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Abstract. Because offshore wind turbines, particularly their foundations, operate in hostile
environments, implementing a structural health monitoring system is one of the best ways
to monitor their condition, schedule maintenance, and predict possible fatal failures at lower
costs. A novel strategy for detecting damage in offshore wind turbine jacket foundations is
developed in this work, based on a vibration monitoring methodology that reshapes the data into
a multichannel array, with as many channels as correlated sensors with the predicted variable,
a 1-D deep convolutional neural network to extract temporal features from the monitored data,
and a support vector machine as a final classification layer. The obtained model allows the
detection of three types of bar states: healthy bar, cracked bar, and bar with an unlocked bolt.

1. Introduction
The planet’s temperature has increased by 1.1 °C since 1850-1900, and the average global
temperature is expected to reach or exceed an increase of 1.5 °C over the next 20 years (1).
This increase is due to the massive emission of greenhouse gases, mainly from the burning of
fossil fuels, which accounts for 75% of total emissions. In recent decades, many efforts have been
made to promote the use of renewable energy to mitigate the effects of climate change. Options
include solar, hydroelectric, geothermal, biofuels, biomass, and wind power. The importance of
wind over other types of energy could be justified by analyzing three factors: resource availability,
environmental impact, and cost-efficiency (2). In the last year, there was an increase of 93 GW
of energy produced by wind turbines (WTs), accumulating a total of over 742,689 MW by
the end of 2020. The highest growth of onshore WT installations equivalent to 95.25% takes
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place in China and the USA with 56.30% and 19.46% respectively. While offshore installations
equivalent to 4.75% are in China and the Netherlands with 50.45% and 24.62% respectively
(3). Since 2015 there has been a considerable increase in offshore installations (1). Although
they require a higher cost of installation and maintenance, they provide a more reliable and
efficient energy generation because, unlike onshore installations, they have a better quality of
wind resources since the wind is constant, has higher speeds and is more uniform, which reduces
the fatigue of the structure and can increase the useful life of the generator (4). However, it also
has some disadvantages, the main one being the high cost for offshore operations, in addition
to the need to build or reinforce longs electrical grids; another disadvantage is the advanced
technology required for the development of wind farms, especially for the design of turbine
foundations, which can be fixed or floating, but must be strong enough to adapt to the marine
environment, withstanding corrosion conditions, high loads, fatigue and turbulence, some main
causes of structural damage (5). Consequently, many studies are currently underway to analyze
how to reduce these costs. One solution to this problem is the use of structural health monitoring
(SHM) methodologies. The purpose of this method is to evaluate and monitor the structural
health of the support structure in order to detect and predict the presence of damage, so the
operational personal can take or plan actions.

There are different SHM techniques used for WT foundations, which have been developed
over time to ensure reliability and efficiency in these systems. Among the main techniques
are: Acoustic emission monitoring (6), thermal imaging (7), ultrasonic methods (8), fatigue
and nodal properties monitoring (9), vibration deformation monitoring (10), and statistical
pattern recognition (5). One of the techniques that has gained a lot of interest in recent years
is statistical pattern recognition, which by implementing algorithms that can be supervised or
unsupervised can monitor the health of structures (11; 12). The supervised learning approach
is good for this application since, by having truthful information about the failure diagnosis,
it will be possible to classify them during structural state monitoring reliably. This technique
requires a large amount of data, as it must not only consider the healthy structural state of the
foundation, but also all possible damages that you want to classify. Obtaining this information
from an actual working structure would be very difficult or impossible to obtain. Therefore, a
viable and widely used alternative is to obtain data from finite element analysis (FEM) which
must be validated with a scale mode (13). This technique is applied in the present work, for
which a WT laboratory-scale jacket-type structure is used, subjected to various types of failures
and different vibrations, simulating its possible operating conditions, so it is considered a valid
model.

The remainder of this paper is organized as follows. The experimental setup is introduced
in Section 2. In Section 3 the proposed methodology and the 1D-convolutional neural network
(CNN) with a support vector machine (SVM) classification layer are explained. The obtained
results are given and discussed in Section 4. Finally, conclusions are drawn in Section 5.

2. Experimental Setup
For the present research, a scaled structure of a real jacket WT is used, see Figure 1. This
model has a height of 2.7 m and consists of a jacket base, a tower and the nacelle. As it well
known, WTs operate in three separate operating areas, depending on the wind speed. Because
the losses are more than the electricity provided by the wind, the WT does not operate in region
1 because the wind speed is low. The wind speed in region 2 ranges between the cut-in and rated
wind speeds. In this region, the major control goal is to maximize power production. Finally,
the wind speed in region 3 is higher than the rated speed but lower than the cut-out wind speed.
The key control goal in this region is to keep the produced power at the same level as the rated
power (14). In this work, with the intention of simulating different wind regions (different wind
speeds), the experiments consisted of generating four different frequencies of white noise to which
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the gondola is exposed. Additionally, throughout the structure, eight tri-axial accelerometers
are deployed to acquire vibration measurements at different WT locations, see Figure 1 (right).

