
2022

Master Thesis

Fake news detection and analysis

Author:

Ștefan Elena-Ramona

Master in Research and Innovation

Facultat d’Informatica de Barcelona

Universitat Politècnica de Catalunya

Advisor:

Prof. Dr. Jordi Turmo Borrás

GPLN - Natural Language Processing Group

IDEAI - Intelligent Data Science and Artificial Intelligence Research Center

Department of Computer Science

Universitat Politècnica de Catalunya

Co-Advisors:

Prof. Dr. Eng. Mihai Dascălu

S.l. Dr. Eng. Ștefan Rușeți

Department of Computer Science

Faculty of Automatic Control and Computers

University Politehnica of Bucharest

https://futur.upc.edu/21598657

2

Contents
Abstract .. 4

1 Introduction .. 5

1.1 Context .. 5

1.2 Objectives .. 6

2 State of the Art .. 7

2.1 Resources .. 8

2.1.1 Competitions .. 8

2.1.2 Datasets .. 9

2.2 Analysis of News Content ... 13

2.2.1 Knowledge-based Approaches... 13

2.2.2 Machine Learning Approach ... 15

2.3 Hybrid Approaches ... 18

3 Method .. 20

3.1 Dataset ... 20

3.2 Text Pre-processing ... 26

3.3 Features ... 27

3.3.1 Bag of n-grams ... 27

3.3.2 Static word embeddings ... 28

3.3.3 Contextualized word embeddings .. 29

3.3.4 Stylometric features ... 30

3.4 Classical Machine Learning Models ... 34

3.5 Neural Networks ... 35

4 Results .. 38

4.1 Classification based on TF-IDF .. 38

4.2 Classification based on word embeddings .. 45

4.3 Classification based on stylometric features ... 48

5 Discussion ... 54

6 Conclusions and Future Work .. 59

Bibliography .. 63

3

List of tables

Table 1 Analyze of existing datasets ... 11

Table 2 Label distribution for multi-label classification .. 21

Table 3 Label distribution for binary classification .. 22

Table 4 Cardinality of metadata columns .. 22

Table 5 State of the art results for multi-classification .. 23

Table 6 State of the art results for binary-classification .. 24

Table 7 Text complexity indices .. 32

Table 8 Results for TF-IDF of unigrams of words .. 41

Table 9 Results for TF-IDF of unigrams & bigrams of words .. 41

Table 10 Results for TF-IDF of unigrams of stems ... 42

Table 11 Results for TF-IDF of unigrams & bigrams of stems ... 42

Table 12 Results for TF-IDF of unigrams of lemmas .. 43

Table 13 Results for TF-IDF of unigrams & bigrams of lemmas.. 43

Table 14 Results for TF-IDF of unigrams & bigrams of words and unigrams lemmas 44

Table 15 Results for TF-IDF of unigrams & bigrams of words and unigrams & bigrams

lemmas ... 44

Table 16 Results for word embeddings ... 47

Table 17 Results for stylometric features .. 52

Table 18 Results for stylometric features combined with textual features 52

Table 19 Examples of text complexity indices specific for a class ... 58

Table 20 Overall results for multi-class classification ... 59

Table 21 Overall results for binary classification .. 60

List of figures

Figure 1 Explanations of labels.. 20

Figure 2 Pre-processing operations applied on LIAR Dataset ... 26

Figure 3 Example different indices with identical information: wd_sent, wd_par, wd_doc ... 55

Figure 4 Text complexity indices with the highest Gini score .. 57

4

Abstract

The evolution of technology has led to the development of environments that allow

instantaneous communication and dissemination of information. As a result, false news,

article manipulation, lack of trust in media and information bubbles have become high-

impact issues. In this context, the need for automatic tools that can classify the content as

reliable or not and that can create a trustworthy environment is continually increasing.

Current solutions do not entirely solve this problem as the degree of difficulty of the task is

high and dependent on factors such as type of language, type of news or subject volatility.

The main objective of this thesis is the exploration of this crucial problem of Natural

Language Processing, namely false content detection and of how it can be solved as a

classification problem with automatic learning. A linguistic approach is taken, experimenting

with different types of features and models to build accurate fake news detectors. The

experiments are structured in the following three main steps: text pre-processing, feature

extraction and classification itself. In addition, they are conducted on a real-world dataset,

LIAR, to offer a good overview of which model best overcomes day-to-day situations. Two

approaches are chosen: multi-class and binary classification.

In both cases, we prove that out of all the experiments, a simple feed-forward network

combined with fine-tuned DistilBERT embeddings reports the highest accuracy – 27.30% on

6-labels classification and 63.61% on 2-labels classification. These results emphasize that

transfer learning bring important improvements in this task. In addition, we demonstrate that

classic machine learning algorithms like Decision Tree, Naïve Bayes, and Support Vector

Machine act similar with the state-of-the-art solutions, even performing better than some

recurrent neural networks like LSTM or BiLSTM. This clearly confirms that more complex

solutions do not guarantee higher performance. Regarding features, we confirm that there is a

connection between the degree of veracity of a text and the frequency of terms, more

powerful than their position or order. Yet, context prove to be the most powerful aspect in the

characteristic extraction process. Also, indices that describe the author’s style must be

carefully selected to provide relevant information.

5

1 Introduction

Information refers to all the facts, knowledge and opinions perceived from another

living being, from media or just from reading and it is the crucial component of any

communication. Nowadays, a very large part of the data interchange process has moved from

the physical environment to the digital one, leading to online communities of considerable

size. Given the evolution of technology, instantaneous environments for distribution of

information have developed. As a result, the impact of news considerably increased

compared to the classic case of discussion between a small number of people. Therefore, it

became mandatory to keep this exchange of information under control.

1.1 Context

False content has gained considerable momentum and has become a current issue for

both citizens and internal security. The term “fake news” can be defined as “a story invented

with the intent to deceive”, according to the New York Times, “purposefully crafted,

emotionally charged misleading information” or “a completely invented story, manipulated to

resemble credible journalism and to attract maximum attention and implicitly advertising

revenue” (Agarwal, Sultana, Malhotra, & Sarkar, 2019). In the classic way, the problem of

determining the authenticity of an article can be described as the prediction of the chances

that a certain article will intentionally contain false information. Having various patterns and

subjects, this task can easily become subjective.

Before analyzing diverse methods for solving this problem, it is important to present

the origins of the subject. Thus, although the term “fake news” became popular in 2016, with

the presidential election in the United States, the misleading content is not a recent issue. For

instance, the document entitled “Zinoviev’s Letter”, was published in 1924 in a famous

British newspaper, just a few days before the general election, in order to destabilize the

political situation in favor of the Conservative Party (Norton-Taylor, 1999). Another example

is a newspaper article that later turned out to be fake, published after the “Hilsborough

accident” where ninety-six people were crushed to death due to overcrowding. The article

claimed that as people were dying, some drunken colleagues robbed them and beat the police

(Torgo, Guimaraes, & Figueira, 2018). Over time, this practice has become increasingly

common, now being amplified by technological development.

 Thanks to the large number of users, and the overwhelming amount of information

available daily, social websites have become a recurring and fast method of creating and

easily spreading false news to a very large group of people. The fact that the information is

one click away, whether it is on a phone or a computer, makes the process of consuming

large amounts of information easy to be done. The most used platforms in this regard are

Facebook and Twitter. Studies have shown that over 65% of adults read their daily news from

social media, percentage increasing each year (Shearer & Gottfriend, 2017). What is most

worrying is that, according to the research, people are not able to detect the lies in the text,

being only 4% better than the chance at this problem (Bond & DePaulo, 2006). Malicious

users quickly took advantage of the situation and started spreading rumors and

6

misinformation. For example, OpenAI has announced the launch of a GPT-3 tool that can

produce almost indistinguishable text from human writing. According to them, GPT-3 can

identify the relationships between concepts and the context of communication. Such a device,

coordinated by the wrong hands, would be an extremely dangerous weapon in the process of

misinformation, spam, or phishing.

 False news, article manipulation, lack of trust in the media, and information bubbles

are growing problems with high impact. The most common problem that makes it extremely

difficult to detect unauthentic content for both humans and automated tools is that fake news

almost never looks the same, fact which slows down the evolution of solutions. A frequent,

but not exclusive, classification of these would be the following (Vorhies, 2017):

 Biased messages/comments/opinions - biased reactions to various current

events/locations/products

 Fake news/Propaganda - news intentionally written to spread erroneous or misleading

information about an event/personality/topic; in most cases it promotes a current, a

personality, an extremist, a subjective vision

 Clickbait - articles meant to attract attention, to shock by the title in order to generate

a large flow of people on that site and high advertising revenue; in most cases they are

completely wrong, based on exaggeration of real events

 Humor/Satire - articles written for fun, not meant to present real information

In this paper, we will focus on the category of fake news that tries to manipulate

people by spreading untrustworthy information. Broadly speaking, this issue can be described

as a simple task of classifying articles along a continuum of truthfulness, with each news item

being associated with a measure of certainty, greater or lesser, depending on the amount of

false information intentionally used in it (Conroy, Rubin, & Chen, 2016). Given that most

research in this field focuses on written text, the detection of false content is considered a

classic problem of Artificial Intelligence (AI), more precisely Natural Language Processing

(NLP). Thus, the basic theoretical ideas of NLP are used: the decomposition of language into

elementary units, the determination of the relations between them and the deduction of their

meaning.

1.2 Objectives

The main objective of this thesis is to explore the natural language issue of false

content identification in a specific field, namely media news. The problem is structured as a

classification problem with 6, respectively 2 classes. In addition, we intend to analyze various

approaches to find the reasons why certain techniques and models have higher performance,

highlighting their strengths and weaknesses. This objective is accomplished mainly by means

of experimentation with different type of models, features, and pre-processing operations to

improve accuracy.

7

2 State of the Art

The impact of misinformation has prompted both scientific community and big

companies (e.g.: Facebook, Google) to look for a way to alleviate the problem. Thus,

different ways of assessing the truth value of a text began to appear.

One attempt to eliminate deception dissemination is represented by systems that track

social media accounts or false content propagation models to identify bot or spam profiles.

One of the first approaches in this direction was in 2010, when the group of Benevenuto used

a non-linear Support Vector Machine (SVM) with a Radial Basis Function kernel to detect

spam accounts based on attributes regarding the behavior of the user. The model was able to

correctly detect 70% of spam accounts and 96% of non-spam accounts from a dataset with

over 1.000 entries (Benevenuto, Magno, Rodigues, & Almeida, 2010). The paper “Who is

tweeting on Twitter: human, bot, or cyborg?” from the same year was also among the initial

solutions which distinguished non-human profiles. The authors proposed a classification

system with four parts:

 Entropy component - detects regular posting times of users (sign of automation)

 Machine learning component (Bayesian classification) – detects text patterns

 Account properties component – analyses properties to find bot deviation from

normal human distribution

 Decision maker component (Linear Discriminant Analysis) – makes a final

decision based on the other three components

This system achieved 96% accuracy in human detection (Chu, Gianvecchio, Jajodia, &

Wang, 2010). Other more detailed model can be analyzed in the work of Ma et al. They

represented news with propagation trees to follow how a message is altered by users when

transmitted over time. For classifying, they appealed to Propagation Tree Kernel to compute

the similarity with rumor trees and non-rumor trees depending on structural and linguistic

properties (Ma, Gao, & Wong, 2010). The group evaluated the solution on two different

datasets and registered accuracies between 73-75%.

 Later, the group of Castillo aimed to identify the credibility of Twitter posts by using

only user information, subject, and propagation metadata. Along with a decision tree (DT)

that shaped a set of rules, they achieved an accuracy of about 86% in terms of detecting bot

users (Castillo, Mendoza, & Poblete, 2013). More recently, Antoniadis et al. built models

based on tweet features (number of characters/ words/ likes/ retweets/ replies/ mentions/

URLs/ media/ hashtags), user features (number of followers/ followees/ total tweets/ tweets

during an event, days registered, followers-followees ratio) and additional features (URLs,

media, average tweets per day, positive/negative/average sentiment). Their strategy included

Nayve Bayes, K-Nearest Neighbors, Adaptive Boosting, Random Forest, Bootstrap

Aggregating, J48, all accomplishing a F1-score over 70% (Antoniadis, Litou, & Kalogeraki,

2015). In 2017, Nayve Bayes classifiers were still a go-to method in this direction, the

extracted features being the only variations. Ersahin, Aktaş, Kilinç and Akyol used the

Entropy Minimization Discretization technique on numerical features to improve the process

8

of building rules for fake news detection, maximizing information gain (Ersahin, Aktaş,
Kilinç, & Akyol, 2017).

Although the results seem very good, this approach has a major disadvantage. More

precisely, to identify a spam account, it must publish enough fake information to build a

meaningful profile. Indeed, once identified, the source can be removed, but previously spread

news can no longer be stopped. In addition, a new bot account can be created immediately to

continue the process indefinitely. Nowadays solutions are more oriented on classifying the

articles based mostly on their content. This is the approach that we also choose for this thesis,

and which will be detailed further. The most relevant techniques and their related results will

be described in the following sections while highlighting some of the most relevant resources.

2.1 Resources

First, we require complete and representative resources. Based on this idea, numerous

people started providing data sources that reflect different real-life situations of false content

dissemination. Some of the most frequent topics are political news, medical news,

advertisement, or celebrity journalism. The interest for the subject is so big that it led to

shared tasks and important academic competitions for the NLP community. We collected

some of the most famous ones in the following sections. Our focus was on English as it is the

most common foreign language and it has a wide use in writing international news and in

social media. Besides that, we mention a couple of Spanish resources as results from a very

famous competition with the same theme which took place for several consecutive years.

2.1.1 Competitions

The main benefit of competitions is that they provide a common evaluation

framework for people who try to advance the state of the art in a particular topic, in our case

by racing in getting the best fake content detection system. Despite having a great number of

participants that work on a problem, sometimes the progress in the area is not sufficient and

some datasets have to be further analyzed. In this section, we present important challenges

focused on this shared task of falsity detection in order to see the points of interest.

One of the pioneers in this area of competitions was “Fake news challenge stage 1

(FNC-I)” which was held in 2017. Being one of the first attempts, the main task was

simplified by being split into consecutive stages. That edition of the competition – and the

only one until now - focused only on the first step, respectively estimating if two texts claim

the same thing about a specific topic. More precisely, the two inputs were a title and a body

text. After comparing these, they were marked with one of the following labels: “agrees”,

“disagrees”, “discusses” and “unrelated”. The purpose was to find trustworthy relations

between a valid information and a new one. The evaluation metric was a weighted score

which considered both if the two ideas were related or not (25%) and if they agreed on the

topic (75%). Out of 80 competitors, the team SOLAT in the SWEN scored 82.02%.

Another remarkable competition is “KDD 2020 TrueFact Workshop: Making a

Credible Web for Tomorrow” that took place in 2020. For this shared task, the teams had to

design a solution that can distinguish inauthentic claims by classifying them as true or fake.

9

This time, the dataset contained 6.234 examples of label-text pairs. The competition had 19

teams which were evaluated using accuracy as performance metric. The first classified team

achieved a score of 84%.

We can say that 2020 was a great year for fake news competitions. “Fakeddit

Multimodal Fake News Detection Challenge 2020” is another example of organized

framework which brought important resources for this subject. This competition launched a

dataset called Fakeddit which contained over 1 million samples of fake news. Its purpose was

wider as it tried to find different models that detect fake news in both text and images. The

performance metric used is the same, meaning accuracy, measuring the percentage of text-

image pairs the model can recognize as fake. This competition deviates from our scope as we

will use only text for our classifiers.

One competition that gained much popularity on the subject and encouraged people to

invest time in this problem is IberLEF which adopted this theme for two years in a row.

Indeed, its real purpose was to provide a competitive text processing framework to overcome

the actual state of the art results. Fake news detection was among the proposed challenges as

“MEX-A3T: Fake News and Aggressiveness Analysis” (2020) and “FakeDeS: Fake News

Detection in Spanish Shared Task” (2021). In both years, the F1 measure over the class of

interest was used to rank participants. In 2020, all competitors used The Spanish Fake News

Corpus which was composed of only 971 Mexican Spanish articles collected from different

news related websites. The dataset was manually annotated in two balanced classes: true and

fake. Besides the text and the label, it also contained the topic, the title, and the source URL.

Only nine teams took the challenge of that edition and participated, all of them obtaining a

F1-score over 70%. The highest value was achieved by the Idiap-UAM-2 team with a value

of 84.44%. At the second edition, the attention was shifted on a hot subject at that time,

meaning the pandemic situation. This time, the organizers tried to evaluate the robustness of

the solutions by training on a very general set (The Spanish Fake News Corpus 2020) and

evaluating on a very specific topic (Covid-19). The new testing dataset was composed of

Coronavirus related news from Ibero-American countries classified in the same categories.

This time, the results were poorer than those of the previous year. The number of participants

elevated to 21 but the increased difficulty of the task led to F1-scores between 48.38% and

76.66%. The GDUFS_DM team achieved the performance of winning the competition with

their attention-based solution.

2.1.2 Datasets

Through these competitions or just through simple scientific articles, more and more

datasets and web services are becoming available to identify fake content. As it is important

to review the most important ones that addressed this topic, we gathered a series of datasets

in Table 1. It can be seen that the messages and threads posted on Twitter are an active source

of data. On the news side, for most corpora, the main source is PolitiFact.com, and as

secondary sources we mention CNN or NYTimes.

There are also a multitude of datasets that cross the barrier of authentic news -

inauthentic news, resorting to style and content details and annotating data more precisely,

10

such as: mostly-true, barely-true, unverified rumour, half-true, false rumor or check-worthy

factual sentence. These fine differences between the texts obviously made the task more

difficult but lead to more representative results. The length of the datasets varies from only

360 to over 9 millions of examples, fact which influences their performance. As it is easier

to recognize patterns from a low number of very specific news, if the corpus is more general

then a reduced number of texts may lead to poor results. On the other hand, very large

datasets are hard to process as they need important computational resources.

