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Abstract 

The evolution of technology has led to the development of environments that allow 

instantaneous communication and dissemination of information. As a result, false news, 

article manipulation, lack of trust in media and information bubbles have become high-

impact issues. In this context, the need for automatic tools that can classify the content as 

reliable or not and that can create a trustworthy environment is continually increasing. 

Current solutions do not entirely solve this problem as the degree of difficulty of the task is 

high and dependent on factors such as type of language, type of news or subject volatility. 

The main objective of this thesis is the exploration of this crucial problem of Natural 

Language Processing, namely false content detection and of how it can be solved as a 

classification problem with automatic learning. A linguistic approach is taken, experimenting 

with different types of features and models to build accurate fake news detectors. The 

experiments are structured in the following three main steps: text pre-processing, feature 

extraction and classification itself. In addition, they are conducted on a real-world dataset, 

LIAR, to offer a good overview of which model best overcomes day-to-day situations. Two 

approaches are chosen: multi-class and binary classification.  

In both cases, we prove that out of all the experiments, a simple feed-forward network 

combined with fine-tuned DistilBERT embeddings reports the highest accuracy – 27.30% on 

6-labels classification and 63.61% on 2-labels classification. These results emphasize that 

transfer learning bring important improvements in this task. In addition, we demonstrate that 

classic machine learning algorithms like Decision Tree, Naïve Bayes, and Support Vector 

Machine act similar with the state-of-the-art solutions, even performing better than some 

recurrent neural networks like LSTM or BiLSTM. This clearly confirms that more complex 

solutions do not guarantee higher performance. Regarding features, we confirm that there is a 

connection between the degree of veracity of a text and the frequency of terms, more 

powerful than their position or order. Yet, context prove to be the most powerful aspect in the 

characteristic extraction process. Also, indices that describe the author’s style must be 

carefully selected to provide relevant information.  



5 

1 Introduction 

Information refers to all the facts, knowledge and opinions perceived from another 

living being, from media or just from reading and it is the crucial component of any 

communication. Nowadays, a very large part of the data interchange process has moved from 

the physical environment to the digital one, leading to online communities of considerable 

size. Given the evolution of technology, instantaneous environments for distribution of 

information have developed. As a result, the impact of news considerably increased 

compared to the classic case of discussion between a small number of people. Therefore, it 

became mandatory to keep this exchange of information under control. 

1.1 Context 

False content has gained considerable momentum and has become a current issue for 

both citizens and internal security. The term “fake news” can be defined as “a story invented 

with the intent to deceive”, according to the New York Times, “purposefully crafted, 

emotionally charged misleading information” or “a completely invented story, manipulated to 

resemble credible journalism and to attract maximum attention and implicitly advertising 

revenue” (Agarwal, Sultana, Malhotra, & Sarkar, 2019). In the classic way, the problem of 

determining the authenticity of an article can be described as the prediction of the chances 

that a certain article will intentionally contain false information. Having various patterns and 

subjects, this task can easily become subjective. 

Before analyzing diverse methods for solving this problem, it is important to present 

the origins of the subject. Thus, although the term “fake news” became popular in 2016, with 

the presidential election in the United States, the misleading content is not a recent issue. For 

instance, the document entitled “Zinoviev’s Letter”, was published in 1924 in a famous 

British newspaper, just a few days before the general election, in order to destabilize the 

political situation in favor of the Conservative Party (Norton-Taylor, 1999). Another example 

is a newspaper article that later turned out to be fake, published after the “Hilsborough 

accident” where ninety-six people were crushed to death due to overcrowding. The article 

claimed that as people were dying, some drunken colleagues robbed them and beat the police 

(Torgo, Guimaraes, & Figueira, 2018). Over time, this practice has become increasingly 

common, now being amplified by technological development. 

        Thanks to the large number of users, and the overwhelming amount of information 

available daily, social websites have become a recurring and fast method of creating and 

easily spreading false news to a very large group of people. The fact that the information is 

one click away, whether it is on a phone or a computer, makes the process of consuming 

large amounts of information easy to be done. The most used platforms in this regard are 

Facebook and Twitter. Studies have shown that over 65% of adults read their daily news from 

social media, percentage increasing each year (Shearer & Gottfriend, 2017). What is most 

worrying is that, according to the research, people are not able to detect the lies in the text, 

being only 4% better than the chance at this problem (Bond & DePaulo, 2006). Malicious 

users quickly took advantage of the situation and started spreading rumors and 
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misinformation. For example, OpenAI has announced the launch of a GPT-3 tool that can 

produce almost indistinguishable text from human writing. According to them, GPT-3 can 

identify the relationships between concepts and the context of communication. Such a device, 

coordinated by the wrong hands, would be an extremely dangerous weapon in the process of 

misinformation, spam, or phishing. 

 False news, article manipulation, lack of trust in the media, and information bubbles 

are growing problems with high impact. The most common problem that makes it extremely 

difficult to detect unauthentic content for both humans and automated tools is that fake news 

almost never looks the same, fact which slows down the evolution of solutions. A frequent, 

but not exclusive, classification of these would be the following (Vorhies, 2017): 

 Biased messages/comments/opinions - biased reactions to various current 

events/locations/products 

 Fake news/Propaganda - news intentionally written to spread erroneous or misleading 

information about an event/personality/topic; in most cases it promotes a current, a 

personality, an extremist, a subjective vision 

 Clickbait - articles meant to attract attention, to shock by the title in order to generate 

a large flow of people on that site and high advertising revenue; in most cases they are 

completely wrong, based on exaggeration of real events 

 Humor/Satire - articles written for fun, not meant to present real information 

In this paper, we will focus on the category of fake news that tries to manipulate 

people by spreading untrustworthy information. Broadly speaking, this issue can be described 

as a simple task of classifying articles along a continuum of truthfulness, with each news item 

being associated with a measure of certainty, greater or lesser, depending on the amount of 

false information intentionally used in it (Conroy, Rubin, & Chen, 2016). Given that most 

research in this field focuses on written text, the detection of false content is considered a 

classic problem of Artificial Intelligence (AI), more precisely Natural Language Processing 

(NLP). Thus, the basic theoretical ideas of NLP are used: the decomposition of language into 

elementary units, the determination of the relations between them and the deduction of their 

meaning. 

1.2 Objectives 

The main objective of this thesis is to explore the natural language issue of false 

content identification in a specific field, namely media news.  The problem is structured as a 

classification problem with 6, respectively 2 classes. In addition, we intend to analyze various 

approaches to find the reasons why certain techniques and models have higher performance, 

highlighting their strengths and weaknesses. This objective is accomplished mainly by means 

of experimentation with different type of models, features, and pre-processing operations to 

improve accuracy. 
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2 State of the Art 

The impact of misinformation has prompted both scientific community and big 

companies (e.g.: Facebook, Google) to look for a way to alleviate the problem. Thus, 

different ways of assessing the truth value of a text began to appear.  

One attempt to eliminate deception dissemination is represented by systems that track 

social media accounts or false content propagation models to identify bot or spam profiles. 

One of the first approaches in this direction was in 2010, when the group of Benevenuto used 

a non-linear Support Vector Machine (SVM) with a Radial Basis Function kernel to detect 

spam accounts based on attributes regarding the behavior of the user. The model was able to 

correctly detect 70% of spam accounts and 96% of non-spam accounts from a dataset with 

over 1.000 entries (Benevenuto, Magno, Rodigues, & Almeida, 2010). The paper “Who is 

tweeting on Twitter: human, bot, or cyborg?” from the same year was also among the initial 

solutions which distinguished non-human profiles. The authors proposed a classification 

system with four parts:  

 Entropy component - detects regular posting times of users (sign of automation) 

 Machine learning component (Bayesian classification) – detects text patterns  

 Account properties component – analyses properties to find bot deviation from 

normal human distribution 

 Decision maker component (Linear Discriminant Analysis) – makes a final 

decision based on the other three components 

This system achieved 96% accuracy in human detection (Chu, Gianvecchio, Jajodia, & 

Wang, 2010). Other more detailed model can be analyzed in the work of Ma et al. They 

represented news with propagation trees to follow how a message is altered by users when 

transmitted over time. For classifying, they appealed to Propagation Tree Kernel to compute 

the similarity with rumor trees and non-rumor trees depending on structural and linguistic 

properties  (Ma, Gao, & Wong, 2010). The group evaluated the solution on two different 

datasets and registered accuracies between 73-75%. 

 Later, the group of Castillo aimed to identify the credibility of Twitter posts by using 

only user information, subject, and propagation metadata. Along with a decision tree (DT) 

that shaped a set of rules, they achieved an accuracy of about 86% in terms of detecting bot 

users (Castillo, Mendoza, & Poblete, 2013). More recently, Antoniadis et al. built models 

based on tweet features (number of characters/ words/ likes/ retweets/ replies/ mentions/ 

URLs/ media/ hashtags), user features (number of followers/ followees/ total tweets/ tweets 

during an event, days registered, followers-followees ratio) and additional features (URLs, 

media, average tweets per day, positive/negative/average sentiment). Their strategy included 

Nayve Bayes, K-Nearest Neighbors, Adaptive Boosting, Random Forest, Bootstrap 

Aggregating, J48, all accomplishing a F1-score over 70% (Antoniadis, Litou, & Kalogeraki, 

2015). In 2017, Nayve Bayes classifiers were still a go-to method in this direction, the 

extracted features being the only variations. Ersahin, Aktaş, Kilinç and Akyol used the 

Entropy Minimization Discretization technique on numerical features to improve the process 
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of building rules for fake news detection, maximizing information gain (Ersahin, Aktaş, 
Kilinç, & Akyol, 2017). 

Although the results seem very good, this approach has a major disadvantage. More 

precisely, to identify a spam account, it must publish enough fake information to build a 

meaningful profile. Indeed, once identified, the source can be removed, but previously spread 

news can no longer be stopped. In addition, a new bot account can be created immediately to 

continue the process indefinitely. Nowadays solutions are more oriented on classifying the 

articles based mostly on their content. This is the approach that we also choose for this thesis, 

and which will be detailed further. The most relevant techniques and their related results will 

be described in the following sections while highlighting some of the most relevant resources. 

2.1 Resources 

First, we require complete and representative resources. Based on this idea, numerous 

people started providing data sources that reflect different real-life situations of false content 

dissemination. Some of the most frequent topics are political news, medical news, 

advertisement, or celebrity journalism. The interest for the subject is so big that it led to 

shared tasks and important academic competitions for the NLP community. We collected 

some of the most famous ones in the following sections. Our focus was on English as it is the 

most common foreign language and it has a wide use in writing international news and in 

social media. Besides that, we mention a couple of Spanish resources as results from a very 

famous competition with the same theme which took place for several consecutive years. 

2.1.1 Competitions 

The main benefit of competitions is that they provide a common evaluation 

framework for people who try to advance the state of the art in a particular topic, in our case 

by racing in getting the best fake content detection system. Despite having a great number of 

participants that work on a problem, sometimes the progress in the area is not sufficient and 

some datasets have to be further analyzed. In this section, we present important challenges 

focused on this shared task of falsity detection in order to see the points of interest.  

One of the pioneers in this area of competitions was “Fake news challenge stage 1 

(FNC-I)” which was held in 2017. Being one of the first attempts, the main task was 

simplified by being split into consecutive stages. That edition of the competition – and the 

only one until now - focused only on the first step, respectively estimating if two texts claim 

the same thing about a specific topic. More precisely, the two inputs were a title and a body 

text.  After comparing these, they were marked with one of the following labels: “agrees”, 

“disagrees”, “discusses” and “unrelated”. The purpose was to find trustworthy relations 

between a valid information and a new one. The evaluation metric was a weighted score 

which considered both if the two ideas were related or not (25%) and if they agreed on the 

topic (75%). Out of 80 competitors, the team SOLAT in the SWEN scored 82.02%. 

Another remarkable competition is “KDD 2020 TrueFact Workshop: Making a 

Credible Web for Tomorrow” that took place in 2020. For this shared task, the teams had to 

design a solution that can distinguish inauthentic claims by classifying them as true or fake. 
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This time, the dataset contained 6.234 examples of label-text pairs. The competition had 19 

teams which were evaluated using accuracy as performance metric. The first classified team 

achieved a score of 84%. 

We can say that 2020 was a great year for fake news competitions. “Fakeddit 

Multimodal Fake News Detection Challenge 2020” is another example of organized 

framework which brought important resources for this subject. This competition launched a 

dataset called Fakeddit which contained over 1 million samples of fake news. Its purpose was 

wider as it tried to find different models that detect fake news in both text and images. The 

performance metric used is the same, meaning accuracy, measuring the percentage of text-

image pairs the model can recognize as fake. This competition deviates from our scope as we 

will use only text for our classifiers.  

One competition that gained much popularity on the subject and encouraged people to 

invest time in this problem is IberLEF which adopted this theme for two years in a row. 

Indeed, its real purpose was to provide a competitive text processing framework to overcome 

the actual state of the art results. Fake news detection was among the proposed challenges as 

“MEX-A3T: Fake News and Aggressiveness Analysis” (2020) and “FakeDeS: Fake News 

Detection in Spanish Shared Task” (2021). In both years, the F1 measure over the class of 

interest was used to rank participants. In 2020, all competitors used The Spanish Fake News 

Corpus which was composed of only 971 Mexican Spanish articles collected from different 

news related websites. The dataset was manually annotated in two balanced classes: true and 

fake. Besides the text and the label, it also contained the topic, the title, and the source URL. 

Only nine teams took the challenge of that edition and participated, all of them obtaining a 

F1-score over 70%. The highest value was achieved by the Idiap-UAM-2 team with a value 

of 84.44%. At the second edition, the attention was shifted on a hot subject at that time, 

meaning the pandemic situation. This time, the organizers tried to evaluate the robustness of 

the solutions by training on a very general set (The Spanish Fake News Corpus 2020) and 

evaluating on a very specific topic (Covid-19). The new testing dataset was composed of 

Coronavirus related news from Ibero-American countries classified in the same categories. 

This time, the results were poorer than those of the previous year. The number of participants 

elevated to 21 but the increased difficulty of the task led to F1-scores between 48.38% and 

76.66%. The GDUFS_DM team achieved the performance of winning the competition with 

their attention-based solution. 

2.1.2 Datasets 

Through these competitions or just through simple scientific articles, more and more 

datasets and web services are becoming available to identify fake content. As it is important 

to review the most important ones that addressed this topic, we gathered a series of datasets 

in Table 1. It can be seen that the messages and threads posted on Twitter are an active source 

of data. On the news side, for most corpora, the main source is PolitiFact.com, and as 

secondary sources we mention CNN or NYTimes.  

There are also a multitude of datasets that cross the barrier of authentic news - 

inauthentic news, resorting to style and content details and annotating data more precisely, 
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such as: mostly-true, barely-true, unverified rumour, half-true, false rumor or check-worthy 

factual sentence. These fine differences between the texts obviously made the task more 

difficult but lead to more representative results.  The length of the datasets varies from only 

360 to over  9 millions of  examples, fact which influences their performance.  As it is easier 

to recognize patterns from a low number of very specific news, if the corpus is more general 

then a reduced number of texts may lead to poor results. On the other hand, very large 

datasets are hard to  process as they need  important computational resources.   
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Table 1 Analyze of existing datasets 

Lang. Dataset / Article Dimension News type Labels Performance metric 

E 

N 

G 

L 

I 

S 

H 

Predicting information credibility in time-

sensitive social media 

(Castillo, Mendoza, & Poblete, 2013) 

1.873.000 

messages  

Twitter posts Credible/ Not-Credible  89.90% F1-score 

A Model for Identifying Misinformation in 

Online Social Networks 

(Antoniadis, Litou, & Kalogeraki, 2015) 

59.660 users & 

80.294 

messages 

Twitter posts Credible/ Misinformation 78.00% F1-score 

Detect rumors in microblog posts using 

propagation structure via kernel learning  

(Ma, Gao, & Wong, 2010), (Rum Detect, 2010) 

450.150 users 

and 2.308 

messages 

Twitter posts Non-Rumor/ False 

Rumor/ True Rumor/ 

Unverified Rumor 

73.20% Accuracy 

BuzzFeed-Webis Fake News Corpus 2016 

(Potthast, Kiesel, Bevendorff, Stein, & 

Reinartz, 2018), (BuzzFeed-Webis Fake News 

Corpus, 2016) 

1.627 articles News articles (ABC News, 

CNN, Politico, Addicting 

Info, Occupy Democrats, 

The Other 98%, Eagle 

Rising, Freedom Daily, 

Right Wing News) 

True/ False/ Mix 75.00% Accuracy 

Fake News or Truth? Using Satirical Cues to 

Detect Potentially Misleading News. 

