
����������
�������

Citation: Valiente, G. Adjacency

Maps and Efficient Graph

Algorithms. Algorithms 2022, 15, 67.

https://doi.org/10.3390/a15020067

Academic Editors: Frank Werner

and Francesc Pozo

Received: 16 January 2022

Accepted: 18 February 2022

Published: 20 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Adjacency Maps and Efficient Graph Algorithms
Gabriel Valiente

Department of Computer Science, Technical University of Catalonia, E-08034 Barcelona, Spain;
gabriel.valiente@upc.edu

Abstract: Graph algorithms that test adjacencies are usually implemented with an adjacency-matrix
representation because the adjacency test takes constant time with adjacency matrices, but it takes
linear time in the degree of the vertices with adjacency lists. In this article, we review the adjacency-
map representation, which supports adjacency tests in constant expected time, and we show that
graph algorithms run faster with adjacency maps than with adjacency lists by a small constant factor
if they do not test adjacencies and by one or two orders of magnitude if they perform adjacency tests.

Keywords: discrete mathematics; graph theory; performance and testing of algorithms; adjacency
matrices; adjacency lists; adjacency maps

1. Introduction

Adjacency lists have been the preferred graph representation for over five decades now
because a large number of graph algorithms can be implemented to run in linear time in
the number of vertices and edges in the graph using an adjacency-list representation, while
no graph algorithm can be implemented to run in linear time using an adjacency-matrix
representation. The only exception to the latter is the sparse representation of static directed
graphs of [1], which uses (allocated, but uninitialized) quadratic space in the number of
vertices in the graph and allows for implementing graph algorithms that test edge existence,
such as finding a universal sink (a vertex of in-degree equal to the number of vertices minus
one and out-degree zero) in a directed graph ([2] [Ex. 22.1-6]), to run in linear time in the
number of vertices and edges in the graph.

Graph algorithms can be described using a small collection of abstract operations on
graphs, which can be implemented using appropriate data structures such as adjacency
matrices, adjacency lists, and adjacency maps. For example, the representation of graphs in
the LEDA library of efficient data structures and algorithms [3] supports about 120 abstract
operations, and the representation of graphs in the BGL library of graph algorithms [4]
supports about 50 abstract operations.

A smaller collection of 32 abstract operations is described in [5], which allows for
describing most graph algorithms. Actually, the following collection of only 11 abstract
operations suffices for describing most of the fundamental graph algorithms, where lists of
vertices and edges are arranged in the order fixed by the representation of the graph. Much
of the following is adapted from ([5] [Section 1.3]).

• G.vertices() gives a list of the vertices of graph G.
• G.edges() gives a list of the edges of graph G.
• G.incoming(v) gives a list of the edges of graph G coming into vertex v.
• G.outgoing(v) gives a list of the edges of graph G going out of vertex v.
• G.adjacent(v, w) is true if there is an edge in graph G going out of vertex v and coming

into vertex w, and false otherwise.
• G.source(e) gives the source vertex of edge e in graph G.
• G.target(e) gives the target vertex of edge e in graph G.
• G.new_vertex() inserts a new vertex in graph G.

Algorithms 2022, 15, 67. https://doi.org/10.3390/a15020067 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15020067
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-9194-2703
https://doi.org/10.3390/a15020067
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15020067?type=check_update&version=2

Algorithms 2022, 15, 67 2 of 10

• G.new_edge(v, w) inserts a new edge in graph G going out of vertex v and coming into
vertex w.

• G.del_vertex(v) deletes vertex v from graph G, together with all those edges going out
of or coming into vertex v.

• G.del_edge(e) deletes edge e from graph G.

These abstract operations apply to both undirected and directed graphs. An undirected
graph is the particular case of a directed graph in which for every edge (v, w) of the graph,
the reversed edge (w, v) also belongs to the graph. For example, a simple traversal of
an undirected graph G, in which vertices and edges are visited in the order fixed by the
representation of the graph, can be described using these abstract operations as shown in
Algorithm 1.

Algorithm 1 Simple traversal of an undirected graph G.

for all v ∈ G.vertices() do
for all e ∈ G.outgoing(v) do

w = G.target(e)
. . .

