. Therefore, training 
231 neural networks with cycling related images is important to further enhance the accuracy of the 
232 network, particularly when using data to determine joint loads.

233 It is important to note that both CNN-based methods were designed considering largely non-cycling-
234 related scenarios since they were based on COCO and MPII datasets. According to Cao et al. (Cao et 
235 al., 2021), the MSRA method outperformed the OpenPose in 12.3 percentual points, considering the 
236 test set of the COCO dataset. However, our study demonstrates that OpenPose outperformed MSRA 
237 when using cycling-related images. The MRSA networks has been trained to analyse images with a 
238 resolution of 256x192 pixels whilst the OpenPose network used the whole image resolution. This 
239 means that, OpenPose had increased resolution at each frame to determine joint keypoints, 
240 potentially explaining its increased accuracy. Our results suggest that the vector fields (PAFs), which 
241 encode the location and orientation of body segments, were more effective in determining the 
242 segments of a person in cycling-related images than the optical flow-based approach used in the MSRA 
243 method. This means that, when using optical flow to determine sequential movement, the MSRA 
244 presented lower capacity than the OpenPose method to determine the joints. We believe that these 
245 results are valuable for computer scientists and engineers when designing AI-based methods for 
246 detecting human pose and joints. The use of the OpenPose to inform bicycle fitting provides an 
247 opportunity to streamline the analysis of posture on the bicycle and automate the extraction of 
248 quantitative outcomes (i.e. joint angles).

249 The use of a two-dimensional model is a very popular method of obtaining angles from cyclists in 
250 clinical and sports settings due to the easy access to video recording capability through smartphones. 
251 However, it is known that two-dimensional data presented ~2.2-10 of error in relation to three-
252 dimensional data (Fonda et al., 2014; Umberger & Martin, 2001). Therefore, it is important that, if 
253 automated methods are used, errors in determining joint angles via two-dimensional analysis do not 
254 increase further the known limitations of sagittal plane analyses. Further studies should explore if the 
255 use of three-dimensional marker-less methods are feasible to analyse cycling motion, as they showed 
256 promising results in other movements (D’Antonio et al., 2021; Kanko et al., 2021).

257 Angles presented in this study were manually digitised from the video footage, which may add errors 
258 to the true measurement of joint angles. However, this element has been shown to increase to a trivial 
259 magnitude (i.e. <1.5°) bias in measuring joint angles in cyclists (Bini & Hume, 2016) and should be 
260 equivalent between methods as all involved manual digitisation of angles. Therefore, future studies 
261 should compare intra-cycle data between methods to assess the extent of differences. It is also 
262 important to note that cyclists pedalled at self-selected sub-maximal intensity and cadence, which 
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263 limits the assumption that the automated methods will perform similarly during higher intensity 
264 cycling (e.g. sprinting). Clean background was used but it is unclear if the automated method would 
265 cope with data obtained in outdoor settings. Moreover, the use of online technology to assess cyclists 
266 remotely (e.g. Zoom, Gmeet, etc) can facilitate bicycle fitting to be conducted via distance but it is 
267 unclear if elements such as background and position and orientation of the camera would affect the 
268 accuracy of the automated methods. Videos from this study were collected with standard (640x480 
269 pixels) frame resolution at high frame rate (120 fps), which is limited compared to some modern 
270 cameras. Whilst some smartphones enable slow motion (i.e. high frame rate) to be recorded in high 
271 resolution, webcams are limited to 60 fps, with unclear implications on the performance of the 
272 automated methods. Therefore, future studies should explore changing camera settings in order to 
273 assess if outcomes from the automated method remain appropriate.

274 The use of public available codes to automate human pose estimation was also implemented in this 
275 study without changes to the original code. One improvement that should be attempted in future use 
276 involves filtering and interpolating the joint coordinates as noise was visually observed in the videos 
277 leading the automated methods to misinterpret the location of joint centres. These corrections have 
278 been utilised in prior research (Serrancolí et al., 2020) and should improve the quality of the data, 
279 particularly when temporal patterns are explored. In addition, exploring accuracy of these networks 
280 when videos are recorded at lower frame rate and/or with less image resolution should benefit further 
281 use of these methods.

282 The conclusion is that the OpenPose method presented improved accuracy compared to the MSRA 
283 method in determining body position on the bicycle but both methods seem feasible to assess 
284 implications from changes in bicycle configuration. The OpenPose method though should be 
285 preferably used when higher accuracy in determining joint angles is required.

286
287
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433 Tables

434 Table 1. Mean ± SD angles of the torso, hip, knee and ankle at the 3 o’clock and 6 o’clock crank 
435 positions determined using the Reference method, the MSRA method and the OpenPose method.

3 o’clock crank position
Angles () Torso Hip Knee Ankle
Reference 137 ±7 41 ±4 63 ±7 120 ±6
MSRA 139 ±7* 32 ±5* 75 ±9* 113 ±9*
OpenPose 135 ±9 40 ±3 64 ±5 122 ±3

6 o’clock crank position
Angles () Torso Hip Knee Ankle
Reference 136 ±7 68 ±4 33 ±8 140 ±8
MSRA 141 ±7* 65 ±5* 37 ±11* 137 ±11
OpenPose 134 ±9 68 ±4 35 ±7 141 ±8

436 * Indicates significant difference in relation to the Reference method.
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438 Figures

439

440

441 Figure 1. Illustration of the measured angles and image from the skeleton created by the MSRA method.
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MRSA

OpenPose

Figure 2. Bland-Altman plots comparing differences, mean bias (continuous lines) and limits of 
agreement (dotted lines) between the MSRA method and the Reference method (Ref – upper panel) 
and the OpenPose method and the Reference method (lower panel) for the 3 o’clock crank position.
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MRSA

OpenPose

Figure 3. Bland-Altman plots comparing differences, mean bias (continuous lines) and limits of 
agreement (dotted lines) between the MSRA method and the Reference method (Ref – upper panel) 
and the OpenPose method and the Reference method (lower panel) for the 6 o’clock crank position.
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