
Master’s Thesis
Master’s degree in Industrial Engineering

Body Gestures recognition for Human
Robot Interaction

MEMORY
June 29, 2022

Author: Joan Jaume Oliver Caraballo

Directors:Anaís Garrell Zulueta (Director)
Javier Laplaza Galindo (Co-Director)

Call: June 2022

Escola Tècnica Superior
d’Enginyeria Industrial de Barcelona

Body Gestures recognition for Human Robot Interaction i

Abstract
In this project, a solution for human gesture classification is proposed. The solution uses a Deep
Learning model and is meant to be useful for non-verbal communication between humans and
robots.

The State-of-the-Art is researched in an effort to achieve a model ready to work with natural
gestures without restrictions.

The research will focus on the creation of a temPoral bOdy geSTUre REcognition model (POS-
TURE) that can recognise continuous gestures performed in real-life situations. The suggested
model takes into account spatial and temporal components so as to achieve the recognition of
more natural and intuitive gestures.

In a first step, a framework extracts from all the images the corresponding landmarks for each
of the body joints. Next, some data filtering techniques are applied with the aim of avoiding
problems related with the data. Afterwards, the filtered data is input into an State-of-the-Art
NeuralNetwork. Andfinally, different neural network configurations and approaches are tested
to find the optimal performance.

The obtained outcome shows the research has been done in the right track and how, despite of
the dataset problems found, even better results can be achieved.

ii Master’s Thesis

Body Gestures recognition for Human Robot Interaction iii

Acknowledgements
This project would not have been possible without the support of Anaís Garrell and Javier Laplaza. Many
thanks to both of you, since in a way or another, you have been by my side, either giving tips and advises
or helping me every time I got stuck.

Thanks for this opportunity and above all, for all the effort and personal involvement that you both have
dedicated to me in a totally altruistic way.

And of course, to my family who have supported me all over this last years.

Joan Jaume Oliver
June, 2022

iv Master’s Thesis

Body Gestures recognition for Human Robot Interaction v

Acronyms

AAGCN Adaptive Graph Attention Networks. (33, 40)
ADAM Adaptative Moment Estimation. (34)
AGCB Adaptative Graph Convolutional Block. (33, 34)
AI Artificial Intelligence. (11, 25)
API Application Programming Interface. (46)

CNN Convolutional Neural Network. (9, 22)

DL Deep Learning. (i, 1, 4, 8, 9, 11, 15, 17, 29, 30, 33, 41, 42, 46, 53)

FPS Frames per Second. (39)

GAT Graph Attention Networks. (ix, 23, 33)
GCN Graph Convolutional Networks. (ix, 21–23, 33)
GNN Graph Neural Network. (ix, 20–23)
GPU Graphics Processing Unit. (49)

HRI Human-Robot Interaction. (3–7, 9, 47)

IDE Integrated Development Environment. (49)
IMU Inertial Measurement Units. (ix, 7)
IRI Insititut de Robòtica i Informàtica Industrial [25]. (1, 25, 28, 49)

ML Machine Learning. (1, 7–9, 11)
MPLMessage Passing Layers. (20, 21, 24)
MUEI Master’s Degree in Industrial Engineering. (45)

NLP Natural Language Processing. (45)
NN Neural Network. (i, ix, 8, 11–15, 17, 19–23, 25, 27, 31, 33–35, 37, 38, 42, 45, 49, 53)

POSTURE temPoral bOdy geSTUre REcognition. (i, x, 27, 35–39, 53)
PyG PyTorch-Geometric. (25, 46, 54)
PyGT PyTorch-Geometric-Temporal. (25, 46, 54)

ReLU Rectified Linear Unit. (33)
RGB Red-Green-Blue. (29)
RNN Recurrent Neural Network. (9, 17, 18)
ROI Region-Of-Interest. (27)

SOA State-of-the-Art. (i, 4, 6, 53)

TGNN Temporal Graph Neural Networks. (11, 23, 24)

vi Master’s Thesis

Index
ABSTRACT I

ACKNOWLEDGEMENTS III

ACRONYMS V

1 PREFACE 1
1.1 Project origin and motivation . 1

2 INTRODUCTION 3
2.1 Project Objectives . 4
2.2 Personal Objectives . 4
2.3 Non-Objectives . 4
2.4 Scope of the project . 4

3 STATE OF THE ART 5
3.1 Human-Robot Interaction . 5
3.2 Bridging the gap between Machine Learning and HRI 7
3.3 Body Gestures Recognition . 9

4 KEY THEORY CONCEPTS 11
4.1 Artificial Intelligence and Machine Learning (Deep Learning) 11
4.2 Neural Networks . 11

4.2.1 Logistic Regression . 12
4.2.2 Loss Function . 13
4.2.3 Gradient Descent Method . 13
4.2.4 Backward Propagation . 14

4.3 Shallow and Deep Neural Networks . 15
4.4 Vectorization . 15
4.5 Transformers . 17

4.5.1 Recurrent Neural Networks . 17
4.5.2 Attention . 17

4.6 Graph Networks . 19
4.6.1 Graphs Data Structures . 19
4.6.2 Graph Neural Networks . 20
4.6.3 Graph Convolutional Networks . 22
4.6.4 Graph Attention Networks . 23
4.6.5 Temporal Graph Neural Networks . 23

4.7 Neural Network Framework: PyTorch . 25

5 POSTURE MODEL: METHOD DEVELOPMENT 27
5.1 System overview . 27
5.2 Landmarks extraction . 27
5.3 Body Gestures Dataset . 28

5.3.1 Data Augmentation . 29
5.3.2 Train-Test Split . 30

5.4 Body Gestures Recognition . 31
5.4.1 Key Nodes Selection . 31

Body Gestures recognition for Human Robot Interaction vii

5.4.2 Gestures Selection . 31
5.4.3 Key Frames Selection . 32
5.4.4 Class Imbalance . 32
5.4.5 Hidden Layers . 33
5.4.6 Key Edges Selection . 33
5.4.7 Neural Network Architecture . 33

6 EXPERIMENTATION AND RESULTS 35
6.1 Model Experiments . 35
6.2 Model Results . 39
6.3 State-of-the-Art Results . 40

7 PROJECT PLAN 41
7.1 Project Plan Methodology . 41
7.2 Project Gantt . 42
7.3 Trello . 43

8 TRAININGS 45
8.1 Deep Learning Specialization . 45
8.2 PyTorch Basics . 46
8.3 PyTorch-Geometric & PyTorch-Geometric-Temporal . 46

9 RO-MAN CONFERENCE 47

10 BUDGET 49

11 ENVIRONMENTAL IMPACT 51

CONCLUSIONS 53

BIBLIOGRAPHY 55

ANNEX A 61
A1 GNN - Different variants of recurrent operators . 61
A2 TGNN - Models . 62

ANNEX B 63
B1 Model.py . 63
B2 Main.py . 65
B3 Dataset.py . 69
B4 Tools.py . 80

viii Master’s Thesis

Body Gestures recognition for Human Robot Interaction ix

List of Figures
1 BUDDY companion robot in elderly care. Source: [8] 3
2 QT Robot: Robot For Autism and Other Special Needs Education. Source: [38] . . 5
3 By raising the left arm, IVO is able to understand and turn to the left side. 7
4 Example of an IMU device. Source: [65] . 7
5 Pose extraction with Mediapipe. 8
6 One Neuron example. 11
7 Complex Neural Network. 11
8 Dog Classification Neural Network . 12
9 Common Activation Functions used in NNs. Source: [26] 12
10 Simple Cost Function. Source: [75] . 13
11 Shallow Neural Network example. 15
12 Recurrent Neural Network example. 17
13 Attention key vector when cow is the query. 18
14 Attention example. 18
15 Examples of Graph Neural Networks. Source: [78] 19
16 A five nodes graph with it’s adjacency matrix. 19
17 Type of graphs based on their edges direction. 19
18 Type of graphs based on their edges or nodes number. 20
19 Types of Graph Neural Network model predictions. 20
20 Message passing example for nodes 1 and 2. 21
21 GCN node embedding example. 22
22 Attention coefficients example in a GAT . 23
23 Sample from IRIGesture dataset. 24
24 TGNN sequence example. 24
25 Most popular DeepLearning frameworks. 25
26 PyTorch libraries used in order to interact with temporal graphs. 25
27 System Overview. 27
28 MediaPipe Pose Landmarks. Source: [41] . 28
29 Some samples of static gestures recorded in the dataset. 29
30 Example of data augmentation applied to videos. 30
31 Example of advanced data augmentation applied to videos. 30
32 Dataset train/test proportions. 30
33 Masked Mediapipe landmarks. Source: [41] . 31
34 NN was mostly always predicting random when tested on Test dataset. 31
35 Class gestures (%) after Data Augmentation. 32
36 Adaptive graph convolutional block. Source: [64] 33
37 Proposed Model. 34
38 Predicted gestures with with Experiment 1 conditions. 35
39 Train and Test accuracies for experiments 4, 5 and Final result. 39
40 Project Plan Methodologies: Agile vs Waterfall. Source: [1] 41
41 Project Gantt. 42
42 Project Trello at June 3, 2022. 43
43 Deep Learning Specialization Courses. Source: [43] 45
44 PyTorch Basics. Source: [49] . 46
45 Carbon intensity production (Spain 2021). Source: [17] 51

x Master’s Thesis

List of Tables
1 POSTURE results with Static gestures. 35
2 POSTURE results with Static and All gestures. 36
3 POSTURE results with Static, Dynamic and All gestures. 36
4 Confusion matrix for All Gestures. 36
5 POSTURE results with different number of hidden layers. 37
6 POSTURE results with initial frames filtering. 37
7 POSTURE results with different batch size values. 38
8 POSTURE results against a default Dropout Layer. 38
9 POSTURE results against different Dropout factors. 38
10 POSTURE final accuracy results. 39
11 Different variants of recurrent operators. Source [78] 61
12 Common Spatiotemporal deep learning models based on the temporal and spa-

tial block. Source: [56] . 62

Body Gestures recognition for Human Robot Interaction page 1

1 Preface
I have always loved challenges and tried to never give up, for me, this Master’s Thesis has been
an exhibition of self-improvement. Since a year ago, Deep Learning had been a totally new
concept for me and my knowledge was nearly zero, so I did not expect to succeed in such a
good way.

Right now, I have developed a model based on one state-of-the-art topic and feel comfortable
with Deep Learning concepts. (I can also follow more profoundly in papers, codes and conferences.)

1.1 Project origin and motivation

During the months prior to the completion of this project, I was lucky enough to carry out the
Sistemes de Percepció subject as part of the Master’s degree. Although the topics discussed in
the syllabus were quite basic, they were an introduction that helped me awaken my interest for
Deep Learning.

There I also met Anaís Garrell, who gave the opportunity to work together on a more practical
thesis in the Insititut de Robòtica i Informàtica Industrial [25] (IRI). For me, the idea of running
a practical thesis was an opportunity I couldn’t let go.

Up to thatmoment, I had only interactedwith somebasicMachine Learning algorithms (KMeans,
Decisions Trees, Logistic Regression, AdaBoost...) and everything seemed scary. But now, thanks to
this project I can continue filling my curiosity. And who knows, maybe change my professional
career course.

page 2 Master’s Thesis

Body Gestures recognition for Human Robot Interaction page 3

2 Introduction
Although languages have become the primary communication tool, humans still heavily rely
on nonverbal communication. Precisely, over the years, experts have determined that gestures
and body language are the two main nonverbal modes humans use to exchange large amounts
of information.

Fundamentally, gestures are actions done with the body that transmit specific messages. With
the right gestures and body language, one can, for example, give an impression, offend someone
or even get their attention.

At the beginning, the communication between humans and machines was mainly physical,
mostly through keyboards or touch-screens. However, humans do not cooperate using touch-
screens, their interaction requires the recognition and interpretation of speech, gesture or emo-
tion. [44]

Human-Robot Interaction research focuses in a natural collaboration betweenhumans and robots
which is the key tomake robotics effective enough to solve countless real-world challenges. [20]

Figure 1: BUDDY companion robot in elderly care. Source: [8]

Speech recognition is, then, one of themost convenient methods. Regardless of all the problems
it has due to the huge variety of human accents or going out-of-control in noisy situations.
Alternatively, vision based methods are one of the most popular fields of research, since they
are also capable of expressing really complex information.

The main reason to pursue these touchless methods is to create an engagement between robots
and humans, and thus, achieve a natural interaction between them. The better the collaboration,
better job will the robots do. [33]

In the present thesis, the target is on the recognition of body gestures as a way to communicate
with robots easily and in a natural way. With this in mind, a deep learning approach that is able
to recognize body gestures in videos is proposed.

page 4 Master’s Thesis

2.1 Project Objectives

Normally, knowing exactly the objectives to achieve and in consequence the steps to follow is
a key factor in most projects. In this case, the project aims to reach an efficient Deep Learning
algorithm that’s able to recognise body gestures.

To do so, some sub-objectives must be fulfilled:

• Establish a feature extraction method that is able to find all the body joints.

• Research some current State-of-the-Art alternatives that might fit the problem in.

• Develop a Deep Learning model that uses a video as input and it is able to classify body
gestures.

• Refine and research over the proposed model.

2.2 Personal Objectives

Sometimes, the objectives are not only from project side, but personal. In this case, the personal
objectives, which have been crucial, are:

• Learn thoroughly Deep Learning, and be able to develop a model.

• Face difficulties in a totally new environment that forces to improve research tactics.

• Opening up doors and provide opportunities in a completely different professional area.

2.3 Non-Objectives

It is always important that when a project objectives are defined, they have to go with it’s cor-
responding non-objectives.

In this case, the project only considers the implementation of a graph neural network for body
gestures and not:

• All the task related to embedding the project inside IVO’s1 code.

• The interface that allows the robot to use these algorithms.

• A model with better accuracy results than State-of-the-Art alternatives.

2.4 Scope of the project

The main thesis scope defined by the director and co-director, can then be summarized as:

To research about Body Gestures recognition for Human-Robot Interaction and propose a solution for
gesture classification using Deep Learning models, more specifically, the proposed algorithm should be
based on graphs, use videos as inputs and apply spatial and temporal attention.