11

Table 1 Analyze of existing datasets

Lang. Dataset / Article Dimension News type Labels Performance metric

E

N

G

L

I

S

H

Predicting information credibility in time-

sensitive social media

(Castillo, Mendoza, & Poblete, 2013)

1.873.000

messages

Twitter posts Credible/ Not-Credible 89.90% F1-score

A Model for Identifying Misinformation in

Online Social Networks

(Antoniadis, Litou, & Kalogeraki, 2015)

59.660 users &

80.294

messages

Twitter posts Credible/ Misinformation 78.00% F1-score

Detect rumors in microblog posts using

propagation structure via kernel learning

(Ma, Gao, & Wong, 2010), (Rum Detect, 2010)

450.150 users

and 2.308

messages

Twitter posts Non-Rumor/ False

Rumor/ True Rumor/

Unverified Rumor

73.20% Accuracy

BuzzFeed-Webis Fake News Corpus 2016

(Potthast, Kiesel, Bevendorff, Stein, &

Reinartz, 2018), (BuzzFeed-Webis Fake News

Corpus, 2016)

1.627 articles News articles (ABC News,

CNN, Politico, Addicting

Info, Occupy Democrats,

The Other 98%, Eagle

Rising, Freedom Daily,

Right Wing News)

True/ False/ Mix 75.00% Accuracy

Fake News or Truth? Using Satirical Cues to

Detect Potentially Misleading News.

(Rubin, Conroy, Cornwell, & Chen, 2017),

(Satirical Fake and Legitimate News Dataset,

2016)

360 articles News articles (The Onion,

The Beaverton, The Toronto

Star, The New York Times)

Satirical Online News/

Legitimate Online News

93.00% Accuracy

Toward Automated Fact-Checking:

Detecting Check-worthy. Factula Claims by

Claim Buster

(Hassan, Arslan, Tremayne, & Li, 2017)

20.788 phrases News articles (PolitiFact,

CNN)

Non-Factual Sentence/

Check-worthy Factual

Sentence/ Unimportant

Factual Sentence

72.00% Accuracy

12

“Liar, Liar Pants on Fire”: A New

Benchmark Dataset for Fake News Detection

(Wang, 2017), (LIAR Dataset, 2017)

12.800

statements

News articles

(PolitiFact)

Pants-fire/ False/ Barely-

true/ Half-true/ Mostly-

true/ True

27.40% Accuracy

Fake News Corpus

(FakeNewsCorpus, 2020)

9.408.908

articles from

over 745 fields

NYTimes, WebHose English

News Articles

Fake/ Satire/ Bias/

Conspiracy/ State/

Junksci/ Hate/ Clickbait/

Unreliable/ Political/

Reliable

-

Fake and real news dataset

(Fake and real news dataset - Classifying the

news, 2019)

44.898 articles News articles True/ Fake 99.87% Accuracy

Fake News

(Fake News - Build a system to identify

unreliable news articles, 2018)

114.061 articles News articles True/ Fake 99.03% Accuracy

Fake News Detection Challenge KDD 2020

(Fake News Detection Challenge KDD 2020.

Develop a machine learning algorithm to detect

fake news, 2020)

6.234 articles News articles True/ Fake 84.00% Accuracy

S

P

A

N

I

S

H

The Spanish Fake News Corpus

(MEX-A3T: Fake News and Aggressiveness

Analysis, 2020)

971 articles News articles True/ Fake 84.44% F1-score

The Spanish Fake News Corpus + Covid-19

(FakeDeS: Fake News Detection in Spanish

Shared Task, 2021)

1.544 articles News articles True/ Fake 76.66% F1-score

13

2.2 Analysis of News Content

The detection of an article’s truthfulness based on its content and meaning is a current

difficult NLP problem. Despite being widely used, the solutions that are available nowadays

are very specific and do not work in general cases. However, they have safer results than their

predecessors because they focus on the problem, not on its source. There are three major

complementary directions that lead to promising results:

 Knowledge-based approach - uses a priori knowledge

 Machine Learning approach – uses automatic learning of extracted linguistic patterns

from news content

 Hybrid approach – combines Knowledge-based and Machine Learning techniques

2.2.1 Knowledge-based Approaches

 As expected, the most human-appropriate way to detect false news is to try to verify

the truthfulness of the statements based on another ones. That’s why researchers start using a

priori recognized knowledge in their solutions. This technique of retrieving information uses

an existing body of collective human knowledge to determine the truth value of new

statements. The main advantage of this direction is that beside a label, it may also offer an

explanation. There are two main categories for the knowledge-based methods that will be

detailed in the following sections.

A Human Oriented Fact Checking

Initially, people have chosen a manual approach based on their knowledge in various

fields. Depending on the author of the final label, this category can be split in: Expert

Oriented Fact Checking and Crowd Sourcing Oriented Fact Checking.

Mainly, the first method requires experts to evaluate the accuracy of a news through

research and study of the subject from nonpartisan data sources. The process is

straightforward, meaning that a fact is labeled as certain after comparing its accuracy to one

of an already fact-checked news. In 2014, Vlachos and Riedel described the entire process of

expert-oriented fact checking which is decomposed in four steps: extract statements, define

relevant questions, obtain answers from valid sources, and establish a verdict (Vlachos &

Riedel, 2014). Important fact checking services like Snopes (https://www.snopes.com/) and

PolitiFact (https://www.politifact.com/) offer quality services in this direction. Expert

oriented fact checking requires a huge amount of work and time which cost when false

information is spreading. Moreover, due to frequent changes of the news publication nature,

the generation of huge amount of content and the diversity of formats and genres, this

solution does not fit for new fake content.

Regarding the other category, crowd sourcing offers a unique opportunity to users,

meaning: the possibility of discussing the truth label assigned. In this way, people have the

chance to evaluate piece after piece and to signal eventual mistakes of annotation. One

available website which provides this at the moment is Fiskkit (https://www.fiskkit.com/).

https://www.snopes.com/
https://www.politifact.com/
https://www.fiskkit.com/

14

The downside here is that these solutions entirely rely on the wisdom of the public users

(Ahmed, Hinkelmann, & Corradini, 2019).

B Computational Oriented Fact Checking

 As fact checking solutions governed by human beings are time consuming, automatic

systems that identify fabricated content using external structured information (e.g.: Freebase,

Google’s Knowledge Graph, DBpedia) represent the alternative. For very specific areas,

knowledge graphs and ontology-based solutions can lead to promising results.

In 2016, the group of Shi et al. taggled the task of fake news detection in the paper

“Fact Checking in Heterogeneous Information Networks”. The authors defined this problem

as a link-prediction task in a knowledge graph. Their knowledge graph base was composed of

a high number of triples - (head entity, relation, tail entity) – which represented facts. The

model used both entity and predicate information to test validity. It extracted discriminative

paths from DBpedia and SemMedDB to validate the truthfulness of a statement (Shi &

Weninger, 2016). For example, for the statement “Barack Obama is a Muslim”, the extracted

path would have been Barack Obama - Columbia University - Association of American

Universities - Canada - Stephen Harper - Calgary - Naheed Nenshi - Islam (Ciampaglia, et

al., 2015). The evaluation step included thousands of claims from different domains.

Later, the group of Pan came with a solution which generates three knowledge graphs

from: a fake news article base, DBpedia and a true reliable news article base. Then, they used

a single B-TransE model to embed the entities and the relations. A binary TransE model was

trained on each of them, and the results were compared, the best one being an 80% F1-score

(Pan, et al., 2018). This model, as any other from this category, assumed that all needed

information was in the graph, but this is not a realistic hypothesis, as even the largest base is

incomplete. The group of Etzioni presented a prediction algorithm that use knowledge and

semantic web data to determine erroneous information in documents on the Internet (Etzioni,

Banko, Soderland, & Weld, 2008). The paper also introduced a new extraction system, Open

IE, that was capable of deriving tuples after only a pass over the corpus and without any

human intervention.

Lin et al. presented a new method based on discriminant subgraph structures. The

authors generalized graph fact checking rules (GFCs) into ontological graph fact checking

rules (OGFCs) by adding ontological closeness and topological constraints. Moreover, they

described a supervised pattern discovery algorithm to find this kind of rules. This design

generated relevant subgraph patterns and dynamically selected patterns from a stream with a

small update cost per pattern. They tested their proposal against a real-world knowledge base

to evaluate the efficiency (Lin, Song, & Wu , 2018) .

There are several other “network effect” variables that can be used to calculate

probabilities of truth. Recently, the group of Gupta proposed a study of fact checking using

information crawled from Wikipedia and organized in tables. They studied frequent topics

and themes in false content, emotions transmitted to the readers and metrics from network

analytics. In the undirected graphs that they built; the nodes represented bigrams while edges

were indicating if two nodes coexist in a single article. These strategies were applied over

15

2.049 untrusty texts and 12.490 real news on which they obtain promising results (Guptaa,

Lib, Farnoushc, & Jiang, 2022).

In 2020, at the start of the pandemic crises, deceptive information was a real problem.

Adrian Groza used Description Logics (DL) and a COVID-19 ontology to detect not-trusted

information. He converted both trustworthy and untrustworthy content to DL using FRED

converter, while the reasoning process was made with Racer. The approach was

straightforward: if there existed a conflict between a new myth and the scientific content or

between it and the ontology structure, then the piece of news was labeled as fake (Groza,

2020).

Overall, the success of knowledge-based models has been measured by their ability to

assign high truth values to true statements, and the outcome may even reach 95% accuracy on

specific domains and datasets (Ciampaglia, et al., 2015). However, there are some limitations

in this approach, including the fact that statements must be in a pre-existing knowledge base.

Also, the solution is static, and the information need to be constantly updated.

2.2.2 Machine Learning Approach

Machine Learning (ML) approaches focus on finding similar patterns that occur in

false texts. Nowadays, this direction is the most plausible and common method for detecting

the authenticity of a piece of news. Over time, various ML solutions were proposed and

analyzed, so we just focus on those relevant for our approach. As mentioned earlier, the issue

of fake content detection is in most cases treated as a classification problem.

A Classical Models

Some of the initial approaches for untrustworthy content detection include basic

algorithms from supervised learning area. Their versatility and ease of understanding make

them facile to be used in combination with different linguistic and structural features

extracted from the text. These solutions achieve very good results in predicting the low

credibility in texts and establish a promising state of the art.

In 2009, Mihalcea and Strapparava used Naïve Bayes (NB) and Support Vector

Machine on a dataset created with fake news intentionally written by people. More exactly,

real news was similarly rewritten, in a journalistic manner, but false. The paper proved that

Naïve Bayes classifies according to the accumulated evidence of the correlation between a

certain variable (e.g.: syntax) and the others present in the model by achieving an average

accuracy of 70.8%. The SVM model had a similar result, a performance accuracy of 70.1%

was found in terms of detecting erroneous information (Mihalcea & Strapparava, 2009).

Later, the paper “Fake News or Truth? Using Satirical Cues to Detect Potentially Misleading

News” revolutionized by taking into account satirical news features (absurdity, humor,

grammar, negative affect and punctuation). With TF-IDF and SVM, they improved the

performance obtained by Mihalcea and registered an 82% accuracy, proving that deep syntax

and grammatical patterns may be good detectable signs of falsity (Rubin, Conroy, Cornwell,

& Chen, 2017).

16

Wang tried to introduce SVMs models into multi-class classification of fake news

articles. In 2017, he proposed a dataset that contained six hierarchical labels of veracity and

used it with word embeddings extracted with Word2Vec and classical ML algorithms like

SVM or Logistic Regression (LR). Even though their results did not exceed 25.5%, they were

very similar to performance metrics from more complicated classifiers applied on their

dataset (Wang, 2017). The group of Alhindi presented similar solutions on the same corpus

with the same models, SVM and LR, but with poorer results (Alhindi, Petridis, & Muresan,

2018). After they combined text with extra features such as: justification of the label or

metadata, their system achieved even 37% accuracy for 6-classes and 67% for the binary

case. More recently, Brașoveanu and Andonie presented the results of other classical

algorithms like Naïve Bayes, Decision Tree, and Random Forest with embeddings on the

same complicated dataset (Brasoveanu & Andonie, 2019). The latter was the solution which

had the best performance score out of these three, 24.9% accuracy.

In 2019, Perez-Rosas et al. created two datasets and used SVM for misinformation

detection. The authors used various grouping methods and point distance functions for the

model to actively influence the accuracy obtained. Also, the group tested different linguistic

features like n-grams (unigrams, bigrams), punctuation (commas, periods, dashes, question

marks, exclamation marks), psycholinguistic features (LIWC lexicon to extract the

proportions of words that fall into psycholinguistic categories) and readability (number of

characters, number of paragraphs). To obtain a deeper analysis of the structure of language,

namely the syntax, they extracted a set of features derived from production rules based on

context free grammars trees (CFG) using the Standford Parser. This meant that beyond the

simple use of words, features were selected by transforming sentences into a set of rewriting

rules that describe the structure of the syntax (e.g.: noun and verb phrases were rewritten by

their syntactically constituent parts). The sets of rules eventually formed an analysis parser

tree. The best model on this dataset achieved an accuracy of 76% and less with 5% on a

dataset with fake news taken from the web, proving the usefulness of linguistic features in

fake news detection (Perez-Rosas, Kleinberg, Lefevre, & Mihalcea, 2019).

Despite having very good results, classical ML algorithms may encounter problems in

the learning process if the number of features is large or the data is very similar between

classes.

B Deep Learning

Classifiers based on neural networks solve the limitations of those mentioned above

and perform better. Mainly, in working with texts, the Recurrent Neural Networks (RNN) had

a great boost. Their advantage was that, at each step, they considered the internal state of the

previous one. Thus, a word influenced the words nearby, and the weights were adjusted

considering this aspect in the backpropagation process. NLP took another step forward with

the advent of Long Short-Term Memory (LSTM) architecture which removed the

disadvantage of RNN, namely the influence of only nearby words.

In 2017, Rashkin et al. proposed a GloVe and LSTM solution that took the sequence

of words and classified it. As they worked with data crawled from PolitiFact.com, a fact-

17

checking website that categorizes the text in six classes, the authors proposed both a multi-

class classifier and a binary-classifier. The final architecture that used frequency features

achieved on the test dataset a F1-score of 20%, respectively 56%. Overall, when LIWC

features were introduced, their baseline solutions with TF-IDF and Naïve Bayes or Maximum

Entropy had similar or even better performance metrics than LSTM for both cases (Rashkin,

Choi, Jang, Volkova, & Choi, 2017).

Different variants of this architecture like: Tree LSTM, BiLSTM or Gated recurrent

units (GRU) had appeared and gave even better results. All these designs were a revelation at

the time of their emergence, surpassing the convolutional neural network (CNN) on the NLP

side and becoming the new benchmark (baseline). One exception is the paper written by

Wang in 2017. He presented a CNN architecture that obtained the highest performance in the

multi-label classification task, surpassing all types of RNNs. Taking into account only the

content of the news and representing it into word embeddings, he achieved an accuracy of

approximately 27% (Wang, 2017).

Also, there were several innovating mixed approaches. In 2018, the paper “Multi-

source multi-class fake news detection” detailed CNN and LSTM methods to merge different

text-based features in order to detect low-veracity content (Karimi, Roy, Saba-Sadiya, &

Tang, 2018). Last year, Aslam et al. proposed an architecture that uses BiLSTM and GRU

layers to detect the fake and real news from the LIAR dataset. Although the original dataset

paper mentioned that BiLSTM tends to overfit this corpus, they managed to find a version of

the algorithm that scores approximately 90% accuracy for binary classification (Aslam,

Khan, Alotaibi, Aldaej, & Aldubaikil, 2021).

Ruchansky et al. proposed a model called CSI – Capture, Score, Integrate - composed

of three modules which: capture temporal pattern of user activity (Recurrent Neural

Network), learn characteristics based on user behavior (a fully connected layer) and classify

the article (Decision Tree, Support Vector Machine, Long Short-Term Memory, Gated

recurrent units). This solution tried to combine the text itself with information about users’
response and reaction. It was tested on real-world corpuses (Twitter, Weibo) and achieved

higher results than the existing state of the art, 89.20% accuracy, respectively 95.30%

(Ruchansky, Seo, & Liu, 2017).

The latest approach that workes very well and seems to dethrone LSTM neural

networks is represented by Transformers networks. They have an attention mechanism that is

able to retain long-term dependencies in the case of very long statements and capture the

meaning of an entire sentence. In 2019, the news from PolitiFact came again to researchers’
attention through the LIAR dataset. Brasoveanu and Andonie combined machine learning and

semantics in a high-performant model. They tried a series of classic and deep learning models

together with the text itself, speaker information, context, semantic features (sentiment

polarity, sentiment subjectivity, entities, links, relations) and syntactic features. They

managed to propose architectures with BiLSTM Attention and GRU Attention that avoid the

problem of overfitting and obtain between 50-55% accuracy on multi-classification. Their

best model used all additional information and achieved an improved performance of 64.4%

with CapsNet (Brasoveanu & Andonie, 2019).

18

In “Overview of FakeDeS at IberLEF 2021: Fake News Detection in Spanish Shared

Task”, the winner solution described an architecture based on BERT and Sample Memory

with an attention mechanism which scored 76.57% accuracy (Gomez-Adorno, Posadas-

Duran, Enguix, & Capetillo, 2021). In 2022, Raza and Ding launched a framework, FND-NS,

based on a Transformer architecture. The authors adapted the BART model for fake news

detection and trained models only with news content or combined with additional social

context. The model was tested on two datasets, NELA-GT-19 and Fakeddit, and scored

74.8% accuracy (Raza & Ding, 2022).

There are also other approaches than have not been very exploited until now. For

instance, the paper “Detecting Fake News with Sentiment Analysis and Network Metadata”

integrated sentiment analysis, an area of research that identify opinions or emotions

expressed directly or indirectly in texts, in the problem of fake news detection. The idea

pursued is intuitive, namely: the authors of inauthentic articles use emotional, unintentional

communication, subjective judgments, or assessments of emotional state at the time of

writing. Thus, syntactic models can distinguish between sentiment and fact-based arguments

by associating a learned argumentation style class. Specifically, those who wrote false and

negative articles used excessive terms of emotion compared to those who wrote truthful

reviews, thus exaggerating the feelings they wanted to convey. The creators looked in general

for polarity and subjectivity. Their ML sentiment solution combined with a Random Forest

classifier achieved a F1-score which exceeds 88% (Shrestha, 2018). Although it obtained

high performance values, it tended to have a low generality, leading to poor results when

detecting false information in real cases.

