
International Journal for Uncertainty Quantification, 10(6):575–594 (2020)

MULTILEVEL MONTE CARLO SAMPLING ON
HETEROGENEOUS COMPUTER ARCHITECTURES
Christiane Adcock,∗ Yinyu Ye, Lluís Jofre, & Gianluca Iaccarino
Stanford University, Stanford, California, 94305
*Address all correspondence to: Christiane Adcock, Stanford University, Stanford, California, 94305,
E-mail: janiad@stanford.edu

Original Manuscript Submitted: 12/15/2020; Final Draft Received: 9/6/2020

Monte Carlo (MC) sampling is the standard approach for uncertainty propagation in problems with high-dimensional
stochastic inputs. Various acceleration techniques have been developed to overcome the slow convergence of MC esti-
mates, such as multilevel Monte Carlo (MLMC). MLMC uses successive approximations computed on levels, models
with different levels of accuracy, and computational cost to reduce the estimator variance. MLMC analytically de-
termines the number of samples required on each level to achieve a given accuracy at minimal cost. We propose an
extension of the original MLMC theoretical framework for modern, heterogeneous computer architectures in which
accelerators (GPUs) are available and, therefore, samples can be distributed on both different levels and different com-
pute units (CPUs and GPUs). We derive the optimal sample allocation for the proposed MLMC extension by solving a
convex optimization problem. We apply the MLMC extension to a stochastically heated channel flow to provide insight
for a study on the design of concentrated solar energy receivers. We demonstrate for the stochastically heated channel
flow that the proposed MLMC extension leads to considerable total cost reduction (up to 86%) compared to MLMC
using only GPUs.

KEY WORDS: uncertainty quantification, variance reduction methods, Monte Carlo, stochastic par-
tial differential equations, stochastic ordinary differential equations, computational design, computational
statistics

1. INTRODUCTION

Uncertainty propagation methods, such as Monte Carlo (MC), aim at computing the outputs of a mathematical model
with stochastic inputs [1] by combining model solutions (samples) corresponding to random realizations of the inputs.
The convergence rate of Monte Carlo is independent of the dimension of the stochastic input, making it the only
computationally tractable method for problems with high-dimensional stochastic inputs. Traditional MC converges
slowly—with the square root of the number of samples and describes the output only by an unbiased estimator for the
mean. In recent years, research efforts have developed MC-based methods that converge faster and provide flexibility
in the description of the output statistics. Multilevel Monte Carlo (MLMC) [2], multifidelity Monte Carlo (MFMC)
[3], and control variate Monte Carlo [4] combine solutions from multiple models to reduce the variance and thereby
accelerate the convergence of the output estimates. Geraci et al. [5] and Qian et al. [6] extend MLMC and MFMC
to estimate not just the mean, but also the variance of the output, and Krumscheid et al. [7] introduces a strategy
to estimate moments of any order. Giles et al. [8] and Krumscheid and Nobile [9] propose variations of MLMC to
estimate the full distribution of the output.

While much progress has been made on improving the convergence and descriptiveness of MC-type methods,
almost no effort has been devoted to taking advantage of emerging computer architectures. Historically, each sample
of a MC-type simulation was run on a single CPU. Modern computer architectures, including seven of the top ten
supercomputers in the world [10], use heterogeneous nodes, with multiple CPUs and one or more GPUs. In recent
work, [11,12] used GPUs in studies with MC and a variant, quasi-Monte Carlo, and [13] used a truly heterogeneous
system for MC. Given the typical acceleration afforded by GPUs over CPUs, most current approaches compute
samples solely on GPUs. If the software supports executions on CPUs and GPUs, it is possible to instead compute

2152–5080/20/$35.00 © 2020 by Begell House, Inc. www.begellhouse.com 575

576 Adcock et al.

samples on both processor types, thereby taking advantage of all available compute resources. However, there is no
theoretical framework on heterogeneous computer architectures, either for MC or for MLMC, to determine the sample
allocation that meets a given accuracy at minimal computational cost. We propose a generalization of MLMC, named
H-MLMC, which provides this framework. We describe the optimization problem to determine the sample allocation
for H-MLMC in Section 2, outline the solution in Section 3, and fully derive the solution in the Appendix. Section 4
demonstrates the computational savings and properties of H-MLMC. Section 5 provides concluding remarks.

2. PROBLEM DEFINITION

2.1 Optimization Problem

We are interested in finding an unbiased estimator of the solution to a stochastic partial differential equation (SPDE).
We want the variance of the estimator to be smaller than the toleranceε2, and the overall computational cost (total
wall-clock time) of the estimator to be as small as possible. We haveL numerical models available to solve the
SPDE. The models have decreasing variance and increasing computational cost. We assume that each model can
be solved on two different types of computer processors, such as CPUs and GPUs. We denote the processor types
asC andG processors, respectively. LetNC

` andNG
` be the number of samples we solve on level` on C andG

processors, respectively. We also assume that the overall compute system hasMC andMG processors ofC andG
types, respectively.

An effective method to find an unbiased estimator of the solution to SPDEs is multilevel Monte Carlo (MLMC)
[2]. However, MLMC does not take into account the availability of multiple processors of different types when deter-
mining the optimal sample allocation. MLMC assumes all samples on a level will be evaluated on the same processor
type and finds the optimal number of samples per level under this assumption. A simplistic approach to use MLMC
on a heterogeneous computer architecture is to assume thatG processors are consistently faster at solving the SPDE
thanC processors, and to therefore use onlyG processors. Under this assumption the MLMC estimator [2] is

Q̂MLMC =
1

NG
1

N1∑

n=1

Q
G,(n)
1 +

L∑

`=2


 1

NG
`

NG∑̀

n=1

(
Q

G,(n)
` −Q

G,(n))
`−1

)

, (1)

whereQ
G,(n)
1 is the solution to the SPDE found by model1 on aG processor for thenth of N1 independent samples

of the stochastic parameters.Q
(n)
` − Q

(n)
`−1 is the difference between the solutions to the SPDE found by models`

and`− 1 on aG processor both for the same realization of the stochastic parameters.NG
` is the number of samples

solved on level̀ onG processors.
The total variance, cost, and wall-clock time to solution of the MLMC estimator are

V [Q̂MLMC] =
L∑

`=1

V`

NG
`

, (2)

C[Q̂MLMC] =
L∑

`=1

CG
` NG

` , (3)

T MLMC =
1

MG

L∑

`=1

CG
` NG

` , (4)

respectively.V1 = V [QC
1] = V [QG

1] denotes the variance of a sample on level1 andV` = V [QC
` − QC

`−1] =
V [QG

` −QG
`−1] ∀l > 1 denotes the variance of the difference between a sample on levels` and`− 1. CG

1 = CG[QG
1]

denotes the cost for a sample on level1 andCG
` = CG[QG

` − QG
`−1] denotes the cost for a sample on levels` and

`− 1, each evaluated with aG processor.
We now derive a theoretical framework to extend MLMC by explicitly taking into account the availability of

heterogeneous processors. In this new approach, denoted H-MLMC, the estimator is

International Journal for Uncertainty Quantification

Multilevel Monte Carlo Sampling on Heterogeneous Computer Architectures 577

Q̂H-MLMC =
1

NC
1 + NG

1




NC
1∑

n=1

Q
C,(n)
1 +

NG
1∑

n=1

Q
G,(n)
1




+
L∑

`=2


 1

NC
` + NG

`




NC∑̀

n=1

(
Q

C,(n)
` −Q

C,(n))
`−1

)
+

NG∑̀

n=1

(
Q

G,(n)
` −Q

G,(n))
`−1

)




.