1IVO is one of the IRI [25] robots available to test Deep Learning algorithms with.

Body Gestures recognition for Human Robot Interaction page 5

3 State of the Art
Nowadays, there has been a growing interest in making autonomous robots able to interact and
communicate with people. This demanding objective has opened new research fields concern-
ing the social abilities robots should acquire. Some examples of this are, for instance, assisting
elderly people in homes or helping pedestrians in public spaces. Moreover, interest in collabo-
rative robots for those examples requires safe physical interaction with humans.

Finding natural and efficient communication channels is essential in Human-Robot Interaction.
If we take a look at the way humans communicate with each other, we see that about 70% of the
communication is non-verbal communication. [46] Moreover, when humans want to commu-
nicate with other agents with whom they do not share a common spoken language –foreigners,
babies or animals– most of the communication is non-verbal. [2, 23]

Figure 2: QT Robot: Robot For Autism and Other Special Needs Education. Source: [38]

3.1 Human-Robot Interaction

Although the notion of human interaction has been around as the notion of robots themselves,
HRI is commonly referred to as a completely new emerging field. In its beginnings, questions
about humans and robots like How much will people trust robots? or What kind of relationship can
a person have with a robot? arise. These questions, decades ago were merely science fiction, but
today, many of this issues are a reality of our society and have become core research fields. [4]

HRI is not the same as robotics, while robotics is focused on the creation of physical robots and
the ways these robots need tomanipulate their environment, HRI is concernedwith how robots
interact with people in society. Furthermore, HRI focuses on developing robots that can interact
with people in various everyday situations, this opens lots of challenges, but at the same time
it boosts its popularity.

Clearly, this social interaction can help improve as a society. As of today, the number of HRI
applications are almost infinite and apply in most of the possible imaginable environments. For
instance in the medical context, some of the most famous are elder care, companion, surgery
assistance, autism or rehabilitation. [61]

At the beginning, HRIwasn’t mature enough andwasmainly dependent on humans that had to
interact with third party elements like touch-screens, mouse or keyboards in order to cooperate
with robots. Over the years and due to the impressive growth in the robotic industry new

page 6 Master’s Thesis

algorithms based on different techniques like Computer Vision, have raised2.

For now, most applications remain at the research stage, but this is expected to change rapidly.
Since it is here that HRI has its major role to play, understanding how robots should behave
around people and how people should respond and benefit from this interaction.

When humans cooperate among them, they do not use a keyboard and a mouse, they mainly
interact with speech and gestures. Is it true, that with teleoperation humans can interact with
robots, but if we want robots to be as good collaborators as other humans, they need to be
able to reproduce common human-human interactions, including the abilities like recognizing
intentions. [10, 3]

Due to the differences between how humans and robots communicate, current scope (in terms
of natural language processing) is quite limited. In practice, it is difficult for robots to under-
stand human interactions and properly express intentions, reason HRI community has put the
focus on this communication barrier. [74]

When talking about overcoming this barrier, speech recognition is always part of the equation,
but it has some problems related to human accents variety and noisy situations that rules them
out. Is in these situations where methods like Vision become strong. Vision based technology
for HRI is the touchless method able to express the most complex information. [11]

Although vision based methods seem to be the solution for HRI, they are not fully developed
and some problems like moving backgrounds, or illumination conditions are yet to overcome.
[19]

These touchless or empty-handed methods have received notable attention in the last years to
make interactions more pleasing, but in general, touchless interaction present some advantages
for communication between humans and robots:

• Sterility: In some environments, commonly medical, surfaces that are touched have to be
made aseptic.

• Vandalism: There’s situations, like in public spaces, that not having access to the devices,
comes in handy.

• Sharing: When working with groups of persons, a touch screen could not be enough and
instead, a single camera might be used to interact with everyone.

• Fleeting: In case of required short time responses, like in public transport or elevators we
could benefit from this touchless interaction, just by moving our body.

If robots reach this new State-of-the-Art in which they can fully interact with humans, it would
imply robots could be used in new domains on which they need to be closer to the user in order
to help.

2This new algorithms allow contactless interactions due to being handled through external instruments like video
camera recordings.

Body Gestures recognition for Human Robot Interaction page 7

Figure 3: By raising the left arm, IVO is able to understand and turn to the left side.

3.2 Bridging the gap between Machine Learning and HRI

When it comes to communication with robots, it is possible to establish a set of gestures to
communicate certain ideas in a similar way that gesture language works between humans. But,
similarly to gesture language, this approach requires that both agents know which gestures
compose the language and what meaning has each gesture. Otherwise, communication is not
successful at all.

In order to improve Human-Robot Interaction (HRI), touchless technology is needed, to do so,
Artificial Vision for face recognition or gestures detection among others is required. Is it true,
that touchless interaction can also be achieved with some devices like Inertial Measurement
Units (IMU) [65], but it creates a restriction and a dependency on a physical hardware, so in
the end we would have not freed the user from a device usage.

Nevertheless, the fact of using specific wearables does not guarantee the touchless methods any
advantages. Using gadgets on the human body takes back some of the touchless technologies
strong points and also induces to a less natural communication.

Figure 4: Example of an IMU device. Source: [65]

This explains the snowball in research on communicationwith the bare human body, dressed as
one would dress to interact with another human, without adding extra instruments or devices
on the user.

Machine Learning has been around for a few years now, and every day that goes on it grows
more and more. As for example, for the new algorithm Dall·e 2 [14] that’s able to generate
realistic images and art from a description in natural language.

page 8 Master’s Thesis

This growth, is today only possible thanks to the massive amount of data that’s currently acces-
sible. In the last decade, everyone has started using and bringing with them electronic devices
like mobile phones. This devices, aside of what we usually use them for, generate huge amount
of metrics that have proven be of benefits for Neural Networks.

Once Neural Networks started showing potential, Deep Learning algorithms started to spread
over the industry, but despite their astonishing results, their acceptance was put under the spot-
light. Basically, if a robot/algorithm is not reliable or safe it is not an option, independently of
the price or productivity. [58]

This Machine Learning fever is also applicable in body language through Artificial Vision as we
can see in:

• The 2021 Cruzcampo Lola Flores TV advertisement [13], in which they extractedmorpho-
logical data from old videos.

• MediaPipe Pose [41], a ML solution for high-fidelity body pose tracking that can be used
as sign language recognition, full-body control or gestures recognition

Vision algorithms are one of the most popular field of research in Machine Learning. Lately, it
has been used to try and solve more quotidian problems while is still in some state-of-the-art
development.

Research on gestures detection using NN has been vastly explored and it might seem it is reli-
able, but when it comes to a real-life working method, the temporal component supposes a big
challenge.

As opposed to classic Vision algorithms, where themost popular topics are semantic segmenta-
tion or image classification, gestures detection implies a more complex and sophisticated algo-
rithm. In order to fully understand body gestures, the algorithm first needs to extract the body
information, then build the temporal graph sequence, understand it (spatially and temporally)
and finally classify it.

Figure 5: Pose extraction with Mediapipe.

Body Gestures recognition for Human Robot Interaction page 9

3.3 Body Gestures Recognition

For HRI, one could have decided to use facial expressions or hand gestures recognition, but is it
known that in order to achieve proper social interactions, body signals are also important, since
in some cases, the body can even show better emotional expressions than faces [21], reason they
need to be part of the big picture.

If we dig up a bit in the most common Machine Learning papers archives, we see there’s quite
an interest in understanding human activity and there’s some active research in body gestures
recognition that directly apply to HRI.

Conventional Deep Learning based methods manually structure the skeleton as a sequence
of joint-coordinate vectors or as a pseudo-image, which is fed into Recurrent Neural Network
(RNN) or Convolutional Neural Network (CNN).

However, new strategies that generalize convolution from image to graph, have been success-
fully adopted in many applications [29]. Firstly, they construct a spatial graph based on the
natural connections of joints in the human body and then add the temporal edges between cor-
responding joints in consecutive frames.

In some papers like [6], the authors propose a two-step strategy, in which firstly they use a
gesture detector to identify all possible gestures and afterwards if a gesture is found, they fed
the information through a classifier that makes the prediction3. And in others like [18], the
whole gesture prediction is done at once, joining different feature extraction algorithms.

Independently if the prediction is done in one or two stages, it’s interesting to see that neither
all papers focus on the same type body gesture communication, nor try to achieve the same
results.

There’s papers like [52] where the focus is about guessing where the human is pointing. Others
work on identifying expressed emotions [45] and some of them even try to detect whether a
human is willing to cooperate [32].

The approach used in this thesis, at least in terms of body analysis is similar to the one proposed
in [42] where the relative position of hands and faces define the pose.

Within the Machine Learning community, different approaches for two stages gestures recog-
nition based on graphs have appeared lately, among which, we can find:

• ST-GCN: Spatial TemporalGraph convolutionalNetworks for Skeleton-BasedActionRecog-
nition. [76]

• STV-GCN: Spatial Temporal Variation Graph convolutional Networks for Skeleton-Based
Emotional Action Recognition. [69]

• AS-GCN: Actional-Structural Graph convolutional Networks for Skeleton-based Action
Recognition. [34]

3This approach is quite similar to the one used in this Thesis as we can see in Section 5

page 10 Master’s Thesis

• RA-GCN: Richly Activated Graph convolutional Network for Robust Skeleton-based Ac-
tion Recognition. [66]

• AAGCN: Two-stream adaptive graph convolutional networks for skeleton based action
recognition. [64]

• DGNN: Skeleton-based action recognition with directed graph neural networks. [63]

• FGCN: Feedback graph convolutional network for skeleton-based action recognition. [77]

• Shift-GCN: Skeleton-based action recognitionwith shift graph convolutional network. [12]

• DSTA-Net: Decoupled spatial-temporal attention network for skeleton-based action recog-
nition. [62]

• MS-G3D: Disentangling and unifying graph convolutions for skeleton-based action recog-
nition. [36]

• PB-GCN: Part-based Graph Convolutional Network for Action Recognition. [68]

On one hand, it’s interesting to see that most of these algorithms are based on the same two
datasets, NTU RGB+D [60] and NTU RGB+D 1204 [35].

On the other, notice that all these algorithms use the two step strategy combined with graphs
in which, firstly, the body is detected and afterwards, classified. They mainly use this structure,
due to the strong adaptability to different circumstances the skeleton coordinates from the body
provide.

4These two datasets were explicitly made to understand the 3D Human Activity.

Body Gestures recognition for Human Robot Interaction page 11

4 Key Theory Concepts
This section presents and explains some basic theory concepts on Neural Networks that will be
useful to properly follow the project afterwards. It starts from scratch, with the basic concept of
Deep Learning and a oneNeuronNN, and ends up detailing Temporal GraphNeural Networks
with n number of hidden layers.

4.1 Artificial Intelligence and Machine Learning (Deep Learning)

When talking about Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning
(DL) concepts, it is easy to mix concepts.

On one hand, we have Artificial Intelligence, which is the broader concept of the three and can
be understood as any technique that could help computers reproduce human intelligence.

On the other, there is Machine Learning, a subcategory of Artificial Intelligence which consists
on improving tasks done by machines due to making them learn from data. Inside this group
we can find, computer vision, social media algorithms or virtual voice assistants among others.

Then, we have Deep Learning, that is a subcategory of Machine Learning, mainly based on
Neural Networks.

4.2 Neural Networks

Neural Networks (NN) can be understood as a mesh of elements (neurons) which interact
among them in order to convert certain input into an output.

Let’s imagine we are being asked to compare two flight prices: We would basically say, the furthest
the place we want to visit, the more expensive the flight would be.

We are then assuming, that our output (price) is based on our input (distance):
price = m ∗ distance + n (1)

As for a one neuron network:

Figure 6: One Neuron example.

Thus, NNs need to be understood as complex structures that are capable of solving problems
finding patterns in data.

Figure 7: Complex Neural Network.

page 12 Master’s Thesis

4.2.1 Logistic Regression

A Neural Network is a net of computational elements, neurons, each of them made up of com-
bination of a linear function plus a non-linear one.

Let’s take now as an example, a Neural Network that classifies dog images.

Figure 8: Dog Classification Neural Network

We have an image on which we extracted some features (x) that we want to use to predict the
output probability in order to decide if the image is or not a dog.

This probability (z) can be then computed as follows:

z = w⃗′ · x⃗+ b (2)

In NNs w⃗′ (weights) and b (bias) variables are known as trainable parameters that are used in
order to obtain the most possible accurate output.

But once we have an output value, we need to activate it in order to obtain a probability value
bounded between [0, 1]. In this case, a non-linear function like Sigmoid can be used.

ŷ = Sigmoid(z) =
1

1 + e−z
(3)

ŷ = a = g(z) (4)

These two equations together (Eq. 2 and Eq. 4) are known as Logistic Regression learning al-
gorithm. This algorithm is typically used in binary output classification problems and its main
objective is to get the minimum error between the data and predictions.

Although we have used Sigmoid as activation function, it is not the only possibility. Depending
on the needed output, different activation functions might be used.

Figure 9: Common Activation Functions used in NNs. Source: [26]

Body Gestures recognition for Human Robot Interaction page 13

4.2.2 Loss Function

The outputs obtained from NNs are predictions that need to be evaluated in order to say how
good the performance of a network is.

The main idea is that our network should be able to output a value approximately equal to the
one from the input data.

From : (x(1), y(1)), ..., (x(m), y(m)) (5)
Reach : ŷ(i) ≈ y(i) (6)

In the Logistic Regression algorithm we have seen that in order to obtain the desired output,
trainable parameters w⃗′ (weights) and b (bias) have to be taken into account.

ŷ(i) = σ(wT ∗ x(i) + b) (7)

This parameters are the ones we want the NN to modify in order to achieve better outputs. But
in order to know how to modify them, the difference between ŷ and y, the net loss, needs to be
minimized.