More recently, Anoop et al. targeted untrustworthy content detection on different

kinds of affective characteristics that appeared on fake and true health news articles. Emotion

features were combined with classical and deep learning models, proving that this kind of

information led to improved accuracy for all classifiers (Anoop, Deepak, & Lajish, 2020).

For the Covid-19 pandemic, the authors found a pattern of emotional content in narratives

that supported the use of this method in stopping misinformation dissemination. This

approach is based on the use and analysis of language and is very promising, especially in

hybrid combinations.

2.3 Hybrid Approaches

 New most studies combine machine learning and knowledge techniques in innovating

architectures in order to obtain better results for certain datasets. All the previous techniques

can be combined into hybrid systems that solve the weaknesses of each individual method.

In 2021, in the paper “Knowledge Enhanced Multi-modal Fake News Detection”, the

authors detected dishonest content through a subgraph classification task. They converted

each news into a knowledge graph. Analog, each subgraph was a news item. Finally, Han et.

al trained a graph neural network to categorize each subgraph (Han, Silva, Luo, &

Karunaseker, 2021). The method achieved accuracy higher than 85% for two different

datasets.

19

Hu et al. (2021) came with CompareNet, an end-to-end graph neural model. Starting

from the news content and its topic, they built a directed heterogeneous document graph for

each article using Latent Dirichlet Allocation (LDA) and TAGME3 tool. Based on it, the

authors proposed a heterogeneous graph attention network to learn news representation for

every topic and contextual entity representations that encode the semantics of the news

content. The contextual representations were later compared to the corresponding entities

from the knowledge base. Finally, the topic-enriched news representation combined with the

entity comparison features were fed into a classical fake news classifier (Hu, et al., 2021).

Experimental results on two benchmark datasets demonstrate that CompareNet significantly

outperformed state-of-the-art methods. In 2021, Shakeel and Jain described a solution with a

Fast-TransE model and machine learning algorithms (SVM and LR). This system achieved

an F1-score of approximately 82%, a very good result for an approach that incorporates

knowledge graphs (Shakeel & Jain, 2021).

Mayank et al. (2022) proposed a solution which combined the encoded news content

with a Knowledge Graph (KG). Its architecture included three parts:

 News encoder (2-layer stacked BiLSTM): applies contextual encoding on the title

 Entity encoder: finds named entities in title and encodes them using KG

 Classification layers (multi-layer perceptron): use the other two components to

perform classification

The entity encoder represented the hybrid part with its sub modules: Named Entity

Recognition (RoBERTa), Named Entity Disambiguation (connects the identified entity with

the most similar one from Wikidata Knowledge Graph), Knowledge Graph embedding

(applies encoding ComplEx algorithm on KG to represent it in complex space) and Entity

encoder aggregation layer (aggregates the entities’ representation). The model which used

only news titles was evaluated on two different datasets and achieved an F1-score of 88%,

respectively 78% (Mayank, Sharma, & Sharma, 2022).

Starting with 2017, an automatic tool, ClaimBuster, is available to people, being an

example of how good fit are machine learning techniques together with natural language

processing and knowledge databases. Its strong point is that it is powerful enough to analyze

in real time social contexts, speeches, and interviews. After finding a set of facts, this system

compares them with already verified ones from a knowledge repository, establishes a label

and delivers the result (Hassan N. , Arslan, Li, & Tremayne, 2017).

In these types of models, the use of metadata can improve the results in establishing

the degree of veracity. The most frequent approaches include using hyperlinks, associated

metadata about context or information about the author (Chu, Gianvecchio, Jajodia, & Wang,

2010).

20

3 Method

This thesis explores and compares different solutions for inauthentic content

detection. Our approach is divided into three main stages: pre-processing data, extracting

features and classification of the input. In the next sections, we will present what different

methods we tested for each one of the steps.

3.1 Dataset

We focus on applying supervised learning techniques. For that, we use an annotated

body of text, LIAR Dataset (Wang, 2017). It contains short English statements extracted from

the PolitiFact.com website, which are labeled with a certain level of trust based on a detailed

explanation. Having public and accessible data, any necessary information is one click away.

Moreover, the dataset can be enlarged at any time by collecting more data from this fact-

checking site, which can only benefit our analysis.

LIAR contains a total of 12.800 entries, a size large enough to support complex

models. It has an extensive number of classes, which allows the analysis of a more detailed

classification. Each one of the labels claims if the statement is accurate or not, if there is any

data missing and eventually the ridiculousness of the claim (Holan, 2018).

At the same time, the large number of classes raises the difficulty of the problem and

automatically the performances obtained are lower, but closer to reality. The methods that are

analyzed will be tested on 6-labels classification, but also on 2-labels classification. In the

latest case, we group the classes “true”, “mostly-true” and “half-true” as a unique class

“TRUE”, while the others, “mostly-false”, “false”, “pants-fire” as “FAKE”.

The annotation of the information is done manually, by specialists with knowledge in

the field. More exactly, one reporter researches a fact-check, suggests a rating, and writes a

motivation with strong arguments that sustains its label. After that, the reporter and an

assigned editor review the report, its authenticity, its weak and strong points, and fix

eventually leak of details or contradictions. When they agree on the rating, two additional

editors are included in the process. In order to choose the final label, the following questions

must be answered by the three editors and the reporter (Holan, 2018):

-T
R

U
E

-The statement
is accurate and
there’s nothing
significant
missing.

-M
O

S
T

L
Y

 T
R

U
E

-The statement
is accurate but
needs
clarification or
additional
information. -H

A
L

F
 T

R
U

E

-The statement
is partially
accurate but
leaves out
important
details or takes
things out of
context.

-M
O

S
T

L
Y

 F
A

L
S

E

-The statement
contains an
element of
truth but
ignores critical
facts that
would give a
different
impression.

-F
A

L
S

E

-The statement
is not accurate.

-P
A

N
T

S
 O

N
 F

IR
E

-The statement
is not accurate
and makes a
ridiculous
claim.

Figure 1 Explanations of labels

21

 “Is the statement literally true?”

 “Is there another way to read the statement? Is the statement open to interpretation?”

 “Did the speaker provide evidence? Did the speaker prove the statement to be true?”

 “How have we handled similar statements in the past? What is PolitiFact’s

jurisprudence?”

Finally, the three editors vote on the rating, the majority is always wining. After some more

edits, the final report is published on the website.

Another aspect that represents an interesting point and motivates the choice of this

corpus is the fact that besides the actual statements, LIAR contains some information about

the context. In some approaches, this additional data may be used as extra features to improve

the performance of the solution and even to explain the proposed label. The supplementary

columns that may be used in future experiments are as follows:

 Subject (the subject of the statement)

 Speaker (source of statement)

 Speaker job title (source job title)

 State info (state of source)

 Party affiliation

 Barely true counts (the number of barely-true statements made by that source)

 False counts (the number of false statements made by that source)

 Half true counts (the number of half-true statements made by that source)

 Mostly true counts (the number of mostly-true statements made by that source)

 Pants on fire counts (the number of pants-fire statements made by that source)

 Context (location where the statement was made)

Before building an actual model, we did some dataset analysis to better understand its

structure and distribution, and to see how diverse and biased it is. The corpus is already split

in the usual parts: training, validation, and testing. As a distribution of data in all three parts,

it is relatively balanced between 5 classes: “barely-true”, “false”, “half-true”, “mostly-true”

and “true”, the only exception being the “pants-fire” class which has significantly fewer

examples.

Table 2 Label distribution for multi-label classification

 Training Validation Testing

True 1.676 169 208

Mostly-true 1.962 251 241

Half-true 2.114 248 265

Barely-true 1.654 237 212

False 1.995 263 249

Pants-fire 839 116 92

22

Table 3 Label distribution for binary classification

 Training Validation Testing

True (true, mostly-true, half-true) 5.752 714 668

Fake (pants-fire, false, barely-true) 4.488 553 616

Regarding the extra metadata, we evaluated the set of possible values for each column

and observed, in most cases, a high cardinality in the training data and a slightly lower

number in the validation corpus. Also, for some columns, the validation partition includes

just a part of the set of possible values of the same column from the training slide, plus new

unseen values. Therefore, in the validation step, the model encounters information which

does not know how to interpret, aspect which hinders the learning process.

From the point of view of the frequency of each value of each category, we draw

some conclusions. Firstly, the main persons cited in the dataset are politicians (e.g.:

republicans, democrats, independents, activists), their statements representing more than half

of the dataset. Secondly, from the point of view of the diversity of topics covered, it emerged

that the most common statements fall into the categories: “economy”, “health-care”, “taxes”,

“federal-budget”, “education”, “jobs”, while the least common in fields like “autism”, “death

penalty”, “food”, “homeless”, “fires”. As expected, the dataset focuses on serious topics,

treated in today's society and not on artificial or superficial subjects.

Table 4 Cardinality of metadata columns

Column Partition Number of unique values per column

Speaker Training 2.911

Validation 661

Common 446

Context Training 3.874

Validation 729

Common 364

Job Training 1.108

Validation 285

Common 208

Party Training 23

Validation 15

Common 15

Subject Training 143

Validation 132

Common 132

State Training 69

Validation 46

Common 46

23

This dataset has gain popularity over time, being used in different scientific reports

and solutions. Our purpose is to determine the falsity of a news depending on its content, no

other metadata. The reason for this decision is that, in most real-life cases, additional

information will not be available for new articles. Therefore, our point of comparison is

represented by papers that adopt the same approach.

We made a detailed selection of the highest performances we found for different

solutions that were used over time. In the original dataset paper, several tested methods and

their associated results are presented for 6-labels classification. The scientific article aimed to

analyze what models and techniques of natural language processing fit on this corpus. Two

important directions were highlighted, namely: text analysis itself and text analysis along

with other available information (Wang, 2017). For the first case which interests us, the best

results on the testing corpus were obtained for a convolutional network (27%), respectively

for a simpler algorithm, Support Vector Machines (25.50%).

The group of Alhindi presented similar solutions but with lower performance metrics

(Alhindi, Petridis, & Muresan, 2018). Their innovation was in models that integrate the

justification of the label and improve results, but we don’t compare to that direction.

Brasoveanu and Andonie obtained similar results for classic designs and recurrent neural

networks, while their attention-based solutions reached accuracy between 40-50%.

Unfortunately, they did not give enough details about their complex implementations to allow

us to directly compare with them – we marked this in Table 5 through “?” symbol. Moreover,

they proved that introducing more attributes and relations can lead to an accuracy of almost

65% (Brasoveanu & Andonie, 2019).

Various features are tested over time, from surface level indices to n-grams or word

embeddings. They are combined either with simple ML architectures or more complex

solutions, but overall, Word2Vec led to the highest accuracy for the test partition.

Table 5 State of the art results for multi-classification

Paper Features Model Validation

(%)

Testing

(%)

(Wang,

2017)

Surface-level linguistic

patterns extracted with

LIBSHORTTEXT toolkit

(binary feature/ word count/

term frequency/ TF-IDF)

SVM 25.80 25.50

Word embeddings (Word2vec

pretrained embeddings from

Google News)

BiLSTM 22.30 23.30

CNN 26.00 27.00

(Alhindi,

Petridis, &

Muresan,

2018)

Unigram features LR 23.00 25.00

24

(Brasoveanu

& Andonie,

2019)

Word embeddings (Word2vec,

GloVe, FastText)

Multinomial

Naïve Bayes

- 23.00

SGDClassifier - 22.90

Random Forest - 24.90

Decision Tree - 22.60

Basic LSTM - 22.50

BiLSTM

Attention?

- 40.80

GRU Attention? - 46.00

CapsNet? - 55.50

There are multiple papers that address this dataset from a binary point of view. Most

of them group three out of six classes as true and the rest as fake. From Table 6, it can be

observed that classical ML algorithms and recurrent neural networks achieve similar results

in all papers, between 50-60%. The group of Aslam proposed a solution that combines

BiLSTM with GRU and obtained a very good score (89.90%). In 2002, Yazdi et al. described

a system which selects the most relevant and different features to be used through K-means.

Afterwards, simple algorithms are used to achieve more than 90% accuracy. Unfortunately,

these last two papers do not provide enough information about how they obtained the two

classes from the six original ones, how they split and grouped the classes, so their results are

hard to be reproduced or even directly compared with - aspect marked with the same “?”

symbol in Table 6.

For the binary case, there are more directions both in terms of classifiers and their

associated features than for the first case. From the table below, we can see that lexical and

sentimental traits did not bring enough information for the models to learn differences

between classes. While n-grams and static word embeddings had similar results,

contextualized embeddings set the highest performance of 62%.

Table 6 State of the art results for binary-classification

Paper Features Model Validation

(%)

Testing

(%)

(Alhindi,

Petridis, &

Muresan,

2018)

Unigram features LR 58.00 61.00

SVM (linear) 56.00 59.00

Word embeddings

(GloVe)

BiLSTM 59.00 60.00

(Khan,

Khondaker,

Lexical

(word count, average word length,

Decision

Tree

- 51.00

25

Afroz,

Uddin, &

Iqbal, 2021)

count of numbers, count of parts of

speech, count of exclamation

marks)

& Sentiment (positive/negative

polarity)

AdaBoost - 56.00

n-grams

(TF-IDF of word-based uni-gram

and bi-gram)

Naïve Bayes - 60.00

Lexical categories Empath

(Empath tool - e.g.: violence,

crime, war)

k-NN - 54.00

Word embeddings

(GloVe)

CNN - 58.00

LSTM - 54.00

C-LSTM - 54.00

HAN - 57.00

Conv-HAN - 59.00

Word embeddings

(RoBERTa)

Feed-

Forward

- 62.00

(Aslam,

Khan,

Alotaibi,

Aldaej, &

Aldubaikil,

2021)

Word embeddings

(FastText “cc.en.300.vec”

pretrained vector)

BiLSTM –
GRU?

- 89.90

(Yazdi, et

al., 2020)

N-grams

(average of 10 executions of

feature selections – uni-grams)

K-means +

SVM?

- 94.19

K-means +

Decision

Tree?

- 92.58

K-means +

Naïve Bayes?

- 91.64

26

3.2 Text Pre-processing

As mentioned before, in this document, we analyze different methods of fake news

detection from a machine learning point of view. At the base of this process is the way the

machine interprets the text, meaning how words are converted to a numerical format. In

general, in order to have a good representation for the feature vector, certain pre-processing

operations are required. Their combination is debatable, depending on the problem itself and

the available data as in some cases inappropriate operation may lead to loss of information.

The processes that we applied on our input in our experiments are among the most frequent

and are summarized in Figure 2.

As our dataset contains short statements, the input need segmentation only at sentence

and word level. Also, we apply tokenization which supposes the extraction of units that

contain individual information, such as: “San Francisco”, “school”, “girl”. They can be

represented by a single word or by several. We cut out all the words without informational

gain, that includes the most used keywords in a language. As our corpus is written in English,

tokens as “and”, “I”, “so”, “of”, “in”, “a”, “an” are removed. Our hypothesis is that very

common words will not change the degree of truthfulness of the whole statement. Their

elimination is common in natural language processing problems which do not involve the

analysis of feelings as it is our case.

After that, we want to focus only on alpha characters, so we delete any other noise

like numbers or punctuation marks. Likewise, we afford to do that despite the same limitation

for emotions, subjectivism, sentimental involvement which also applies for these elements. In

plus, some punctuation marks may be confusing as they are used in different situations. For

instance, the dot has multiple usages: at the end of the sentence, in numbers (3.14), in other

punctuation marks (…) or in acronyms (U.S.A.). Another example would be the hyphen

which may be a sign for a dialogue replica (- Hello!), a union of two words (pre-processing)

or an explanation (Barack Obama – the president of U.S.A. – voted against….). Discarding
these items will help the classifiers in the process of learning.

In order to have a uniform input, the next step of normalization is lowercasing.

Finally, stemming and lemmatization are used to reduce the number of different words in the

text and to unify derived or articulated words. By applying them, the words are reduced to

their basic form (root). We experiment with both procedures to find which one achieves

better results. The difference between them is that lemmatization draws a valid root, reducing

Figure 2 Pre-processing operations applied on LIAR Dataset

27

the word to its dictionary form (e.g.: has → be). Unfortunately, it involves a longer process

because each word must be POS-labelled at first. In contrast, stemming does not always

extract a valid root identical to the morphological form of the word (e.g.: believing →
believ). In plus, sometimes, more letters than would be desirable are removed but this form is

usually sufficient. We applied the Porter's stemmer, which removes common suffixes and

prefixes (e.g.: “-ing”, “-ed”, “-ness”, “-less”, “un-“).

To exemplify the pre-processing steps, we take a sentence from the test partition, and

we go through all the stages:

“Building a wall on the U.S.-Mexico border will take literally years.”

↓

“build wall usmexico border take liter year”.

3.3 Features

 Once the text is in a normalized form, different features can be extracted. The process

of extracting characteristics from the news is an incremental one. It aims to choose various

information and combine them in order to best describe the original text. In the process of

experimenting with different variants to find the solution that offers the best accuracy for the

problem, four directions were tested: bag of n-grams with TF-IDF, static word embeddings

(Word2Vec, GloVe), contextualized word embeddings (BERT, DistilBERT) and stylometric

features.

3.3.1 Bag of n-grams

The simplest method of converting text into numerical format is the bag of n-grams, a

way that represents each sequence of n tokens as an individual unit, independent and equally

significant with the others. This approach is the most natural way to start the analysis, as it is

well known that fake articles tend to use different words than real ones, generally words with

a powerful emotional impact. Thus, we try to find a correlation between the importance of

words from a text and its degree of confidence. For this paper, we choose to analyze the

statements as bags of 1-grams and 2-grams. In order to remove any useless noise from the

text, we applied the operations described in the previous section: numbers removal,

punctuation marks removal, lowercasing and stop words removal. The structural features that

were extracted afterwards were at words, lemmas, and stems level.

