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A B S T R A C T

In the medical domain there exists a terminological gap between patients and caregivers and the healthcare
professionals. This gap may hinder the success of the communication between healthcare consumers and
professionals in the field, with negative emotional and clinical consequences. In this work, we build a machine
learning-based tool for the automatic translation between the terminology used by laypeople and that of the
Human Phenotype Ontology (HPO). HPO is a structured vocabulary of phenotypic abnormalities found in
human disease. Our method uses a vector space to represent an HPO-specific embedding as the output space
for a neural network model trained on vector representations of layperson versions and other textual descriptors
of medical terms. We explored different output embeddings coupled to different neural network architectures
for the machine translation stage. We compute a similarity measure to evaluate the ability of the model to
assign an HPO term to a layperson input. The best-performing models resulted with a similarity higher than
0.7 for more than 80% of the terms, with a median between 0.98 and 1. The translator model is made available
in a web application at this link: https://hpotranslator.b2slab.upc.edu.
1. Introduction

In healthcare there is a gap between the language used by patients
and caregivers (i.e. laypeople) and the medical terminology, or jargon,
that may hinder the success of the communication between healthcare
consumers and professionals in the field. The perception of medical
jargon as confusing, ambiguous, or obsolete, may lead to frustration
and cause distress in patients and caregivers (Tong et al., 2020). In the
particular case of rare diseases, a rapid and effective communication
between patients and clinicians is of utmost importance, because di-
agnosis is usually challenging, and accelerating diagnosis would have
profound consequences for the treatment and management of rare
diseases and important implications for the quality of life of patients
and caregivers.1 Those facts, together with the increasing availability of
digital health tools such as smartphone health apps or health social net-
works in which self-reported data is part of the available information,
provide an opportunity to design and implement solutions to bridge the
terminological gap in healthcare.
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1 International Joint Recommendations to Address Specific Needs of Undiagnosed Rare Disease Patients, EURORDIS. 2016.
2 Phenomizer.
3 Phenolyzer.

The use of ontologies, in particular the Human Phenotype Ontology
(HPO) (Köhler et al., 2018), to annotate patient clinical profiles al-
lows clinicians and researchers to leverage a structured representation
of the knowledge domain, enabling computation and machine-based
inference over individual patient profiles and patient cohorts, that
might be helpful to aid in diagnosis and prognosis. There are public
resources for HPO annotation and HPO-aided inference — for example,
Phenomizer,2 Phenolyzer,3 but they all require prior knowledge of
clinical terminology and familiarity with biomedical ontologies, and
thus are of limited use except by qualified professionals. Nevertheless,
as already noted, in a context of increased use of digital health tools
by patients and caregivers, the terminological gap between medical
jargon and lay language might prevent making the most out of exist-
ing knowledge bases. The gap in HPO has been addressed in recent
versions of the ontology by including layperson synonyms of HPO
terms (Vasilevsky et al., 2018). However, although incorporated into
the ontological representation of phenotypic abnormalities, annotation
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by patients would require matching a query to the lay terms available
which, in practice, is not very different from the way in which resources
such as patient vocabularies are used (see Section 2).

Driven by the need to reduce the gap between layperson termi-
nology and medical jargon in order to promote patient and caregiver
participation in healthcare and effective patient–clinician communica-
tion, this paper proposes an automatic method to translate layperson
words and expressions into their corresponding HPO classes. We pro-
pose a method that makes use of neural network models to map
layperson terminology into a semantic space representing HPO.

2. Related work

2.1. Consumer languages

The problem of translation between layperson language and techni-
cal jargon within the medical domain has been addressed in different
ways. In the last twenty years, several efforts have been made to
develop consumer health vocabularies (CHVs). Seminal work in the
field of CHVs (Zielstorff, 2003) had already noted the mismatch be-
tween lay and professional language in the medical field as a handicap
for accessing relevant information, sharing clinical data, and allowing
effective patient–healthcare worker communication. CHVs are built
beginning with the identification of lay terminology; this vocabulary
is then mapped to professional terms contained in controlled vocabu-
laries, such as the Unified Medical Language System (UMLS).4 These
ictionaries are validated through expert review. CHVs are based on
tatic vocabularies, and so are limited by the fact that laypeople lex-
con is richer than the technical language which, in contrast, is very
recise. As put in Smith, Stavri, and Chapman (2002) ‘‘the notion of
paradigmatic consumer using a vocabulary specific to her consumer

tatus may be ill-founded’’. It is thus infeasible to cover all the terms
ncountered in clinical situations in such dictionaries (Keselman et al.,
008). An alternative to dictionaries is to use pattern-based methods
or text mining. In general, it has been demonstrated that counting
he co-occurrence of word pairs and other contextual information
xtracted from large text corpora can be used for the identification of
ynonyms (Baroni & Siri, 2004; Hagiwara, Ogawa, & Toyama, 2006). In
he biomedical domain, Vydiswaran, Mei, Hanauer, and Zheng (2014)
pplied a pattern-based method to a corpus based on Wikipedia to
dentify related lay and professional terms. They identified synonym
airs in texts and automatically labelled them as either consumer or
rofessional terms. CHVs have been used to map medical concepts from
lectronic health records (EHRs) to layperson terminology to make
hem more accessible to end users (Zeng-Treitler, Goryachev, Kim,
eselman, & Rosendale, 2007).