L (ŷ, y) =
1

2
(ŷ − y)2 (8)

In order to compute the net loss, lot’s of different functions like Eq. 8 could be used (MAE,MSE,
Hubber, Cross-Entropy...). One of the most common Loss function is:

L (ŷ, y) = −(y · log(ŷ) + (1− y) · log(1− ŷ)) (9)

Once a Loss function is defined, a new function J (cost) can be used in order to compute the
loss over an m samples dataset:

J(w, b) = − 1

m

m∑
i=1

L (ŷ(i), y(i)) (10)

If then, we minimize this cost function using gradient descent, the trainable parameters values
can be found.

In NNs terminology, this whole sequence is known as the forward pass.

4.2.3 Gradient Descent Method

Gradient Descent is an algorithm used to optimize the model finding the local minimum of a
function. In Neural Networks Gradient Descent is used to optimize Cost Function (Eq. 10).

Step by step, the algorithm tries to achieve the local minimum of the function, minimizing its
error.

Figure 10: Simple Cost Function. Source: [75]

page 14 Master’s Thesis

From the figure above, imagine our random initial guess it’s at position A, in order to have the
best possible output we need to iteratively get closer to the min, position B, in order to reduce
Loss.

At each step of the learning algorithm, each trainable parameter is updated in order to get new
results that are closer to the expected output. To do so, a new parameter (α) called learning
rate is used.

The learning rate is used to specify how big or small the steps of each iteration are.

w = w − α · ∂J(w, b)
∂w

(11)

b = b− α · ∂J(w, b)
∂b

(12)

So in each epoch (NNs Step)wewill update the trainable parameters tominimize theNN output
error.

4.2.4 Backward Propagation

In terms of NNs, back propagation is the process used in each step to update the trainable param-
eters.

If we have the following forward pass (from Logistic Regression Algorithm):

z = wT ∗ x+ b (13)

ŷ = a = σ(z) (14)

L (a, y) = −(y · log(a) + (1− y) · log(1− a)) (15)

In order to update w and b, we need to follow inversely the fast forward process. So we will
start computing the Loss function partial derivatives based on the output a and z.

∂L

∂a
= −y

a
+

1− y

1− a
(16)

∂L

∂z
=

∂L

∂a

∂a

∂z
= a− y (17)

Once we have them, wewant to finally compute the derivatives from both trainable parameters:

dw =
∂L

∂w
=

∂L

∂z

∂z

∂w
= x(a− y) (18)

db =
∂L

∂b
=

∂L

∂z

∂z

∂b
= a− y (19)

That can be later used together with the Learning Rate in order to update w and b. (Eq. 11 and
Eq. 12).

We need to take into account that if our dataset contains m samples, the derivatives must be
done based on the Cost Function and not the Loss. (Eq. 10)

Body Gestures recognition for Human Robot Interaction page 15

4.3 Shallow and Deep Neural Networks

So far, we have only shown examples related to one neuron networks, but NNs are commonly
more complex and normally have some concatenated layers.

Figure 11: Shallow Neural Network example.

Mainly, all NN layers can be classified in three groups:

• Input Layer or layer zero, it’s the first layer of the model and corresponds to where the
data will be introduced.

• Hidden Layers, are used to define the complexity of the functions the network will be able
to fit. In the Deep Learning community, if a NN has only one hidden layer, is known as a
Shallow Neural Network, meanwhile if it has more than one, is known as a Deep Neural
Network.

• Output Layer, is the last layer of the network and only contains the neuron that will com-
pute the output value.

While thinking about the model that best fits your needs is interesting to point, that is generally
better to fit the model increasing the layers, than increasing the number of neurons of some
layers. Is it true that in both cases we are increasing the complexity the model can fit, but if we
increase the neurons, we also increase the number of trainable parameters.

In DeepNeural Networks, defining the number of layers to use it is not an easy task. Eachmodel
has a different number of hidden layers since it always depends on the function youmight want
to fit. It’s at the end an iterative task where lots of combinations are tested in order to see which
works better.

4.4 Vectorization

When dealing with large number of neurons, applying the equations seen up to this moment,
requires quite work and iteration5. In DL though, this gets simplified just by using vectorization.

Basically, instead of iterating over and over, we just stack equations in order to create matrices
and use them instead.

If we get the example from Fig. 11, we see that the hidden layer is composed of three neurons,

5Iterate its computationally expensive and it ends affecting CPU performance.

page 16 Master’s Thesis

so instead of having three equations to compute their corresponding output, we can vectorize
it and do it all in one operation.

z
[1]
1 = w

[1]T
1 · x+ b

[1]
1

z
[1]
2 = w

[1]T
2 · x+ b

[1]
2

z
[1]
3 = w

[1]T
3 · x+ b

[1]
3

z
[1]T
1

z
[1]T
2

z
[1]T
3

 =

w
[1]T
1

w
[1]T
2

w
[1]T
3

 ·X +

b
[1]T
1

b
[1]T
2

b
[1]T
3

 (20)

Z [1] = W [1] ·X + b[1] (21)

Let’s vectorize the whole forward and backward propagation equations for a ShallowNetwork:

Forward Propagation:

Z [1] = W [1] ·X + b[1] (22)

A[1] = g[1](Z [1]) = σ(Z [1]) (23)

Z [2] = W [2] ·A[1] + b[2] (24)

Ŷ = A[2] = g[2](Z [2]) (25)

Backward Propagation:

dZ [2] = A[2] − Y (26)

dW [2] =
1

m
dZ [2] ·A[1]T (27)

db[2] =
1

m

n[2]∑
i=1

dz[2](i) (28)

dZ [1] = W [2]T · dZ [2] ∗ g[1]′ · Z [1] (29)

dW [1] =
1

m
dZ [1] ·XT (30)

db[1] =
1

m

n[1]∑
i=1

dz[1](i) (31)

Trainnable parameters

W [1] = W [1] − α · dW [1] (32)

b[1] = b[1] − α · db[1] (33)

W [2] = W [2] − α · dW [2] (34)

b[2] = b[2] − α · db[2] (35)

Body Gestures recognition for Human Robot Interaction page 17

4.5 Transformers

In December 2017, a paper named Attention Is All You Need [70] revolutionized the Deep Learn-
ing world by proposing a totally new architecture that was dispensing recurrence and convolu-
tion, which at those moments, were fundamental pillars of most NNs.

4.5.1 Recurrent Neural Networks

Until 2017, Recurrent Neural Networks (RNN) were one of the main approaches used, they were
used for speech recognition, voice recognition, time series prediction and natural language pro-
cessing. The main idea of this architecture was to save information from specific layers in order
to use it later.

Let’s imagine we wanted to create a Neural Network that is able of analysing text sequences in
order to classify peoples’ opinions from web site reviews:

"It is what it says it is."

RNN architecture would grab the first word "It", analyse it, and use it as input for the second
word "is". Basically the RNN is linking the previous word output to the next in the sentence.

Figure 12: Recurrent Neural Network example.

Although this type of Networks have been used over the years, they face some problems:

• On one hand, we have what can be understood as a lack of memory. As humans, if we now
have to remember the first word of this section we read, wemight be in trouble. This same
lack of memory happens to RNN, since as longer as the recurrent sequences are, the easier
is some words importance might get lost once we reach the output.

• And on the other, the RNNs are unidirectional, so in some cases this could be tricky since
it’s not taking into account right-to-left relations.

4.5.2 Attention

In Deep Learning, Attention has a similar concept to the real word. Let’s picture a situation
where we are going to cross a street without a semaphore. As we have been taught, we will pay
attention and take into account all inputs before crossing, this is the same in Deep Learning.

Let’s suppose we are still working with the text sequence analyser from Fig. 12, but with a
different sentence:

"This cow is not moving its tail"

page 18 Master’s Thesis

In this sentence, due to the possessive "its", the word "tail" is related with the word "cow". If we
had used RNN here, the bond between words could not be ideal.

But if we apply attention to it, we would have to grab each word independently and create a
vector of how this word relates to the others:

Figure 13: Attention key vector when cow is the query.

Basically, in the figure before, we have grabbed the word cow as query and obtained the key
vector for it. (The influence each word has on cow).

We need then to compute the key vector (A.K.V) for each word, andmultiply each of themwith
their own values6 before adding up. [30, 72, 71]

Figure 14: Attention example.

With attention we have then solved the main problem the RNN were facing, the lack of memory.

6As in RNN, is it interesting to notice that all the words go through a Neural Network in order to obtain a value.

Body Gestures recognition for Human Robot Interaction page 19

4.6 Graph Networks

In the Neural Networks domain there’s lots of types of networks and in consequence lots of
different inputs (audio, images, videos or data structures). In Graph Networks, as its name states,
graphs data structures are used as inputs. [59]

4.6.1 Graphs Data Structures

Graphs are easy to understand if we, for example, imagine them as molecules on which the el-
ements (nodes) are interconnected (through edges). Or as people (nodes) relations (edges) in a
Social Network.

Figure 15: Examples of Graph Neural Networks. Source: [78]
For a graph like the one on Fig. 15, each node can be described with a node feature vector. If
the graph was a molecule, this feature vector would contain information about the atoms, but
if the graph is a social network, it would contain the attributes about a person.

For instance, regarding the structural information of any graph, we have the adjacency matrix.
This matrix is the key element that tells us which nodes are connected between them. 7

1 2 3 4 5
1 0 1 1 0 0
2 1 0 1 1 1
3 1 1 0 0 0
4 0 1 0 0 1
5 0 1 0 1 0

Figure 16: A five nodes graph with it’s adjacency matrix.8

Graphs can be then classified based on their edges direction (unidirectional/bidirectional) and
based on the number of nodes or edges (static/dynamic).

• Unidirectional graphs: Edges only have one direction.
• Bidirectional graphs: All nodes edges create relations in both directions.

(a) Unidirectional graph. (b) Bidirectional graph.

Figure 17: Type of graphs based on their edges direction.

7It is a matrix of stacked vectors, for more information, go see Section 4.4
8The table is read from rows to columns and when an edge is present, it’s marked with a 1

page 20 Master’s Thesis

• Static graphs: These graphs are invariant and they do not change, neither over data nor
over time. All graphs contain the same number of nodes and edges.

• Dynamic graphs: The number of nodes and edges, vary over data or time.

(a) Static graph. (b) Dynamic graph.

Figure 18: Type of graphs based on their edges or nodes number.

The main idea to use graphs is due to the fact that they not only contain data, but they also
contain spatial relations between its entities, are permutation invariant, do not use euclidean
space and size and shape do not affect them.

4.6.2 Graph Neural Networks

This type of Neural Networks operates on the graphs data structures and can work in some
different ways:

• Node-level predictions, they can predict unknown node status through other nodes infor-
mation. E.g: We have a Molecule graph and we want to predict a property of an atom (node).

• Edge-level predictions, can be used to predict new relations or unknown relations between
nodes. E.g: We have a Social Network graph and want to predict how much two different users
communicate between them (edge)

• Graph-level predictions, are typically used to predict completely new graphs. E.g: We have
an Skeleton based graph and we want to predict which gesture the graph represents.

(a) Node-level predictions. (b) Edge-level predictions. (c) Graph-level predictions.

Figure 19: Types of Graph Neural Network model predictions.

As for this project scope, Graph-level predictions internally grab all the available information
from their neighbours and fed it through Message Passing Layers (MPL) in order to construct a
new feature vector that will contain knowledge in a compressed form. 9

In a nutshell, the idea of MPL is a node, can send and receive messages along its connections
with its neighbours so it can be later used.

9This process is done for all nodes simultaneously and in each GNN layer, in order words, MPL is applied in an
iterative form, squeezing in each loop, more and more, the graph knowledge.

Body Gestures recognition for Human Robot Interaction page 21

In Fig. 20 (a) and (b), we see how node 1 uses MPL in order to update himself with features
from their neighbours (2, 3 and 4). While in Fig. 20 (c) and (d), node 2 can only update its own
feature vector based on node 1.

(a) Node 1 neighbours.

(b) Node 1 node embedding.

(c) Node 2 neighbours.

(d) Node 2 node embedding.

Figure 20: Message passing example for nodes 1 and 2.

This feature embedding that node 1 and 2 have done is commonly called Node Embedding.

Node embedding is a way to gather information of a specific node and its neighbours (perform-
ing Message Passing Layers) while also combining them (through an aggregation function like
average). [16, 57, 31]

This process is similar to the convolution concept applied in images, where each pixel has in-
formation from its neighbours. Due to it, this process is also known as graph convolution.

As we understand from Fig. 20, the node embedding is computed step-by-step. So in the end,
an exact same graph is obtained, but with different features. 10

The message passing can be then defined as follows:

hk+1
v = Updatek(hkv , Aggregate

k(hkv , ∀v ∈ N (v))) (36)

Where:

hv: Hidden state of node v
htv: Hidden state of node v at time step t.

N (v): Neighborhood set of node v

In Eq. 36 we see the recurrent operators (Update and Aggregate) are missing from the equation,
and this is because in GNNs there’s lots of them. Additionally, each of this configuration, nor-
mally has a name to refer to, like it’s the case of Graph Convolutional Networks.

10Depending on the desired deep of the NN layers, thisMessage Passing can be repeated.

page 22 Master’s Thesis

The most common and typical operators to use are:

• Update Operator: Mean,Max, NeuralNetwork, RecurrentNN .

• Aggregate Operator: Mean,Max, NormalizedSum, NeuralNetwork.

For more information about possible recurrent operators to use, go see Annex A1.

4.6.3 Graph Convolutional Networks

Graph Convolutional Networks (GCN) are one of the most basic block in GNN, but at the same
time, the most used. Over years, they were the only approach used to work with graph data.

GCN are a scalable approach for semi-supervised learning based on a variant of Convolutional
Neural Networks (Convolutional Neural Network (CNN)). This type of networks are really
useful due to the fact they scale linearly in the number of graph edges, while still learning hidden
layers that encode graph structure and features. [29]

In GCN, node embeddings are computed as,

h
′
i = σ(

∑
j∈N(i)

W ∗ hj) (37)

This implies we need to multiply, the adjacency matrix, the features per node matrix and the
learnable weight matrix.

Figure 21: GCN node embedding example.11

• The adjacency matrix, is the responsible of containing all spatial relations of the graph
and it’s part of the input data.