Figure 1. Scale structure with vibration sensors.

Moreover, the behavior of the structure is analyzed in three different structural states, related
to one of the jacket bars located at level 2 of the wind turbine jacket structure, see Figure 2. One
sort of deterioration encountered on offshore WT foundations is fatigue cracks. For small crack
sizes, the chances of detecting a fatigue crack are slim. The crack growth rate, on the other hand,
rises significantly for larger and thus more observable fatigue cracks. Consequently, there is only
a small time window for detection and repair of this type of cracks before failure. Thus, in this
work a 5 mm crack is one of the studied sates. Please note that utilizing a similar laboratory
tower model, a modal analysis and power spectral density signal processing algorithms were not
able to detect this 5 mm crack located in the substructure in (15). The second studied state is
the loosening of one of the jacket bolts. It is important to note that this damage is studied at
level 2, which is submerged in water, so its detection is not visually evident. And finally the last
studied state is when the bar is healthy (without damage). Figure 3, shows the three studied
states (for more information, see (16)).

Finally, keep in mind that the goal of the study is to see if the proposed methodology has
any practical application. The laboratory tower is a simplified model, but it is appropriate for
this preliminary study because it is similar to the laboratory towers used in (15), where damage
detection (but not localization or identification) is accomplished using damage indicators; in
(17; 18), where statistical time series are used to detect damage; and in (19; 20), where damage
detection is accomplished using principal component analysis and support vector machines.

3. Methodology
In this section, the proposed methodology is described. It is composed by the following steps:
data acquisition, data split, feature selection, normalization, data reshape and, finally, the 1D-
convolutional neural network with a support vector machine classification layer definition. Each
of these stages are detailed below.
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Figure 2. Location of the four levels at the jacket substructure. Level one is the closest to the
surface and level four is the one submerged to a greater depth.

Figure 3. Different structural states of the studied bar. Healthy bar (left), cracked bar, where
L is the length of the bar, d = 5 mm is the cracked size, and X = L/3 is the location of the
crack in the bar (center), and unlocked bolt bar (right).

3.1. Data acquisition
The data used in the present work are composed of RMS vibration values obtained from eight
tri-axial accelerometers deployed on the laboratory-scale jacket structure. The data obtained
from the sensors is placed in the analysis dataset as one column for each coordinate, it means,
for each sensor there are a total of three columns, so the study dataset has 24 columns of sensed
values with the nomenclature shown in Table 1.

Table 1. Nomenclature of the variables used for analysis.
Sensor 1 . . . Sensor 8

x y z . . . x y z
s1x s1y s1z . . . s8x s8y s8z

A total of 80 experiments are performed, with a sampling frequency of 275.27 Hz, representing
approximately 60 seconds of data acquisition for each experiment. For each analyzed state,
several simulations were performed as shown in Table 2.

3.2. Data split: Train, validation and test sets
Each experiment consist of 16517, obtaining a total dataset of 1321360 samples. This dataset
is divided into 80% for training data, 10% for validation data and 10% for testing, ensuring
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Table 2. Total experiments performed for each frequency value and structural state analyzed.

No. Structural state
White noise

frecuency [Hz]
0.5 1 2 3

1 Healthy bar 10 10 10 10
2 Cracked bar 5 5 5 5
3 Unlocked bar 5 5 5 5

complete samples for each experiment, as detailed in Table 3.

Table 3. Samples for each structural state used for training, validation and testing.

Structural State bar
Total of

experiments
Samples for
training

Samples for
validation

Samples for
testing

Total of
samples

Healthy bar 40 528544 66068 66068 660680
Cracked bar 20 264272 33034 33034 330340
Unlocked bolt bar 20 264272 33034 33034 330340

Total 80 1057088 132136 132136 1321360

3.3. Feature selection
The correlation between the predictor variables and the variable to be predicted is analyzed.
In this case, it represents all values obtained from sensors versus the predicted variable, which
is called the class and refers to the structural state of the bar at the time of measurement.
The correlation analysis made it possible to define the variables used in the subsequent data
processing. Only those variables with a correlation factor greater than or equal to 0.15 or less
than or equal to -0.15 with the variable to predict (state) are considered, since, according to the
recommendation of (21). Table 4 lists all variables that are selected due to their high correlation.

Table 4. Selected variables after analyzing correlation between predictors and the predicted
variable.