.2. Medical term representations

In the last decade, work on natural language modelling has shown
hat using word embedding techniques the components of natural lan-
uage can be represented in continuous vector spaces that reproduce se-
antic rules (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013). There

re many methods available for representing words and sentences in
vector space, and several studies have attempted to outline the

dvantages and drawbacks of each, both for the general (Baroni, Dinu,
Kruszewski, 2014), and the biomedical domains (Pakhomov, Finley,
cEwan, Wang, & Melton, 2016; Wang et al., 2018). The representa-

ion of biomedical terms using word embedding techniques has been
sed in many applications, including named entity recognition, syn-
nym extraction, chemical-disease drug–drug interaction and protein–
rotein relation extraction, and abbreviation disambiguation (Wang
t al., 2018). In the case of HPO-specific word embeddings Pilehvar and
ollier (2016) used linear combinations of word embeddings related to
ach HPO term to obtain an HPO-specific embedding.

4 https://www.nlm.nih.gov/research/umls/index.html.
2

2.3. Machine translation

In general, CHVs for sentence translation between domains en-
tails some loss of the information given by the context in which a
term appears. In an effort to solve this problem, Weng, Chung, and
Szolovits (2019) proposed a translation machine for medical terms
and sentences based on an unsupervised bilingual dictionary induction
(BDI) algorithm. To our knowledge, this is the first attempt in the
clinical context to automatically translate entire sentences between
the professional and consumer domains. With the same goal, Luo
et al. (2020) introduced MedLane, a human-annotated dataset to align
medical terminology and layperson expressions. They used these data
to train PMBERT-MT, a translation model built on PubMedBERT (Gu
et al., 2022).

2.4. Use of ontologies in healthcare

The use of medical ontologies can improve healthcare delivery, from
improving accuracy of diagnoses to building more interoperable infor-
mation systems (Ivanović & Budimac, 2014). For this reason, in recent
years some studies have been published focusing on translating free
text (mainly from medical records and other domain specific texts) into
specific terms in ontologies and other specialized vocabularies. Pérez,
Gojenola, Casillas, Oronoz, and de Ilarraza (2015), for example, used a
model based on Finite State Transducers (FTS) to automatically map di-
agnostic terms written by clinicians into terms of the 9th Revision of the
International Classification of Diseases (ICD-9). More recently, Zhang
et al. (2019) trained an autoencoder to classify text from EHRs into
HPO terms, while Zhang et al. (2021) aimed to the same using a BERT
based architecture.

There is, however, a lack of solutions for the automatic mapping of
layperson expressions to technical medical terminology. In the present
work we propose a novel method to automatically map short sentences
and expressions into an ontology of phenotypic abnormalities. We aim
for a solution that provides an automatic mapping of layperson terms
into a structured space of medical jargon.

3. Materials and methods

We propose a method to translate from layperson terms and short
sentences to HPO terms in which a vector space that represents HPO
i.e. an HPO-specific embedding, is used as the output space for a neural
network model trained on vector representations of layperson terms
and other textual descriptors. The methodological framework can be
found in Fig. 1.

3.1. The human phenotype ontology

Terms in HPO describe human phenotypic abnormalities (Köhler
et al., 2018) and are identified by a unique identifier and a label
—i.e. its name in medical jargon. Most of the terms contain a brief
description provided by clinicians or external sources, and a list of
synonyms. In addition, HPO terms are linked to other HPO classes
and external terminologies and ontologies. HPO is divided into 5
sub-ontologies, namely: Phenotypic abnormality (the main sub-
ontology, containing the description of the phenotypes included in
HPO); Mode of inheritance; Clinical modifier; Clinical
ourse; Frequency. Conveniently, Phenotypic abnormality

s divided in 25 sub-categories –or branches– including phenotypes
ivided by human systems and anatomical structures.

.2. Word embeddings

Here, we followed the nomenclature proposed by Sarma, Liang,
nd Sethares (2018) which defined three types of word embeddings

https://www.nlm.nih.gov/research/umls/index.html
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Fig. 1. Methodological framework. We use the Human Phenotype Ontology (HPO)
to build a dataset of 30,000 words and sentences, each associated with an HPO term
in the ’Phenotypic abnormality’ subontology; this dataset is used to train the models
with a cross-validation scheme in which the dataset is split in 29,400 samples for the
training set and 600 samples for the test set. We tested different model and parameter
configurations. The best model was then selected to build an automatic translator that
can be used by patients and caregivers to map lay language to HPO terminology. The
models consist of a neural network that is fed with a fixed-length input vector. The
output from the neural network is mapped into an embedding space encoding semantic
information about phenotypic abnormalities. The output from the translator model will
be the closest vector in that space.

for specific knowledge domains: (1) a generic embedding trained
on extensive corpora e.g. Wikipedia, PubMed® (2) a domain-specific
embedding based on a specific corpus, (3) a combined embedding
created using generic and domain-specific embeddings (e.g. Sarma
et al., 2018). To better understand the behaviour of the embeddings
we implement and test the three different strategies.

