
Master Thesis
Universitat Politècnica de Catalunya

Universitat de Barcelona
Universitat Rovira i Virgili

Reinforcement Learning for Portfolio
Optimization

Rafael Bianchi

Supervisor: Mario Martin

April 20, 2022

Abstract

In this study, the potential of using Reinforcement Learning for Portfolio Opti-

mization is investigated, considering the constraints set by the stock market, such

as liquidity, slippage, and transaction costs. Five Deep Reinforcement Learning

(DRL) agents are trained in two different environments to test the agents’ abil-

ity to learn the best trading strategies to allocate assets, expecting to generate

higher cumulative returns. All agents used are model-free and already optimized

for financial problems, using the FinRL library. Therefore, the state-space has a

high dimension, as found in the financial market environments. The two proposed

environments use market data from US stocks, and one of them also uses Finsent

data, an alternative data source that contains the news sentiment for all the stocks

that are part of Dow Jones Industrial Average (DJIA). A series of backtesting ex-

periments were performed from the beginning of 2019 to the beginning of 2020

and compared the two environments and how the agents performed against the

DJIA. All the results were assessed with the pyfolio Python library, which uses

all standard metrics to evaluate portfolio performance. Some algorithms increased

the cumulative returns compared to the first dataset. The best result obtained

outperformed DJIA by a significant amount and a smaller drawdown.

Keywords: Reinforcement Learning; Machine Learning; Portfolio Optimization;

Finance; Machine Learning; Markov Decision Processes

iii

iv

Acknowledgement

I would like to thank Professor Mario Martin for guiding me through this project.

His support was fundamental to challenging me and helping me expand my knowl-

edge on the subject. Beyond the tutoring, Professor Mario Martin impacted my

trajectory in this Master’s substantially by being an excellent reference for a future

I dream of and empathic to the challenges in my personal life.

I also would like to thank my family for their continuous support in this journey.

I would like to thank my wife for encouraging me to pursue a career change,

my parents for investing in their children’s education, my sister for visiting me in

Barcelona when I most needed it, my sister-in-law for the guidance in the academia,

and my work colleagues for the lifetime learning on technology.

Lastly, I would like to thank the University for the opportunity to learn and be

part of a great group of minds thinking not only about this exciting subject of

artificial intelligence but also about how early technologies can play an essential

role in contributing to shaping a more ethical and better world for all humans.

v

List of Figures

1 MP graph representing the state transition with probabilities. . . . 7

2 MRP graph with probability transitions (black) and rewards (red). 9

3 The agent-environment reward process. 10

4 Comparison between the Twin Delayed DDPG (TD3) agent running

with and without Finsent data. 37

5 Comparison between Deep Deterministic Policy Gradient (DDPG)

agent running with and without Finsent data. 38

6 Comparison between the Proximal Policy Optimization (PPO) agent

running with and without Finsent data. 40

7 Comparison between the Soft Actor-Critic (SAC) agent running

with and without Finsent data. 41

8 Comparison between Advantage Actor Critic (A2C) agent running

with and without Finsent data. 42

vi

List of Tables

1 The four essential types of financial data 16

2 Sample data for 10 days for the Apple Inc. (AAPL) ticker using the

yfinance python library. 27

3 List of supported data sources and their securities and frequency. . 28

4 List of technical indicators available. 29

5 List of available algorithms and their input and output parameters. 31

6 Finsent sample data. 32

7 Finsent data merged with market data. 33

vii

Listings

A.1 StockTradingEnv compatible with Finsent information. 51

viii

Acronyms

A2C Advantage Actor Critic. vi, 31, 35, 42

AAPL Apple Inc.. vii, 27

AI Artificial Intelligence. 1, 6

B3 Brasil, Bolsa, Balcão. 23

BPN Back-propagation Neural Network. 22

CLA Critical Line Algorithm. 21

DDPG Deep Deterministic Policy Gradient. vi, 23, 31, 35, 36, 38

DJIA Dow Jones Industrial Average. iii, 2, 32, 46

DL Deep Learning. 22, 23

DRL Deep Reinforcement Learning. iii, 23, 35

EOD End of Day. 45

IPO Initial Public Offering. 46

MDP Markov Decision Processes. 3, 6, 8–11, 27, 28

ix

ML Machine Learning. 1, 22, 23, 44

MP Markov Process. 6, 8, 9

MPT Modern Portfolio Theory. 15

MRP Markov Reward Process. 8, 9

NNF Neural Network with Fixed noise. 22

NYSE New York Stock Exchange. 1

OHLCV Open, High, Low, Close and Volume. 23, 27, 35

PPO Proximal Policy Optimization. vi, 31, 35, 39, 40

RL Reinforcement Learning. 1–3, 6, 10–13, 23, 25, 27, 28, 45, 46

SAC Soft Actor-Critic. vi, 31, 35, 41

SVM Support-vector Machine. 22

SVR Support-vector Regression. 22

TD3 Twin Delayed DDPG. vi, 31, 35–37

x

Contents

1 Introduction 1

1.1 Problem Definition . 2

1.2 Motivation . 2

1.3 Structure of the Report . 3

I Background 5

2 Reinforcement Learning 6

2.1 Markov Processes . 6

2.2 Markov Reward Processes . 8

2.3 Markov Decision Processes . 9

2.4 Components of Reinforcement Learning 10

2.4.1 Policy . 11

2.4.2 Rewards . 11

2.4.3 Value function . 11

2.4.4 Environment . 12

3 Financial Foundations 13

3.1 Financial Terms & Concepts . 13

3.1.1 Asset . 14

3.1.2 Portfolio . 14

3.1.3 Portfolio Optimization . 15

3.1.4 Short Selling . 15

3.2 Financial Data Structures . 15

3.2.1 Data Types . 16

3.3 BARS . 18

3.3.1 Standard Bars . 18

II Literature Review 20

4 Portfolio Optimization 21

4.1 Quadratic Programming . 21

4.2 Machine Learning . 22

4.3 Deep Learning . 22

4.4 Reinforcement Learning . 23

5 Materials and Methods 25

5.1 FinRL . 25

5.1.1 Assumptions . 26

5.1.2 Market Environments . 27

5.1.3 Setting up the Environment . 28

5.1.4 Agents . 30

5.1.5 Backtesting . 31

5.2 Dataset . 31

5.2.1 Market Data . 32

5.2.2 Finsent . 32

III Experiments 34

6 Results 35

7 Conclusion 44

7.1 Contributions . 44

7.2 Limitations of the Research . 45

7.3 Future Work . 46

Bibliography 48

A FinRL Environment 51

A.1 Environment for Finsent Data . 51

Chapter 1

Introduction

The stock market and computer technology have worked together for a long time.

For example, the New York Stock Exchange (NYSE) has been computerized going

back to 1966, even though the first trading, made by an automated system, only

occurred in 1982.

Nowadays, computers handle all the transactions, and the financial industry con-

stantly tries to keep up with new technologies. In this context, computers tech-

nology has been a differential for the top players by improving their returns and

helping to mitigate their losses.

Several different methods and systems have been used in financial market applica-

tions, including control algorithms, signal processing, and statistical/mathematical

methods. Given the success and growing popularity of Machine Learning (ML),

the use and the traction of ML models also got the interest of the financial markets.

In this thesis, we aim to explore portfolio optimization using Reinforcement Learn-

ing (RL), a branch of Artificial Intelligence (AI) that solves the sequential decision-

1

Chapter 1. Introduction

making process, directly interacting with the environment.

In this introductory chapter, we define the goals of the thesis and highlight the

definition of the problem and the motivations.

1.1 Problem Definition

The aim of the portfolio optimization problem is to find the best asset allocations

(weights) that maximize long-term return.

This can be mapped to an RL terminology, using historical stock prices, news sen-

timent, and the current portfolio (e.g., weights for each asset, technical indicators,

prices, etc.) as states, modeling it to a model-free RL so that the agent finds the

optimal policy and maximizes the returns.

The problem in this report is set as trying to follow or beat the DJIA, composed

of thirty stocks. A successful RL solution is defined as when an agent can manage

this portfolio, performing the actions of buying, selling, or holding the stocks and

maximizing the rewards in the long term.

All possible tradeable assets actions must be taken only once per day, as day

trading is not allowed. The actions are discrete and have a pre-defined boundary

limiting how many shares can be bought or sold.

1.2 Motivation

An attempt to experiment RL framework in portfolio management problems is

motivated by the successful implementations and advances made in the RL field.

These implementations range from various domains such as video games (Mnih

et al., 2015), board gaming (Silver et al., 2016), and protein folding (Callaway,

2

1.3. Structure of the Report

2020).

However, the number of research about RL in the financial domain is still low

(growing a lot lately, though).

1.3 Structure of the Report

The report is organized into three parts: Background (Part I), Literature Review

(Part II), and Experiments (Part III). A brief outline of the project structure and

chapters is provided as follows:

Chapter 2: Reinforcement Learning This chapter presents a brief introduc-

tion for RL main components and the Markov Decision Processes (MDP) frame-

work.

Chapter 3: Financial Foundations This chapter introduces the basic financial

terms and concepts of the method developed later in the report.