Selected sensors

s1z s2y s2z s3x s3z s4x s4z s5z s6y s7z s8z

3.4. Data normalization
The data normalization process is essential in deep neural network applications, as it contributes
to accelerating training and improving generalization capability (22). There are several
techniques for data normalization, some of them are: z-score, Min Max, L1, L-infinity, histogram
equalization, Mahalanobis distance and more. In this research is decided to use the Min Max
method, which linearly rescales the data to an interval of [0,1] to change the values of the
numerical columns by equivalent values in the delimited range, so that it uses a common scale
maintaining the same distribution and proportion of the data without losing or distorting the
information, in addition to helping the model in its processing (23). This operation is performed
by the following Equation 1:
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Yj =
Xj − xminj

xmaxj − xminj

, (1)

where j represents each column of the study data, this means a sensor coordinate correlated
with the class.

xminj = min(xj), for j = 1, ....11, (2)

and
xmax = max(xj), for j = 1, ....11. (3)

Using equation (1), the original matrix X, transforms to Y, which has the same dimensions
but with normalized values.

3.5. Data Reshape
To prepare the data to use as an input to the CNN, it is decided to transform the normalized
information from the sensors into a 1-dimensional multichannel image, to extract as many
spatial-temporal characteristics of the data series as possible and, thus, to have a better
classification (24).

As it is desired to create a model capable of classifying structural damage with the information
of one second, sets of 256 values are taken to form the images ( asthis corresponds approximately
to one second of data acquisition). As this process is performed for each selected sensor, eleven
vectors of 256 samples are obtained and grouped in a multichannel matrix, as occurs with three-
channel RGB images. Finally, images with a dimension of 1 x 256 x 11 are obtained. A flowchart
is given in Figure 4 where n represents the number of samples.

Figure 4. Reshape the clean and normalized data transformed into images.

Given the frequency of acquisition 64 images are generated from each experiment, it is
important to note that great care was taken not to mix the remaining values from one experiment
with another, thus discarding data from the last set of each experiment that were not large
enough to become an image. Table 5 shows the total number of images generated for each data
set.

Table 5. Number of images for each processing step.
Training Validation Testing

No. of images 3584 768 768
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3.6. 1D-Convolutional neural network
Deep CNNs have been widely used for the development of damage detection techniques in civil
structures based on vibration measurements (25), (26). Recently, many studies that seek to
analyze time series, where there are limited samples and the data usually present high variations
or are acquired from different sources, as in this study, use 1D-CNN due to the advantages they
offer including the compact configurations with fewer hidden layers, which reduces the number
of parameters used and facilitates their training (27),(28),(29). Moreover, being compact, they
consume less computational resources than a 2D-CNN, which makes them more economical and
very viable for real-time analysis (30). Therefore, in this work, a 1D-CNN is used.

3.7. Support vector Machine classification layer
As is well known, there are multiple classification techniques in machine and deep learning,
including feedforward neural networks, decision trees, K-nearest neighbor, Bayesian networks
and SVM (31), (32). SVM is a technique based on the separation of the different classes of a
training set by means of a surface that maximizes the margin between them, thus increasing
their generalization capacity and, therefore, improving the classification capacity, thanks to
which it has become popular in recent years and is considered superior to other techniques,
especially when the data set is small, as in the case of this research (33). In this work, the usual
feedforward classification layer in a CNN is replaced by an SVM classifier layer. To accomplish
this, a multiple margin is used as the loss function (34). Additionally, the Adams algorithm is
used as the optimizer, employing the following parameter: learning rate α0=0.001, beta values
β1 = 0.9, β1 = 0.999, and ϵ = 10−8. Finally, a batch size of 16, with 25 training epochs are
configured. In this work, two 1D-CNN with an SVM classification layer are trained to compare
their results. The first one with only one convolutional layer and one max pooling layer (from
now called 1D-CNN-Vl), and the second with two convolutional layers and two max polling
layers (from now called 1D-CNN-V2). In Figure 5 and Table 6 can be observed the architecture
of the 1D-CNN-V2, since it was the one that obtained the best performance.

Figure 5. 1D-CNN-V2 architecture.

4. Results
As mentioned before, both networks are trained for 25 epochs, but the early stopping technique
is used to save the best model (avoiding overfitting) and not the last trained one. Figure 6
shows the result of the 1D-CNN-V1 model. As can be observed, the best model is saved in the
epoch number 15. On the left side of the figure, it can be seen that the model is overfitting
since the validation loss is higher than the training loss. On the other hand, on the right side of
the figure the confusion matrix is observed where it is evident that this model is not capable of
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Table 6. Description of the 1D-CNN-V2 architecture.