Essentially, the adjacency list representation of a graph is an array of lists, one for
each vertex in the graph, where the list corresponding to a given vertex contains the target
vertices of the edges coming out of the given vertex. However, this is often extended by
making edges explicit, as follows:

Definition 1. Let G = (V, E) be a graph with n vertices and m edges. The adjacency list
representation of G consists of a list of n elements (the vertices of the graph), a list of m elements
(the edges of the graph), and two lists of n lists of a total of m elements (the edges of the graph). The
incoming list corresponding to vertex v contains all edges (u, v) ∈ E coming into vertex v, for all
vertices v ∈ V. The outgoing list corresponding to vertex v contains all edges (v, w) ∈ E going out
of vertex v, for all vertices v ∈ V. The source vertex v and the target vertex w are associated with
each edge (v, w) ∈ E.

The adjacency list representation of a directed graph is illustrated in Figure 1. The
small collection of 11 abstract operations can be implemented using the adjacency list
representation to take O(1) time, with the exception of G.adjacent(v, w), which takes
O(min(outdeg(v), indeg(w))) time, and G.del_node(v), which takes O(deg(v)) time,
as follows:

• G.vertices() and G.edges() are respectively the list of vertices and the list of edges of
graph G.

• G.incoming(v) and G.outgoing(v) are respectively the list of edges coming into vertex
v and the list of edges going out of vertex v.

• G.adjacent(v, w) is implemented by scanning the list of edges going out of vertex v, or
the list of edges coming into vertex w.

• G.source(e) and G.target(e) are respectively the source and the target vertex associated
with edge e.

• G.new_vertex() is implemented by appending a new vertex v to the list of vertices of
graph G, and returning vertex v.

• G.new_edge(v, w) is implemented by appending a new edge e to the list of edges of
graph G, setting to v the source vertex associated with edge e, setting to w the target
vertex associated with edge e, appending e to the list of edges going out of vertex v
and to the list of edges coming into vertex w, and returning edge e.

• G.del_vertex(v) is implemented by performing G.del_edge(e) for each edge e in the list
of edges coming into vertex v and for each edge e in the list of edges going out of
vertex v, and then deleting vertex v from the list of vertices of graph G.

Algorithms 2022, 15, 67 3 of 10

• G.del_edge(e) is implemented by deleting edge e from the list of edges of graph G,
from the list of edges coming into vertex G.target(e), and from the list of edges going
out of vertex G.source(e).

vertex incoming edges outgoing edges
v1 [e4] [e1, e2]
v2 [e1, e5] [e3]
v3 [e6, e11] [e4]
v4 [e2, e9] [e5, e6, e7, e8]
v5 [e3] [e9, e10]
v6 [e7, e12] [e11]
v7 [e8, e10] [e12]

vertex incoming edges outgoing edges
v1 [v3 → e4] [v2 → e1, v4 → e2]
v2 [v1 → e1, v4 → e5] [v5 → e3]
v3 [v4 → e6, v6 → e11] [v1 → e4]
v4 [v1 → e2, v5 → e9] [v2 → e5, v3 → e6, v6 → e7, v7 → e8]
v5 [v2 → e3] [v4 → e9, v7 → e10]
v6 [v4 → e7, v7 → e12] [v3 → e11]
v7 [v4 → e8, v5 → e10] [v6 → e12]

v1 v2

v3 v4 v5

v6 v7

e1

e2 e3e4 e5

e6

e7 e8

e9

e10e11

e12

Figure 1. Adjacency list (top left) and adjacency map (bottom) representation of a directed graph
(top right). Source and target vertices of each edge not shown.

The adjacency list representation of a graph G = (V, E) with n vertices and m edges
takes O(n + m) space, and it allows for implementing graph algorithms such as depth-first
search, biconnectivity, acyclicity, planarity testing, topological sorting, and many others to
take O(n + m) time [6,7].

In the adjacency list representation of a graph, edges can also be made explicit by
replacing the lists of incoming and outgoing edges with dictionaries of source vertices to
incoming edges and target vertices to outgoing edges. This allows for a more efficient
adjacency test, although adding a logarithmic factor to the cost to all of the operations
(when dictionaries are implemented using balanced trees) or turning the worst-case cost for
all of the operations into expected cost (when dictionaries are implemented using hashing).

Such a representation was advocated in [5,8], and adopted as the default graph
representation in the NetworkX package for network analysis in Python [9]. Essentially,
the adjacency map representation of a graph consists of a dictionary D of vertices to a pair
of dictionaries of vertices to edges: a first dictionary I of source vertices to incoming edges,
and a second dictionary O of target vertices to outgoing edges.