(5)

When generating realizations of the stochastic parameter, care should be taken so that the same stochastic param-
eter is not used twice—this was done for all examples presented in this paper. The total variance, cost, and wall-clock
time to solution of the H-MLMC estimator are

V [Q̂H-MLMC] =
L∑

`=1

V`

NC
` + NG

`

, (6)

C[Q̂H-MLMC] =
L∑

`=1

(
CC

` NC
` + CG

` NG
`

)
, (7)

T H-MLMC = max

(
1

MC

L∑

`=1

CC
` NC

` ,
1

MG

L∑

`=1

CG
` NG

`

)
. (8)

whereCC
` is defined analogously toCG

` , with samples evaluated onC notG processors. We seek the optimal sample
allocation: the values ofNC

` andNG
` ∀` = 1, 2, ..., L that minimize the wall-clock time such that the total variance

is less thanε2. NC
` andNG

` must be integers. However, integer programming is NP-complete. Therefore, we remove
the constraint thatNC

` andNG
` are integers, as done when deriving the optimal sample allocation for MLMC [2].

The optimization problem is

minNC
1 ,NC

2 ,...,NC
L ,NG

1 ,NG
2 ,...,NG

L
max

(
1

MC

L∑

`=1

NC
` CC

` ,
1

MG

L∑

`=1

NG
` CG

`

)
,

s.t.
L∑

`=1

V`

NC
` + NG

`

≤ ε2,

0≤ NC
` ∀` = 1, 2, ..., L,

0≤ NG
` ∀` = 1, 2, ..., L.

(9)

2.2 Proof of Convexity

Equation (9) can be rewritten as

minNC
1 ,NC

2 ,...,NC
L ,NG

1 ,NG
2 ,...,NG

L ,T T, (10)

s.t.−
L∑

`=1

(
V`

NC
` + NG

`

)
+ ε2 ≥ 0, (11)

− 1
MC

L∑

`=1

(
CC

` NC
`

)
+ T ≥ 0, (12)

− 1
MG

L∑

`=1

(
CG

` NG
`

)
+ T ≥ 0, (13)

NC
` ≥ 0 ∀` = 1, 2, ..., L, (14)

NG
` ≥ 0 ∀` = 1, 2, ..., L. (15)

Volume 10, Issue 6, 2020

578 Adcock et al.

Equations (10)–(15) define a convex optimization problem. Equations (10) and (12)–(15) are linear, so they are
convex. Equation (11) is equivalent to:

L∑

`=1

(
V`

NC
` + NG

`

)
− ε2 ≤ 0. (16)

Equation (16) has the Hessian:

H = ∇2
(NC

1 ,NC
2 ,...,NC

L ,NG
1 ,NG

2 ,...,NG
L)

(
L∑

`=1

(
V`

NC
` + NG

`

)
− ε2

)

=




2V1

(NC
1 + NG

1)3

2V1

(NC
1 + NG

1)3

2V2

(NC
2 + NG

2)3

2V2

(NC
2 + NG

2)3

...
...

2VL

(NC
L + NG

L)3

2VL

(NC
L + NG

L)3

2V1

(NC
1 + NG

1)3

2V1

(NC
1 + NG

1)3

2V2

(NC
2 + NG

2)3

2V2

(NC
2 + NG

2)3

...
...

2VL

(NC
L + NG

L)3

2VL

(NC
L + NG

L)3




.

Assuming that allV` 6= 0, H is real and symmetric, so it has real eigenvalues. By the Gershgorin circle theorem,

for each eigenvalue ofH, λ(H) ∈
[
Hii −

∑
j 6=i Hij ,Hii +

∑
j 6=i Hij

]
for somei. By inspectionH is diagonally

dominant and has non-negative entries, soHii −
∑

j 6=i Hij ≥ 0. Combining results from the Gershgorin circle
theorem and diagonal dominance,λ(H) ≥ 0. det(H) 6= 0 so λ(H) 6= 0. Therefore,λ(H) > 0, meaningH is
symmetric positive-definite. Thus Eq. (16), and equivalently Eq. (11), are convex.

2.3 Karush, Kuhn, Tucker (KKT) Conditions

The optimization problem is convex, so the KKT first-order necessary conditions are sufficient for optimality. The
KKT conditions are

∇
(

T − λ1

(
−

L∑

`=1

(
V`

NC
` + NG

`

)
+ ε2

)
− λ2

(
− 1

MC

L∑

`=1

(
CC

` NC
`

)
+ T

)

− λ3

(
− 1

MG

L∑

`=1

(
CG

` NG
`

)
+ T

)
−

L∑

`=1

(
µC

` NC
`

)−
L∑

`=1

(
µG

` NG
`

)
)

= 0,

(17)

λ1

(
−

L∑

`=1

(
V`

NC
` + NG

`

)
+ ε2

)
= 0, (18)

λ2

(
− 1

MC

L∑

`=1

(
CC

` NC
`

)
+ T

)
= 0, (19)

International Journal for Uncertainty Quantification

Multilevel Monte Carlo Sampling on Heterogeneous Computer Architectures 579

λ3

(
− 1

MG

L∑

`=1

(
CG

` NG
`

)
+ T

)
= 0, (20)

µC
` NC

` = 0 ∀` = 1, 2, ..., L, (21)

µG
` NG

` = 0 ∀` = 1, 2, ..., L, (22)

λi ≥ 0 ∀i = 1, 2, 3, (23)

µC
` ≥ 0 ∀` = 1, 2, ..., L, (24)

µG
` ≥ 0 ∀` = 1, 2, ..., L, (25)

NC
` ≥ 0 ∀` = 1, 2, ..., L, (26)

NG
` ≥ 0 ∀` = 1, 2, ..., L. (27)

The problem is now to find the optimal sample allocation,NC
` andNG

` ∀` = 1, 2, ..., L, and Lagrange multipliers,
λi for i = 1, 2, 3, µC

` ∀` = 1, 2, ..., L, andµG
` ∀` = 1, 2, ..., L, that satisfy Eqs. (17)–(27).

3. OPTIMAL SAMPLE ALLOCATION

3.1 Monte Carlo on Heterogeneous Compute Nodes (H-MC)

Consider the simplest case of the optimization problem in Section 2, where there is one level,L = 1. This is equivalent
to finding the optimal sample allocation for Monte Carlo when heterogeneous computing resources are available.

Theorem 1. The optimal H-MC sample allocation, which solves Eq. (9) forL = 1 is

NC
1 =

V1C
G
1 MC

ε2(CC
1 MG + CG

1 MC)
; NG

1 =
V1C

C
1 MG

ε2(CC
1 MG + CG

1 MC)
.

Proof. Equations (17)–(27) constrainλ1, λ2 > 0, andλ3 > 0, as proved in the Appendix for the general case where
L ≥ 1. Sinceλ2 andλ3 > 0, by Eqs. (19) and (20),

CC
1 NC

1

MC
=

CG
1 NG

1

MG
. (28)

Sinceλ1 > 0, by Eq. (18),
V1

NC
1 + NG

1

= ε2. (29)

Solving Eqs. (28) and (29) forNC
1 andNG

1 completes the proof.

