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Monte Carlo (MC) sampling is the standard approach for uncertainty propagation in problems with high-dimensional
stochastic inputs. Various acceleration techniques have been developed to overcome the slow convergence of MC esti-
mates, such as multilevel Monte Carlo (MLMC). MLMC uses successive approximations computed on levels, models
with different levels of accuracy, and computational cost to reduce the estimator variance. MLMC analytically de-
termines the number of samples required on each level to achieve a given accuracy at minimal cost. We propose an
extension of the original MLMC theoretical framework for modern, heterogeneous computer architectures in which
accelerators (GPUs) are available and, therefore, samples can be distributed on both different levels and different com-
pute units (CPUs and GPUs). We derive the optimal sample allocation for the proposed MLMC extension by solving a
convex optimization problem. We apply the MLMC extension to a stochastically heated channel flow to provide insight
for a study on the design of concentrated solar energy receivers. We demonstrate for the stochastically heated channel
flow that the proposed MLMC extension leads to considerable total cost reduction (up to 86%) compared to MLMC
using only GPUs.

KEY WORDS: uncertainty quantification, variance reduction methods, Monte Carlo, stochastic par-
tial differential equations, stochastic ordinary differential equations, computational design, computational
statistics

1. INTRODUCTION

Uncertainty propagation methods, such as Monte Carlo (MC), aim at computing the outputs of a mathematical model
with stochastic inputs [1] by combining model solutions (samples) corresponding to random realizations of the inputs.
The convergence rate of Monte Carlo is independent of the dimension of the stochastic input, making it the only
computationally tractable method for problems with high-dimensional stochastic inputs. Traditional MC converges
slowly—uwith the square root of the number of samples and describes the output only by an unbiased estimator for the
mean. In recent years, research efforts have developed MC-based methods that converge faster and provide flexibility
in the description of the output statistics. Multilevel Monte Carlo (MLMC) [2], multifidelity Monte Carlo (MFMC)

[3], and control variate Monte Carlo [4] combine solutions from multiple models to reduce the variance and thereby
accelerate the convergence of the output estimates. Geraci et al. [5] and Qian et al. [6] extend MLMC and MFMC
to estimate not just the mean, but also the variance of the output, and Krumscheid et al. [7] introduces a strategy
to estimate moments of any order. Giles et al. [8] and Krumscheid and Nobile [9] propose variations of MLMC to
estimate the full distribution of the output.

While much progress has been made on improving the convergence and descriptiveness of MC-type methods,
almost no effort has been devoted to taking advantage of emerging computer architectures. Historically, each sample
of a MC-type simulation was run on a single CPU. Modern computer architectures, including seven of the top ten
supercomputers in the world [10], use heterogeneous nodes, with multiple CPUs and one or more GPUs. In recent
work, [11,12] used GPUs in studies with MC and a variant, quasi-Monte Carlo, and [13] used a truly heterogeneous
system for MC. Given the typical acceleration afforded by GPUs over CPUs, most current approaches compute
samples solely on GPUs. If the software supports executions on CPUs and GPUs, it is possible to instead compute

2152-5080/2(H35.00 © 2020 by Begell House, Inc. www.begellhouse.com 575



576 Adcock et al.

samples on both processor types, thereby taking advantage of all available compute resources. However, there is no
theoretical framework on heterogeneous computer architectures, either for MC or for MLMC, to determine the sample
allocation that meets a given accuracy at minimal computational cost. We propose a generalization of MLMC, named
H-MLMC, which provides this framework. We describe the optimization problem to determine the sample allocation
for H-MLMC in Section 2, outline the solution in Section 3, and fully derive the solution in the Appendix. Section 4
demonstrates the computational savings and properties of H-MLMC. Section 5 provides concluding remarks.

2. PROBLEM DEFINITION
2.1 Optimization Problem

We are interested in finding an unbiased estimator of the solution to a stochastic partial differential equation (SPDE).
We want the variance of the estimator to be smaller than the toleeZnead the overall computational cost (total
wall-clock time) of the estimator to be as small as possible. We Hamemerical models available to solve the
SPDE. The models have decreasing variance and increasing computational cost. We assume that each model can
be solved on two different types of computer processors, such as CPUs and GPUs. We denote the processor types
asC andG processors, respectively. L&t and N& be the number of samples we solve on lefein C and G
processors, respectively. We also assume that the overall compute systé?'tesd M/ © processors of andG
types, respectively.

An effective method to find an unbiased estimator of the solution to SPDEs is multilevel Monte Carlo (MLMC)
[2]. However, MLMC does not take into account the availability of multiple processors of different types when deter-
mining the optimal sample allocation. MLMC assumes all samples on a level will be evaluated on the same processor
type and finds the optimal number of samples per level under this assumption. A simplistic approach to use MLMC
on a heterogeneous computer architecture is to assumé' {niatcessors are consistently faster at solving the SPDE
thanC' processors, and to therefore use afilprocessors. Under this assumption the MLMC estimator [2] is
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whereQ); ) is the solution to the SPDE found by modebn aG processor for theth of N; independent samples

of the stochastic parametetfsg") - Q@@l is the difference between the solutions to the SPDE found by mddels

and/ — 1 on aG processor both for the same realization of the stochastic param®ieris. the number of samples
solved on level on G processors.
The total variance, cost, and wall-clock time to solution of the MLMC estimator are
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respectively.Vs = V[Q{] = V[Qf] denotes the variance of a sample on levandV, = V[Qf — QF ;] =
VIQ§ — QF ;] VI > 1denotes the variance of the difference between a sample on lewvetly — 1. CF = CY[QY]
denotes the cost for a sample on let&ndCS = CE[QF — QF ;] denotes the cost for a sample on levelnd
¢ — 1, each evaluated with@ processor.