• Features per node, is also part of input data, and are all the node feature vectors stacked.

• Weight matrix it’s the unknown variable the NN will have to learn to obtain our desired
outputs. (Based on the dimensions of the learnable weight matrix, we will obtain more
or less outputs12.)

11Embedding based on Fig. 16, with 4 features per node and 8 output classes.
12The weight matrix dimensions depend on each NN project particularities.

Body Gestures recognition for Human Robot Interaction page 23

4.6.4 Graph Attention Networks

GraphAttentionNetworkss (GAT) [73, 15, 37, 7] are a subcategory of GNN that has revolution-
ized the Deep Learning community that focus on this type of data structures. They basically
provide a new alternative to GCN that takes into account the influences between nodes.

In terms of GNN, GATs use the following specific recurrent operators.

• Update Operator:

αvk =
exp(LeakyReLU(aT [Whv||Whk]))

Σj∈Nvexp(LeakyReLU(aT [Whv||Whj]))
(38)

htN (v) = σ(Σk∈NvαvkWhk) (39)

• Aggregate Operator:
htv = htN (v) (40)

GATs as their name states, are a type of Neural Network layers that merge graphs and attention
[4.5.2]. The main idea of attention coefficient here, is quite similar to the approach we have
already seen. In this case, instead of being applied to word sequences, is applied to the edges
in order to see how much two nodes are related.

When using attention in a graph data structure, we can allow the network to identify those
edges that are more important, and even exclude edges that were already part of the data but
do not provide any useful information.

Figure 22: Attention coefficients example in a GAT

This new attention vector is then multiplied bt the adjacency matrix while computing the node
embeddings. (In Fig. 21)

4.6.5 Temporal Graph Neural Networks

In some Neural Networks, like Temporal Graph Neural Networks (TGNN), input data is not
only a graph, but a sequence of them.

Wehave to imagine TGNN inputs as a sequence of graphs that reproduce, for example, temporal
evolution of peoples’ movements.

In order to analyse this type of temporal data, we need to define:

• On one hand, a GNN model that will analyse each timestamp graph individually and
calculate spatial embedding.

page 24 Master’s Thesis

• On the other hand, a temporal model that will be used in order to calculate temporal
embedding.

Figure 23: Sample from IRIGesture dataset.

Then, in the last graph of the whole sequence, we will have all the temporal and spatial infor-
mation embedded.

Figure 24: TGNN sequence example13.

For more information about possible Spatiotemporal models (TGNN), go see Annex A2.

13In some Temporal models, there’s also anotherMessage Passing Layers used in order to feed the temporal embed-
ding (t− 1) to the spatial ones before the graph model (t)

Body Gestures recognition for Human Robot Interaction page 25

4.7 Neural Network Framework: PyTorch

Implementing a Neural Network from scratch is quite a difficult task due to the high complexity
that’s implied. Reasonwhy, over the last years a few frameworks 14 have increased in popularity.

The most popular frameworks right now are PyTorch[49], TensorFlow [67] and Keras [28]:

Figure 25: Most popular DeepLearning frameworks.

The three of them are Python based frameworks that help with the Neural Network implemen-
tation. All of them provide easy ways to implement NNs just by defining the layers the user
wants to use, while handling all the back propagation by themselves.

In this Thesis, PyTorch has been the one used, due to being the most popular among IRI AI
researchers and also being the framework whose popularity has increased the most in the last
years.

Besides the framework, a few interesting framework-libraries15 have also been used:

• PyTorch-Geometric PyG is the most popular PyTorch library in order write and train neural
networks that use graph data structures. [50]

• PyTorch-Geometric-TemporalPyGT is a PyG library extension that implements spatio-temporal
signals. [51]

(a) PyTorch-Geometric (b) PyTorch-Geometric-Temporal

Figure 26: PyTorch libraries used in order to interact with temporal graphs.

14A supporting structure around which something can be built.
15This libraries do not only provide a few functions to use, but define a completeway to interact, work and structure

projects with graphs.

page 26 Master’s Thesis

Body Gestures recognition for Human Robot Interaction page 27

5 POSTURE Model: Method Development
This section discloses with a bit of detail the proposed temPoral bOdy geSTUre REcognition
(POSTURE) model. Generally speaking, the model can be divided into two main areas. The
first one is the responsible of the image treatment and body landmarks extraction, while the
second one is the area in charge of the output prediction16.

5.1 System overview

Given a video, our Neural Network is able to predict the gesture is being shown. Each video
input is 30 frames long, from which we first extract and encode the position landmarks that are
next fed to the NN.

Figure 27: System Overview.

In this case, themodel used is a classifierwith a densely connected network that outputs a vector
containing each gesture probability, that is used to make the final decision.

output = max(classt(%), classt+1(%), ... , classn(%)) (41)

5.2 Landmarks extraction

In order to extract the desired landmarks or body joints, MediaPipe has been the tool used.
MediaPipe Pose is a machine learning solution for high-fidelity body pose tracking[41]. This
framework is really helpful since it’s able to properly localize landmarks under different condi-
tions of lighting, distance and half body configurations.

In order to get these joints, Pose uses a two-step strategy. First of all, the algorithm locates the
Region-Of-Interest (ROI) within the image (the body). And afterwards, predicts the 33 land-
marks using the ROI-cropped frame as input. In case of using videos as inputs, the system
only tracks the body once and then the predicted pipeline get’s the ROI from previous body
positions.

This two-step algorithm, helps our prediction eluding the rotation, translation and scale prob-
lems while still granting a proper and stable output. A full body landmarks list is available in
Fig. 28.

16All the code can be found either in Annex B or Github Repository. [47]

page 28 Master’s Thesis

Pose outputs 33 3D landmarks for each video frame that we then use to build a 33 node unidi-
rectional graph [4.6 Graph Networks].

Figure 28: MediaPipe Pose Landmarks. Source: [41]

Each node is configured as a one dimensional vector with four elements, joint position x, joint
position y, joint position z and joint visibility. Then, every one of these elements is a node feature.

11.left_shoulder = (x, y, z, v) (42)

5.3 Body Gestures Dataset

In order to train, test and validate the proposed model, IRIGesture dataset[55] has been used.
This dataset is handmade and it was created in the IRI[25] laboratory.

The main feature of this gesture based communication dictionary is naturalness. The main
objective is that everyone can communicate with robots and not only people who is already
familiar with them.

The dataset contains 450 sample videos (divided in 10 different subjects17) of static and dynamic
human gestures. Static gesture are those that require a certain amount of movement to be done
and then they remain static. Dynamic gestures instead, are constantly in movement.

Static gestures
• Attention: Catch the robot’s attention to give him an order.
• Right: Order the robot to turn right.
• Left: Order the robot to turn left.
• Stop: Order the robot to stop its trajectory.
• Yes: Approve a robot’s information.
• Shrug: Inform the robot that you don’t understand his information.
• Random: Random gesture, not necessarily a communicatve gesture.
• Static: Human is standing still.

17A wide range of users regarding age, gender, education level and culture was taken into account.

Body Gestures recognition for Human Robot Interaction page 29

Dynamic gestures
• Greeting: Greet the robot.
• Continue: Order the robot to continue its path after telling him to stop.
• Turn-back: Order the robot to turn 180 degrees.
• No: Deny a robot’s information.
• Slowdown: Order the robot to reduce its speed.
• Come: Order the robot to reach your position.
• Back: Order the robot to move back.

As for data recording, each human volunteer was recorded using an RGB camera. When human
volunteers were asked to make a gesture they were provided with a vague explanation of the
gesture intention. This was done to collect data that felt most natural to each volunteer. There
was no restriction on which arms should be moved in each gesture whatsoever. Thus, different
volunteers could make the same gesture in a very different way, using one arm or the other, or
even both of them.

Each gesture was repeated three times, first 1 meter away from the camera, then 4 meters away
and finally 6 meters away. Each video contains information of only one gesture, and all the
videos were recorded indoors.

Figure 29: Some samples of static gestures recorded in the dataset.

5.3.1 Data Augmentation

In Deep Learning, having a large dataset for the model performance is essential. If we want
our model to behave properly, it needs to be trained with a lot of data in order to properly
understand all possible behaviours.

With only 450 videos (30 per class)we saw ourmodelwas having some problems understanding
the data, so some Data Augmentation techniques were applied. Data augmentation is a way to
artificially generate new data from already existing data.

page 30 Master’s Thesis

Let’s imagine we have a 19 frame video and we know that our model just needs 3 frames to
work suitably. We could, for example, divide the whole frame sequence and obtain 6 videos.

noutputvideos = totalframes//frameslength = 19//3 = 6 (43)

Figure 30: Example of data augmentation applied to videos.

Or we could try to even generate more data overlapping 3 frame sequences with a gap of 2.

noutputvideos = (totalframes − frameslength)//framesgap = (19− 3)//2 = 8 (44)

Figure 31: Example of advanced data augmentation applied to videos.

In the case of this dataset we have applied Data Augmentation with sequences of 30 frames and
gaps of 3 frames generating nearly 3000 new videos.

5.3.2 Train-Test Split

With a dataset like ours, sometimes, general concepts about Train-Test splitting doesn’t properly
apply.

In Deep Learning, train and test are usually randomly split as 70/30 or 80/20. But there’s cases
in which this proportion doesn’t makemuch sense [43], reason whywe have decided to try and
go for a 95/5.

Just a 5% for a test dataset might not seem enough, but if we take into account that after data
augmentation we have ∼ 3000 input videos, a 5%means that ∼ 150 videos are used to validate
the model.

Figure 32: Dataset train/test proportions.

Body Gestures recognition for Human Robot Interaction page 31

5.4 Body Gestures Recognition

The recognition of body gestures is accomplished by a NN that uses body joints (landmarks)
extracted through Mediapipe Pose as inputs. (See section 5.2)

5.4.1 Key Nodes Selection

Out of the 33 possible joints that Mediapipe returns for each video frame, not all of themmight
come in handy.

Ifwe take into account thatmost of our gestures exclusively involve hands and trunk, itwas quite
necessary to analyse the effect other joins like the ones from face, legs or feet were influencing
our model.

In the course of time, the joints from face, legs or feet proved not to be worthy of being used and
a filtering mask was finally applied. At the end, from the 33 initial joins, we ended up with 15.

Figure 33: Masked Mediapipe landmarks. Source: [41]

5.4.2 Gestures Selection

As we have just seen, sometimes using all data is not the right choice and some data filtering
might be needed.

During the first experimentation steps, we become aware that themodel was somehowworking
for the train data but totally crashing and burning the test. This was due some poorly specific
gestures like random.

Figure 34: NN was mostly always predicting randomwhen tested on Test dataset.

With this in mind, some gestures like random, static and back were finally excluded.

page 32 Master’s Thesis

5.4.3 Key Frames Selection

Given the naturalness of the dataset, from the 450 original videos it has, none of them have the
same length nor gesture speed. This implies that some gestures depending on the person who
is doing them might start earlier or later, while others could be fast or slow.

Of all these issues, some are already solved by the Data Augmentation techniques used (section
5.3.1), but the problems that refer to the start gesture trigger are still present.

In some videos, gestures start at 0,5s, meanwhile in others at 0.9s, due to all this variation, we
have set an offset and the first 0,7s (15fps) of each video are ignored.

offsetframes = 0,7s ∗ 22fps/s = 15fps (45)

In this case, Eq. 44 changes to:

noutputvideos = ((totalframes − offsetframes)− frameslength)//framesgap (46)

5.4.4 Class Imbalance

At the beginning, we had the same number of videos per class, so our dataset classes were
perfectly balanced.

Once we applied data augmentation techniques, the number of videos increased and the num-
ber of videos per gesture, due to different original video length, changed and dataset classes
were no longer balanced.

For the sake of avoiding possible problems related to class imbalance, the gestures (%) have
been taken into account while computing the loss and back propagation. (See section 4.2.2)

attention
7%

right

6%

left

6%

stop

7%

yes

8%
shrug

6%greeting
10%

continue
9%

turnback

11%

no

10%
slowdown

10%
come

10%

Figure 35: Class gestures (%) after Data Augmentation.

Basically, we have computed the class gestures (%) after Data Augmentation (See Fig. 35) and
applied these factors to each related class. From the loss function point of view, this assignment
implies the need of having to use these weights to penalize some most populated classes in
order to force balance and avoid unintentional preference of some gestures above others.

Body Gestures recognition for Human Robot Interaction page 33

5.4.5 Hidden Layers

Another interesting topic in Deep Learning is the number of hidden layers to use, but it’s quite
trial-and-error.

In this project, different combinations between 5 and 25were tried and themagic number ended
up being 15.

5.4.6 Key Edges Selection

Since we are going to apply spatial attention (See section 4.5.2), instead of providing a graph
with edges as human body natural connections (See Fig. 33), we have created a highly con-
nected graph on which all nodes are related with respect to all other nodes.

We do not want to fix and determine the main relations between nodes, but give total freedom
to try and define them as the NN considers more appropriate.

5.4.7 Neural Network Architecture

Adaptive Graph Attention Networks (AAGCN)[64] are a State of the Art development that focuses
on human body gestures recognition and it’s based on SpatioTemporal Graph ConvolutionNetworks
[76].

The model uses Spatial and Temporal attention.(See section 4.6.5). (Encoded inside the Adap-
tative Graph Convolutional Block (AGCB)) (See Fig. 36).

ReluBNConvtReluConvs BN

Residual connection

Dropout

Figure 36: Adaptive graph convolutional block. Source: [64]

The AGCB layer is a quite complex block with:
• Convs: A GCN layer with Attention (GAT) applied over the spatial component. (See

Section 4.6.4)
• BN: A Batch Normalization Layer used to achieve a faster learning rate. [5]
• ReLU: ReLU as the activation function (See Fig. 9)
• Dropout: A Dropout layer to prevent over-fitting. [9]
• Convt: A GCN layer with Attention applied over the temporal component.
• Residual connection: A connection that’s added at the end of the block in order to keep

the graph structure stable.

page 34 Master’s Thesis

The proposed model (See Fig. 37) we have used the AGCB layer a total of 17 times combined
with a few other blocks.