(Rubin, Conroy, Cornwell, & Chen, 2017), 

(Satirical Fake and Legitimate News Dataset, 

2016) 

360 articles News articles (The Onion, 

The Beaverton, The Toronto 

Star, The New York Times) 

Satirical Online News/ 

Legitimate Online News 

93.00% Accuracy 

 

Toward Automated Fact-Checking: 

Detecting Check-worthy. Factula Claims by 

Claim Buster 

(Hassan, Arslan, Tremayne, & Li, 2017) 

20.788 phrases News articles (PolitiFact, 

CNN) 

Non-Factual Sentence/ 

Check-worthy Factual 

Sentence/ Unimportant 

Factual Sentence 

72.00% Accuracy 
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“Liar, Liar Pants on Fire”: A New 

Benchmark Dataset for Fake News Detection 

(Wang, 2017), (LIAR Dataset, 2017) 

12.800 

statements 

News articles 

(PolitiFact) 

Pants-fire/ False/ Barely-

true/ Half-true/ Mostly-

true/ True 

27.40% Accuracy 

Fake News Corpus 

(FakeNewsCorpus, 2020) 

9.408.908 

articles from 

over 745 fields 

NYTimes, WebHose English 

News Articles 

Fake/ Satire/ Bias/ 

Conspiracy/ State/ 

Junksci/ Hate/ Clickbait/ 

Unreliable/ Political/ 

Reliable 

- 

Fake and real news dataset 

(Fake and real news dataset - Classifying the 

news, 2019) 

44.898 articles News articles True/ Fake 99.87% Accuracy 

Fake News 

(Fake News - Build a system to identify 

unreliable news articles, 2018) 

114.061 articles News articles True/ Fake 99.03% Accuracy 

Fake News Detection Challenge KDD 2020 

(Fake News Detection Challenge KDD 2020. 

Develop a machine learning algorithm to detect 

fake news, 2020) 

6.234 articles News articles True/ Fake 84.00% Accuracy 

S 

P 

A 

N 

I 

S 

H 

The Spanish Fake News Corpus  

(MEX-A3T: Fake News and Aggressiveness 

Analysis, 2020) 

971 articles News articles True/ Fake 84.44% F1-score  

The Spanish Fake News Corpus + Covid-19 

(FakeDeS: Fake News Detection in Spanish 

Shared Task, 2021)  

1.544 articles News articles True/ Fake 76.66% F1-score 
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2.2 Analysis of News Content 

The detection of an article’s truthfulness based on its content and meaning is a current 

difficult NLP problem. Despite being widely used, the solutions that are available nowadays 

are very specific and do not work in general cases. However, they have safer results than their 

predecessors because they focus on the problem, not on its source. There are three major 

complementary directions that lead to promising results: 

 Knowledge-based approach - uses a priori knowledge  

 Machine Learning approach – uses automatic learning of extracted linguistic patterns 

from news content 

 Hybrid approach – combines Knowledge-based and Machine Learning techniques 

2.2.1 Knowledge-based Approaches 

 As expected, the most human-appropriate way to detect false news is to try to verify 

the truthfulness of the statements based on another ones. That’s why researchers start using a 

priori recognized knowledge in their solutions. This technique of retrieving information uses 

an existing body of collective human knowledge to determine the truth value of new 

statements. The main advantage of this direction is that beside a label, it may also offer an 

explanation. There are two main categories for the knowledge-based methods that will be 

detailed in the following sections. 

A Human Oriented Fact Checking 

Initially, people have chosen a manual approach based on their knowledge in various 

fields. Depending on the author of the final label, this category can be split in: Expert 

Oriented Fact Checking and Crowd Sourcing Oriented Fact Checking. 

Mainly, the first method requires experts to evaluate the accuracy of a news through 

research and study of the subject from nonpartisan data sources. The process is 

straightforward, meaning that a fact is labeled as certain after comparing its accuracy to one 

of an already fact-checked news. In 2014, Vlachos and Riedel described the entire process of 

expert-oriented fact checking which is decomposed in four steps: extract statements, define 

relevant questions, obtain answers from valid sources, and establish a verdict (Vlachos & 

Riedel, 2014). Important fact checking services like Snopes (https://www.snopes.com/) and 

PolitiFact (https://www.politifact.com/) offer quality services in this direction. Expert 

oriented fact checking requires a huge amount of work and time which cost when false 

information is spreading. Moreover, due to frequent changes of the news publication nature, 

the generation of huge amount of content and the diversity of formats and genres, this 

solution does not fit for new fake content.   

Regarding the other category, crowd sourcing offers a unique opportunity to users, 

meaning: the possibility of discussing the truth label assigned. In this way, people have the 

chance to evaluate piece after piece and to signal eventual mistakes of annotation. One 

available website which provides this at the moment is Fiskkit (https://www.fiskkit.com/). 

https://www.snopes.com/
https://www.politifact.com/
https://www.fiskkit.com/
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The downside here is that these solutions entirely rely on the wisdom of the public users 

(Ahmed, Hinkelmann, & Corradini, 2019). 

B Computational Oriented Fact Checking 

 As fact checking solutions governed by human beings are time consuming, automatic 

systems that identify fabricated content using external structured information (e.g.:  Freebase, 

Google’s Knowledge Graph, DBpedia) represent the alternative. For very specific areas, 

knowledge graphs and ontology-based solutions can lead to promising results.  

In 2016, the group of Shi et al. taggled the task of fake news detection in the paper 

“Fact Checking in Heterogeneous Information Networks”. The authors defined this problem 

as a link-prediction task in a knowledge graph. Their knowledge graph base was composed of 

a high number of triples - (head entity, relation, tail entity) – which represented facts. The 

model used both entity and predicate information to test validity. It extracted discriminative 

paths from DBpedia and SemMedDB to validate the truthfulness of a statement (Shi & 

Weninger, 2016). For example, for the statement “Barack Obama is a Muslim”, the extracted 

path would have been Barack Obama - Columbia University - Association of American 

Universities - Canada - Stephen Harper - Calgary - Naheed Nenshi - Islam (Ciampaglia, et 

al., 2015). The evaluation step included thousands of claims from different domains.  

Later, the group of Pan came with a solution which generates three knowledge graphs 

from: a fake news article base, DBpedia and a true reliable news article base. Then, they used 

a single B-TransE model to embed the entities and the relations. A binary TransE model was 

trained on each of them, and the results were compared, the best one being an 80% F1-score 

(Pan, et al., 2018). This model, as any other from this category, assumed that all needed 

information was in the graph, but this is not a realistic hypothesis, as even the largest base is 

incomplete. The group of Etzioni presented a prediction algorithm that use knowledge and 

semantic web data to determine erroneous information in documents on the Internet (Etzioni, 

Banko, Soderland, & Weld, 2008). The paper also introduced a new extraction system, Open 

IE, that was capable of deriving tuples after only a pass over the corpus and without any 

human intervention. 

Lin et al. presented a new method based on discriminant subgraph structures. The 

authors generalized graph fact checking rules (GFCs) into ontological graph fact checking 

rules (OGFCs) by adding ontological closeness and topological constraints. Moreover, they 

described a supervised pattern discovery algorithm to find this kind of rules. This design 

generated relevant subgraph patterns and dynamically selected patterns from a stream with a 

small update cost per pattern. They tested their proposal against a real-world knowledge base 

to evaluate the efficiency (Lin, Song, & Wu , 2018) . 

There are several other “network effect” variables that can be used to calculate 

probabilities of truth. Recently, the group of Gupta proposed a study of fact checking using 

information crawled from Wikipedia and organized in tables. They studied frequent topics 

and themes in false content, emotions transmitted to the readers and metrics from network 

analytics. In the undirected graphs that they built; the nodes represented bigrams while edges 

were indicating if two nodes coexist in a single article. These strategies were applied over 
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2.049 untrusty texts and 12.490 real news on which they obtain promising results (Guptaa, 

Lib, Farnoushc, & Jiang, 2022). 

In 2020, at the start of the pandemic crises, deceptive information was a real problem. 

Adrian Groza used Description Logics (DL) and a COVID-19 ontology to detect not-trusted 

information. He converted both trustworthy and untrustworthy content to DL using FRED 

converter, while the reasoning process was made with Racer. The approach was 

straightforward: if there existed a conflict between a new myth and the scientific content or 

between it and the ontology structure, then the piece of news was labeled as fake (Groza, 

2020).  

Overall, the success of knowledge-based models has been measured by their ability to 

assign high truth values to true statements, and the outcome may even reach 95% accuracy on 

specific domains and datasets (Ciampaglia, et al., 2015). However, there are some limitations 

in this approach, including the fact that statements must be in a pre-existing knowledge base. 

Also, the solution is static, and the information need to be constantly updated. 

2.2.2 Machine Learning Approach 

Machine Learning (ML) approaches focus on finding similar patterns that occur in 

false texts. Nowadays, this direction is the most plausible and common method for detecting 

the authenticity of a piece of news. Over time, various ML solutions were proposed and 

analyzed, so we just focus on those relevant for our approach. As mentioned earlier, the issue 

of fake content detection is in most cases treated as a classification problem. 

A Classical Models 

Some of the initial approaches for untrustworthy content detection include basic 

algorithms from supervised learning area. Their versatility and ease of understanding make 

them facile to be used in combination with different linguistic and structural features 

extracted from the text.  These solutions achieve very good results in predicting the low 

credibility in texts and establish a promising state of the art.  

In 2009, Mihalcea and Strapparava used Naïve Bayes (NB) and Support Vector 

Machine on a dataset created with fake news intentionally written by people. More exactly, 

real news was similarly rewritten, in a journalistic manner, but false. The paper proved that 

Naïve Bayes classifies according to the accumulated evidence of the correlation between a 

certain variable (e.g.: syntax) and the others present in the model by achieving an average 

accuracy of 70.8%. The SVM model had a similar result, a performance accuracy of 70.1% 

was found in terms of detecting erroneous information  (Mihalcea & Strapparava, 2009). 

Later, the paper “Fake News or Truth? Using Satirical Cues to Detect Potentially Misleading 

News” revolutionized by taking into account satirical news features (absurdity, humor, 

grammar, negative affect and punctuation). With TF-IDF and SVM, they improved the 

performance obtained by Mihalcea and registered an 82% accuracy, proving that deep syntax 

and grammatical patterns may be good detectable signs of falsity (Rubin, Conroy, Cornwell, 

& Chen, 2017). 
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Wang tried to introduce SVMs models into multi-class classification of fake news 

articles. In 2017, he proposed a dataset that contained six hierarchical labels of veracity and 

used it with word embeddings extracted with Word2Vec and classical ML algorithms like 

SVM or Logistic Regression (LR). Even though their results did not exceed 25.5%, they were 

very similar to performance metrics from more complicated classifiers applied on their 

dataset (Wang, 2017). The group of Alhindi presented similar solutions on the same corpus 

with the same models, SVM and LR, but with poorer results (Alhindi, Petridis, & Muresan, 

2018). After they combined text with extra features such as: justification of the label or 

metadata, their system achieved even 37% accuracy for 6-classes and 67% for the binary 

case. More recently, Brașoveanu and Andonie presented the results of other classical 

algorithms like Naïve Bayes, Decision Tree, and Random Forest with embeddings on the 

same complicated dataset (Brasoveanu & Andonie, 2019). The latter was the solution which 

had the best performance score out of these three, 24.9% accuracy. 

In 2019, Perez-Rosas et al. created two datasets and used SVM for misinformation 

detection. The authors used various grouping methods and point distance functions for the 

model to actively influence the accuracy obtained. Also, the group tested different linguistic 

features like n-grams (unigrams, bigrams), punctuation (commas, periods, dashes, question 

marks, exclamation marks), psycholinguistic features (LIWC lexicon to extract the 

proportions of words that fall into psycholinguistic categories) and readability (number of 

characters, number of paragraphs). To obtain a deeper analysis of the structure of language, 

namely the syntax, they extracted a set of features derived from production rules based on 

context free grammars trees (CFG) using the Standford Parser. This meant that beyond the 

simple use of words, features were selected by transforming sentences into a set of rewriting 

rules that describe the structure of the syntax (e.g.: noun and verb phrases were rewritten by 

their syntactically constituent parts). The sets of rules eventually formed an analysis parser 

tree. The best model on this dataset achieved an accuracy of 76% and less with 5% on a 

dataset with fake news taken from the web, proving the usefulness of linguistic features in 

fake news detection (Perez-Rosas, Kleinberg, Lefevre, & Mihalcea, 2019). 

Despite having very good results, classical ML algorithms may encounter problems in 

the learning process if the number of features is large or the data is very similar between 

classes.  

B Deep Learning 

Classifiers based on neural networks solve the limitations of those mentioned above 

and perform better. Mainly, in working with texts, the Recurrent Neural Networks (RNN) had 

a great boost. Their advantage was that, at each step, they considered the internal state of the 

previous one. Thus, a word influenced the words nearby, and the weights were adjusted 

considering this aspect in the backpropagation process. NLP took another step forward with 

the advent of Long Short-Term Memory (LSTM) architecture which removed the 

disadvantage of RNN, namely the influence of only nearby words.  

In 2017, Rashkin et al. proposed a GloVe and LSTM solution that took the sequence 

of words and classified it. As they worked with data crawled from PolitiFact.com, a fact-
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checking website that categorizes the text in six classes, the authors proposed both a multi-

class classifier and a binary-classifier. The final architecture that used frequency features 

achieved on the test dataset a F1-score of 20%, respectively 56%. Overall, when LIWC 

features were introduced, their baseline solutions with TF-IDF and Naïve Bayes or Maximum 

Entropy had similar or even better performance metrics than LSTM for both cases (Rashkin, 

Choi, Jang, Volkova, & Choi, 2017).  

Different variants of this architecture like: Tree LSTM, BiLSTM or Gated recurrent 

units (GRU) had appeared and gave even better results. All these designs were a revelation at 

the time of their emergence, surpassing the convolutional neural network (CNN) on the NLP 

side and becoming the new benchmark (baseline). One exception is the paper written by 

Wang in 2017. He presented a CNN architecture that obtained the highest performance in the 

multi-label classification task, surpassing all types of RNNs. Taking into account only the 

content of the news and representing it into word embeddings, he achieved an accuracy of 

approximately 27% (Wang, 2017).   

Also, there were several innovating mixed approaches. In 2018, the paper “Multi-

source multi-class fake news detection” detailed CNN and LSTM methods to merge different 

text-based features in order to detect low-veracity content (Karimi, Roy, Saba-Sadiya, & 

Tang, 2018). Last year, Aslam et al. proposed an architecture that uses BiLSTM and GRU 

layers to detect the fake and real news from the LIAR dataset. Although the original dataset 

paper mentioned that BiLSTM tends to overfit this corpus, they managed to find a version of 

the algorithm that scores approximately 90% accuracy for binary classification (Aslam, 

Khan, Alotaibi, Aldaej, & Aldubaikil, 2021). 

Ruchansky et al. proposed a model called CSI – Capture, Score, Integrate - composed 

of three modules which: capture temporal pattern of user activity (Recurrent Neural 

Network), learn characteristics based on user behavior (a fully connected layer) and classify 

the article (Decision Tree, Support Vector Machine, Long Short-Term Memory, Gated 

recurrent units). This solution tried to combine the text itself with information about users’ 
response and reaction.  It was tested on real-world corpuses (Twitter, Weibo) and achieved 

higher results than the existing state of the art, 89.20% accuracy, respectively 95.30% 

(Ruchansky, Seo, & Liu, 2017). 

The latest approach that workes very well and seems to dethrone LSTM neural 

networks is represented by Transformers networks. They have an attention mechanism that is 

able to retain long-term dependencies in the case of very long statements and capture the 

meaning of an entire sentence. In 2019, the news from PolitiFact came again to researchers’ 
attention through the LIAR dataset. Brasoveanu and Andonie combined machine learning and 

semantics in a high-performant model. They tried a series of classic and deep learning models 

together with the text itself, speaker information, context, semantic features (sentiment 

polarity, sentiment subjectivity, entities, links, relations) and syntactic features. They 

managed to propose architectures with BiLSTM Attention and GRU Attention that avoid the 

problem of overfitting and obtain between 50-55% accuracy on multi-classification. Their 

best model used all additional information and achieved an improved performance of 64.4% 

with CapsNet (Brasoveanu & Andonie, 2019).  
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In “Overview of FakeDeS at IberLEF 2021: Fake News Detection in Spanish Shared 

Task”, the winner solution described an architecture based on BERT and Sample Memory 

with an attention mechanism which scored 76.57% accuracy (Gomez-Adorno, Posadas-

Duran, Enguix, & Capetillo, 2021). In 2022, Raza and Ding launched a framework, FND-NS, 

based on a Transformer architecture. The authors adapted the BART model for fake news 

detection and trained models only with news content or combined with additional social 

context. The model was tested on two datasets, NELA-GT-19 and Fakeddit, and scored 

74.8% accuracy (Raza & Ding, 2022). 