Chapter 4: Portfolio Optimization In this chapter, we discuss some mathe-

matical, systematic, and automated methods for optimizing a portfolio. Related

work for each of the method types is also presented here.

Chapter 5: Materials and Methods Materials and methods that will be used

in the experiments are presented in this section, with an explanation of the FinRL

framework and the assumptions that will be considered for the training and trading

part. Also, the format and previews of the datasets that are used in this report.

Chapter 6: Results This chapter presents the results and evaluates the perfor-

mance of the trading agents in two scenarios: simple market data and indicators

and market data with Finsent data.

3

Chapter 1. Introduction

Chapter 7: Conclusion The conclusion of this report, considering the limitations

and future work that could improve the performance of the trading agents.

4

Part I

Background

5

Chapter 2

Reinforcement Learning

RL is a subtopic of AI based on MDP, and it is also known as approximated

dynamic programming. The goal is that the agent learns, by interacting with the

environment, which action to take in a given observed state and maximize the

expected cumulative reward. Based on a simple action-feedback cycle, the agent

is able to actively adapt to the environment.

This chapter addresses some mathematical representations, formalisms, the con-

cepts of MDPs, and it also reviews the main components of RL.

2.1 Markov Processes

Markov Process (MP) is a stochastic process that is also known as the Markov

chain. The system is formalized with states, which are observations that can be

observed from the state space and a time index (discrete or continuous). The state

space is set as all possible states from the system. A sequence of states (or chain)

over time is referred to as history. In order to be defined as a Markov process, the

Markov property (equation 2.1) must be satisfied. The Markov property requires

6

2.1. Markov Processes

that a state s at time t (St) must contain all information to model the system’s

future dynamics and do not depend on past states. In other words, each state

s must be unique and distinguishable from each other. A system that complies

with the Markov property can utilize the transition probabilities from a transition

matrix, a square matrix with N ×N , where N = size (state-space).

P a
ss = Pr{st+1 = st|st = s, at = a} ∀s, st ∈ S, a ∈ A(s) (2.1)

As Figure 1 illustrates, the MP can be represented as a graph with nodes corre-

sponding to the states and the directed edges representing the transition proba-

bility from a state to another.

Figure 1: MP graph representing the state transition with probabilities.

The Markov property also implies that the environment is stationary, meaning

that the states’ transition distribution does not change over time, regardless of the

transition history.

7

Chapter 2. Reinforcement Learning

2.2 Markov Reward Processes

The Markov Reward Process (MRP) extends MP and adds the reward to the

transition between states. The reward is usually defined as a square matrix, similar

to the transition matrix, with a reward given for a transition from St to St+1.

Rewards might be positive or negative (penalizing) and usually are defined as

natural numbers. The total reward, for a given time t, is defined as:

Gt = Rt+1 + γRt+2 + . . . =
∞∑
k=0

γkRt+k+1 (2.2)

As noted in equation 2.2, a new factor gamma is added that defines the importance

that the agent gives to future rewards. With that, future rewards distant from t

are multiplied by the discount factor gamma raised by the time steps distant from

t. The value of gamma ranges from 0 to 1. When gamma = 0, the agent is short-

sighted and does not take the future rewards into account, and, when gamma =

1, all future rewards are considered to compose the return at time t (Gt). The

gamma is also helpful because the sum of the future states might be infinite, as

there might be transitions that can be visited a countless number of times. In

practice, the Gt value is hardly used as it can vary widely, even for the same state.

Instead, the value of the state V (s) (equation 2.3) is used. The value for every

state is the expected (average) return following the MDP.

V (s) = E[G|St = s] (2.3)

The MP is modified, and the reward value is added to the transitions, as shown

in Figure 2.

8

2.3. Markov Decision Processes

Figure 2: MRP graph with probability transitions (black) and rewards (red).

2.3 Markov Decision Processes

As noticed in the previous models (i.e., MP and MRP), they can only be used

to observe the environment passively, getting some probabilities to infer future

states. In order to define the MDP, the MRP needs to be extended in a way that

the agent can interact with the environment. This extension is a set of actions (A),

and the transition matrix now has to consider the action taken in one state getting

to another. When the agent chooses an action, the agent affects the transiting

probabilities to a target state. Now, the agent’s rewards depend on the state and

the action taken in a state St.

This modification adds an extra dimension to the transition matrix, changing the

dimensions to NxNxA with N as the number of states and A as the number of

actions.

A finite discrete-time fully observable MDP is a tuple ⟨S,A,D, T,R⟩, where:

9

Chapter 2. Reinforcement Learning

• S - it is a finite set of possible states in an environment.

• A - finite set of actions that an agent can take

• D - Sequence of natural numbers (1, 2, . . . , Tmax), discrete epochs in which

actions are taken.

• T - The transition function gives the probability of ending up in a state S2,

given an action taken in a state S1.

• R - It is the reward function that returns a real number, positive when it is

modeled as a reward or negative when it is modeled as cost.

2.4 Components of Reinforcement Learning

RL is a framework used to solve problems that are described in an MDP model.

The RL relies on the problem being well fitted and modeled correctly to the MDP

model, even though all the transitions do not need to be known. On the other

hand, a problem that cannot be described as an MDP might not be suitable for

a RL framework. Following the definitions of the MDP, the RL usually have four

main components: rewards, value functions, policy, and environment.

Figure 3: The agent-environment reward process.

10

2.4. Components of Reinforcement Learning

2.4.1 Policy

With a full formalized MDP, the last thing and one of the most important items to

cover of an RL or MDP problem is the policy. The policy is the map between states

and actions that control the behavior of an agent in a Markovian Process. It can

be considered the agent’s knowledge through interaction with the environment by

trial and error, or by acting and being rewarded. Mathematically, the policy is the

likelihood of actions for every possible state (equation 2.4), that is the probability

of taking action at, given a state st.

π(a|s) = P [At = a|St = s] (2.4)

2.4.2 Rewards

The reward function returns a scalar value which hints to the agent how good or

bad it is behaving. It is the goal of RL to maximize the total reward received by

the agent over a period of time. The reward is the main reason for changing a

policy as if an action executed by following the policy gives a bad or low reward,

the next time that the agent faces the same states, the policy might return another

action to be executed.

2.4.3 Value function

If the reward function gives the value of the action that has been just executed,

the value function valuates in the long run. The value function determines how

good is the state and it is a more fair-sighted approach to learn how good is the

environment in a state st.

11

Chapter 2. Reinforcement Learning

2.4.4 Environment

The last component of the RL system is the representation of the environment.

This representation is close as possible to the behavior and dynamics of the envi-

ronment that allows the agent to infer the next state, given a state and an action.

RL methods that use models are called model-based and the ones that use the

trial and error approach are called model-free.

12

Chapter 3

Financial Foundations

Portfolio optimization is the method of picking the best asset distribution in a

portfolio to maximize the expected return. This optimization usually considers the

assets’ value and other factors as transaction costs, taxes, and other constraints.

Investment managers try to put effort using their knowledge, forecasts and insights

in building a portfolio. This chapter aims to address the data structure of finan-

cial data, Financial Terms & Concepts, and the link between the trading signals

in finance and RL’s possible applications that can be used to create dynamical

systems.

3.1 Financial Terms & Concepts

To better connect the ideas from finance to RL, this section has the definitions for

the financial terms and concepts.

13

Chapter 3. Financial Foundations

3.1.1 Asset

An asset is any object (tangible or intangible) with a value to its holder (Jonathan Law,

2008). It can be cash itself or loans, stocks, rates, and, in most circumstances, can

be converted to cash. Of course, there are many other types of assets like patents,

trademarks, buildings, but our focus in this report is basically on stocks and cash.

3.1.2 Portfolio

A portfolio is the set of holdings in securities owned by an investor or institution

(Jonathan Law, 2008). This set of holds are financial assets, and it is defined as

the vector:

wt = [w1,t, w2,t, . . . , wM,t]
T ∈ RM (3.1)

In equation 3.1, M is the number of assets the portfolio has, the wt represents

the portfolio at the time t, and each i-th represents the ratio of the total invested.

These ratios have to sum to 1, as equation 3.2 shows.

M∑
i=1

wi,t = 1 (3.2)

Investments portfolios are a powerful tool to reduce risk exposure as the number

of assets, and sector distribution, are related to lower exposure risks. For example,

portfolios of 10 stocks (also distributed in various sectors) are less risky than

portfolios with two stocks (Chen, 1999).

14

3.2. Financial Data Structures

3.1.3 Portfolio Optimization

Portfolio optimization is a process to obtain the weights for each asset under the

portfolio that maximizes the portfolio value. In 1952, Harry Markowitz created

a mathematical framework called Modern Portfolio Theory (MPT). This mathe-

matical framework works by building portfolios to maximize the expected return

for a given level of risk. Practically, a single asset risk should not be analyzed

alone, and it should be analyzed how it performs relative to other assets in the

portfolio. Ideally, the positive performance of one asset should cancel the negative

performance of others.