This approach involved creating a vocabulary with sequences of n tokens extracted

from all the documents. Each document was represented as a feature vector that has a

frequency associated with each item from the vocabulary. The frequency was computed using

Term Frequency - Inverse Document Frequency (TF-IDF). As the name suggests, the TF-IDF

of an element is calculated as the product of its number of occurrences in the document (term

frequency), and how common the term is in all documents (inverse document frequency).

The advantage of this method is that it limits the importance of very frequent syntagms as

28

they have a lower informative content than those that appear in a smaller portion of the

document set.

Bag of n-grams comes with several disadvantages such as: vocabulary terms are

isolated from the context, the meaning and position of the grams become non-existent, and

the relationships between words and sentences are ignored. For TF-IDF, the detriment is that

produces rare and large vectors.

3.3.2 Static word embeddings

The first hypothesis we started with was that the frequency of tokens is more

important than the relationships between words, sentences, or context. This is a rather

restrictive approach, so for the second method of extracting features we take into account the

similarity between words and use word embeddings. So, if in the previous section, the words

were represented as rare and long vectors, in this subchapter they are represented as dense

vectors of small dimensions. Over time, dense vectors have been shown to work better than

rare ones in most NLP tasks, including fake news detection. Some of the reasons include: an

easier and more efficient training as the number of weights is smaller, a smaller space of

parameters that helps to generalize and avoid overfitting and better management of

synonymy.

A Word2Vec

In this regard, we use Word2Vec, a technique based on a 2-layer neural feed-forward

network described in the paper “Efficient Estimation of Word Representations in Vector

Space” (Mikolov, Chen, Corrado, & Dean, 2013). The model has two architectural variants:

continuous-bag-of-words (predicts the current word based on a neighboring word window)

and skip-gram (uses the current word to predict the neighboring word window). The number

of words considered in the window has increased over time and has led to better results.

Word2Vec is based on training a classifier on a binary prediction task. The goal is not

the prediction itself, but the learned weights that will represent word embeddings. The

obtained representations are positioned in the vector space so that the words that share

common contexts in the corpus are in the immediate vicinity of each other. Word2Vec offers

speed, efficiency of training and online availability along with pre-trained weights. A weak

point for this type of word embedding is that the representation of features is a static process,

where any word in the vocabulary has a fixed representation associated with it, regardless of

its meaning.

For pre-processing and normalizing the text that precursors the application of

Word2Vec, we applied: sentence segmentation, lowercasing, stop words removal and token

extraction. Further, we decided to train on LIAR dataset our own model using Gemsim

library. We experimented with both skip-gram and continuous-bag-of-words cases. The

parameters that we used for the Word2Vec model are:

 min_count = 1 (we kept all words from the corpus)

29

 windows = 5 (maximum distance between the current and predicted word within a

sentence)

 vector_size = 100 (word vectors length)

Final text embeddings were also limited to a dimension of 100, while null items were used to

pad shorter statements.

B GloVe

Another method of obtaining static embeddings for words that we apply on our LIAR

dataset is GloVe. This technique is an unsupervised learning algorithm based on the co-

occurrence probability ratio between words. It was discovered by researchers at Stanford

University who published the paper “GloVe: Global Vectors for Word Representation”

(Pennington, Socher, & Manning, 2014). GloVe is already introduced in various tasks which

implies finding relationships between words like synonyms or antonyms. Overall, its usage is

more frequent than that of Word2Vec, as it led to better results. Still, this method has the

same shortage, meaningly it generates a unique vector for every word, no matter how many

different meanings it may have.

GloVe is based on training a classifier on aggregated word pair statistics from a

corpus. To build the statistics and therefore the co-occurrence matrix, just one pass through

the corpus is needed. Also, in this process, only the non-zero entries of the matrix are used.

The interesting aspect of this method is that it is focused on the relationships between words,

not just their unique occurrence. Every item from the matrix shows how often a particular

pair of words occurred together in the given dataset. That means that the authors’ main

intuition when they built the model was that the co-occurrence probabilities may encode

some form of meaning.

In our case, for pre-processing and normalizing the text that precursors the application

of GloVe, we applied the same actions as in the previous case: sentence segmentation,

lowercasing, stop words removal and token extraction. Further, we decided to use a pre-

trained model on the Wikipedia 2014 and Gigaword5 datasets which contains 6B tokens for

uncased words. The dimension of the final embeddings was also limited at 100. Texts

representations with lower dimensions were completed with 0 elements.

3.3.3 Contextualized word embeddings

Contextualized embeddings are more powerful than static ones as they take into

account semantics and associate a certain representation to a word depending on its meaning

in the context. This way, same word may have different formats. We obtained our dynamic

word embeddings using transformers-based techniques. Transformers have two mechanisms:

an encoder of the entered text and a decoder that produces the prediction. The encoder is

considered bidirectional as it reads all words at once. Also, these systems have an attention

mechanism that learns the contextual relationships between words in a text, allowing a model

to consider each word from the input before making a decision. Over time it was proved that

a language model trained on this type of features can understand the language context much

better.

30

A Bidirectional Encoder Representations from Transformers (BERT)

For the third series of experiments, we adopted the alternative of contextualized

words representations through a numeric format obtained with BERT. It is one of the newest

architectures used in NLP that is based on the transformer theory. As the goal of BERT is to

encode words and generate embeddings, only the encoding mechanism from the traditional

architecture of transformer is needed. BERT was created precisely to generate deep two-way

representations of unlabeled text by jointly conditioning both contexts (right & left) in all

layers. It was trained on two supervised tasks, created from the Wikipedia corpus in an

unsupervised way: predicting previously random masked words and determining the

sequence of two sentences in a text passage. Thus, the result is a pre-trained encoder that

incorporates words while considering the context.

We used two smaller versions of BERT, as the original one included 110M

parameters and we did not have enough computational resources to fine-tune such a large

model. Also, we decided to not build a new vocabulary based on the dataset but used the pre-

trained models “bert_en_uncased_L-4_H-512_A-8” (BERT-Small) and “bert_en_uncased_L-

8_H-512_A-8” (BERT-Medium) for BertTokenizer, along with the corresponding numerical

mapping. These models had only 32M, respectively 49M parameters and were fine-tuned for

our specific dataset for 20 epochs in total. We decided to follow the same pattern and set the

maximum length of the embeddings at 100 and pad with null elements.

B DistilBERT

Another solution for dynamic representations that we opted for is DistilBERT, still a

smaller and cheaper version of BERT, but quite bigger than BERT-Small or BERT-Medium.

Its purpose is to increase computation efficiency, so the authors focused on reducing the

number of layers. This alternative general pre-trained solution reduces the size of BERT by

40%, having 66M parameters and increases the speed with 60% while keeping 97% of its

capabilities. Overall DistilBERT keeps the general architecture of its base model but at a

smaller scale. The number of layers is diminished by a factor of 2 while the pooler and token-

type embeddings are removed.

We had the same approach, meaning that we used the pre-trained version “distilbert-

base-uncased” for DistilBertTokenizerFast from HuggingFace, along with the corresponding

numerical mapping. The model was fine-tuned afterwards for our case for 20 epochs.

Numerical representations of the input were kept to maximum 100, being padded with 0 if

they were shorter.

3.3.4 Stylometric features

The last approach of extracting features does not take into account the frequency of

words, their importance or their semantic meaning, but the author’s writing style that emerges

from the text. In general, a lot of fake content generators use language strategically to avoid

being discovered. However, not all linguistic aspects are easy to control in writing, such as

the frequency of adverbs, pronoun patterns, the frequency of conjunctions, or the use of

negative words. For example, it has been concluded that people tend to use more first-person

31

pronouns in false news. Also, longer sentences are used involuntarily when trying to

convince the reader of a generally false aspect. Therefore, an attempt was made to identify

some indicators of the writing style and of the format, in order to see if they could represent a

valid direction of study and a possible solution for this task.

The starting point for this approach is the article “ReaderBench: A Multi-lingual

Framework for AnalyzingText Complexity” (Dascălu, et al., 2017), a work that presents

different indices of complexity of the text. Thus, the aim is to find a link between the way a

text is written and its degree of truth. If more complex texts contain more information and,

inherently, more diverse concepts, the assumption used is that true texts tend to have high

levels of complexity. In this regard, we use a series of features to train a new series of models

and analyze the outcomes.

For calculating complexity indices, we choose the ReaderBench tool, a complex

software product that focuses on in-depth analysis of texts from several points of view.

Specifically, it is built as an easy-to-use framework that integrates advanced natural language

extraction, processing, and analysis techniques. (Dascălu, et al., 2022). The purpose of the

ReaderBench project is much broader, being an educational system for students and tutors

that combines individual learning methods with computer-supported collaborative learning

(CSCL). In addition, this system is a high-performance system with a high degree of

reliability, being already used in several projects on the market. Its adoption on such a large

scale indicates the high quality and usefulness of these indices and encourage us to analyze

its results in false content detection.

The range of indices is quite wide, bringing together metrics related to various areas

of study such as readability, semantics, morphology, or discourse structure. Their number

exceeds 200, and if we refer to various sections such as word, sentence, paragraph or entire

document, their number increases significantly. The system classifies these indices into five

categories according to their complexity and scope (Dascălu, et al., 2017):

1. Surface Indices. They are determined only by the form of the text and are mostly

lengths, frequencies, or entropies of sentences / words. They are the easiest to

calculate and use, but at the same time they provide information only at the structure

level, not at the level of morphology or discourse. We consider these clues useful

because they can give us an overview of the diversity of present concepts and the

level of information. All these data can be indicators of veracity.

2. Word Complexity Indices. This category goes beyond the superficial analysis of

words and focuses on its internal structure. Specifically, the number of syllables, the

differences from the lemma or the root, the number of possible meanings derived

from WordNet and the specificity deduced from its depth in the lexicalized ontology

are analyzed. The larger are these metrics, the more complex the word. Prefixes and

suffixes increase the difficulty of using a word, while multiple meanings make it

difficult to deduce the ideas of a text. Also, a high presence of named entities gives

both veracity to the text and heterogeneity, requiring more cognitive resources to

understand the message.

32

3. Syntactic and Morphologic Indices. This set of metrics analyzes the text from a

broader perspective, namely at the sentence level. Thus, a complex and truthful text is

considered to have several dependencies between words and uses several main parts

of speech as nouns or verbs. These elements primarily bring textual structure, a

structure that gains the reader’s trust, but also gives a serious tone to the content. At

the same time, the distribution of pronouns can be an indication of the degree of truth

of the text.

4. Semantic Cohesion Indices. Cohesion can be defined by the various ways in which

the components of a text are interrelated. Types of links can be grammatical, lexical,

semantic, metric, or alliterative. They play a very important role in the process of

understanding a text, being basic indices in the ReaderBench structure. This tool uses

various semantic models (semantic distances in WordNets, LSA, LDA, Word2Vec),

lexical chains, and co-reference chains to calculate these strong indices.

5. Discourse Structure Indices. The indices from this category follow the evolution of

the points of view in a text by analyzing the specific connectives of the speech and the

polyphonic model. In our case, the input is represented by entries consisting of several

statements. For this length, these indices are not very significant, but they will be used

at least for some initial models until a rigorous filtering of metrics.

Table 7 Text complexity indices (D = Document, P = Paragraph, S = Sentence, W = word)

Category Description Notation Multiple classes

available

Level

D P S W

SURFACE No. words Wd No X X X

No. unique words UnqWd No X X X

No. commas Comma No X X X

No. punctuation marks Point No X X X

No. sentences Sent No X X

Word entropy WdEntr No X X X

WORD

COMPLEXITY

No. characters in a

word

Chars No X

Distance in number of

characters between

inflicted form and its

lemma

LemmaDiff No X

No. occurrences of the

same lemma

Repetitions No X X X

No. of named entities NmdEnt No X X X

Maximum depth in the

hypernym tree from

root to word sense

MaxDepth

HypTree

No X

Average depth in the

hypernym tree from

root to word sense

AvgDepth

HypTree

No X

33

Paths to the root of the

hypernym tree based on

all word sense

PathsHyp

Tree

No X

Word polysemy count Polysemy No X

No. syllables in word Syllabus No X

Age of Acquisition

scores

AoA No X X X X

Age of Exposure scores AoE No X X X X

Word valence Valence No X X X X

SYNTACTIC No. dependencies of a

certain type

Dep Yes, for all dependencies X X X

Depth of the parsing

tree

ParseDepth No X

MORPHOLOGIC No. words with specific

part of speech

POS Yes, for all PoS X X X

No. unique words with

specific part of speech

UnqPOS Yes, for all PoS X X X

Nr. specific types of

pronouns

Pron Yes, for all pronoun

types

X X X

SEMANTIC

COHESION

Cohesion between

adjacent sentences

AdjSentCoh No X X

Cohesion between

adjacent paragraphs

AdjParCoh No X

Cohesion between

paragraphs

InterParCoh No X

Cohesion between

sentences inside a

paragraph

IntraParCoh No X X

Cohesion between first

and last text element

StartEnd

Coh

No X X

Cohesion between first

and middle text

element

StartMiddle

Coh

No X X

Cohesion between

middle text element

and last one

MiddleEnd

Coh

No X X

Transition cohesion

between adjacent

sentence and paragraph

TransCoh No X

DISCOURSE

STRUCTURE

No. of connectors on

predefined categories

Connector No X X X

34

All these indices were calculated for both training, validation, and testing. An earlier

stage of pre-processing was omitted to avoid the possible loss of information. In addition, the

system performs a precursor step in word processing before calculating each metric,

depending on its type and nature.

3.4 Classical Machine Learning Models

A Decision Trees

Decision Tree classifier is one of the simplest supervised learning algorithms. It is a

classic tree structure where the root node has no input edges, while all other nodes have one.

Thus, if a node has outputs edges it is called an internal node, otherwise it is called a leaf.

Each internal node represents a condition on a feature and divides the instance space into two

or more subspaces depending on a particular discrete function of the input attribute values.

Leaf nodes are classifier labels. Alternatively, the leaf may have a probability vector that

indicates the probability of the target attribute having a certain value. For each input, the path

to a terminal node that determines the class prediction is found. These trees can be easily

transformed into if-then-else rules, simply by joining the tests along each path to form the

condition part and taking the prediction of the leaf as a class value (Rokach & Maimon,

2005). To build our classifier, we experimented with different values for the parameters of

the model:

 criterion: [Gini impurity, entropy]

 max_depth: [5, 10, 15, 20, 25]

 splitter: [best, random]

 random_state: 42

The Decision Tree model which offered the highest accuracy was the one which had a

maximum depth of 20, the criterion “best” used to choose the split at each node, entropy as

measurement of the quality of a split and a factor of randomness of 42 for the estimator.

Some disadvantages of this algorithm are the following: even if DT is flexible, it

cannot determine the significance of the characteristics, it is unstable and prone to abnormal

values (outliers) and it can neglect some key values in the training data, causing low

accuracy. In addition, the classification process adopted is sequential, not simultaneous, with

a clear dependence between levels, which may affect the results.

B Naïve Bayes

The Naïve Bayes classifier has a very good complexity-performance ratio, being one

of the most popular basic methods for classifying text with term frequencies as input. This is

a statistical model, belonging to the family of probabilistic methods, which tries to determine

the probability that a certain document belongs to a certain class, considering the features.

Finally, a document is associated with the class that gets the highest score. The main problem

with this algorithm is that of “zero-frequency” which involves assigning a zero score when

evaluating a new feature that was not encountered in training. In general, this limitation is

35

removed by applying soothing methods, assuming that if a trait-label pair did not appear in

the training set, it does not mean that it is impossible for it to appear later.

Another limitation that is worth mentioning is the hypothesis from which this

algorithm starts, namely the fact that the features are independent. Thus, if we consider two

adjacent words as two characteristics, then their probabilities will be multiplied as if they

were independent, although this is not always the case.

 Our final model had the following parameters:

 alpha = 1 (soothing parameter)

 fit_prior = True (to learn class prior probabilities)

C Support Vector Machines

Support Vector Machines is a linear classifier that starts from the premise that the set

of classes is linearly separable, trying to find a plan that separates them. As a working

principle, it assigns to each example a confidence score for each class. SVM handles

abnormal values and a large number of features very well, which is an important advantage.

The limitations imposed by this algorithm appear if there is no clear separation between

classes.

The process of finding the best SVM algorithm involved a long series of experiments

with the parameters of the model. More precisely, we trained classifiers with each of the

following values and evaluated them on the validation set in order to find the best one:

 kernel: [linear, polynomial, sigmoid, radial basis function]

 C: [0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

 Degree: [2, 3, 4]

 Gamma: [0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

After a series of preliminary tests, we concluded that for the LIAR dataset, linear and

quadratic kernel gave the highest accuracy. So, for the final model, we chose two SVM

models:

 linear kernel, regularization parameter equal to 0.7

 quadratic kernel, regularization equal to 1 and kernel coefficient equal to 1

3.5 Neural Networks

A Long Short - Term Memory

Classifiers using LSTM divide the issue of context management into two sub-issues:

deleting information that is no longer useful and adding to the new context information that

could potentially be used in subsequent decisions. This network manages to solve both tasks

by using gates that control the flow of data entering and leaving each unit at the layer level.

These gates are implemented with the help of additional weights that operate sequentially on

the input, the previously hidden layer, and the previous context layer.

36

The LSTM architecture is distinguished by three gates, where each gate has the same

design that involves a feed-forward layer with sigmoid activation, followed by a point

multiplication with the previous layer (Li & Wu, 2015). One of the gates is the forget gate,

which erase information from context that is no longer useful. In other words, decide what

information to forget from the previous step. It calculates a weighted sum between the

previously hidden state layer and the current entry, which it passes through a sigmoid

function. The result is then multiplied by the context vector. The second gate is to add

information (update gate) and get the new context vector. In short, decide what information

should be kept from the input. The final output gate (result gate) decides what information is

needed for the current hidden state.