Figure 37: Proposed Model.

In the first AGCB layer, ourmodel increases the number of features per graph from 4 to 64. Once
we have 64 features per graph, we keep this number static and apply the Adaptative Graph
Convolutional Block 15 times more. After we have had all these transformations, we decrease
the number of features down to 8. With this, the model returns 8 features per node and frame,
as if all of them were being classified individually.

Subsequently, we apply a max layer which, of all this features extracts the maximum values of
each node and frame. Returning a unique graph that’s a result of the mixture of the 8 graphs
the last AGCB layer has returned.

With only one graph, we start the prediction part of the model, in which we flatten all features
of all nodes and frames.

totalfeatures = 1
feature

node
∗ 15 nodes

frame
∗ 30frames

graph
= 450

features

graph
(47)

With the 450 features in the same dimension, we apply a linear layer and reduce them to 8, as
the number of gestures we want to classify.

As for the propagation itself, we have used CrossEntropy as Loss Function (See section 4.2.2)
and Adam as Optimizer.

In terms of Loss Function, at least for classification projects, Cross Entropy is the most common
function to use and it’s one of the most important.

And in terms of NN optimizer, we have used Adaptative Moment Estimation (ADAM), since
this optimizer involves a combination of two gradient descent methodologies, momentum and
Root Mean Square Propagation. (See section 4.2.3).

Additionally to the optimizerwe have also configured a scheduler that every 100 epochs reduces
the Learning Rate by a 5% in order to force the NN achieve better results.

Body Gestures recognition for Human Robot Interaction page 35

6 Experimentation and Results
In this section, all the refinement done to the POSTURE model for the purpose of achieving
better performance18 will be detailed.

6.1 Model Experiments

In stage zero of experimentation at the same time the model was being develop, some decisions
like Key Nodes Selection (See section 5.4.1) were tested. Due to this, when the experimentation
steps started those decisions were already clear and done.

Other decisions like the Key Frames Selection and Hidden Layers weren’t that simple, so they
required time and experiments.

• Gestures Selection

After having excluded the poorly specific and confusing gestures like random, static and back we
started experimenting with the gestures in order to analyse their behaviour.

Experiment 1:
The first test done, was with 15 hidden layers and only the Static gestures (attention, right, left,
stop, yes and shrug). With this combination, an accuracy about 82% against the test dataset (See
section 5.3.2) was achieved.

Gestures Accuracy

Static 82 %

Table 1: POSTURE results with Static gestures.

Figure 38: Predicted gestures with with Experiment 1 conditions.

Experiment 2:
With such an optimal algorithm, the next step in the list was to repeat the test, but with all the
gestures instead. Dynamic (greeting, continue, turnback, no, slowdown and come) plus Static ones.

This second experiment, didn’t go as good as we expected and the accuracy over the test dataset
dropped nearly to 54%.

18Better performance needs to be understood as NN parameters optimization andmodel accuracy improvements.

page 36 Master’s Thesis

Gestures Accuracy

Static 82 %
All 54 %

Table 2: POSTURE results with Static and All gestures.

For some reason, when our model started to take into account dynamic and static gestures, it
wasn’t able to succeed with the training and perform properly.

Experiment 3:
Since the model didn’t properly behave with all the gestures, the next step in the list was to test
dynamic gestures alone.

With only the dynamic gestures, the model achieved a 62% accuracy, that was not as good as
only with static gestures, but better than the global result.

Gestures Accuracy

Static 82 %
Dynamic 62 %
All 54 %

Table 3: POSTURE results with Static, Dynamic and All gestures.

With this in mind, we can conclude that the model behaves better if the classifier is applied to
dynamic and static gestures independently.19

attention 0,56 0 0 0 0 0 0,28 0 0 0 0 0
right 0 0,83 0 0 0 0 0 0 0 0 0 0
left 0 0 0,56 0 0 0 0 0 0 0 0,28 0
stop 0 0 0 0,42 0 0 0 0 0,21 0,21 0 0
yes 0 0 0 0 0 0 0,28 0 0 0,28 0 0,28

shrug 0 0 0 0,17 0 0,17 0 0 0 0 0,33 0,17
greeting 0 0 0 0 0 0 0,56 0,14 0 0 0 0,14
continue 0 0 0 0 0,42 0 0 0,42 0 0 0 0
turnback 0 0 0 0 0 0 0,12 0 0,48 0 0,12 0,12

no 0 0 0 0 0,14 0 0,07 0,07 0 0,49 0 0,07
slowdown 0 0 0 0 0 0,42 0 0 0 0 0 0,42

come 0 0 0 0 0 0 0 0,19 0 0,09 0,37 0,19

attention

right

left

stop

yes

shrug

greeting

continue

turnback

no slow
dow

n

com
e

Table 4: Confusion matrix for All Gestures (X: Prediction, Y: Reality).

19Despite this, our intention is to continue testing both type of gestures and achieve a model can handle both of
them independently.

Body Gestures recognition for Human Robot Interaction page 37

If we take a look at the confusion matrix for all gestures (See Table 4) we see that the model
works perfectly with some gestures like attention right or left, while it gets confused with others
as continue, come or slowdown.

• Hidden Layers

Experiment 4:
Once the gestures to use were clear, the idea was to try and go deeper with the NN and see if
increasing the number of layers, the accuracy would also increase.20

This experiment was done against the Static gestures and a number of 25 hidden layers were
used, but the accuracy, instead of increasing, decreased a bit.

With this configuration, an accuracy of about 70% was obtained.

Hidden Layers Accuracy

15 82 %
25 70 %

Table 5: POSTURE results with different number of hidden layers.

Up to this point, we concluded that increasing the number of hidden layers does not imply an
increase in Test Accuracy.

• Key Frames Selection

Experiment 5:
After getting stuck trying to improve the model, both actively and passively, a small investi-
gation about dataset quality cocked through. Mainly concluding, that not all the subjects nor
videos had neither the same number of frames, nor the same gesture start point.

In some videos, the gesture started at 0,1sec while in others could start after the first second.

As a consequence, a time trigger of 0,7seconds (See Section 5.4.3) was applied and all the frames
previous to this start time, were ignored.

Starting Time Accuracy

0,0 sec 54 %
0,7 sec 60 %

Table 6: POSTURE results with initial frames filtering.

With this change, the accuracywith all the gestures increased up to 60%. So we ended up realiz-
ing that with this frame filteringwas good for ourmodel, since it cleared noise and disturbances.

20During the model developing state, a fixed number of 15 hidden layers were set.

page 38 Master’s Thesis

• Batch Size Selection

Experiment 6:
Up to this point, the batch size of the NN wasn’t really big, so just in case, an experiment in-
creasing the batch size21 was done, but the accuracy did not change.

In cases like this, is then better to keep the bigger batch size, since it smoothes the results.

Batch Size Accuracy

32 60 %
128 60 %

Table 7: POSTURE results with different batch size values.

• Dropout Layer

Experiment 7:
After not succeeding, some more drastic decisions were made and a new Dropout layer with
0,2 as scale factor to prevent over-fitting, was added to the model.

Unfortunately, the model accuracy totally crashed down to a 20% and this change was removed
from the equation.

Dropout Scale Factor Accuracy

0 60 %
0,2 20 %

Table 8: POSTURE results against a default Dropout Layer (0,2 scale factor).

Experiment 8:
Theoretically, when a Dropout layer is used, the algorithm should behave better, so in some
cases is interesting to change and decrease the scale factor initially used in order to succeed.

Another small test was done, and the Dropout layer with a lower scale factor of 0,05 was used,
and even though the accuracy increased a bit against last trial, it was not enough at all.

The accuracy, just increased from 0,2% to an insignificant 0,25%

Dropout Scale Factor Accuracy

0 60 %
0,05 25 %
0,2 20 %

Table 9: POSTURE results against different Dropout factors.

21The batch size defines the number of samples that will be propagated through the network.

Body Gestures recognition for Human Robot Interaction page 39

• Class Imbalance

Experiment 9:
After removing the Dropout layer and going back to the experiment number 6, the class imbal-
ance strategy seen in Section 5.4.4 was tested.

Sadly, the accuracy kept steady at 60%.

6.2 Model Results

After all the experimentation done with the proposed model, a new investigative branch was
opened in order to try to understand why the model was still stuck at 60% accuracy.

The main problem identified was related to the dataset used. After a few deep checks we real-
ized the following:

• Not all subjects have been recorded with the same camera, and some of the videos have
different number of frames per second (FPS) so the time difference between each graph
in the temporal sequence is not constant.

• The length of the different gestures is not constant either, and while some gestures are
done in less than a second, others might require a few more.

• Some of ours gestures like, no, yes, come or slowdown, have quite a dependency on the
hands and finger positioning, but the landmarks extraction method used in this Thesis
does not return many nodes per hand22.

With all this in mind and despite of not being satisfied with this accuracy, we had to settle.

Accuracy

Final Model (All) 60%
Dynamic 62 %
Static 82 %

Table 10: POSTURE final accuracy results.

0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85

-500 0 500 1k 1.5k 2k 2.5k 3k 3.5k 0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8

-500 0 500 1k 1.5k 2k 2.5k 3k 3.5k

Figure 39: Train andTest accuracies over epochs for experiments 4 (blue), 5 (pink) and 9 (orange).

22At a late stage of the whole project, an alternative solution called Mediapipe Holistic [40], which improved
Mediapipe Pose (method used), was found. But due to time limitations this could not be tested.

page 40 Master’s Thesis

6.3 State-of-the-Art Results

The proposedmodel in this Thesis is a modification of an AAGCN (See section 5.4.7) done with
the aim of working with our dataset (See section 5.3).

If instead of using our dataset, which as we have just seen has some problems, we could have
used one that’s not as natural as ours but is perfectly labeled and structured, andwewould have
achieved better results.

This dataset in question is NTU [35] & [60] and has been used by the AAGCN paper. In the
paper, more than a 90% accuracy has been achieved. [64]

We can see that the model is able to predict gestures amazingly, so we could say that our main
problem is on our data.

We tried to check out our model behaviour with the NTU dataset, but we find some incompat-
ibilities:

• Our nodes have an extra feature (visibility).

• The number of nodes and position in the skeleton structure is different. (We have 15 nodes
while NTU has 25).

These incompatibilities end up in having to change the number of layers the model has, and not
being able to compare results nor easily proceed with fine-tuning23.

23Fine-tuning is a process that takes an already trained model and tunes them to initialize a new model based on
data from the same domain.

Body Gestures recognition for Human Robot Interaction page 41

7 Project Plan
While working on a relatively big project, like Deep Learning one’s, it is necessary to know how
to face it. In many cases, if a project is not planed consciously it can be totally overwhelming.

Consequently, in this Master’s Thesis a project plan methodology was defined from the very
beginning.

7.1 Project Plan Methodology

Right now, the two most important project plan methodologies areWaterfall and Agile.

The first one,Waterfall, as its name states, it refers to the unidirectional water flow of a waterfall.
This methodology sets, previous to the project start, all the phases that will make it up and
the time to spend on each of them. It is commonly known as the fix, invariant and traditional
method.

On the other hand, Agile is currently the most prevalent methodology and it is based on a non-
sequential structure whose values are flexibility and adaptability. Instead of defining all the
project phases, it divides the project into Sprints24. Once a sprint ends, all the developments
achieved up to that point are used to create the next one.

Figure 40: Project Plan Methodologies: Agile vs Waterfall. Source: [1]

The differences between both methodologies drive that only Waterfall can precisely define due
dates, meanwhile Agile will only in the best cases, be able to approach them.

In this project, due to the fixed deadlines, a hybrid solution between both, that have provided
flexibility, has been used.

Basically, intermediate due dates typically from Waterfall have been defined, keeping always
in mind that they will suffer changes, get split or even discarded. This adaptability has been
achieved with rigorous meetings where all steps of the project were reviewed.

24A sprint is a short, time-defined period that is used to complete a certain amount of work.

page 42 Master’s Thesis

7.2 Project Gantt

In pursuance of a successful project, a project Gantt with some generic due dates, was used.

Figure 41: Project Gantt.

The main project was divided into 6 different steps:

• Trainings: Deep Learning material handled in this project is a bit out of the scope of the
current Master’s degree. In total, 14 weeks of trainings were required to start having some
basic knowledge.

• Research: The topic handled is an state-of-the-art in the deep learning community and a
7 weeks of research (Type of data, NN, etc.) were done.

• Model: Once the ideas were clear, a NN had to be developed. A total of 15 weeks were
spent in this step. Initially with the temporal approach and then with the temporal atten-
tive approach.

• RO-MAN: In the middle of this thesis, the opportunity to write a paper together with the
director and co-director was taken, and the rest of the project was paused for 5 weeks.

• Memory: A total of 8 weeks were saved to write the whole project memory.

• Meetings: During the whole 52 weeks, continuous meetings with the directors have been
done.

This Gantt has been a key factor to achieve the desired target date and finish the whole project
in time.

Body Gestures recognition for Human Robot Interaction page 43

7.3 Trello

In a complementary way, a Trello to organize the whole project has also been used. Trello is a
web-based Kanban-style, powerful list-making application.

Trello is also a visual tool that’s used for organizing work, it is also customizable and flexible so
it easily adapts to the needs.

Basically, it allows to:

• Go from idea to action in seconds by creating cards and dragging them across the board
to follow the project’s progress.

• Add checklists, labels, and due dates the way you see fit and give your projects the fuel
they need to get across the finish line.

• Free your brain from remembering every planning detail.

Trello cards are the key to organized work where every single part of the project can be man-
aged, tracked, and shared. (These cards can contain an ecosystem of checklists, due dates,
attachments, conversations, and more.)

In this Trello, an Agile focus has been used (small tasks with achievable outputs that are con-
stantly in revision), and all the Agile Sprints can be found as cards from the meetings list, and
the steps done are available in the Steps list.