3.2.1. Generic embeddings
We use a word embedding pretrained on medical texts from

MEDLINE®/PubMed®, provided by McDonald, Brokos, and Androut-
sopoulos (2018). Since most HPO terms are concepts described by a
sentence or few words –e.g. Atrial septal defect, Abnormal mitral valve
morphology–, the vectors of the word embedding should be combined
to get a numeric representation of each HPO term. Let |𝐻𝑃𝑂| be
the number of terms contained in HPO, 𝑅𝜏 (𝑖) = (𝑤1, 𝑤2,… , 𝑤𝑛),
𝑖 ∈ (1,… , |𝐻𝑃𝑂|), the list of words (lemmatized, without neither
stop words nor punctuation) included in the 𝑖th HPO term, 𝐰 the
vector representation of word 𝑤 in the McDonald et al. (2018) word
embedding, and 𝑊𝑗 (𝐻𝑃𝑂𝑖) the new vector representation of the 𝑖th
HPO term. We then define the following HPO term representations:

• 𝑊𝐺1, defined as the sum of the vectors in 𝑅𝜏 (𝑖):

𝑊𝐺1(𝐻𝑃𝑂𝑖) =
∑

𝑤𝑗∈𝑅𝜏 (𝑖)
𝐰𝑗

• 𝑊𝐺2, calculated with the sum of the vectors in 𝑅𝜏 (𝑖) weighted
by the term frequency-inverse document frequency index (𝑡𝑓 𝑖𝑑𝑓 ) of
each word (Salton & Buckley, 1988):

𝑊𝐺2(𝐻𝑃𝑂𝑖) =
∑

𝐰𝑗 ⋅ 𝑡𝑓 𝑖𝑑𝑓 (𝑤𝑗 )
3

𝑤𝑗∈𝑅𝜏 (𝑖)
• 𝑊𝐺3, defined as the sum of the vectors multiplied by a decay
factor of the words in the extended sorted list 𝑅∗

𝑡 . Given:

𝑓 (𝑤𝑗 ) =
{

1 𝑖𝑓 𝑤𝑗 ∈ 𝑅𝜏 (𝑖)
𝑒−𝜆⋅𝑗 𝑖𝑓 𝑤𝑗 ∉ 𝑅𝜏 (𝑖)

,

with 𝜆 = 0.2 (Pilehvar & Collier, 2016), the embedding is defined
as:

𝑊𝐺3 =
∑

𝑤𝑗∈𝑅∗
𝜏 (𝑖)

𝐰𝑗 ⋅ 𝑓 (𝑤𝑗 )

𝑅∗
𝜏 is a list extending the words in 𝑅𝜏 with words linked to the

HPO term extrapolated from Wikipedia and sorted based on how
specific each term is (this is similar to Pilehvar and Collier, 2016).

3.2.2. Domain-specific embedding
(

𝑊𝐿𝑆𝐴
)

We build the domain-specific word embedding via latent semantic
analysis (LSA) (Deerwester, Dumais, Furnas, Landauer, & Harshman,
1990). We firstly create a collection of documents related to each HPO
term extracting its name, description, parents, and synonyms. After
removing stop words and punctuation, we concatenate the words in
a unique document. Then we proceed to construct a matrix in which
each row represents a document, and each column a word in the
corpus. Each element in the matrix contains the 𝑡𝑓–𝑖𝑑𝑓 of each word,
representing its importance in a document with respect to the entire
corpus. In the last step, we reduce the dimensionality of the matrix via
singular-value decomposition (SVD).

3.2.3. Combined
(

𝑊𝑆𝑉 𝐷
)

There are several strategies for combining word embeddings. In this
work, we use a meta-embedding proposed by Yin and Schütze (2016),
herein 𝑊𝑆𝑉 𝐷. We first concatenate the vectors from 𝑊𝐺1 and 𝑊𝐿𝑆𝐴 into
a unique higher dimensional vector. Then, as in the domain-specific
embedding, we reduce the dimension of the word embedding through
SVD.

In addition to the previous embeddings, a random word embedding
(𝑊𝑟𝑎𝑛𝑑) is also created using a Gaussian mixture model to randomly
produce embedding features based on 𝑊𝐺1.

3.3. Models

Once the HPO-specific embedding is obtained, the problem of map-
ping layperson phenotype terms and short textual descriptors into
HPO terms can be modelled as a text classification problem. In this
work, we explore three distinct architectures using different parameter
configurations (see Fig. 2): an encoder model with a dense linear layer
to map the output vector in the HPO space (LSTM-D), an encoder model
applying a convolutional layer to the embedding vector (C-LSTM-D),
and a model that combines these two approaches into a framework
whose goal is to classify the input terms into the parent branches of the
phenotypic abnormality node in the ontology (‘‘HP:0000118: Phenotypic
abnormality’’), prior to classification (LSTM-P).