3.1.4 Short Selling

Short selling is a strategy used when the portfolio manager believes in declining

the asset’s price. It is also used for hedging strategy for a long position (for the

same asset) to reduce exposure. The process of short selling is a little bit more

complicated than a long position because the investor has to borrow assets, sell

them, and repurchase them at a lower price before giving them back to the original

owner, thus, making some profit.

3.2 Financial Data Structures

Financial data is any information(price, analysts’ opinions, signals, graphs, and

others) used to analyze and create trading strategies in a trading platform. Most

of the financial data available are unstructured and cannot be used directly by ML

without preprocessing. As with any data input for ML applications, the data’s

quality is essential for the precision of the ML application’s prediction and the

policies that will be improved by the RL application.

15

Chapter 3. Financial Foundations

3.2.1 Data Types

There are essentially four types of financial data (see table 1): fundamental data,

market data, analytics, and alternative data. They have different degrees of di-

versity and complexity. The value of the public data (e.g., stock prices) has the

same value for everyone using it, as everyone has the same data. The value of

private datasets (e.g., alternate data) is quite the opposite, which offers a unique

opportunity, as the other competitors do not have access to it.

Table 1: The four essential types of financial data

Fundamental Data Market Data Analytics Alternative Data

Assets Price/yield/implied
volatility

Analyst
recommendations

Satellite/CCTV
images

Liabilities Volume Credit ratings Google searches

Sales Dividends/coupons Earnings
expectations Twitter/chats

Costs/earnings Open interest News sentiments Metadata
Macro variables Quotes/cancellations
... Aggressor side

...
Note. Reprinted from de Prado (2018, p. 24)

Fundamental Data

Fundamental data is the data that is released when the company has to comply

with regulatory guidelines. This data is usually public and is composed of account-

ing data reported quarterly. When using fundamental data, the main problem is

that the data released publicly is not the same as when it was created. This time

difference might compromise the prediction, results and allocation planning for the

portfolio. Another problem with the fundamental data is that the reports’ value

might get fixed and another version released later, and the RL (or ML) applica-

tion has to be ready to use either version at the proper time. Even though the

fundamental data has a low frequency and is available to everyone in the market,

16

3.2. Financial Data Structures

it is hard to get an advantage as there is no much left unexploited. It might be

used with other data types and joined to get insightful information for choosing

the portfolio’s assets.

Market Data

Market data is all the trade-related data for an asset that is reported by an ex-

change. This sort of data is very time-sensitive and abundant, with terabytes gen-

erated daily. Every market participant leaves a footprint in the trading records,

making it possible for competitors to rebuild the trad anticipate and market. The

structure of the raw data feed is unstructured (FI/X messages) and has to be

preprocessed. This preprocessing is not complicated, but it might require high

hardware resources to keep up with the market as it is time-sensitive. The his-

torical market data is also essential to forecast prices and estimate uncertainty on

portfolios.

Analytics

According to the source data, analytics is the derivative data based on alternative,

fundamental, or market data. It can also be a combination of many data sources.

Original data has to be processed by something or someone else and then made

available to be considered analytics data. Banks usually generate this type of

data, analyzing the source data and creating an in-depth analysis of companies,

countries, and governments and then selling to consumers. There are some pros

and cons when buying alternative data. Even though the data is not openly

available, which increases its uses and intrinsic value for the consumer, the data

might be biased, and the criteria for transforming it might not be known.

17

Chapter 3. Financial Foundations

Alternative Data

Alternative data is the information about an organization created or made avail-

able from sources outside the organization. The type of data (image, text, news,

and others) is broad, usually unstructured. This information creates timely op-

portunities for investments, and it is very promising for use in ML systems as

ML systems might find useful patterns for better predictions. Combining other

financial data types creates opportunities for portfolio managers to create better

portfolio optimization strategies that can increase the expected return in the long

run.

3.3 BARS

As for most Machine Learning solutions, the input must be regularized, usually

available in a table format. This kind of format is known in finance as BARS.

There are two types of bars: standard bars and information-driven bars. Forming

bars and understanding their use and common pitfalls is an important part of the

process of trading.

3.3.1 Standard Bars

This type of bar construction is highly available in the financial industry, and they

are frequently used by algorithmic trading applications and for trader analysis.

Several vendors make it usable through APIs, which makes it easier to be used

across the globe.

Time Bars

The most common bars are formed by sampling data on a fixed time frame interval

(e.g., hourly or daily) and habitually carry information about the open/close and

18

3.3. BARS

low/high prices in the chosen interval. This kind of bar should be used with care as

it might downsample data around the market’s most active hours (opening/closing

periods) and oversample data around the market’s most inactive hours.

Tick Bars

Tick bars are a straightforward method that groups the variables (open, close,

high, low volume, and others) after a pre-defined number of transactions. This

type of bar makes it easy to synchronize data arrival but comes with the downside

that it might introduce outlier as it could compress large orders in one tick and a

large number of small order in another tick.

Volume Bars

As the name implies, volume bars sample the information after a certain volume

of the security’s units have been exchanged. This method circumvent the problem

of order fragmentation that tick bars might introduce to the algorithm.

19

Part II

Literature Review

20

Chapter 4

Portfolio Optimization

Portfolio construction is one of the most known financial problems. As a result, in-

vestment managers, economists, and academics have been spending decades trying

to find the best tool and methods to build a portfolio computationally efficient. As

introduced in subsection 3.1.3, Portfolio Optimization is the process of finding the

best portfolio (or best asset distribution) according to an objective function. This

chapter explores the current methods and algorithms that address the portfolio

management problem.

4.1 Quadratic Programming

A few quadratic optimization methods are specifically developed for portfolio op-

timization. One of these methods is famous because Markowitz himself designs it.

Markowitz developed the Critical Line Algorithm (CLA) (open-source implemen-

tation by Bailey and López de Prado (2013)), a quadratic optimization procedure

that is guaranteed to achieve the exact solution after a determined number of it-

erations. Besides the specificity of the algorithm, and the guarantee to find the

21

Chapter 4. Portfolio Optimization

solution, it has some caveats that might make it unreliable. For instance, if the

predicted returns have slightly high deviations, it might create different portfolios

(Michaud, 1998).

4.2 Machine Learning

ML models are based on statistical and mathematical methods that have been

used for decades. This assumption makes ML a good start for predicting any-

thing, from churn rate to stock prices. Kim (2003) presented a study about using

a Support-vector Machine (SVM) for predicting an asset price direction and how

to find the C bound and kernel parameters as they are very critical for the re-

sults. This model was also compared with other models (Back-propagation Neural

Network (BPN) and SVM), showing that the SVM can be used as an alterna-

tive to other ML methods for predicting stock prices. Meesad and Rasel (2013)

also used an Support-vector Regression (SVR) and different windowing operators

as the algorithm’s input to predict stock trends and prices. These solutions are

model-based and have another step to use the predictions for the trading part.

4.3 Deep Learning

Besides the enormous advances and increased use of Deep Learning (DL) to solve

vast types of problems, there are few portfolio optimization problems solved using

deep learning (Kwak et al., 2021). Yun et al. (2020) proposed a two-staged DL

framework that addresses the relative and absolute returns using a cost function.

This proposed method outperforms ordinary single-staged DL process in all tests.

Kwak et al. (2021) also used a DL model to optimize the portfolio. Using a Neural

Network with Fixed noise (NNF), the model outperformed the baselines, defined as

an equally-weighted portfolio and Shallow NNF. Even though they demonstrated

22

4.4. Reinforcement Learning

DL models that can optimize portfolios, they are model-based methods and do

not do the trading part directly. Rather, they require further methods to process

the predicted prices, which generally use traditional heuristics. Both ML and DL

methods do not consider the transaction costs, and it is an essential constraint for

portfolios built on markets that charge these costs from the transactions.

4.4 Reinforcement Learning

The RL solutions have been getting traction in the financial industry lately. Due to

the nature of the RL, which tries to find the best actions to maximize the rewards

(or minimize costs), it seems fit for optimizing a portfolio.

Martinez and Pereira (2020) presented a daily trading system based on the DDPG

agent to optimize the portfolio allocation problem. Their environment is based on

the Brasil, Bolsa, Balcão (B3) stock exchange and has some different assumptions:

(i) a set of ten stocks is bought and held until the end of the day; (ii) they always

sell the stocks within the closing action; (iii) there is no overnight position.

They were able to generate alpha for three years, beating all the other B3 bench-

marks (i.e., Ibovespa). The justification of their work with DRL agents instead

of using DL or ML solutions was partly mentioned in 4.2 and 4.3, as these other

solutions do not take some markets aspects into account (transaction costs, hav-

ing another part for trading, etc.). They also added that the policies that the

agent learns by interacting with the environment are so complex that it would be

challenging for a human being to be able to write in a rule-based system.

Another DRL solution for the portfolio optimization problem was presented by

da Silva (2021). This work was also based on the B3 exchange stock, but it also

considered news sentiment, together with Open, High, Low, Close and Volume

23

Chapter 4. Portfolio Optimization

(OHLCV) data. The author showed that the proposed system is ready to be

implemented on commercial platforms for testing with all the market aspects and

connecting it with brokerage services to let the agent make orders automatically

and interact with the real environment.