Layer Output size Parameters
Number of
parameters

Input
1 x 256 x 11 images

1x256x11 - 0

Convolution
16 Filters of size 3 with stride=1 & padding=1
ReLu

1x256x16
Weight 3x11x16
Bias 1x16

544

0
Max pool of size 3 with stride=2 & padding=1 1x128x16 - 0
Convolution
32 Filters of size 3 with stride=1 & padding=1
ReLu

1x128x32
Weight 3x16x32
Bias 1x32

1568

0
Max pool of size 3 with stride=2 & padding=1 1x64x32 - 0
Drop out (40%) 1x64x32 - 0

Fully connected #1 1x3
Weight 2048x3
Bias 1x3

6147

Class output - - 0

correctly classifying the cracked bar state. These results represent an accuracy of 89% on the
test data set, which is equivalent to 684 correctly classified samples, out of 768, as seen in the
confusion matrix. While for precision, recall, and F1 score, the values are 0.9065, 0.8906, and
0.8842, respectively.

Figure 6. Validation and training loss (left) and confusion matrix (right) for the 1D-CNN-V1
model.

The second architecture (1D-CNN-V2) obtained the best model after 10 epochs. The results
obtained by this model can be seen in Fig. 7. As can be observed on the left side of the figure,
the best model is not overfitting since it has a lower validation loss compared to the training
loss, which means the model generalizes well. The accuracy increases to 100% (see, right side of
the figure), correctly predicting all cases. This shows how extracting more features with the 32
filters from the second convolutional layer helps to improve the classification.

Finally, to comprehensively verify the algorithm’s functional properties, a comparison is
done with four additional techniques that use the identical laboratory setup (19), (15), (35),
and (16). The first method is based on principal component analysis and support vector
machines, as described in (19). The second methodology is based on the well-known damage
indicators: covariance matrix estimate and scalar covariance, as described in (15) (page 67).
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Figure 7. Validation and training loss (left) and confusion matrix (right) for the 1D-CNN-V2
model.

The third approach, described in (35), is based on machine learning and the fractal dimension
characteristic. The final solution, described in (16), combines synthetic data augmentation with
signal-to-image conversion of accelerometer data into multichannel pictures and convolutional
neural networks (CNN). First, the crack damaged bar obtained using the first approach indicated
in (19) has a recall of 96.08 percent, which is inferior to the one obtained using the strategy
proposed in this study, which reached a value of 100 percent. It’s worth noting that fracture
damage is the most difficult to repair. In fact, utilizing scalar covariance or mean residual
damage indicators, the second approach described in (15) (page 82) was unable to detect this
form of incipient damage. Furthermore, the first method achieves a recall of 99.02 percent for
unlocked bolt damage, but the recommended way achieves a little higher number of 100%. It’s
worth noting that the second approach ignores the unlocked bolt damage. The third approach
(35) necessitates feature extraction by hand, and the performance measures produced are inferior
to those in this study. Furthermore, the machine learning approaches presented in (35) require
a big data set to get decent results, but Siamese neural networks can learn from very little data,
which is critical in the application addressed in this paper. Finally, the fourth technique (16)
necessitates a deep CNN as well as a 25,200% increase in the total number of samples to achieve
99 percent accuracy, whereas the proposed strategy achieves superior accuracy with far less data
and a much simpler neural network architecture.

5. Conclusions
In this work, a strategy based on 1D-CNN with an SVM classification layer and based solely
on vibration response is demonstrated for the structural health monitoring of offshore WT
foundations. The methodology demonstrated exceptional performance by classifying three
different bar states. The conceived SHM methodology with a deeper architecture shows
exceptional performance, with all considered metrics (accuracy, precision, recall, F1-score, and
specificity) giving results of 100%. These results show that large (deep) 1D-CNNs are promising
for the development of SHM strategies for WT offshore foundations.

Because the data was gathered in a controlled laboratory context, this study is a proof-of-
concept contribution. As a result, it is proposed that future research include other environmental
factors, such as wave excitation, by setting up the experiment in a water tank facility to imitate
the influence of regular and irregular waves. Finally, environmental and operational conditions
(EOC) are vital to consider when dealing with long-term monitoring because they can make
damage identification more difficult. Because of the wide range of EOCs, EOC monitoring is
almost as critical as structural monitoring. As a result, its impact should be mitigated. To
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make SHM possible, several approaches for EOC compensation for WTs have been devised. In
(36), for example, affinity propagation clustering is utilized to divide data into WT groups with
comparable EOC. Experimental covariance-driven stochastic subspace identification is utilized
in (37). Finally, for EOC compensation, fuzzy classification approaches are utilized in (38)
and (39). However, as previously said, this work is merely a proof of concept, actual EOC
compensation will have to wait for further research employing pattern recognition techniques in
a more realistic setting.
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