3.3.1. LSTM-D
This strategy is inspired in the classical encoder–decoder model used

in machine translation (Sutskever, Vinyals, & Le, 2014), but it is modi-
fied at the output to map the result into the HPO embedding space. The
architecture uses a long–short term memory layer (LSTM) (Hochreiter
& Schmidhuber, 1997) for capturing long-range dependencies between
the input words. This model takes a layperson term or short text (𝜏𝑖𝑛𝑝𝑢𝑡)
coded as a vector 𝑣 ∈ R𝑙𝐿𝐴𝑌 of length 𝑙𝐿𝐴𝑌 as input. Then a word
embedding for the input space is created, and trained with the model.
This word embedding is different from the HPO-specific embedding at
the output. This way, given 𝑁𝑊 the dimension of W, we obtain a matrix
𝐌 ∈ R𝑙𝐿𝐴𝑌 ×𝑁𝑊 embedding the input text. The output of the LSTM layer
is a vector of length 𝑁𝐿𝑆𝑇𝑀 . This vector is mapped with a linear fully-
connected layer into the HPO-specific embedding space, obtaining a
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Fig. 2. Three different model architectures were implemented and tested, namely LSTM-D, C-LSTM, and LSTM-P. (a) LSTM-D is based in the classical encoder–decoder
model used in machine translation, modified at the output to map the result in the HPO embedding space; (b) C-LSTM-D involves two steps: (1) extracting features from the input
text using a convolutional layer, and (2) capturing long-range dependencies in the feature maps with a LSTM layer; (c) LSTM-P may benefit from the semantic structure of the
HPO-specific embedding at the output, in which terms are mapped in subspaces that approximately represent the categories in the Phenotypic abnormality sub-ontology.
This model performs two tasks in parallel: (1) branch selection, to reduce the output space to a subregion of the HPO embedding, and (2) layperson translation incorporating the
information about the predicted branch to map the term in that subregion.
predicted vector 𝑊𝑗 (𝜏𝑖𝑛𝑝𝑢𝑡), 𝑗 ∈ {𝐿𝑆𝐴,𝐺1, 𝐺2, 𝐺3, 𝑆𝑉 𝐷}. Finally, the
prediction 𝜏 is chosen as the closest HPO vector:

𝜏 = min
𝑖=1,…,|𝐻𝑃𝑂|

𝑑𝑖𝑠𝑡
(

𝑊𝑗 (𝜏𝑖𝑛𝑝𝑢𝑡),𝑊𝑗 (𝜏𝑖)
)

,

where 𝑑𝑖𝑠𝑡(𝑎, 𝑏) is the Euclidean distance between vectors 𝑎 and 𝑏.

3.3.2. C-LSTM-D
Based on a model proposed by Zhou, Sun, Liu, and Lau (2015), C-

LSTM-D contains two steps: (1) exploring a convolutional layer to get
features from the input text, and (2) capturing long-range dependencies
in the feature maps using a LSTM layer. The output of the input word
embedding is passed through a convolutional layer with ReLU units
(𝑁𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 600, 𝑓 𝑖𝑙𝑡𝑒𝑟𝑑𝑖𝑚. = 5) to extract features in the embedded rep-
resentation with a max-pooling block that reduces the dimensionality
of the feature space (𝑚𝑎𝑥 𝑝𝑜𝑜𝑙 = 15). This step produces a matrix that
is used as the input for an LSTM layer and the output is computed as
in LSTM-D.

3.3.3. LSTM-P
This model may benefit from the semantic structure of the HPO-

specific embedding at the output, in which terms are mapped in sub-
spaces that approximately represent the categories in the Phenotypic
abnormality sub-ontology. This model performs two tasks in par-
allel: (a) branch selection, to reduce the output space to a subregion
of the HPO embedding, and (b) layperson translation incorporating
4

the information about the predicted branch to map the term in that
subregion. The branch detector and C-LSTM-D share some similari-
ties: However, there are two dense layers, one that predicts the HPO
embedding from the LSTM as in C-LSTM-D, and the second that pre-
dicts the branches, mapping 𝑊𝑗 (𝜏𝑖𝑛𝑝𝑢𝑡) to a one-hot vector in R26,
𝑉𝑏𝑟𝑎𝑛𝑐ℎ(𝜏𝑖𝑛𝑝𝑢𝑡) representing the different categories below Phenotypic
abnormality and the other sub-ontologies grouped as a single cat-
egory (Frequency, Mode of inheritance, Clinical course
and Clinical modifier). The second task (the actual translation)
is accomplished by a part of the model that works similarly to LSTM-D,
but after the LSTM layer there is not a single dense layer but 26 layers
working in parallel, each one with the specific task of mapping the
input vector to a specific region of the embedding space that represents
the whole HPO. Hence, given 𝑑 being the size of 𝑊𝑗 , this last layer
produces a matrix 𝐖𝑗 (𝜏𝑖𝑛𝑝𝑢𝑡) ∈ R26×𝑑 . Each row of this matrix is a
different prediction given the input, according to the relevant branch.
The last step is to multiply the outputs of the two tasks to get the actual
prediction:

𝑊𝑗 (𝜏𝑖𝑛𝑝𝑢𝑡) = 𝐖𝑗 (𝜏𝑖𝑛𝑝𝑢𝑡) ⋅ 𝑉𝑏𝑟𝑎𝑛𝑐ℎ(𝜏𝑖𝑛𝑝𝑢𝑡).

The prediction 𝑡 is chosen as in the previous models.

3.4. Model evaluation

In order to evaluate the performance of the different models, we
use the Jiang and Conrath (1997) similarity function modified for this
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Table 1
Variables in the explanatory model.

