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Abstract—We define a new family of codes for symmetric

classical-quantum channels and establish their optimality.
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perfect and quasi-perfect codes to channels defined over

some finite dimensional complex Hilbert output space.

The resulting optimality conditions depend on the chan-

nel considered and on an auxiliary state defined on the

output space of the channel. For certain N -qubit classical-

quantum channels, we show that codes based on a general-

ization of Bell states are quasi-perfect and, therefore, they

feature the smallest error probability among all codes of

the same blocklength and cardinality.
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I. INTRODUCTION

One of the goals of information theory is to character-

ize the best achievable performance of any transmission

scheme and to establish the structure of codes and

decoders attaining this limit. In certain regimes the best

performance of a communication system is accurately

characterized and there exist practical codes attaining it.

In his landmark paper [1], Shannon demonstrated that for

every communication channel there exists a fundamental

limit, named channel capacity, that determines the high-

est rate at which a sender can transmit data to a receiver

with vanishing decoding error probability. Nowadays,

several code constructions achieve the channel capacity

or perform very close to it. Specific examples, for suf-

ficiently large codelengths, are low-density parity check

(LDPC) codes [2], turbo codes [3], or polar codes [4].

If the length of the code is limited –e.g., due to delay

constraints or due to the nature of the channel– the

channel capacity is not a good benchmark anymore. To

characterize the achievable performance in this regime,

we shall use non-asymptotic bounds on the error proba-

bility of the best coding scheme. Two early instances

of these limits are the sphere-packing bound [5, Eq.
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(5.8.19)] on the error probability of the binary symmetric

channel (BSC) and Shannon’s non-asymptotic results for

the additive white Gaussian noise (AWGN) channel [6].

Recent advances in information theory have lead to

several (upper and lower) bounds in the finite block-

length regime [7]–[9]. Code designers have optimized

the finite-length performance of certain codes and now

they perform close to those non-asymptotic limits (see,

e.g., [10], [11] and references therein). Moreover, certain

codes can even attain these limits with equality, thus

proving their non-asymptotic optimality. For example,

perfect and quasi-perfect binary codes attain the sphere-

packing bound [5, Eq. (5.8.19)] for the BSC, and they

were generalized beyond binary alphabets in [12].

The results presented above consider transmission

channels –or random transformations– which are mod-

eled by a transition probability distribution. Certain

physical systems, however, can only be described using

the laws of quantum mechanics. For these systems, the

classical channel capacity and the corresponding non-

asymptotic results have to be extended to encompass the

quantum properties of the system. Holevo, Schumacher

and Westmoreland studied the task of sending classical

data over a channel with classical inputs and quantum

outputs [13], [14]; this setting is usually referred to as

classical-quantum channel coding. Their coding theo-

rem guarantees the existence of reliable codes if their

rate is below a fundamental limit, known as Holevo

capacity, provided that the codelength is sufficiently

long. While the proof of this result does not provide

an explicit code construction, it guided the design of

practical coding schemes. For example, quantum polar

codes are practical constructions shown to attain this

limit [15], the codes proposed in [16], [17] feature the

superadditivity of mutual information, and other coding

schemes exploiting the quantum properties of optical

channels were proposed in [18], [19]. Holevo capacity

is an asymptotic quantity that, in general, can only be

attained by a large number of channel uses via a joint

measurement on the combined channel outputs. For a

finite number of channel uses –which is relevant for

practical quantum systems– non-asymptotic performance

limits need to be used. Converse non-asymptotic bounds

were studied in [20], [21, Sec. 4.6] and [22], among

other works. However, to the best of our knowledge,

these works have not been applied in the design and/or

benchmark of practical code constructions.

The derivation of converse bounds for classical and

quantum systems is often based on hypothesis testing.

An early application of this technique was used by

Shannon, Gallager and Berlekamp to obtain the sphere-

packing exponent [23] (see also [24] for a more ex-

plicit derivation for symmetric channels). For classical-

quantum channels, Nagaoka applied binary hypothesis

testing in the derivation of strong-converse bounds [25],

and Hayashi used this technique to stablish the converse

part of the channel-coding theorem [21, Sec. 4.6]. Later,

Polyanskiy, Poor and Verdú formulated a hypothesis

testing finite-length bound for classical channels [7,

Th. 27], and Matthews and Wehner obtained finite-length

bounds for general quantum channels in [22].

In this work, we extend the notion of generalized per-

fect and quasi-perfect codes [12] to symmetric classical-

quantum channels. The results presented here are based

on quantum hypothesis testing. In particular, we derive

two alternative expressions for the error probability of

quantum multiple hypothesis testing, which are then

used to determine the exact error probability for a fixed

classical-quantum channel code. A weakening of this

result yields the non-asymptotic converse bound [22,

Eq. (45)] (see also [21, Sec. 4.6]) and coincides with the

error probability of the generalized perfect and quasi-

perfect codes, whenever they exist. Therefore, these

codes yield the best performance among any code with
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the same rate and block-length. While these codes are

possibly rare, we characterize a family of codes based on

a generalization of Bell states which are quasi-perfect for

certain non-asymptotic 2-qubit classical-quantum chan-

nels and their N -qubit extension.

A separate line of research in the literature considers

the evolution of quantum information in a noisy envi-

ronment. In [26], Shor showed that quantum errors can

be controlled by encoding the state of the system in a

quantum code and periodically measuring the redundant

parts of the code. This observation opened the field

of quantum error correction. While it is possible to

encapsulate classical information over quantum channels

using quantum error correction codes, they are highly

inefficient for this task and they will not be treated here.

The organization of this article is as follows. In Sec-

tion II we formalize the problems of binary and multiple

hypothesis testing and establish an unexplored connec-

tion between them. Section III presents the classical-

quantum channel model and establishes the accuracy

of different converse bounds in the literature. Section

IV defines perfect and quasi-perfect codes for classical-

quantum symmetric channels and proves their optimality

whenever they exist. In Section V we study a family

of codes which are quasi-perfect for 2-qubit classical-

quantum channels affected by quantum depolarization.

Section VI concludes the article with some final remarks.

A. Notation

Let D(H) denote the space of density operators acting

on some finite dimensional complex Hilbert space H.

A quantum state is described by a density operator

ρ ∈ D(H). Density operators are self-adjoint, positive

semidefinite, and have unit trace. A measurement on

a quantum system is a mapping from the state of the

system ρ to a classical outcome m ∈ {1, . . . ,M}. A

measurement is represented by a collection of positive

semidefinite self-adjoint operators
{

Π1, . . . ,ΠM

}
such

that
∑

Πm = 11, where 11 is the identity operator.

These operators form a positive operator-valued mea-

sure (POVM). A POVM measurement
{

Π1, . . . ,ΠM

}
applied to ρ has outcome m with probability Tr(ρΠm)

where Tr is the trace operator.

For self-adjoint operators A,B, the notation A ≥ B

means that A − B is positive semidefinite. Similarly

A ≤ B, A > B, and A < B means that A − B

is negative semidefinite, positive definite and negative

definite, respectively.

For a self-adjoint operator A with spectral decomposi-

tion A =
∑
i λiEi, where {λi} are the real eigenvalues

and {Ei} are the orthogonal projections onto the corre-

sponding eigenspaces, we define

{A > 0} ,
∑
i:λi>0

Ei. (1)

This corresponds to the projector associated to the pos-

itive eigenspace of A. We shall also use {A ≥ 0} ,∑
i:λi≥0Ei, {A < 0} ,

∑
i:λi<0Ei and {A ≤ 0} ,∑

i:λi≤0Ei.

II. QUANTUM HYPOTHESIS TESTING

A. Binary Hypothesis Testing

Let us consider a binary hypothesis test (with simple

hypotheses) discriminating between the density opera-

tors ρ0 and ρ1, where ρ0, ρ1 ∈ D(H). In order to

distinguish between the two hypotheses we perform a

measurement. We define a test measurement {T, T̄},

such that T and T̄ , 11−T are positive semidefinite, self-

adjoint operators. The test decides ρ0 (resp. ρ1) when

the measurement outcome corresponding to T (resp. T̄ )

occurs.
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4

Let εj|i denote the probability of deciding ρj when ρi

is the true hypothesis, i, j = 0, 1, i 6= j. More precisely,

ε1|0(T ) , 1− Tr (ρ0T ) = Tr
(
ρ0T̄

)
, (2)

ε0|1(T ) , Tr (ρ1T ) . (3)

Let αβ(ρ0‖ρ1) denote the minimum error probability

ε1|0 among all tests with ε0|1 at most β, that is,

αβ(ρ0‖ρ1) , inf
T :ε0|1(T )≤β

ε1|0(T ). (4)

The function αβ(·‖·) is the inverse of the function

βα(·‖·) appearing in [22], which is itself related to

the hypothesis-testing relative entropy as Dα
H(ρ0‖ρ1) =

− log βα(ρ0‖ρ1) [27].