We now derive a theoretical framework to extend MLMC by explicitly taking into account the availability of
heterogeneous processors. In this new approach, denoted H-MLMC, the estimator is
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When generating realizations of the stochastic parameter, care should be taken so that the same stochastic param-
eter is not used twice—this was done for all examples presented in this paper. The total variance, cost, and wall-clock
time to solution of the H-MLMC estimator are

L

Vi
H-MLMC L
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whereC¢ is defined analogously 16, with samples evaluated @i notG processors. We seek the optimal sample
allocation: the values de ande vl = 1,2, ..., L that minimize the wall-clock time such that the total variance
is less thare2. N¢ and N must be integers. However, integer programming is NP-complete. Therefore, we remove
the constraint thal < and N& are integers, as done when deriving the optimal sample allocation for MLMC [2].

The optimization problem is

L L
1 1
H C ~C GG
MiNye N, .NE NSNS ....NE maX<Mc > NG ' 2[C > NG )v
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Ve 2
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2.2 Proof of Convexity

Equation (9) can be rewritten as

m'nNC NE,...N¢. NG NE,.. NS T, (10)
L v,
s.t.— (") +€e2>0, (11)
; NZ + NE
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- 1@ (CENE)+T >0, (13)
=1
Nf >0vt=1,2 ..,L, (14)
NF>0vt=12,.. L. (15)
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Equations (10)—(15) define a convex optimization problem. Equations (10) and (12)—(15) are linear, so they are

convex. Equation (11) is equivalent to:
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(16)

Assuming that alV; # O, H is real and symmetric, so it has real eigenvalues. By the Gershgorin circle theorem,
for each eigenvalue off, \(H) € [Hu- — Z#i H;;,H;; + Z#i Hij} for somes. By inspectionH is diagonally
dominant and has non-negative entries,[5Q — Z#i H;; > 0. Combining results from the Gershgorin circle
theorem and diagonal dominané&,H) > 0. det(H) # 0 soA(H) # 0. Therefore A(H) > 0, meaningH is
symmetric positive-definite. Thus Eq. (16), and equivalently Eq. (11), are convex.

2.3 Karush, Kuhn, Tucker (KKT) Conditions

The optimization problem is convex, so the KKT first-order necessary conditions are sufficient for optimality. The
KKT conditions are

( L V. L
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=1
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7\3<—MlG ZL:(CfNE) + T) =0, (20)
=1
WNE =0ve=12,..,L, (21)
WWNE=0ve=12..,L, (22)
A >0Vi=1,23, (23)
wl>o0ve=12,..,1L, (24)
nG >0ve=1,2 .., 1L, (25)
NE>0v=12,..L, (26)
NE>0ve=12,..,L. (27)

The problem is now to find the optimal sample allocatidit, and NS v/ = 1,2, ..., L, and Lagrange multipliers,
Aifori=123ufVve=12..L,anduf V¢ =12, .., L, that satisfy Egs. (17)—(27).
3. OPTIMAL SAMPLE ALLOCATION
3.1 Monte Carlo on Heterogeneous Compute Nodes (H-MC)

Consider the simplest case of the optimization problem in Section 2, where there is ong levelThis is equivalent
to finding the optimal sample allocation for Monte Carlo when heterogeneous computing resources are available.

Theorem 1. The optimal H-MC sample allocation, which solves Eq. (9)ffoe 1is

NC ViCFMC NG V1O M€ .
! LT e2(CEME + CEMO)

= 2(CMC + CIMO)’

Proof. Equations (17)—(27) constraii, A, > 0, andA; > 0, as proved in the Appendix for the general case where
L > 1. SinceA; andAz > 0, by Egs. (19) and (20),

CONE _ CENE

Ve e (28)
SinceA; > 0, by Eq. (18),
Vi 2
— 2 29
NC+ NG € (29)
Solving Egs. (28) and (29) faN® and N completes the proof. O

Equation (28) leads to the observation that althoGgbrocessors are faster th@hprocessors, it is worth using
both rather than just the former as done in [11,12]. Ensuring that computations Grati@G processors complete
at the same time reduces the overall cost of the estimator.

3.2 Multilevel Monte Carlo on Heterogeneous Compute Nodes (H-MLMC)

Consider the optimization problem in Section 2, initially for two levélss 2.
By Egs. (19) and (20),
CENE + CINE  CENE + CENE

1C G (30)

By Eq. (18),
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Unlike the one-level case described in Section 3.1, we now have four unkndimsy, NS, andN§'. There-
fore, we cannot uniquely determine the optimal sample allocation just from these two equations. Instead, we must
consider additional constraints derived from the KKT conditions. The same reasoning halds farUsing L = 2
does not simplify the equations significantly, so for the remainder of this section we present the general results for
L>1

Theorem 2. Any sample allocatiodv and N& V¢ = 1,2, ..., L which satisfies Egs. (32)—(38), solves Eq. (9), and
is therefore an optimal sample allocation for H-MLMC.