We experimented with different values for the dimension of the layers: 100, 300 and

1000. Our final architecture for which we obtained the highest accuracy is a relatively simple

one that includes:

 an input Embedding layer with input_dim equal to the size of the vocabulary and

output_dim = 1000

 an LSTM layer of size 1000

 a fully connected hidden layer with 1000 neurons with ReLu activation function

 a DropOut layer that randomly sets 0.5 input units to 0 at each update during training

 a fully connected output layer with 2/6 neurons with softmax / sigmoid activation

function

For optimizations, we used Adam, and a learning step set to 0.0001. The model was trained

for a period of 10 epochs, after which we stopped because it was not improving and started

overfitting.

B Bidirectional Long Short-Term Memory

Another alternative classification model for LSTM that has been used is Bidirectional

Long Short-Term Memory. Bidirectional LSTMs are an extension of traditional LSTMs that

can improve model performance on sequence classification issues. This architecture drives

two instead of one LSTM on the input sequence. The first LSTM is instructed on the input

sequence while the second is on an inverted copy of it. This technique can provide additional

context to the network and can lead to a faster and more complete learning. The architecture

of the model is similar with the previous one:

 an input Embedding layer with input_dim equal to the size of the vocabulary and

output_dim = 1000

 an BiLSTM layer of size 1000

 a fully connected hidden layer with 1000 neurons with ReLu activation function

 a fully connected output layer with 2/6 neurons with softmax / sigmoid activation

function

The process of training was identical to that of LSTM, meaning that the same Adam

optimizer was used along with a 0.0001 learning rate. The model was trained for a period of

20 epochs.

37

 Based on the research we made for the state of the art, we found out that BiLSTMs

are often used with attention mechanism to improve results. Therefore, we tried to also

approach this direction. In general, attention can be described as a vector of importance

weights which resumes how strongly a word is correlated with another. In our case, we

experimented with an additional multi-head self-attention layer. This mechanism compares

every sequence from the sentence to all the others, recalibrating the embedding in order to

take into account contextual relevance. In this way, we can learn the correlation between a

part of the sentence and all that precedes or succeeds it. Multi-head runs through the attention

mechanisms multiple times in parallel. The outputs are then concatenated and transformed to

the desired dimension. In this case, the model was further parametrized as:

 an input Embedding layer with input_dim equal to the size of the vocabulary and

output_dim = 1000

 an BiLSTM layer of size 1000 with recurrent dropout set of 0.2 and dropout of 0.25

 a GlobalMaxPool1D layer

 a Dropout layer with factor of 0.2

 a MultiHead Self-Attention layer with head size of 128 and number of heads of 12

 a fully connected output layer with 2/6 neurons with softmax / sigmoid activation

function

We used the same Adam optimizer along with a 0.0001 learning rate. The model was trained

for a period of 20 epochs.

C Feed-forward network

Feed-forward neural networks are used to learn more complex non-linear models.

They consist of an input layer, an output layer, and one or more hidden layers. The loss

function, however, is known only for the output layer. As a result, the error in the last layer

propagates back to the neurons in the previous layers to update their weights in the same way.

The algorithm is a well-known backpropagation, in which it is considered that the neuron j is

responsible for a part of the error associated with each of the neurons in the next layer with

which it is connected. Our simple network involved:

 an input Embedding layer with input_dim equal to the size of the vocabulary and

output_dim = 1000

 a DropOut layer that randomly sets 0.1 input units to 0 at each refresh during training

 a fully connected output layer with 2/6 neurons with softmax / sigmoid as activation

function

In addition, an Adam optimizer with a 3e-5 learning rate was used. Due to computational

limitations, training has only been done for 20 epochs.

38

4 Results

For each solution, we build a multi-label classifier with the original labels from the

dataset and a binary one that treats a simpler case. Therefore, we follow the same pattern as

the papers from the state of the art and group the classes “true”, “mostly-true” and “half-true”

as “TRUE”, respectively “false”, “pants-fire”, “barely-true” as “FAKE”. We evaluate each

model on both validation and testing partition, to see if there are major differences. Also, we

used the validation slice to tune the hyper-parameters of each model, when was the case. The

results obtained in both cases are presented in the following tables, being grouped according

to the type of text features used.

4.1 Classification based on TF-IDF

For the first series of experiments, we opt for classical machine learning algorithms:

Decision Tree, Naive Bayes, and Support Vector Machines, along with the features extracted

by TF-IDF. In order to find the most relevant series of characteristics, we try this frequency-

based approach on different inputs: words, stems and lemmas. Also, we look either at unique

entities or two entities at the time, respectively unigrams, and bigrams. All the results from

our tests are summarized in Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14,

and Table 15.

After analyzing the case of multi-class classification, we draw the following

conclusions. In most cases, the best results were obtained with the Support Vector Machines

model, either with linear or quadratic kernel, while the weakest with the Decision Tree

algorithm. Only for the case of unigrams and bigrams of words concatenated with unigrams

of lemmas, the Naive Bayes model got a lower accuracy on the test partition. Using a linear

kernel for the SVM algorithm led to better results than those of the previous two models in all

input cases. Overall, for 6-labels classification, the highest performance was obtained with

this type of model which scored an accuracy of 25.97%. The instance of quadratic kernel was

not good enough to separate the six classes, beating the linear one only when using unigrams

of stems or unigrams and bigrams of words concatenated with unigrams of lemmas.

If we compare these metrics with the state of the art of this dataset, our best

frequency-based model, SVM, had a performance approximately equal to those or even

higher. It bet both classical solutions (SVM, LR, NB, SGDClasifier, Random Forest, DT) and

deep-learning ones (LSTM, BiLSTM), even if they were based on more informative features.

The model was better than the “random choice” by about 10%. Moreover, our most accurate

Naive Bayes (24.15%) and Decision Tree (23.36%) algorithms exceeded the performance of

the same models from previous published papers, but also of the LSTM models. The

solutions that declared a higher accuracy (40-50%) used word embeddings, and attention-

based architectures, aspect that we will consider in future sections. It is important to mention

that they do not give enough details about their implementation, so the execution context may

differ, making direct comparison not possible. From an analysis of metrics at each label level,

we saw that “pants-fire” class had the lowest values in all models, which was expected

39

considering that it is the class with the fewest statements in the data set. Simple methods like

the Naïve Bayes or Decision Tree algorithms failed to learn characteristic aspects for this

class, obtaining all 4 metrics almost less than 10%.

For binary classification, the outcome looked similar, meaning that the highest

performance that we managed to accomplish was 62.19% from the same linear SVM model.

As in the previous case, DT paired with any type of traits achieved the lowest accuracy of all

four models. SVM algorithm continued to dominate the other models through its linear or

quadratic approach, boosting performance to at least 60% in all cases. The only exemptions

were when we introduce unigrams and bigrams of lemmas, either on their own or

concatenated with other features, case when the NB algorithm bet the rest and reached even

61.64%. From the point of view of the kernels applied, the tables show that adding bigrams to

the input always boosted up the performance of the models that used the linear one. On the

other hand, unigrams with polynomial kernel surpassed the others in most cases.

Our best model for binary classification outperformed all models from the state of the

art, either classical ML algorithms such as LR, SVM, DT, AdaBoost, NB, k-NN, or neural

network models like LSTM, CNN, C-LSTM, Feed-Forward, HAN, BiLSTM, Conv-HAN.

It’s interesting to highlight that our simplest solution distinguished between the two classes

almost like the one which used semantic-based traits, RoBERTa, with a simple feed-forward

network (62.19% vs 62.00%). Also, it bet arbitrary choice by 12%. In this case, the best

versions of DT (58.48%) and (61.80%) exceeded all solutions that used simple classifiers

with lexical features from the state of the art and obtained comparable values with those

based on word embeddings and neural networks.

Regarding the type of features, we analyzed words, stems, and lemmas to see which

one can provide the highest informational gain for these models. For each case, we followed

an incremental process, which started with looking at simple elements and then adding pairs.

Regarding words, adding bigrams increased accuracy for the DT multi-class model and for

the NB and linear SVM bi-class models. For stems, improvements remained only for the

same binary models, while for lemmas, the NB models slightly improved their performance

in both cases. Overall, the models trained with TF-IDF of lemmas had a better performance

than those with stems. That’s the reason why we continued the series of experiments with

concatenating words with lemmas in order to see if we can improve our values. Therefore, we

observed that more features can improve some models, at least for the case of multiple

classes. For instance, the DT model managed to deduce more complex rules and achieve

23.36% accuracy when using three different types of features. Overall, for the test partition,

the highest accuracy was obtained when we kept only words as input of the models, not any

abbreviated or simplified form of it.

The metrics from the table show that there is a link between the frequency of the words

used and the degree of veracity of the text, but not so strong as to return very good results.

Despite having similar or even better performance metrics than those from the state of the art,

the models were not accurate enough to perform in real life situations. Overall, for all three

algorithms, the adopted pre-processing operations may not have been sufficient to bring the

dataset statements to the best standardized form. Also, the extracted features may not have

40

been sufficiently relevant and easy to interpret by these models. In addition, it is very likely

that the results were limited both by the fact that the meaning of the words is ignored and by

the fact that the dependencies between them are not captured. In the next subchapter we

present the results of some models that aim to remove these limitations to see if the obtained

accuracy will be higher than 25.97%, respectively 62.19%.

41

Table 8 Results for TF-IDF of unigrams of words

Feature Model Dataset

partition

Multi-class classification Binary classification

Accuracy

(%)

Precision

(%)

Recall

(%)

F1

(%)

Accuracy

(%)

Precision

(%)

Recall

(%)

F1

(%)

TF-IDF of unigrams

of words

DT Validation 22.51 22.03 22.51 18.04 57.48 60.20 57.48 52.65

Testing 22.10 23.60 22.10 17.50 58.48 57.92 58.48 52.84

NB Validation 23.60 21.41 23.60 20.27 59.19 61.08 59.19 56.13

Testing 24.15 22.86 24.15 20.87 60.06 59.85 60.06 56.05

SVM

linear

Validation 24.07 26.28 24.07 22.58 59.97 60.15 59.97 59.21

Testing 25.97 26.92 25.97 24.69 61.56 61.00 61.56 60.74

SVM

quadratic

Validation 25.62 31.82 25.62 23.37 61.99 63.32 61.99 60.29

Testing 25.02 31.57 25.02 22.95 61.88 61.73 61.88 59.28

Table 9 Results for TF-IDF of unigrams & bigrams of words

Feature Model Dataset

partition

Multi-class classification Binary classification

Accuracy

(%)

Precision

(%)

Recall

(%)

F1

(%)

Accuracy

(%)

Precision

(%)

Recall

(%)

F1

(%)

TF-IDF of unigrams

& bigrams of words

DT Validation 21.34 21.91 21.34 18.11 55.61 58.25 55.61 49.11

Testing 22.73 23.59 22.73 19.20 57.46 56.33 57.46 50.47

NB Validation 23.91 23.01 23.91 19.68 58.57 63.24 58.57 52.98

Testing 23.13 20.35 23.13 18.33 60.93 63.31 60.93 54.52

SVM

linear

Validation 24.84 28.11 24.84 22.78 62.15 63.05 62.15 60.85

Testing 24.70 31.00 24.70 22.52 62.19 61.79 62.19 60.45

SVM

quadratic

Validation 25.31 37.92 25.31 21.66 59.89 63.72 59.89 55.61

Testing 23.28 29.25 23.28 18.92 60.54 61.23 60.54 55.46

42

Table 10 Results for TF-IDF of unigrams of stems

Feature Model Dataset

partition

Multi-class classification Binary classification

Accuracy

(%)

Precision

(%)

Recall

(%)

F1

(%)

Accuracy

(%)

Precision

(%)

Recall

(%)

F1

(%)

TF-IDF of unigrams

of stems

DT Validation 21.88 21.16 21.88 15.50 57.48 60.14 57.48 52.70

Testing 21.70 24.11 21.70 16.24 58.17 57.39 58.17 52.41

NB Validation 24.30 31.16 24.30 20.94 58.96 60.89 58.96 55.78

Testing 23.52 20.96 23.52 19.85 60.30 60.10 60.30 56.53

SVM

linear

Validation 24.45 27.58 24.45 23.31 62.15 62.51 62.15 61.40

Testing 23.99 24.28 23.99 22.93 60.54 59.87 60.54 59.51

SVM

quadratic

Validation 26.87 32.95 25.87 25.11 61.60 62.54 61.60 60.18

Testing 24.70 30.75 24.70 23.03 61.17 60.61 61.17 59.27

Table 11 Results for TF-IDF of unigrams & bigrams of stems

Feature Model Dataset

partition

Multi-class classification Binary classification

Accuracy

(%)

Precision

(%)

Recall

(%)

F1

(%)

Accuracy

(%)

Precision

(%)

Recall

(%)

F1

(%)

TF-IDF of unigrams

& bigrams of stems

DT Validation 21.57 20.12 21.57 15.75 56.15 57.74 56.15 51.58

Testing 21.63 22.23 21.63 16.31 57.06 55.47 57.06 52.02

NB Validation 24.22 23.79 24.22 20.00 57.94 62.45 57.94 52.04

Testing 23.52 20.51 23.52 18.47 61.80 65.54 61.80 55.23

SVM

linear

Validation 24.61 28.23 24.61 22.97 61.99 62.62 61.99 60.94

Testing 23.84 24.57 23.84 21.71 61.96 61.48 61.96 60.33

SVM

quadratic

Validation 23.60 32.91 23.60 20.45 59.03 61.69 59.03 55.20

Testing 22.89 30.43 22.89 19.17 60.69 61.14 60.69 56.13

43

Table 12 Results for TF-IDF of unigrams of lemmas

Feature Model Dataset

partition

Multi-class classification Binary classification

Accuracy

(%)

Precision

(%)

Recall

(%)

F1

(%)

Accuracy

(%)

Precision

(%)

Recall

(%)

F1

(%)

TF-IDF of

unigrams of

lemmas

DT Validation 21.11 20.17 21.11 15.71 57.48 60.37 57.48 52.49

Testing 22.65 24.14 22.65 17.19 57.70 56.51 57.70 52.31

NB Validation 24.38 31.60 24.38 20.96 59.19 61.20 59.19 56.01

Testing 23.84 22.53 23.84 20.27 60.62 60.57 60.62 56.82

SVM

linear

Validation 23.91 27.53 23.91 22.63 60.59 60.90 60.59 59.72

Testing 25.41 26.64 25.41 24.23 61.72 61.15 61.72 60.60

SVM

quadratic

Validation 26.95 33.43 26.95 24.91 60.98 61.92 60.98 59.43

Testing 25.34 31.94 25.34 23.49 61.72 61.35 61.72 59.57

Table 13 Results for TF-IDF of unigrams & bigrams of lemmas

Feature Model Dataset

partition

Multi-class classification Binary classification

Accuracy

(%)

Precision

(%)

Recall

(%)

F1

(%)

Accuracy

(%)

Precision

(%)

Recall

(%)

F1

(%)

TF-IDF of

unigrams &

bigrams of lemmas

DT Validation 22.27 23.11 22.27 17.90 56.07 57.95 56.07 51.03

Testing 22.65 24.24 22.65 17.64 57.70 56.47 57.70 52.67

NB Validation 24.53 23.40 24.53 20.22 58.18 62.75 58.18 52.39

Testing 24.15 22.65 24.15 19.27 61.64 64.50 61.64 55.51

SVM

linear

Validation 25.70 29.49 25.70 23.83 63.01 63.95 63.01 61.80

Testing 25.26 27.72 25.26 23.33 61.17 60.58 61.17 59.45

SVM

quadratic

Validation 24.53 35.31 24.53 21.13 59.03 62.33 59.03 54.68

Testing 23.28 31.14 23.28 19.57 60.62 61.18 60.62 55.80

44

Table 14 Results for TF-IDF of unigrams & bigrams of words and unigrams lemmas

Feature Model Dataset

partition

Multi-class classification Binary classification

Accuracy

(%)

Precision

(%)

Recall

(%)

F1

(%)

Accuracy

(%)

Precision

(%)

Recall

(%)

F1

(%)

TF-IDF of

unigrams &

bigrams of words

and unigrams of

lemmas

DT Validation 20.95 21.12 20.95 16.14 55.53 57.80 55.53 49.38

Testing 23.36 25.75 23.36 18.23 57.06 55.54 57.06 50.05

NB Validation 24.77 32.43 24.77 21.49 59.03 61.69 59.03 55.20

Testing 23.28 21.96 23.28 19.77 60.93 61.35 60.93 56.63

SVM

linear

Validation 24.14 24.64 24.14 23.95 59.35 59.36 59.35 58.84

Testing 23.76 23.51 23.76 23.36 61.40 60.86 61.40 60.72

SVM

quadratic

Validation 26.64 30.26 26.64 24.90 61.92 62.61 61.92 60.78

Testing 24.94 28.91 24.94 23.53 60.62 59.94 60.62 58.98

Table 15 Results for TF-IDF of unigrams & bigrams of words and unigrams & bigrams lemmas

Feature Model Dataset

partition

Multi-class classification Binary classification

Accuracy

(%)

Precision

(%)

Recall

(%)

F1

(%)

Accuracy

(%)

Precision

(%)

Recall

(%)

F1

(%)

TF-IDF of

unigrams &

bigrams of words

and unigrams &

bigrams of

lemmas

DT Validation 22.27 21.68 22.27 17.58 55.84 57.83 55.84 50.40

Testing 23.05 22.74 23.05 17.91 57.54 56.26 57.54 52.01

NB Validation 25.47 33.35 25.47 22.32 60.20 63.04 60.20 56.76

Testing 23.68 22.58 23.68 20.22 61.48 62.46 61.48 56.91

SVM

linear

Validation 25.47 26.21 25.47 25.32 60.83 60.87 60.83 60.40

Testing 24.63 24.23 24.63 24.14 60.46 59.85 60.46 59.70

SVM

quadratic

Validation 26.01 30.15 26.01 23.76 60.83 62.36 60.83 58.67

Testing 23.28 27.18 23.28 21.16 60.30 59.76 60.30 57.48

45

4.2 Classification based on word embeddings

The results of the classification using the LSTM and BiLSTM classifiers, together

with features extracted by Word2Vec and GloVe are shown in Table 16. In addition, they are

compared with those obtained using a feed-forward neural network with two versions of

BERT and DistilBERT. A combination of these two approaches is also tested by training a

BiLSTM classifier using characteristics selected through a transformer architecture.