When ρ0 and ρ1 commute, the test T in (4) can be

restricted to be diagonal in the (common) eigenbasis of

ρ0 and ρ1, then (4) reduces to the classical case [28].

The form of the test minimizing (4) is given by the

quantum Neyman-Pearson lemma, presented next.

Lemma 1 (Neyman-Pearson lemma): The best trade-

off between type-I and type-II error probabilities is

attained by tests of the form

TNP =
{
ρ0 − tρ1 > 0

}
+ θ0

t , (5)

for some t and θ0
t , and where 0 ≤ θ0

t ≤
{
ρ0− tρ1 = 0

}
.

Proof: A slightly different formulation of this result

is usually given in the literature (see, e.g., [29, Ch. IV,

Eq. (2.18)]). The precise statement included here can be

found, e.g., in [30, Lem. 3].

Then, for any choice of t and θ0 such that

Tr (ρ1TNP) = β, the resulting test TNP in (5) mini-

mizes (4). The following result is a corollary to the

Neyman-Pearson lemma that will be useful in the sequel.

Lemma 2: For any binary hypothesis test discriminat-

ing between the quantum states ρ0 and ρ1, it follows

that

αβ(ρ0‖ρ1) = sup
t≥0

{
Tr
(
ρ0

{
ρ0 − tρ1 ≤ 0

})
+ t
(
Tr
(
ρ1

{
ρ0 − tρ1 > 0

})
− β

)}
(6)

≥ Tr
(
ρ0

{
ρ0 − t′ρ1 ≤ 0

})
− t′β, (7)

for any t′ ≥ 0.

Proof: The identity (6) is the quantum analogue of

[12, Lem. 1] and the relaxation (7) coincides with [31,

Lem. 2]. For completeness, we include next the proof of

(6)-(7).

For any operator A ≥ 0 and 0 ≤ T ≤ 11, it holds

that Tr
(
A{A > 0}

)
≥ Tr

(
AT
)

[32, Eq. 8]. For A =

ρ0 − t′ρ1 and T = TNP defined in (5), this inequality

becomes

Tr
(
(ρ0 − t′ρ1)P+

t′

)
≥ Tr

(
(ρ0 − t′ρ1)TNP

)
, (8)

where we defined P+
t′ , {ρ0 − t′ρ1 > 0}. Indeed, (8)

holds with equality for the value t′ = t appearing in (5),

as Tr
(
(ρ0 − tρ1)θ0

t

)
= 0 for any 0 ≤ θ0

t ≤
{
ρ0 − tρ1 =

0
}

, tantamount to θ0
t being in the null-space of ρ0− tρ1.

After some algebra, (8) yields

−Tr
(
ρ0TNP

)
≥ −Tr

(
ρ0P

+
t′

)
+ t′Tr

(
ρ1(P+

t′ − TNP)
)
.

(9)

Summing one to both sides of (9) and noting that

αβ(ρ0‖ρ1) = 1 − Tr
(
ρ0TNP

)
and β = Tr

(
ρ1TNP

)
, we

obtain

αβ(ρ0‖ρ1)

≥ Tr
(
ρ0{ρ0 − t′ρ1 ≤ 0}

)
+ t′ Tr

(
ρ1P

+
t′

)
− t′β. (10)

As (8) holds with equality for the value t′ = t ap-

pearing in (5), so it does (10) after optimization over

the parameter t′ ≥ 0. Then, (6) follows. To obtain

the lower bound (7), we fix t′ ≥ 0 and use that

Tr
(
ρ1

{
ρ0 − t′ρ1 > 0

})
≥ 0.
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B. Bayesian Multiple Hypothesis Testing

We consider now a hypothesis testing problem dis-

criminating among M possible density operators acting

on H, where M is assumed to be finite. We consider the

Bayesian setting, where the M alternatives τ1, . . . , τM

occur with (classical) probabilities p1, . . . , pM , respec-

tively.

A M -ary hypothesis test is a POVM T ,

{Π1,Π2, . . . ,ΠM},
∑

Πi = 11. The test decides the

alternative τi when the measurement with respect to T

has outcome i. The probability that the test T decides

τj when τi is the true underlying state is thus Tr
(
τiΠj

)
and the average error probability is

ε(T ) , 1−
M∑
i=1

pi Tr (τiΠi) . (11)

We define the minimum average error probability as

ε? , min
T

ε(T ). (12)

The test T minimizing (12) has no simple form in

general.

Lemma 3 (Holevo-Yuen-Kennedy-Lax conditions): A

test T ? = {Π?
1, . . . ,Π

?
M} minimizes (12) if and only if,

for each m = 1, . . . ,M ,(
Λ(T ?)− pmτm

)
Π?
m = Π?

m

(
Λ(T ?)− pmτm

)
= 0,

(13)

Λ(T ?)− pmτm ≥ 0, (14)

where

Λ(T ?) ,
M∑
i=1

piτiΠ
?
i =

M∑
i=1

piΠ
?
i τi (15)

is required to be self-adjoint1.

Proof: This result follows from [33, Th. 4.1, Eq.

(4.8)] or [34, Th. I] after simplifying the resulting

optimality conditions.

1The operator Λ(T ) takes a role of the Lagrange multiplier as-

sociated to the constraint
∑

Πi = 11, which, involving self-adjoint

operators requires Λ to be self-adjoint.

We next show an alternative characterization of

the minimum error probability ε? as a function of

a binary hypothesis test with certain parameters. Let

diag(ρ1, . . . , ρM ) denote the block-diagonal matrix with

diagonal blocks ρ1, . . . , ρM and define

P , diag
(
p1τ1, . . . , pMτM

)
, (16)

D(µ0) , diag
(

1
M µ0, . . . ,

1
M µ0

)
, (17)

where µ0 is an arbitrary density operator acting on H.

Note that both P and D(µ0) are density operators them-

selves, since they are self-adjoint, positive semidefinite

and have unit trace.

Theorem 1: The minimum error probability of

a Bayesian M -ary test discriminating among states

{τ1, . . . , τM} with prior probabilities {p1, . . . , pM} sat-

isfies

ε? = max
µ0

α 1
M

(
P ‖D(µ0)

)
, (18)

where P and D(·) are given in (16) and (17), respec-

tively, and where the optimization is carried out over

(unit-trace non-negative) density operators µ0 ∈ D(H).

Proof: This result can be proven extending the

convex analysis approach from [28, Sec. III.B] to the

quantum setting considered here. Nevertheless, in the

following we provide an alternative proof based on a

constructive approach that explicitly shows the connec-

tion between the optimal measurements for both the

binary and M -ary discrimination problems.

For any T = {Π1,Π2, . . . ,ΠM} let us define the

binary test T ′ , diag (Π1, . . . ,ΠM ). The error prob-

abilities ε1|0 and ε0|1 of the test T ′ are given by

ε1|0(T ′) = 1−
M∑
i=1

pi Tr (τiΠi) = ε(T ), (19)

April 21, 2022 DRAFT
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and

ε0|1(T ′) =
1

M

M∑
i=1

Tr (µ0Πi) (20)

=
1

M
Tr

(
µ0

(∑M

i=1
Πi

))
(21)

=
1

M
Tr (µ0) =

1

M
. (22)

The (possibly suboptimal) test T ′ has thus ε1|0(T ′) =

ε(T ) where ε(T ) is defined in (11) and ε0|1(T ′) = 1
M .

Therefore, using (4) and maximizing the resulting ex-

pression over µ0, we obtain

ε(T ) ≥ max
µ0

α 1
M

(
P ‖D(µ0)

)
. (23)

To prove the theorem, it remains to show that the lower

bound (23) holds with equality for T = T ? defined in

Lemma 3. To this end, we next demonstrate that the

optimality conditions in Lemma 1 and in Lemma 3 are

equivalent for a certain choice of µ0.