L L
1 C arC 1 G arG
370 2CENE) = 575 D (CENE), (32)
(=1 (=1
L
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;::1 NE + N§
L 2
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V=12 ..,L
MV
Az CEMCY NE = | —c=
CASE 1: if 7\—2 > W then { ¢ NCFMC (36)
NE =0
NS =0
L As CEMC ‘
CASE 2: if — < —=— then G MV , (37)
A CEMC NE = | ——
AsCE MG
MVe
Nf e |0
A3 CEMC ¢S [ "\ ACEMC
CASE3: if <> = —t— then (38)
A2 OZ M NG _ )\1V€ NC
S VDYl VR
Proof. See the Appendix for the proof. O

A2 andA3 cannot be found analytically from Theorem 2. Therefore, we introduce an iterative procedure\o find
andAs, and consequently; and NS and NS V¢ = 1,2, ..., L. To construct the procedure, we observe the impact of
A3/Az on Eq. (32). If this ratio is sufficiently smafless thanx;, = min,_y,.. (C{ MY /CEMC)], then all levels
will fall into case 2. All samples will be solved on tiie processor, so the right-hand side of Eq. (32) will be larger
than the left-hand side (which will equal zero).

For sufficiently large\s/A,, some level* will fall into case 3. Some samples on levélwill be solved on the
C processor and some on tlieprocessor. As the ratio further increases, msreamples will be solved on the
processor instead of th& processor. For sufficiently large ratias, will fall into case 1, so al¥* samples will be
solved on the” processor. As the ratio increases more levels will switch from case 2 to case 3 and then to case 1.
Each of these changes increases the left-hand side and decreases the right-hand side of Eq. (32).
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Finally, if A3/A; is sufficiently largelgreater thamx g = max—1, . (CS MY /CF M)] then all levels will fall
into case 1. All the samples will be solved on tigrocessor, so the left-hand side of Eq. (32) will be larger than the
right-hand side (which will equal zero).

Equation (32) can only be satisfied for the more complex intermediate casgXf € [«r, ag], not for the
extreme cases 0f3/A, = «r, andAz/A; = ag. To find the optimal sample allocation we apply a bisection strategy
as described in Algorithm 1. Step 5 of Algorithm 1 requires additional reasoning, which is provided in the Appendix.

From Theorem 2, we determine under which conditioffs and N are not unique on any level and under
which conditions they could be unique for all levels. We report these conditions in Corollaries 1 and 2, respectively.

Corollary 1. C£/C§ is the same for all levels ifV ¢ and N& are not unique on any level
Proof. If CF /C§ is the same for all levels, then
CfMCE C§M¢ As  CEMC

| so— = Vi.
CEMC CfMC A2 CEGMC

i c [O(L, O(R] =
Therefore, by Eq. (38)V{ and N¢ are not unique on any level.

If N and N& are not unique on any level, then by Egs. (36) and (8%)/A2)(#, £)(CE ME /CEME).
ThereforeC§ MY /CF MY = A3/Az, s0CE /CE is the same for all levels. O

Corollary 2. If N¢ and N are uniquely defined for all levels therf’ /CS cannot be the same for all levels.

Proof. By the contrapositive of the if statement of Corollary INf and N& are uniquely defined for some level
thenC{’ /C§ cannot be the same for all levels.MC and N are uniquely defined for all levels theévi” and N
are uniquely defined for some level, 6¢"/C§ cannot be the same for all levels. O

Algorithm 1: H-MLMC Sample Allocation
ce of
o= <CG + CG>/2

L
. 1
While W Zchf # 276 > CENE:
=1 /=1

Step 1Set¥ = o by bisection method
2

1
Step 2; = %

and)\3 = Tra

2

Vi
Step 3A; =
ep =M ( . E max(1/(ACE ME), 1/()\30GMC))>

CYMCE | A3
C G — 14 :
Step 4SetN; andN;” V¢ € S, whereS = {Z‘CE 5 7 )\2}.

AVe
As _ COMO NS = | o
If i W then{ * ACFMC
NE =0
NE =0

Az C’fMG
f — C’GMC then NG — MV
7\300MG

1
Step 5SetNS and N Vi ¢ S to minimize - § CYNE — ¢ > " CENE.
Les Les
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Using Corollary 1, we can determirepriori when N and N are not unique on any level. We do not have
a way to determine priori when N and N are unique on all levels. All we know is that Corollary 2 must be
satisfied for our optimal sample allocation to be unique.

From Theorem 2, we also find that whéty’ /C§" is the same for all levels, the total number of samples on each
level equals the optimal sample allocation for MLME{ + N = (NF)MMC NC and N are the optimal sample
allocation from H-MLMC and N&)MME is the optimal sample allocation from MLMC. Corollary 3 formally states
and proves this finding.