There are also other approaches than have not been very exploited until now. For 

instance, the paper “Detecting Fake News with Sentiment Analysis and Network Metadata” 

integrated sentiment analysis, an area of research that identify opinions or emotions 

expressed directly or indirectly in texts, in the problem of fake news detection. The idea 

pursued is intuitive, namely: the authors of inauthentic articles use emotional, unintentional 

communication, subjective judgments, or assessments of emotional state at the time of 

writing. Thus, syntactic models can distinguish between sentiment and fact-based arguments 

by associating a learned argumentation style class. Specifically, those who wrote false and 

negative articles used excessive terms of emotion compared to those who wrote truthful 

reviews, thus exaggerating the feelings they wanted to convey. The creators looked in general 

for polarity and subjectivity. Their ML sentiment solution combined with a Random Forest 

classifier achieved a F1-score which exceeds 88% (Shrestha, 2018). Although it obtained 

high performance values, it tended to have a low generality, leading to poor results when 

detecting false information in real cases.  

More recently, Anoop et al. targeted untrustworthy content detection on different 

kinds of affective characteristics that appeared on fake and true health news articles. Emotion 

features were combined with classical and deep learning models, proving that this kind of 

information led to improved accuracy for all classifiers (Anoop, Deepak, & Lajish, 2020). 

For the Covid-19 pandemic, the authors found a pattern of emotional content in narratives 

that supported the use of this method in stopping misinformation dissemination. This 

approach is based on the use and analysis of language and is very promising, especially in 

hybrid combinations. 

2.3 Hybrid Approaches 

 New most studies combine machine learning and knowledge techniques in innovating 

architectures in order to obtain better results for certain datasets. All the previous techniques 

can be combined into hybrid systems that solve the weaknesses of each individual method.  

In 2021, in the paper “Knowledge Enhanced Multi-modal Fake News Detection”, the 

authors detected dishonest content through a subgraph classification task. They converted 

each news into a knowledge graph. Analog, each subgraph was a news item. Finally, Han et. 

al trained a graph neural network to categorize each subgraph (Han, Silva, Luo, & 

Karunaseker, 2021). The method achieved accuracy higher than 85% for two different 

datasets.  
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Hu et al. (2021) came with CompareNet, an end-to-end graph neural model. Starting 

from the news content and its topic, they built a directed heterogeneous document graph for 

each article using Latent Dirichlet Allocation (LDA) and TAGME3 tool. Based on it, the 

authors proposed a heterogeneous graph attention network to learn news representation for 

every topic and contextual entity representations that encode the semantics of the news 

content. The contextual representations were later compared to the corresponding entities 

from the knowledge base. Finally, the topic-enriched news representation combined with the 

entity comparison features were fed into a classical fake news classifier (Hu, et al., 2021). 

Experimental results on two benchmark datasets demonstrate that CompareNet significantly 

outperformed state-of-the-art methods. In 2021, Shakeel and Jain described a solution with a 

Fast-TransE model and machine learning algorithms (SVM and LR). This system achieved 

an F1-score of approximately 82%, a very good result for an approach that incorporates 

knowledge graphs (Shakeel & Jain, 2021). 

Mayank et al. (2022) proposed a solution which combined the encoded news content 

with a Knowledge Graph (KG). Its architecture included three parts: 

 News encoder (2-layer stacked BiLSTM): applies contextual encoding on the title 

 Entity encoder: finds named entities in title and encodes them using KG 

 Classification layers (multi-layer perceptron): use the other two components to 

perform classification 

The entity encoder represented the hybrid part with its sub modules: Named Entity 

Recognition (RoBERTa), Named Entity Disambiguation (connects the identified entity with 

the most similar one from Wikidata Knowledge Graph), Knowledge Graph embedding 

(applies encoding ComplEx algorithm on KG to represent it in complex space) and Entity 

encoder aggregation layer (aggregates the entities’ representation). The model which used 

only news titles was evaluated on two different datasets and achieved an F1-score of 88%, 

respectively 78% (Mayank, Sharma, & Sharma, 2022). 

Starting with 2017, an automatic tool, ClaimBuster, is available to people, being an 

example of how good fit are machine learning techniques together with natural language 

processing and knowledge databases. Its strong point is that it is powerful enough to analyze 

in real time social contexts, speeches, and interviews. After finding a set of facts, this system 

compares them with already verified ones from a knowledge repository, establishes a label 

and delivers the result (Hassan N. , Arslan, Li, & Tremayne, 2017). 

In these types of models, the use of metadata can improve the results in establishing 

the degree of veracity. The most frequent approaches include using hyperlinks, associated 

metadata about context or information about the author (Chu, Gianvecchio, Jajodia, & Wang, 

2010). 
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3 Method 

This thesis explores and compares different solutions for inauthentic content 

detection. Our approach is divided into three main stages: pre-processing data, extracting 

features and classification of the input. In the next sections, we will present what different 

methods we tested for each one of the steps. 

3.1 Dataset 

We focus on applying supervised learning techniques. For that, we use an annotated 

body of text, LIAR Dataset (Wang, 2017). It contains short English statements extracted from 

the PolitiFact.com website, which are labeled with a certain level of trust based on a detailed 

explanation. Having public and accessible data, any necessary information is one click away. 

Moreover, the dataset can be enlarged at any time by collecting more data from this fact-

checking site, which can only benefit our analysis.  

LIAR contains a total of 12.800 entries, a size large enough to support complex 

models. It has an extensive number of classes, which allows the analysis of a more detailed 

classification. Each one of the labels claims if the statement is accurate or not, if there is any 

data missing and eventually the ridiculousness of the claim (Holan, 2018).  

At the same time, the large number of classes raises the difficulty of the problem and 

automatically the performances obtained are lower, but closer to reality. The methods that are 

analyzed will be tested on 6-labels classification, but also on 2-labels classification. In the 

latest case, we group the classes “true”, “mostly-true” and “half-true” as a unique class 

“TRUE”, while the others, “mostly-false”, “false”, “pants-fire” as “FAKE”.  

The annotation of the information is done manually, by specialists with knowledge in 

the field. More exactly, one reporter researches a fact-check, suggests a rating, and writes a 

motivation with strong arguments that sustains its label. After that, the reporter and an 

assigned editor review the report, its authenticity, its weak and strong points, and fix 

eventually leak of details or contradictions. When they agree on the rating, two additional 

editors are included in the process. In order to choose the final label, the following questions 

must be answered by the three editors and the reporter (Holan, 2018):  

-T
R

U
E

  

-The statement 
is accurate and 
there’s nothing 
significant 
missing. 

-M
O
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T

L
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R
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-The statement 
is accurate but 
needs 
clarification or 
additional 
information. -H
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-The statement 
is partially 
accurate but 
leaves out 
important 
details or takes 
things out of 
context. 
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E
  

-The statement 
contains an 
element of 
truth but 
ignores critical 
facts that 
would give a 
different 
impression. 

-F
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E
  

-The statement 
is not accurate. 

-P
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T
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E

  

-The statement 
is not accurate 
and makes a 
ridiculous 
claim. 

Figure 1 Explanations of labels  
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 “Is the statement literally true?” 

 “Is there another way to read the statement? Is the statement open to interpretation?” 

 “Did the speaker provide evidence? Did the speaker prove the statement to be true?” 

 “How have we handled similar statements in the past? What is PolitiFact’s 

jurisprudence?” 

Finally, the three editors vote on the rating, the majority is always wining. After some more 

edits, the final report is published on the website.  

Another aspect that represents an interesting point and motivates the choice of this 

corpus is the fact that besides the actual statements, LIAR contains some information about 

the context. In some approaches, this additional data may be used as extra features to improve 

the performance of the solution and even to explain the proposed label. The supplementary 

columns that may be used in future experiments are as follows:  

 Subject (the subject of the statement) 

 Speaker (source of statement) 

 Speaker job title (source job title) 

 State info (state of source) 

 Party affiliation 

 Barely true counts (the number of barely-true statements made by that source) 

 False counts (the number of false statements made by that source) 

 Half true counts (the number of half-true statements made by that source) 

 Mostly true counts (the number of mostly-true statements made by that source) 

 Pants on fire counts (the number of pants-fire statements made by that source) 

 Context (location where the statement was made) 

Before building an actual model, we did some dataset analysis to better understand its 

structure and distribution, and to see how diverse and biased it is. The corpus is already split 

in the usual parts: training, validation, and testing. As a distribution of data in all three parts, 

it is relatively balanced between 5 classes: “barely-true”, “false”, “half-true”, “mostly-true” 

and “true”, the only exception being the “pants-fire” class which has significantly fewer 

examples.  

Table 2 Label distribution for multi-label classification 

 Training Validation Testing 

True 1.676 169 208 

Mostly-true 1.962 251 241 

Half-true 2.114 248 265 

Barely-true 1.654 237 212 

False 1.995 263 249 

Pants-fire 839 116 92 
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Table 3  Label distribution for binary classification 

 Training Validation Testing 

True (true, mostly-true, half-true) 5.752 714 668 

Fake (pants-fire, false, barely-true) 4.488 553 616 

Regarding the extra metadata, we evaluated the set of possible values for each column 

and observed, in most cases, a high cardinality in the training data and a slightly lower 

number in the validation corpus. Also, for some columns, the validation partition includes 

just a part of the set of possible values of the same column from the training slide, plus new 

unseen values. Therefore, in the validation step, the model encounters information which 

does not know how to interpret, aspect which hinders the learning process.  

From the point of view of the frequency of each value of each category, we draw 

some conclusions. Firstly, the main persons cited in the dataset are politicians (e.g.: 

republicans, democrats, independents, activists), their statements representing more than half 

of the dataset. Secondly, from the point of view of the diversity of topics covered, it emerged 

that the most common statements fall into the categories: “economy”, “health-care”, “taxes”, 

“federal-budget”, “education”, “jobs”, while the least common in fields like “autism”, “death 

penalty”, “food”, “homeless”, “fires”. As expected, the dataset focuses on serious topics, 

treated in today's society and not on artificial or superficial subjects.  

Table 4 Cardinality of metadata columns 

 

Column Partition Number of unique values per column 

Speaker Training 2.911 

Validation 661 

Common 446 

Context Training 3.874 

Validation 729 

Common 364 

Job Training 1.108 

Validation 285 

Common 208 

Party Training 23 

Validation 15 

Common 15 

Subject Training 143 

Validation 132 

Common 132 

State Training 69 

Validation 46 

Common 46 
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This dataset has gain popularity over time, being used in different scientific reports 

and solutions. Our purpose is to determine the falsity of a news depending on its content, no 

other metadata. The reason for this decision is that, in most real-life cases, additional 

information will not be available for new articles. Therefore, our point of comparison is 

represented by papers that adopt the same approach. 

We made a detailed selection of the highest performances we found for different 

solutions that were used over time. In the original dataset paper, several tested methods and 

their associated results are presented for 6-labels classification. The scientific article aimed to 

analyze what models and techniques of natural language processing fit on this corpus. Two 

important directions were highlighted, namely: text analysis itself and text analysis along 

with other available information  (Wang, 2017). For the first case which interests us, the best 

results on the testing corpus were obtained for a convolutional network (27%), respectively 

for a simpler algorithm, Support Vector Machines (25.50%).  

The group of Alhindi presented similar solutions but with lower performance metrics 

(Alhindi, Petridis, & Muresan, 2018). Their innovation was in models that integrate the 

justification of the label and improve results, but we don’t compare to that direction. 

Brasoveanu and Andonie obtained similar results for classic designs and recurrent neural 

networks, while their attention-based solutions reached accuracy between 40-50%. 

Unfortunately, they did not give enough details about their complex implementations to allow 

us to directly compare with them – we marked this in Table 5 through “?” symbol. Moreover, 

they proved that introducing more attributes and relations can lead to an accuracy of almost 

65% (Brasoveanu & Andonie, 2019).  

Various features are tested over time, from surface level indices to n-grams or word 

embeddings. They are combined either with simple ML architectures or more complex 

solutions, but overall, Word2Vec led to the highest accuracy for the test partition. 

Table 5 State of the art results for multi-classification 

Paper Features Model Validation 

(%) 

Testing 

(%) 

(Wang, 

2017) 

Surface-level linguistic 

patterns extracted with 

LIBSHORTTEXT toolkit 

(binary feature/ word count/ 

term frequency/ TF-IDF) 

SVM 25.80 25.50 

Word embeddings (Word2vec 

pretrained embeddings from 

Google News) 

BiLSTM 22.30 23.30 

CNN 26.00 27.00 

(Alhindi, 

Petridis, & 

Muresan, 

2018) 

Unigram features LR 23.00 25.00 
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(Brasoveanu 

& Andonie, 

2019)  

Word embeddings (Word2vec, 

GloVe, FastText) 

Multinomial 

Naïve Bayes 

- 23.00 

SGDClassifier - 22.90 

Random Forest - 24.90 

Decision Tree - 22.60 

Basic LSTM - 22.50 

BiLSTM 

Attention? 

- 40.80 

GRU Attention? - 46.00 

CapsNet? - 55.50 

 

There are multiple papers that address this dataset from a binary point of view. Most 

of them group three out of six classes as true and the rest as fake. From Table 6, it can be 

observed that classical ML algorithms and recurrent neural networks achieve similar results 

in all papers, between 50-60%. The group of Aslam proposed a solution that combines 

BiLSTM with GRU and obtained a very good score (89.90%). In 2002, Yazdi et al. described 

a system which selects the most relevant and different features to be used through K-means. 

Afterwards, simple algorithms are used to achieve more than 90% accuracy. Unfortunately, 

these last two papers do not provide enough information about how they obtained the two 

classes from the six original ones, how they split and grouped the classes, so their results are 

hard to be reproduced or even directly compared with - aspect marked with the same “?” 

symbol in Table 6. 

For the binary case, there are more directions both in terms of classifiers and their 

associated features than for the first case. From the table below, we can see that lexical and 

sentimental traits did not bring enough information for the models to learn differences 

between classes. While n-grams and static word embeddings had similar results, 

contextualized embeddings set the highest performance of 62%.  

Table 6 State of the art results for binary-classification 

Paper Features Model Validation 

(%) 

Testing 

(%) 

(Alhindi, 

Petridis, & 

Muresan, 

2018) 

Unigram features LR 58.00 61.00 

SVM (linear) 56.00 59.00 

Word embeddings 

(GloVe) 

BiLSTM 59.00 60.00 

(Khan, 

Khondaker, 

Lexical  

(word count, average word length, 

Decision 

Tree 

- 51.00 
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Afroz, 

Uddin, & 

Iqbal, 2021) 

count of numbers, count of parts of 

speech, count of exclamation 

marks)  

& Sentiment (positive/negative 

polarity) 

AdaBoost - 56.00 

n-grams  

(TF-IDF of word-based uni-gram 

and bi-gram) 

Naïve Bayes  - 60.00 

Lexical categories Empath  

(Empath tool - e.g.: violence, 

crime, war)  

k-NN - 54.00 

Word embeddings 

(GloVe) 

CNN - 58.00 

LSTM - 54.00 

C-LSTM - 54.00 

HAN - 57.00 

Conv-HAN - 59.00 

Word embeddings  

(RoBERTa) 

Feed-

Forward 

- 62.00 

(Aslam, 

Khan, 

Alotaibi, 

Aldaej, & 

Aldubaikil, 

2021)  

Word embeddings  

(FastText “cc.en.300.vec” 

pretrained vector) 

BiLSTM – 
GRU? 

- 89.90 

(Yazdi, et 

al., 2020)  

N-grams 

(average of 10 executions of 

feature selections – uni-grams) 

K-means + 

SVM? 

- 94.19 

K-means + 

Decision 

Tree? 

- 92.58 

K-means + 

Naïve Bayes? 