From the point of view of features, we obtained a straightforward order of

performances for binary classification. From the table, we concluded that Word2Vec word

embeddings combined with neural networks led to the lowest accuracies, between 55.56%

and 58.01%. Among these models, the skip gram approach was a better fit with BiLSTM

architecture, while continuous bag of words transformed words into a numerical format that

was easier to interpret for a simple LSTM classifier. As in general GloVe comes with

significant improvements, this was also our case. Despite having more unknown words in our

dataset vocabulary, these word embeddings associated with BiLSTM architectures led to

performance metrics of approximately 58.50%. One thing to notice is that despite adding the

self-attention layer, the model kept having similar results. This emphasizes that the attention

mechanism that we used was not appropriate for our task and we need to reconsider this

choice in the future. Furthermore, for the LSTM case, accuracy was bigger (59.19%) than

that of the solutions that provided a bidirectional view. All transformer-based techniques used

in feature extraction surpassed the models that used static word embeddings, an expected

result as they take into account semantics and represent the new baseline of this problem

nowadays. In our case, the best accuracy was 63.61%, value achieved by associating

DistilBERT with a simple feed-forward network for classification. BERT-Small and BERT-

Medium traits led to lower performances (58.48%, respectively 60.06%), but they still

overcame those of Word2Vec or GloVe. A possible explanation for this is that their word

embeddings were not as precise and as relevant as those of DistilBERT, as they were

achieved through architectures with smaller number of parameters.

If we compare with the state-of-the-art results from Chapter 3, our best embeddings-

based model had a higher performance than all our reference points. It scored better accuracy

than both classical solutions (SVM, LR, NB, SGDClasifier, Random Forest, DT) and deep-

learning ones (LSTM, BiLSTM, C-LSTM, Feed-Forward, CNN, Conv-HAN). We concluded

that DistilBERT could extract traits that were more relevant for the fake news detection task

than Word2Vec, GloVe, n-grams, lexical features, sentiment indices or even RoBERTa. The

model improved the highest metrics from previous section with 2%, while it was better than

the “random choice” by about 13%. Moreover, our most accurate LSTM (59.19%) and

BiLSTM (58.40%) algorithms exceeded the performance of the same models from previous

published papers, but not those from previous section.

For multi-label classification, the differences between our models were very small, as

most of them scored an accuracy around 23-24%. This time, there was no clear distinction

between solutions which used Word2Vec or GloVe. So, we can intuit that in this case none of

these two characteristics extraction algorithms provided enough informative traits for our

46

task, at least in combination with these classifiers. One important aspect to notice, is that the

self-attention layer added to the BiLSTM architecture, had a slightly more powerful impact

than in the case of binary grouping, improving precedent results till 24.30%. With very small

differences, BERT-Small and BERT-Medium overcame the solutions based on static

embeddings (24.54%, respectively 24.39%), situation constant in both our study cases (6/2

labels). DistilBERT combined with a Feed-forward network continued to achieve the best

performance. It had 27.30% accuracy, being the model, which classified news from the LIAR

dataset with the best precision until this point. The same features extraction technique

combined with a BiLSTM architecture offered poorer results, precisely 25.33%, but they

were still better than the rest of this section.

Our solution for multi-label classification surpassed the results from the state of the

art: LR, SVM, NB, DT, Random Forest, LSTM CNN, BiLSTM. As in the other case,

DistilBERT worked better than surface-level linguistic patterns, Word2Vec, GloVe n-grams

or FastText. In addition, it overcame the accuracy of the most precise SVM model from

previous section with 1.5%.

Summarizing, a constant order of performance for some models can be deduced in

both cases, multi-class classification, and binary classification. Specifically, we have: LSTM

(W2V-skip) < BiLSTM (W2V-cbow) < BiLSTM (W2V-skip) < BiLSTM Attention < FF

(BERT-small) < BiLSTM (DistilBERT) < FF (DistilBERT). It can be concluded that for the

LIAR dataset, contextualized word embeddings surpassed static word embeddings in all

cases. This instantly emphasized that BERT could deal with more complex text inputs unlike

Word2Vec, or GloVe and that context and semantics are important pieces in the process of

false content detection. Moreover, GloVe tended to lead to higher results than Word2Vec,

expected aspect as its architecture is more complex. The highest performant model for the

task of fake news detection was in both cases a fine-tuned model that used the weights of

DistilBERT as embeddings and classified them through a simple feed-forward network,

achieving a performance of 27.30%, respectively 63.61%.

These solutions outperformed all classical algorithms and recurrent neural networks

solutions from the state-of-the-art papers presented in previous chapter. For both multi-class

and binary classification there are a couple of algorithms in the state of the art (ex.: attention-

based, BiLSTM-GRU) which still have higher accuracy, but they do not provide enough

implementation details to be reproduced or compared with, so they are out of the scope of

this thesis. If we look at the first category of models that used TF-IDF for features and

classical machine learning algorithms, the results with static embeddings and recurrent neural

networks are similar or slightly poorer, even if the architectures used are stronger. Thus, we

can conclude that for the statements from PolitiFact.com, the frequency of words is more

relevant than the position and order. Although, the meaning of the words proved to be useful

when deducing the true value of a text, as semantic characteristics increased performance.

47

Table 16 Results for word embeddings

Feature Model Dataset

partition

Multi-class classification Binary classification

Accuracy

(%)

Precision

(%)

Recall

(%)

F1

(%)

Accuracy

(%)

Precision

(%)

Recall

(%)

F1

(%)

Word2Vec –

continuous bag of

words

LSTM Validation 25.15 23.56 25.16 22.22 58.25 58.26 58.26 58.26

Testing 24.38 21.69 24.39 21.04 57.45 57.63 57.46 57.53

BiLSTM Validation 23.75 25.02 23.75 21.52 55.99 56.21 56.00 54.01

Testing 23.36 21.10 23.36 20.68 56.66 55.31 56.67 54.46

Word2Vec - skip

gram

LSTM Validation 22.58 22.58 22.59 22.46 55.52 55.62 55.53 55.55

Testing 22.80 23.09 22.81 22.80 55.56 55.88 55.56 55.68

BiLSTM Validation 25.46 22.52 25.47 19.65 54.75 56.55 54.75 48.16

Testing 23.44 17.98 23.44 17.97 58.01 57.13 58.01 52.17

GloVe LSTM Validation 23.67 23.72 23.68 23.36 58.09 58.01 58.10 57.95

Testing 23.52 23.63 23.52 23.20 59.19 59.00 59.19 59.07

BiLSTM Validation 22.97 22.75 22.98 22.73 56.77 56.66 56.78 56.49

Testing 23.36 23.27 23.36 23.11 58.40 58.16 58.41 58.25

BiLSTM

Attention

Validation 24.06 24.09 24.07 23.83 57.94 58.08 57.94 57.96

Testing 24.30 24.84 24.31 24.33 58.40 58.93 58.41 58.56

BERT- Small Feed Forward Validation 27.41 27.09 27.41 27.02 62.77 62.73 62.77 62.73

Testing 24.54 24.32 23.55 24.03 58.48 58.50 58.48 58.49

BERT-Medium Feed Forward Validation 27.02 27.39 27.02 26.90 61.05 61.01 61.06 60.91

Testing 24.39 24.69 24.39 24.26 60.06 59.62 60.06 59.68

DistilBERT Feed Forward Validation 25.38 24.66 25.39 23.68 61.44 62.07 61.45 60.32

Testing 27.30 27.69 27.31 26.30 63.61 63.26 63.61 62.38

BiLSTM Validation 25.38 25.97 25.39 24.16 60.20 60.15 60.20 59.97

Testing 25.33 25.40 25.34 24.93 61.32 61.03 61.33 61.10

48

4.3 Classification based on stylometric features

The results of classification using standard machine learning classifiers together with

the stylometric features expressed through text complexity indices are presented in Table 17.

To obtain these results, we used indices from all 5 classes described in Section 4.2.4, together

with all their variations and all possible levels (word/sentence/paragraph/document) as

representative features, instead of the text itself. We started from the hypothesis that all these

extracted characteristics describe the author’s writing style, and they may betray his

negligence in composing false content. Therefore, they may lead to an improvement in the

performance of the models analyzed up to this point. Thus, in order to confirm this, we tested

these traits first on their own and afterwards concatenated with other features.

From Table 17, it can be observed that we managed to build a group of classifiers with

less promising results. For multi-label classification, the model which achieved the maximum

accuracy was the quadratic SVM, while for the second case, NB surpassed the other three.

We obtained a maximum value of 20.33%, respectively 56.89% on the test partition, values

better than the random choice of a label with only 4-6%. It’s important to highlight how

different the models behaved in our two cases of study, being impossible to establish a

general order of performance. Despite having the best accuracy for the binary case, NB

performed as good as arbitrary choice in the multi-class case (17.49%). Moreover, DT

algorithm managed to find some basic rules for the six classes, exceeding linear SVM, but

not for the case of two labels when scored only 51.61%.

To see if these models were really that weak, we analyzed the confusion matrixes. We

found out that even though they classify the texts in such a wrong way, they generally

confuse adjacent classes. For example, many news items labeled “barely-true” have been

categorized as “half-true” or “false”, neighboring classes. Similarly, “half-true” texts have

been marked as “barely-true” or “mostly-true”. The “true” class is the only one for which

there has been more confusion. Instead, the binary model distinguished slightly better values

for the “true” class, correctly classifying several entries, which means that it found several

distinctive features for this category compared to the “fake” one. Taking this aspect into

account, plus the fact that the dataset has a high difficulty and the differences between the

performance of our best model and those of these were less than 10%, we can say that the

models managed to learn some characteristics for each class. Therefore, these indices may be

helpful criteria in establishing veracity, but not on their own.

For the second series of experiments, we used the concatenation of features extracted

by TF-IDF with text complexity indices. We kept only features which refer to words, as they

were the ones for which we scored the highest accuracy in Section 5.1. In this sense, the same

DT, NB and SVM classifiers were used, the results being shown in Table 18. This new set of

traits caused a decrease in performance for all models with one exception. As shown there, in

all cases, the best results were obtained with the DT model for both series of features:

unigrams and unigrams concatenated with bigrams, while the weakest with the linear SVM

algorithm, as opposed to the first series of tests. The maximum performance metrics were

22.02% and 58.32%, for the case of using unigrams and bigrams of words and stylometric

49

features. For multi-label classification, using bigrams of words associated with ReaderBench

indices affected the results in a good manner for three out of four models. Also, the

performance metrics indicated better values in all cases for the “true” class, which

emphasizes the fact that it was easier to find common words and style patterns to distinguish

texts with this tag. The history repeated in the second case of binary grouping, meaning that

NB models obtained higher performances than linear or quadratic SVM (56.43% vs. 54.05%

and 55.32%). Also, this time, bigrams had a positive impact only for DT and linear SVM

classifiers. With this input, Decision Tree managed to understand the information behind text

complexity indices and even improved the accuracy from previous section for the 2-labels

(57.46%).

Comparing our results with those in the state of the art, we can see that the single use

of the text itself was easier to distinguish, but we managed to obtain similar values. For

instance, for SVMs, the highest values obtained for multiple label classification were weaker

than those in the reference article (20.43% vs. 25.50%), being better than the “random

choice” by only about 4%. This implies that the combination of the two inputs was not

compatible with this model. The Naïve Bayes algorithm exceeded the performance of the

SVM models (21.31%), but not that of the models in (Wang, 2017). DT model managed to

best interpret the input used in this experiment, but not enough to obtain an accuracy close to

the SVM model in the reference papers or to our previous tests. For the binary classification,

Decision Tree managed to obtain a higher accuracy than its approach in the state of the art

(58.32% vs. 51.00%) and similar score with other classical machine learning methods (59-

61.00%). Even if we added additional data, SVMs could not separate the two classes in an

ideal manner but scored an accuracy approximately equal to that from the state of the art

(55.32% vs. 55.50%). Also, NB from the state of the art achieved 60%, while our solution

was at a maximum of 56.43%.

Furthermore, we introduced these stylometric features also in our neural network

approaches. The results of the classification using the LSTM and BiLSTM classifiers,

together with the features extracted by Word2Vec/GloVe and the stylometric elements are

shown in Table 18. In addition, they are compared with those obtained using

BERT/DistilBERT and text complexity indices with a feed-forward neural network.

Although a strict constant order of performance of all models cannot be deduced in both

cases, multi-class and binary classification, a pattern can be generalized: BiLSTM < LSTM <

NN. If we apply the same principle on feature extraction methods, we can conclude that:

GloVe < Word2Vec < BERT < DistilBERT.

For multi-label classification, adding various text indices was not a good choice, as

our models decreased in accuracy compared to those from previous section. The only

exceptions were when we opted for Word2Vec-skip gram, case when performance increased

to 23.28% (LSTM), respectively 24.38% (BiLSTM) and when we used BERT-Small, metric

reaching 26.28%. More than that, this time, the use of skip-gram features with complexity

elements improved results compared with the continuous bag of words approach of the same

algorithm (22.96% - LSTM, 18.86% - BiLSTM). This time, Glove was part of solutions with

very poor metrics, while BERT-Medium kept its performance (24.23% vs. 24.39%). The

50

fine-tuned model with DistilBERT and the Feed-Forward network remained the one with the

highest performance, 26.91%. Regarding the classifiers, adding bidirectional perspective to

Long-Short Term Memory improved results only for skip-gram, aspect that repeated in most

of our experiments. Adding an attention layer at our BiLSTM architecture had a negative

impact, decreasing accuracy to 20.99%.

Even though we treated a simpler case, binary segmentation, the situation was

identical. Performances did not improve for majority, compared to those from Section 5.2.

This time, the exemption was the solution with BERT-Small, text complexity indices and a

feed-forward network which improved its performance to more than 60%. Also, Word2Vec-

skip gram models felt below the ones based on continuous bag of words, in terms of

accuracy, but they continued to be a better match for BiLSTM models. The combo of GloVe,

ReaderBench elements and LSTM led to a performance of 57.69%, value larger than any

other solution based on static embeddings from this section. This algorithm of traits

extraction was also paired with BiLSTM, but the results got worse. Adding an attention layer

caused the accuracy to drop below “random choice” with more than 5%. Even when paired

with additional information, contextualized word representations had an advantage in fake

news detection. BERT-Small and BERT-Medium had results around 60%, good values for

this dataset. The top performance was obtained through the same solution, DistilBERT,

stylometric elements and a simple feed-forward, 63.14%.

Summarizing, the results obtained with (Bi)LSTMs were not as good as would have

been expected considering that the architectures are more complex than in the previous case,

and Word2Vec and Glove capture more features than just the frequency. Compared to the

models which did not use text complexity metrics, the results had worsened with at least 2%,

which means that the modified input does not significantly help the model in the learning

process. The approach that included attention in the classification mechanism managed to

score the lowest accuracy, fact which highlights the incompatibility between stylometric

elements and self-attention. An important aspect that improved was the reduction of over-

specializing tendency that we encountered in our preceding case. For feed-forward neural

networks, the performance metrics obtained by adding stylometric elements were the best,

comparable to those in the previous section (26.91% vs. 27.30% and 63.14% vs. 63.61%).

The model with DistilBERT, text indices and NN brought improvements to all the other

models presented in this section. Thus, this feature extraction technique was the most

efficient for the LIAR data set. Moreover, it seemed that BiLSTM model almost unanimously

classified the texts as “barely-true”, while LSTM and Feed-Forward had more balanced

results.

If we draw a line and compare these new values with previous section, there is no

strong evidence that text complexity indices offered relevant information for our problem, as

most of the models obtained similar or lower performances when adding this kind of

information. However, by contrast with the state of the art, values were not as poor as

expected. For instance, for LSTMs, the highest values obtained for multi-label classification

were still better than those in the reference article (23.28% vs. 22.50%), beating “random

choice” by about 7%. This implies that the combination of the two inputs helped this neural

51

network extract patterns for the six classes. In plus, BiLSTM also exceeded the performance

of the same approach (24.38%) and some classical machine learning algorithms, but not that

of CNNs or SVMs. Feed-forward network model managed to best interpret the input used in

this experiment, enough to obtain an accuracy close to the CNN model in the LIAR paper.

For the binary classification, LSTM managed to obtain a higher accuracy than its approach in

the state of the art (57.69% vs. 54%) and similar score with CNN, HAN, Conv-HAN or C-

LSTM (55-58%). When grouping text indices with static word embeddings, BiLSTM could

not overcome the value from the reference papers, achieving at most 56.43%. Its results were

in the same range as simpler algorithms like AdaBoost or k-NN, exceeding only solutions

that implied simple Long-Short Term Memory. All the solutions that integrate feed-forward

networks led to metrics comparable with those from the state of the art.

Overall, the stylometric indices failed to raise the accuracy of the models on the test

dataset compared to the best results obtained when only TF-IDF/ Word2Vec/ GloVe/ BERT/

DistilBERT were used to extract features. In fact, the elements of text complexity seem to

bring additional features that are not distinct enough to assure a very precise learning, at least

in the large number used for these experiments, confusing the model. One explanation for the

weaker results could be that the extracted stylometric traits may not be relevant enough to be

used together, requiring an additional analysis step to indicate exactly which indices are

important for our problem and which ones weight the most in the classification process. We

started to investigate this idea, adding one index at the time to our best models and follow up

the changes in performance. Unfortunately, there were no important improvements from one

stage to another. Therefore, we did not include those experiments in this thesis.