Definition 2. Let G = (V, E) be a graph with n vertices and m edges. The adjacency map
representation of G consists of a dictionary of n elements (the vertices of the graph) to a pair of
dictionaries of m elements (the source and target vertices for the edges of the graph, respectively).
The incoming dictionary corresponding to vertex v contains the mappings (u, (u, v)) for all edges
(u, v) ∈ E coming into vertex v, for all vertices v ∈ V. The outgoing dictionary corresponding to
vertex v contains the mappings (v, (v, w)) for all edges (v, w) ∈ E going out of vertex v, for all
vertices v ∈ V.

The adjacency map representation of a directed graph is also illustrated in Figure 1.
The small collection of 11 abstract operations can also be implemented using the adjacency
map representation to take O(1) expected time, with the exception of G.del_vertex(v), which
takes O(deg(v)) expected time, as follows:

• G.vertices() are the keys in dictionary D.
• G.edges() are the values D[v].O[w] for all keys v in dictionary D and for all keys w in

dictionary D[v].O.

Algorithms 2022, 15, 67 4 of 10

• G.incoming(v) are the values D[v].I[u] for all keys u in dictionary D[v].I.
• G.outgoing(v) are the values D[v].O[w] for all keys w in dictionary D[v].O.
• G.adjacent(v, w) is true if (w, e) ∈ D[v].O, where e = D[v].O[w], and false otherwise.
• G.source(e) is the source vertex associated with edge e.
• G.target(e) is the target vertex associated with edge e.
• G.new_vertex() is implemented by inserting an entry in dictionary D, with the key as a

new vertex v and value a pair of empty dictionaries D[v].I and D[v].O, and returning
vertex v.

• G.new_edge(v, w) is implemented by setting to v the source vertex associated with a
new edge e, setting to w the target vertex associated with edge e, inserting an entry in
dictionary D[v].O with key w and value e, inserting an entry in dictionary D[w].I with
key v and value e, and returning edge e.

• G.del_vertex(v) is implemented by performing G.del_edge(e) for each entry with key u
and value e in dictionary D[v].I and for each entry with key w and value e in dictionary
D[v].O, and then deleting the entry with key v from dictionary D.

• G.del_edge(e) is implemented by deleting the entry with key w from dictionary D[v].O
and deleting the entry with key v from dictionary D[w].I, where v = G.source(e) and
w = G.target(e).

Similar to the adjacency list representation, the adjacency map representation of a
graph G = (V, E) with n vertices and m edges also takes O(n + m) space. In addition to
the low space requirement, the main advantage of the adjacency map representation is the
support of the adjacency test in O(1) expected time, when dictionaries are implemented
using hashing.

In this article, we compare the performance of three graph algorithms on a large
benchmark dataset of random directed graphs, when implemented with an adjacency-list
and an adjacency-map representation, and we show that they run faster on the average
with adjacency maps than with adjacency lists.

2. Materials and Methods

We have implemented 9 of the 11 abstract operations on graphs in Python, namely

• G.vertices()
• G.edges()
• G.incoming(v)
• G.outgoing(v)
• G.adjacent(v, w)
• G.source(e)
• G.target(e)
• G.new_vertex()
• G.new_edge(v, w)

for both the adjacency list and the adjacency map representation, and for labeled vertices
and edges. Figure 2 shows the corresponding classes in detail.

For the benchmark dataset, we have used random directed graphs with n = 8, 16, 32, 64,
128, 256 vertices and m = 1, . . . , n(n− 1) directed edges. These 86,856 directed graphs were
generated using the Erdős–Rényi model, by which all (directed) graphs with n vertices
and m (directed) edges have the same probability [10,11], as implemented in the NetworkX
package for network analysis in Python [9].