- 91.64 
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3.2 Text Pre-processing 

As mentioned before, in this document, we analyze different methods of fake news 

detection from a machine learning point of view. At the base of this process is the way the 

machine interprets the text, meaning how words are converted to a numerical format. In 

general, in order to have a good representation for the feature vector, certain pre-processing 

operations are required. Their combination is debatable, depending on the problem itself and 

the available data as in some cases inappropriate operation may lead to loss of information. 

The processes that we applied on our input in our experiments are among the most frequent 

and are summarized in Figure 2.  

As our dataset contains short statements, the input need segmentation only at sentence 

and word level.  Also, we apply tokenization which supposes the extraction of units that 

contain individual information, such as: “San Francisco”, “school”, “girl”. They can be 

represented by a single word or by several. We cut out all the words without informational 

gain, that includes the most used keywords in a language. As our corpus is written in English, 

tokens as “and”, “I”, “so”, “of”, “in”, “a”, “an” are removed. Our hypothesis is that very 

common words will not change the degree of truthfulness of the whole statement. Their 

elimination is common in natural language processing problems which do not involve the 

analysis of feelings as it is our case.  

After that, we want to focus only on alpha characters, so we delete any other noise 

like numbers or punctuation marks. Likewise, we afford to do that despite the same limitation 

for emotions, subjectivism, sentimental involvement which also applies for these elements. In 

plus, some punctuation marks may be confusing as they are used in different situations. For 

instance, the dot has multiple usages: at the end of the sentence, in numbers (3.14), in other 

punctuation marks (…) or in acronyms (U.S.A.). Another example would be the hyphen 

which may be a sign for a dialogue replica (- Hello!), a union of two words (pre-processing) 

or an explanation (Barack Obama – the president of U.S.A. – voted against….). Discarding 
these items will help the classifiers in the process of learning. 

In order to have a uniform input, the next step of normalization is lowercasing. 

Finally, stemming and lemmatization are used to reduce the number of different words in the 

text and to unify derived or articulated words. By applying them, the words are reduced to 

their basic form (root). We experiment with both procedures to find which one achieves 

better results. The difference between them is that lemmatization draws a valid root, reducing 

Figure 2 Pre-processing operations applied on LIAR Dataset 
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the word to its dictionary form (e.g.: has → be). Unfortunately, it involves a longer process 

because each word must be POS-labelled at first. In contrast, stemming does not always 

extract a valid root identical to the morphological form of the word (e.g.: believing → 
believ). In plus, sometimes, more letters than would be desirable are removed but this form is 

usually sufficient. We applied the Porter's stemmer, which removes common suffixes and 

prefixes (e.g.: “-ing”, “-ed”, “-ness”, “-less”, “un-“).  

To exemplify the pre-processing steps, we take a sentence from the test partition, and 

we go through all the stages: 

“Building a wall on the U.S.-Mexico border will take literally years.” 

↓ 

“build wall usmexico border take liter year”. 

 

3.3 Features 

 Once the text is in a normalized form, different features can be extracted. The process 

of extracting characteristics from the news is an incremental one. It aims to choose various 

information and combine them in order to best describe the original text. In the process of 

experimenting with different variants to find the solution that offers the best accuracy for the 

problem, four directions were tested: bag of n-grams with TF-IDF, static word embeddings 

(Word2Vec, GloVe), contextualized word embeddings (BERT, DistilBERT) and stylometric 

features. 

3.3.1 Bag of n-grams 

The simplest method of converting text into numerical format is the bag of n-grams, a 

way that represents each sequence of n tokens as an individual unit, independent and equally 

significant with the others. This approach is the most natural way to start the analysis, as it is 

well known that fake articles tend to use different words than real ones, generally words with 

a powerful emotional impact. Thus, we try to find a correlation between the importance of 

words from a text and its degree of confidence. For this paper, we choose to analyze the 

statements as bags of 1-grams and 2-grams. In order to remove any useless noise from the 

text, we applied the operations described in the previous section: numbers removal, 

punctuation marks removal, lowercasing and stop words removal. The structural features that 

were extracted afterwards were at words, lemmas, and stems level. 

This approach involved creating a vocabulary with sequences of n tokens extracted 

from all the documents. Each document was represented as a feature vector that has a 

frequency associated with each item from the vocabulary. The frequency was computed using 

Term Frequency - Inverse Document Frequency (TF-IDF). As the name suggests, the TF-IDF 

of an element is calculated as the product of its number of occurrences in the document (term 

frequency), and how common the term is in all documents (inverse document frequency). 

The advantage of this method is that it limits the importance of very frequent syntagms as 
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they have a lower informative content than those that appear in a smaller portion of the 

document set.  

Bag of n-grams comes with several disadvantages such as: vocabulary terms are 

isolated from the context, the meaning and position of the grams become non-existent, and 

the relationships between words and sentences are ignored. For TF-IDF, the detriment is that 

produces rare and large vectors. 

3.3.2 Static word embeddings 

The first hypothesis we started with was that the frequency of tokens is more 

important than the relationships between words, sentences, or context. This is a rather 

restrictive approach, so for the second method of extracting features we take into account the 

similarity between words and use word embeddings. So, if in the previous section, the words 

were represented as rare and long vectors, in this subchapter they are represented as dense 

vectors of small dimensions. Over time, dense vectors have been shown to work better than 

rare ones in most NLP tasks, including fake news detection. Some of the reasons include: an 

easier and more efficient training as the number of weights is smaller, a smaller space of 

parameters that helps to generalize and avoid overfitting and better management of 

synonymy. 

A Word2Vec 

In this regard, we use Word2Vec, a technique based on a 2-layer neural feed-forward 

network described in the paper “Efficient Estimation of Word Representations in Vector 

Space” (Mikolov, Chen, Corrado, & Dean, 2013). The model has two architectural variants: 

continuous-bag-of-words (predicts the current word based on a neighboring word window) 

and skip-gram (uses the current word to predict the neighboring word window). The number 

of words considered in the window has increased over time and has led to better results. 

Word2Vec is based on training a classifier on a binary prediction task. The goal is not 

the prediction itself, but the learned weights that will represent word embeddings. The 

obtained representations are positioned in the vector space so that the words that share 

common contexts in the corpus are in the immediate vicinity of each other. Word2Vec offers 

speed, efficiency of training and online availability along with pre-trained weights. A weak 

point for this type of word embedding is that the representation of features is a static process, 

where any word in the vocabulary has a fixed representation associated with it, regardless of 

its meaning. 

For pre-processing and normalizing the text that precursors the application of 

Word2Vec, we applied: sentence segmentation, lowercasing, stop words removal and token 

extraction. Further, we decided to train on LIAR dataset our own model using Gemsim 

library. We experimented with both skip-gram and continuous-bag-of-words cases. The 

parameters that we used for the Word2Vec model are:  

 min_count = 1 (we kept all words from the corpus) 
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 windows = 5 (maximum distance between the current and predicted word within a 

sentence) 

 vector_size = 100 (word vectors length) 

Final text embeddings were also limited to a dimension of 100, while null items were used to 

pad shorter statements.  

B GloVe 

Another method of obtaining static embeddings for words that we apply on our LIAR 

dataset is GloVe. This technique is an unsupervised learning algorithm based on the co-

occurrence probability ratio between words. It was discovered by researchers at Stanford 

University who published the paper “GloVe: Global Vectors for Word Representation” 

(Pennington, Socher, & Manning, 2014). GloVe is already introduced in various tasks which 

implies finding relationships between words like synonyms or antonyms. Overall, its usage is 

more frequent than that of Word2Vec, as it led to better results. Still, this method has the 

same shortage, meaningly it generates a unique vector for every word, no matter how many 

different meanings it may have. 

GloVe is based on training a classifier on aggregated word pair statistics from a 

corpus. To build the statistics and therefore the co-occurrence matrix, just one pass through 

the corpus is needed. Also, in this process, only the non-zero entries of the matrix are used. 

The interesting aspect of this method is that it is focused on the relationships between words, 

not just their unique occurrence. Every item from the matrix shows how often a particular 

pair of words occurred together in the given dataset. That means that the authors’ main 

intuition when they built the model was that the co-occurrence probabilities may encode 

some form of meaning. 

In our case, for pre-processing and normalizing the text that precursors the application 

of GloVe, we applied the same actions as in the previous case: sentence segmentation, 

lowercasing, stop words removal and token extraction. Further, we decided to use a pre-

trained model on the Wikipedia 2014 and Gigaword5 datasets which contains 6B tokens for 

uncased words. The dimension of the final embeddings was also limited at 100. Texts 

representations with lower dimensions were completed with 0 elements. 

3.3.3 Contextualized word embeddings 

Contextualized embeddings are more powerful than static ones as they take into 

account semantics and associate a certain representation to a word depending on its meaning 

in the context. This way, same word may have different formats. We obtained our dynamic 

word embeddings using transformers-based techniques. Transformers have two mechanisms: 

an encoder of the entered text and a decoder that produces the prediction. The encoder is 

considered bidirectional as it reads all words at once. Also, these systems have an attention 

mechanism that learns the contextual relationships between words in a text, allowing a model 

to consider each word from the input before making a decision. Over time it was proved that 

a language model trained on this type of features can understand the language context much 

better. 
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A Bidirectional Encoder Representations from Transformers (BERT) 

For the third series of experiments, we adopted the alternative of contextualized 

words representations through a numeric format obtained with BERT. It is one of the newest 

architectures used in NLP that is based on the transformer theory. As the goal of BERT is to 

encode words and generate embeddings, only the encoding mechanism from the traditional 

architecture of transformer is needed. BERT was created precisely to generate deep two-way 

representations of unlabeled text by jointly conditioning both contexts (right & left) in all 

layers. It was trained on two supervised tasks, created from the Wikipedia corpus in an 

unsupervised way: predicting previously random masked words and determining the 

sequence of two sentences in a text passage. Thus, the result is a pre-trained encoder that 

incorporates words while considering the context.  

We used two smaller versions of BERT, as the original one included 110M 

parameters and we did not have enough computational resources to fine-tune such a large 

model. Also, we decided to not build a new vocabulary based on the dataset but used the pre-

trained models “bert_en_uncased_L-4_H-512_A-8” (BERT-Small) and “bert_en_uncased_L-

8_H-512_A-8” (BERT-Medium) for BertTokenizer, along with the corresponding numerical 

mapping. These models had only 32M, respectively 49M parameters and were fine-tuned for 

our specific dataset for 20 epochs in total. We decided to follow the same pattern and set the 

maximum length of the embeddings at 100 and pad with null elements. 

B DistilBERT 

Another solution for dynamic representations that we opted for is DistilBERT, still a 

smaller and cheaper version of BERT, but quite bigger than BERT-Small or BERT-Medium. 

Its purpose is to increase computation efficiency, so the authors focused on reducing the 

number of layers. This alternative general pre-trained solution reduces the size of BERT by 

40%, having 66M parameters and increases the speed with 60% while keeping 97% of its 

capabilities. Overall DistilBERT keeps the general architecture of its base model but at a 

smaller scale. The number of layers is diminished by a factor of 2 while the pooler and token-

type embeddings are removed. 

We had the same approach, meaning that we used the pre-trained version “distilbert-

base-uncased” for DistilBertTokenizerFast from HuggingFace, along with the corresponding 

numerical mapping. The model was fine-tuned afterwards for our case for 20 epochs. 

Numerical representations of the input were kept to maximum 100, being padded with 0 if 

they were shorter. 

3.3.4 Stylometric features 

The last approach of extracting features does not take into account the frequency of 

words, their importance or their semantic meaning, but the author’s writing style that emerges 

from the text. In general, a lot of fake content generators use language strategically to avoid 

being discovered. However, not all linguistic aspects are easy to control in writing, such as 

the frequency of adverbs, pronoun patterns, the frequency of conjunctions, or the use of 

negative words. For example, it has been concluded that people tend to use more first-person 
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pronouns in false news. Also, longer sentences are used involuntarily when trying to 

convince the reader of a generally false aspect. Therefore, an attempt was made to identify 

some indicators of the writing style and of the format, in order to see if they could represent a 

valid direction of study and a possible solution for this task. 

The starting point for this approach is the article “ReaderBench: A Multi-lingual 

Framework for AnalyzingText Complexity” (Dascălu, et al., 2017), a work that presents 

different indices of complexity of the text. Thus, the aim is to find a link between the way a 

text is written and its degree of truth. If more complex texts contain more information and, 

inherently, more diverse concepts, the assumption used is that true texts tend to have high 

levels of complexity. In this regard, we use a series of features to train a new series of models 

and analyze the outcomes.  

For calculating complexity indices, we choose the ReaderBench tool, a complex 

software product that focuses on in-depth analysis of texts from several points of view. 

Specifically, it is built as an easy-to-use framework that integrates advanced natural language 

extraction, processing, and analysis techniques. (Dascălu, et al., 2022). The purpose of the 

ReaderBench project is much broader, being an educational system for students and tutors 

that combines individual learning methods with computer-supported collaborative learning 

(CSCL). In addition, this system is a high-performance system with a high degree of 

reliability, being already used in several projects on the market. Its adoption on such a large 

scale indicates the high quality and usefulness of these indices and encourage us to analyze 

its results in false content detection. 

The range of indices is quite wide, bringing together metrics related to various areas 

of study such as readability, semantics, morphology, or discourse structure. Their number 

exceeds 200, and if we refer to various sections such as word, sentence, paragraph or entire 

document, their number increases significantly. The system classifies these indices into five 

categories according to their complexity and scope (Dascălu, et al., 2017): 

1. Surface Indices. They are determined only by the form of the text and are mostly 

lengths, frequencies, or entropies of sentences / words. They are the easiest to 

calculate and use, but at the same time they provide information only at the structure 

level, not at the level of morphology or discourse. We consider these clues useful 

because they can give us an overview of the diversity of present concepts and the 

level of information. All these data can be indicators of veracity. 

2. Word Complexity Indices. This category goes beyond the superficial analysis of 

words and focuses on its internal structure. Specifically, the number of syllables, the 

differences from the lemma or the root, the number of possible meanings derived 

from WordNet and the specificity deduced from its depth in the lexicalized ontology 

are analyzed. The larger are these metrics, the more complex the word. Prefixes and 

suffixes increase the difficulty of using a word, while multiple meanings make it 

difficult to deduce the ideas of a text. Also, a high presence of named entities gives 

both veracity to the text and heterogeneity, requiring more cognitive resources to 

understand the message. 
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3. Syntactic and Morphologic Indices. This set of metrics analyzes the text from a 

broader perspective, namely at the sentence level. Thus, a complex and truthful text is 

considered to have several dependencies between words and uses several main parts 

of speech as nouns or verbs. These elements primarily bring textual structure, a 

structure that gains the reader’s trust, but also gives a serious tone to the content. At 

the same time, the distribution of pronouns can be an indication of the degree of truth 

of the text. 

4. Semantic Cohesion Indices. Cohesion can be defined by the various ways in which 

the components of a text are interrelated. Types of links can be grammatical, lexical, 

semantic, metric, or alliterative. They play a very important role in the process of 

understanding a text, being basic indices in the ReaderBench structure. This tool uses 

various semantic models (semantic distances in WordNets, LSA, LDA, Word2Vec), 

lexical chains, and co-reference chains to calculate these strong indices. 

5. Discourse Structure Indices. The indices from this category follow the evolution of 

the points of view in a text by analyzing the specific connectives of the speech and the 

polyphonic model. In our case, the input is represented by entries consisting of several 

statements. For this length, these indices are not very significant, but they will be used 

at least for some initial models until a rigorous filtering of metrics. 