Corollary 3. If CS/C§ = oVl = 1,2, ..., L for some constank, N + N from H-MLMC equalsN{* from
MLMC, (NG )MLMC

Proof. By Eq. (38),

AV

)4

By Egs. (34) and (A.28) from the Appendix,

L 2

A 1 [ 1

N (gz V"1+ocCiCMG> (1+ ).
i=1

Combining results and using thaf’ = «CY,

NE +N§ = e Z\/VocCGMG\/

Ve 1 G G\MLMC
:\/CTGQZ\/VZCZ- = (V)"
i1

From Corollary 3, we find that the ratio of the wall-clock time for H-MLMC"MMC "to that for MLMC,
TMME " depends only on the rati@S’ /C§, not on the values of', C&, or V, V¢ = 1,2, ..., L or on L. In addition,
THMIMC ) PMLME 1 Corollary 4 states and proves these findings.

CGMG

O

Corollary 4. If Cf/CE = a WVt = 1,2, ..., L for some constank, then7H# -MLMC pMLMC — 1 /(1 4 (1/«)
(MC/M%)] <1

Proof.
THMLMC B (1/MG)ZZL:1 CENE
TMLMC (1/MG) Zle CE(NE)MLMC

By Corollary 3, this equals
St CENE
Y CE(NE +NE)
By Egs. (A.36) and (A.37) from the Appendix, this equals

XL:CENZCgM%Cf;GMc/Z CSN, = ZCZGNE {1/( ﬂ /Z CSN, = 1/< + > <1

(=1

where the last inequality holds becawsel/©, andM/ ¢ are nonnegative. O
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3.3 Distributing Samples on Multiple Processors

Sections 2, 3.1, and 3.2 derive the optimal number of samples to solve on each lew€l pvithessors and witty
processors. However, they do not specify how many processors to use to solve each sample. We'vé/defindd
M€ to be the total number af processors and' processors. Let:§ andm§ be the number of processors used to
solve eaclC' processor and: processor sample on levélrespectively. There are four approaches to assigmifig
andm§:

1. Solve every sample with one processeff = m§ =1v¢ =12, ..., L.

2. Solve every sample with all available processen$: = M andm§ = M“ V¢ = 1,2, ..., L, and assume
perfect scalability.

3. Solve every sample with all available processmn§ MY andm§ = MY V¢ = 1,2, ..., L, and replace
Cf andC¢ with pf Cf andpf C§, wherep§ > 1andp§ > Lare scalar penalties due to loss of scalability.

4. Modify our optimization problem to also calculate’ andm . This requires estimating functiop$’ (m{’)
andpf (m§).

H-MLMC uses approach 2. By dividing.;_, C¢ N& by M in Egs. (4) and (8) and by dividing;_, C N¢
by M€ in Eq. (8), we are assuming that one sample uses an arbitrary number of processors with perfect scalability;
i.e., the cost of solving a sample with cd@$tonm processors i§€'/m, regardless of how Iarga is.

Approach 3 simply requires replacing constafifsandC¢ with the constants§ C< andp$ C§. This approach
will find the optimal sample allocation fon{ = M andm§ = M. However, different values oh{, m¢, NE,
and N& might give a smaller solution time.

H-MLMC approximates approach 1 when condition (a), subsequently defined, holds. Condition (a): there is
enough work to use all the available processors for at least as long as it takes to run a sample on the finest level, and
there are orders of magnitude more samples on coarser, low-cost levels than on finer, high-cost levels. For approach
1, this means high-cost samples can be allocated to different processors and then lower-cost samples can be allocated
to even out the work on each processor.

Approach 4 is only particularly useful when condition (a) does not hold. In this case our solution time would
be reduced by running the samples on the finest level (and potentially then also coarser levels) on more processors,
even if this leads to imperfect scalability. Finding the optimal sample allocation for this more general problem would
lead to different KKT conditions than those presented in Section 2.3 and a different algorithm for finding the optimal
sample allocation than Algorithm 1.

While the perfect scalability assumption in approach 2 is rarely valid in practice, this approach is often still a
reasonable approximation. Consider again the scenario when condition (a) holds. Say thatlimveasm a sample
on level? with so many processorsy;!, that it scales imperfectly and takes tiffig. If in caseB we instead run that
sample ormg < mj! processors so that it scales perfectly and takes Tifiethen the total processor time will be
mBTE < m}TA. The freed-up timen!T* — mPZ T available across processors could be filled by some of the
many, quick-running coarse samples, reducrng the wall-clock time to solution of the H-MLMC estiffiztér)'C .

Figure 1 illustrates this scenario f@}® > T/. It is possible that instea@? (<, =)T/*; in this case we would still
havemPTP < mT/. Therefore T Mewc” i be smallest when each sample is run on a number of processors
such that |t scales perfectly

So long as all samples are run on only so many processors that they have perfect scaldBfhlf; does not
depend on how many processors are used to run each sample. If we think of each sample as a rectangle with width
my and height equal to the cost per proces$pras in Fig. 1, then the area of the rectangle is the computational cost
of that level,C,. Therefore, the area of that rectangle does not dependenif m, decreases;, must increase to
keepC, constant. Thus, the total area divided by the total number of processors, wiiet&'C | remains fixed.