24

Chapter 5

Materials and Methods

5.1 FinRL

In order to compare the state-of-the-art RL agents, we will use the FinRL(Liu

et al., 2021) framework, an ecosystem framework designed to automate portfolio

management tasks and includes various markets and state-of-the-art algorithms,

which are also implemented in an optimized way for finance.

In this chapter, we explain and define the main components of the FinRL and how

they are used. Firstly, we consider the necessary assumptions and requirements,

followed by the framework that enables reinforcement learning agents to interact

with the financial market to address portfolio management optimally.

25

Chapter 5. Materials and Methods

5.1.1 Assumptions

No Slippage

Slippage is the difference between the expected price at which an order is placed

and the actual price at which the trade occurs. It occurs when the order placed

on the exchange is executed at a price different from the price requested.

Slippage usually happens in highly volatile markets, when asset prices change so

often that it is difficult to put an order at a specific price and execute it, as the

price might change quickly between the order being placed and executed. Slippage

also happens when there is low liquidity in the market for an underlying asset due

to the difficulty of finding an order matching the expected value for the buyers

and sellers.

We assume that the liquidity of all our portfolio traded assets is high sufficient so

the trades can be executed instantly with the last price.

Liquidity

Liquidity is used to define assets that can be converted to cash, with zero or slight

loss. Following the previous assumption, we assume that there is enough liquidity

to trade (buy or sell) an asset.

No Market Impact

When trading, it is expected that the bigger the volume being traded, it might

affect the prices of the assets. We assume that the volume that our agents will

trade is not significant to impact the market. Thus, our state-space will not include

any information about market impact.

26

5.1. FinRL

5.1.2 Market Environments

As with any RL solution, it requires that the data available is in a format that can

be mapped to an MDP state space. The FinRL framework contains some market

environments to pull the data(OHLCV) in a tabular form as shown in table 2.

Table 2: Sample data for 10 days for the AAPL ticker using the yfinance python
library.

Date Open High Low Close Volume Dividends Stock
Splits

2022-03-03 168.470001 168.910004 165.550003 166.229996 76678400 0 0
2022-03-04 164.490005 165.550003 162.100006 163.169998 83737200 0 0
2022-03-07 163.360001 165.020004 159.039993 159.300003 96418800 0 0
2022-03-08 158.820007 162.880005 155.800003 157.440002 131148300 0 0
2022-03-09 161.479996 163.410004 159.410004 162.949997 91454900 0 0
2022-03-10 160.199997 160.389999 155.979996 158.520004 105342000 0 0
2022-03-11 158.929993 159.279999 154.500000 154.729996 96836300 0 0
2022-03-14 151.449997 154.119995 150.100006 150.619995 108732100 0 0
2022-03-15 150.899994 155.570007 150.380005 155.089996 92964300 0 0
2022-03-16 157.050003 160.000000 154.460007 159.589996 101965749 0 0

With these features, we can use the framework preprocessing tools, add a few more

technical indicators, and use it as a St in an MDP environment. Many data sources

are already integrated into the framework, and the user can add customized ones.

The data sources available are shown in table 3.

Technical Indicators

The OHLCV data is not enough on real trading algorithms, and other information

needs to be considered. For example, it could be alternative data (news, balance

sheet, investor’s sentiment, and others) or technical indicators. These technical

indicators could be momentum, moving average windows, change (in percent),

Choppiness Indexes, and other information that tells how the stock prices change

over time. As we saw in previous chapters, the MDP state can only contain

information about the current St. These indicators are useful because they might

27

Chapter 5. Materials and Methods

Table 3: List of supported data sources and their securities and frequency.

Data Source Type Range and Frequency
Alpaca US Stocks, ETFs 2015-now, 1min
Baostock CN Securities 1990-12-19-now, 5min
Binance Cryptocurrency API-specific, 1s, 1min
CCXT Cryptocurrency API-specific, 1min
IEXCloud NMS US securities 1970-now, 1 day
JoinQuant CN Securities 2005-now, 1min
QuantConnect US Securities 1998-now, 1s
RiceQuant CN Securities 2005-now, 1ms
tusharepro CN Securities, A share -now, 1 min
WRDS.TAQ US Securities 2003-now, 1ms
Yahoo! Finance US Securities Frequency-specific, 1min

indicate trends without bringing information from the past (St−n) to current St.

These indicators are provided by the stockstats (Zhuang, 2022) Python library. A

complete list of all indicators is shown in Table 4.

5.1.3 Setting up the Environment

The environment design is one of the most important parts of RL solutions due

to the nature of an MDP model. The task of automated portfolio optimization

is interactive and stochastic. The training process involves observing stock price

change, taking action, and calculating reward, and then, the agent will adjust

its strategy. This will constantly happen, as the agent will interact with the

environment and try to maximize the reward along the time. The environment on

FinRL is built onto the OpenAI Gym framework (Brockman et al., 2016), and it

simulates the stock market with discrete time-driven simulation. This makes the

FinRL framework more flexible as it may use implementations of RL algorithms

that already work with the Gym framework. The Gym framework also has some

28

5.1. FinRL

Table 4: List of technical indicators available.

Statistics/Indicators Description
middle (close + high + low) / 3
compare le, ge, lt, gt, eq, ne
count both backward(c) and forward(fc)
cross including upward cross and downward cross
SMA Simple Moving Average
EMA Exponential Moving Average
MSTD Moving Standard Deviation
MVAR Moving Variance
RSV Raw Stochastic Value
RSI Relative Strength Index
KDJ Stochastic Oscillator
Bolling Bollinger Band
MACD Moving Average Convergence Divergence
CR Energy Index (Intermediate Willingness Index)
WR Williams Overbought/Oversold index
CCI Commodity Channel Index
TR True Range
ATR Average True Range
DMA Different of Moving Average (10, 50)
DMI Directional Moving Index, including
+DI Positive Directional Indicator
-DI Negative Directional Indicator
ADX Average Directional Movement Index
ADXR Smoothed Moving Average of ADX
TRIX Triple Exponential Moving Average
TEMA Another Triple Exponential Moving Average
VR Volume Variation Index
MFI Money Flow Index
VWMA Volume Weighted Moving Average
CHOP Choppiness Index
KAMA Kaufman’s Adaptive Moving Average
PPO Percentage Price Oscillator
StochRSI Stochastic RSI
WT LazyBear’s Wave Trend
Supertrend with the Upper Band and Lower Band

29

Chapter 5. Materials and Methods

standards for initializing, resetting, stepping forward and has properties that let

the agent know when the episode is terminated.

Action Space

The action space created by the FinRL varies by the number of stocks available

and the number of shares that the agent is allowed to buy or sell. For example, a

simple action space for a single stock would include three actions A = {−1, 0, 1},

representing selling, holding (or doing nothing), and buying, respectively, a single

share. The environment provides a parameter k that can be used to define the

number of shares allowed to buy or sell. That means that the action space range

is defined as A = {−k, · · · ,−1, 0, 1, · · · , k}. For example, if we set it to k=5,

then the action space would be defined as A = {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5},

where the number of actions is defined as k×2+1, for a single stock environment.

State Space

As the Gym environment is very customizable and the implemented algorithms are

Gym ready, it is easy to create as many types of state spaces based on technical in-

dicators, news sentiments, sector analysis, and others. This type of customization

gives the power to do feature engineering even more robust and sophisticated.

5.1.4 Agents

In the Gym framework, the agents are responsible for observing the environment

and performing the actions according to a policy. The FinRL environment comes

with some agents already implemented out-of-the-box. For the algorithms, the

already implemented agents use either ElegantRL, RLLib, or stablebaselines3.

Table 5 shows the available agents and the typical use cases of their use.

30

5.2. Dataset

Table 5: List of available algorithms and their input and output parameters.

Algorithms Input Output Type State-Action Space Support
DQN States Q-value Value based Discrete only
Double DQN States Q-value Value based Discrete only
Duelling DQN States Q-value Value based Discrete only
DDPG States Q-value Actor-critic based Continuous only
A2C State action pair Q-value Actor-critic based Discrete and continuous
PPO State action pair Q-value Actor-critic based Discrete and continuous
SAC State action pair Q-value Actor-critic based Continuous only
TD3 State action pair Q-value Actor-critic based Continuous only
MADDPG State action pair Q-value Actor-critic based Continuous only

For this report’s experiments, the A2C (Mnih et al., 2016), DDPG (Lillicrap

et al., 2015), PPO (Schulman et al., 2017), TD3 (Fujimoto et al., 2018), and

SAC (Haarnoja et al., 2018) algorithms from the stablebaselines3 version of the

FinRl framework.

This version is already compliant and optimized to be run with the format of the

FinRL environments and agents.

5.1.5 Backtesting

Backtesting is the method for demonstrating how well a model would have per-

formed using historical data. Backtesting is very similar to how data scientists

test the models after training. The backtesting in FinRL is done with the pyfo-

lio1 library, which outputs a detailed performance and metrics and allows a more

detailed comparison to the returns of a selected benchmark.