Llegenda

 Añada una tarjeta

Seguiment (Reunions)

 Añada una tarjeta

Steps (2)

 Añada una tarjeta

Steps (1)

 Añada una tarjeta

RO-MAN

 Añada una tarjeta

Formacions

 Añada una tarjeta

REUNIÓ

RESOLT

AJORNADA

CANCEL·LADA

FORMACIÓ

PENDENT

06 - 2022

Reunió 02/06/2022
Tècnica Online

 1 1/2

05 - 2022

Reunió 30/05/2022
Tècnica Online

 2 2/2

Reunió 11/05/2022
Tècnica Online

 4/4

Reunió 05/05/2022
Tècnica Online

 2 3/3

04 - 2022

Reunió 28/04/2022
Tècnica Online

 2 5/5

Reunió 19/04/2022
Tècnica Online

 19 de abr. - 21 de abr.

 1 3/3

PyTorch Geometric Temporal

Investigar Model

 3 4/4

Implementar Xarxa (A3TGCN2) [2]

 6 4/4

Implementar Xarxa (A3TGCN2) [1]

 3 1/1

Definir arquitectura base

 1 1/1

Altres

Modificacions al IRIGestureDataset

 5 7/7

TensorBoard

 4 5/5

Instal·lació PyTorch Geometric
Temporal

 4 1/1

PyTorch Geometric

GAT amb dades reals
Cancel·lada

 1 2/2

Random GNN

 1 1 1/1

Random GAT

 1 1 2/2

Crear classe GestureDataset

 1 3/3

Advanced Mini-Batching

 1 1/1

Altres

Connectar Colab & GoogleDrive

 1

03 - 2022

Reunió 15/03/2022
RO-MAN Online

 11 de mar. - 15 de mar.

 1/1

Reunió 11/03/2022

RO-MAN Online
Presencial

 11 de mar. - 17 de mar.

 1/1

Reunió 04/03/2022
RO-MAN Online

 4 de mar. - 10 de mar.

 1/1

Reunió 02/03/2022
RO-MAN Online

 2 de mar. - 4 de mar.

 1 1/1

02 - 2022

Reunió 22/02/2022
RO-MAN Tècnica Online

 22 de feb. - 27 de feb.

 2 1/1

Formacions

Deep Learning

 30 de nov. 5/5

PyTorch

 30 de nov. 1/1

Figure 42: Project Trello at June 3, 202225.

25This tool has been for personal use only and the lists are in Catalan.

page 44 Master’s Thesis

Body Gestures recognition for Human Robot Interaction page 45

8 Trainings
The theory used in this Master Thesis that has allowed having a working NNmodel is not part
of the currentMaster’s Degree in Industrial Engineering (MUEI) curriculum [39]. In pursuance
of achieving a working NN, some trainings were done.

8.1 Deep Learning Specialization

The first trainingwasDeep Learning Specialization fromCoursera andDeepLearning.AI [43],
this specialization starts from scratch and gets harder each course, up to the point in the last
weeks you are required to build a few NN with TensorFlow [67].

The whole program, it is divided in 5 different courses and has been thought out to be done in
≈ 180h.

Broadly speaking, the course syllabus are:

• Course 1: Neural Networks and Deep Learning. In which the foundational concept of
neural networks and deep learning were studied.

• Course 2: Improving Deep Neural Networks: Hyperparameter Tuning, Regularization
and Optimization. Opens the deep learning black box to understand the processes that
drive performance and generate good results systematically.

• Course 3: StructuringMachine Learning Projects. Teaches how to build a successful ma-
chine learning project and get to practice decision-making as a machine learning project
leader.

• Course 4: Convolutional Neural Networks. Teaches how computer vision has evolved
and helps you become familiar with its exciting applications such as autonomous driving,
face recognition, reading radiology images, and more.

• Course 5: Sequence Models. Helps being familiar with sequence models and their excit-
ing applications such as speech recognition, music synthesis, chatbots, machine transla-
tion, Natural Language Processing (NLP), and more.

Deep Learning
Specialization 5 courses

Intermediate

Andrew Ng, Kian

Katanforoosh, Younes

Bensouda Mourri

Figure 43: Deep Learning Specialization Courses. Source: [43]

page 46 Master’s Thesis

8.2 PyTorch Basics

Once the basic knowledge from Deep Learning was studied, it was time to start learning about
the framework to use. For that reason, the second training done was the PyTorch Basics [49].

This training can be done following the literature and can be run in the cloud (Colab)[22] or
locally.

It is mainly divided into the following topics:

• Quickstart. To familiarize with PyTorch’s Application Programming Interface (API).
• Tensors
• Datasets and DataLoaders
• Transforms
• Build Model
• Automatic Differentiation
• Optimization Loop
• Save, Load and Use Model

Learn the Basics

A step-by-step guide to building a complete ML workflow with PyTorch.

Getting Started

Figure 44: PyTorch Basics. Source: [49]

8.3 PyTorch-Geometric & PyTorch-Geometric-Temporal

And finally, since two framework-libraries (PyG and PyGT) have also been used, they have also
been investigated in depth.

In the case of PyG, the Colab and video examples from the main webpage were taken into
consideration.

• Introduction: Hands-on Graph Neural Networks
• Node Classification with Graph Neural Networks
• Graph Classification with Graph Neural Networks
• Graph Attention Networks (GATs)

And for PyGT, since it’s been themain key library-framework, thewhole library documentation
was read and investigated.

Body Gestures recognition for Human Robot Interaction page 47

9 RO-MAN Conference
RO-MAN 2022 is the 31st IEEE International Conference on Robot & Human Interactive Com-
munication. [53]

This conference is awell-known forumwith state-of-the-art discussions that covers a lot of topics
related HRI. This year it will take place in Naples, Italy and anyone can land a paper.

Writing a paper for a conference wasn’t initially in the plans of this thesis, but the opportunity
raised and together with the director and co-director a paper called Body Gesture Recognition to
Control a Social Robot was done and sent.

The paper was based on the IRIGesture dataset (See section 5.3 and a previous studentMaster’s
Thesis that focused on Static Body Gestures. [54]

All the work related to the paper was divided into two main topics, code review, fixes and
improvements on one hand, and on the other, the whole writing itself.

• The first step done was cloning the previous student GitHub Repository [27] and try to
execute its code. At the beginning, the code wasn’t working for us, and some bug-fixes
and code corrections had to be done 26. But after a few weeks of work, the code achieved
better results than expected.

• The paper writing was done once the code was working, and we ended up with a 6 page
paper.

The 25th of March, the paper was handed over as the 317 RO-MAN 2022 submission. [33] And
although we expected the paper to be accepted, on the 31th of May we were told that only 238
papers could be accepted and ours wasn’t one of them27.

26All the changes done to the code in order to work were pushed and can be seen, read and commented from the
GitHub commits history.

27Despite the fact the paper was not accepted, we are planning to make some minor corrections and deliver it on
other conferences like Humanoids 2022. [24]

page 48 Master’s Thesis

Body Gestures recognition for Human Robot Interaction page 49

10 Budget
In order to compute the total amount of money that is required to reproduce this project, the
costs have been divided in a few different categories (hardware, electricity, licenses and train-
ings).

• Hardware
We need to take into account the two computers used. On one hand, a personal computer (PC)
and on the other, Tyan, an IRINeuralNetworkGPU serverwith 10NVIDIAGeForceRTX 2080Ti.

As for Tyan, since one GPU at a time was used, only the price of a computer with one 2080Ti
will be taken into account. In terms of money, the personal computer is about 750AC and the
Tyan alternative, 2.200AC

Hardware = PC + TyanAlternative = 750AC+ 2.200AC = 2.950AC (48)

• Electricity
In case of consumed electricity, we need to take into account that, a personal computer consumes
≈ 80 watt and the Tyan alternative≈ 150 watts. If we then consider that Tyan has been running
a total of 120h and the personal computer about 1.080h:

PCElectricity = NHours ∗ Power = 1.080h ∗ 80w = 86,4kwh (49)

TyanElectricity = 120h ∗ 150w = 18kwh (50)
TotalElectricity = (86,4kwh+ 18kwh) ∗ 0,25AC/kwh = 26,1AC (51)

We have taken 0,25ACkwh as electricity average price in Spain.

• Licenses
For this project PyCharm Professional [48] has been the IDE used to write and test all the code.

PyCharmProfessional = 89AC/year ∗ 1year = 89AC (52)

• Trainings
Of all the trainings done, although all can be done for free, the Deep Learning one has a sub-
scription mode that enables some really helpful exercises.

DeepLearningSpecialization = 49AC/month ∗ 4months = 196AC (53)

• Labor
In terms of labor, it’s important to take into consideration the hours the student and co-director
have spent.

EngineerStudent = 40AC/h ∗ 1200h = 48.000AC (54)
EngineerCo−Director = 50AC/h ∗ 150h = 6.000AC (55)

Labor = EngineerStudent + EngineerCo−Director = 48.000AC+ 6.000AC = 54.000AC (56)

• Total Cost
If we then add up all the costs, we see the total project cost is around 57.000AC.

TotalCost = Hardware+ Electricity + Licenses+ Trainings+ Labor (57)

TotalCost = 2.950AC+ 26,1AC+ 89AC+ 196AC+ 54.000AC = 57.261,1AC (58)

page 50 Master’s Thesis

Body Gestures recognition for Human Robot Interaction page 51

11 Environmental Impact
As the project has been entirely developed only implementing and using software, the real im-
pact it had on the environment is on its electrical power consumption.

ElectricityMap[17] is awebpagewhoprovides data quantifying how carbon intensive electricity
is on an hourly basis across 50+ countries.

Regarding the data from ElectricityMap, the carbon emissions from 2021 range from 164,21
gCO2/kwh to 337,40 gCO2/kwh with an average value of 167,66 gCO2/kwh. (See Fig. 45).

And based on the power consumption already specified in the Budget (See section 10):

Carbonemissions = 160gCo2/kwh ∗ 104,4kwh = 16,70kgCO2 (59)

We can compute whole project carbon emissions, that are about 16,70 kgCo2

0

50

100

150

200

250

300

350

2
0

2
1

-0
1

-0
1

 0
0

:0
0

2
0

2
1

-0
1

-1
0

 2
1

:0
0

2
0

2
1

-0
1

-2
0

 1
8

:0
0

2
0

2
1

-0
1

-3
0

 1
5

:0
0

2
0

2
1

-0
2

-0
9

 1
2

:0
0

2
0

2
1

-0
2

-1
9

 0
9

:0
0

2
0

2
1

-0
3

-0
1

 0
6

:0
0

2
0

2
1

-0
3

-1
1

 0
3

:0
0

2
0

2
1

-0
3

-2
1

 0
0

:0
0

2
0

2
1

-0
3

-3
0

 2
1

:0
0

2
0

2
1

-0
4

-0
9

 1
8

:0
0

2
0

2
1

-0
4

-1
9

 1
5

:0
0

2
0

2
1

-0
4

-2
9

 1
2

:0
0

2
0

2
1

-0
5

-0
9

 0
9

:0
0

2
0

2
1

-0
5

-1
9

 0
6

:0
0

2
0

2
1

-0
5

-2
9

 0
3

:0
0

2
0

2
1

-0
6

-0
8

 0
0

:0
0

2
0

2
1

-0
6

-1
7

 2
1

:0
0

2
0

2
1

-0
6

-2
7

 1
8

:0
0

2
0

2
1

-0
7

-0
7

 1
5

:0
0

2
0

2
1

-0
7

-1
7

 1
2

:0
0

2
0

2
1

-0
7

-2
7

 0
9

:0
0

2
0

2
1

-0
8

-0
6

 0
6

:0
0

2
0

2
1

-0
8

-1
6

 0
3

:0
0

2
0

2
1

-0
8

-2
6

 0
0

:0
0

2
0

2
1

-0
9

-0
4

 2
1

:0
0

2
0

2
1

-0
9

-1
4

 1
8

:0
0

2
0

2
1

-0
9

-2
4

 1
5

:0
0

2
0

2
1

-1
0

-0
4

 1
2

:0
0

2
0

2
1

-1
0

-1
4

 0
9

:0
0

2
0

2
1

-1
0

-2
4

 0
6

:0
0

2
0

2
1

-1
1

-0
3

 0
3

:0
0

2
0

2
1

-1
1

-1
3

 0
0

:0
0

2
0

2
1

-1
1

-2
2

 2
1

:0
0

2
0

2
1

-1
2

-0
2

 1
8

:0
0

2
0

2
1

-1
2

-1
2

 1
5

:0
0

2
0

2
1

-1
2

-2
2

 1
2

:0
0

C
A

R
B

O
N

 IN
TE

N
SI

TY
 P

R
O

D
U

C
TI

O
N

(g
C

O
2
/k

w
h

)

DATE

Carbon Intensity Production
(Spain 2021)
Average = 167,66 gCO2/kwh

Figure 45: Carbon intensity production (Spain 2021). Source: [17]

page 52 Master’s Thesis

Body Gestures recognition for Human Robot Interaction page 53

Conclusions
The main project objective was to research about Body Gestures recognition for Human Robot
Interaction and propose a solution for gesture classification using Deep Learning models. The
submitted model has been based on a State-of-the-Art solution, which has an accuracy above
any other alternatives (> 90%).

Specifically, the proposed model uses the main key concepts of the State-of-the-Art solution
with a few modifications that have allowed using a custom body gestures dataset.

As a feature extractor, the use of Media Pipe Pose has shown amazing results detecting joints
and extracting landmarks, unfortunately, the precision of this method decreases when used
against hands, and has some pending improvements. The fact that the extractor has only four
joints in each hand and they do not correspond with the fingers, has been a bit problematic on
gestures that require differentiating finger movements like yes.

A few tests have shown that gestures recognition applied to static gestures behaves quite better
than on dynamic ones. So we understand, that for continuous gestures, the time component
implies quite a challenge.

As already said, the solution or model is based on, has astonishing results, so we could say that
our main problem is on our data. (Different gestures length, camera configurations, resolution...)

Despite all of this, and thanks to all the experiments done, we have been able to increase our
accuracy with all the gestures, up to 60%.

Furthermore, POSTURE has been trained and tested with real-life situations with continuous
gestures by using a batch approach that helps with the gestures classification.