The logic in this section assumes that we relax the condition that the number of samples allocated to a level or
processor is an integer. As explained in Section 2, this is consistent with MLMC, which relaxes the assumption that
the number of samples allocated to a level is an integer.
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FIG. 1: Each sample is visualized as a rectangle with width equal to the number of processors used to solve that:gample,
and height equal to the cost per procesgor,Running the sample on the finest leviel= 3, onm¥ < m4 rather thanmn4
processors allows the coarse samples, 1, to fill the freed-up timen' T3 — mZT:f, reducing the wall-clock time to solution

of the H-MLMC estimatorT"™MC by AT

4. RESULTS

In the following examples we demonstrate H-MLMC first under the assumptiorCthdC§" = « VI, to show the

effect of different values ok. Then we demonstrate H-MLMC for a large-scale test case whigreC is different

on each level: channel flow with a stochastic heat flux boundary condition. The stochastically heated channel flow
test case provides insight for a study on the design of concentrated solar energy receivers at the Stanford PSAAP 1l
program. In both example§; andG processors refer to CPUs and GPUSs, respectively.

4.1 Example 1: CF/CE = aVl

Example 1 illustrates the often reasonable assumption that the GPU accelerates each level by the same constant factor.
We uses? = 1072 and the GPU cost and variance values listed in Table 1. These tolerance, cost, and variance values
are in line with those observed in MLMC studies, such as [14,15]. The CPU c@4t is- «CY for o € [5,50],
which spans the range of common GPU to CPU cost ratios. For example, Lassen, the number 10 supercomputer in
the world as of November 2019, has a peak GPU TFLOPS to peak CPU TFLOPS i26ifi6f. We use the number
of CPUs and GPUs available on Lassen’s compute nddés= 34,848and /¢ = 3168

The optimal sample allocation and therefore the wall-clock time to solution for H-MLMC, but not for MC or
MLMC, depends orC{ /C§ . In this exampleCS /CE = a Ve = 1,2, ..., L. Figure 2 shows that MLMC and even
more so H-MLMC are faster than MC. For the expected range of GPU to CPU cost ratios, 1-level H-MLMC takes
31-82% as long as MC. Two-level MLMC takes 11% as long as MC, while 2-level H-MLMC takes 3-9% as long as
MC. H-MLMC offers more improvement over MLMC when the CPU cost is closer to the GPU cost, because a larger
portion of the work in H-MLMC can be done on the CPUs left idle by MLMC.

The allocation of samples between CPUs and GPUs depend$’g6'$’. Figure 3 shows this relationship for
two-level H-MLMC with the two finest levels of Example 1. ASS /C§ increases, fewer samples are solved on
the CPU and more samples are solved on the GPU. By Corollary 3, the total number of samples on each level,
NE + NEF = (NGYMMC [ (NGFMMC and thereforeV{ + N does not depend ofi$ /C§ .

By Corollary 4, the ratio of the H-MLMC wall-clock time to the MLMC wall-clock timgHMMC /MLMC.
depends only o’ /C§; Figure 4 illustrates this relationship. As explained for Fig. 2(4s/CS decreases, H-
MLMC offers more improvement over MLMC. For the expected range of GPU to CPU cost ratios, H-MLMC takes
9-82% as long as MLMC.

TABLE 1: Example 1 cost and variance values

| 1 2 3 4 5
cg 20x 102 36x10° 63x10° 1.1x10° 2.0x 1072
V[Q 1.0x 107! 56x 1072 3.2x 1072 1.8x 1072 1.0x 102
V[Qr—Qea]| NA  56x103 32x10°° 1.8x10°° 1.0x 1073
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FIG. 2: Ratio of the wall-clock time for MLMC to that for MCT"M-MC /TMC 'and for H-MLMC to that for MC;7HMMC /MC,
Results are for one- and two-level MLMC and H-MLMC for Example 1 using the finest and two finest levels, respectively.
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FIG. 3: Optimal sample allocation whe@ /C& = (5,25,50) V¢ = 1, 2 for two-level H-MLMC with the two finest levels of
Example 1

While THMIMC /TMLMC qoes not vary with the number of levels used in MLMC and H-MLMIY-ME and
THMIMC do. Figures 5 and 6 show th&tMC and 7HMMC decrease as more levels are added, and that the rate of
decrease slows rapidIf?M-MC does not depend ofi{’ /C§’, while THMMC does. AsC{ /C§ decreases for fixed
C§, THMMC decreases, since samples can be solved faster on the CPUs.

4.2 Example 2—Channel Flow with Stochastic Heat Flux Boundary Condition: C¢ /CE Different
on Each Level

Example 2 demonstrates H-MLMC wheff’ /C¢ is different on each level. This scenario often occurs due to a
combination of physics complexity, numerical methods, and memory access. In this example, the GPU speedup
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FIG. 4: Ratio of wall-clock time for H-MLMC to that for MLMC,7"M-MC /MIMC " or MLMC and H-MLMC estimators
constructed with any number of levels for Example 1
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FIG. 5: Wall-clock time for one-, two-, three-, four-, and five-level MLMC for Example 1

increases with grid resolution as the levels become finer. As the levels become finer, the amount of computation
relative to communication increases, making the GPUs’ computational speed more visible.

This test case provides insight for a study on the design of concentrated solar energy receivers at the Stanford
PSAAP Il program, described in [17]. The Stanford PSAAP Il study developed computational and physical models
for particle-laden, irradiated, turbulent flow through a square duct. Physical experiments showed that particles stick to
the surface of the duct in random clusters, locally increasing heat transfer. This test case models the effect of particle
adhesion in a simplified flow as a first step towards accounting for the effect of particle adhesion.