Equation (28) leads to the observation that althoughG processors are faster thanC processors, it is worth using
both rather than just the former as done in [11,12]. Ensuring that computations on theC andG processors complete
at the same time reduces the overall cost of the estimator.

3.2 Multilevel Monte Carlo on Heterogeneous Compute Nodes (H-MLMC)

Consider the optimization problem in Section 2, initially for two levels,L = 2.
By Eqs. (19) and (20),

CC
1 NC

1 + CC
2 NC

2

MC
=

CG
1 NG

1 + CG
2 NG

2

MG
. (30)

By Eq. (18),

Volume 10, Issue 6, 2020

580 Adcock et al.

V1

NC
1 + NG

1

+
V2

NC
2 + NG

2

= ε2. (31)

Unlike the one-level case described in Section 3.1, we now have four unknowns:NC
1 , NG

1 , NC
2 , andNG

2 . There-
fore, we cannot uniquely determine the optimal sample allocation just from these two equations. Instead, we must
consider additional constraints derived from the KKT conditions. The same reasoning holds forL > 2. UsingL = 2
does not simplify the equations significantly, so for the remainder of this section we present the general results for
L ≥ 1.

Theorem 2. Any sample allocationNC
` andNG

` ∀` = 1, 2, ..., L which satisfies Eqs. (32)–(38), solves Eq. (9), and
is therefore an optimal sample allocation for H-MLMC.

1
MC

L∑

`=1

(
CC

` NC
`

)
=

1
MG

L∑

`=1

(
CG

` NG
`

)
, (32)

L∑

`=1

V`

NC
` + NG

`

= ε2, (33)

λ1 =

(
1
ε2

L∑

`=1

√
V`

max
(
1/(λ2CC

` MG), 1/(λ3CG
` MC)

)
)2

, (34)

1 = λ2 + λ3, (35)

∀` = 1, 2, ..., L:

CASE 1: if
λ3

λ2
>

CC
` MG

CG
` MC

then





NC
` =

√
λ1V`

λ2CG
` MC

NG
` = 0

, (36)

CASE 2: if
λ3

λ2
<

CC
` MG

CG
` MC

then





NC
` = 0

NG
` =

√
λ1V`

λ3CC
` MG

, (37)

CASE 3: if
λ3

λ2
=

CC
` MG

CG
` MC

then





NC
` ∈

[
0,

√
λ1V`

λ2CG
` MC

]

NG
` =

√
λ1V`

λ2CG
` MC

−NC
`

. (38)

Proof. See the Appendix for the proof.

λ2 andλ3 cannot be found analytically from Theorem 2. Therefore, we introduce an iterative procedure to findλ2

andλ3, and consequentlyλ1 andNC
` andNG

` ∀` = 1, 2, ..., L. To construct the procedure, we observe the impact of
λ3/λ2 on Eq. (32). If this ratio is sufficiently small

[
less thanαL = min`=1,2...,L(CC

` MG/CG
` MC)

]
, then all levels

will fall into case 2. All samples will be solved on theG processor, so the right-hand side of Eq. (32) will be larger
than the left-hand side (which will equal zero).

For sufficiently largeλ3/λ2, some levell∗ will fall into case 3. Some samples on level`∗ will be solved on the
C processor and some on theG processor. As the ratio further increases, more`∗ samples will be solved on theC
processor instead of theG processor. For sufficiently large ratios,`∗ will fall into case 1, so all̀ ∗ samples will be
solved on theC processor. As the ratio increases more levels will switch from case 2 to case 3 and then to case 1.
Each of these changes increases the left-hand side and decreases the right-hand side of Eq. (32).

International Journal for Uncertainty Quantification

Multilevel Monte Carlo Sampling on Heterogeneous Computer Architectures 581

Finally, if λ3/λ2 is sufficiently large[greater thanαR = max̀ =1,2,...,L(CC
` MG/CG

` MC)] then all levels will fall
into case 1. All the samples will be solved on theC processor, so the left-hand side of Eq. (32) will be larger than the
right-hand side (which will equal zero).

Equation (32) can only be satisfied for the more complex intermediate case ofλ3/λ2 ∈ [αL, αR], not for the
extreme cases ofλ3/λ2 = αL andλ3/λ2 = αR. To find the optimal sample allocation we apply a bisection strategy
as described in Algorithm 1. Step 5 of Algorithm 1 requires additional reasoning, which is provided in the Appendix.

From Theorem 2, we determine under which conditionsNC
` andNG

` are not unique on any level and under
which conditions they could be unique for all levels. We report these conditions in Corollaries 1 and 2, respectively.

Corollary 1. CC
` /CG

` is the same for all levels iffNC
` andNG

` are not unique on any level

Proof. If CC
` /CG

` is the same for all levels, then

λ3

λ2
∈ [αL,αR] =

[
CC

` MG

CG
` MC

,
CC

` MG

CG
` MC

]
, so

λ3

λ2
=

CC
` MG

CG
` MC

∀l.

Therefore, by Eq. (38),NC
` andNG

` are not unique on any level.
If NC

` and NG
` are not unique on any level, then by Eqs. (36) and (37),(λ3/λ2)(≯,≮)(CC

` MG/CG
` MC).

Therefore,CC
` MG/CG

` MC = λ3/λ2, soCC
` /CG

` is the same for all levels.

Corollary 2. If NC
` andNG

` are uniquely defined for all levels thenCC
` /CG

` cannot be the same for all levels.

Proof. By the contrapositive of the if statement of Corollary 1, ifNC
` andNG

` are uniquely defined for some level
thenCC

` /CG
` cannot be the same for all levels. IfNC

` andNG
` are uniquely defined for all levels thenNC

` andNG
`

are uniquely defined for some level, soCC
` /CG

` cannot be the same for all levels.

Algorithm 1: H-MLMC Sample Allocation

α =
(

CC
1

CG
1

+
CC

L

CG
L

)
/2

While
1

MC

L∑

`=1

CC
` NC

` 6= 1
MG

L∑

`=1

CG
` NG

` :

Step 1. Set
λ3

λ2
= α by bisection method

Step 2. λ2 =
1

1 + α
andλ3 =

α

1 + α

Step 3. λ1 =

(
1
ε2

L∑

`=1

√
V`

max
(
1/(λ2CC

` MG), 1/(λ3CG
` MC)

)
)2

Step 4. SetNC
` andNG

` ∀` ∈ S, whereS =
{

l

∣∣∣∣
CC

` MG

CG
` MC

6= λ3

λ2

}
:

If
λ3

λ2
>

CC
` MG

CG
` MC

then





NC
` =

√
λ1V`

λ2CG
` MC

NG
` = 0

If
λ3

λ2
<

CC
` MG

CG
` MC

then





NC
` = 0

NG
` =

√
λ1V`

λ3CC
` MG

Step 5. SetNC
` andNG

` ∀l /∈ S to minimize
1

MC

∑

`∈S

CC
` NC

` − 1
MG

∑

`∈S

CG
` NG

` .

Volume 10, Issue 6, 2020

582 Adcock et al.

Using Corollary 1, we can determinea priori whenNC
` andNG

` are not unique on any level. We do not have
a way to determinea priori whenNC

` andNG
` are unique on all levels. All we know is that Corollary 2 must be

satisfied for our optimal sample allocation to be unique.
From Theorem 2, we also find that whenCC

` /CG
` is the same for all levels, the total number of samples on each

level equals the optimal sample allocation for MLMC:NC
` +NG

` = (NG
`)MLMC . NC

` andNG
` are the optimal sample

allocation from H-MLMC and(NG
`)MLMC is the optimal sample allocation from MLMC. Corollary 3 formally states

and proves this finding.