52

Table 17 Results for stylometric features

Feature Model Dataset

partition

Multi-class classification Binary classification

Accuracy

(%)

Precision

(%)

Recall

(%)

F1

(%)

Accuracy

(%)

Precision

(%)

Recall

(%)

F1

(%)

RB text complexity

indices

DT Validation 17.30 17.51 17.30 17.27 53.27 53.21 53.27 53.22

Testing 19.55 20.01 19.55 19.69 51.61 51.60 51.61 51.61

NB Validation 18.08 23.15 18.08 17.44 54.74 54.62 54.74 54.68

Testing 17.49 21.15 17.50 16.94 56.89 56.79 56.89 56.69

SVM

linear

Validation 19.16 18.97 19.16 18.93 54.64 54.49 54.64 54.32

Testing 19.26 19.14 19.26 19.03 54.35 53.81 54.35 53.99

SVM

quadratic

Validation 18.38 17.93 18.38 18.07 54.54 54.48 54.55 54.49

Testing 20.33 20.44 20.33 20.20 56.30 56.50 56.30 56.39

Table 18 Results for stylometric features combined with textual features

Feature Model

Dataset

partition

Multi-class classification Binary classification

Accuracy

(%)

Precision

(%)

Recall

(%)

F1

(%)

Accuracy

(%)

Precision

(%)

Recall

(%)

F1

(%)

TF-IDF of unigrams of

words and

RB text complexity indices

DT Validation 22.50 22.56 22.51 21.69 58.64 58.84 58.64 57.64

Testing 21.55 20.56 21.55 20.35 58.24 57.47 58.25 57.36

NB Validation 23.36 22.96 23.36 20.15 59.19 59.35 59.19 58.35

Testing 20.83 26.23 20.84 18.85 56.43 55.66 56.43 55.69

SVM

linear

Validation 18.96 18.80 18.96 18.74 53.95 53.81 53.96 53.70

Testing 19.45 19.46 19.45 19.26 53.07 52.39 53.08 52.61

SVM

quadratic

Validation 17.79 17.37 17.79 17.49 54.93 54.83 54.94 54.79

Testing 20.23 20.25 20.23 20.08 55.32 55.34 55.33 55.33

TF-IDF of unigrams &

bigrams of words and

RB text complexity indices

DT Validation 22.04 21.96 22.04 21.01 59.11 59.04 59.11 58.90

Testing 22.02 20.06 22.02 20.26 58.32 58.29 58.33 58.31

NB Validation 25.23 18.28 25.32 18.95 57.24 58.64 57.24 53.77

53

Testing 21.31 12.73 21.31 15.86 55.40 53.32 55.41 51.68

SVM

linear

Validation 19.35 19.25 19.35 19.16 53.17 53.03 53.18 52.98

Testing 19.25 19.21 19.26 19.04 54.05 53.39 54.06 53.60

SVM

quadratic

Validation 17.69 17.29 17.69 17.41 55.52 55.42 55.52 55.39

Testing 20.43 20.45 20.43 20.28 54.64 54.59 54.64 54.62

Word2Vec – continuous

bag of words and

RB text complexity indices

LSTM Validation 19.85 19.37 19.86 19.09 54.67 54.56 54.67 54.55

Testing 22.96 22.72 22.97 22.23 57.06 56.86 57.06 56.94

BiLSTM Validation 19.93 20.18 19.94 19.64 54.82 54.70 54.83 54.65

Testing 18.86 19.83 18.86 18.82 56.43 56.16 56.43 56.26

Word2Vec – skip gram and

RB text complexity indices

LSTM Validation 23.67 23.43 23.68 23.43 55.48 55.71 55.49 55.58

Testing 23.28 23.14 23.28 23.15 55.45 55.54 55.45 55.47

BiLSTM Validation 22.97 23.07 22.98 22.88 54.67 54.54 54.67 54.50

Testing 24.38 24.22 24.39 24.21 56.35 55.72 56.35 55.82

GloVe and

RB text complexity indices

LSTM Validation 22.04 23.69 22.04 21.19 57.47 57.44 57.48 56.82

Testing 22.25 22.28 22.26 21.47 57.69 56.96 57.70 56.94

BiLSTM Validation 21.80 22.53 21.81 21.75 55.06 54.99 55.06 55.00

Testing 22.17 22.39 22.18 22.08 56.27 56.19 56.27 56.23

BiLSTM

Attention

Validation 19.54 21.93 19.55 13.30 47.97 23.02 47.98 31.11

Testing 20.99 24.83 20.99 14.99 43.64 19.05 43.65 26.52

BERT-Small and

RB text complexity indices

Feed-

Forward

Validation 25.46 26.21 25.47 25.14 59.89 59.83 59.89 59.82

Testing 26.28 26.70 26.28 26.07 60.61 60.47 60.62 60.53

BERT-Medium and

RB text complexity indices

Feed-

Forward

Validation 24.06 25.13 24.07 23.89 60.12 60.34 60.12 60.12

Testing 24.23 24.76 24.23 23.93 59.66 60.27 59.67 59.82

DistilBERT and

RB text complexity indices

Feed-

Forward

Validation 26.24 26.60 26.25 25.98 61.37 61.75 61.37 60.52

Testing 26.91 27.05 26.91 26.63 63.14 62.69 63.14 62.13

BiLSTM Validation 24.22 24.73 24.22 23.28 61.29 61.24 61.29 61.20

Testing 21.70 22.95 21.70 20.92 57.22 57.00 57.09 57.09

54

5 Discussion

In the previous chapter, we summed up a collection of fake news detection solutions

which learn various patterns of untrustworthy content. Despite having similar results with

those from Section 3, there are multiple aspects that restrict their final performance, aspects

that we will try to discuss further. A series of arguments can be put forward to explain the

existing limitations and based on them, we can establish further steps that may diminish the

impact.

Firstly, the weak results could be explained by the choice of the data set. A well-

balanced, unbiased, diverse, and real-life-inspired corpus can greatly influence the outcome

of the experiments. In our case, some classes have less examples comparing with the others,

hindering the learning process. Also, they are very specialized, focusing just on specific

events from reality. Moreover, LIAR has six classes, and it contains many short real-world

statements from various contexts and different authors, being very difficult to place them in a

pattern. Therefore, the models cannot learn general patterns for the fake news detection task.

Further, we analyzed the structure of LIAR and found out different limitations like typos,

atypically organized or incomplete sentences that may justify the mistake prone models.

Such examples that make the task difficult are:

- typing errors:

Says Dan Sullivan approved a light sentence for a sex offenderwho got out of prison

andis now charged with a gruesome murder and sexual assault

(offender who; and is)

Jeff Greene on why hewent Cuba.

(he went)

Americanschools are more segregated than they were in the 1960s.

(American schools)

- extra punctuation marks:

Barack Obama ""pays for every dime "" of his spending plans.

- missing punctuation marks:

If you dont buy cigarettes at your local supermarket, your grocery bill wont go up a

dime.

 (don’t; won’t)
- incomplete sentence:

On gay marriage.

On abortion rights.

55

- confusing sentence:

Says he was a Marine during Vietnam.

(Who is “he’?)

These constraints affect all the features we have been tested: frequency, word

embeddings and text complexity indices. For instance, some of the ReaderBench metrics -

surface indices, word complexity indices, morphological indices - are strictly related to the

shape of the text. A corpus with grammatical errors, incomplete or absent words, extra or less

punctuation marks, unclear and non-fluent texts, can negatively influence the values of these

indices. In turn, stylometric metrics influence the final label determined by the classifiers.

Thus, if they are not correctly calculated, they will lose their information and relevance and

they will lead to erroneously learned patterns. In addition, the typos from the input especially

influence the features extracted through TF-IDF, Word2Vec, GloVe, BERT and DistilBERT,

as they lead to words which do not exist in the dictionary, with unidentified stem or lemma.

Unknown words raise difficulties in both computing frequency and vector space

representation.

One possible solution for improving the format of the dataset statements is to apply

some precursor operations for correction. For example, confronting words with a dictionary

and finding the closest replacement through minimal number of character changes may assure

the removal of lexical-grammatical errors. A more complex option is using a predicting

model that can find the most probable word that fits in a sentence in case of discovering a

token that does not belong to the glossary. Moreover, texts may be validated through a

checker that signals punctuation marks mistakes or incoherent sentences. This additional

editing of the corpus may also influence the pre-processing stage, as clean text is easier to be

standardized than the noisy one. For a different format of the text, we may need to change the

sequence of operations we applied by adding, removing, or even replacing some steps.

Secondly, another aspect of the dataset that influences the experiments based on

indices of complexity is the length of the input. Specifically, LIAR is a corpus that contains

in general short texts with a few statements, not complex documents, or paragraphs. This

implies that certain text indices will have identical values, regardless of the level of

granularity chosen. For instance, if we have a single sentence entry, the document, paragraph,

and sentence will be equal. Thus, the information sent to the models may be consistent, but

duplicated and without essence. Figure 3 shows the average number of words for an example

Figure 3 Example different indices with identical information: wd_sent, wd_par, wd_doc

56

at the sentence, paragraph, and document level. It can be seen that although we have three

indices, the histograms of two are identical, and the third has very similar information. In the

future, to avoid sending extra data to the model, we should filter out all the stylometric

indicators that do not help the learning process.

 The problem of input length can also affect the embeddings of the words. We used a

fixed size of 100 for embeddings vectors in all our experiments. Although the majority of

texts had less than 100 tokens, 7 out of over 12.000 news were truncated as they had

dimensions between 186 and 512. Most of them were padded with zeros as the average length

is 20. The problem appears when we lose too many information or when we add too much

irrelevant one - noise. If we consider those 7 elements as outliers and remove them, then the

constant size that we chose may have not been the most appropriate one, a smaller one being

more helpful. More detailed experiments for finding the best embedding dimension are in our

short-term plans.

Another issue which came from using the ReaderBench tool is that a significant

percentage of the calculated indices were null for all classes, adding no informational gain.

This can be determined by several aspects. One of them is the simplistic structure of the

dataset manifested through the small length of the texts. As a result, it is almost impossible to

extract clues related to discourse structure or semantic cohesion from short news, aspect

which automatically leads to zero values for all classes. Another reason is the lack of

diversity of the entries. For example, out of about 12.800 entries, there was no example

containing dependencies of type “classifier” or “copula”, which means that these metrics do

not bring knowledge to the models. Thereby, because of the little information that these

indices brought, we limited the number of experiments that used them.

Fourthly, embeddings representations may also be influenced by the strategy we

adopted for words that do not belong to the vocabulary. We chose a quite simple approach in

all cases, meaning that we added a new word to the vocabulary, called “UNK”, with a fixed

numerical array of zeros; then we associated it with every unknown word. Taking into

account that on average approximately 2.000/13.000 (15%) unique words are not in the

glossary of our feature extraction methods, this aspect may explain the limited results of these

methods. GloVe had the largest number of null embeddings, which led in general to

confusing results. One method that may improve news numerical representation is using a

predicting algorithm for the out-of-vocabulary terms. In this way, we may find useful

embeddings based on morphology and context.

The analysis of the performance of the previously presented models can continue

beyond the metrics used: Precision, Recall, Accuracy and F1-Score. More than these easy-to-

understand numerical values for a computer, it is interesting for a person to analyze why a

certain classifier gave a certain verdict. If we only knew the criteria taken into account, we

could understand which are the reasons for which the result is not as expected. In this

direction, we analyzed the correlation between the obtained labels and the text complexity

indices, trying to deduce some of the learned rules. Although more than 1000 indices were

used, not all of them contributed to the differentiation between classes. In addition to those

with zero values mentioned above, we also found sufficient indices that had similar values for

57

the two classes. In fact, if we analyze this direction further, we can see that the values

obtained for these indices are generally small, and their variation between classes is mostly at

the level of decimals. However, even with these small changes, some variables play a more

important role than others. To highlight this, we calculated the Gini scores of importance and

summarized the highest values in Figure 4. The importance of Gini or Mean Decrease in

Impurity (MDI) calculates the importance of each trait, in our case of each complexity index,

as the sum over the number of divisions in a forest of trees that include the characteristic,

proportional to the number of samples it divides. A higher value indicates a higher

importance of the feature.

Given that very small variations were obtained for this dataset, the model failed to

learn the defining features of a certain class. However, there were several indices that

recorded positive values only for a certain class. This can also be an explanation for some of

the labels obtained because once those indices were met, they were associated with that class.

Thus, Table 19 highlights such examples, mainly in terms of valence and named entities, so

indices of word complexity. We can conclude that the news with false information was

associated with mostly negative feelings: despair, disappointment, dissatisfaction,

humiliation, sadness, with a few exceptions: hope, surprise. On the other hand, articles that

present real facts were written in a positive tone, leaving traces of emotion, touch, serenity,

joy, and relief. Also, our theory was that evoking real-world elements like persons, locations,

organizations, languages through their proper name increases the reader's confidence. This

idea was confirmed as truth texts tended to use named entities, unlike the opposite class.

Figure 4 Text complexity indices with the highest Gini score

58

Table 19 Examples of text complexity indices specific for a class

fake true

valence_desperation_galc_sent

valence_hope_galc_sent

valence_dissapointment_galc_sent

valence_surprise_galc_sent

valence_skipt_lasswell_sent

valence_sadness_galc_sent

valence_humility_galc_sent

valence_dissatisfaction_galc_sent

valence_beingtouched_galc_sent

valence_enjoyment_galc_sent

valence_relief_galc_sent

valence_serenity_galc_sent

valence_rcends_lasswell_sent

valence_ingest_liwc_sent

nmdEnt_language_sent

nmdEnt_location_sent

59

6 Conclusions and Future Work

The purpose of this thesis was to analyze the problem of detecting false content

through a linguistic approach based just on the content of the texts. Therefore, we proposed

different approaches of selecting the characteristics of news and feed them to an automatic

model to learn from. This direction has allowed experimentation with several solutions,

focusing on pre-processing data, extracting features and classification. At the beginning, we

tried to implement some traditional machine learning algorithms as they lead to good results,

and later we shifted to more complex solutions, based on neural networks. In addition,

several traits extraction methods were tried: term frequency, static and contextualized word

embeddings. Moreover, we came up with the idea that the author’s intention to voluntarily

write misinformation will be reflected in his writing style and that we may be able to deduce

a series of explanations of the final labels if we identify them. So, we extracted over 2000

text complexity indices for each text entry and integrated them in the previous solutions. We

treated the problem from two different points of views: 2-label classification and a more

complex one, 6-label classification.

In the end, we kept the best results per feature type and classification case and compared

them for an overall perspective in Table 20 and Table 21. The highest classification results

were obtained in both cases using a feed forward network combined with a fine-tuned

DistilBERT, which achieved for the test partition an accuracy of 27.30% on 6-labels,

respectively 63.61% on 2-labels. This outcome highlights from the start that contextualized

word embeddings through they semantic-based approach have the biggest potential for

detecting patterns of false content.

Table 20 Overall results for multi-class classification

Features Model Test

accuracy

(%)

TF-IDF of unigrams of words SVM linear 23.36

TF-IDF of unigrams & bigrams of words SVM linear 24.70

TF-IDF of unigrams of stems SVM quadratic 24.70

TF-IDF of unigrams & bigrams of stems SVM linear 23.84

TF-IDF of unigrams of lemmas SVM linear 25.41

TF-IDF of unigrams & bigrams of lemmas SVM linear 25.26

TF-IDF of unigrams & bigrams of words and unigrams of

lemmas

SVM quadratic 24.94

TF-IDF of unigrams & bigrams of words and unigrams &

bigrams of lemmas

SVM linear 24.63

Word2Vec – continuous bag of words LSTM 24.38

Word2Vec - skip gram BiLSTM 23.44

GloVe BiLSTM Attention 24.30

60

Table 21 Overall results for binary classification

BERT- Small Feed Forward 24.54

BERT-Medium Feed Forward 24.39

DistilBERT Feed Forward 27.30

RB text complexity indices SVM quadratic 20.33

TF-IDF of unigrams of words and RB text complexity indices DT 21.55

TF-IDF of unigrams & bigrams of words and RB text

complexity indices

DT 22.02

Word2Vec – continuous bag of words and RB text complexity

indices

LSTM 22.96

Word2Vec – skip gram and RB text complexity indices BiLSTM 24.38

GloVe and RB text complexity indices LSTM 22.25

BERT-Small and RB text complexity indices Feed Forward 26.28

BERT-Medium and RB text complexity indices Feed Forward 24.23

DistilBERT and RB text complexity indices Feed Forward 26.91

Features Model Test

accuracy

(%)

TF-IDF of unigrams of words SVM quadratic 61.88

TF-IDF of unigrams & bigrams of words SVM linear 62.19

TF-IDF of unigrams of stems SVM quadratic 61.17

TF-IDF of unigrams & bigrams of stems SVM linear 61.96

TF-IDF of unigrams of lemmas SVM linear 61.72

TF-IDF of unigrams & bigrams of lemmas NB 61.64

TF-IDF of unigrams & bigrams of words and unigrams of

lemmas

SVM linear 61.40

TF-IDF of unigrams & bigrams of words

and unigrams & bigrams of lemmas

NB 61.48

Word2Vec – continuous bag of words LSTM 57.45

Word2Vec - skip gram BiLSTM 58.01

GloVe LSTM 59.19

BERT- Small Feed Forward 58.48

BERT-Medium Feed Forward 60.06

DistilBERT Feed Forward 63.61

RB text complexity indices NB 56.89

TF-IDF of unigrams of words and RB text complexity indices DT 58.24

TF-IDF of unigrams & bigrams of words and RB text

complexity indices

DT 58.32

Word2Vec – continuous bag of words and RB text complexity

indices

LSTM 57.06

Word2Vec – skip gram and RB text complexity indices BiLSTM 56.35

GloVe and RB text complexity indices LSTM 57.69

61

For most features extracted with TF-IDF, the best score was obtained with a SVM,

either linear or quadratic. There were only two exceptions that reached better accuracy with

Naïve Bayes. Overall, the solutions based on frequency had values close to the state of the

art, around 24-25%, respectively 60-61%. This emphasizes that for our task, frequency of

terms represents informative traits. Due to the promising results obtained with TF-IDF and

the basic machine learning algorithms, it can be said that there is a link between the

frequency of words used and the degree of veracity of the text. Furthermore, the fact that the

meaning and order of the words were ignored in the first approaches and that those

algorithms did not capture the dependencies between the words, did not affect the results as

much as expected. Also, as it turns out from our experiments, there are not large differences

between simpler or more complex classifiers, as the most important element is represented by

the features used in each case. All our models have performances close to the state of the art,

27% and 62%.