Let T ? = {Π?
1, . . . ,Π

?
M} satisfy (13)-(14), i.e., T ?

corresponds to the optimal M -ary hypothesis test dis-

criminating among states {τ1, . . . , τM} with prior prob-

abilities {p1, . . . , pM}. We define

µ?0 ,
1

c?0

M∑
i=1

piτiΠ
?
i =

1

c?0
Λ(T ?), (24)

where c?0 is a normalizing constant such that µ?0 is unit

trace. Lemma 1 shows that the test TNP achieving (23) is

associated to the non-negative eigenspace of the matrix

A , P − tD(µ0), (25)

which features a block-diagonal structure. According to

(16)-(17), for the choice µ0 = µ?0, and t = Mc?0, the

m-th block-diagonal term in A is given by

Am , pmτm − t
M µ0 = pmτm − Λ(T ?). (26)

Given the block-diagonal structure of the matrix A, it

is enough to consider a test TNP with block-diagonal

structure. Then, we write TNP = diag
(
TNP

1 , . . . , TNP
M

)
and recall that the m-th block TNP

m must lie in the non-

negative eigenspace of the matrix Am.

Using the optimality condition (14), it follows that the

matrices Am, m = 1, . . . ,M , are negative semidefinite.

Therefore, each block TNP
m can only lie in the null

eigenspace of Am, for m = 1, . . . ,M . Also, acording to

the optimality condition (13), the operators Π?
m precisely

lie in the null eigenspace of Am. As a result, the choice

TNP = diag (Π?
1, . . . ,Π

?
M ) (27)

satisfies the optimality conditions in Lemma 1. More-

over, since ε1|0(TNP) = ε
(
T ?
)

= ε? and ε0|1(TNP) = 1
M ,

Lemma 1 implies that (18) holds with equality for

µ0 = µ?0. Given the bound in (23), other choices of µ0

cannot improve the result, and Theorem 1 thus follows.

Example 1: Consider a hypothesis testing problem

between the M = 4 (non-equiprobable) alternatives

τ1 =
[

1 0
0 0

]
, τ2 = 1

2

[
1 1
1 1

]
,

τ3 = 1
2

[
1 −1
−1 1

]
, τ4 = 1

2

[
1 0
0 1

]
,

(28)

with prior probabilities p1 = 2
5 and p2 = p3 = p4 = 1

5 .

By solving (12), we obtain ε? = 7/15 = 0.46 which is

attained by the measurement T ? = {Π?
1, . . . ,Π

?
4} with

Π?
1 =

[
8/9 0
0 0

]
, Π?

2 =
[ 1/18 1/6

1/6 1/2

]
, Π?

3 =
[ 1/18 −1/6
−1/6 1/2

]
and Π?

4 = 0. Note that even when the dimension of

the Hilbert space is 2, there are 3 active measure-

ment operators. Since they are positive semidefinite and∑4
i=1 Π?

i = 11, the POVM is well defined. The POVM

T ? satisfies the optimality conditions from Lemma 3

and therefore ε? = 0.46 is the lowest average error

probability for this testing problem.

According to (24), the auxiliary state

µ?0 =
1

c?0

4∑
i=1

piτiΠ
?
i = 1

4

[
3 0
0 1

]
, (29)

is optimal in Theorem 1. Indeed, it follows that2

α 1
4

(
P ‖D(µ?0)

)
= 0.46 = ε?. (30)

2This computation can be done, e.g., by using (6) from Lemma 2

or by solving a semidefinite program.
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Other choices of µ0 yield a lower bound on the average

error probability ε?. For example, considering µ0 the

average state for this testing problem,

µ0 =

4∑
m=1

pmτm =
[

0.7 0
0 0.3

]
, (31)

yields

α 1
4

(
P ‖D(µ0)

)
≈ 0.4571 < 0.46 = ε?. (32)

Theorem 1 thus provides an alternative expression for

the error probability ε? for the optimal choice of the

auxiliary state, and a lower bound for other choices of

µ0. Combining Theorem 1 and Lemma 2, we obtain an

alternative characterization for ε? based on information-

spectrum measures.

Corollary 1: The minimum error probability of an

M -ary test discriminating among states {τ1, . . . , τM}

with prior classical probabilities {p1, . . . , pM} satisfies

ε? = max
µ0,t≥0

{
M∑
i=1

pi Tr
(
τi
{
piτi − tµ0 ≤ 0

})
− t

}
.

(33)

where the optimization is carried out over (unit-trace

non-negative) density operators µ0 acting onH, and over

the scalar threshold t ≥ 0.

Proof: Applying the lower bound (7) from Lemma 2

to the identity (18), and using the definitions of P in (16)

and D(·) in (17), it yields, for any µ0, t′ ≥ 0,

ε? ≥
M∑
i=1

pi Tr
(
τi
{
piτi − t′

M µ0 ≤ 0
})
− t′

M . (34)

It remains to show that there exist µ0 and t′ ≥ 0 such

that (34) holds with equality. In particular, let us choose

µ0 = µ?0 defined in (24), and t′ = Mc?0 where c?0 =∑M
i=1 pi Tr(τiΠ

?
i ) is the normalizing constant from (24).

For this choice of µ0 and t′, the projector spanning

the negative semidefinite eigenspace of the operator

piτi − t′

M µ0 can be rewritten as{
piτi − t′

M µ0 ≤ 0
}

=
{
piτi − Λ(T ?) ≤ 0

}
= 11,

(35)

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6
ε? = 0.46 0.46

0.4285

t

L
ow

er
bo

un
ds

on
ε?

µ?0 in (29)
µ0 in (31)

Fig. 1. Minimum error probability ε? (horizontal dashed line) for the

hypothesis testing problem described in (28), compared with the lower

bound that follows from (33) for fixed values of t and µ0.

where the last identity follows from (14). The right-hand

side of (34) thus becomes
M∑
i=1

pi Tr(τi)−
t′

M
= 1− t′

M
. (36)

Using that t′

M = c?0 =
∑
i pi Tr(τiΠ

?
i ) = 1 − ε?, the

result follows.

For illustration, let us consider again the testing prob-

lem from Example 1, c.f. (28). Figure 1 shows the

objective of (33) as a function of t for the auxiliary

state µ0 = µ?0 in (29) and for the value of µ0 given

in (31). We can see that considering µ0 = µ?0, after

maximization over t, yields the exact error probability

ε? = 0.46. In contrast, considering the value of µ0 in

(31), it yields a strict lower bound with a largest value of

0.4285, approximately. Comparing this value with (32),

we conclude that by fixing a suboptimal auxiliary state

µ0, the right-hand side of (18) from Theorem 1 yields

tighter bounds than (33) from Corollary 1. This could be

expected as the expression in Corollary 1 follows from

a weakening of (18).

We recall from the proofs of both Theorem 1 and

Corollary 1 that a density operator µ0 maximizing (18)
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and (33) is

µ?0 =
1

c?0

M∑
i=1

piτiΠ
?
i , (37)

for some T ? = {Π?
1, . . . ,Π

?
M} satisfying the conditions

in Lemma 3 and where c?0 is a normalizing constant.

Hence, the optimal M -ary hypothesis test T ? char-

acterizes the optimal µ0. Conversely, the optimal µ0

is precisely the Lagrange multiplier associated to the

minimization in (12), after an appropriate re-scaling.

While the expressions in Theorem 1 and Corollary 1

are not easier to compute than the exact error probability,

we show in the next section that they can be used to

determine the tightness of several converse bounds in

the context of reliable communication over classical-

quantum channels.

III. CLASSICAL-QUANTUM CHANNELS

We consider the channel coding problem of trans-

mitting M equiprobable messages3 over a one-shot

classical-quantum channel x → Wx, with x ∈ X and

Wx ∈ D(H). A channel code is defined as a mapping

from the message set {1, . . . ,M} into a set of M

codewords C = {x1, . . . , xM}. For a source message

m, the decoder receives the associated density operator

Wxm
and must decide on the transmitted message.