Table 7 Text complexity indices (D = Document, P = Paragraph, S = Sentence, W = word) 

Category Description Notation Multiple classes 

available 

Level 

D P S W 

SURFACE No. words Wd No X X X  

No. unique words UnqWd No X X X  

No. commas Comma No X X X  

No. punctuation marks Point No X X X  

No. sentences Sent No X X   

Word entropy WdEntr No X X X  

WORD 

COMPLEXITY 

No. characters in a 

word 

Chars No    X 

Distance in number of 

characters between 

inflicted form and its 

lemma 

LemmaDiff No    X 

No. occurrences of the 

same lemma 

Repetitions No X X X  

No. of named entities NmdEnt No X X X  

Maximum depth in the 

hypernym tree from 

root to word sense 

MaxDepth 

HypTree 

No    X 

Average depth in the 

hypernym tree from 

root to word sense 

AvgDepth 

HypTree 

No    X 
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Paths to the root of the 

hypernym tree based on 

all word sense 

PathsHyp 

Tree 

No    X 

Word polysemy count Polysemy No    X 

No. syllables in word Syllabus No    X 

Age of Acquisition 

scores 

AoA No X X X X 

Age of Exposure scores AoE No X X X X 

Word valence Valence No X X X X 

SYNTACTIC No. dependencies of a 

certain type 

Dep Yes, for all dependencies X X X  

Depth of the parsing 

tree 

ParseDepth No    X 

MORPHOLOGIC No. words with specific 

part of speech 

POS Yes, for all PoS X X X  

No. unique words with 

specific part of speech 

UnqPOS Yes, for all PoS X X X  

Nr. specific types of 

pronouns 

Pron Yes, for all pronoun 

types 

X X X  

SEMANTIC 

COHESION 

Cohesion between 

adjacent sentences 

AdjSentCoh No X X   

Cohesion between 

adjacent paragraphs 

AdjParCoh No X    

Cohesion between 

paragraphs 

InterParCoh No X    

Cohesion between 

sentences inside a 

paragraph 

IntraParCoh No X X   

Cohesion between first 

and last text element 

StartEnd 

Coh 

No X X   

Cohesion between first 

and middle text 

element  

StartMiddle 

Coh 

No X X   

Cohesion between 

middle text element 

and last one 

MiddleEnd 

Coh 

No X X   

Transition cohesion 

between adjacent 

sentence and paragraph 

TransCoh No X    

DISCOURSE 

STRUCTURE 

No. of connectors on 

predefined categories 

Connector No X X X  
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All these indices were calculated for both training, validation, and testing. An earlier 

stage of pre-processing was omitted to avoid the possible loss of information. In addition, the 

system performs a precursor step in word processing before calculating each metric, 

depending on its type and nature. 

3.4 Classical Machine Learning Models 

A Decision Trees 

Decision Tree classifier is one of the simplest supervised learning algorithms. It is a 

classic tree structure where the root node has no input edges, while all other nodes have one.  

Thus, if a node has outputs edges it is called an internal node, otherwise it is called a leaf. 

Each internal node represents a condition on a feature and divides the instance space into two 

or more subspaces depending on a particular discrete function of the input attribute values. 

Leaf nodes are classifier labels. Alternatively, the leaf may have a probability vector that 

indicates the probability of the target attribute having a certain value. For each input, the path 

to a terminal node that determines the class prediction is found. These trees can be easily 

transformed into if-then-else rules, simply by joining the tests along each path to form the 

condition part and taking the prediction of the leaf as a class value (Rokach & Maimon, 

2005). To build our classifier, we experimented with different values for the parameters of 

the model: 

 criterion: [Gini impurity, entropy] 

 max_depth: [5, 10, 15, 20, 25] 

 splitter: [best, random] 

 random_state: 42 

The Decision Tree model which offered the highest accuracy was the one which had a 

maximum depth of 20, the criterion “best” used to choose the split at each node, entropy as 

measurement of the quality of a split and a factor of randomness of 42 for the estimator. 

Some disadvantages of this algorithm are the following: even if DT is flexible, it 

cannot determine the significance of the characteristics, it is unstable and prone to abnormal 

values (outliers) and it can neglect some key values in the training data, causing low 

accuracy. In addition, the classification process adopted is sequential, not simultaneous, with 

a clear dependence between levels, which may affect the results. 

B Naïve Bayes 

The Naïve Bayes classifier has a very good complexity-performance ratio, being one 

of the most popular basic methods for classifying text with term frequencies as input. This is 

a statistical model, belonging to the family of probabilistic methods, which tries to determine 

the probability that a certain document belongs to a certain class, considering the features. 

Finally, a document is associated with the class that gets the highest score. The main problem 

with this algorithm is that of “zero-frequency” which involves assigning a zero score when 

evaluating a new feature that was not encountered in training. In general, this limitation is 



35 

removed by applying soothing methods, assuming that if a trait-label pair did not appear in 

the training set, it does not mean that it is impossible for it to appear later.  

Another limitation that is worth mentioning is the hypothesis from which this 

algorithm starts, namely the fact that the features are independent. Thus, if we consider two 

adjacent words as two characteristics, then their probabilities will be multiplied as if they 

were independent, although this is not always the case.  

 Our final model had the following parameters: 

 alpha = 1 (soothing parameter) 

 fit_prior = True (to learn class prior probabilities) 

C Support Vector Machines 

Support Vector Machines is a linear classifier that starts from the premise that the set 

of classes is linearly separable, trying to find a plan that separates them. As a working 

principle, it assigns to each example a confidence score for each class. SVM handles 

abnormal values and a large number of features very well, which is an important advantage. 

The limitations imposed by this algorithm appear if there is no clear separation between 

classes. 

The process of finding the best SVM algorithm involved a long series of experiments 

with the parameters of the model. More precisely, we trained classifiers with each of the 

following values and evaluated them on the validation set in order to find the best one: 

 kernel: [linear, polynomial, sigmoid, radial basis function] 

 C: [0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] 

 Degree: [2, 3, 4] 

 Gamma: [0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] 

After a series of preliminary tests, we concluded that for the LIAR dataset, linear and 

quadratic kernel gave the highest accuracy. So, for the final model, we chose two SVM 

models: 

 linear kernel, regularization parameter equal to 0.7  

 quadratic kernel, regularization equal to 1 and kernel coefficient equal to 1 

3.5 Neural Networks 

A Long Short - Term Memory 

Classifiers using LSTM divide the issue of context management into two sub-issues: 

deleting information that is no longer useful and adding to the new context information that 

could potentially be used in subsequent decisions. This network manages to solve both tasks 

by using gates that control the flow of data entering and leaving each unit at the layer level. 

These gates are implemented with the help of additional weights that operate sequentially on 

the input, the previously hidden layer, and the previous context layer. 
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The LSTM architecture is distinguished by three gates, where each gate has the same 

design that involves a feed-forward layer with sigmoid activation, followed by a point 

multiplication with the previous layer (Li & Wu, 2015). One of the gates is the forget gate, 

which erase information from context that is no longer useful. In other words, decide what 

information to forget from the previous step. It calculates a weighted sum between the 

previously hidden state layer and the current entry, which it passes through a sigmoid 

function. The result is then multiplied by the context vector. The second gate is to add 

information (update gate) and get the new context vector. In short, decide what information 

should be kept from the input. The final output gate (result gate) decides what information is 

needed for the current hidden state.  

We experimented with different values for the dimension of the layers: 100, 300 and 

1000. Our final architecture for which we obtained the highest accuracy is a relatively simple 

one that includes: 

 an input Embedding layer with input_dim equal to the size of the vocabulary and 

output_dim = 1000 

 an LSTM layer of size 1000 

 a fully connected hidden layer with 1000 neurons with ReLu activation function 

 a DropOut layer that randomly sets 0.5 input units to 0 at each update during training 

 a fully connected output layer with 2/6 neurons with softmax / sigmoid activation 

function 

For optimizations, we used Adam, and a learning step set to 0.0001. The model was trained 

for a period of 10 epochs, after which we stopped because it was not improving and started 

overfitting.  

B Bidirectional Long Short-Term Memory 

Another alternative classification model for LSTM that has been used is Bidirectional 

Long Short-Term Memory. Bidirectional LSTMs are an extension of traditional LSTMs that 

can improve model performance on sequence classification issues. This architecture drives 

two instead of one LSTM on the input sequence. The first LSTM is instructed on the input 

sequence while the second is on an inverted copy of it. This technique can provide additional 

context to the network and can lead to a faster and more complete learning. The architecture 

of the model is similar with the previous one: 

 an input Embedding layer with input_dim equal to the size of the vocabulary and 

output_dim = 1000 

 an BiLSTM layer of size 1000 

 a fully connected hidden layer with 1000 neurons with ReLu activation function 

 a fully connected output layer with 2/6 neurons with softmax / sigmoid activation 

function 

The process of training was identical to that of LSTM, meaning that the same Adam 

optimizer was used along with a 0.0001 learning rate. The model was trained for a period of 

20 epochs. 
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 Based on the research we made for the state of the art, we found out that BiLSTMs 

are often used with attention mechanism to improve results. Therefore, we tried to also 

approach this direction. In general, attention can be described as a vector of importance 

weights which resumes how strongly a word is correlated with another. In our case, we 

experimented with an additional multi-head self-attention layer. This mechanism compares 

every sequence from the sentence to all the others, recalibrating the embedding in order to 

take into account contextual relevance. In this way, we can learn the correlation between a 

part of the sentence and all that precedes or succeeds it. Multi-head runs through the attention 

mechanisms multiple times in parallel. The outputs are then concatenated and transformed to 

the desired dimension. In this case, the model was further parametrized as: 

 an input Embedding layer with input_dim equal to the size of the vocabulary and 

output_dim = 1000 

 an BiLSTM layer of size 1000 with recurrent dropout set of 0.2 and dropout of 0.25 

 a GlobalMaxPool1D layer 

 a Dropout layer with factor of 0.2 

 a MultiHead Self-Attention layer with head size of 128 and number of heads of 12 

 a fully connected output layer with 2/6 neurons with softmax / sigmoid activation 

function 

We used the same Adam optimizer along with a 0.0001 learning rate. The model was trained 

for a period of 20 epochs. 

C Feed-forward network 

Feed-forward neural networks are used to learn more complex non-linear models. 

They consist of an input layer, an output layer, and one or more hidden layers. The loss 

function, however, is known only for the output layer. As a result, the error in the last layer 

propagates back to the neurons in the previous layers to update their weights in the same way. 

The algorithm is a well-known backpropagation, in which it is considered that the neuron j is 

responsible for a part of the error associated with each of the neurons in the next layer with 

which it is connected. Our simple network involved: 

 an input Embedding layer with input_dim equal to the size of the vocabulary and 

output_dim = 1000 

 a DropOut layer that randomly sets 0.1 input units to 0 at each refresh during training 

 a fully connected output layer with 2/6 neurons with softmax / sigmoid as activation 

function 

In addition, an Adam optimizer with a 3e-5 learning rate was used. Due to computational 

limitations, training has only been done for 20 epochs.  
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4 Results 

For each solution, we build a multi-label classifier with the original labels from the 

dataset and a binary one that treats a simpler case. Therefore, we follow the same pattern as 

the papers from the state of the art and group the classes “true”, “mostly-true” and “half-true” 

as “TRUE”, respectively “false”, “pants-fire”, “barely-true” as “FAKE”. We evaluate each 

model on both validation and testing partition, to see if there are major differences. Also, we 

used the validation slice to tune the hyper-parameters of each model, when was the case. The 

results obtained in both cases are presented in the following tables, being grouped according 

to the type of text features used. 

4.1 Classification based on TF-IDF 

For the first series of experiments, we opt for classical machine learning algorithms: 

Decision Tree, Naive Bayes, and Support Vector Machines, along with the features extracted 

by TF-IDF. In order to find the most relevant series of characteristics, we try this frequency-

based approach on different inputs: words, stems and lemmas. Also, we look either at unique 

entities or two entities at the time, respectively unigrams, and bigrams. All the results from 

our tests are summarized in Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, 

and Table 15. 

After analyzing the case of multi-class classification, we draw the following 

conclusions. In most cases, the best results were obtained with the Support Vector Machines 

model, either with linear or quadratic kernel, while the weakest with the Decision Tree 

algorithm. Only for the case of unigrams and bigrams of words concatenated with unigrams 

of lemmas, the Naive Bayes model got a lower accuracy on the test partition. Using a linear 

kernel for the SVM algorithm led to better results than those of the previous two models in all 

input cases. Overall, for 6-labels classification, the highest performance was obtained with 

this type of model which scored an accuracy of 25.97%. The instance of quadratic kernel was 

not good enough to separate the six classes, beating the linear one only when using unigrams 

of stems or unigrams and bigrams of words concatenated with unigrams of lemmas.  

If we compare these metrics with the state of the art of this dataset, our best 

frequency-based model, SVM, had a performance approximately equal to those or even 

higher. It bet both classical solutions (SVM, LR, NB, SGDClasifier, Random Forest, DT) and 

deep-learning ones (LSTM, BiLSTM), even if they were based on more informative features. 

The model was better than the “random choice” by about 10%. Moreover, our most accurate 

Naive Bayes (24.15%) and Decision Tree (23.36%) algorithms exceeded the performance of 

the same models from previous published papers, but also of the LSTM models. The 

solutions that declared a higher accuracy (40-50%) used word embeddings, and attention-

based architectures, aspect that we will consider in future sections. It is important to mention 

that they do not give enough details about their implementation, so the execution context may 

differ, making direct comparison not possible. From an analysis of metrics at each label level, 

we saw that “pants-fire” class had the lowest values in all models, which was expected 
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considering that it is the class with the fewest statements in the data set. Simple methods like 

the Naïve Bayes or Decision Tree algorithms failed to learn characteristic aspects for this 

class, obtaining all 4 metrics almost less than 10%.  

For binary classification, the outcome looked similar, meaning that the highest 

performance that we managed to accomplish was 62.19% from the same linear SVM model. 

As in the previous case, DT paired with any type of traits achieved the lowest accuracy of all 

four models. SVM algorithm continued to dominate the other models through its linear or 

quadratic approach, boosting performance to at least 60% in all cases. The only exemptions 

were when we introduce unigrams and bigrams of lemmas, either on their own or 

concatenated with other features, case when the NB algorithm bet the rest and reached even 

61.64%. From the point of view of the kernels applied, the tables show that adding bigrams to 

the input always boosted up the performance of the models that used the linear one. On the 

other hand, unigrams with polynomial kernel surpassed the others in most cases.  

Our best model for binary classification outperformed all models from the state of the 

art, either classical ML algorithms such as LR, SVM, DT, AdaBoost, NB, k-NN, or neural 

network models like LSTM, CNN, C-LSTM, Feed-Forward, HAN, BiLSTM, Conv-HAN. 

It’s interesting to highlight that our simplest solution distinguished between the two classes 

almost like the one which used semantic-based traits, RoBERTa, with a simple feed-forward 

network (62.19% vs 62.00%). Also, it bet arbitrary choice by 12%. In this case, the best 

versions of DT (58.48%) and (61.80%) exceeded all solutions that used simple classifiers 

with lexical features from the state of the art and obtained comparable values with those 

based on word embeddings and neural networks. 

Regarding the type of features, we analyzed words, stems, and lemmas to see which 

one can provide the highest informational gain for these models. For each case, we followed 

an incremental process, which started with looking at simple elements and then adding pairs. 

Regarding words, adding bigrams increased accuracy for the DT multi-class model and for 

the NB and linear SVM bi-class models. For stems, improvements remained only for the 

same binary models, while for lemmas, the NB models slightly improved their performance 

in both cases. Overall, the models trained with TF-IDF of lemmas had a better performance 

than those with stems. That’s the reason why we continued the series of experiments with 

concatenating words with lemmas in order to see if we can improve our values. Therefore, we 

observed that more features can improve some models, at least for the case of multiple 

classes. For instance, the DT model managed to deduce more complex rules and achieve 

23.36% accuracy when using three different types of features. Overall, for the test partition, 

the highest accuracy was obtained when we kept only words as input of the models, not any 

abbreviated or simplified form of it.  

The metrics from the table show that there is a link between the frequency of the words 

used and the degree of veracity of the text, but not so strong as to return very good results. 