Corollary 3. If CC
` /CG

` = α ∀` = 1, 2, ..., L for some constantα, NC
` + NG

` from H-MLMC equalsNG
` from

MLMC, (NG
`)MLMC .

Proof. By Eq. (38),

NC
` + NG

` =

√
λ1

λ2

V`

CC
` MG

.

By Eqs. (34) and (A.28) from the Appendix,

λ1

λ2
=

(
1
ε2

L∑

i=1

√
Vi

1
1 + α

CC
i MG

)2

(1 + α).

Combining results and using thatCC
` = αCG

` ,

NC
` + NG

` =
1
ε2

L∑

i=1

√
Vi

1
1 + α

αCG
i MG

√
1 + α

√
V`

αCG
` MG

=

√
V`

CG
`

1
ε2

L∑

i=1

√
ViCG

i = (NG
`)MLMC .

From Corollary 3, we find that the ratio of the wall-clock time for H-MLMC,T H-MLMC , to that for MLMC,
T MLMC , depends only on the ratioCC

` /CG
` , not on the values ofCC

` , CG
` , or V` ∀` = 1, 2, ..., L or onL. In addition,

T H-MLMC/T MLMC < 1. Corollary 4 states and proves these findings.

Corollary 4. If CC
` /CG

` = α ∀` = 1, 2, ..., L for some constantα, thenTH−MLMC/TMLMC = 1/[1 + (1/α)
(MC/MG)] < 1

Proof.

T H-MLMC

T MLMC
=

(1/MG)
∑L

`=1 CG
` NG

`

(1/MG)
∑L

`=1 CG
` (NG

`)MLMC
.

By Corollary 3, this equals ∑L
`=1 CG

` NG
`∑L

`=1 CG
` (NC

` + NG
`)

.

By Eqs. (A.36) and (A.37) from the Appendix, this equals

L∑

`=1

CG
` N`

CC
` MG

CC
` MG + CG

` MC

/ L∑

`=1

CG
` N` =

L∑

`=1

CG
` N`

[
1
/(

1 +
1
α

MC

MG

)]/ L∑

`=1

CG
` N` = 1

/(
1 +

1
α

MC

MG

)
< 1.

where the last inequality holds becauseα, MC , andMG are nonnegative.

International Journal for Uncertainty Quantification

Multilevel Monte Carlo Sampling on Heterogeneous Computer Architectures 583

3.3 Distributing Samples on Multiple Processors

Sections 2, 3.1, and 3.2 derive the optimal number of samples to solve on each level withC processors and withG
processors. However, they do not specify how many processors to use to solve each sample. We’ve definedMC and
MG to be the total number ofC processors andG processors. LetmC

` andmG
` be the number of processors used to

solve eachC processor andG processor sample on level`, respectively. There are four approaches to assigningmC
`

andmG
` :

1. Solve every sample with one processor:mC
` = mG

` = 1 ∀` = 1, 2, ..., L.

2. Solve every sample with all available processors:mC
` = MC andmG

` = MG ∀` = 1, 2, ..., L, and assume
perfect scalability.

3. Solve every sample with all available processors:mC
` = MC andmG

` = MG ∀` = 1, 2, ..., L, and replace
CC

` andCG
` with pC

` CC
` andpG

` CG
` , wherepC

` > 1 andpG
` > 1 are scalar penalties due to loss of scalability.

4. Modify our optimization problem to also calculatemC
` andmG

` . This requires estimating functionspC
`

(
mC

`

)
andpG

`

(
mG

`

)
.

H-MLMC uses approach 2. By dividing
∑L

`=1 CG
` NG

` by MG in Eqs. (4) and (8) and by dividing
∑L

`=1 CC
` NC

`

by MC in Eq. (8), we are assuming that one sample uses an arbitrary number of processors with perfect scalability;
i.e., the cost of solving a sample with costC onm processors isC/m, regardless of how largem is.

Approach 3 simply requires replacing constantsCC
` andCG

` with the constantspC
` CC

` andpG
` CG

` . This approach
will find the optimal sample allocation formC

` = MC andmG
` = MG. However, different values ofmC

` , mG
` , NC

` ,
andNG

` might give a smaller solution time.
H-MLMC approximates approach 1 when condition (a), subsequently defined, holds. Condition (a): there is

enough work to use all the available processors for at least as long as it takes to run a sample on the finest level, and
there are orders of magnitude more samples on coarser, low-cost levels than on finer, high-cost levels. For approach
1, this means high-cost samples can be allocated to different processors and then lower-cost samples can be allocated
to even out the work on each processor.

Approach 4 is only particularly useful when condition (a) does not hold. In this case our solution time would
be reduced by running the samples on the finest level (and potentially then also coarser levels) on more processors,
even if this leads to imperfect scalability. Finding the optimal sample allocation for this more general problem would
lead to different KKT conditions than those presented in Section 2.3 and a different algorithm for finding the optimal
sample allocation than Algorithm 1.

While the perfect scalability assumption in approach 2 is rarely valid in practice, this approach is often still a
reasonable approximation. Consider again the scenario when condition (a) holds. Say that in caseA we run a sample
on level` with so many processors,mA

` , that it scales imperfectly and takes timeTA
` . If in caseB we instead run that

sample onmB
` < mA

` processors so that it scales perfectly and takes timeTB
` , then the total processor time will be

mB
` TB

` < mA
` TA

` . The freed-up timemA
` TA

` − mB
` TB

` available across processors could be filled by some of the
many, quick-running coarse samples, reducing the wall-clock time to solution of the H-MLMC estimator,T H-MLMC .
Figure 1 illustrates this scenario forTB

` > TA
` . It is possible that insteadTB

` (<,=)TA
` ; in this case we would still

havemB
` TB

` < mA
` TA

` . Therefore,T H-MLMC will be smallest when each sample is run on a number of processors
such that it scales perfectly.

So long as all samples are run on only so many processors that they have perfect scalability,T H-MLMC does not
depend on how many processors are used to run each sample. If we think of each sample as a rectangle with width
m` and height equal to the cost per processor,T`, as in Fig. 1, then the area of the rectangle is the computational cost
of that level,C`. Therefore, the area of that rectangle does not depend onm`—if m` decreases,T` must increase to
keepC` constant. Thus, the total area divided by the total number of processors, which isT H-MLMC , remains fixed.

The logic in this section assumes that we relax the condition that the number of samples allocated to a level or
processor is an integer. As explained in Section 2, this is consistent with MLMC, which relaxes the assumption that
the number of samples allocated to a level is an integer.

Volume 10, Issue 6, 2020

584 Adcock et al.

FIG. 1: Each sample is visualized as a rectangle with width equal to the number of processors used to solve that sample,m`,
and height equal to the cost per processor,T`. Running the sample on the finest level,l = 3, on mB

3 < mA
3 rather thanmA

3

processors allows the coarse samples,l = 1, to fill the freed-up timemA
3 T A

3 −mB
3 T B

3 , reducing the wall-clock time to solution
of the H-MLMC estimator,T H-MLMC , by ∆T .