Algorithms 2022, 15, 67 5 of 10

c l a s s Graph :
c l a s s Vertex :
def _ _ i n i t _ _ (s e l f , x=None) :
s e l f . _ l b l = x
s e l f . _ I = l i s t ()
s e l f . _O = l i s t ()
c l a s s Edge :
def _ _ i n i t _ _ (s e l f , v ,w, x=None) :
s e l f . _ s r c = v
s e l f . _ t g t = w
s e l f . _ l b l = x

def _ _ i n i t _ _ (s e l f) :
s e l f . _V = l i s t ()
s e l f . _E = l i s t ()
def v e r t i c e s (s e l f) :
return s e l f . _V
def edges (s e l f) :
return s e l f . _E

def incoming (s e l f , v) :
return i t e r (v . _ I)
def outgoing (s e l f , v) :
return i t e r (v . _O)
def ad jacent (s e l f , v ,w) :
i f len (v . _O) < len (w. _ I) :
return w in
[e . _ t g t for e in v . _O]
e lse :
return v in
[e . _ s r c for e in w. _I]
def source (s e l f , e) :
return e . _ s r c
def t a r g e t (s e l f , e) :
return e . _ t g t
def new_vertex (s e l f , x=None) :
v = s e l f . Vertex (x)
s e l f . _V . append (v)
return v

def new_edge (s e l f , v ,w, x=None) :
e = s e l f . Edge (v , w, x)
s e l f . _E . append (e)
v . _O . append (e)
w. _ I . append (e)
return e

c l a s s Graph :
c l a s s Vertex :
def _ _ i n i t _ _ (s e l f , x=None) :
s e l f . _ l b l = x
def __hash__ (s e l f) :
return hash (id (s e l f))
c l a s s Edge :
def _ _ i n i t _ _ (s e l f , v ,w, x=None) :
s e l f . _ s r c = v
s e l f . _ t g t = w
s e l f . _ l b l = x
def __hash__ (s e l f) :
return hash ((id (s e l f . _ s r c) ,
id (s e l f . _ t g t)))
def _ _ i n i t _ _ (s e l f) :
s e l f . _D = d i c t ()

def v e r t i c e s (s e l f) :
return i t e r (s e l f . _D . keys ())
def edges (s e l f) :
return i t e r ([s e l f . _D[v] . _O[w]
for v in s e l f . _D
for w in s e l f . _D[v] . _O])
def incoming (s e l f , v) :
return i t e r (s e l f . _D[v] . _ I . values ())
def outgoing (s e l f , v) :
return i t e r (s e l f . _D[v] . _O . values ())
def ad jacent (s e l f , v ,w) :
i f len (s e l f . _D[v] . _O)
< len (s e l f . _D[w] . _ I) :
return w in s e l f . _D[v] . _O
e lse :
return v in s e l f . _D[w] . _ I

def source (s e l f , e) :
return e . _ s r c
def t a r g e t (s e l f , e) :
return e . _ t g t
def new_vertex (s e l f , x=None) :
v = s e l f . Vertex (x)
s e l f . _D[v] = type (’ ’ , () , { })
s e l f . _D[v] . _ I = d i c t ()
s e l f . _D[v] . _O = d i c t ()
return v
def new_edge (s e l f , v ,w, x=None) :
e = s e l f . Edge (v , w, x)
s e l f . _D[v] . _O[w] = e
s e l f . _D[w] . _ I [v] = e
return e

Figure 2. Python implementation of the adjacency list (left) and adjacency map (right) representation
of a directed graph.

In order to compare the performance of the adjacency-list and the adjacency-map
representation, we have chosen three graph algorithms:

• A simple algorithm for constructing a graph from a list of edges, thereby testing the
performance of the abstract operations for adding new vertices and edges to a graph.

• An iterative algorithm for the breadth-first traversal of a graph ([5] [Section 5.2]),
thereby testing the performance of the abstract operations for iterating over the vertices
and edges of the graph.

• An algorithm for finding a universal sink of a directed graph ([2] [Ex. 22.1-6]), thereby
testing the performance of the adjacency-test abstract operation.

Algorithms 2022, 15, 67 6 of 10

The universal sink algorithm, adapted from [1], is shown in Algorithm 2. The first
loop, which breaks at the first iteration, is used to set an initial candidate for the universal
sink to the first vertex in the order fixed by the representation of the graph (actually, any
vertex of the graph would suffice). The second loop is used to discard all but one of the
vertices in the graph as candidates for universal sink. The third loop is used to check if the
remaining candidate vertex indeed has in-degree equal to the number of vertices of the
graph minus one and out-degree zero.

Algorithm 2 Finding a universal sink in a directed graph G = (V, E) with |V| > 2.

function universal_sink(G)
for all v ∈ vertices(G) do

break
for all w ∈ vertices(G) do

if v 6= w and G.adjacent(v, w) then
v = w

for all w ∈ vertices(G) do
if G.adjacent(v, w) or (v 6= w and not G.adjacent(w, v)) then

return false
return true

Assuming the adjacency test takes O(1) time, the graph construction algorithm, the
breadth-first graph traversal algorithm, and the universal sink algorithm all take O(n + m)
time, on a graph with n vertices and m directed edges.