Despite having similar or even better performance metrics than those from the state of the art, 

the models were not accurate enough to perform in real life situations. Overall, for all three 

algorithms, the adopted pre-processing operations may not have been sufficient to bring the 

dataset statements to the best standardized form. Also, the extracted features may not have 
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been sufficiently relevant and easy to interpret by these models. In addition, it is very likely 

that the results were limited both by the fact that the meaning of the words is ignored and by 

the fact that the dependencies between them are not captured. In the next subchapter we 

present the results of some models that aim to remove these limitations to see if the obtained 

accuracy will be higher than 25.97%, respectively 62.19%. 
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Table 8 Results for TF-IDF of unigrams of words 

Feature Model Dataset 

partition 

Multi-class classification Binary classification 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

(%) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

(%) 

TF-IDF of unigrams 

of words 

DT Validation 22.51 22.03 22.51 18.04 57.48 60.20 57.48 52.65 

Testing 22.10 23.60 22.10 17.50 58.48 57.92 58.48 52.84 

NB Validation 23.60 21.41 23.60 20.27 59.19 61.08 59.19 56.13 

Testing 24.15 22.86 24.15 20.87 60.06 59.85 60.06 56.05 

SVM 

linear 

Validation 24.07 26.28 24.07 22.58 59.97 60.15 59.97 59.21 

Testing 25.97 26.92 25.97 24.69 61.56 61.00 61.56 60.74 

SVM 

quadratic 

Validation 25.62 31.82 25.62 23.37 61.99 63.32 61.99 60.29 

Testing 25.02 31.57 25.02 22.95 61.88 61.73 61.88 59.28 
 

Table 9 Results for TF-IDF of unigrams & bigrams of words 

Feature Model Dataset 

partition 

Multi-class classification Binary classification 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

(%) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

(%) 

TF-IDF of unigrams 

& bigrams of words 

DT Validation 21.34 21.91 21.34 18.11 55.61 58.25 55.61 49.11 

Testing 22.73 23.59 22.73 19.20 57.46 56.33 57.46 50.47 

NB Validation 23.91 23.01 23.91 19.68 58.57 63.24 58.57 52.98 

Testing 23.13 20.35 23.13 18.33 60.93 63.31 60.93 54.52 

SVM 

linear 

Validation 24.84 28.11 24.84 22.78 62.15 63.05 62.15 60.85 

Testing 24.70 31.00 24.70 22.52 62.19 61.79 62.19 60.45 

SVM 

quadratic 

Validation 25.31 37.92 25.31 21.66 59.89 63.72 59.89 55.61 

Testing 23.28 29.25 23.28 18.92 60.54 61.23 60.54 55.46 
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Table 10 Results for TF-IDF of unigrams of stems 

Feature Model Dataset 

partition 

Multi-class classification Binary classification 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

(%) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

(%) 

TF-IDF of unigrams 

of stems 

DT Validation 21.88 21.16 21.88 15.50 57.48 60.14 57.48 52.70 

Testing 21.70 24.11 21.70 16.24 58.17 57.39 58.17 52.41 

NB Validation 24.30 31.16 24.30 20.94 58.96 60.89 58.96 55.78 

Testing 23.52 20.96 23.52 19.85 60.30 60.10 60.30 56.53 

SVM 

linear 

Validation 24.45 27.58 24.45 23.31 62.15 62.51 62.15 61.40 

Testing 23.99 24.28 23.99 22.93 60.54 59.87 60.54 59.51 

SVM 

quadratic 

Validation 26.87 32.95 25.87 25.11 61.60 62.54 61.60 60.18 

Testing 24.70 30.75 24.70 23.03 61.17 60.61 61.17 59.27 

 

Table 11 Results for TF-IDF of unigrams & bigrams of stems 

Feature Model Dataset 

partition 

Multi-class classification Binary classification 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

(%) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

(%) 

TF-IDF of unigrams 

& bigrams of stems 

DT Validation 21.57 20.12 21.57 15.75 56.15 57.74 56.15 51.58 

Testing 21.63 22.23 21.63 16.31 57.06 55.47 57.06 52.02 

NB Validation 24.22 23.79 24.22 20.00 57.94 62.45 57.94 52.04 

Testing 23.52 20.51 23.52 18.47 61.80 65.54 61.80 55.23 

SVM 

linear 

Validation 24.61 28.23 24.61 22.97 61.99 62.62 61.99 60.94 

Testing 23.84 24.57 23.84 21.71 61.96 61.48 61.96 60.33 

SVM 

quadratic 

Validation 23.60 32.91 23.60 20.45 59.03 61.69 59.03 55.20 

Testing 22.89 30.43 22.89 19.17 60.69 61.14 60.69 56.13 
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Table 12 Results for TF-IDF of unigrams of lemmas 

Feature Model Dataset 

partition 

Multi-class classification Binary classification 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

(%) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

(%) 

TF-IDF of 

unigrams of 

lemmas 

DT Validation 21.11 20.17 21.11 15.71 57.48 60.37 57.48 52.49 

Testing 22.65 24.14 22.65 17.19 57.70 56.51 57.70 52.31 

NB Validation 24.38 31.60 24.38 20.96 59.19 61.20 59.19 56.01 

Testing 23.84 22.53 23.84 20.27 60.62 60.57 60.62 56.82 

SVM 

linear 

Validation 23.91 27.53 23.91 22.63 60.59 60.90 60.59 59.72 

Testing 25.41 26.64 25.41 24.23 61.72 61.15 61.72 60.60 

SVM 

quadratic 

Validation 26.95 33.43 26.95 24.91 60.98 61.92 60.98 59.43 

Testing 25.34 31.94 25.34 23.49 61.72 61.35 61.72 59.57 

 

Table 13 Results for TF-IDF of unigrams & bigrams of lemmas 

Feature Model Dataset 

partition 

Multi-class classification Binary classification 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

(%) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

(%) 

TF-IDF of 

unigrams & 

bigrams of lemmas 

DT Validation 22.27 23.11 22.27 17.90 56.07 57.95 56.07 51.03 

Testing 22.65 24.24 22.65 17.64 57.70 56.47 57.70 52.67 

NB Validation 24.53 23.40 24.53 20.22 58.18 62.75 58.18 52.39 

Testing 24.15 22.65 24.15 19.27 61.64 64.50 61.64 55.51 

SVM 

linear 

Validation 25.70 29.49 25.70 23.83 63.01 63.95 63.01 61.80 

Testing 25.26 27.72 25.26 23.33 61.17 60.58 61.17 59.45 

SVM 

quadratic 

Validation 24.53 35.31 24.53 21.13 59.03 62.33 59.03 54.68 

Testing 23.28 31.14 23.28 19.57 60.62 61.18 60.62 55.80 
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Table 14 Results for TF-IDF of unigrams & bigrams of words and unigrams lemmas 

Feature Model Dataset 

partition 

Multi-class classification Binary classification 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

(%) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

(%) 

TF-IDF of 

unigrams & 

bigrams of words 

and unigrams of 

lemmas 

DT Validation 20.95 21.12 20.95 16.14 55.53 57.80 55.53 49.38 

Testing 23.36 25.75 23.36 18.23 57.06 55.54 57.06 50.05 

NB Validation 24.77 32.43 24.77 21.49 59.03 61.69 59.03 55.20 

Testing 23.28 21.96 23.28 19.77 60.93 61.35 60.93 56.63 

SVM 

linear 

Validation 24.14 24.64 24.14 23.95 59.35 59.36 59.35 58.84 

Testing 23.76 23.51 23.76 23.36 61.40 60.86 61.40 60.72 

SVM 

quadratic 

Validation 26.64 30.26 26.64 24.90 61.92 62.61 61.92 60.78 

Testing 24.94 28.91 24.94 23.53 60.62 59.94 60.62 58.98 

 

Table 15 Results for TF-IDF of unigrams & bigrams of words and unigrams & bigrams lemmas 

Feature Model Dataset 

partition 

Multi-class classification Binary classification 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

(%) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

(%) 

TF-IDF of 

unigrams & 

bigrams of words 

and unigrams & 

bigrams of 

lemmas 

DT Validation 22.27 21.68 22.27 17.58 55.84 57.83 55.84 50.40 

Testing 23.05 22.74 23.05 17.91 57.54 56.26 57.54 52.01 

NB Validation 25.47 33.35 25.47 22.32 60.20 63.04 60.20 56.76 

Testing 23.68 22.58 23.68 20.22 61.48 62.46 61.48 56.91 

SVM 

linear 

Validation 25.47 26.21 25.47 25.32 60.83 60.87 60.83 60.40 

Testing 24.63 24.23 24.63 24.14 60.46 59.85 60.46 59.70 

SVM 

quadratic 

Validation 26.01 30.15 26.01 23.76 60.83 62.36 60.83 58.67 

Testing 23.28 27.18 23.28 21.16 60.30 59.76 60.30 57.48 
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4.2 Classification based on word embeddings 

The results of the classification using the LSTM and BiLSTM classifiers, together 

with features extracted by Word2Vec and GloVe are shown in Table 16. In addition, they are 

compared with those obtained using a feed-forward neural network with two versions of 

BERT and DistilBERT. A combination of these two approaches is also tested by training a 

BiLSTM classifier using characteristics selected through a transformer architecture.  

From the point of view of features, we obtained a straightforward order of 

performances for binary classification. From the table, we concluded that Word2Vec word 

embeddings combined with neural networks led to the lowest accuracies, between 55.56% 

and 58.01%. Among these models, the skip gram approach was a better fit with BiLSTM 

architecture, while continuous bag of words transformed words into a numerical format that 

was easier to interpret for a simple LSTM classifier. As in general GloVe comes with 

significant improvements, this was also our case. Despite having more unknown words in our 

dataset vocabulary, these word embeddings associated with BiLSTM architectures led to 

performance metrics of approximately 58.50%. One thing to notice is that despite adding the 

self-attention layer, the model kept having similar results. This emphasizes that the attention 

mechanism that we used was not appropriate for our task and we need to reconsider this 

choice in the future. Furthermore, for the LSTM case, accuracy was bigger (59.19%) than 

that of the solutions that provided a bidirectional view. All transformer-based techniques used 

in feature extraction surpassed the models that used static word embeddings, an expected 

result as they take into account semantics and represent the new baseline of this problem 

nowadays. In our case, the best accuracy was 63.61%, value achieved by associating 

DistilBERT with a simple feed-forward network for classification. BERT-Small and BERT-

Medium traits led to lower performances (58.48%, respectively 60.06%), but they still 

overcame those of Word2Vec or GloVe. A possible explanation for this is that their word 

embeddings were not as precise and as relevant as those of DistilBERT, as they were 

achieved through architectures with smaller number of parameters.  

If we compare with the state-of-the-art results from Chapter 3, our best embeddings-

based model had a higher performance than all our reference points. It scored better accuracy 

than both classical solutions (SVM, LR, NB, SGDClasifier, Random Forest, DT) and deep-

learning ones (LSTM, BiLSTM, C-LSTM, Feed-Forward, CNN, Conv-HAN). We concluded 

that DistilBERT could extract traits that were more relevant for the fake news detection task 

than Word2Vec, GloVe, n-grams, lexical features, sentiment indices or even RoBERTa. The 

model improved the highest metrics from previous section with 2%, while it was better than 

the “random choice” by about 13%. Moreover, our most accurate LSTM (59.19%) and 

BiLSTM (58.40%) algorithms exceeded the performance of the same models from previous 

published papers, but not those from previous section.  

For multi-label classification, the differences between our models were very small, as 

most of them scored an accuracy around 23-24%. This time, there was no clear distinction 

between solutions which used Word2Vec or GloVe. So, we can intuit that in this case none of 

these two characteristics extraction algorithms provided enough informative traits for our 
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task, at least in combination with these classifiers. One important aspect to notice, is that the 

self-attention layer added to the BiLSTM architecture, had a slightly more powerful impact 

than in the case of binary grouping, improving precedent results till 24.30%. With very small 

differences, BERT-Small and BERT-Medium overcame the solutions based on static 

embeddings (24.54%, respectively 24.39%), situation constant in both our study cases (6/2 

labels). DistilBERT combined with a Feed-forward network continued to achieve the best 

performance. It had 27.30% accuracy, being the model, which classified news from the LIAR 

dataset with the best precision until this point. The same features extraction technique 

combined with a BiLSTM architecture offered poorer results, precisely 25.33%, but they 

were still better than the rest of this section. 

Our solution for multi-label classification surpassed the results from the state of the 

art: LR, SVM, NB, DT, Random Forest, LSTM CNN, BiLSTM. As in the other case, 

DistilBERT worked better than surface-level linguistic patterns, Word2Vec, GloVe n-grams 

or FastText. In addition, it overcame the accuracy of the most precise SVM model from 

previous section with 1.5%. 

Summarizing, a constant order of performance for some models can be deduced in 

both cases, multi-class classification, and binary classification. Specifically, we have: LSTM 

(W2V-skip) < BiLSTM (W2V-cbow) < BiLSTM (W2V-skip) < BiLSTM Attention < FF 

(BERT-small) < BiLSTM (DistilBERT) < FF (DistilBERT). It can be concluded that for the 

LIAR dataset, contextualized word embeddings surpassed static word embeddings in all 

cases. This instantly emphasized that BERT could deal with more complex text inputs unlike 

Word2Vec, or GloVe and that context and semantics are important pieces in the process of 

false content detection. Moreover, GloVe tended to lead to higher results than Word2Vec, 

expected aspect as its architecture is more complex. The highest performant model for the 

task of fake news detection was in both cases a fine-tuned model that used the weights of 

DistilBERT as embeddings and classified them through a simple feed-forward network, 

achieving a performance of 27.30%, respectively 63.61%. 

These solutions outperformed all classical algorithms and recurrent neural networks 

solutions from the state-of-the-art papers presented in previous chapter. For both multi-class 

and binary classification there are a couple of algorithms in the state of the art (ex.: attention-

based, BiLSTM-GRU) which still have higher accuracy, but they do not provide enough 

implementation details to be reproduced or compared with, so they are out of the scope of 

this thesis. If we look at the first category of models that used TF-IDF for features and 

classical machine learning algorithms, the results with static embeddings and recurrent neural 

networks are similar or slightly poorer, even if the architectures used are stronger. Thus, we 

can conclude that for the statements from PolitiFact.com, the frequency of words is more 

relevant than the position and order. Although, the meaning of the words proved to be useful 

when deducing the true value of a text, as semantic characteristics increased performance. 
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Table 16 Results for word embeddings 

Feature  Model Dataset 

partition 

Multi-class classification Binary classification 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

(%) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

(%) 

Word2Vec – 

continuous bag of 

words 

LSTM Validation 25.15 23.56 25.16 22.22 58.25 58.26 58.26 58.26 

Testing 24.38 21.69 24.39 21.04 57.45 57.63 57.46 57.53 

BiLSTM Validation 23.75 25.02 23.75 21.52 55.99 56.21 56.00 54.01 

Testing 23.36 21.10 23.36 20.68 56.66 55.31 56.67 54.46 

Word2Vec - skip 

gram 

LSTM Validation 22.58 22.58 22.59 22.46 55.52 55.62 55.53 55.55 

Testing 22.80 23.09 22.81 22.80 55.56 55.88 55.56 55.68 

BiLSTM Validation 25.46 22.52 25.47 19.65 54.75 56.55 54.75 48.16 

Testing 23.44 17.98 23.44 17.97 58.01 57.13 58.01 52.17 

GloVe LSTM Validation 23.67 23.72 23.68 23.36 58.09 58.01 58.10 57.95 

Testing 23.52 23.63 23.52 23.20 59.19 59.00 59.19 59.07 

BiLSTM Validation 22.97 22.75 22.98 22.73 56.77 56.66 56.78 56.49  

Testing 23.36 23.27 23.36 23.11 58.40 58.16 58.41 58.25 

BiLSTM 

Attention 

Validation 24.06 24.09 24.07 23.83 57.94 58.08 57.94 57.96 

Testing 24.30 24.84 24.31 24.33 58.40 58.93 58.41 58.56 

BERT- Small Feed Forward Validation 27.41 27.09 27.41 27.02 62.77 62.73 62.77 62.73 

Testing 24.54 24.32 23.55 24.03 58.48 58.50 58.48 58.49 

BERT-Medium Feed Forward Validation 27.02 27.39 27.02 26.90 61.05 61.01 61.06 60.91 

Testing 24.39 24.69 24.39 24.26 60.06 59.62 60.06 59.68 

DistilBERT Feed Forward Validation 25.38 24.66 25.39 23.68 61.44 62.07 61.45 60.32 

Testing 27.30 27.69 27.31 26.30 63.61 63.26 63.61 62.38 

BiLSTM Validation 25.38 25.97 25.39 24.16 60.20 60.15 60.20 59.97 

Testing 25.33 25.40 25.34 24.93 61.32 61.03 61.33 61.10 



48 

4.3 Classification based on stylometric features 

The results of classification using standard machine learning classifiers together with 

the stylometric features expressed through text complexity indices are presented in Table 17. 

To obtain these results, we used indices from all 5 classes described in Section 4.2.4, together 

with all their variations and all possible levels (word/sentence/paragraph/document) as 

representative features, instead of the text itself. We started from the hypothesis that all these 

extracted characteristics describe the author’s writing style, and they may betray his 

negligence in composing false content. Therefore, they may lead to an improvement in the 

performance of the models analyzed up to this point. Thus, in order to confirm this, we tested 

these traits first on their own and afterwards concatenated with other features. 

From Table 17, it can be observed that we managed to build a group of classifiers with 

less promising results. For multi-label classification, the model which achieved the maximum 

accuracy was the quadratic SVM, while for the second case, NB surpassed the other three. 