With some abuse of notation, for a fix code, some-

times we shall write Wm , Wxm
. The minimum error

probability for a code C is then given by

Pe(C) , min
{Π1,...,ΠM}

{
1− 1

M

M∑
m=1

Tr
(
WmΠm

)}
.

(38)

This problem corresponds precisely to the M -ary

quantum hypothesis testing problem described in Section

3While the results from Section II-B were derived for discrimination

among non-equiprobable alternatives, in the remainder of this paper we

consider the channel coding problem with equiprobable messages for

clarity of exposition.

II-B. In contrast to the classical setting, in which (38)

is minimized by the maximum likelihood decoder, the

minimizer of (38) corresponds to any POVM satisfying

the optimality conditions from Lemma 3.

A direct application of Theorem 1 yields an alternative

expression for Pe(C). Let P denote a (classical) distri-

bution over the input alphabet X and define

PW ,
∑

x∈X
P (x)

(
|x〉〈x| ⊗Wx

)
, (39)

P ⊗ µ ,
(∑

x∈X
P (x) |x〉〈x|

)
⊗ µ. (40)

We denote by PC , the input distribution induced by the

codebook C, hence PCW = 1
M

∑
x∈C
(
|x〉〈x|⊗Wx

)
and

PC ⊗ µ =
(

1
M

∑
x∈C |x〉〈x|

)
⊗ µ. Using the alternative

expression introduced in Theorem 1 we obtain the fol-

lowing result.

Theorem 2 (Classical-quantum meta-converse bound):

Let C be any codebook of cardinality M for a channel

x→Wx, with x ∈ X and Wx ∈ D(H). Then,

Pe(C) = sup
µ

{
α 1

M

(
PCW ‖PC ⊗ µ

)}
(41)

≥ inf
P

sup
µ

{
α 1

M

(
PW ‖P ⊗ µ

)}
. (42)

where the maximization is over auxiliary states µ ∈

D(H), and the minimization is over (classical) input

distributions P .

Proof: The identity (41) is a direct application of

(18) in Theorem 1. The relaxation (42) follows by min-

imizing (41) over all input distributions, not necessarily

induced by a codebook.

The right-hand-side of (41) coincides with the finite

block-length converse bound by Matthews and Wehner

[22, Eq. (45)], particularized for a classical-quantum

channel with an input state induced by the codebook C.

The lower bound (42) corresponds to [22, Eq. (46)]

specialized to the classical-quantum setting (see also [21,

Sec. 4.6] for a direct derivation for classical quantum

channels). The classical analogous of (42) is usually re-

ferred to as meta-converse bound, since several converse
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bounds in the literature can be derived from it. As it is

the case in the classical-quantum setting, in the following

we shall refer to this result as meta-converse.

Theorem 2 implies that the quantum generalization

of the meta-converse bound proposed by Matthews and

Wehner in [22, Eq. (45)] is tight for a fixed codebook

C. By fixing µ to be the state induced at the system

output, the lower bound (42) recovers the converse bound

[27, Th. 1], which is a rederivation of previous results

in [20] (see [20, Remarks 10 and 15]). This bound is

not tight in general since (i) the minimizing P does not

need to coincide with the input state induced by the best

codebook, and (ii) the choice of µ0 in [27, Th. 1] does

not maximize the resulting bound in general.

Using the characterization from Corollary 1, the error

probability Pe(C) can be equivalently written as

Pe(C)

= max
µ0,t≥0

{
1

M

∑
x∈C

Tr
(
Wx

{
Wx − tµ0 ≤ 0

})
− t

M

}
.

(43)

The objective of the maximization in (43) coincides with

the information-spectrum bound [20, Lemma 4]. Then,

(43) shows that the Hayashi-Nagaoka lemma yields the

exact error probability for a fixed code, after optimizan-

tion over the free parameters µ0, t ≥ 0.

IV. QUASI-PERFECT CODES

While the alternative expressions (41) and (43) derived

in the previous section yield the exact error probability,

they still depend on the codebook C. To obtain a practical

converse bound, these expressions need to be minimized

over a family of codes or input distributions. One practi-

cal converse bound is the relaxation given in (42) which

can be evaluated in several cases of interest. Since the

converse bound (42) is a weakening of (41), it does

not coincide with the exact error probability in general.

Nevertheless, we next show that this is still the case

for certain symmetric channels and the family of codes

defined in this section.

A. Symmetric channels

Definition 1: We say that a classical-quantum channel

x→Wx, with x ∈ X and Wx ∈ D(H), is symmetric if

Wx = UxW̄U†x (44)

for every x ∈ X , where W̄ ∈ D(H) does not depend on

x and Ux is a unitary linear operator acting on H and

parametrized by x.

This definition is related to that of covariant quantum

channels (see, e.g., [35] or [36, Sec. 9.7]). Let us

consider a quantum channel N : D(HA) → D(HB),

denoted by NA→B , where HA and HB are the input

and output Hilbert spaces of the channel, respectively.

Let G be a compact group and g → Vg , g → Ug ,

g ∈ G, be continuous (projective) unitary representations

of G in the input and output Hilbert spaces of the

channel, respectively. The quantum channel NA→B is

called covariant with respect to the representation if

NA→B(VgSV
†
g ) = UgNA→B(S)U†g for every input state

S ∈ D(HA). For a classical-quantum channel x→Wx,

x ∈ X , Wx ∈ D(HB) denoted by NX→B , we can

define the orthogonal basis |x〉〈x|. Then, letting Vx be

such that |x〉〈x| = Vx|0〉〈0|V †x , it follows that Wx =

UxNX→B(|0〉〈0|)U†x = UxW0U
†
x. We conclude that any

covariant quantum channel with classical (orthogonal)

inputs also satisfies (44).

Definition 1 was also considered in [37], [38] with the

additional assumption Ux = Ux, U |X | = 11, for some

unitary U . For this family of symmetric channels, H.-

C. Cheng et al. derived a sphere-packing lower bound

for the optimal error probability in finite blocklengths.

The proposed bound features the sphere-packing error

exponent and the symmetry of the channel allows to

tighten the prefactor order to polynomial.
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In Definition 1, however, we do not impose further

structure on the unitary representations Ux. The results

in this section hold for this family of symmetric channels

provided that there exist codes satisfying certain proper-

ties, as it will be shown next.

B. Quasi-perfect codes

For any operator µ ∈ D(H) and parameter t ∈ R, we

define

Ex(t, µ) ,
{
Wx − tµ ≥ 0

}
, (45)

For a symmetric channel x → Wx = UxW̄U†x, x ∈ X ,

we consider the set of auxiliary operators µ ∈ D(H)

such that they commute with the unitary transformations

Ux, x ∈ X . More precisely, for a symmetric channel

x→Wx, we define

UW ,
{
µ ∈ D(H) | Uxµ = µUx

}
. (46)

Then, for any symmetric channel x → Wx, x ∈ X ,

Wx ∈ D(H), and µ ∈ UW , it follows that

Ex(t, µ) =
{
UxW̄U†x − tµ ≥ 0

}
(47)

= Ux
{
W̄ − tU†xµUx ≥ 0

}
U†x (48)

= UxĒ(t, µ)U†x, (49)

where in the last step we used the fact that µUx = Uxµ

and defined Ē(t, µ) ,
{
W̄ − tµ ≥ 0

}
, which does not

depend on x ∈ X .

Similarly to (45), we define

E◦x(t, µ) ,
{
Wx − tµ = 0

}
. (50)

E•x(t, µ) ,
{
Wx − tµ > 0

}
, (51)

and,

F •x (t, µ) , Tr
(
WxE•x(t, µ)

)
, (52)

G•x(t, µ) , Tr
(
µ E•x(t, µ)

)
, (53)

where, F•(·) , F •x (·), G•(·) , G•x(·), independent of

x ∈ X for symmetric channels.

Definition 2: A code C is perfect for a classical-

quantum channel x → Wx, if there exist a scalar

t and a state µ ∈ D(H) such that the projec-

tors
{
Ex(t, µ)

}
x∈C are orthogonal to each other and∑

x∈C Ex(t, µ) = 11. More generally, a code is quasi-

perfect if there exist t and µ ∈ D(H) such that the

projectors
{
E•x(t, µ)

}
x∈C are orthogonal to each other,

and for I• ,
∑
x∈C E•x(t, µ), I◦ , 11 − I•, it holds

that
∑
x∈C E◦x(t, µ) = cI◦ where c ∈ R, c > 0 is a

normalizing constant that depends on the code C.