Another point to note is that the performance of recurrent neural networks has not

been as good as expected. They obtained poorer results and tended to overfit. So, we can

conclude that the task of predicting the veracity of a text using this type of approach is not so

promising, at least not for this dataset. In both cases, Word2Vec-continuous bag of words

algorithm scored the highest accuracy with a LSTM architecture, while skip-gram with

BiLSTM. GloVe had different performances, reaching 59.19% when fed to LSTM for the 2

labels case and 24.30% when paired with BiLSTM Attention for the 6 labels one. For static

word embeddings, we obtained inferior metrics compared to those from the first series of

experiments, proving that using more complex information do not boost a model up if not

paired with the right classifier. On the contrary, for the LIAR dataset, they bring just noise, as

the features decreased model performance when attached to the list of inputs. Overall, our

corpus proved to be more suitable for n-grams than Word2Vec or GloVe.

However, all previously mentioned models lose context and therefore semantic. It is

common knowledge that the meaning of a word depends on the neighboring words, and it

should be represented according to them. This is obvious by the increase in performance that

appears when employing features extracted through transformers. Therefore, BERT managed

to get better results than static word embeddings and similar with TF-IDF, while DistilBERT

surpassed all of them.

Our experiments also showed that the text complexity indicators are not decisive factors

for the degree of truth of a text, as they do not bring many improvements. When used on their

own, style cues led to the weakest metrics in this series of experiments. Moreover, the

hypothesis that the author’s writing style can be expressed through additional traits that could

fine-tune a model was proven wrong, as the data expressed by the stylometric features

brought almost no improvement on the model. However, we were able to determine some

connections between the features used at the input and the labels obtained at the output, to

BERT-Small and RB text complexity indices Feed-Forward 60.61

BERT-Medium and RB text complexity indices Feed-Forward 59.66

DistilBERT and RB text complexity indices Feed-Forward 63.14

62

provide a number of explanations to the user. Thus, it could be deduced that the model with

the best results learned a series of rules to differentiate between the two main classes: true

and false. In this process, the indices of word complexity had the greatest contribution

through words valence.

Besides short-term improvements that we mentioned in the previous chapters, there

are a multitude of directions that may lead to systems that behave much better in real-life

situations. The first one is introducing in the input additional meta-data about the world.

Despite the disadvantage that for daily use of such systems, in general we do not have access

to such data, we can deduct from the state of the art that extra information can boost up the

performance of the models. So, as LIAR has multiple columns that we did not use until this

point, we intend to test this path and see how the metrics evolve.

The architectures tested so far are supervised solutions that focus on extracting the

features that are further used in classification. Another direction we propose is to approach

the problem in an unsupervised way and analyze the structure of the corpus data. Specifically,

we want to see if semantically similar news would be in the same class depending on the

clusters obtained. Thus, by analyzing the purity and cohesion of a cluster, we would be able

to measure the level of trust that the news in certain fields have and to extract some trends

from the existing data.

Nowadays, for fake news detection, the field of Explainable AI is one of interest, so

we want to continue to research this direction. First, improvements can be made to previous

models, to the point where a clear correlation is determined between text complexity indices

and the degree of truth by studying the weights of the models. Another alternative could be

the ProSeNet (Prototype Sequence Network) architecture which generates explanations by

comparing the input with typical training cases or LIME library which uses the components

of an interpretable model built in the vicinity of the instance it wants to explain. Also, we can

build a complementary dataset with verified information and use it as context and

justification. Finally, it will be desired to compare all the options to determine which of them

offers a more complete explanation and which one is closer to human thinking. It is also

interesting to follow the behavior of the models implemented in different experiments such

as: the transferability of model learning between several datasets or the transferability of

model learning between several foreign languages.

For the long run, the aim of this project is to also analyze these algorithms for the

Romanian language, which may even need the construction of such a corpus. Thus, we want

to see how good the metrics would be for a language that has many syntactic and semantic

particularities. The difficulty of the task of detecting fake texts would increase for the

Romanian language due to the much more limited resources and the impact of the pre-

processing text step. For instance, at the time of segmentation into tokens, this language can

raise significant problems, such as: the elimination of letters that appear in word

compressions (“într-adevar”) or regionalisms (“acu’”) or the hyphenation of an unaccented

forms of pronouns with a verb (“l-am”, “m-ai”, “schimbându-se”). All these are interesting

challenges that may lead to innovational solutions.

63

Bibliography

Agarwal, V., Sultana, P. H., Malhotra, S., & Sarkar, A. (2019). Analysis of Classifiers for

Fake News Detection. Procedia Computer Science. 165, pp. 377-383. Elsevier B.V.

Ahmed, S., Hinkelmann, K., & Corradini, F. (2019). Combining Machine Learning with

Knowledge Engineering to detect Fake News in Social Networks-a survey. Retrieved

from arXiv: https://arxiv.org/ftp/arxiv/papers/2201/2201.08032.pdf

Alhindi, T., Petridis, S., & Muresan, S. (2018). Where is your Evidence: Improving Fact-

checking by Justification Modeling. Proceedings of the First Workshop on Fact

Extraction and VERification (FEVER), 85–90.

Anoop, K., Deepak, P., & Lajish, V. K. (2020). Emotion Cognizance Improves Health Fake

News Identification. Proceedings of the 24th Symposium on International Database

Engineering & Applications.

Antoniadis, S., Litou, I., & Kalogeraki, V. (2015). A Model for Identifying Misinformation in

Online Social Networks. OTM 2015 Conferences (pp. 473-482). Springer

International Publishing Switzerland.

Aslam, N., Khan, I. U., Alotaibi, F. S., Aldaej, L. A., & Aldubaikil, A. K. (2021). Fake

Detect: A Deep Learning Ensemble Model for Fake News Detection. Complexity.

Benevenuto, F., Magno, G., Rodigues, T., & Almeida, V. (2010). Detecting spammers on

Twitter. 4th International AAAI Conference on Weblogs and Social Media (ICWSM),

6.

Bond, C. F., & DePaulo, B. M. (2006). Accuracy of Deception Judgments. Personality and

social psychology review : an official journal of the Society for Personality and Social

Psychology,, 10, 214-234.

Brasoveanu, A., & Andonie, R. (2019). Semantic Fake News Detection: A Machine Learning

Perspective. Advances in Computational Intelligence, (pp. 656–667).

BuzzFeed-Webis Fake News Corpus. (2016). Retrieved from Zenodo:

https://zenodo.org/record/1239675

Castillo, C., Mendoza, M., & Poblete, B. (2013). Predicting information credibility in time-

sensitive social media. Electronic Networking Applications and Policy, 23.

Chu, Z., Gianvecchio, H., Jajodia, S., & Wang, H. (2010). Who is Tweeting on Twitter:

Human, Bot, or Cyborg? Twenty-Sixth Annual Computer Security Applications

Conference, (pp. 21-30).

Ciampaglia, G. L., Shiralkar, P., Rocha, L. M., Bollen, J., Menczer, F., & Flammini, A.

(2015). Computational Fact Checking from Knowledge Networks. Plos ONE 10.

64

Conroy, N. K., Rubin, V. L., & Chen, Y. (2016). Deception detection for news: Three types

of fakes. 52. Proceedings of the Association for Information Science and Technology.

Dascălu, M., Trăușan-Matu, Ș., Guțu, G., Ruseti, Ș., Paraschiv, I. C., Dessus, P., . . .

Crossley, S. A. (2017). ReaderBench: A Multi-lingual Framework for AnalyzingText

Complexity.

Dascălu, M., Trăușan-Matu, Ș., Guțu, G., Ruseti, Ș., Paraschiv, I. C., Dessus, P., . . .
Crossley, S. A. (2022). ABOUT. Retrieved january 2022, from ReaderBench:

http://www.readerbench.com/

Ersahin, B., Aktaş, Ö., Kilinç, D., & Akyol, C. (2017). Twitter fake account detection.
International Conference on Computer Science and Engineering (UBMK), (pp. 388-

392).

Etzioni, O., Banko, M., Soderland, S., & Weld, D. S. (2008). Open Information Extraction

from the Web. Communications of the ACM.

Fake and real news dataset - Classifying the news. (2019). Retrieved from Kaggle:

https://www.kaggle.com/clmentbisaillon/fake-and-real-news-dataset

Fake News - Build a system to identify unreliable news articles. (2018). Retrieved from

Kaggle: https://www.kaggle.com/c/fake-news/data

Fake News Detection Challenge KDD 2020. Develop a machine learning algorithm to detect

fake news. (2020). Retrieved from Kaggle:

https://www.kaggle.com/competitions/fakenewskdd2020/data

FakeDeS: Fake News Detection in Spanish Shared Task. (2021). Retrieved from

https://sites.google.com/view/fakedes/home

FakeNewsCorpus. (2020). Retrieved from GitHub:

https://github.com/several27/FakeNewsCorpus/releases/tag/v1.0

Gomez-Adorno, H., Posadas-Duran, J. P., Enguix, G. B., & Capetillo, C. P. (2021). Overview

of FakeDeS at IberLEF 2021: Fake News Detection in Spanish Shared Task.

Procesamiento del Lenguaje Natural, 223-231.

Groza, A. (2020). Detecting fake news for the new coronavirus by reasoning on the Covid-19

ontology. Retrieved from arXiv: https://arxiv.org/pdf/2004.12330.pdf

Guptaa, A., Lib, H., Farnoushc, A., & Jiang, W. (2022). Understanding patterns of COVID

infodemic: A systematic and pragmatic approach to curb fake news. Journal of

Business Research, 670-683.

Han, Y., Silva, A., Luo, L., & Karunaseker, S. (2021). Knowledge Enhanced Multi-modal

Fake News Detection. Retrieved from arXiv: https://arxiv.org/pdf/2108.04418.pdf

Hassan, N., Arslan, F., Li, C., & Tremayne, M. (2017). Toward automated fact-checking:

detecting check-worthy factual claims. Proceedings of the 23rd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pp. 1803–1812.

65

Hassan, N., Arslan, F., Tremayne, M., & Li, C. (2017). Toward Automated Fact-Checking:

Detecting Check-worthy Factual Claims by ClaimBuster. 23rd ACM SIGKDD

International Conference, (pp. 1803-1812).

Holan, A. D. (2018). The Principles of the Truth-O-Meter: PolitiFact’s methodology for

independent fact-checking. Retrieved from PolitiFact:

https://www.politifact.com/article/2018/feb/12/principles-truth-o-meter-politifacts-

methodology-i/

Hu, L., Yang, T., Zhang, L., Zhong, W., Tang, D., Shi, C., . . . Zhou, M. (2021). Compare to

The Knowledge: Graph Neural Fake News Detection with External Knowledge.

Proceedings of the 59th Annual Meeting of the Association for Computational

Linguistics and the 11th International Joint Conference on Natural Language

Processing, pp. 754–763.

Karimi, H., Roy, P., Saba-Sadiya, S., & Tang, J. (2018). Multi-source multi-class fake news

detection. Proceedings of the 27th International Conference on Computational

Linguistics, pp. 1546–1557.

Khan, J. Y., Khondaker, M. I., Afroz, S., Uddin, G., & Iqbal, A. (2021). A Benchmark Study

of Machine Learning Models for Online Fake News Detection. Retrieved from arXiv:

https://arxiv.org/pdf/1905.04749.pdf

Li, X., & Wu, X. (2015). Constructing Long Short - Term Memory based deep recurrent

neural networks for large vocabulary speech recognition. Retrieved from Arvix:

https://arxiv.org/pdf/1410.4281.pdf

LIAR Dataset. (2017). Retrieved from CS UCSB:

https://www.cs.ucsb.edu/~william/data/liar_dataset.zip

Lin, P., Song, Q., & Wu , Y. (2018). Fact Checking in Knowledge Graphs with Ontological

Subgraph Patterns. Data Science and Engineering, pp. 341–358.

Ma, J., Gao, M., & Wong, K.-F. (2010). Detect rumors in microblog posts using propagation

structure via kernel learning. 55th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers) (pp. 708-717). Association for

Computational Linguistics.

Mayank, M., Sharma, S., & Sharma, R. (2022). DEAP-FAKED: Knowledge Graph based

Approach. Retrieved from arXiv: https://arxiv.org/abs/2107.10648

MEX-A3T: Fake News and Aggressiveness Analysis. (2020). Retrieved from

https://sites.google.com/view/mex-a3t/

Mihalcea, R., & Strapparava, C. (2009). The Lie Detector: Explorations in the Automatic

Recognition of Deceptive Language. Proceedings of the ACL-IJCNLP 2009

Conference Short Paper (pp. 309–312). Association for Computational Linguistics.

66

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word

Representations in Vector Space. Retrieved from Arvix:

https://arxiv.org/abs/1301.3781v3

Norton-Taylor, R. (1999). The Colour of Justice. Oberon Books Ltd.

Pan, J. Z., Pavlova, S., Li, C., Li, N., Li, Y., & Liu, J. (2018). Content Based Fake News

Detection Using. Springer International Publishing.

Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global Vectors for Word

Representation. Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing (EMNLP) (pp. 1532–1543). Association for

Computational Linguistics.

Perez-Rosas, V., Kleinberg, B., Lefevre, A., & Mihalcea, R. (2019). Automatic Detection of

Fake News. 27th International Conference on Computational Linguistics.

Potthast, M., Kiesel, J., Bevendorff, J., Stein, B., & Reinartz, K. (2018). A stylometric

inquiry into hyperpartisan and fake news. 56th Annual Meeting of the Association for

Computational Linguistics, 1: Long Papers, pp. 231-240.

Potts, C. (2011, November 8-9). Sentiment Symposium Tutorial. San Francisco.

Rashkin, H., Choi, E., Jang, J. Y., Volkova, S., & Choi, Y. (2017). Truth of Varying Shades:

Analyzing Language in Fake News and Political Fact-Checking. Proceedings of the

2017 Conference on Empirical Methods in Natural Language Processing (pp. 2931–
2937). Association for Computational Linguistics.

Raza, S., & Ding, C. (2022). Fake news detection based on news content and social contexts:

a transformer-based approach. International Journal of Data Science and Analytics .

Rokach, L., & Maimon, O. (2005). The Data Mining and Knowledge Discovery Handbook.

Rubin, V., Conroy, N., Cornwell, S., & Chen, Y. (2017). Fake News or Truth? Using

Satirical Cues to Detect Potentially Misleading News. NAACL-HLT.

Ruchansky, N., Seo, S., & Liu, Y. (2017). CSI: A Hybrid Deep Model for Fake News

Detection. Retrieved from arXiv: https://arxiv.org/pdf/1703.06959.pdf

Rum Detect. (2010). Retrieved from Dropbox:

https://www.dropbox.com/s/7ewzdrbelpmrnxu/rumdetect2017.zip?dl=0

Satirical Fake and Legitimate News Dataset. (2016). Retrieved from Victoria Rubin:

https://victoriarubin.fims.uwo.ca/news-verification/data-to-go/

Shakeel, D., & Jain, N. (2021). Fake news detection and fact verification using knowledge

graphs and machine learning.

Shearer, E., & Gottfriend, J. (2017). News use across social media platforms. Retrieved from

Journalism: https://www.journalism.org/2016/05/26/news-use-across-social-media-

platforms-2016/

67

Shi, B., & Weninger, T. (2016). Fact Checking in Heterogeneous Information Networks.

WWW '16 Companion: Proceedings of the 25th International Conference Companion

on the World Wide Web, (pp. 101-102).

Shrestha, M. (2018). Detecting Fake News with Sentiment Analysis and Network. Retrieved

from https://portfolios.cs.earlham.edu/wp-

content/uploads/2018/12/Fake_News_Capstone.pdf

Torgo, L., Guimaraes, N., & Figueira, A. R. (2018). Current State of the Art to Detect Fake

News in Social Media: Global Trendings and Next Challenges. In Proceedings of the

14th International Conference on Web Information Systems and Technologies, (pp.

332-339).

Vlachos, A., & Riedel, S. (2014). Fact Checking: Task definition and dataset construction.

Proceedings of the ACL 2014 Workshop on Language Technologies and

Computational Social Science, pp. 18–22.

Vorhies, W. (2017, May 1). Using Algorithms to Detect Fake News - The State of the Art.

Retrieved from Data Science Central:

https://www.datasciencecentral.com/profiles/blogs/using-algorithms-to-detect-fake-

news-the-state-of-the-art

Wang, W. Y. (2017). "Liar, Liar Pants on Fire": A New Benchmark Dataset for Fake News

Detection. Retrieved from Arvix: https://arxiv.org/pdf/1705.00648.pdf

Wang, W. Y. (2017). “Liar, Liar Pants on Fire”: A New Benchmark Dataset for Fake News

Detection. 55th Annual Meeting of the Association for Computational Linguistics

(Short Papers), (pp. 422–426).

Yazdi, K. M., Yazdi, A. M., Khodayi, S., Hou, J., Zhou, W., & Saedy, S. (2020). Improving

Fake News Detection Using K-means and Support Vector Machine Approaches.

Open Science Index, Electronics and Communication Engineering.

	Abstract
	1 Introduction
	1.1 Context
	1.2 Objectives

	2 State of the Art
	2.1 Resources
	2.1.1 Competitions
	2.1.2 Datasets

	2.2 Analysis of News Content
	2.2.1 Knowledge-based Approaches
	A Human Oriented Fact Checking
	B Computational Oriented Fact Checking

	2.2.2 Machine Learning Approach
	A Classical Models
	B Deep Learning

	2.3 Hybrid Approaches

	3 Method
	3.1 Dataset
	3.2 Text Pre-processing
	3.3 Features
	3.3.1 Bag of n-grams
	3.3.2 Static word embeddings
	A Word2Vec
	B GloVe

	3.3.3 Contextualized word embeddings
	A Bidirectional Encoder Representations from Transformers (BERT)
	B DistilBERT

	3.3.4 Stylometric features

	3.4 Classical Machine Learning Models
	A Decision Trees
	B Naïve Bayes
	C Support Vector Machines

	3.5 Neural Networks
	A Long Short - Term Memory
	B Bidirectional Long Short-Term Memory
	C Feed-forward network

	4 Results
	4.1 Classification based on TF-IDF
	4.2 Classification based on word embeddings
	4.3 Classification based on stylometric features

	5 Discussion
	6 Conclusions and Future Work
	Bibliography