3. Results

We have implemented the simple graph construction algorithm and the universal
sink algorithm in Python, taken the Python implementation of the breadth-first graph
traversal algorithm from ([5] [Appendix A]), and run the algorithms for graph construction,
breadth-first traversal, and universal sink on the 86,856 random directed graphs in the
benchmark dataset. Table 1 shows the average running time of each of the three algorithms
with the adjacency-list and the adjacency-map representation, over n(n − 1) = 56, 240,
992, 4032, 16,256, 65,280 random directed graphs with n = 8, 16, 32, 64, 128, 256 vertices,
respectively, on a computer with a 12-core Intel Xeon processor and 64 GB of memory.

Table 1. Number of vertices (n) for the benchmark graphs, and average running times for graph
construction (Construct), breadth-first traversal (Traversal), and universal sink (Sink) for both the
adjacency-list (List) and the adjacency-map (Map) representation. All running times are in seconds.

Construct Traversal Sink

n List Map List Map List Map

8 0.000098 0.000411 0.000049 0.000038 0.000014 0.000027
16 0.000282 0.001071 0.000114 0.000086 0.000020 0.000031
32 0.000822 0.002202 0.000321 0.000239 0.000052 0.000059
64 0.003640 0.008158 0.001079 0.000788 0.000161 0.000110
128 0.015521 0.031588 0.004194 0.003021 0.000659 0.000220
256 0.085243 0.144632 0.016632 0.012799 0.004290 0.000450

The ratio of these average running times (adjacency maps over adjacency lists) for the
three graph algorithms are plotted in Figure 3. Graph construction is about 4 times slower
with adjacency maps for graphs with at most 16 vertices, but only about 2 times slower
for graphs with at least 128 vertices. On the other hand, breadth-first graph traversal and
the universal sink algorithm run faster with adjacency maps for all graph sizes in the case
of graph traversal and for graphs with at least 64 vertices in the case of universal sink on
the average.

Algorithms 2022, 15, 67 7 of 10

	0

	0.5

	1

	1.5

	2

	2.5

	3

	3.5

	4

	4.5

	8 	16 	32 	64 	128 	256

M
ap
	v
s	L

ist

Number	of	vertices

Construct
Traversal

Sink

Average	Running	Time	Ratio

Figure 3. Ratio of the average running time with the adjacency-map over the adjacency-list represen-
tation, for the graph construction (violet), breadth-first traversal (green), and universal sink (cyan)
algorithms, on random directed graphs with n = 8, 16, 32, 64, 128, 256 vertices and 1, . . . , n(n− 1)
directed edges.

These running times are shown in more detail in Figure 4, where instead of average
running times, individual running times are plotted for each of the random directed graphs
in the benchmark dataset. Graph construction is almost always slower with adjacency
maps for graphs with 8, 16, or 32 vertices, but it is faster with adjacency maps for 170 of the
4032 graphs with 64 vertices, 2870 of the 16,256 graphs with 128 vertices, and 3599 of the
65,280 graphs with 256 vertices in the benchmark dataset.

Breadth-first graph traversal is almost always faster with adjacency maps: for all the
56 graphs with 8 vertices, 239 of the 240 graphs with 16 vertices, 989 of the 992 graphs
with 32 vertices, 4022 of the 4032 graphs with 64 vertices, 16,247 of the 16,256 graphs with
128 vertices, and 65,266 of the 65,280 graphs with 256 vertices in the benchmark dataset.
The universal sink algorithm is always slower with adjacency maps for graphs with 8 or
16 vertices, but it is faster with adjacency maps for 394 of the 992 graphs with 32 vertices,
2828 of the 4032 graphs with 64 vertices, 13,839 of the 16,256 graphs with 128 vertices, and
60,582 of the 65,280 of the graphs with 256 vertices in the benchmark dataset.