5.2 Dataset

This section explores the available datasets, particular features of each one of them,

and some samples of the data to complete the description.

1https://github.com/quantopian/pyfolio

31

Chapter 5. Materials and Methods

5.2.1 Market Data

The dataset used throughout this work corresponds to a historical series of data

about the closing prices of the thirty stocks that are part of the DJIA.

The series represents 1784 days, from 31st December of 2012 to 31st January 2020,

and were obtained using the embedded yfinance library in FinRL. Due to the data

limitation, the dates boundaries were defined according to the Finsent dataset (see

5.2.2).

5.2.2 Finsent

The Finsent dataset is available only for sale and is published by the Nasdaq Data

Link (formerly Quandl) and is created by InfoTrie.

The data set ranges from 31st December 2012 to 31st January 2020 (hence the

limitations on 5.2.1) and is formed by daily news sentiment indicators for stocks

derived from publicly available internet sources. Table 6 shows a preview of the

format of the Finsent data available.

Table 6: Finsent sample data.

ticker exchange_cd date sentiment sentiment_high sentiment_low news_volume news_buzz name
TWTR US 2018-06-01 0.858 0.858 -1.5 7 3 TWITTER
TWTR US 2018-06-02 0 0 0 0 2 TWITTER
TWTR US 2018-06-03 1 1 1 2 2 TWITTER
TWTR US 2018-06-04 -2.571 -1 -3.4 7 3 TWITTER
TWTR US 2018-06-05 0.422 4 0.089 57 10 TWITTER
TWTR US 2018-06-06 -2.315 1 -4 19 4 TWITTER
TWTR US 2018-06-07 0.358 2.125 -1.5 14 3 TWITTER

The date column does not contain the time part, which makes it impossible to

determine at what time of the day this information would be available for the

agent. The assumption is that the agent only makes the optimization at the end

of the day, and the finsent information would be already known.

32

5.2. Dataset

Table 7: Finsent data merged with market data.
date open high low close volume tic day sentiment sentiment_high sentiment_low news_volume news_buzz
2018-06-01 00:00:00 35.13999938964844 36.689998626708984 35.09000015258789 36.650001525878906 29583100 TWTR 4 0.858 0.858 -1.5 7.0 3.0
2018-06-04 00:00:00 36.45000076293945 37.97999954223633 35.95000076293945 37.880001068115234 32632800 TWTR 0 -2.571 -1.0 -3.4 7.0 3.0
2018-06-05 00:00:00 39.529998779296875 40.15999984741211 39.189998626708984 39.79999923706055 66122200 TWTR 1 0.422 4.0 0.089 57.0 10.0
2018-06-06 00:00:00 39.41999816894531 40.22999954223633 39.209999084472656 40.099998474121094 147805700 TWTR 2 -2.315 1.0 -4.0 19.0 4.0
2018-06-07 00:00:00 40.13999938964844 40.15999984741211 38.63999938964844 39.70000076293945 41573400 TWTR 3 0.358 2.125 -1.5 14.0 3.0

As shown in Table 7, before being used in the FinRL environment, the Finsent

data is merged with the market data by the ticker name and date.

The data producer does not disclose what data sources are taken into account for

building these daily data, nor the algorithms or steps used to score the sentiments

or the news buzz.

33

Part III

Experiments

34

Chapter 6

Results

This chapter presents the experimental results performed to test the ability of the

proposed DRL portfolio optimization using actual market data.

The experiments were conducted by training five DRL agents (A2C, DDPG, PPO,

TD3, and SAC). Also, two types of datasets were used, one with only OHLCV data

(plus the technical indicators) and another using the OHLCV and the finsent data

(also, plus the technical indicators).

The split in the dataset considered for training began on 31st December 2012 and

ended on 31st January 2019, while the dates for the backtesting were between 1st

February 2019 and 1st February 2020. Dates that would include the beginning

of the COVID-19 outbreak would be interesting for backtesting, but the Finsent

data for those dates were not included on the dataset available. That leaves around

seven years of data for training and one year for trading.

That was a concern while joining the Finsent data with the OHLCV data because

as the Finsent had no time part on the date column, it might include future

35

Chapter 6. Results

information for the agent while performing the asset allocation at the end of the

day. However, as the asset allocation only would happen at the closing auctions,

it is assumed that all the news was already available and would be considered past

information for the agent.

In the following figures, we present the results of backtesting all the algorithms

trading in both environments, with and without the Finsent data. Algorithms pair

the images to facilitate spotting the differences.

From Figure 4, it can be noted that for the TD3 agent, even though the cumulative

returns stayed relatively the same, comparing the Finsent dataset with the regular,

the returns received in 2019 (pre-pandemic announce) were greater the entire year,

which made the mean of the annual return increase from 7.8% to 8.2%. This might

be explained because the news score from December 2019 to March 2020 might not

have reflected the actual situation of the markets, as the WHO declared COVID-

19 as a pandemic around the second week of March, and the agent trading in the

regular dataset did not have this information.

The drawdown chart represents the percentage loss of capital experienced by the

portfolio before it starts to have positive returns, considering the daily closing

prices. It shows that the TD3 agent had less continuous time in the underwater

plot, but experienced higher peaks of losses. The peak of a drawdown is the highest

drawdown that occurred during the period, and is used to assess the risk associated

with the portfolio and the investment strategy.

For the DDPG agent, Figure 5 shows that the agent did not improve its cumulative

returns while using the finsent dataset. The cumulative returns decreased and

the mean Sharpe ratio went from 1% to around 0.5%, while the monthly returns

improved significantly in January 2020. The underwater plot also reflects the

36

(a) Regular Dataset - TD3 (b) Finsent Dataset - TD3

Figure 4: Comparison between the TD3 agent running with and without Finsent
data.

37

Chapter 6. Results

(a) Regular Dataset - DDPG (b) Finsent Dataset - DDPG

Figure 5: Comparison between DDPG agent running with and without Finsent
data.

38

smaller and negative returns and shows that the portfolio remained continuously

longer losing capital.

Figure 6 presents the results of the backtest for the PPO agent. It shows that,

in general, the PPO agent had a slight improvement in cumulative returns and a

good improvement in general performance while using the finsent data.

The underwater plot shows that even though it increased the time it stayed losing

capital, the peak of the drawdown was smaller in the finsent dataset than on the

regular dataset. Low drawdown peaks are preferred because they show that the

losses from the investment were small.

The monthly return quantiles also show a concentration of positive returns com-

pared to the quantiles of the regular dataset. Furthermore, the PPO agent im-

proved in other technical indicators that showed a more stable trading strategy.

Figure 7 shows a clear trend of a decrease in the overall performance of the SAC

agent. Although the agent had a good performance, beating the DJIA in almost

all aspects when using the regular data, it lost to the index in the cumulative

returns and indicators that show higher volatility of the risky portfolio strategy

while using the finsent data.

The last comparison shown in Figure 8 presents a significant improvement in the

trading strategy of the A2C agent. This portfolio using Finsent data had cumu-

lative returns improve by 18% compared to the regular dataset. The other back-

testing indicators also show that the cumulative returns are stable, making the

portfolio less risky, even though the volatility increased. This fact is also sustained

by the smaller peak drawdown and shorter continuous time in the underwater plot.

Lastly, the Sharpe ratio gives a better idea of how the portfolio’s returns perform

against risk-free investments over the long term, showing that the portfolio has

39

Chapter 6. Results

(a) Regular Dataset - PPO (b) Finsent Dataset - PPO

Figure 6: Comparison between the PPO agent running with and without Finsent
data.

40

(a) Regular Dataset - SAC (b) Finsent Dataset - SAC

Figure 7: Comparison between the SAC agent running with and without Finsent
data.

41

Chapter 6. Results

(a) Regular Dataset - A2C (b) Finsent Dataset - A2C

Figure 8: Comparison between A2C agent running with and without Finsent data.

42

sustainable returns and that the risk conditions are acceptable to good.

43

Chapter 7

Conclusion

The main goal of this report was to study the effectiveness of the Reinforcement

Learning for Portfolio Optimization. To support this study, the concepts of do-

mains such as ML and finance were explored and the FinRL framework was pre-

sented and extended to support Finsent data. In this chapter, the contributions,

future work, and limitations of this research are explained.

7.1 Contributions

This thesis has made important contributions to the field. First, to build this

report, we explored and tested different environments and agents’ setups to use

RL agents in the financial markets (as a stochastic discrete-time system). These

setups led to many experiments to create a comparison of whether RL systems

could be used for portfolio optimization and trading tasks at the same time.

Lastly, an extension of the environment class from the FinRL library was created

to adapt the MDP state set to support the Finsent data. Within the limitations

described in the next section, the agents trading in the regular dataset could

44

7.2. Limitations of the Research

outperform the DJIA. Also, after using the finsent dataset, other trading agents

could outperform the DJIA by a significant amount not only on the cumulative

returns but also in other important aspects of the backtesting.