Architectures LSTM Word embedding Compression

LSTM-D LSTM-P 𝐺1 𝐺2 𝐺3 𝐿𝑆𝐴 𝑆𝑉 𝐷 1 2∕3 1∕2 1∕3

Regressors 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9

specific ontology as proposed by Seco, Veale, and Hayes (2004). The
information content of a term 𝜏𝑖 is defined as:

𝑐(𝜏𝑖) = 1 −
𝑙𝑜𝑔

(

ℎ𝑦𝑝𝑜(𝜏𝑖) + 1
)

𝑙𝑜𝑔(|𝐻𝑃𝑂|)
,

ith ℎ𝑦𝑝𝑜(𝜏𝑖) being the number of parent (i.e. more specific) terms
𝜏𝑖 has. The Resnik similarity function (Resnik, 1995) of two terms
𝜏1, 𝜏2 ∈ 𝐻𝑃𝑂 is defined as:

𝑖𝑚𝑟𝑒𝑠(𝜏1, 𝜏2) = max
𝜏∈𝑆(𝜏1 ,𝜏2)

𝑖𝑐(𝜏).

where 𝑆(𝜏1, 𝜏2) is the set of terms that subsume 𝜏1 and 𝜏2. Then the
similarity function used by Seco et al. (2004) is:

𝑠𝑖𝑚(𝜏1, 𝜏2) = 1 − 1
2
(

𝑖𝑐(𝜏1) + 𝑖𝑐(𝜏2) − 2𝑠𝑖𝑚𝑟𝑒𝑠(𝜏1, 𝜏2)
)

,

4. Experiments

Terms in HPO are often enriched with a list of synonyms and with
a brief description of one or more sentences. In the HPO release used
here,5 the ontology contains more than 17,500 synonym terms, 45% of
which are classified as ‘‘layperson term’’ and are linked to 35% of the
HPO terms. Despite 43% of the terms not having a list of synonyms,
almost 90% of them are represented in the train set by means of the
describing sentences, the synonyms, or both.

By retaining only sentences shorter than 55 words and removing
longer ones, we split the descriptions into sentences. LSTM can accept
variable length inputs. However, this is not the case for convolutional
layers, whose inputs should always have the same dimensionality. Since
more than 99% of the sentences in our input sets are shorter than 55
words, and the remaining ones are considerably longer (> 60 words),
we choose this threshold as cut-off number in order to reduce sparsity
in the input. For each sentence or synonym, we convert the numbers to
strings (e.g. ‘‘1st’’ to ‘‘first’’, ‘‘4-layered’’ to ‘‘four-layered’’) and remove
punctuation and stop words. Sentences and layperson terms are then
mapped to R54 using a tokenizer based on word frequencies. Zero-
padding is applied when needed. In this way, the first layer of each
model is always fed with fixed length vectors. After these preprocessing
steps, we obtain a list of more than 30,000 words and sentences, each
associated with an HPO term and represented by a fixed length vector
that we use as inputs to the models in the training and test sets.

For the generic and domain specific embeddings we test vectors
of dimension 400 and 200 (indicated by 𝐴 and 𝐵, respectively). For
𝑊𝑆𝑉 𝐷, we test two possible combinations: (1) 𝑣1, of dimension 200,
obtained with 300-dimensional 𝑊𝐿𝑆𝐴 and 𝑊𝐺1 of dimension 200, and
(2) 𝑣2 of dimension 400, obtained with 600-dimensional 𝑊𝐿𝑆𝐴 and
200-dimensional 𝑊𝐺1.

The models are trained using a cross-validation scheme, with 29,400
terms for the training phase and 600 for the testing phase, at each
iteration. Keras (Chollet et al., 2015) was used to build and train
the models, using mean squared error as loss function and the Adam
optimization algorithm (Kingma & Ba, 2014).

5. Results

We fit a logistic regression as an explanatory model using R and
the stats package (R Core Team, 2018) to assess the impact of different

5 2018-12-21.
5

𝛼

model configurations in the median output similarity, 𝑠𝑖𝑚𝑟𝑒𝑠(𝜏1, 𝜏2), as
follows:

𝑙𝑜𝑔
(

𝑦
1 − 𝑦

)

= 𝛽0 + 𝛽1 ⋅ 𝑥1 + 𝛽2 ⋅ 𝑥2 +⋯ + 𝛽9 ⋅ 𝑥9,

ith 𝑦 = 𝑠𝑖𝑚𝑟𝑒𝑠(𝜏1, 𝜏2). The regressors 𝑥𝑖 are designed to reflect the
ollowing aspects of the models described in Section 3.3 (see Ta-
le 1): disposition of layers and structure of the models i.e. model
rchitecture (𝑥1, 𝑥2 ∈ {0, 1}); LSTM dimensionality (𝑥3 ∈ {0, 1}, 0 cor-
esponds to 400 units, 1 to 600 units); type of output word embedding
𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8 ∈ {0, 1}); output–input size ratio i.e. compression at
he output (𝑥9 ∈ {1∕3, 1∕2, 2∕3, 1}). The null model was selected as
he worst performing hyperparameter configuration such that changing
he hyperparameters had a positive impact on the performance of the
odel and the results were easier to interpret. The configuration of the
ull model is as follows:

𝑖 = 0 ∀ 𝑖 ∈ {1,… , 8},

nd

9 = 1.