Algorithms 2022, 15, 67 8 of 10

	0

	0.0001

	0.0002

	0.0003

	0.0004

	0.0005

	0.0006

	0.0007

	0 	10 	20 	30 	40 	50 	60
0.00003

0.00004

0.00004

0.00005

0.00005

0.00006

0.00006

0.00007

0.00007

	0 	10 	20 	30 	40 	50 	60
	0

	1x10-5

	2x10-5

	3x10-5

	4x10-5

	5x10-5

	6x10-5

	7x10-5

	0 	10 	20 	30 	40 	50 	60

	0

	0.0002

	0.0004

	0.0006

	0.0008

	0.001

	0.0012

	0.0014

	0.0016

	0.0018

	0 	50 	100 	150 	200 	250
	0

	5x10-5

	0.0001

	0.00015

	0.0002

	0.00025

	0.0003

	0 	50 	100 	150 	200 	250
0.00001

0.00002

0.00002

0.00003

0.00003

0.00004

0.00004

0.00005

	0 	50 	100 	150 	200 	250

	0

	0.005

	0.01

	0.015

	0.02

	0.025

	0.03

	0 	100 	200 	300 	400 	500 	600 	700 	800 	900 	1000
	0

	0.0001

	0.0002

	0.0003

	0.0004

	0.0005

	0.0006

	0.0007

	0 	100 	200 	300 	400 	500 	600 	700 	800 	900 	1000
0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

0.00009

0.00010

0.00011

	0 	100 	200 	300 	400 	500 	600 	700 	800 	900 	1000

	0

	0.005

	0.01

	0.015

	0.02

	0.025

	0.03

	0.035

	0.04

	0 	500 	1000 	1500 	2000 	2500 	3000 	3500 	4000 	4500
	0

	0.0002

	0.0004

	0.0006

	0.0008

	0.001

	0.0012

	0.0014

	0.0016

	0.0018

	0.002

	0.0022

	0 	500 	1000 	1500 	2000 	2500 	3000 	3500 	4000 	4500
	0

	5x10-5

	0.0001

	0.00015

	0.0002

	0.00025

	0.0003

	0.00035

	0.0004

	0 	500 	1000 	1500 	2000 	2500 	3000 	3500 	4000 	4500

	0

	0.01

	0.02

	0.03

	0.04

	0.05

	0.06

	0.07

	0.08

	0.09

	0.1

	0 	2000 	4000 	6000 	8000 	10000 	12000 	14000 	16000 	18000
	0

	0.002

	0.004

	0.006

	0.008

	0.01

	0.012

	0 	2000 	4000 	6000 	8000 	10000 	12000 	14000 	16000 	18000
	0

	0.0005

	0.001

	0.0015

	0.002

	0.0025

	0 	2000 	4000 	6000 	8000 	10000 	12000 	14000 	16000 	18000

	0

	0.05

	0.1

	0.15

	0.2

	0.25

	0.3

	0.35

	0.4

	0.45

	0 	10000 	20000 	30000 	40000 	50000 	60000 	70000
	0

	0.005

	0.01

	0.015

	0.02

	0.025

	0.03

	0.035

	0.04

	0 	10000 	20000 	30000 	40000 	50000 	60000 	70000
	0

	0.002

	0.004

	0.006

	0.008

	0.01

	0.012

	0.014

	0.016

	0 	10000 	20000 	30000 	40000 	50000 	60000 	70000

Figure 4. Running time (seconds) for the graph construction (left), breadth-first traversal (center),
and universal sink (right) algorithms on the benchmark dataset, for the adjacency-list (violet)
and adjacency-map (green) representation, on random directed graphs with (top to bottom)
n = 8, 16, 32, 64, 128, 256 vertices and 1, . . . , n(n− 1) directed edges.

Algorithms 2022, 15, 67 9 of 10

4. Discussion

We have implemented three graph algorithms (graph construction, breadth-first graph
traversal, and universal sink) using a small collection of abstract operations, with both the
adjacency-list and the adjacency-map representation, and run them upon a benchmark
dataset of random directed graphs with n = 8, 16, 32, 64, 128, 256 vertices and a number
of directed edges ranging from m = 1 to the maximum possible number m = n(n− 1) of
directed edges. The abstract operations take O(1) worst-case time with the adjacency-list
representation and O(1) expected time with the adjacency-map representation, with the
only exception of the adjacency test, which takes worst-case linear time in the degree of
the vertices with the adjacency-list representation. With the adjacency-map representation,
the abstract operations used in the algorithm for graph construction require dictionary
lookup and update, and the abstract operations used in the algorithms for breadth-first
graph traversal and for finding a universal sink require dictionary lookup, iteration over
dictionary keys, and iteration over dictionary values.