4. RESULTS

In the following examples we demonstrate H-MLMC first under the assumption thatCC
` /CG

` = α ∀l, to show the
effect of different values ofα. Then we demonstrate H-MLMC for a large-scale test case whereCC

` /CG
` is different

on each level: channel flow with a stochastic heat flux boundary condition. The stochastically heated channel flow
test case provides insight for a study on the design of concentrated solar energy receivers at the Stanford PSAAP II
program. In both examples,C andG processors refer to CPUs and GPUs, respectively.

4.1 Example 1: CC
` /CG

` = α ∀ l

Example 1 illustrates the often reasonable assumption that the GPU accelerates each level by the same constant factor.
We useε2 = 10−2 and the GPU cost and variance values listed in Table 1. These tolerance, cost, and variance values
are in line with those observed in MLMC studies, such as [14,15]. The CPU cost isCC

` = αCG
` for α ∈ [5, 50],

which spans the range of common GPU to CPU cost ratios. For example, Lassen, the number 10 supercomputer in
the world as of November 2019, has a peak GPU TFLOPS to peak CPU TFLOPS ratio of26[16]. We use the number
of CPUs and GPUs available on Lassen’s compute nodes,MC = 34,848andMG = 3168.

The optimal sample allocation and therefore the wall-clock time to solution for H-MLMC, but not for MC or
MLMC, depends onCC

` /CG
` . In this exampleCC

` /CG
` = α ∀` = 1, 2, ..., L. Figure 2 shows that MLMC and even

more so H-MLMC are faster than MC. For the expected range of GPU to CPU cost ratios, 1-level H-MLMC takes
31–82% as long as MC. Two-level MLMC takes 11% as long as MC, while 2-level H-MLMC takes 3–9% as long as
MC. H-MLMC offers more improvement over MLMC when the CPU cost is closer to the GPU cost, because a larger
portion of the work in H-MLMC can be done on the CPUs left idle by MLMC.

The allocation of samples between CPUs and GPUs depends onCC
` /CG

` . Figure 3 shows this relationship for
two-level H-MLMC with the two finest levels of Example 1. AsCC

` /CG
` increases, fewer samples are solved on

the CPU and more samples are solved on the GPU. By Corollary 3, the total number of samples on each level,
NC

` + NG
` = (NG

`)MLMC . (NG
`)MLMC and thereforeNC

` + NG
` does not depend onCC

` /CG
` .

By Corollary 4, the ratio of the H-MLMC wall-clock time to the MLMC wall-clock time,T H-MLMC/T MLMC ,
depends only onCC

` /CG
` ; Figure 4 illustrates this relationship. As explained for Fig. 2, asCC

` /CG
` decreases, H-

MLMC offers more improvement over MLMC. For the expected range of GPU to CPU cost ratios, H-MLMC takes
9–82% as long as MLMC.

TABLE 1: Example 1 cost and variance values

l 1 2 3 4 5
CG

` 2.0× 10−2 3.6× 10−6 6.3× 10−5 1.1× 10−3 2.0× 10−2

V [Q`] 1.0× 10−1 5.6× 10−2 3.2× 10−2 1.8× 10−2 1.0× 10−2

V [Q` −Q`−1] N/A 5.6× 10−3 3.2× 10−3 1.8× 10−3 1.0× 10−3

International Journal for Uncertainty Quantification

Multilevel Monte Carlo Sampling on Heterogeneous Computer Architectures 585

FIG. 2: Ratio of the wall-clock time for MLMC to that for MC,T MLMC /T MC, and for H-MLMC to that for MC,T H-MLMC /T MC.
Results are for one- and two-level MLMC and H-MLMC for Example 1 using the finest and two finest levels, respectively.

FIG. 3: Optimal sample allocation whenCC
` /CG

` = (5, 25, 50) ∀` = 1, 2 for two-level H-MLMC with the two finest levels of
Example 1

While T H-MLMC/T MLMC does not vary with the number of levels used in MLMC and H-MLMC,T MLMC and
T H-MLMC do. Figures 5 and 6 show thatT MLMC andT H-MLMC decrease as more levels are added, and that the rate of
decrease slows rapidly.T MLMC does not depend onCC

` /CG
` , while T H-MLMC does. AsCC

` /CG
` decreases for fixed

CG
` , T H-MLMC decreases, since samples can be solved faster on the CPUs.

4.2 Example 2—Channel Flow with Stochastic Heat Flux Boundary Condition: CC
` /CG

` Different
on Each Level

Example 2 demonstrates H-MLMC whenCC
` /CG

` is different on each level. This scenario often occurs due to a
combination of physics complexity, numerical methods, and memory access. In this example, the GPU speedup

Volume 10, Issue 6, 2020

586 Adcock et al.

FIG. 4: Ratio of wall-clock time for H-MLMC to that for MLMC,T H-MLMC /T MLMC , for MLMC and H-MLMC estimators
constructed with any number of levels for Example 1

FIG. 5: Wall-clock time for one-, two-, three-, four-, and five-level MLMC for Example 1

increases with grid resolution as the levels become finer. As the levels become finer, the amount of computation
relative to communication increases, making the GPUs’ computational speed more visible.

This test case provides insight for a study on the design of concentrated solar energy receivers at the Stanford
PSAAP II program, described in [17]. The Stanford PSAAP II study developed computational and physical models
for particle-laden, irradiated, turbulent flow through a square duct. Physical experiments showed that particles stick to
the surface of the duct in random clusters, locally increasing heat transfer. This test case models the effect of particle
adhesion in a simplified flow as a first step towards accounting for the effect of particle adhesion.

The test cases uses the three-dimensional multiphysics solver from the PSAAP II study, Soleil-X, with the parti-
cles and irradiation turned off and two dimensions: streamwise (x) and one of the spanwise directions (y). Soleil-X

International Journal for Uncertainty Quantification

Multilevel Monte Carlo Sampling on Heterogeneous Computer Architectures 587

FIG. 6: Wall-clock time for one-, two-, three-, four-, and five-level H-MLMC for Example 1

is written in the Legion/Regent Programming system, which implements task-based parallelism [18,19]. The Regent
programming language allows users to write sequential code, which the Legion runtime then executes in parallel with
minimal user input. In addition, the Legion/Regent system can automatically generate CUDA code from Regent code
and is easily portable between computer architectures. These characteristics make it simple to run Soleil-X in parallel
on CPUs or GPUs on any computer architecture. We ran our test cases on Lassen [16].

Our test case duct has unit height,Ly = 1. We model a section of the duct with unit length,Lx = 1. The effect
of particle adhesion is modeled through a stochastic heat flux boundary condition. Realizationn of the stochastic heat
flux, φ(n), is a superposition of ten Gaussians:

φ(n)(x) = Φ

(
1 +

10∑

i=1

A(n)exp

(
−1

2

(
x− µ(n)

σ(n)

)2
))

, (39)

where realizationn of the stochastic parameters isσ(n) ∼ unif(σmin,σmax), µ ∼ unif(2σmax, Lx − 2σmax), and
A(n) ∼ unif(−Φ,Φ). The constants areΦ = 1000, σmin = 0.01, andσmax = 0.02. The stochastic heat flux boundary
condition is applied aty = 0 and a zero heat flux boundary condition is applied aty = Ly. Periodic boundary
conditions are applied at the inflow,x = 0, and outflow,x = Lx. The flow is initialized from the steady solution
for flow in the duct with zero heat flux boundary conditions, which has centerline velocityU = 1. Our quantity of
interest is the temperature atx = Lx, y = 0.1Ly at timet = 1, which is one flow-through time at the center of the
duct. We compare the MLMC and H-MLMC estimators of our quantity of interest.