Example 2: Let us consider the pure-state channel x→

Wx = |ϕx〉〈ϕx| acting on a n-dimensional Hilbert space

H. This channel is symmetric, as any pure-state Wx

can be constructed via unitary transformations from an

arbitrary pure-state W̄ = |ψ〉〈ψ|. If we do not impose

further restrictions on the output of the system, i.e., it can

be an arbitrary pure state Wx = UxW̄U†x, then the only

state µ which commutes with all unitary linear operator

Ux, x ∈ X , is the maximally mixed state µ = 1
n11.

According to Definition 2, a code C with M = n

orthogonal pure states is perfect for this channel with

parameters t = n and µ = 1
n11, since the projectors

Ex
(
n, 1

n11
)

=
{
|ϕx〉 〈ϕx| − 11 ≥ 0

}
= |ϕx〉 〈ϕx| are

orthogonal for x ∈ C, and they form a basis for H. Note

that this particular case can be reduced to a classical

problem, since the channel outputs commute with each

other. Similarly, a code with M ≥ n is quasi-perfect

for this channel with parameters t = n and µ = 1
n11

provided that
∑
x∈C |ϕx〉 〈ϕx| = c11 with c = M

n . A

family of codes fulfilling this properties will be studied

in detail in Section V. For these quasi-perfect codes,

the interiors E•x
(
n, 1

n11
)

=
{
|ϕx〉 〈ϕx| − 11 > 0

}
= 0,

hence they are orthogonal to each other, and the channel

outputs don’t commute with each other. For M < n, the

codes for this channel and the auxiliary state µ = 1
n11

are neither perfect nor quasi-perfect.

To avoid ambiguities, we shall denote by t̄ the smallest
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value of t such that the projectors
{
E•x(t, µ)

}
x∈C are

orthogonal to each other for a certain code C. We shall

refer to t̄ as the packing radius of the code C with respect

to state µ.

The next result provides an alternative expression for

the error probability of perfect and quasi-perfect codes.

Theorem 3 (Error probability of quasi-perfect codes):

Let the channel x → Wx, x ∈ X , Wx ∈ D(H), and

µ ∈ UW be symmetric, and let C be perfect or quasi-

perfect with parameters t and µ. Then,

Pe(C) = 1− F•(t, µ) + t
(
G•(t, µ)− |C|−1

)
, (54)

where |C| denotes the cardinality of the codebook C.

Proof: Let C = {x1, . . . , xM} be an arbitrary code

for the (symmetric) channel x → Wx. Let t̄ be the

packing radius of C with respect to the auxiliary state

µ.

We define the orthogonal basis {Ē(i)} associated to

the eigenspace of
{
W̄ − t̄µ ≥ 0

}
such that

Ē•(t̄, µ) =
∑
i∈I•

Ē(i), (55)

E•x(t̄, µ) = UxĒ•(t̄, µ)U†x (56)

=
∑
i∈I•

UxĒ(i)U†x =
∑
i∈I•

Ex(i), (57)

where we let Ex(i) , UxĒ(i)U†x. Here, I• denotes the

set of basis indexes associated to the strictly positive

eigenvalues. Note that the projectors Ex(i) are orthogo-

nal to Ex′(i) for x 6= x′, i ∈ I• since the projectors

{E•x(t̄, µ)} for x ∈ C are orthogonal to each other.

Similarly, we also write

Ē◦(t̄, µ) =
∑
i∈I◦

Ē(i), (58)

E◦x(t̄, µ) = UxĒ◦(t̄, µ)U†x (59)

=
∑
i∈I◦

UxĒ(i)U†x =
∑
i∈I◦

Ex(i). (60)

where I◦ denotes the set of basis indexes associated to

the zero eigenvalues. In this later case however, there is

no orthogonality condition between the projectors Ex(i)

for i ∈ I◦ for different codewords x ∈ C. Now define

d• ,M |I•| and d◦ , n− d•, where n = dim(H). The

code specific constant associated with a quasi-perfect

code C is c , M |I◦|
d◦

.

We consider the decoder T = {Π1, . . . ,ΠM} with

projectors

Πm = E•xm
(t̄, µ) +

1

c
E◦xm

(t̄, µ) (61)

= Uxm
Ē•(t̄, µ)U†xm

+
1

c
Uxm
Ē◦(t̄, µ)U†xm

(62)

= Uxm
Π̄U†xm

, m = 1, . . . ,M, (63)

where

Π̄ = Ē•(t̄, µ) +
1

c
Ē◦(t̄, µ) (64)

Note that this definition implies
M∑
m=1

Πm = I• + I◦ = 11, (65)

as required.

We next show that this decoder satisfies the Holevo-

Yuen-Kennedy-Lax conditions from Lemma 3 and it thus

minimizes (38). According to (15), let

Λ(T ) =
1

M

M∑
`=1

W`Π`. (66)

To verify the condition (13), we write(
Λ(T )− 1

M
Wm

)
Πm

=

(
1

M

∑
6̀=m

W`Π`

)
Πm +

1

M
WmΠm(Πm − I).

(67)

Let us consider the first term in (67) only. Using (61),

we decompose this term as(
1

M

∑
` 6=m

W`Π`

)
Πm

=
1

M

(∑
` 6=m

W`E•` (t̄, µ) +
1

c

∑
` 6=m

W`E◦` (t̄, µ)

)

×
(
E•m(t̄, µ) +

1

c
E◦m(t̄, µ)

)
. (68)
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We note that E•` (t̄, µ) and E•m(t̄, µ) are mutually or-

thogonal for ` 6= m; hence E•` (t̄, µ)E•m(t̄, µ) = 0.

Using that the subspaces I◦ and I• are mutually or-

thogonal, we conclude that E◦` (t̄, µ)E•m(t̄, µ) = 0, and

E•` (t̄, µ)E◦m(t̄, µ) = 0. Then, (68) becomes(
1

M

∑
` 6=m

W`Π`

)
Πm

=
1

Mc2

(∑
` 6=m

W`E◦` (t̄, µ)

)
E◦m(t̄, µ), (69)

where in the last step we used that E•m(t̄, µ) and E•` (t̄, µ)

are mutually orthogonal for ` 6= m; and so they are

E•m(t̄, µ) and E◦` (t̄, µ).

Since E◦` (t̄, µ) is the projector associated to the

nullspace of W` − t̄µ, it holds that

W`E◦` (t̄, µ) = t̄µE◦` (t̄, µ). (70)

Then, proceeding from (69), we obtain(
1

M

∑
6̀=m

W`Π`

)
Πm

=
1

Mc2

(∑
` 6=m

t̄µE◦` (t̄, µ)

)
E◦m(t̄, µ) (71)

=
1

Mc2
t̄µ

(∑
` 6=m

E◦` (t̄, µ)

)
E◦m(t̄, µ) (72)

=
1

Mc2
t̄µ
(
cI◦ − E◦m(t̄, µ)

)
E◦m(t̄, µ) (73)

=
c− 1

Mc2
t̄µE◦m(t̄, µ), (74)

where we used first that
∑
x∈C E◦x(t, µ) = cI◦, and then

I◦E◦m(t̄, µ) = E◦m(t̄, µ)E◦m(t̄, µ) = E◦m(t̄, µ).

For the second term in (67), we can show that

1

M
WmΠm(Πm − I) =

1− c
Mc2

WmE◦m(t̄, µ) (75)

=
1− c
Mc2

t̄µE◦m(t̄, µ) (76)

Combining (74) and (76) with (67), we prove that(
Λ(T )− 1

MWm

)
Πm = 0. Following analogous steps,

we show that Πm

(
Λ(T )− 1

MWm

)
= 0 and hence the

decoder satisfies the optimality condition (13).

Using similar arguments to those in the previous

derivation, we write

Λ(T )− 1

M
Wm =

1

M

M∑
`=1

W`Π` −
1

M
Wm (77)

=
1

M

∑
` 6=m

W`Π` +
1

M
Wm(Πm − I).