We obtained a maximum value of 20.33%, respectively 56.89% on the test partition, values 

better than the random choice of a label with only 4-6%. It’s important to highlight how 

different the models behaved in our two cases of study, being impossible to establish a 

general order of performance. Despite having the best accuracy for the binary case, NB 

performed as good as arbitrary choice in the multi-class case (17.49%). Moreover, DT 

algorithm managed to find some basic rules for the six classes, exceeding linear SVM, but 

not for the case of two labels when scored only 51.61%. 

To see if these models were really that weak, we analyzed the confusion matrixes. We 

found out that even though they classify the texts in such a wrong way, they generally 

confuse adjacent classes. For example, many news items labeled “barely-true” have been 

categorized as “half-true” or “false”, neighboring classes. Similarly, “half-true” texts have 

been marked as “barely-true” or “mostly-true”. The “true” class is the only one for which 

there has been more confusion. Instead, the binary model distinguished slightly better values 

for the “true” class, correctly classifying several entries, which means that it found several 

distinctive features for this category compared to the “fake” one. Taking this aspect into 

account, plus the fact that the dataset has a high difficulty and the differences between the 

performance of our best model and those of these were less than 10%, we can say that the 

models managed to learn some characteristics for each class. Therefore, these indices may be 

helpful criteria in establishing veracity, but not on their own. 

For the second series of experiments, we used the concatenation of features extracted 

by TF-IDF with text complexity indices. We kept only features which refer to words, as they 

were the ones for which we scored the highest accuracy in Section 5.1. In this sense, the same 

DT, NB and SVM classifiers were used, the results being shown in Table 18. This new set of 

traits caused a decrease in performance for all models with one exception. As shown there, in 

all cases, the best results were obtained with the DT model for both series of features: 

unigrams and unigrams concatenated with bigrams, while the weakest with the linear SVM 

algorithm, as opposed to the first series of tests. The maximum performance metrics were 

22.02% and 58.32%, for the case of using unigrams and bigrams of words and stylometric 
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features. For multi-label classification, using bigrams of words associated with ReaderBench 

indices affected the results in a good manner for three out of four models. Also, the 

performance metrics indicated better values in all cases for the “true” class, which 

emphasizes the fact that it was easier to find common words and style patterns to distinguish 

texts with this tag. The history repeated in the second case of binary grouping, meaning that 

NB models obtained higher performances than linear or quadratic SVM (56.43% vs. 54.05% 

and 55.32%). Also, this time, bigrams had a positive impact only for DT and linear SVM 

classifiers. With this input, Decision Tree managed to understand the information behind text 

complexity indices and even improved the accuracy from previous section for the 2-labels 

(57.46%). 

Comparing our results with those in the state of the art, we can see that the single use 

of the text itself was easier to distinguish, but we managed to obtain similar values. For 

instance, for SVMs, the highest values obtained for multiple label classification were weaker 

than those in the reference article (20.43% vs. 25.50%), being better than the “random 

choice” by only about 4%. This implies that the combination of the two inputs was not 

compatible with this model. The Naïve Bayes algorithm exceeded the performance of the 

SVM models (21.31%), but not that of the models in (Wang, 2017). DT model managed to 

best interpret the input used in this experiment, but not enough to obtain an accuracy close to 

the SVM model in the reference papers or to our previous tests. For the binary classification, 

Decision Tree managed to obtain a higher accuracy than its approach in the state of the art 

(58.32% vs. 51.00%) and similar score with other classical machine learning methods (59-

61.00%). Even if we added additional data, SVMs could not separate the two classes in an 

ideal manner but scored an accuracy approximately equal to that from the state of the art 

(55.32% vs. 55.50%). Also, NB from the state of the art achieved 60%, while our solution 

was at a maximum of 56.43%. 

Furthermore, we introduced these stylometric features also in our neural network 

approaches. The results of the classification using the LSTM and BiLSTM classifiers, 

together with the features extracted by Word2Vec/GloVe and the stylometric elements are 

shown in Table 18. In addition, they are compared with those obtained using 

BERT/DistilBERT and text complexity indices with a feed-forward neural network. 

Although a strict constant order of performance of all models cannot be deduced in both 

cases, multi-class and binary classification, a pattern can be generalized: BiLSTM < LSTM < 

NN. If we apply the same principle on feature extraction methods, we can conclude that: 

GloVe < Word2Vec < BERT < DistilBERT.  

For multi-label classification, adding various text indices was not a good choice, as 

our models decreased in accuracy compared to those from previous section. The only 

exceptions were when we opted for Word2Vec-skip gram, case when performance increased 

to 23.28% (LSTM), respectively 24.38% (BiLSTM) and when we used BERT-Small, metric 

reaching 26.28%. More than that, this time, the use of skip-gram features with complexity 

elements improved results compared with the continuous bag of words approach of the same 

algorithm (22.96% - LSTM, 18.86% - BiLSTM). This time, Glove was part of solutions with 

very poor metrics, while BERT-Medium kept its performance (24.23% vs. 24.39%). The 
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fine-tuned model with DistilBERT and the Feed-Forward network remained the one with the 

highest performance, 26.91%.  Regarding the classifiers, adding bidirectional perspective to 

Long-Short Term Memory improved results only for skip-gram, aspect that repeated in most 

of our experiments. Adding an attention layer at our BiLSTM architecture had a negative 

impact, decreasing accuracy to 20.99%.  

Even though we treated a simpler case, binary segmentation, the situation was 

identical. Performances did not improve for majority, compared to those from Section 5.2. 

This time, the exemption was the solution with BERT-Small, text complexity indices and a 

feed-forward network which improved its performance to more than 60%. Also, Word2Vec-

skip gram models felt below the ones based on continuous bag of words, in terms of 

accuracy, but they continued to be a better match for BiLSTM models. The combo of GloVe, 

ReaderBench elements and LSTM led to a performance of 57.69%, value larger than any 

other solution based on static embeddings from this section. This algorithm of traits 

extraction was also paired with BiLSTM, but the results got worse. Adding an attention layer 

caused the accuracy to drop below “random choice” with more than 5%. Even when paired 

with additional information, contextualized word representations had an advantage in fake 

news detection. BERT-Small and BERT-Medium had results around 60%, good values for 

this dataset. The top performance was obtained through the same solution, DistilBERT, 

stylometric elements and a simple feed-forward, 63.14%.  

Summarizing, the results obtained with (Bi)LSTMs were not as good as would have 

been expected considering that the architectures are more complex than in the previous case, 

and Word2Vec and Glove capture more features than just the frequency. Compared to the 

models which did not use text complexity metrics, the results had worsened with at least 2%, 

which means that the modified input does not significantly help the model in the learning 

process. The approach that included attention in the classification mechanism managed to 

score the lowest accuracy, fact which highlights the incompatibility between stylometric 

elements and self-attention. An important aspect that improved was the reduction of over-

specializing tendency that we encountered in our preceding case. For feed-forward neural 

networks, the performance metrics obtained by adding stylometric elements were the best, 

comparable to those in the previous section (26.91% vs. 27.30% and 63.14% vs. 63.61%). 

The model with DistilBERT, text indices and NN brought improvements to all the other 

models presented in this section. Thus, this feature extraction technique was the most 

efficient for the LIAR data set. Moreover, it seemed that BiLSTM model almost unanimously 

classified the texts as “barely-true”, while LSTM and Feed-Forward had more balanced 

results. 

If we draw a line and compare these new values with previous section, there is no 

strong evidence that text complexity indices offered relevant information for our problem, as 

most of the models obtained similar or lower performances when adding this kind of 

information. However, by contrast with the state of the art, values were not as poor as 

expected. For instance, for LSTMs, the highest values obtained for multi-label classification 

were still better than those in the reference article (23.28% vs. 22.50%), beating “random 

choice” by about 7%. This implies that the combination of the two inputs helped this neural 
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network extract patterns for the six classes. In plus, BiLSTM also exceeded the performance 

of the same approach (24.38%) and some classical machine learning algorithms, but not that 

of CNNs or SVMs. Feed-forward network model managed to best interpret the input used in 

this experiment, enough to obtain an accuracy close to the CNN model in the LIAR paper. 

For the binary classification, LSTM managed to obtain a higher accuracy than its approach in 

the state of the art (57.69% vs. 54%) and similar score with CNN, HAN, Conv-HAN or C-

LSTM (55-58%). When grouping text indices with static word embeddings, BiLSTM could 

not overcome the value from the reference papers, achieving at most 56.43%. Its results were 

in the same range as simpler algorithms like AdaBoost or k-NN, exceeding only solutions 

that implied simple Long-Short Term Memory. All the solutions that integrate feed-forward 

networks led to metrics comparable with those from the state of the art. 

Overall, the stylometric indices failed to raise the accuracy of the models on the test 

dataset compared to the best results obtained when only TF-IDF/ Word2Vec/ GloVe/ BERT/ 

DistilBERT were used to extract features. In fact, the elements of text complexity seem to 

bring additional features that are not distinct enough to assure a very precise learning, at least 

in the large number used for these experiments, confusing the model. One explanation for the 

weaker results could be that the extracted stylometric traits may not be relevant enough to be 

used together, requiring an additional analysis step to indicate exactly which indices are 

important for our problem and which ones weight the most in the classification process. We 

started to investigate this idea, adding one index at the time to our best models and follow up 

the changes in performance. Unfortunately, there were no important improvements from one 

stage to another. Therefore, we did not include those experiments in this thesis. 
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Table 17 Results for stylometric features 

Feature Model Dataset 

partition 

Multi-class classification Binary classification 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

(%) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

(%) 

RB text complexity 

indices 

DT Validation 17.30 17.51 17.30 17.27 53.27 53.21 53.27 53.22 

Testing 19.55 20.01 19.55 19.69 51.61 51.60 51.61 51.61 

NB Validation 18.08 23.15 18.08 17.44 54.74 54.62 54.74 54.68 

Testing 17.49 21.15 17.50 16.94 56.89 56.79 56.89 56.69 

SVM 

linear 

Validation 19.16 18.97 19.16 18.93 54.64 54.49 54.64 54.32 

Testing 19.26 19.14 19.26 19.03 54.35 53.81 54.35 53.99 

SVM 

quadratic 

Validation 18.38 17.93 18.38 18.07 54.54 54.48 54.55 54.49 

Testing 20.33 20.44 20.33 20.20 56.30 56.50 56.30 56.39 

 

Table 18 Results for stylometric features combined with textual features 

Feature Model 

 

Dataset 

partition 

Multi-class classification Binary classification 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

(%) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

(%) 

TF-IDF of unigrams of 

words and 

RB text complexity indices 

DT Validation 22.50 22.56 22.51 21.69 58.64 58.84 58.64 57.64 

Testing 21.55 20.56 21.55 20.35 58.24 57.47 58.25 57.36 

NB Validation 23.36 22.96 23.36 20.15 59.19 59.35 59.19 58.35 

Testing 20.83 26.23 20.84 18.85 56.43 55.66 56.43 55.69 

SVM 

linear 

Validation 18.96 18.80 18.96 18.74 53.95 53.81 53.96 53.70 

Testing 19.45 19.46 19.45 19.26 53.07 52.39 53.08 52.61 

SVM 

quadratic 

Validation 17.79 17.37 17.79 17.49 54.93 54.83 54.94 54.79 

Testing 20.23 20.25 20.23 20.08 55.32 55.34 55.33 55.33 

TF-IDF of unigrams & 

bigrams of words and 

RB text complexity indices 

DT Validation 22.04 21.96 22.04 21.01 59.11 59.04 59.11 58.90 

Testing 22.02 20.06 22.02 20.26 58.32 58.29 58.33 58.31 

NB Validation 25.23 18.28 25.32 18.95 57.24 58.64 57.24 53.77 
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Testing 21.31 12.73 21.31 15.86 55.40 53.32 55.41 51.68 

SVM 

linear 

Validation 19.35 19.25 19.35 19.16 53.17 53.03 53.18 52.98 

Testing 19.25 19.21 19.26 19.04 54.05 53.39 54.06 53.60 

SVM 

quadratic 

Validation 17.69 17.29 17.69 17.41 55.52 55.42 55.52 55.39 

Testing 20.43 20.45 20.43 20.28 54.64 54.59 54.64 54.62 

Word2Vec – continuous 

bag of words and 

RB text complexity indices 

LSTM Validation 19.85 19.37 19.86 19.09 54.67 54.56 54.67 54.55 

Testing 22.96     22.72 22.97 22.23 57.06 56.86 57.06 56.94 

BiLSTM Validation 19.93 20.18 19.94 19.64 54.82 54.70 54.83 54.65 

Testing 18.86 19.83 18.86 18.82 56.43 56.16 56.43 56.26 

Word2Vec – skip gram and 

RB text complexity indices 

LSTM Validation 23.67 23.43 23.68 23.43 55.48 55.71 55.49 55.58 

Testing 23.28 23.14 23.28 23.15 55.45 55.54 55.45 55.47 

BiLSTM Validation 22.97 23.07 22.98 22.88 54.67 54.54 54.67 54.50 

Testing 24.38 24.22 24.39 24.21 56.35 55.72 56.35 55.82 

GloVe and 

RB text complexity indices 

LSTM Validation 22.04 23.69 22.04 21.19 57.47 57.44 57.48 56.82 

Testing 22.25 22.28 22.26 21.47 57.69 56.96 57.70 56.94 

BiLSTM Validation 21.80 22.53 21.81 21.75 55.06 54.99 55.06 55.00 

Testing 22.17 22.39 22.18 22.08 56.27 56.19 56.27 56.23 

BiLSTM 

Attention 

Validation 19.54 21.93 19.55 13.30 47.97 23.02 47.98 31.11 

Testing 20.99 24.83 20.99 14.99 43.64 19.05 43.65 26.52 

BERT-Small and 

RB text complexity indices 

Feed-

Forward 

Validation 25.46 26.21 25.47 25.14 59.89 59.83 59.89 59.82 

Testing 26.28 26.70 26.28 26.07 60.61 60.47 60.62 60.53 

BERT-Medium and 

RB text complexity indices 

Feed-

Forward 

Validation 24.06 25.13 24.07 23.89 60.12 60.34 60.12 60.12 

Testing 24.23 24.76 24.23 23.93 59.66 60.27 59.67 59.82 

DistilBERT and 

RB text complexity indices 

Feed-

Forward 

Validation 26.24 26.60 26.25 25.98 61.37 61.75 61.37 60.52 

Testing 26.91 27.05 26.91 26.63 63.14 62.69 63.14 62.13 

BiLSTM Validation 24.22 24.73 24.22 23.28 61.29 61.24 61.29 61.20 

Testing 21.70 22.95 21.70 20.92 57.22 57.00 57.09 57.09 
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5  Discussion 

In the previous chapter, we summed up a collection of fake news detection solutions 

which learn various patterns of untrustworthy content. Despite having similar results with 

those from Section 3, there are multiple aspects that restrict their final performance, aspects 

that we will try to discuss further. A series of arguments can be put forward to explain the 

existing limitations and based on them, we can establish further steps that may diminish the 

impact. 

Firstly, the weak results could be explained by the choice of the data set. A well-

balanced, unbiased, diverse, and real-life-inspired corpus can greatly influence the outcome 

of the experiments. In our case, some classes have less examples comparing with the others, 

hindering the learning process. Also, they are very specialized, focusing just on specific 

events from reality. Moreover, LIAR has six classes, and it contains many short real-world 

statements from various contexts and different authors, being very difficult to place them in a 

pattern.  Therefore, the models cannot learn general patterns for the fake news detection task. 

Further, we analyzed the structure of LIAR and found out different limitations like typos, 

atypically organized or incomplete sentences that may justify the mistake prone models.  

Such examples that make the task difficult are: 

- typing errors: 

Says Dan Sullivan approved a light sentence for a sex offenderwho got out of prison 

andis now charged with a gruesome murder and sexual assault 

(offender who; and is) 

Jeff Greene on why hewent Cuba. 

(he went) 

Americanschools are more segregated than they were in the 1960s.  

(American schools) 

- extra punctuation marks: 

Barack Obama ""pays for every dime "" of his spending plans. 

- missing punctuation marks: 

If you dont buy cigarettes at your local supermarket, your grocery bill wont go up a 

dime. 

 (don’t; won’t) 
- incomplete sentence: 

On gay marriage. 

On abortion rights. 
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- confusing sentence: 

Says he was a Marine during Vietnam. 

(Who is “he’?) 