Thus, the null model is C-LSTM-D with a random output word
mbedding, a 400-dimensional LSTM layer, and no difference between
nput and output size. The results are presented in Table 2. The in-
ercept represents the null model, and each column represents setting
he corresponding hyperparameter of the null model to that value. The
stimates represent the value of the logit function, 𝑦 is the estimate
ransformed to 𝑠𝑖𝑚𝑟𝑒𝑠(𝜏1, 𝜏2), and 𝑝-value indicates the significance of
he effect of each of the variables in the output of the model. The
esults of the explanatory model highlight the relative relevance of
he word embeddings in the performance. In general models show
imilar performance, even if the results for LSTM-P combined with the
andom output space suggest that this architecture contributes the most
o the correct translation of layperson terms, although its effect is not
tatistically significant (𝑝 = 0.37). In addition, the table shows that
he regressors with stronger effect on the performance are the word
mbeddings, overshadowing the impact of any other hyperparameter.
urthermore, higher input–output size ratio is beneficial for model
erformance, although this seems to have a negligible impact.

The results and analysis presented in the following are obtained
ith a fixed configuration of the LSTM-P model. The independent
ariables are the different word embeddings used as the output em-
edding spaces. The statistical analysis is performed using Python
.7 (Van Rossum & Drake, 2009) and the scipy package (Virtanen et al.,
020).

The main results are reported in Table 3 for a specific combination
f parameters and in Tables 1, 2, and 3 in the Supplementary Material.
ere, 𝑠𝑖𝑚 indicates the similarity between the predicted and the true
PO term (𝑠𝑖𝑚 = 1 means exact prediction, see Table 4 for an example
f predictions in validation). In general, the model performance for
ifferent embeddings is similar, although four of them show slightly
etter results overall (𝐺1 and 𝑆𝑉 𝐷 word embeddings, with different
imensions), with 𝑚𝑒𝑑𝑖𝑎𝑛(𝑠𝑖𝑚) = 1 and more than 80% of the terms
dentified with high similarity (𝑠𝑖𝑚 > 0.7).

Using the random output embedding (𝑊𝑟𝑎𝑛𝑑) the models could
dentify the exact HPO term or get close in the semantic space in more
han 50% of the cases. This shows that, although the output space has a
andom structure, the architecture of the model is contributing relevant
eatures of the input space, as observed in the explanatory model. In
ddition, a suitable representation for HPO is crucial in improving
odel performance, as described by the explanatory model and shown

n Fig. 2: Whereas there is no significant difference between the results
sing different neural network configurations, the analysis shows that
he use of an structured output word embedding (e.g. 𝑊𝐺1) instead
f 𝑊𝑟𝑎𝑛𝑑 is beneficial for model performance (Mann–Whitney U Test,

= 0.05).

https://github.com/obophenotype/human-phenotype-ontology/releases/tag/v2018-12-21
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Table 2
Results of the explanatory model. Null model (intercept): C-LSTM-D, 400-unit LSTM, random word embedding, no compression.

Null model Architectures LSTM Word embedding Compression

LSTM-D LSTM-P 𝐺1 𝐺2 𝐺3 𝐿𝑆𝐴 𝑆𝑉 𝐷 2∕3 1∕2 1∕3

Estimate 0.19 0.48 0.68 0.19 2.78** 1.98** 1.48* 2.48** 2.96** 0.08 0.11 0.22

𝑦 0.55 0.66 0.70 0.59 0.95** 0.90** 0.84* 0.94** 0.96** 0.57 0.57 0.60

*Indicate the level of significance for the variables (𝛼 = 0.05); 0.05 < 𝑝 ≤ 0.1.
**Indicate the level of significance for the variables (𝛼 = 0.05); 0.01 < 𝑝 ≤ 0.05;
Table 3
Results for different word embeddings for model LSTM-P with 600-unit LSTM, no compression. (𝑒: 𝑠𝑖𝑚 = 1, 𝑠:
0.7 < 𝑠𝑖𝑚 < 1, 𝑤: 𝑠𝑖𝑚 ≤ 0.7).
W 𝑒, exact (%) 𝑠, similar (%) 𝑤, wrong (%) 𝑒 ∪ 𝑠 (%) median(𝑠𝑖𝑚)

𝐿𝑆𝐴 𝐴 47.06 33.63 19.31 80.69 0.964
𝑳𝑺𝑨 𝑩 49.91 32.92 17.17 82.83 0.986
𝑮𝟏 𝑨 50.83 30.28 18.89 81.11 1.0
𝑮𝟏 𝑩 50.29 30.35 19.36 80.64 1.0
𝐺2 𝐴 43.42 37.02 19.56 80.44 0.951
𝐺2 𝐵 42.73 37.28 19.99 80.01 0.949
𝐺3 𝐴 35.44 41.96 22.6 77.4 0.909
𝐺3 𝐵 37.06 41.66 21.28 78.72 0.918
𝑺𝑽 𝑫 𝒗𝟏 51.45 30.38 18.17 81.83 1.0
𝑺𝑽 𝑫 𝒗𝟐 51.28 30.28 18.44 81.56 1.0
𝑊𝑟𝑎𝑛𝑑 22.97 31.08 45.95 54.05 0.779
Random choice 7 ⋅ 10−3 0.88 99.1 0.89 0.31
Table 4
Example of predictions in validation. The similarity is computed between the top predicted term and the true term.
Input Top prediction True term Similarity