(78)

For the first term in (78), we have that

1

M

∑
` 6=m

W`Π`

=
1

M

∑
6̀=m

W`E•` (t̄, µ) +
1

Mc
t̄µ
∑
` 6=m

E◦` (t̄, µ). (79)

For the second term, using (61), we obtain

1

M
Wm(Πm − I)

=
1

M
WmE•m(t̄, µ) +

1

Mc
WmE◦m(t̄, µ)− 1

M
Wm

(80)

=
1

Mc
t̄µE◦m(t̄, µ)− 1

M
WmI◦ −

1

M
Wm

∑
6̀=m

E•` (t̄, µ),

(81)

where in (81) we used the identities I• =
∑
` E•` (t̄, µ)

and Wm = WmI• +WmI◦.

We now use that according to the definition of quasi-

perfect codes, I◦ = 1
c

∑
` E◦` (t̄, µ). Then, substituting

(79) and (81) in (78), grouping terms, we obtain

Λ(T )− 1

M
Wm

=
1

M

(
t̄µ−Wm

)
I◦ +

1

M

∑
` 6=m

(
W` −Wm

)
E•` (t̄, µ).

(82)

The eigenvectors of Wm − t̄µ corresponding to positive

eigenvalues belong to the subspace spanned by I•.

Therefore 1
M

(
t̄µ−Wm

)
I◦ ≥ 0.
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On the other hand, we have that

1

M

∑
` 6=m

(W` −Wm)E•` (t̄, µ) (83)

≥ 1

M

∑
6̀=m

(t̄µ−Wm)E•` (t̄, µ) (84)

≥ 1

M

∑
6̀=m

(t̄µ− t̄µ)E•` (t̄, µ) = 0 (85)

where in (84) we used W`E•` (t̄, µ) ≥ t̄µE•` (t̄, µ),

and (85) follows since WmE•` 6=m(t̄, µ) ≤ t̄µE•6̀=m(t̄, µ)

which holds since E•` 6=m(t̄, µ) and E•m(t̄, µ) being or-

thogonal implies that E•6̀=m(t̄, µ) must belong to the

negative eigenspace of Wm − t̄µ. We conclude that

Λ(T )− 1
MWm ≥ 0.

As the decoder T = {Π1, . . . ,ΠM} satisfies the

optimality conditions from Lemma 3, it minimizes (38).

Then, combining (15) and (38), we obtain that the error

probability of this code is

Pe(C) = 1− Tr
(
Λ(T ?)

)
(86)

= 1− Tr

(
1

M

M∑
m=1

WmE•m(t̄, µ)

+
1

Mc

M∑
m=1

WmE◦m(t̄, µ)

)
. (87)

Using (52), the error probability Pe(C) becomes

Pe(C) = 1− 1

M

M∑
m=1

F •xm
(t̄, µ)

− 1

Mc
Tr

(
M∑
m=1

t̄µE◦m(t̄, µ)

)
(88)

= 1− 1

M

M∑
m=1

F •xm
(t̄, µ)− t̄

M
Tr
(
µI◦) (89)

Now, noting that µ = µ(I◦ + I•), we write

Tr
(
µI◦
)

= 1− Tr

(
µ

M∑
m=1

E•m(t̄, µ)

)
(90)

= 1−
M∑
m=1

G•xm
(t̄, µ) (91)

where the second equality follows from (53). Then, sub-

stituting (91) in (89), using the fact that, for symmetric

channels, F •x (t̄, µ) = F•(t̄, µ) and G•x(t̄, µ) = G•(t̄, µ),

and noting that M = |C|, we obtain

Pe(C) = 1− F•(t̄, µ) + t̄(G•(t̄, µ)− |C|−1) (92)

Example 3: For the pure-state channel Wx = |ϕx〉〈ϕx|

introduced in Example 2 above, let t = n be the number

of dimensions of Hilber space H and µ = 1
n11 be the

maximally mixed state. Then, F•(t, µ) = G•(t, µ) = 0

and using (54) we obtain that for any perfect or quasi-

perfect code C with cardinality |C| = M , the error

probability is given by

Pe(C) = 1− n

M
. (93)

Note that Pe(C) is the average error probability of

the code and that it does not describe how the errors

are distributed among the different messages. It could

happen that some of the projectors are inactive and the

corresponding messages always yield an error, and that

some messages may be decoded with no error.

We next show that perfect and quasi-perfect codes

attain the converse bound (42) with equality. This result

is based on the following auxiliary lemma.

Lemma 4: Let ρ0 = PW and ρ1 = P ⊗ µ be defined

in (39) and (40), respectively. Then, the optimal trade-off

(4) for a hypothesis test between ρ0 and ρ1 satisfies

αβ
(
PW ‖P ⊗ µ

)
= inf

{β′x}:
β=

∑
x P (x)β′x

∑
x∈X

P (x)αβ′x
(
Wx ‖µ

)
. (94)

Proof: We consider Lemma 2 with ρ0 ← PW and

ρ1 ← P ⊗ µ. Then, using the block-diagonal structure
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of PW and P ⊗ µ, the identity (6) yields

αβ
(
PW ‖P ⊗ µ

)
= sup

t≥0

{∑
x∈X

P (x) Tr
(
Wx

{
Wx − tµ ≤ 0

})
+ t

(∑
x∈X

P (x) Tr
(
µ
{
Wx − tµ > 0

})
− β

)}
(95)

= sup
t≥0

{∑
x∈X

P (x)

(
Tr
(
Wx

{
Wx − tµ ≤ 0

})
+ t
(

Tr
(
µ
{
Wx − tµ > 0

})
− β′x

))}
(96)

for any {β′x}, x ∈ X , such that
∑
x P (x)β′x = β.

We relax the optimization (96) by letting the parameter

t be different for each x. Then, we obtain the following

upper bound on αβ
(
PW ‖P ⊗ µ

)
,

αβ
(
PW ‖P ⊗ µ

)
≤
∑
x∈X

P (x) sup
tx≥0

{
Tr
(
Wx

{
Wx − txµ ≤ 0

})
+ tx

(
Tr
(
µ
{
Wx − txµ > 0

})
− β′x

)}
(97)

=
∑
x∈X

P (x)αβ′x
(
Wx ‖µ

)
, (98)

where in the last step we applied the identity (6) from

Lemma 2 with ρ0 ←Wx and ρ1 ← µ. The bound (97)-

(98) holds for any {β′x}, x ∈ X , such that
∑
x P (x)β′x =

β. Then, to prove (94) it suffices to show that there

exist {β′x} satisfying
∑
x P (x)β′x = β and such that

(97) holds with equality.

Indeed, the value of t maximizing (96) induces the

Neyman-Pearson test (5), which due to the block-

diagonal structure of the problem, can be decomposed

into the sub-tests

T ′x =
{
Wx − tµ > 0

}
+ θ0

x. (99)

Each of these subtests induces a type-I error probability

α′x and type-II error probability β′x, which, according to

the NP lemma, satisfy
∑
x P (x)α′x = αβ

(
PW ‖P ⊗µ

)

and
∑
x P (x)β′x = β. It follows that, for this choice of

{β′x}, the optimization in (97) yields tx = t (as the t

parameter in the NP subtests is unique), and therefore

(97) holds with equality. The result thus follows.

Lemma 4 asserts that, for a binary hypothesis test

between classical-quantum distributions, it is possible to

express the optimal type-I error probability as a convex

combination of that of disjoint sub-tests provided that

the type-II error is optimally distributed among them.

The next result follows from combining Theorem 3 and

Lemmas 2 and 4.