We use five levels,L = 5, for our MLMC and H-MLMC estimators. The levels are created by coarsening the grid.
We estimate the CPU cost, GPU cost, and variance using ten CPU and ten GPU samples on each level. The CPU cost
and GPU cost are the mean of the costs of these ten samples. To ensure these estimates are accurate while avoiding
unnecessary sampling, in future work we could use an iterative method, such as the one used in [20]. The number
of grid points, cost, and variance for each level are reported in Table 2. We also report the standard deviation of the
CPU cost and GPU cost in Table 2. The sample allocation changes minimally due to the variation in the CPU and
GPU cost across samples. For example, changing the CPU costs on all levels by one standard deviation or changing
the CPU or GPU cost on a single level by one standard deviation changes the number of samples on a level by 0–3%
and the ratios of wall-clock time for H-MLMC to that for MLMC by 0–1%. We takeε2 = 10−6.

We find that using all five levels, H-MLMC takes14% as long as MLMC. Unlike for Example 1, the ratio of
the H-MLMC wall-clock time to the MLMC wall-clock time,T H-MLMC/T MLMC , depends onL. Table 3 illustrates

Volume 10, Issue 6, 2020

588 Adcock et al.

TABLE 2: Example 2 grid point, cost, variance, and standard deviation,σ, values

l 1 2 3 4 5
grid points inx 64 128 128 256 512
grid points iny 32 64 128 128 128

CC
` /CG

` 1.0 1.9 3.4 6.4 12.1
CC

` 6.3× 102 4.4× 103 1.5× 104 7.4× 104 3.4× 105

CG
` 6.4× 102 2.2× 103 4.6× 103 1.2× 104 2.8× 104

σ[CC
`] 3.7× 101 1.7× 102 2.5× 102 5.1× 102 5.4× 102

σ[CG
`] 5.5× 101 1.6× 102 2.7× 102 7.7× 102 1.2× 103

V [Q`] 1.8× 10−4 1.4× 10−4 1.1× 10−4 1.6× 10−4 1.3× 10−4

V [Q` −Q`−1] N/A 1.6× 10−5 1.3× 10−6 1.1× 10−6 3.2× 10−7

TABLE 3: Example 2 ratio of wall-clock time for H-MLMC
to that for MLMC, for MLMC and H-MLMC estimators
constructed with the finest one, two, three, four, and five levels

L 1 2 3 4 5
T H-MLMC/T MLMC 0.52 0.37 0.23 0.17 0.14

the dependence onL. As more coarse levels are available, H-MLMC offers more improvement over MLMC. For
example, H-MC takes 52% as long as MC and two-level H-MLMC takes 37% as long as two-level MLMC, whereas
five-level H-MLMC takes 14% as long as five-level MLMC.

We show the optimal sample allocation for H-MLMC and MLMC in Table 4. Unlike in Example 1, Corollary
3 does not hold, so the total number of samples on each level,NC

` + NG
` 6= (NG

`)MLMC . Table 4 also shows the
following properties of Theorem 2 hold. The ratio ofCC

` /CG
` is different for each level, so only one level can have

samples on both CPUs and GPUs (case 3 in Theorem 2). Here, level four has samples on both CPUs and GPUs. Since
CC

` /CG
` increases monotonically, all levels coarser than level four (levels one, two, and three) can only have samples

on CPUs (case 1). All levels finer than level four (level five) can only have samples on GPUs (case 2).

5. CONCLUSIONS

We present a variation on MLMC, H-MLMC, that uses the full computational power of heterogeneous computer
architectures by running samples on two, rather than just one, type of processor. H-MLMC has a different optimal
sample allocation than MLMC. We present the optimization problem for H-MLMC, demonstrate that it is convex,
and derive the general solution. We show that the general solution cannot always be expressed analytically and is not
always unique and introduce a computational procedure to find one of the possibly many optimal solutions.

We show that the optimal sample allocation is not unique on any level if and only ifCC
` /CG

` is the same for all
levels. In this case, the ratio of wall-clock time for H-MLMC to that for MLMC,T H-MLMC/T MLMC , depends only

TABLE 4: Example 2 optimal sample allocation for five-
level H-MLMC, NC

` andNG
` , and MLMC,(NG

`)MLMC

l 1 2 3 4 5
NC

` 683 78 12 1 0
NG

` 0 0 0 4 2
NC

` + NG
` 683 78 12 5 2

(NG
`)MLMC 437 69 14 8 3

International Journal for Uncertainty Quantification

Multilevel Monte Carlo Sampling on Heterogeneous Computer Architectures 589

on CC
` /CG

` . If the ratio of CPU to GPU cost is not the same for all levels, we cannot, however, determinea priori
whether the sample allocation is unique. In this case,T H-MLMC/T MLMC depends not only onCC

` /CG
` , but also on the

number of levels.
We demonstrate H-MLMC for two examples, one whereCC

` /CG
` is the same for all levels and one where it

is different on each level. WhenCC
` /CG

` is the same for all levels, H-MLMC takes 9–82% as long as MLMC,
depending on the values ofCC

` /CG
` ∈ [5, 50], regardless of the number of levels used. H-MLMC offers more benefit

over MLMC for smaller values ofCC
` /CG

` . In the limit ofCC
` /CG

` becoming large, the time to solution for H-MLMC
approaches that for MLMC, since negligible benefit can be gained by using CPUs in addition to GPUs when the CPUs
are infinitely slower than GPUs.

In our second example we consider the effect of a stochastic heat flux boundary condition on channel flow to
inform the Stanford PSAAP II study on concentrated solar energy receivers. In this problem,CC

` /CG
` is different

on each level. We find that H-MLMC takes 14–52% as long as MLMC, depending on the number of levels used.
H-MLMC offers more benefit over MLMC when more levels are used.

ACKNOWLEDGMENTS

This research was supported in part by the U.S. Department of Energy Computational Science Graduate Fellowship
under Grant No. DE SC0019323. Christiane Adcock is supported in part by a graduate fellowship award from Knight-
Hennessy Scholars at Stanford University.

REFERENCES

1. Peherstorfer, B., Willcox, K., and Gunzburger, M., Survey of Multifidelity Methods in Uncertainty Propagation, Inference,
and Optimization,SIAM Rev., 60(3):550–591, 2018.

2. Cliffe, K.A., Giles, M.B., Scheichl, R., and Teckentrup, A.L., Multilevel Monte Carlo Methods and Applications to Elliptic
PDEs with Random Coefficients,Comput. Visualization Sci., 14(1):3–15, 2011.

3. Peherstorfer, B., Willcox, K., and Gunzberger, M., Optimal Model Management for Multifidelity Monte Carlo Estimation,
SIAM J. Sci. Comput., 38(5):A3163–A3194, 2016.

4. Gorodetsky, A.A., Geraci, G., Eldred, M.S., and Jakeman, J.D., A Generalized Approximate Control Variate Framework for
Multifidelity Uncertainty Quantification,J. Comput. Phys., 408:109257, 2020.