Absent kidney on one side Unilateral renal agenesis Unilateral renal agenesis 1
Cystic abnormalities of the ovaries Abnormality of the ovary Ovarian cyst 0.95
Urgency frequency syndrome Bradyphrenia Urinary urgency 0.32
𝐿
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The distribution of the similarity between predicted and true HPO
erms shows a similar behaviour for the best embeddings (𝐺1𝐴, 𝐺1𝐵,
𝑉 𝐷 𝑣1, and 𝑆𝑉 𝐷 𝑣2). There are no major differences in median

imilarity, neither significant differences on the proportions of exact
𝑒, 𝑠𝑖𝑚 = 1), similar (𝑠, 0.7 < 𝑠𝑖𝑚 < 1), and wrong (𝑤, 𝑠𝑖𝑚 ≤ 0.7)
rediction bins (see Tables 4–7 in Supplementary Material). The only
xception is for 𝐺1 𝐵 vs 𝑆𝑉 𝐷 𝑣1 in the case of the 𝑤 similarity bin
𝑝𝑤 = 0.018) and in the distribution of the similarities (𝑝𝑠 = 0.03,
ee Table 8 and Figure 1 in Supplementary Material); the difference
s not significant in the 𝑒 bin and is essentially negligible in the 𝑠
in (𝑝𝑒 = 0.072; 𝑝𝑠 = 0.978). Together, these results suggest that the
ail of the distribution of output similarities is thicker for 𝐺1 𝐵 than
or 𝑆𝑉 𝐷 𝑣1 but the mappings at the output that could be considered
ood enough (0.7 < 𝑠𝑖𝑚 < 1) are better overall for 𝐺1 𝐵 than for

𝑆𝑉 𝐷𝑣1. On the contrary, there are more differences on the proportions
of the 𝑒, 𝑠, and 𝑤 bins between 𝐿𝑆𝐴 𝐵 and both 𝑆𝑉 𝐷 𝑣1 and 𝑆𝑉 𝐷 𝑣2
(𝑝𝑒 = 0.017, 𝑝𝑠 = 2.2 ⋅ 10−5, 𝑝𝑤 = 0.043; 𝑝𝑒 = 0.034, 𝑝𝑠 = 1.1 ⋅ 10−5,
𝑤 = 0.011). The differences are more significant for contrasts between
𝑆𝐴 𝐵 and both 𝐺1 𝐴 and 𝐺1 𝐵 when comparing the 𝑠 and 𝑤 bins
𝑝𝑠 = 4.1 ⋅ 10−6, 𝑝𝑤 = 3.1 ⋅ 10−4; 𝑝𝑠 = 1.8 ⋅ 10−5, 𝑝𝑤 = 1.1 ⋅ 10−5). These
esults suggest that 𝐿𝑆𝐴 𝐵 has significantly fewer wrongly predicted
erms in comparison with other output mapping spaces which have a
igher number of exactly predicted terms. However, the distribution of
utput similarities in each bin is not sufficiently different (see Tables 8,
in Supplementary Material), except for 𝐿𝑆𝐴𝐵 vs 𝐺1𝐵 in the 𝑠 bin in
hich, overall, 𝐿𝑆𝐴𝐵 produces significantly worse results (𝑝𝑠 = 0.003,

ee Figure 2 in Supplementary Material).
The results presented so far epitomize the compromise between ac-

uracy and precision in evaluating the performance of machine learning
odels. In the case at hand, when comparing 𝐿𝑆𝐴𝐵 with 𝑆𝑉 𝐷𝑣1 and
𝑉 𝐷𝑣2 we can consider the latter, which are among the best perform-

ng models in terms of median similarity (together with 𝐺1 𝐴, 𝐺1 𝐵)
o be most accurate in relative terms, as they contain a significantly
6

igher proportion of results in the 𝑒 bin. However, being less accurate, d
𝑆𝐴𝐵 is, at the same time, more precise than 𝑆𝑉 𝐷 𝑣1 and 𝑆𝑉 𝐷 𝑣2 in
the 𝑒 ∪ 𝑠 set (i.e. contains a higher mass) where the exact matches and
sufficiently good translations lie, as compared with the 𝑤 bin, which
includes the unacceptable results.

At this point, we note that the simplest generic embeddings (𝐺1 𝐴,
1 𝐵), built from a sum of vectors without weighting, provide a more

tructured space than their weighted counterparts (𝐺2, 𝐺3). In addition,
he combination with the domain specific embedding to create 𝑆𝑉 𝐷𝑣1
nd 𝑆𝑉 𝐷 𝑣2 seems to be slightly beneficial for model performance, as
he accuracy increases with marginal losses in the 𝑠 bin, improving the
recision in the 𝑒 ∪ 𝑠 bin (see Fig. 3).