Independently of the achieved results, is interesting to notice that all this research has paid off
since a first paper was landed in RO-MAN and a second one is planned for Humanoids. [24]

Future Work

Although the dataset has been one of the main key factor of the model, it is also one of the
biggest problems it has. One of the next steps to follow could be, first test our model with NTU
dataset and see how it behaves and afterwards, transfer the learning.

In Deep Learning exists the transfer learning concept in which, for example, a model is trained
with really good data and then all this neural network weights are stored and used against the
new data that ends up being used to polish the model.

With this, we would expect the NN has been able to understand the gestures and apply all it
has previously learned from our data.

page 54 Master’s Thesis

Lessons Learned

While working on the project, a few interesting lessons learned topics appeared. We will not
include all of them here, but only the ones that well-deserve it.

• Despite what is specified on the frameworks (PyG & PyGT) instructions, do not use a
version of PyTorch newer than 1.8.1.

conda install pytorch==1.8.1
torchvision==0.9.1
torchaudio==0.8.1
cpuonly -c pytorch

conda install pyg -c pyg -c conda-forge
pip install torch-geometric-temporal

• Decide from the beginning if you are going to use a CPU or GPU, otherwise you can reach
the undesired situation on which you need to swap from one to the other and have half of
your code that is only ready for CPU but with a GPU installation. (Numpy is CPU only!)

• Do not hesitate to use visualization tooling like Tensorboard, they will be really helpful.

• Organize your experiments with clear names and do not only store accuracy, but random
images from test data, confusion matrices, etc.

Body Gestures recognition for Human Robot Interaction page 55

Bibliography
[1] Agile vs Waterfall: Difference Between Two Powerful Methodologies. url: https://hygger.io/

guides/agile/agile-vs-waterfall/.
[2] Michael Argyle. Non-verbal communication in human social interaction. Cambridge Univer-

sity Press, 1972.
[3] René De La Barré et al. “Touchless interaction-novel chances and challenges”. In: Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics) 5611 LNCS (PART 2 2009), pp. 161–169. issn: 03029743. doi:
10.1007/978-3-642-02577-8_18/COVER/. url: https://link.springer.com/chapter/
10.1007/978-3-642-02577-8_18.

[4] Christoph Bartneck et al. “Human-Robot Interaction: An Introduction”. In: (Feb. 2020).
doi: 10 . 1017 / 9781108676649. url: https : / / www . cambridge . org / core / books /
humanrobot-interaction/2C042DEB4D0ECFFA5485857314E885BC.

[5] Batch Normalization Definition. url: https://deepai.org/machine-learning-glossary-
and-terms/batch-normalization.

[6] Gibran Benitez-Garcia et al. “IPN Hand: A video dataset and benchmark for real-time
continuous hand gesture recognition”. In: Proceedings - International Conference on Pat-
tern Recognition (2020), pp. 4340–4347. issn: 10514651. doi: 10.1109/ICPR48806.2021.
9412317.

[7] Shaked Brody, Uri Alon, and Eran Yahav. “How Attentive are Graph Attention Net-
works?” In: ICLR 2022 (May 2021). url: https://arxiv.org/abs/2105.14491v2.

[8] BUDDY PRO - Your Robot User Interaction Solutions for Your Brand Image. url: https://
buddytherobot.com/en/buddy-pro/.

[9] Amar Budhiraja. Dropout in (Deep) Machine learning. Dec. 2016. url: https://medium.
com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-
better-dropout-in-deep-machine-learning-74334da4bfc5.

[10] Tathagata Chakraborti et al. “AI Challenges in Human-Robot Cognitive Teaming”. In:
(July 2017). doi: 10.48550/arxiv.1707.04775. url: https://arxiv.org/abs/1707.
04775v2.

[11] Bo Chen et al. “Online control programming algorithm for human–robot inter-
action system with a novel real-time human gesture recognition method:” in:
https://doi.org/10.1177/1729881419861764 16 (4 July 2019). issn: 17298814. doi: 10.1177/
1729881419861764. url: https : / / journals . sagepub . com / doi / full / 10 . 1177 /
1729881419861764.

[12] Ke Cheng et al. “Skeleton-based action recognition with shift graph convolutional net-
work”. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition (2020), pp. 180–189. issn: 10636919. doi: 10 . 1109 / CVPR42600 . 2020 .
00026.

[13] Cruzcampo. Así se hizo ConMuchoAcento. Jan. 2021. url: https://www.youtube.com/
watch?v=BQLTRMYHwvE.

[14] DALL·E 2. url: https://openai.com/dall-e-2/.
[15] DeepFindr. Understanding Graph Attention Networks. Apr. 2021. url: https : / / www .

youtube.com/watch?v=A-yKQamf2Fc.
[16] DeepFindr.Understanding Graph Neural Networks. Sept. 2020. url: https://www.youtube.

com/watch?v=fOctJB4kVlM.
[17] electricityMap – The leading resource for 24/7 CO2 grid data worldwide. url: https : / /

electricitymap.org/.

https://hygger.io/guides/agile/agile-vs-waterfall/
https://hygger.io/guides/agile/agile-vs-waterfall/
https://doi.org/10.1007/978-3-642-02577-8_18/COVER/
https://link.springer.com/chapter/10.1007/978-3-642-02577-8_18
https://link.springer.com/chapter/10.1007/978-3-642-02577-8_18
https://doi.org/10.1017/9781108676649
https://www.cambridge.org/core/books/humanrobot-interaction/2C042DEB4D0ECFFA5485857314E885BC
https://www.cambridge.org/core/books/humanrobot-interaction/2C042DEB4D0ECFFA5485857314E885BC
https://deepai.org/machine-learning-glossary-and-terms/batch-normalization
https://deepai.org/machine-learning-glossary-and-terms/batch-normalization
https://doi.org/10.1109/ICPR48806.2021.9412317
https://doi.org/10.1109/ICPR48806.2021.9412317
https://arxiv.org/abs/2105.14491v2
https://buddytherobot.com/en/buddy-pro/
https://buddytherobot.com/en/buddy-pro/
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
https://doi.org/10.48550/arxiv.1707.04775
https://arxiv.org/abs/1707.04775v2
https://arxiv.org/abs/1707.04775v2
https://doi.org/10.1177/1729881419861764
https://doi.org/10.1177/1729881419861764
https://journals.sagepub.com/doi/full/10.1177/1729881419861764
https://journals.sagepub.com/doi/full/10.1177/1729881419861764
https://doi.org/10.1109/CVPR42600.2020.00026
https://doi.org/10.1109/CVPR42600.2020.00026
https://www.youtube.com/watch?v=BQLTRMYHwvE
https://www.youtube.com/watch?v=BQLTRMYHwvE
https://openai.com/dall-e-2/
https://www.youtube.com/watch?v=A-yKQamf2Fc
https://www.youtube.com/watch?v=A-yKQamf2Fc
https://www.youtube.com/watch?v=fOctJB4kVlM
https://www.youtube.com/watch?v=fOctJB4kVlM
https://electricitymap.org/
https://electricitymap.org/

page 56 Master’s Thesis

[18] Harshala Gammulle et al. “Multi-modal Fusion for Single-Stage Continuous Gesture
Recognition”. In: IEEE Transactions on Image Processing 30 (Nov. 2020), pp. 7689–7701.
doi: 10.1109/TIP.2021.3108349. url: http://arxiv.org/abs/2011.04945; http:
//dx.doi.org/10.1109/TIP.2021.3108349.

[19] Qing Gao et al. “Static hand gesture recognition with parallel CNNs for space human-
robot interaction”. In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics) 10462 LNAI (2017), pp. 462–
473. issn: 16113349. doi: 10.1007/978- 3- 319- 65289- 4_44/TABLES/3. url: https:
//link.springer.com/chapter/10.1007/978-3-319-65289-4_44.

[20] A. Garrell et al. “Proactive behavior of an autonomous mobile robot for human-assisted
learning”. In:Proceedings - IEEE InternationalWorkshop onRobot andHuman Interactive Com-
munication (2013), pp. 107–113. doi: 10.1109/ROMAN.2013.6628463.

[21] Beatrice De Gelder. “Why bodies? Twelve reasons for including bodily expressions in
affective neuroscience”. In: Philosophical Transactions of the Royal Society B: Biological Sci-
ences 364 (1535 Dec. 2009), p. 3475. issn: 14712970. doi: 10.1098/RSTB.2009.0190. url:
/pmc/articles/PMC2781896/; /pmc/articles/PMC2781896/?report=abstract; https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC2781896/.

[22] Google Colab. url: https://colab.research.google.com/.
[23] Robert A. Hinde. Non-verbal communication. Cambridge University Press, Nov. 1972,

p. 443. isbn: 978-0521290128.
[24] Humanoids 2022 - IEEE Robotics and Automation Society. url: https://www.ieee-ras.org/

conferences-workshops/fully-sponsored/humanoids; https://www.humanoids2022.
org/.

[25] IRI - Institut de Robòtica i Informàtica industrial. url: https://www.iri.upc.edu/.
[26] Shruti Jadon. Introduction to Different Activation Functions for Deep Learning. 2018. url:

https://medium.com/@shrutijadon/survey-on-activation-functions-for-deep-
learning-9689331ba092.

[27] joanjaumeoliver/GESTURE-PROJECT. url: https : / / github . com / joanjaumeoliver /
GESTURE-PROJECT.

[28] Keras: the Python deep learning API. url: https://keras.io/.
[29] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph Convo-

lutional Networks”. In: 5th International Conference on Learning Representations, ICLR 2017
- Conference Track Proceedings (Sept. 2016). url: https://arxiv.org/abs/1609.02907v4.

[30] Ria Kulshrestha. Understanding Attention In Deep Learning (NLP). May 2020. url: https:
//towardsdatascience.com/attaining-attention-in-deep-learning-a712f93bdb1e.

[31] Huang Kung-Hsiang. A Gentle Introduction to Graph Neural Networks (Basics, DeepWalk,
and GraphSage). Feb. 2019. url: https : / / towardsdatascience . com / a - gentle -
introduction - to - graph - neural - network - basics - deepwalk - and - graphsage -
db5d540d50b3.

[32] Jun Kwan, Chinkye Tan, and Akansel Cosgun. “Gesture Recognition for Initiating
Human-to-Robot Handovers”. In: (July 2020). doi: 10.48550/arxiv.2007.09945. url:
https://arxiv.org/abs/2007.09945v2.

[33] Javier Laplaza et al. “Body Gesture Recognition to Control a Social Robot”. In: (June
2022). doi: 10.48550/arxiv.2206.07538. url: https://arxiv.org/abs/2206.07538v1.

[34] Maosen Li et al. “Actional-structural graph convolutional networks for skeleton-based
action recognition”. In: Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition 2019-June (June 2019), pp. 3590–3598. issn: 10636919. doi:
10.1109/CVPR.2019.00371.

https://doi.org/10.1109/TIP.2021.3108349
http://arxiv.org/abs/2011.04945
http://dx.doi.org/10.1109/TIP.2021.3108349
http://dx.doi.org/10.1109/TIP.2021.3108349
https://doi.org/10.1007/978-3-319-65289-4_44/TABLES/3
https://link.springer.com/chapter/10.1007/978-3-319-65289-4_44
https://link.springer.com/chapter/10.1007/978-3-319-65289-4_44
https://doi.org/10.1109/ROMAN.2013.6628463
https://doi.org/10.1098/RSTB.2009.0190
/pmc/articles/PMC2781896/
/pmc/articles/PMC2781896/?report=abstract
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781896/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781896/
https://colab.research.google.com/
https://www.ieee-ras.org/conferences-workshops/fully-sponsored/humanoids
https://www.ieee-ras.org/conferences-workshops/fully-sponsored/humanoids
https://www.humanoids2022.org/
https://www.humanoids2022.org/
https://www.iri.upc.edu/
https://medium.com/@shrutijadon/survey-on-activation-functions-for-deep-learning-9689331ba092
https://medium.com/@shrutijadon/survey-on-activation-functions-for-deep-learning-9689331ba092
https://github.com/joanjaumeoliver/GESTURE-PROJECT
https://github.com/joanjaumeoliver/GESTURE-PROJECT
https://keras.io/
https://arxiv.org/abs/1609.02907v4
https://towardsdatascience.com/attaining-attention-in-deep-learning-a712f93bdb1e
https://towardsdatascience.com/attaining-attention-in-deep-learning-a712f93bdb1e
https://towardsdatascience.com/a-gentle-introduction-to-graph-neural-network-basics-deepwalk-and-graphsage-db5d540d50b3
https://towardsdatascience.com/a-gentle-introduction-to-graph-neural-network-basics-deepwalk-and-graphsage-db5d540d50b3
https://towardsdatascience.com/a-gentle-introduction-to-graph-neural-network-basics-deepwalk-and-graphsage-db5d540d50b3
https://doi.org/10.48550/arxiv.2007.09945
https://arxiv.org/abs/2007.09945v2
https://doi.org/10.48550/arxiv.2206.07538
https://arxiv.org/abs/2206.07538v1
https://doi.org/10.1109/CVPR.2019.00371

Body Gestures recognition for Human Robot Interaction page 57

[35] Jun Liu et al. “NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Un-
derstanding”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 42 (10 May
2019), pp. 2684–2701. doi: 10.1109/TPAMI.2019.2916873. url: http://arxiv.org/abs/
1905.04757; http://dx.doi.org/10.1109/TPAMI.2019.2916873.

[36] Ziyu Liu et al. “Disentangling and unifying graph convolutions for skeleton-based action
recognition”. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (2020), pp. 140–149. issn: 10636919. doi: 10.1109/CVPR42600.2020.
00022.

[37] Antonio Longa. Pytorch Geometric tutorial: Graph attention networks (GAT) implementation.
Mar. 2021. url: https://www.youtube.com/watch?v=CwsPoa7z2c8.

[38] LuxAI - Award winning social robots for autism and special needs education. url: https://
luxai.com/.

[39] Master’s Degree in Industrial Engineering Barcelona School of Industrial Engineering (ETSEIB)
— UPC. Universitat Politècnica de Catalunya. url: https://muei.etseib.masters.upc.
edu/en.

[40] Mediapipe.Holistic. url: https://google.github.io/mediapipe/solutions/holistic.
html.