The test cases uses the three-dimensional multiphysics solver from the PSAAP Il study, Soleil-X, with the parti-
cles and irradiation turned off and two dimensions: streamwiy@ifd one of the spanwise directiong.(Soleil-X
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cr

FIG. 6: Wall-clock time for one-, two-, three-, four-, and five-level H-MLMC for Example 1

is written in the Legion/Regent Programming system, which implements task-based parallelism [18,19]. The Regent
programming language allows users to write sequential code, which the Legion runtime then executes in parallel with
minimal user input. In addition, the Legion/Regent system can automatically generate CUDA code from Regent code
and is easily portable between computer architectures. These characteristics make it simple to run Soleil-X in parallel
on CPUs or GPUs on any computer architecture. We ran our test cases on Lassen [16].

Our test case duct has unit height, = 1. We model a section of the duct with unit length, = 1. The effect
of particle adhesion is modeled through a stochastic heat flux boundary condition. Reatizattibe stochastic heat
flux, (™, is a superposition of ten Gaussians:

10 1/2 — (n) 2
d>(")(ﬂc)=‘1><1+ZA(n)eXp<_z< co% ))) (39)

i=1

where realizatiom of the stochastic parameters g§®) ~ unif(omin, Omax), 1 ~ UNIf(20max, Lz — 20max), and
A™) ~ unif(—®, ®). The constants a@ = 100Q oy, = 0.01, andoyax = 0.02. The stochastic heat flux boundary
condition is applied ay = 0 and a zero heat flux boundary condition is applied; at L,. Periodic boundary
conditions are applied at the inflow, = 0, and outflow,x = L.. The flow is initialized from the steady solution
for flow in the duct with zero heat flux boundary conditions, which has centerline velgcity 1. Our quantity of
interest is the temperature at= L, y = 0.1L, attimet = 1, which is one flow-through time at the center of the
duct. We compare the MLMC and H-MLMC estimators of our quantity of interest.

We use five leveld], = 5, for our MLMC and H-MLMC estimators. The levels are created by coarsening the grid.
We estimate the CPU cost, GPU cost, and variance using ten CPU and ten GPU samples on each level. The CPU cost
and GPU cost are the mean of the costs of these ten samples. To ensure these estimates are accurate while avoiding
unnecessary sampling, in future work we could use an iterative method, such as the one used in [20]. The number
of grid points, cost, and variance for each level are reported in Table 2. We also report the standard deviation of the
CPU cost and GPU cost in Table 2. The sample allocation changes minimally due to the variation in the CPU and
GPU cost across samples. For example, changing the CPU costs on all levels by one standard deviation or changing
the CPU or GPU cost on a single level by one standard deviation changes the number of samples on a level by 0—-3%
and the ratios of wall-clock time for H-MLMC to that for MLMC by 0-1%. We tadée= 107°.

We find that using all five levels, H-MLMC take&1% as long as MLMC. Unlike for Example 1, the ratio of
the H-MLMC wall-clock time to the MLMC wall-clock time7"MME /TMMC " qepends orl.. Table 3 illustrates
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TABLE 2: Example 2 grid point, cost, variance, and standard deviatipvalues

I 1 2 3 4 5

grid points inz 64 128 128 256 512

grid points iny 32 64 128 128 128

cgjee 1.0 1.9 3.4 6.4 121
cy 6.3x 10 44x10° 15x 100 74x10* 3.4x 10
cg¢ 6.4x 107 22x10° 46x10° 12x10* 2.8x10*
o[Cf] 3.7x 100 1.7x 10 25x10® 51x10° 54x 10
o[CF] 55x 100 1.6x 10* 2.7x10° 7.7x10% 1.2x10°
V[Q 1.8x10% 1.4x10* 1.1x10* 1.6x10* 1.3x10*
V[Qe — Qo—1] N/A 1.6x10° 1.3x10°% 1.1x10% 3.2x 107

TABLE 3: Example 2 ratio of wall-clock time for H-MLMC

to that for MLMC, for MLMC and H-MLMC estimators
constructed with the finest one, two, three, four, and five levels
L 1 2 3 4 5
TH'M'-MC/TM'-MC 0.52 037 023 0.17 0.14

the dependence oh. As more coarse levels are available, H-MLMC offers more improvement over MLMC. For
example, H-MC takes 52% as long as MC and two-level H-MLMC takes 37% as long as two-level MLMC, whereas
five-level H-MLMC takes 14% as long as five-level MLMC.

We show the optimal sample allocation for H-MLMC and MLMC in Table 4. Unlike in Example 1, Corollary
3 does not hold, so the total number of samples on each Idifel N& # (NF)MMC, Table 4 also shows the
following properties of Theorem 2 hold. The ratio@f /C¢ is different for each level, so only one level can have
samples on both CPUs and GPUs (case 3 in Theorem 2). Here, level four has samples on both CPUs and GPUs. Since
C¢ /C¢ increases monotonically, all levels coarser than level four (levels one, two, and three) can only have samples
on CPUs (case 1). All levels finer than level four (level five) can only have samples on GPUs (case 2).