5. Geraci, G., Menhorn, F., Huan, X., Safta, C., Marzouk, Y.M., Najm, H.N., and Eldred, M.S., Progress in Scramjet Design
Optimization under Uncertainty Using Simulations of the HIFiRE Direct Connect Rig,AIAA SciTech Forum, 2019.

6. Qian, E., Peherstorfer, B., Malley, D., Vesselinov, V., and Willox, K., Multifidelity Monte Carlo Estimation of Variance and
Sensitivity Indices,SIAM/ASA J. Uncertainty Quantif., 6:683–706, 2018.

7. Krumscheid, S., Nobile, F., and Pisaroni, M., Quantifying Uncertain System Outputs via the Multilevel Monte Carlo Method.
Part I: Central Moment Estimation,J. Comput. Phys., 414:109466, 2020.

8. Giles, M.B., Nagapetyan, T., and Ritter, K., Multilevel Monte Carlo Approximation of Distribution Functions and Densities,
SIAM/ASA J. Uncertainty Quantif., 3(1):267–295, 2015.

9. Krumscheid, S. and Nobile, F., Multilevel Monte Carlo Approximation of Functions,SIAM/ASA J. Uncertainty Quantif.,
6(3):1256–1293, 2018.

10. Top500, November 2019, accessed December 2, 2019, from http://top500.org/lists/top500/2019/11/.

11. Xu, X.G., Lui, T., Su, L., Du, X., Riblett, M., Ji, W., Gu, D., Carothers, C.D., Shephard, M.S., Brown, F.B., Kalra, M.K., and
Liu, B., ARCHER, a New Monte Carlo Software Tool for Emerging Heterogeneous Computing Environments,Ann. Nucl.
Energy, 82:2–9, 2015.

12. Srinivasan, A., Parallel and Distributed Computing Issues in Pricing Financial Derivatives through Quasi Monte Carlo, in
Proc. of 16th International Parallel and Distributed Processing Symposium, pp. 6–11, 2002.

13. Tse, A.H., Thomas, D.B., Tsoi, K., and Luk, W., Dynamic Scheduling Monte-Carlo Framework for Multi-Accelerator Het-
erogeneous Clusters, inProc. of Int. Conf. on Field-Programmable Technology, pp. 233–240, 2010.

14. Giles, M.B., Multilevel Monte Carlo Codes for 2015 Acta Numerica Article, accessed December 2, 2019, from
http://people.maths.ox.ac.uk/gilesm/acta/.

Volume 10, Issue 6, 2020

590 Adcock et al.

15. Jofre, L., Papadakis, M., Roy, P.T., Aiken, A., and Iaccarino, G., Multifidelity Modeling of Irradiated Particle-Laden Rurbu-
lence Subject to Uncertainty,Int. J. Uncertainty Quantif., 10(6):499–514, 2020.

16. Lawrence Livermore National Laboratory, Lassen, 2019, accessed December 2, 2019, from http://hpc.llnl.gov/
hardware/platforms/lassen.

17. Torres, H., Papadakis, M., Jofre, L., Lee, W., Aiken, A., and Iaccarino, G., Soleil-X: Turbulence, Particles, and Radiation in
the Regent Programming Language, inSC’19: Proc. of Int. Conf. on High Performance Computing, Networking, Storage, and
Analysis, 2019.

18. Slaughter, E., Lee, W., Treichler, S., Bauer, M., and Aiken, A., Regent: A High-Productivity Programming Language for HPC
with Logical Regions, inSC’15: Proc. of Int. Conf. on High Performance Computing, Networking, Storage, and Analysis,
2015.

19. Bauer, M., Treichler, S., and Aiken, A., Legion: Expressing Locality and Independence with Logical Regions, inSC’12: Proc.
of Int. Conf. on High Performance Computing, Networking, Storage, and Analysis, 2012.

20. Giles, M.B., Multilevel Monte Carlo Methods,Acta Numer., 24:259–328, 2015.

APPENDIX A. OPTIMAL SAMPLE ALLOCATION FOR H-MLMC

We seek to find a sample allocation,NC
` andNG

` ∀` = 1, 2, ..., L, that satisfies Eq. (9). As shown in Section 2, a
sample allocation satisfies Eq. (9) if it satisfies the KKT conditions, Eqs. (17)–(27).

Equation (17) is equivalent to

− λ1

(
V`

(NC
` + NG

`)2

)
+

λ2C
C
`

MC
− µC

` = 0 ∀` = 1, 2, ..., L, (A.1)

− λ1

(
V`

(NC
` + NG

`)2

)
+

λ3C
G
`

MG
− µG

` = 0 ∀` = 1, 2, ..., L, (A.2)

1− λ2 − λ3 = 0. (A.3)

By Eqs. (24) and (A.1),

−λ1
V`

(NC
` + NG

`)2
+

λ2C
C
`

MC
= µC

` ≥ 0 ∀` = 1, 2, ..., L. (A.4)

Similarly, by Eqs. (25) and (A.2),

−λ1
V`

(NC
` + NG

`)2
+

λ3C
G
`

MG
= µG

` ≥ 0 ∀` = 1, 2, ..., L. (A.5)

By Eqs. (21) and (A.4),

−λ1
V`

(NC
` + NG

`)2
+

λ2C
C
`

MC
> 0 iff NC

` = 0 ∀` = 1, 2, ..., L. (A.6)

Similarly, by Eqs. (22) and (A.5),

−λ1
V`

(NC
` + NG

`)2
+

λ3C
G
`

MG
> 0 iff NG

` = 0 ∀` = 1, 2, ..., L. (A.7)

NC
` andNG

` cannot both be zero; otherwiseV`/(NC
` + NG

`) in Eq. (11) is undefined, making Eq. (11) un-
satisfiable. Therefore, at least one of Eqs. (A.4) and (A.5) must equal zero. Whether Eq. (A.4), or Eq. (A.5), or both
Eqs. (A.4) and (A.5) are zero depends on whether(λ3/λ2)(>,=, <)(CC

` MG/CG
` MC). For each of these three cases,

we can findNC
` andNG

` as follows:

International Journal for Uncertainty Quantification

Multilevel Monte Carlo Sampling on Heterogeneous Computer Architectures 591

Case 1:
λ3

λ2
>

CC
` MG

CG
` MC

λ3C
G
` MC > λ2C

C
` MG. (A.8)

By Eqs. (A.4), (A.5), and (A.8),

−λ1
V`

(NC
` + NG

`)2
+ λ3C

G
` MC > −λ1

V`

(NC
` + NG

`)2
+ λ2C

C
` MG ≥ 0. (A.9)

Since at least one of Eqs. (A.4) and (A.5) must be zero, by Eq. (A.9),

− λ1
V`

(NC
` + NG

`)2
+ λ2C

C
` MG = 0, (A.10)

− λ1
V`

(NC
` + NG

`)2
+ λ3C

G
` MC > 0. (A.11)

By Eqs. (A.7) and (A.11),
NG

` = 0. (A.12)

By Eqs. (A.8), (A.10), and (A.12),

NC
` + NG

` = NC
` =

√
λ1V`

λ2CC
` MG

=

√√√√max

(
λ1

λ2

V`

CC
` MG

,
λ1

λ3

V`

CG
` MC

)
. (A.13)

Case 2:
λ3

λ2
<

CC
` MG

CG
` MC

By analogous reasoning to case 1,

−λ1
V`

(NC
` + NG

`)2
+ λ2C

C
` MG > 0, (A.14)