Theorem 4 (Quasi-perfect codes attain the meta-

converse): Let the channel x → Wx be symmetric and

let C be perfect or quasi-perfect with parameters t and

µ ∈ UW . Then, for M = |C|,

Pe(C) = inf
P

sup
µ′
α 1

M

(
PW ‖P ⊗ µ′

)
. (100)

Proof: According to (42) in Theorem 2, the right-

hand side of (100) is a lower bound to the error prob-

ability of any code. Then, to prove (100), it suffices to

show that the error probability of C coincides with this

lower bound. Using Lemma 4, fixing the auxiliary state

µ to that from Definition 2, we obtain

inf
P

sup
µ′
α 1

M

(
PW ‖P ⊗ µ′

)
≥ inf

{P (x),βx}:∑
x P (x)βx= 1

M

∑
x∈X

P (x)αβx

(
Wx ‖µ

)
. (101)

Now, using (6) from Lemma 2, letting t′ = t, and using

the definitions of F •x (t, µ) and G•x(t, µ), it follows that

αβx

(
Wx ‖µ

)
≥ 1− F •x (t, µ) + t

(
G•x(t, µ)− βx

)
(102)

= 1− F•(t, µ) + t
(
G•(t, µ)− βx

)
, (103)

where in the last step we used that for symmetric

channels, F•(t, µ) = F •x (t, µ) and G•(t, µ) = G•x(t, µ).
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Then, using (103) in (101), we obtain

inf
P

sup
µ′
α 1

M

(
PW ‖P ⊗ µ′

)
≥ inf

{P (x),βx}:∑
x P (x)βx= 1

M

(
1− F•(t, µ)

+ t
(
G•(t, µ)−

∑
x P (x)βx

))
(104)

= 1− F•(t, µ) + t

(
G•(t, µ)− 1

M

)
(105)

where in the second step we used that the constraint∑
x P (x)βx = 1

M implies that the objective does not

depend on the optimization variables.

The right-hand side of (105) coincides with the error

probability of the quasi-perfect codes given in (54).

Then, using this observation and (42) we conclude that,

whenever C is perfect or quasi-perfect,

Pe(C) ≤ inf
P

sup
µ′
α 1

M

(
PW ‖P ⊗ µ′

)
≤ Pe(C),

(106)

and the converse bound (100) must hold with equality.

The computation of the right-hand side of (100) can

be simplified by exploiting the symmetry of the channel.

Indeed, for a symmetric channel x→Wx and µ ∈ D(H)

being invariant under this symmetry, namely µ ∈ UW , it

follows that (see [22, Sec. V.E])

inf
P

sup
µ′
α 1

M

(
PW ‖P ⊗ µ′

)
= α 1

M

(
Wx ‖µ

)
. (107)

Therefore, we obtain the following corollary to Theo-

rem 4; when the channel x→Wx is symmetric and C is

perfect or quasi-perfect with parameters t and µ ∈ UW ,

the error probability of C is

Pe(C) = α 1
M

(
Wx ‖µ

)
. (108)

Remark 1: Our definition of quasi-perfect codes is

restricted to channels satisfying certain symmetry condi-

tions. In general, we could define a quasi-perfect code C

of cardinality M to be quasi-perfect whenever it attains

the meta-converse bound with equality, i.e., if it satisfies

(100). While this operational definition would apply for

symmetric and non-symmetric channels, the condition

itself is difficult to verify and it does not yield any simple

expression for the error probability of these codes.

Theorem 4 shows that, whenever they exist, quasi-

perfect codes attain the meta-converse bound (42) with

equality. Particularizing this result in the classical case,

for codes satisfying the technical conditions in Defini-

tion 2, we obtain [12, Th. 1]. This occurs for example

for quasi-perfect binary codes for the BSC. Definition 2

extends the notion of generalized perfect and quasi-

perfect codes to classical-quantum symmetric channels

and Theorem 4 shows their optimality.

In the classical setting the codes belonging to this class

are rare and only exist for short blocklengths. Then, one

may wonder if they exist at all for classical-quantum

channels of interest. In the next section we show that

this is the case for a family of 2-qubit classical-quantum

channels and certain code parameters.

V. 2-QUBIT CLASSICAL-QUANTUM CHANNELS AND

BELL CODES

A. Pure 2-qubit classical-quantum channel

We consider a 2-qubit pure-state channel

x→Wx = |ϕx〉〈ϕx|. (109)

We define the codebook C = {x1, . . . , xM}, with even

cardinality M = 2K ≥ 4, such that the channel output

of the m-th codeword is Wm = |ϕxm〉〈ϕxm | with

|ϕxm
〉 =


1√
2

(
|00〉+ ejφk |11〉

)
, m = 1 + 2k,

1√
2

(
|01〉+ ejφk |10〉

)
, m = 2 + 2k,

(110)

where φk = 2πk/K, for k = 0 . . .K − 1.

For M = 4, the channel outputs |ϕxm
〉 correspond

precisely to the Bell states [39]. For M ≥ 4, we refer

to this family of codes as Bell codes, since they follow

from a generalization of the Bell states.
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Since
∑M
m=1 |ϕxm〉 〈ϕxm | = M

4 11 for M ≥ 4, these

codes are either perfect (when M = 4) or quasi-perfect

(when M > 4) for the 2-qubit pure-state channel.

Proposition 1: The 2-qubit classical-quantum channel

Wx = |ϕx〉 〈ϕx| is symmetric with respect to µ0 = 1
4 114

and the Bell code C is quasi-perfect for this channel.

Moreover,

Pe(C) = α 1
M

(
Wx ‖µ0

)
= 1− 4

M
. (111)

Proof: See Examples 2 and 3 in Section IV, with

error probability given in (93).

When M = 4, the code corresponds precisely to the

(orthogonal) Bell states and the transmitted message can

be determined without errors. For M = 2K > 4, the

codewords are no longer orthogonal to each other and

therefore they incur in measurement errors even for the

ideal pure 2-qubit classical-quantum channel. Neverthe-

less, as shown in Theorem 2 and in Proposition 1, there

exist no other packing of pure states with lower error

probability.

B. Classical-quantum depolarizing channel

This family of codes is not only optimal for the ideal

pure-state channel but also when the transmission is

affected by certain errors, as we will see next.

Consider the 2-qubit classical-quantum channel (109)

where Wx is observed through a quantum depolarizing

channel, defined as

ND
A→B(ρA) = p

1

4
114 + (1− p)ρA, (112)

where 0 ≤ p ≤ 1 is the depolarization parameter.

The combined classical-quantum channel is thus

x→Wx = ND
A→B

(
|ϕx〉 〈ϕx|

)
. (113)

Using the Bell code defined in (110), the channel output

is xm →Wm = ND
A→B

(
|ϕxm〉 〈ϕxm |

)
, m = 1, . . . ,M .

Proposition 2: Let µ0 = 1
4 114. Then, the 2-qubit

classical-quantum depolarizing channel is symmetric

with respect to µ0 and the Bell code C is quasi-perfect

for this channel. Moreover,

Pe(C) = α 1
M

(
Wx ‖µ0

)
= 1− 1

M
(4− 3p), (114)

which is obtained using decoder T = {Π1, . . . ,ΠM}

with Πi given by

Πi =
4

M
|ϕxi
〉 〈ϕxi

| . (115)

Proof: Consider the decoder T = {Π1, . . . ,ΠM}

with Πi defined in (115).

1) Decoder optimality: One can check that Πi ≥ 0

and
∑M
i=1 Πi = 114. For this decoder,

Λ(T ) ,
1

M

M∑
i=1

WiΠi (116)

=
4

M2

M∑
i=1

Wi |ϕxi
〉 〈ϕxi

| (117)

=
1

4M
(4− 3p)114. (118)

Then, it follows that

Λ(T )Πi =
1

M
WiΠi, (119)

which implies (13). Equation (14) is satisfied since, for

arbitrary unit norm vector |ψ〉,

〈ψ|Λ(T ) |ψ〉
1
M 〈ψ|Wi |ψ〉

=
1

4M (4− 3p)
1

4M (p+ 4(1− p)| 〈ψ|ϕxi〉 |2)
(120)

≥ 4− 3p

p+ 4(1− p)
= 1 (121)

So T = {Π1, . . . ,ΠM} minimizes the error probability

for the Bell code C.

2) Symmetry of the channel with respect to µ0: We

will prove next that

Ex(t, µ0) =


114, t < 0,

|v〉 〈v| , 0 ≤ t ≤ t0,

0, t > t0,

(122)
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for |v〉 = |ϕx〉 and t0 = 4− 3p independent of x. Then,

using (122) in Fx(t, µ0) = Tr
(
WxEx(t, µ0)

)
, it yields

Fx(t, µ0) =


1, t < 0,

1− 3
4p, 0 ≤ t ≤ t0,

0, t > t0,

(123)

and Tr
(
Wx |v〉 〈v|) is independent of ϕx, so the channel

is symmetric with respect to µ0.