5. CONCLUSIONS

We present a variation on MLMC, H-MLMC, that uses the full computational power of heterogeneous computer
architectures by running samples on two, rather than just one, type of processor. H-MLMC has a different optimal
sample allocation than MLMC. We present the optimization problem for H-MLMC, demonstrate that it is convex,
and derive the general solution. We show that the general solution cannot always be expressed analytically and is not
always unique and introduce a computational procedure to find one of the possibly many optimal solutions.

We show that the optimal sample allocation is not unique on any level if and ofifyf " is the same for all
levels. In this case, the ratio of wall-clock time for H-MLMC to that for MLMCHMMC /7MLMC " depends only

TABLE 4: Example 2 optimal sample allocation for five-
level H-MLMC, N¢ andN&, and MLMC, (N £ )MMCE

| 1 2 3
N¢ 683 78 12
NE 0 0 0

NE + N§¢ 683 78 12
(NG MLMC 437 69 14

o o P RP

5
0
2
2
3
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on CS /CE . If the ratio of CPU to GPU cost is not the same for all levels, we cannot, however, detemiiai
whether the sample allocation is unique. In this ca3&VMC /TMME depends not only o6'S’ /CE, but also on the
number of levels.

We demonstrate H-MLMC for two examples, one whétg/C{ is the same for all levels and one where it
is different on each level. Whe@¢' /C{ is the same for all levels, H-MLMC takes 9-82% as long as MLMC,
depending on the values 6f /C¢ € [5,50, regardless of the number of levels used. H-MLMC offers more benefit
over MLMC for smaller values o'’ /C§ . In the limit of CY' /CE becoming large, the time to solution for H-MLMC
approaches that for MLMC, since negligible benefit can be gained by using CPUs in addition to GPUs when the CPUs
are infinitely slower than GPUs.

In our second example we consider the effect of a stochastic heat flux boundary condition on channel flow to
inform the Stanford PSAAP Il study on concentrated solar energy receivers. In this prabfefa; is different
on each level. We find that H-MLMC takes 14-52% as long as MLMC, depending on the number of levels used.
H-MLMC offers more benefit over MLMC when more levels are used.
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APPENDIX A. OPTIMAL SAMPLE ALLOCATION FOR H-MLMC

We seek to find a sample allocatioN© and N& V¢ = 1,2, ..., L, that satisfies Eq. (9). As shown in Section 2, a
sample allocation satisfies Eq. (9) if it satisfies the KKT conditions, Eqgs. (17)—(27).
Equation (17) is equivalent to

Ve MCE
— — = =12..,L Al
Al((NEC—FNEG)Z) + Mc W 0 vt y &y ey 4y ( )
Ve ACE o _
M((Nf +NeG)2) + e M= ovw=12..1L, (A.2)
1-2—2A3=0. (A.3)
By Egs. (24) and (A.1),
\% AC¢
Y e +£NG)2 + ;45 —uf>0wv=12..0L (A.4)
0 l
Similarly, by Egs. (25) and (A.2),
Vi ACE
A e _|_£NG)2 + ;ﬂfi —uf>0vr=12..0L. (A.5)
0 l
By Egs. (21) and (A.4),
—A 0iff Ny =0V(=1,2,..., L. A.6
1(NZC+N5G)2+ MC > | ¥4 3 &y ey ( )
Similarly, by Egs. (22) and (A.5),
—A 0iff Ny =0V(=1,2, ..., L. A7
1(N€C+N€G)2+MG> Ny 12500 (A7)

NE and N& cannot both be zero; otherwidé /(NS + NF) in Eq. (11) is undefined, making Eq. (11) un-
satisfiable. Therefore, at least one of Egs. (A.4) and (A.5) must equal zero. Whether Eq. (A.4), or Eq. (A.5), or both
Egs. (A.4) and (A.5) are zero depends on whethegfz) (>, =, <)(CS M /CE M. For each of these three cases,
we can findV{ and N as follows:
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A3 CZCMG
Casel — >
Ao CfMC

AsCEMC > \CEME.
By Egs. (A.4), (A.5), and (A.8),

Ve

VZ G C
NC7 M > N—k————
2 Tt Y(NE+ NE)

A —
H(NZ + NE)

Since at least one of Egs. (A.4) and (A.5) must be zero, by Eq. (A.9),

-\ 5+ ACFMS =0,

Vi
(N§ +NE)

v
b+ ACEME > 0.

N O
“(NG+NE)

By Egs. (A.7) and (A.11),
NF =0.

By Egs. (A.8), (A.10), and (A.12),

5+ MCF MY > 0.

[ MV, AV AV
c G _ ArC _ Ve 1 {] 1 )

A3 CeMEC
Case2 —= < —t—_
A~ COMC

By analogous reasoning to case 1,

A + ACE MC > 0,

Ve
(NZ + N§)?