7.2 Limitations of the Research

The main limitations of this report are divided into categories: (i) Existing lim-

itations on the used framework; (ii) Lack of alternative data open datasets; (iii)

Chosen modeling architecture.

i The first is the limitation that is observed in the FinRL framework. The

framework is still one of the most promising for applying RL algorithms to

environments based on Gym, but it is still new, and it is somewhat unsta-

ble. In addition, some features that seem to be available in the framework

documentation are not ready and deployed, which sometimes makes it con-

fusing about the results. For example, the framework provides blueprints for

environments for asset allocation, but it does not consider the transaction

cost in this environment. Also, some unhandled exceptions might make the

debugging of the environment complicated.

ii While it is relatively easy to find End of Day (EOD) closing prices for eq-

uities (even though real-time market data is expensive), it is not valid for

alternative data. Alternative data is scarce and expensive for individuals. It

would be interesting to join datasets of the prices with other datasets that

might include exogenous data and see if it would improve the agents trading

strategy. The Finsent data used in this study was bought for private use

and, unfortunately, makes it difficult for others to replicate this work.

45

Chapter 7. Conclusion

iii Lastly, the modeling chosen for this research limits the number of new assets

that are added to the model. For this work, which had the DJIA benchmark,

it is acceptable to have fixed thirty stocks for training and prediction, but

unseen or new stocks (i.e. Initial Public Offerings (IPOs)) are not easily

integrated. The model’s network must be modified and retrained.

7.3 Future Work

Despite the overall performance of the trading agents on both the regular and

Finsent datasets in the experiments, algorithms that use neural networks are black

boxes. This lack of interpretability makes it difficult for investors to invest capital

in a portfolio managed only by RL agents. Therefore, a good mix RL agents and

human expert knowledge input could make it easier for the interpretability of the

model actions and states.

Also, as pointed out in the limitation (iii), a modified version of the environment

that would make it easier to add new assets without rebuilding and retraining the

model would be closer to a solution that would be ready to use in the financial

industry. For instance, Betancourt and Chen (2021) proposed a method for using

RL for portfolio management with a dynamic number of assets, and it was tested

successfully in the crypto market.

Another essential aspect that was not considered in the experiments undertaken

in this report was hyperparameter tuning. All of the algorithms ran with the same

parameters in both environments. However, it would be better to use different pa-

rameters, and the number of features from the simpler environment to the Finsent

environment increases by about 40%.

Lastly, even though it is out of the scope of this report, an interesting avenue for

46

7.3. Future Work

future research in this area is to connect the FinRL to a brokerage service and make

the agents put the orders directly in the trading environment. This would require

retraining so the agents would learn how to deal with some assumptions that we

took out of the scope here: slippage, market impact, and sufficient liquidity.

47

Bibliography

Bailey, D. H. and López de Prado, M. (2013). An open-source implementation of

the critical-line algorithm for portfolio optimization. Algorithms, 6(1):169–196.

Betancourt, C. and Chen, W.-H. (2021). Deep reinforcement learning for portfolio

management of markets with a dynamic number of assets. Expert Systems with

Applications, 164:114002.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,

and Zaremba, W. (2016). OpenAI gym.

Callaway, E. (2020). ‘it will change everything’: DeepMind’s AI makes gigantic

leap in solving protein structures. Nature, 588(7837):203–204.

Chen, J. (1999). Portfolio Investment. https://www.investopedia.com/terms/

p/portfolio-investment.asp [Accessed: 2022-03-15].

da Silva, R. F. (2021). Automated stock trading system using deep reinforcement

learning and price and sentiment prediction modules. PhD thesis, Universidade

de Sao Paulo.

de Prado, M. L. (2018). Advances in Financial Machine Learning. John Wiley &

Sons Inc.

48

https://www.investopedia.com/terms/p/portfolio-investment.asp
https://www.investopedia.com/terms/p/portfolio-investment.asp

BIBLIOGRAPHY

Fujimoto, S., van Hoof, H., and Meger, D. (2018). Addressing function approxi-

mation error in actor-critic methods.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Off-

policy maximum entropy deep reinforcement learning with a stochastic actor.

Jonathan Law, J. S. (2008). A Dictionary of Finance and Banking. OUP Oxford,

4th edition.

Kim, K.-j. (2003). Financial time series forecasting using support vector machines.

Neurocomputing, 55(1):307–319. Support Vector Machines.

Kwak, Y., Song, J., and Lee, H. (2021). Neural network with fixed noise for index-

tracking portfolio optimization. Expert Systems with Applications, 183:115298.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,

and Wierstra, D. (2015). Continuous control with deep reinforcement learning.

Liu, X.-Y., Yang, H., Gao, J., and Wang, C. D. (2021). FinRL: Deep reinforce-

ment learning framework to automate trading in quantitative finance. ACM

International Conference on AI in Finance (ICAIF).

Martinez, L. C. and Pereira, A. C. M. (2020). Beating the stock market with a

deep reinforcement learning day trading system. In 2020 International Joint

Conference on Neural Networks, IJCNN 2020, Glasgow, United Kingdom, July

19-24, 2020, pages 1–8. IEEE.

Meesad, P. and Rasel, R. I. (2013). Predicting stock market price using support

vector regression. In 2013 International Conference on Informatics, Electronics

and Vision (ICIEV), pages 1–6.

Michaud, R. (1998). Efficient asset management: a practical guide to stock port-

folio optimization and asset allocation. Oxford University Press.

49

BIBLIOGRAPHY

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver,

D., and Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement

learning.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie,

C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and

Hassabis, D. (2015). Human-level control through deep reinforcement learning.

Nature, 518(7540):529–533.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Prox-

imal policy optimization algorithms.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman,

S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach,

M., Kavukcuoglu, K., Graepel, T., and Hassabis, D. (2016). Mastering the game

of go with deep neural networks and tree search. Nature, 529(7587):484–489.

Yun, H., Lee, M., Kang, Y. S., and Seok, J. (2020). Portfolio management via

two-stage deep learning with a joint cost. Expert Systems with Applications,

143:113041.

Zhuang, C. (2022). stockstats. https://github.com/jealous/stockstats [Ac-

cessed: 2022-03-16].

50

https://github.com/jealous/stockstats

Appendix A

FinRL Environment

A.1 Environment for Finsent Data

The current version of FinRL is not accepting custom indicators or data for the

environment states, a modified version of the StockTradingEnv was created then.

The code for this new version is shown on listing A.1.

1 import gym

2 import matplotlib

3 import matplotlib.pyplot as plt

4 import numpy as np

5 import pandas as pd

6 from gym import spaces

7 from gym.utils import seeding

8 from stable_baselines3.common.vec_env import DummyVecEnv

9 from typing import List

10 matplotlib.use("Agg")

11

12 class StockTradingEnv_Finsent(gym.Env):

13 """A stock trading environment for OpenAI gym"""

51

Appendix A. FinRL Environment

14

15 metadata = {"render.modes": ["human"]}

16

17 def __init__(

18 self ,

19 df: pd.DataFrame ,

20 stock_dim: int ,

21 hmax: int ,

22 initial_amount: int ,

23 num_stock_shares: List[int],

24 buy_cost_pct: List[float],

25 sell_cost_pct: List[float],

26 reward_scaling: float ,

27 state_space: int ,

28 action_space: int ,

29 tech_indicator_list: List[str],

30 turbulence_threshold=None ,

31 risk_indicator_col="turbulence",

32 make_plots: bool =False ,

33 print_verbosity =10,

34 day=0,

35 initial=True ,

36 previous_state =[],

37 model_name="",

38 mode="",

39 iteration="",

40 finsent_columns =[’sentiment ’, ’sentiment_high ’, ’

sentiment_low ’, ’news_volume ’, ’news_buzz ’]

41):

42 self.day = day

43 self.df = df

44 self.stock_dim = stock_dim

45 self.hmax = hmax

52

A.1. Environment for Finsent Data

46 self.num_stock_shares=num_stock_shares

47 self.initial_amount = initial_amount # get the initial

cash

48 self.buy_cost_pct = buy_cost_pct

49 self.sell_cost_pct = sell_cost_pct

50 self.reward_scaling = reward_scaling

51 self.state_space = state_space

52 self.action_space = action_space

53 self.tech_indicator_list = tech_indicator_list

54 self.finsent_columns = finsent_columns

55 self.action_space = spaces.Box(low=-1, high=1, shape=(self

.action_space ,))

56 self.observation_space = spaces.Box(

57 low=-np.inf , high=np.inf , shape =(self.state_space ,)

58)

59 self.data = self.df.loc[self.day , :]

60 self.terminal = False

61 self.make_plots = make_plots

62 self.print_verbosity = print_verbosity

63 self.turbulence_threshold = turbulence_threshold

64 self.risk_indicator_col = risk_indicator_col

65 self.initial = initial

66 self.previous_state = previous_state

67 self.model_name = model_name

68 self.mode = mode

69 self.iteration = iteration

70 # initalize state

71 self.state = self._initiate_state ()

72

73 # initialize reward

74 self.reward = 0

75 self.turbulence = 0

76 self.cost = 0

53

Appendix A. FinRL Environment

77 self.trades = 0

78 self.episode = 0

79 # memorize all the total balance change

80 self.asset_memory = [self.initial_amount+np.sum(np.array(

self.num_stock_shares)*np.array(self.state [1:1+ self.stock_dim])