These constraints affect all the features we have been tested: frequency, word 

embeddings and text complexity indices. For instance, some of the ReaderBench metrics - 

surface indices, word complexity indices, morphological indices - are strictly related to the 

shape of the text. A corpus with grammatical errors, incomplete or absent words, extra or less 

punctuation marks, unclear and non-fluent texts, can negatively influence the values of these 

indices. In turn, stylometric metrics influence the final label determined by the classifiers. 

Thus, if they are not correctly calculated, they will lose their information and relevance and 

they will lead to erroneously learned patterns. In addition, the typos from the input especially 

influence the features extracted through TF-IDF, Word2Vec, GloVe, BERT and DistilBERT, 

as they lead to words which do not exist in the dictionary, with unidentified stem or lemma. 

Unknown words raise difficulties in both computing frequency and vector space 

representation.  

One possible solution for improving the format of the dataset statements is to apply 

some precursor operations for correction. For example, confronting words with a dictionary 

and finding the closest replacement through minimal number of character changes may assure 

the removal of lexical-grammatical errors. A more complex option is using a predicting 

model that can find the most probable word that fits in a sentence in case of discovering a 

token that does not belong to the glossary. Moreover, texts may be validated through a 

checker that signals punctuation marks mistakes or incoherent sentences. This additional 

editing of the corpus may also influence the pre-processing stage, as clean text is easier to be 

standardized than the noisy one. For a different format of the text, we may need to change the 

sequence of operations we applied by adding, removing, or even replacing some steps. 

Secondly, another aspect of the dataset that influences the experiments based on 

indices of complexity is the length of the input. Specifically, LIAR is a corpus that contains 

in general short texts with a few statements, not complex documents, or paragraphs. This 

implies that certain text indices will have identical values, regardless of the level of 

granularity chosen. For instance, if we have a single sentence entry, the document, paragraph, 

and sentence will be equal. Thus, the information sent to the models may be consistent, but 

duplicated and without essence. Figure 3 shows the average number of words for an example 

Figure 3 Example different indices with identical information: wd_sent, wd_par, wd_doc 
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at the sentence, paragraph, and document level. It can be seen that although we have three 

indices, the histograms of two are identical, and the third has very similar information. In the 

future, to avoid sending extra data to the model, we should filter out all the stylometric 

indicators that do not help the learning process. 

 The problem of input length can also affect the embeddings of the words. We used a 

fixed size of 100 for embeddings vectors in all our experiments. Although the majority of 

texts had less than 100 tokens, 7 out of over 12.000 news were truncated as they had 

dimensions between 186 and 512. Most of them were padded with zeros as the average length 

is 20. The problem appears when we lose too many information or when we add too much 

irrelevant one - noise. If we consider those 7 elements as outliers and remove them, then the 

constant size that we chose may have not been the most appropriate one, a smaller one being 

more helpful. More detailed experiments for finding the best embedding dimension are in our 

short-term plans.  

Another issue which came from using the ReaderBench tool is that a significant 

percentage of the calculated indices were null for all classes, adding no informational gain. 

This can be determined by several aspects. One of them is the simplistic structure of the 

dataset manifested through the small length of the texts. As a result, it is almost impossible to 

extract clues related to discourse structure or semantic cohesion from short news, aspect 

which automatically leads to zero values for all classes. Another reason is the lack of 

diversity of the entries. For example, out of about 12.800 entries, there was no example 

containing dependencies of type “classifier” or “copula”, which means that these metrics do 

not bring knowledge to the models. Thereby, because of the little information that these 

indices brought, we limited the number of experiments that used them.  

Fourthly, embeddings representations may also be influenced by the strategy we 

adopted for words that do not belong to the vocabulary. We chose a quite simple approach in 

all cases, meaning that we added a new word to the vocabulary, called “UNK”, with a fixed 

numerical array of zeros; then we associated it with every unknown word. Taking into 

account that on average approximately 2.000/13.000 (15%) unique words are not in the 

glossary of our feature extraction methods, this aspect may explain the limited results of these 

methods. GloVe had the largest number of null embeddings, which led in general to 

confusing results. One method that may improve news numerical representation is using a 

predicting algorithm for the out-of-vocabulary terms. In this way, we may find useful 

embeddings based on morphology and context. 

The analysis of the performance of the previously presented models can continue 

beyond the metrics used: Precision, Recall, Accuracy and F1-Score. More than these easy-to-

understand numerical values for a computer, it is interesting for a person to analyze why a 

certain classifier gave a certain verdict. If we only knew the criteria taken into account, we 

could understand which are the reasons for which the result is not as expected. In this 

direction, we analyzed the correlation between the obtained labels and the text complexity 

indices, trying to deduce some of the learned rules. Although more than 1000 indices were 

used, not all of them contributed to the differentiation between classes. In addition to those 

with zero values mentioned above, we also found sufficient indices that had similar values for 
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the two classes. In fact, if we analyze this direction further, we can see that the values 

obtained for these indices are generally small, and their variation between classes is mostly at 

the level of decimals. However, even with these small changes, some variables play a more 

important role than others. To highlight this, we calculated the Gini scores of importance and 

summarized the highest values in Figure 4. The importance of Gini or Mean Decrease in 

Impurity (MDI) calculates the importance of each trait, in our case of each complexity index, 

as the sum over the number of divisions in a forest of trees that include the characteristic, 

proportional to the number of samples it divides. A higher value indicates a higher 

importance of the feature. 

Given that very small variations were obtained for this dataset, the model failed to 

learn the defining features of a certain class. However, there were several indices that 

recorded positive values only for a certain class. This can also be an explanation for some of 

the labels obtained because once those indices were met, they were associated with that class. 

Thus, Table 19 highlights such examples, mainly in terms of valence and named entities, so 

indices of word complexity. We can conclude that the news with false information was 

associated with mostly negative feelings: despair, disappointment, dissatisfaction, 

humiliation, sadness, with a few exceptions: hope, surprise. On the other hand, articles that 

present real facts were written in a positive tone, leaving traces of emotion, touch, serenity, 

joy, and relief. Also, our theory was that evoking real-world elements like persons, locations, 

organizations, languages through their proper name increases the reader's confidence. This 

idea was confirmed as truth texts tended to use named entities, unlike the opposite class. 

 

 

 

Figure 4 Text complexity indices with the highest Gini score 
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Table 19 Examples of text complexity indices specific for a class 

fake true 

valence_desperation_galc_sent 

valence_hope_galc_sent 

valence_dissapointment_galc_sent 

valence_surprise_galc_sent 

valence_skipt_lasswell_sent 

valence_sadness_galc_sent 

valence_humility_galc_sent 

valence_dissatisfaction_galc_sent 

valence_beingtouched_galc_sent 

valence_enjoyment_galc_sent 

valence_relief_galc_sent 

valence_serenity_galc_sent 

valence_rcends_lasswell_sent 

valence_ingest_liwc_sent 

nmdEnt_language_sent 

nmdEnt_location_sent 
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6 Conclusions and Future Work 

The purpose of this thesis was to analyze the problem of detecting false content 

through a linguistic approach based just on the content of the texts. Therefore, we proposed 

different approaches of selecting the characteristics of news and feed them to an automatic 

model to learn from. This direction has allowed experimentation with several solutions, 

focusing on pre-processing data, extracting features and classification. At the beginning, we 

tried to implement some traditional machine learning algorithms as they lead to good results, 

and later we shifted to more complex solutions, based on neural networks. In addition, 

several traits extraction methods were tried: term frequency, static and contextualized word 

embeddings. Moreover, we came up with the idea that the author’s intention to voluntarily 

write misinformation will be reflected in his writing style and that we may be able to deduce 

a series of explanations of the final labels if we identify them. So, we extracted over 2000 

text complexity indices for each text entry and integrated them in the previous solutions. We 

treated the problem from two different points of views: 2-label classification and a more 

complex one, 6-label classification. 

In the end, we kept the best results per feature type and classification case and compared 

them for an overall perspective in Table 20 and Table 21. The highest classification results 

were obtained in both cases using a feed forward network combined with a fine-tuned 

DistilBERT, which achieved for the test partition an accuracy of 27.30% on 6-labels, 

respectively 63.61% on 2-labels. This outcome highlights from the start that contextualized 

word embeddings through they semantic-based approach have the biggest potential for 

detecting patterns of false content.  

 

Table 20 Overall results for multi-class classification 

Features Model Test 

accuracy 

(%) 

TF-IDF of unigrams of words  SVM linear 23.36 

TF-IDF of unigrams & bigrams of words SVM linear 24.70 

TF-IDF of unigrams of stems SVM quadratic 24.70 

TF-IDF of unigrams & bigrams of stems SVM linear 23.84 

TF-IDF of unigrams of lemmas SVM linear 25.41 

TF-IDF of unigrams & bigrams of lemmas SVM linear 25.26 

TF-IDF of unigrams & bigrams of words and unigrams of 

lemmas 

SVM quadratic 24.94 

TF-IDF of unigrams & bigrams of words and unigrams & 

bigrams of lemmas 

SVM linear 24.63 

Word2Vec – continuous bag of words LSTM 24.38 

Word2Vec - skip gram BiLSTM 23.44 

GloVe BiLSTM Attention 24.30 
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Table 21 Overall results for binary classification 

BERT- Small Feed Forward 24.54 

BERT-Medium Feed Forward 24.39 

DistilBERT Feed Forward 27.30 

RB text complexity indices SVM quadratic 20.33 

TF-IDF of unigrams of words and RB text complexity indices DT 21.55 

TF-IDF of unigrams & bigrams of words and RB text 

complexity indices 

DT 22.02 

Word2Vec – continuous bag of words and RB text complexity 

indices 

LSTM 22.96 

Word2Vec – skip gram and RB text complexity indices BiLSTM 24.38 

GloVe and RB text complexity indices LSTM 22.25 

BERT-Small and RB text complexity indices Feed Forward 26.28 

BERT-Medium and RB text complexity indices Feed Forward 24.23 

DistilBERT and RB text complexity indices Feed Forward 26.91 

Features Model Test 

accuracy 

(%) 

TF-IDF of unigrams of words SVM quadratic 61.88 

TF-IDF of unigrams & bigrams of words SVM linear 62.19 

TF-IDF of unigrams of stems SVM quadratic 61.17 

TF-IDF of unigrams & bigrams of stems SVM linear 61.96 

TF-IDF of unigrams of lemmas SVM linear 61.72 

TF-IDF of unigrams & bigrams of lemmas NB 61.64 

TF-IDF of unigrams & bigrams of words and unigrams of 

lemmas 

SVM linear 61.40 

TF-IDF of unigrams & bigrams of words 

and unigrams & bigrams of lemmas 

NB 61.48 

Word2Vec – continuous bag of words LSTM 57.45 

Word2Vec - skip gram BiLSTM 58.01 

GloVe LSTM 59.19 

BERT- Small Feed Forward 58.48 

BERT-Medium Feed Forward 60.06 

DistilBERT Feed Forward 63.61 

RB text complexity indices NB 56.89 

TF-IDF of unigrams of words and RB text complexity indices DT 58.24 

TF-IDF of unigrams & bigrams of words and RB text 

complexity indices 

DT 58.32 

Word2Vec – continuous bag of words and RB text complexity 

indices 

LSTM 57.06 

Word2Vec – skip gram and RB text complexity indices BiLSTM 56.35 

GloVe and RB text complexity indices LSTM 57.69 
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For most features extracted with TF-IDF, the best score was obtained with a SVM, 

either linear or quadratic. There were only two exceptions that reached better accuracy with 

Naïve Bayes.  Overall, the solutions based on frequency had values close to the state of the 

art, around 24-25%, respectively 60-61%. This emphasizes that for our task, frequency of 

terms represents informative traits. Due to the promising results obtained with TF-IDF and 

the basic machine learning algorithms, it can be said that there is a link between the 

frequency of words used and the degree of veracity of the text. Furthermore, the fact that the 

meaning and order of the words were ignored in the first approaches and that those 

algorithms did not capture the dependencies between the words, did not affect the results as 

much as expected. Also, as it turns out from our experiments, there are not large differences 

between simpler or more complex classifiers, as the most important element is represented by 

the features used in each case. All our models have performances close to the state of the art, 

27% and 62%. 

Another point to note is that the performance of recurrent neural networks has not 

been as good as expected. They obtained poorer results and tended to overfit. So, we can 

conclude that the task of predicting the veracity of a text using this type of approach is not so 

promising, at least not for this dataset. In both cases, Word2Vec-continuous bag of words 

algorithm scored the highest accuracy with a LSTM architecture, while skip-gram with 

BiLSTM. GloVe had different performances, reaching 59.19% when fed to LSTM for the 2 

labels case and 24.30% when paired with BiLSTM Attention for the 6 labels one. For static 

word embeddings, we obtained inferior metrics compared to those from the first series of 

experiments, proving that using more complex information do not boost a model up if not 

paired with the right classifier. On the contrary, for the LIAR dataset, they bring just noise, as 

the features decreased model performance when attached to the list of inputs. Overall, our 

corpus proved to be more suitable for n-grams than Word2Vec or GloVe. 

However, all previously mentioned models lose context and therefore semantic. It is 

common knowledge that the meaning of a word depends on the neighboring words, and it 

should be represented according to them. This is obvious by the increase in performance that 

appears when employing features extracted through transformers. Therefore, BERT managed 

to get better results than static word embeddings and similar with TF-IDF, while DistilBERT 

surpassed all of them.  

Our experiments also showed that the text complexity indicators are not decisive factors 

for the degree of truth of a text, as they do not bring many improvements. When used on their 

own, style cues led to the weakest metrics in this series of experiments. Moreover, the 

hypothesis that the author’s writing style can be expressed through additional traits that could 

fine-tune a model was proven wrong, as the data expressed by the stylometric features 

brought almost no improvement on the model. However, we were able to determine some 

connections between the features used at the input and the labels obtained at the output, to 

BERT-Small and RB text complexity indices Feed-Forward 60.61 

BERT-Medium and RB text complexity indices Feed-Forward 59.66 

DistilBERT and RB text complexity indices Feed-Forward 63.14 
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provide a number of explanations to the user. Thus, it could be deduced that the model with 

the best results learned a series of rules to differentiate between the two main classes: true 

and false. In this process, the indices of word complexity had the greatest contribution 

through words valence.  

Besides short-term improvements that we mentioned in the previous chapters, there 

are a multitude of directions that may lead to systems that behave much better in real-life 

situations. The first one is introducing in the input additional meta-data about the world. 

Despite the disadvantage that for daily use of such systems, in general we do not have access 

to such data, we can deduct from the state of the art that extra information can boost up the 

performance of the models. So, as LIAR has multiple columns that we did not use until this 

point, we intend to test this path and see how the metrics evolve. 

The architectures tested so far are supervised solutions that focus on extracting the 

features that are further used in classification. Another direction we propose is to approach 

the problem in an unsupervised way and analyze the structure of the corpus data. Specifically, 

we want to see if semantically similar news would be in the same class depending on the 

clusters obtained. Thus, by analyzing the purity and cohesion of a cluster, we would be able 

to measure the level of trust that the news in certain fields have and to extract some trends 

from the existing data. 

Nowadays, for fake news detection, the field of Explainable AI is one of interest, so 

we want to continue to research this direction. First, improvements can be made to previous 

models, to the point where a clear correlation is determined between text complexity indices 

and the degree of truth by studying the weights of the models. Another alternative could be 

the ProSeNet (Prototype Sequence Network) architecture which generates explanations by 

comparing the input with typical training cases or LIME library which uses the components 

of an interpretable model built in the vicinity of the instance it wants to explain. Also, we can 

build a complementary dataset with verified information and use it as context and 

justification. Finally, it will be desired to compare all the options to determine which of them 

offers a more complete explanation and which one is closer to human thinking. It is also 

interesting to follow the behavior of the models implemented in different experiments such 

as: the transferability of model learning between several datasets or the transferability of 

model learning between several foreign languages. 

For the long run, the aim of this project is to also analyze these algorithms for the 

Romanian language, which may even need the construction of such a corpus. Thus, we want 

to see how good the metrics would be for a language that has many syntactic and semantic 

particularities. The difficulty of the task of detecting fake texts would increase for the 

Romanian language due to the much more limited resources and the impact of the pre-

processing text step. For instance, at the time of segmentation into tokens, this language can 

raise significant problems, such as: the elimination of letters that appear in word 

compressions (“într-adevar”) or regionalisms (“acu’”) or the hyphenation of an unaccented 

forms of pronouns with a verb (“l-am”, “m-ai”, “schimbându-se”). All these are interesting 

challenges that may lead to innovational solutions. 
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