It remains to show that (122) holds. The identity for

t < 0 follows trivially. We consider an arbitrary unit-

norm vector |v〉. Then, the largest eigenvalue of Wx−tµ0

is given by

max
v
〈v| (Wx − tµ0) |v〉 (124)

= max
v

{p
4

+ (1− p)| 〈v|ϕx〉 |2 −
t

4

}
(125)

= 1− 3

4
p− t

4
. (126)

The eigenvalue (126) is negative for t > 4−3p and non-

negative otherwise. Then, we obtain that Fx(t, µ0) = 0,

for t > 4 − 3p. For 0 ≤ t ≤ 4 − 3p, (126) is the

only non-negative eigenvalue with associated eigenvector

|v〉 = |ϕx〉. Therefore, considering the three regions, we

obtain (122).

3) C is quasi-perfect with respect to µ0: Comparing

(118) with the auxiliary state µ0 considered in the

statement of Proposition 2, we observe that

µ0 =
1

c0
Λ(T ) =

1

Mc0

M∑
m=1

WmΠm, (127)

where c0 = 4−3p
M is a normalizing constant and where

T satisfies the optimality conditions.

Take t = Mc0 = 4 − 3p, then 1
MWm − Λ(T ) is

negative semidefine and E•xm
(t, µ0) = 0. As a result,{

E•xm
(t, µ0)

}
x∈C are orthogonal to each other. Similarly,

for this choice of t and µ0, it follows that E◦xm
(t, µ0) =

|ϕxm
〉 〈ϕxm

|. Therefore
∑
x∈C E◦x(t, µ) = M

4 114 and the

code is quasi-perfect.

4) Error probability: Using Theorem 4, it follows that

Pe(C) = α 1
M

(
Wx ‖µ0

)
. Moreover, using the optimal

decoder T , we obtain

Pe(C) = 1− 1

M

M∑
i=1

Tr
(
WiΠi

)
(128)

= 1− Tr
(
Λ(T )

)
(129)

= 1− 4− 3p

M
, (130)

where in the last step we used (118).

C. Extension to N -qubit classical-quantum channels

Consider now an arbitrary N -qubit classical-quantum

channel with pure outputs given by

|ϕ〉 =

2N−1∑
l=0

αl |l〉 (131)

=

2N−1∑
l=0

αl |lN−1 . . . l0〉 (132)

= α0 |0 . . . 00〉+ α1 |0 . . . 01〉+ α2N−1 |1 . . . 11〉

(133)

for
∑2N−1
l=0 |αl|2 = 1 and where lN−1 . . . l0 are the digits

of the binary representation of l. The channel is then

x → Wx = |ϕx〉 〈ϕx|. For M = 2N−1K ≥ 2N , we

define the N -qubit Bell codebook of cardinality M given

by C =
{
x1, . . . , xM

}
with channel outputs

|ϕxm〉 =



1√
2

(
|00〉+ ejφk |11〉

)
⊗ |lN−3 . . . l0〉 ,

m = 1 + 2k + 2Kl,

1√
2

(
|01〉+ ejφk |10〉

)
⊗ |lN−3 . . . l0〉 ,

m = 2 + 2k + 2Kl,

(134)

where φk = 2πk/K, k = 0, . . . ,K − 1, and where

l = 0, . . . , 2N−2 − 1.

The channel ouput for codeword xm is thus given by

the pure state Wm = |ϕxm〉 〈ϕxm |.
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Proposition 3: Let µ0 = 1
2N 112N . The N -qubit

classical-quantum channel is symmetric with respect to

µ0 and the N -qubit Bell code C is quasi-perfect for this

channel. Moreover,

Pe(C) = α 1
M

(
Wx ‖µ0

)
= 1− 2N

M
. (135)

which is obtained using T = {Π1, . . . ,ΠM} with

Πi =
2N

M
Wi. (136)

Proof: The proof follows analogous steps to that of

Proposition 1 and it is omitted here.

The N -qubit Bell code is also quasi-perfect for chan-

nels affected by depolarization as stated by the following

result which is a generalization of Proposition 2.

Consider the N -qubit classical-quantum channel in

(131) observed after a quantum depolarizing channel:

ND
A→B(ρA) = p

1

2N
112N + (1− p)ρA, (137)

The combined classical-quantum channel is x →

Wx = ND
A→B

(
|ϕx〉 〈ϕx|A

)
. Using the Bell code defined

in (134), the channel output to codeword xm is given by

Wm = ND
A→B

(
|ϕxm〉 〈ϕxm |A

)
, m = 1, . . . ,M .

Proposition 4: Let µ0 = 1
2N 112N . Then, the N -

qubit classical-quantum depolarizing channel is symmet-

ric with respect to µ0 and the N -qubit Bell code C is

quasi-perfect for this channel. Moreover,

Pe(C) = α 1
M

(
Wx ‖µ0

)
= 1− 1

M

(
2N (1− p) + p

)
.

(138)

which is obtained using decoder T = {Π1, . . . ,ΠM}

with

Πi =
2N

M
|ϕxi〉 〈ϕxi | . (139)

Proof: The proof follows analogous steps to that of

Proposition 2 and it is omitted here.

VI. DISCUSSION

In this work we explored the connections between

hypothesis testing and classical-quantum channel coding.

First, we obtained two alternative exact expressions

for the minimum error probability of multiple quantum

hypothesis testing when a (classical) prior distribution is

placed over the hypotheses. The expression in Theorem 1

illustrates connections among the different settings of

hypothesis testing and Corollary 1 provides an alternative

formulation based on information-spectrum measures. A

direct application of these results to a classical-quantum

channel coding problem shows that Matthews-Wehner

converse bound [22, Th. 19] and Hayashi-Nagaoka

lemma [20, Lemma 4] with certain parameters yield the

exact error probability in this setting.

While these results are of theoretical interest, the

resulting expressions still depend on the the codebook

and their application as performance benchmarks for

classical-quantum channels is limited. We studied differ-

ent relaxations and connections with practical converse

bounds in the literature, thus characterizing the weak-

nesses of these bounds and the gap to the exact channel-

coding error probability. Of special interest for this work

is the so-called meta-converse bound [22, Eq. (46)],

presented here in Theorem 2, which corresponds to the

error probability of a binary hypothesis test with certain

parameters.

In the second part of this work, we introduced the

notion of perfect and quasi-perfect codes for symmetric

classical-quantum channels. It is interesting to note that

this notion is channel dependent –since a code being

perfect for a channel it is not necessarily perfect for

another one– and that it encompasses classical perfect

and quasi-perfect codes as a special case [12, Sec. IV]

provided some technical conditions hold. Theorem 3

provides an expression of the error probability of perfect
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and quasi-perfect codes for symmetric classical-quantum

channels, which is then used in Theorem 4 to prove that

these codes attain the meta-converse bound with equality.

These codes, whenever they exist, are thus optimal in

the sense that they achieve the smallest error probability

among all codes of the same blocklength and cardinality.

Establishing the existence of generalized perfect and

quasi-perfect codes for a given set of system parameters

is a difficult problem, even for simple classical channels.

For instance, [40] studies their existence for the BSC

channel and [41] shows that MDS codes, which are

generalized quasi-perfect for the q-ary erasure channel,

only exist for blocklengths n ≤ q + 1. In this work,

we consider a family of 2-qubit classical-quantum chan-

nels affected by depolarization. Using the framework

presented, we established that a generalization of Bell

states, that we name Bell codes, are quasi-perfect for

these channels when the code cardinality is M ≥ 4.

For these channels and code parameters, we have thus

established the error probability and structure of the best

coding scheme. Proving the existence of perfect and

quasi-perfect codes for other classical-quantum channels

of practical interest is an unexplored line of research.
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[10] M. C. Coşkun, G. Durisi, T. Jerkovits, G. Liva, W. Ryan, B. Stein,

and F. Steiner, “Efficient error-correcting codes in the short

blocklength regime,” Physical Comm., vol. 34, pp. 66 – 79, 2019.

[11] I. E. Bocharova, B. D. Kudryashov, E. P. Ovsyannikov,

V. Skachek, and T. Uustalu, “Design and analysis of NB QC-

LDPC codes over small alphabets,” IEEE Transactions on Com-

munications, pp. 1–1, 2022, in press.

[12] G. Vazquez-Vilar, A. Guillén i Fàbregas, and S. Verdú, “The error
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