)] # the initial total asset is calculated by cash + sum (

num_share_stock_i * price_stock_i)

81 self.rewards_memory = []

82 self.actions_memory = []

83 self.state_memory =[] # we need sometimes to preserve the

state in the middle of trading process

84 self.date_memory = [self._get_date ()]

85 # self.logger = Logger(’results ’,[CSVOutputFormat

])

86 # self.reset ()

87 self._seed ()

88

89 def _sell_stock(self , index , action):

90 def _do_sell_normal ():

91 if self.state[index + 2*self.stock_dim + 1]!= True : #

check if the stock is able to sell , for simlicity we just add

it in techical index

92 # if self.state[index + 1] > 0: # if we use price <0 to

denote a stock is unable to trade in that day , the total asset

calculation may be wrong for the price is unreasonable

93 # Sell only if the price is > 0 (no missing data

in this particular date)

94 # perform sell action based on the sign of the

action

95 if self.state[index + self.stock_dim + 1] > 0:

96 # Sell only if current asset is > 0

97 sell_num_shares = min(

54

A.1. Environment for Finsent Data

98 abs(action), self.state[index + self.

stock_dim + 1]

99)

100 sell_amount = (

101 self.state[index + 1]

102 * sell_num_shares

103 * (1 - self.sell_cost_pct[index])

104)

105 # update balance

106 self.state [0] += sell_amount

107

108 self.state[index + self.stock_dim + 1] -=

sell_num_shares

109 self.cost += (

110 self.state[index + 1] * sell_num_shares *

self.sell_cost_pct[index]

111)

112 self.trades += 1

113 else:

114 sell_num_shares = 0

115 else:

116 sell_num_shares = 0

117

118 return sell_num_shares

119

120 # perform sell action based on the sign of the action

121 if self.turbulence_threshold is not None:

122 if self.turbulence >= self.turbulence_threshold:

123 if self.state[index + 1] > 0:

124 # Sell only if the price is > 0 (no missing

data in this particular date)

125 # if turbulence goes over threshold , just

clear out all positions

55

Appendix A. FinRL Environment

126 if self.state[index + self.stock_dim + 1] > 0:

127 # Sell only if current asset is > 0

128 sell_num_shares = self.state[index + self.

stock_dim + 1]

129 sell_amount = (

130 self.state[index + 1]

131 * sell_num_shares

132 * (1 - self.sell_cost_pct[index])

133)

134 # update balance

135 self.state [0] += sell_amount

136 self.state[index + self.stock_dim + 1] = 0

137 self.cost += (

138 self.state[index + 1] *

sell_num_shares * self.sell_cost_pct

139)

140 self.trades += 1

141 else:

142 sell_num_shares = 0

143 else:

144 sell_num_shares = 0

145 else:

146 sell_num_shares = _do_sell_normal ()

147 else:

148 sell_num_shares = _do_sell_normal ()

149

150 return sell_num_shares

151

152 def _buy_stock(self , index , action):

153 def _do_buy ():

154 if self.state[index + 2*self.stock_dim+ 1] !=True: #

check if the stock is able to buy

155 # if self.state[index + 1] >0:

56

A.1. Environment for Finsent Data

156 # Buy only if the price is > 0 (no missing data in

this particular date)

157 available_amount = self.state [0] / (self.state[

index + 1]*(1 + self.buy_cost_pct[index])) # when buying stocks

, we should consider the cost of trading when calculating

available_amount , or we may be have cash <0

158 # print(’available_amount :{}’. format(

available_amount))

159

160 # update balance

161 buy_num_shares = min(available_amount , action)

162 buy_amount = (

163 self.state[index + 1] * buy_num_shares * (1 +

self.buy_cost_pct[index])

164)

165 self.state [0] -= buy_amount

166

167 self.state[index + self.stock_dim + 1] +=

buy_num_shares

168

169 self.cost += self.state[index + 1] *

buy_num_shares * self.buy_cost_pct[index]

170 self.trades += 1

171 else:

172 buy_num_shares = 0

173

174 return buy_num_shares

175

176 # perform buy action based on the sign of the action

177 if self.turbulence_threshold is None:

178 buy_num_shares = _do_buy ()

179 else:

180 if self.turbulence < self.turbulence_threshold:

57

Appendix A. FinRL Environment

181 buy_num_shares = _do_buy ()

182 else:

183 buy_num_shares = 0

184 pass

185

186 return buy_num_shares

187

188 def _make_plot(self):

189 plt.plot(self.asset_memory , "r")

190 plt.savefig("results/account_value_trade_ {}.png".format(

self.episode))

191 plt.close ()

192

193 def step(self , actions):

194 self.terminal = self.day >= len(self.df.index.unique ()) -

1

195 if self.terminal:

196 # print(f"Episode: {self.episode }")

197 if self.make_plots:

198 self._make_plot ()

199 end_total_asset = self.state [0] + sum(

200 np.array(self.state[1 : (self.stock_dim + 1)])

201 * np.array(self.state[(self.stock_dim + 1) : (self

.stock_dim * 2 + 1)])

202)

203 df_total_value = pd.DataFrame(self.asset_memory)

204 tot_reward = (

205 self.state [0]

206 + sum(

207 np.array(self.state[1 : (self.stock_dim + 1)])

208 * np.array(

209 self.state [(self.stock_dim + 1) : (self.

stock_dim * 2 + 1)]

58

A.1. Environment for Finsent Data

210)

211)

212 - self.asset_memory [0]

213) # initial_amount is only cash part of our initial

asset

214 df_total_value.columns = ["account_value"]

215 df_total_value["date"] = self.date_memory

216 df_total_value["daily_return"] = df_total_value["

account_value"]. pct_change(

217 1

218)

219 if df_total_value["daily_return"].std() != 0:

220 sharpe = (

221 (252 ** 0.5)

222 * df_total_value["daily_return"].mean()

223 / df_total_value["daily_return"].std()

224)

225 df_rewards = pd.DataFrame(self.rewards_memory)

226 df_rewards.columns = ["account_rewards"]

227 df_rewards["date"] = self.date_memory [:-1]

228 if self.episode % self.print_verbosity == 0:

229 print(f"day: {self.day}, episode: {self.episode}")

230 print(f"begin_total_asset: {self.asset_memory

[0]:0.2f}")

231 print(f"end_total_asset: {end_total_asset :0.2f}")

232 print(f"total_reward: {tot_reward :0.2f}")

233 print(f"total_cost: {self.cost :0.2f}")

234 print(f"total_trades: {self.trades}")

235 if df_total_value["daily_return"].std() != 0:

236 print(f"Sharpe: {sharpe :0.3f}")

237 print("=================================")

238

239 if (self.model_name != "") and (self.mode != ""):

59

Appendix A. FinRL Environment

240 df_actions = self.save_action_memory ()

241 df_actions.to_csv(

242 "results/actions_ {}_{}_{}.csv".format(

243 self.mode , self.model_name , self.iteration

244)

245)

246 df_total_value.to_csv(

247 "results/account_value_ {}_{}_{}. csv".format(

248 self.mode , self.model_name , self.iteration

249),

250 index=False ,

251)

252 df_rewards.to_csv(

253 "results/account_rewards_ {}_{}_{}. csv".format(

254 self.mode , self.model_name , self.iteration

255),

256 index=False ,

257)

258 plt.plot(self.asset_memory , "r")

259 plt.savefig(

260 "results/account_value_ {}_{}_{}. png".format(

261 self.mode , self.model_name , self.iteration

262),

263 index=False ,

264)

265 plt.close ()

266

267 # Add outputs to logger interface

268 # logger.record (" environment/portfolio_value",

end_total_asset)

269 # logger.record (" environment/total_reward", tot_reward

)

60

A.1. Environment for Finsent Data

270 # logger.record (" environment/total_reward_pct", (

tot_reward / (end_total_asset - tot_reward)) * 100)

271 # logger.record (" environment/total_cost", self.cost)

272 # logger.record (" environment/total_trades", self.

trades)

273

274 return self.state , self.reward , self.terminal , {}

275

276 else:

277 actions = actions * self.hmax # actions initially is

scaled between 0 to 1

278 actions = actions.astype(

279 int

280) # convert into integer because we can’t by fraction

of shares

281 if self.turbulence_threshold is not None:

282 if self.turbulence >= self.turbulence_threshold:

283 actions = np.array([-self.hmax] * self.

stock_dim)

284 begin_total_asset = self.state [0] + sum(

285 np.array(self.state[1 : (self.stock_dim + 1)])

286 * np.array(self.state[(self.stock_dim + 1) : (self

.stock_dim * 2 + 1)])

287)

288 # print(" begin_total_asset :{}". format(

begin_total_asset))

289

290 argsort_actions = np.argsort(actions)

291 sell_index = argsort_actions [: np.where(actions < 0)

[0]. shape [0]]

292 buy_index = argsort_actions [:: -1][: np.where(actions >

0)[0]. shape [0]]

293

61

Appendix A. FinRL Environment

294 for index in sell_index:

295 # print(f"Num shares before: {self.state[index+

self.stock_dim +1]}")

296 # print(f’take sell action before : {actions[index

]}’)

297 actions[index] = self._sell_stock(index , actions[

index]) * (-1)

298 # print(f’take sell action after : {actions[index

]}’)

299 # print(f"Num shares after: {self.state[index+self

.stock_dim +1]}")

300

301 for index in buy_index:

302 # print(’take buy action: {}’. format(actions[index

]))

303 actions[index] = self._buy_stock(index , actions[

index])

304

305 self.actions_memory.append(actions)

306

307 # state: s -> s+1

308 self.day += 1

309 self.data = self.df.loc[self.day , :]

310 if self.turbulence_threshold is not None:

311 if len(self.df.tic.unique ()) == 1:

312 self.turbulence = self.data[self.

risk_indicator_col]

313 elif len(self.df.tic.unique ()) > 1:

314 self.turbulence = self.data[self.

risk_indicator_col]. values [0]

315 self.state = self._update_state ()

316

317 end_total_asset = self.state [0] + sum(

62

A.1. Environment for Finsent Data

318 np.array(self.state[1 : (self.stock_dim + 1)])

319 * np.array(self.state[(self.stock_dim + 1) : (self

.stock_dim * 2 + 1)])

320)

321 self.asset_memory.append(end_total_asset)

322 self.date_memory.append(self._get_date ())

323 self.reward = end_total_asset - begin_total_asset

324 self.rewards_memory.append(self.reward)

325 self.reward = self.reward * self.reward_scaling

326 self.state_memory.append(self.state) # add current

state in state_recorder for each step

327

328 return self.state , self.reward , self.terminal , {}

329

330 def reset(self):

331 # initiate state

332 self.state = self._initiate_state ()

333

334 if self.initial:

335 self.asset_memory = [self.initial_amount+np.sum(np.

array(self.num_stock_shares)*np.array(self.state [1:1+ self.

stock_dim]))]

336 else:

337 previous_total_asset = self.previous_state [0] + sum(

338 np.array(self.state[1 : (self.stock_dim + 1)])

339 * np.array(

340 self.previous_state [(self.stock_dim + 1) : (

self.stock_dim * 2 + 1)]

341)

342)

343 self.asset_memory = [previous_total_asset]

344

345 self.day = 0

63

Appendix A. FinRL Environment

346 self.data = self.df.loc[self.day , :]

347 self.turbulence = 0

348 self.cost = 0

349 self.trades = 0

350 self.terminal = False

351 # self.iteration=self.iteration

352 self.rewards_memory = []

353 self.actions_memory = []

354 self.date_memory = [self._get_date ()]

355

356 self.episode += 1

357

358 return self.state

359

360 def render(self , mode="human", close=False):

361 return self.state

362

363 def _initiate_state(self):

364 if self.initial:

365 # For Initial State

366 if len(self.df.tic.unique ()) > 1:

367 # for multiple stock

368 state = (

369 [self.initial_amount]

370 + self.data.close.values.tolist ()

371 + self.num_stock_shares

372 + sum(

373 [

374 self.data[tech]. values.tolist ()

375 for tech in self.tech_indicator_list

376],

377 [],

378)

64

A.1. Environment for Finsent Data

379 + sum(

380 [

381 self.data[finsent]. values.tolist ()

382 for finsent in self.finsent_columns

383],

384 [],

385)

386) # append initial stocks_share to initial state ,

instead of all zero

387 else:

388 # for single stock

389 state = (

390 [self.initial_amount]

391 + [self.data.close]

392 + [0] * self.stock_dim

393 + sum ([[self.data[tech]] for tech in self.

tech_indicator_list], [])

394)

395 else:

396 # Using Previous State

397 if len(self.df.tic.unique ()) > 1:

398 # for multiple stock

399 state = (

400 [self.previous_state [0]]

401 + self.data.close.values.tolist ()

402 + self.previous_state[

403 (self.stock_dim + 1) : (self.stock_dim * 2

+ 1)

404]

405 + sum(

406 [

407 self.data[tech]. values.tolist ()

408 for tech in self.tech_indicator_list

65

Appendix A. FinRL Environment

409],

410 [],

411)

412 + sum(

413

414 [

415 self.data[finsent]. values.tolist ()

416 for finsent in self.finsent_columns

417],

418 [],

419)

420)

421 else:

422 # for single stock

423 state = (

424 [self.previous_state [0]]

425 + [self.data.close]

426 + self.previous_state[

427 (self.stock_dim + 1) : (self.stock_dim * 2

+ 1)

428]

429 + sum([[self.data[tech]] for tech in self.

tech_indicator_list], [])

430)

431 return state

432

433 def _update_state(self):

434 if len(self.df.tic.unique ()) > 1:

435 # for multiple stock

436 state = (

437 [self.state [0]]

438 + self.data.close.values.tolist ()

66

A.1. Environment for Finsent Data

439 + list(self.state [(self.stock_dim + 1) : (self.

stock_dim * 2 + 1)])

440 + sum(

441 [

442 self.data[tech]. values.tolist ()

443 for tech in self.tech_indicator_list

444],

445 [],

446)

447 + sum(

448 [

449 self.data[finsent]. values.tolist ()

450 for finsent in self.finsent_columns

451],

452 [],

453)

454)

455

456 else:

457 # for single stock

458 state = (

459 [self.state [0]]

460 + [self.data.close]

461 + list(self.state [(self.stock_dim + 1) : (self.

stock_dim * 2 + 1)])

462 + sum ([[self.data[tech]] for tech in self.

tech_indicator_list], [])

463)

464

465 return state

466

467 def _get_date(self):

468 if len(self.df.tic.unique ()) > 1:

67

Appendix A. FinRL Environment

469 date = self.data.date.unique ()[0]

470 else:

471 date = self.data.date

472 return date

473

474 # add save_state_memory to preserve state in the trading

process

475 def save_state_memory(self):

476 if len(self.df.tic.unique ()) > 1:

477 # date and close price length must match actions

length

478 date_list = self.date_memory [:-1]

479 df_date = pd.DataFrame(date_list)

480 df_date.columns = ["date"]

481

482 state_list = self.state_memory

483 df_states = pd.DataFrame(state_list ,columns =[’cash’,’

Bitcoin_price ’,’Gold_price ’,’Bitcoin_num ’,’Gold_num ’,’

Bitcoin_Disable ’,’Gold_Disable ’])

484 df_states.index = df_date.date

485 # df_actions = pd.DataFrame ({’date ’:date_list ,’actions

’:action_list })

486 else:

487 date_list = self.date_memory [:-1]

488 state_list = self.state_memory

489 df_states = pd.DataFrame ({"date": date_list , "states":

state_list })

490 # print(df_states)

491 return df_states

492

493 def save_asset_memory(self):

494 date_list = self.date_memory

495 asset_list = self.asset_memory

68

A.1. Environment for Finsent Data

496 # print(len(date_list))

497 # print(len(asset_list))

498 df_account_value = pd.DataFrame(

499 {"date": date_list , "account_value": asset_list}

500)

501 return df_account_value

502

503 def save_action_memory(self):

504 if len(self.df.tic.unique ()) > 1:

505 # date and close price length must match actions

length

506 date_list = self.date_memory [:-1]

507 df_date = pd.DataFrame(date_list)

508 df_date.columns = ["date"]

509

510 action_list = self.actions_memory

511 df_actions = pd.DataFrame(action_list)

512 df_actions.columns = self.data.tic.values

513 df_actions.index = df_date.date

514 # df_actions = pd.DataFrame ({’date ’:date_list ,’actions

’:action_list })

515 else:

516 date_list = self.date_memory [:-1]

517 action_list = self.actions_memory

518 df_actions = pd.DataFrame ({"date": date_list , "actions

": action_list })

519 return df_actions

520

521 def _seed(self , seed=None):

522 self.np_random , seed = seeding.np_random(seed)

523 return [seed]

524

525 def get_sb_env(self):

69

Appendix A. FinRL Environment

526 e = DummyVecEnv ([lambda: self])

527 obs = e.reset()

528 return e, obs

Listing A.1: StockTradingEnv compatible with Finsent information.

70

	Introduction
	Problem Definition
	Motivation
	Structure of the Report
	I Background
	Reinforcement Learning
	Markov Processes
	Markov Reward Processes
	Markov Decision Processes
	Components of Reinforcement Learning
	Policy
	Rewards
	Value function
	Environment

	Financial Foundations
	Financial Terms & Concepts
	Asset
	Portfolio
	Portfolio Optimization
	Short Selling

	Financial Data Structures
	Data Types

	BARS
	Standard Bars

	II Literature Review
	Portfolio Optimization
	Quadratic Programming
	Machine Learning
	Deep Learning
	Reinforcement Learning

	Materials and Methods
	FinRL
	Assumptions
	Market Environments
	Setting up the Environment
	Agents
	Backtesting

	Dataset
	Market Data
	Finsent

	III Experiments
	Results
	Conclusion
	Contributions
	Limitations of the Research
	Future Work

	Bibliography
	FinRL Environment
	Environment for Finsent Data