The experimental results show that graph construction is slower (by a small constant
factor) with adjacency maps than with adjacency lists. This can be explained by the
O(1) amortized running time of the underlying update operations on dynamic lists and
dictionaries. Adding a new vertex to a graph involves one list-append operation with
adjacency lists, and one insertion in a dictionary and the creation of two new dictionaries
with adjacency maps, while adding a new edge to a graph involves three list-append
operations with adjacency lists and two insertions in a dictionary with adjacency maps.
Nevertheless, extending the adjacency-map representation with an operation to build a
graph from a list of edges, instead of adding vertices and edges one-by-one to an initially
empty graph, might result in a faster graph construction algorithm.

Experimental results also show that graph algorithms that do not test adjacencies
(breadth-first graph traversal) run faster (by a small constant factor) with adjacency maps
than with adjacency lists, and graph algorithms that test adjacencies (universal sink) run
much faster (by one or two orders of magnitude) with adjacency maps than with adjacency
lists. These results further reinforce the choice of the adjacency-map representation over
the adjacency-list representation in recent textbooks [5,8] and software libraries [9].

While the experimental results were obtained with a Python implementation of the
algorithms and graph data structures, adjacency maps can be easily implemented in any
modern programming language, as they only need dictionaries as the underlying data
structures. However, it is possible that the differences in running time between adjacency
lists and adjacency maps become smaller with compiled programming languages once
the overhead of compiling the source code into bytecode by the Python interpreter is
removed. The influence of the programming language in the efficiency of the adjacency-
map representation is an open line of future research.

Funding: This research was partially supported by the Spanish Ministry of Science, Innovation and
Universities and the European Regional Development Fund through project PGC2018-096956-B-C43
(FEDER/MICINN/AEI), and by the Agency for Management of University and Research Grants
(AGAUR) through grant 2017-SGR-786 (ALBCOM).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The Python script used to generate the 86,856 random directed graphs
used in this study is available on request from the corresponding author.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Valiente, G. Trading uninitialized space for time. Inf. Process. Lett. 2004, 92, 9–13. [CrossRef]
2. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 3rd ed.; MIT Press: Cambridge, MA, USA, 2009.

http://doi.org/10.1016/j.ipl.2004.06.002

Algorithms 2022, 15, 67 10 of 10

3. Mehlhorn, K.; Näher, S. The LEDA Platform of Combinatorial and Geometric Computing; Cambridge University Press: Cambridge,
UK, 1999.

4. Siek, J.G.; Lee, L.Q.; Lumsdaine, A. The Boost Graph Library: User Guide and Reference Manual; Addison-Wesley: Reading, MA,
USA, 2001.

5. Valiente, G. Algorithms on Trees and Graphs, 2nd ed.; Texts in Computer Science; Springer Nature: Cham, Switzerland, 2021.
6. Tarjan, R.E. Depth-first search and linear graph algorithms. SIAM J. Comput. 1972, 1, 146–160. [CrossRef]
7. Tarjan, R.E. Data Structures and Network Algorithms; CBMS-NSF Regional Conference Series in Applied Mathematics; Society for

Industrial and Applied Mathematics: Philadelphia, PA, USA, 1983; Volume 44.
8. Goodrich, M.T.; Tamassia, R.; Goldwasser, M.H. Data Structures and Algorithms in Python; John Wiley & Sons, Inc.: Hoboken, NJ,

USA, 2013.
9. Hagberg, A.A.; Schult, D.A.; Swart, P.J. Exploring network structure, dynamics, and function using NetworkX. In Proceedings

of the 7th Python in Science Conference, Pasadena, CA, USA, 19–24 August 2008; Varoquaux, G., Vaught, T., Millman, J., Eds.;
SciPy.org: Pasadena, CA, USA, 2008; pp. 11–16.

10. Bollobás, B. Random Graphs, 2nd ed.; Number 73 in Cambridge Studies in Advanced Mathematics; Cambridge University Press:
Cambridge, UK, 2001.

11. Coolen, A.C.C.; Annibale, A.; Roberts, E.S. Generating Random Networks and Graphs; Oxforf University Press: Oxford, UK, 2017.

http://dx.doi.org/10.1137/0201010

	Introduction
	Materials and Methods
	Results
	Discussion
	References