−λ1
V`

(NC
` + NG

`)2
+ λ3C

G
` MC = 0, (A.15)

NC
` = 0, (A.16)

NC
` + NG

` = NG
` =

√
λ1V`

λ3CG
` MC

=

√√√√max

(
λ1

λ2

V`

CC
` MG

,
λ1

λ3

V`

CG
` MC

)
. (A.17)

Case 3:
λ3

λ2
=

CC
` MG

CG
` MC

λ3C
G
` MC = λ2C

C
` MG. (A.18)

By Eqs. (A.4), (A.5), and (A.18):

−λ1
V`

(NC
` + NG

`)2
+ λ3C

G
` MC = −λ1

V`

(NC
` + NG

`)2
+ λ2C

C
` MG ≥ 0. (A.19)

Since at least one of Eqs. (A.4) and (A.5) must be zero, by Eqs. (26), (27), and (A.19):

−λ1
V`

(NC
` + NG

`)2
+ λ2C

C
` MG = 0, (A.20)

Volume 10, Issue 6, 2020

592 Adcock et al.

−λ1
V`

(NC
` + NG

`)2
+ λ3C

G
` MC = 0, (A.21)

NC
` > 0, (A.22)

NG
` > 0. (A.23)

By Eqs. (A.20) and (A.21),

NC
` + NG

` =

√
λ1

λ2

V`

CC
` MG

=

√
λ1

λ3

V`

CG
` MC

=

√√√√max

(
λ1

λ2

V`

CC
` MG

,
λ1

λ3

V`

CG
` MC

)
(A.24)

Equation (A.24) does not uniquely determineNC
` andNG

` . By Eqs. (26), (27), and (A.24),

NC
` ∈

[
0,

√
λ1

λ2

V`

CC
` MG

]
, (A.25)

NG
` =

√
λ1

λ2

V`

CC
` MG

−NC
` . (A.26)

End Cases.
For all three cases, by Eqs. (A.13), (A.17), and (A.24),

NC
` + NG

` =

√√√√max

(
λ1

λ2

V`

CC
` MG

,
λ1

λ3

V`

CG
` MC

)
=

√
λ1V`

√√√√max

(
1

λ2CC
` MG

,
1

λ3CG
` MC

)
. (A.27)

By Eqs. (A.3), (A.20), and (A.21), and noting all costs are greater than zero,

λ2 =
1

1 + α
> 0, (A.28)

λ3 =
α

1 + α
> 0, (A.29)

α =





CC
l∗M

G

CG
l∗M

C
if some levell∗ satisfies case 3

∈
[
min`=1,2,...,L

CC
` MG

CG
` MC

, max̀ =1,2,...,L
CC

` MG

CG
` MC

]
otherwise

. (A.30)

By Eq. (A.27), and noting that all costs, variances, and sample sizes are greater than zero,

λ1 =
(NC

` + NG
`)2

V`max
(
1/(λ2CC

` MG), 1/(λ3CG
` MC)

) > 0 (A.31)

Equations (A.28), (A.29), and (A.31) prove thatλ1, λ2, andλ3 > 0, as used in Section 3. By Eqs. (18) and (A.31),

L∑

`=1

V`

NC
` + NG

`

= ε2. (A.32)

By Eqs. (A.27) and (A.32),

λ1 =

(
1
ε2

L∑

`=1

√
V`

max
(
1/(λ2CC

` MG), 1/(λ3CG
` MC)

)
)2

. (A.33)

International Journal for Uncertainty Quantification

Multilevel Monte Carlo Sampling on Heterogeneous Computer Architectures 593

By Eqs. (19), (20), (A.28), and (A.29),

1
MC

L∑

`=1

(
CC

` NC
`

)
=

1
MG

L∑

`=1

(
CG

` NG
`

)
. (A.34)

We have now proved Theorem 2. Equations (32)–(38) correspond to Eqs. (A.34), (A.32), (A.33), (A.3), (A.12),
and (13), (A.16) and (A.17), and (A.25) and (A.26), respectively.

As explained in Section 3, the optimal sample allocation cannot be found analytically, but can be found using the
iterative bisection method of Algorithm 1. Step 5 of Algorithm 1 requires additional reasoning.

NC
` andNG

` for all levels that fall into cases 1 or 2 have already been computed in Step 4. These levels are inS,
where

S =
{

`

∣∣∣∣
CC

` MG

CG
` MC

6= λ3

λ2

}
.

In Step 5 we first consider some level` /∈ S. ` falls into case 3, soNC
` andNG

` are not fully defined.

Case A:

1
MC

∑

`∈S

(
CC

` NC
`

)
=

1
MG

∑

`∈S

(
CG

` NG
`

)
.

To keep the CPU and GPU cost balanced,

N` =

√
λ1

λ2

V`

CC
` MG

=

√
λ1

λ3

V`

CG
` MC

, (A.35)

NC
` =

N`C
G
` MC

CC
` MG + CG

` MC
, (A.36)

NG
` =

N`C
C
` MG

CC
` MG + CG

` MC
. (A.37)

Cases B.i. and B.ii.:

1
MC

∑

`∈S

(
CC

` NC
`

)
>

1
MG

∑

`∈S

(
CG

` NG
`

)
, (A.38)

N`,diff =
MG

CG
`

(
1

MC

∑

`∈S

(
CC

` NC
`

)− 1
MG

∑

`∈S

(
CG

` NG
`

)
)

.

If we could addNl,diff samples toNG
` then the CPU and GPU work would be balanced.

Case B.i.:

N`,diff ≥ N`

Adding Nl,diff samples toNG
` would violate the condition thatNC

` ≥ 0. Therefore, we assign as much work as
possible on this level to the GPU while ensuringNC

` ≥ 0:

NC
` = 0, (A.39)

NG
` = N`. (A.40)

Volume 10, Issue 6, 2020

594 Adcock et al.

Case B.ii.:

Equation (77) still holds butN`,diff < N`.
Now we can balance the CPU and GPU work by assigningN`,diff samples toNG

` . We split the remainingN` −
N`,diff samples between the CPU and GPU to keep the CPU and GPU work balanced:

NC
` = (N` −Nl,diff)

CG
` MC

CC
` MG + CG

` MC
, (A.41)

NG
` = N`,diff + (N` −N`,diff)

CC
` MG

CC
` MG + CG

` MC
. (A.42)

Cases C.i. and C.ii.:

1
MC

∑

`∈S

(
CC

` NC
`

)
<

1
MG

∑

`∈S

(
CG

` NG
`

)
, (A.43)

N`,diff =
MC

CC
`

(
1

MG

∑

`∈S

(
CG

` NG
`

)− 1
MC

∑

`∈S

(
CC

` NC
`

)
)

.

Case C.i.:

N`,diff ≥ N`.

By similar reasoning as in case B.i.,

NC
` = N`, (A.44)

NG
` = 0. (A.45)

Case C.ii.:

Equation (A.43) still holds butN`,diff < N`.
By similar reasoning as in case B.ii.,

NC
` = N`,diff + (N` −N`,diff)

CG
` MC

CC
` MG + CG

` MC
, (A.46)

NG
` = (N` −Nl,diff)

CC
` MG

CC
` MG + CG

` MC
. (A.47)

We add̀ to S. If ∃` 6∈ S, we repeat this step (Step 5).

International Journal for Uncertainty Quantification