M 5 +AsCF M =0,

1%
(N + N§)
NE =0,

[ MV, AV AV
c G _ ArG _ Ve 1 {] 1 )

A CSME
Case3 — = ————
Aa  CSMOC

AsCEMC = N\CEME.
By Egs. (A.4), (A.5), and (A.18):

5+ ACF MY = -\

S VW
Y(NG+ NE) (NE+NE)

Since at least one of Egs. (A.4) and (A.5) must be zero, by Egs. (26), (27), and (A.19):

—A1 + A0 MC =0,

_ Ve
(NE + NE)?
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(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)
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Vf GasC
A + ACF M =0 A.21
l(Nf + Nf)z + 3Ly ) ( )
NE >0, (A.22)
NE > 0. (A.23)

By Egs. (A.20) and (A.21),

MV MV M Ve MV
NC NG —_ L — L — — — A.24
L %\2 CeMEC \/7\3 céMcC Jmax<>\2 CEME™ A3 CEMC) (A24)

Equation (A.24) does not uniquely determiN¢’ and NS By Egs. (26), (27), and (A.24),

A Ve
NE = A.2
£ € |fL )\2 C?MG ) ( 5)
A Ve C
NE =, [= — NC. A.2
C o\ ncfme T (A.26)
End Cases.

For all three cases, by Egs. (A.13), (A.17), and (A.24),

M Ve M Ve 1 1
NE 4+ NF =, |max| = —= = /AVe, | max : A.27
L \l (7\2 COME’ g CfMC> : ‘w (AzchG’ AngMC> (A-27)
By Egs. (A.3), (A.20), and (A.21), and noting all costs are greater than zero,
1
= A.2
Ao 11 o > O, ( 8)
(08
Az = 0 A.29
3 1+ o >0, ( )
CargG
G- M if some level* satisfies case 3
CcEMC
x = cC MC cC M@ : (A.30)
€ [Ming=y12,.. max—i2,... otherwise

et i et i
togme bogme
By Eq. (A.27), and noting that all costs, variances, and sample sizes are greater than zero,

- (NE + NE)?
1 Vimax(1/(\CE MG), 1/ (ACE MC))

>0 (A.31)

Equations (A.28), (A.29), and (A.31) prove that A2, andAz > 0, as used in Section 3. By Egs. (18) and (A.31),

L

Ve 2
NOFNG & (A.32)
; NE + NE
By Egs. (A.27) and (A.32),
2
L
L Vi

A : (A.33)

(52 ez::l \/max(l/(?\zCecMG)7 1/()\3CIZGMC>) )
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By Egs. (19), (20), (A.28), and (A.29),
L L
Z (CENE) = Z (CENE). (A.34)
(=1 (=1

We have now proved Theorem 2. Equations (32)—(38) correspond to Egs. (A.34), (A.32), (A.33), (A.3), (A.12),
and (13), (A.16) and (A.17), and (A.25) and (A.26), respectively.

As explained in Section 3, the optimal sample allocation cannot be found analytically, but can be found using the
iterative bisection method of Algorithm 1. Step 5 of Algorithm 1 requires additional reasoning.

NE andN¢ for all levels that fall into cases 1 or 2 have already been computed in Step 4. These levelS,are in

where G
CM A3
S ==L =%
{’chcﬂz}

In Step 5 we first consider some levef S. ¢ falls into case 3, s&VS and N are not fully defined.

Case A:
MC > (CENE) = MG > (CENE).
Les Les
To keep the CPU and GPU cost balanced,
?\1 Vg }\1 Vé
N, = |2 Y A S £ A.35
‘ \/)\2 CEMC \/7\3 CEMC” (A-35)
N,CS M€
NE = £ A.36
¢ OFMC +CEMC’ (A.36)
N,C¢ M€
N§ = £ . A.37
b CfME + CcgMO (A-37)
Cases B.i. and B.ii.:
Mc Z CKCNZ Z C?Ne 7 (A.38)
lLes Les
MG 1 C arC 1 G aATG
Nf,diff:C,G<WZ<Cg Ne )_WZ(CZ NZ ) .
¢ Les les

If we could addN, g sSamples taV< then the CPU and GPU work would be balanced.
Case B.i.:

Ny it > Ny

Adding N, i samples td\ff would violate the condition thdvf > 0. Therefore, we assign as much work as
possible on this level to the GPU while ensuriﬁg > 0:

NE =0, (A.39)
NE = N,. (A.40)
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Case B.ii.:

Equation (77) still holds bul, gir < N,.
Now we can balance the CPU and GPU work by assigiVpgs samples taVy. We split the remainingV, —
Ny gir Samples between the CPU and GPU to keep the CPU and GPU work balanced:

GagC
N{ = (N¢ — Nyditt) =a (’;f M Y7ol (A.41)
Cy MC +CyM
CceME
N = Nogit + (No — Ny gitr) L : (A.42)
CEMC +CfMC
Cases C.i. and C.ii.
1 C A7C 1 G A7G
7 > (CFNE) < 17a 2 (CENE), (A.43)
Les Les
MC€ 1 1
Ny git = Yo (MG Z(Cf]\ff) - MCZ(CeCNeC)>
¢ Les Les
Case C.i.
Ny git > Ny.
By similar reasoning as in case B.i.,
Nf = Ny, (A.44)
NE =0. (A.45)
Case C.ii.:
Equation (A.43) still holds bulVy gt < Ng.
By similar reasoning as in case B.ii.,
cFM¢C
N = Nygig + (Ny — Nogirr) £ , (A.46)
CEME + CFMC
c¢ M<
NE = (N¢ — Ny_gir) L (A.47)

CEMG + CFMC”

We addl to S. If 3¢ £ S, we repeat this step (Step 5).
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