In general, the more specific the term, the better the model perfor-
ance (Fig. 4). Since the more specific a term is, the more unlikely a
atient will be familiar with it, it is thus a promising behaviour that the
odels work better with these terms. Moreover, the specific terms are
ot overrepresented in the training set, i.e. the number of synonyms or
escriptive sentences per term remain almost constant with increasing
epth (see Figure 3 in Supplementary Material). At the same time,
ntries in the training set for specific terms do not contain more, or
ignificantly different, words with respect to more generic terms in
PO (𝑝 = 0.1282; Chi-squared test, 𝛼 = 0.05), in general (see Figure
in Supplementary Material). Hence, since direct projections on word

mbeddings behave in opposite way (see Figure 5 in Supplementary
aterial), one may presume that these results are an improvement due

o the models’ effects.
Finally, we provide some examples of the potential of the model

o bridge the terminological gap in the medical language using kid-
ey health and related terminology as an example, and qualitatively
xplore some aspects of the output semantic space. According to a
ecent study, ‘‘chronic’’ and ‘‘acute’’ were considered very ‘‘medical-
zed’’ and obscure in kidney health communication (Tong et al., 2020).
rying to overcome this hindrance we explored input text including

ay expressions that could provide mappings to two important kidney

isorders, namely, chronic kidney disease and acute kidney injury. The
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Fig. 3. Output similarity using 𝑊𝐺1 output embedding with different architectures. There are no significant differences between different architectures; there are differences
between the use of 𝑊𝐺1 and 𝑊𝑟𝑎𝑛𝑑 (Mann–Whitney U Test, 𝛼 = 0.05).
Fig. 4. Output similarity by depth level bins using 𝑊𝐺1 output embedding and the LSTM-D model. Numbers in the 𝑥-axis indicate the length of the path between the terms
in the bin and the phenotypic abnormality node in the ontology (‘‘HP:0000118: Phenotypic abnormality’’).
sentence ‘‘long lasting kidney failure’’ provides the HPO term ‘‘Chronic
kidney disease’’ as the first option in the output. On the other side,
‘‘sudden kidney failure’’ provides the HPO term ‘‘Acute kidney injury’’
as the first option. Checking the data associated to those terms in HPO
allows to interpret the results. In the case of ‘‘Chronic kidney disease’’
(see Figure 6 in Supplementary Material), none of the words in ‘‘long
lasting’’ appear in the associated data: This fact suggests that the output
space may have created a semantic region in which ‘‘long lasting’’ and
‘‘persisting for at least three months’’, or perhaps ‘‘progressive’’, are
close between each other. In the case of ‘‘Acute kidney injury’’ (see
Figure 7 in Supplementary Material), the word ‘‘sudden’’ appears in
the description of the term, and it likely makes the connection with
‘‘sudden kidney failure’’ (which is none of the synonyms for the term)
easier.

Furthermore, ‘‘renal’’ and ‘‘kidney’’ are used to described kidney
health, but the term ‘‘renal’’ may be unfamiliar to patients and the
public, preventing awareness and advocacy. In this regard, our model is
able to make the ‘‘kidney’’ to ‘‘renal’’ mapping. For instance, providing
‘‘small kidney’’ as input to the model, it returns four potential candi-
dates in the top most similar HPO terms, namely: ‘‘Renal hypoplasia’’,
‘‘Renal agenesis’’, ‘‘Renal insufficiency’’, and ‘‘Renal dysplasia’’. The
terms ‘‘kidney’’ and ‘‘renal’’ are clearly overlapping in the semantic
space, as both terms appear interchangeably in the associated data (see
7

Figures 8–11 in Supplementary Material). In addition, ‘‘hypoplasia’’
and ‘‘small’’ appear to be close in the semantic space as well. In
particular, it seems that ‘‘small’’/‘‘hypoplasia’’ is semantically close
to ‘‘aplasia’’/‘‘agenesis’’/‘‘absence’’, ‘‘insufficiency’’/‘‘failure’’, and ‘‘dys-
plasia’’/‘‘adysplasia’’/‘‘dysplastic’’. However, the latter are not as close
between them as it seems they are to ‘‘small’’/‘‘hypoplasia’’.

To conclude, limitations of this work must be highlighted. On the
first place, we have explored a limited subset of the parameter space;
we should assess the influence of each parameter on the outcome.
Secondly, the test and validation sets described in Section 4 were built
only with synonyms and short sentences inside HPO. This is a limiting
aspect from two points of view: first, regarding the volume of data,
limited to the content in HPO, and second, for the fact that definitions
and synonyms associated to a term inside the ontology could not
represent the extent of lay terminology. Finally, if words introduced to
the translator are not in the training subset they will not be represented
in the semantic space and therefore the results will not differ from
entering random words, outside of the clinical realm, to the model.

6. Conclusions

In this work, we described a novel method for predicting specific
phenotypes from generic text. We first created a vector representation
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for HPO, and then mapped sentences in this space through a modified
neural machine translation model. We tested different embeddings for
HPO and evaluated our solution using the synonyms and descriptions
present in HPO. The models showed similar performances with dif-
ferent embeddings. Although the model is central for the prediction
of HPO terms, the choice of an embedding, irrespective of its dimen-
sions, also had an impact. In the future, we expect to improve the
model by exploring new configurations as well as different input and
output spaces. We also plan to explore the performance of the model
at different topological dimensions in the ontology. In addition, we
would be interested in exploring the output semantic space further. The
translator model is made available in a web application at this link:
https://hpotranslator.b2slab.upc.edu. In the future we plan to improve
this web application to make it more user-friendly and to help patients
in the definition of their phenotypic profile through self-declaration.
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