[41] Mediapipe. Pose. url: https://google.github.io/mediapipe/solutions/pose.
[42] SepehrMohaimenianpour and Richard Vaughan. “Hands and Faces, Fast: Mono-Camera

User Detection Robust Enough to Directly Control a UAV in Flight”. In: IEEE International
Conference on Intelligent Robots and Systems (Dec. 2018), pp. 5224–5231. issn: 21530866. doi:
10.1109/IROS.2018.8593709.

[43] Andrew Ng. Deep Learning. url: https://www.coursera.org/specializations/deep-
learning.

[44] Kai Nickel and Rainer Stiefelhagen. “Visual recognition of pointing gestures for hu-
man–robot interaction”. In: Image and Vision Computing 25 (12 Dec. 2007), pp. 1875–1884.
issn: 0262-8856. doi: 10.1016/J.IMAVIS.2005.12.020.

[45] FatemehNoroozi et al. “Survey on Emotional Body Gesture Recognition”. In: IEEE Trans-
actions on Affective Computing 12 (2 Apr. 2021), pp. 505–523. issn: 19493045. doi: 10.1109/
TAFFC.2018.2874986.

[46] Tim Tim O’Sullivan et al. Key concepts in communication and cultural studies | Jey Tim. 1994.
url: https://www.academia.edu/1999782/Key_concepts_in_communication_and_
cultural_studies.

[47] Joan Jaume Oliver. joanjaumeoliver/IRIGesture. url: https : / / github . com /
joanjaumeoliver/IRIGesture.

[48] PyCharm: the Python IDE for Professional Developers by JetBrains. url: https : / / www .
jetbrains.com/pycharm/.

[49] PyTorch. url: https://pytorch.org/.
[50] PyTorch Geometric. url: https://pytorch-geometric.readthedocs.io/en/latest/.
[51] PyTorch Geometric Temporal. url: https://pytorch-geometric-temporal.readthedocs.

io/en/latest/.
[52] Jagdish Lal Raheja, Mona Chandra, and Ankit Chaudhary. “3D gesture based real-time

object selection and recognition”. In: Pattern Recognition Letters 115 (Nov. 2018), pp. 14–
19. issn: 0167-8655. doi: 10.1016/J.PATREC.2017.09.034.

[53] RO-MAN 2022 - IEEE Robotics and Automation Society. url: https://www.ieee-ras.org/
about-ras/ras-calendar/event/2107-ro-man-2022; http://www.ro-man2022.org/.

[54] Ramón Romero. Study of deep learning techniques for human gesture classification. Sept. 2021.
url: https://upcommons.upc.edu/handle/2117/352487.

https://doi.org/10.1109/TPAMI.2019.2916873
http://arxiv.org/abs/1905.04757
http://arxiv.org/abs/1905.04757
http://dx.doi.org/10.1109/TPAMI.2019.2916873
https://doi.org/10.1109/CVPR42600.2020.00022
https://doi.org/10.1109/CVPR42600.2020.00022
https://www.youtube.com/watch?v=CwsPoa7z2c8
https://luxai.com/
https://luxai.com/
https://muei.etseib.masters.upc.edu/en
https://muei.etseib.masters.upc.edu/en
https://google.github.io/mediapipe/solutions/holistic.html
https://google.github.io/mediapipe/solutions/holistic.html
https://google.github.io/mediapipe/solutions/pose
https://doi.org/10.1109/IROS.2018.8593709
https://www.coursera.org/specializations/deep-learning
https://www.coursera.org/specializations/deep-learning
https://doi.org/10.1016/J.IMAVIS.2005.12.020
https://doi.org/10.1109/TAFFC.2018.2874986
https://doi.org/10.1109/TAFFC.2018.2874986
https://www.academia.edu/1999782/Key_concepts_in_communication_and_cultural_studies
https://www.academia.edu/1999782/Key_concepts_in_communication_and_cultural_studies
https://github.com/joanjaumeoliver/IRIGesture
https://github.com/joanjaumeoliver/IRIGesture
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://pytorch.org/
https://pytorch-geometric.readthedocs.io/en/latest/
https://pytorch-geometric-temporal.readthedocs.io/en/latest/
https://pytorch-geometric-temporal.readthedocs.io/en/latest/
https://doi.org/10.1016/J.PATREC.2017.09.034
https://www.ieee-ras.org/about-ras/ras-calendar/event/2107-ro-man-2022
https://www.ieee-ras.org/about-ras/ras-calendar/event/2107-ro-man-2022
http://www.ro-man2022.org/
https://upcommons.upc.edu/handle/2117/352487

page 58 Master’s Thesis

[55] Ramon Romero. GESTURE DATASET. url: https://github.com/RamonRL/GESTURE-
PROJECT/tree/main/dataset/BodyGestureDataset.

[56] Benedek Rozemberczki et al. “PyTorch Geometric Temporal: Spatiotemporal Signal Pro-
cessingwithNeuralMachine LearningModels”. In: International Conference on Information
and KnowledgeManagement, Proceedings (Apr. 2021), pp. 4564–4573. doi: 10.48550/arxiv.
2104.07788. url: https://arxiv.org/abs/2104.07788v3.

[57] Rabeya Tus Sadia. Understanding Graph Neural Network with hands-on example. July 2020.
url: https : / / medium . com / @rtsrumi07 / understanding - graph - neural - network -
with-hands-on-example-part-1-6e35d7fe2777; https://medium.com/@rtsrumi07/
understanding - graph - neural - network - with - hands - on - example - part - 2 -
139a691ebeac.

[58] Behzad Sadrfaridpour and Yue Wang. “Collaborative Assembly in Hybrid Manufactur-
ing Cells: An Integrated Framework for Human-Robot Interaction”. In: IEEE Transactions
on Automation Science and Engineering 15 (3 July 2018), pp. 1178–1192. issn: 15455955. doi:
10.1109/TASE.2017.2748386.

[59] Franco Scarselli et al. “The graph neural network model”. In: IEEE Transactions on Neural
Networks 20 (1 Jan. 2009), pp. 61–80. issn: 10459227. doi: 10.1109/TNN.2008.2005605.

[60] Amir Shahroudy et al. “NTU RGB+D: A Large Scale Dataset for 3D Human Activity
Analysis”. In: Computer Vision Foundation (2016).

[61] Abdel-Nasser Sharkawy. “Human-Robot Interaction: Applications”. In: arXiv preprint
(Feb. 2021), pp. 3–5. doi: 10.48550/arxiv.2102.00928. url: https://arxiv.org/
abs/2102.00928v1.

[62] Lei Shi et al. “Decoupled Spatial-Temporal Attention Network for Skeleton-Based Action
Recognition”. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics) 12626 LNCS (July 2020), pp. 38–53.
issn: 16113349. doi: 10.48550/arxiv.2007.03263. url: https://arxiv.org/abs/2007.
03263v1.

[63] Lei Shi et al. “Skeleton-based action recognitionwith directed graph neural networks”. In:
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition 2019-June (June 2019), pp. 7904–7913. issn: 10636919. doi: 10.1109/CVPR.2019.
00810.

[64] Lei Shi et al. “Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based
Action Recognition”. In: Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition 2019-June (May 2018), pp. 12018–12027. issn: 10636919. doi:
10.48550/arxiv.1805.07694. url: https://arxiv.org/abs/1805.07694v3.

[65] Seong Og Shin, Donghan Kim, and Yong Ho Seo. “Controlling mobile robot using IMU
and EMG sensor-based gesture recognition”. In: Proceedings - 2014 9th International Con-
ference on Broadband andWireless Computing, Communication and Applications, BWCCA 2014
(Jan. 2014), pp. 554–557. doi: 10.1109/BWCCA.2014.145.

[66] Yi Fan Song et al. “Richly Activated Graph Convolutional Network for Robust Skeleton-
Based Action Recognition”. In: IEEE Transactions on Circuits and Systems for Video Technol-
ogy 31 (5 May 2021), pp. 1915–1925. issn: 15582205. doi: 10.1109/TCSVT.2020.3015051.

[67] TensorFlow. url: https://www.tensorflow.org/.
[68] Kalpit Thakkar and P. J. Narayanan. “Part-based Graph Convolutional Network for Ac-

tion Recognition”. In: BritishMachine Vision Conference 2018, BMVC 2018 (Sept. 2018). doi:
10.48550/arxiv.1809.04983. url: https://arxiv.org/abs/1809.04983v1.

[69] Ming Fong Tsai and Chiung Hung Chen. “Spatial Temporal Variation Graph Convolu-
tional Networks (STV-GCN) for Skeleton-Based Emotional Action Recognition”. In: IEEE
Access 9 (2021), pp. 13870–13877. issn: 21693536. doi: 10.1109/ACCESS.2021.3052246.

https://github.com/RamonRL/GESTURE-PROJECT/tree/main/dataset/BodyGestureDataset
https://github.com/RamonRL/GESTURE-PROJECT/tree/main/dataset/BodyGestureDataset
https://doi.org/10.48550/arxiv.2104.07788
https://doi.org/10.48550/arxiv.2104.07788
https://arxiv.org/abs/2104.07788v3
https://medium.com/@rtsrumi07/understanding-graph-neural-network-with-hands-on-example-part-1-6e35d7fe2777
https://medium.com/@rtsrumi07/understanding-graph-neural-network-with-hands-on-example-part-1-6e35d7fe2777
https://medium.com/@rtsrumi07/understanding-graph-neural-network-with-hands-on-example-part-2-139a691ebeac
https://medium.com/@rtsrumi07/understanding-graph-neural-network-with-hands-on-example-part-2-139a691ebeac
https://medium.com/@rtsrumi07/understanding-graph-neural-network-with-hands-on-example-part-2-139a691ebeac
https://doi.org/10.1109/TASE.2017.2748386
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.48550/arxiv.2102.00928
https://arxiv.org/abs/2102.00928v1
https://arxiv.org/abs/2102.00928v1
https://doi.org/10.48550/arxiv.2007.03263
https://arxiv.org/abs/2007.03263v1
https://arxiv.org/abs/2007.03263v1
https://doi.org/10.1109/CVPR.2019.00810
https://doi.org/10.1109/CVPR.2019.00810
https://doi.org/10.48550/arxiv.1805.07694
https://arxiv.org/abs/1805.07694v3
https://doi.org/10.1109/BWCCA.2014.145
https://doi.org/10.1109/TCSVT.2020.3015051
https://www.tensorflow.org/
https://doi.org/10.48550/arxiv.1809.04983
https://arxiv.org/abs/1809.04983v1
https://doi.org/10.1109/ACCESS.2021.3052246

Body Gestures recognition for Human Robot Interaction page 59

[70] Ashish Vaswani et al. “Attention Is All You Need”. In: Advances in Neural Information Pro-
cessing Systems 2017-December (June 2017), pp. 5999–6009. issn: 10495258. url: https:
//arxiv.org/abs/1706.03762v5.

[71] Carlos Santana Vega. ¿Por qué estas redes neuronales son tan potentes?Nov. 2021. url: https:
//www.youtube.com/watch?v=xi94v_jl26U.

[72] Carlos Santana Vega. Las redes neuronales ahora prestan atención! Sept. 2021. url: https:
//www.youtube.com/watch?v=aL-EmKuB078.

[73] Petar Veličković et al. “Graph Attention Networks”. In: 6th International Conference on
Learning Representations, ICLR 2018 - Conference Track Proceedings (Oct. 2017). url: https:
//arxiv.org/abs/1710.10903v3.

[74] Tom Williams et al. “Virtual, Augmented, and Mixed Reality for Human-Robot Inter-
action (VAM-HRI)”. In: ACM/IEEE International Conference on Human-Robot Interaction
2019-March (Mar. 2019), pp. 671–672. issn: 21672148. doi: 10.1109/HRI.2019.8673207.

[75] Pradyumna Yadav. The journey of Gradient Descent — From Local to Global. Feb. 2021. url:
https://medium.com/analytics- vidhya/journey- of- gradient- descent- from-
local-to-global-c851eba3d367.

[76] Sijie Yan, Yuanjun Xiong, and Dahua Lin. “Spatial Temporal Graph Convolutional Net-
works for Skeleton-Based Action Recognition”. In: 32nd AAAI Conference on Artificial In-
telligence, AAAI 2018 (Jan. 2018), pp. 7444–7452. doi: 10.48550/arxiv.1801.07455. url:
https://arxiv.org/abs/1801.07455v2.

[77] Hao Yang et al. “Feedback Graph Convolutional Network for Skeleton-Based Action
Recognition”. In: IEEE Transactions on Image Processing 31 (2022), pp. 164–175. issn:
19410042. doi: 10.1109/TIP.2021.3129117.

[78] Jie Zhou et al. “Graph Neural Networks: A Review of Methods and Applications”. In: AI
Open 1 (Dec. 2018), pp. 57–81. issn: 26666510. doi: 10.48550/arxiv.1812.08434. url:
https://arxiv.org/abs/1812.08434v4; https://arxiv.org/abs/1812.08434v6.

https://arxiv.org/abs/1706.03762v5
https://arxiv.org/abs/1706.03762v5
https://www.youtube.com/watch?v=xi94v_jl26U
https://www.youtube.com/watch?v=xi94v_jl26U
https://www.youtube.com/watch?v=aL-EmKuB078
https://www.youtube.com/watch?v=aL-EmKuB078
https://arxiv.org/abs/1710.10903v3
https://arxiv.org/abs/1710.10903v3
https://doi.org/10.1109/HRI.2019.8673207
https://medium.com/analytics-vidhya/journey-of-gradient-descent-from-local-to-global-c851eba3d367
https://medium.com/analytics-vidhya/journey-of-gradient-descent-from-local-to-global-c851eba3d367
https://doi.org/10.48550/arxiv.1801.07455
https://arxiv.org/abs/1801.07455v2
https://doi.org/10.1109/TIP.2021.3129117
https://doi.org/10.48550/arxiv.1812.08434
https://arxiv.org/abs/1812.08434v4
https://arxiv.org/abs/1812.08434v6

page 60 Master’s Thesis

Body Gestures recognition for Human Robot Interaction page 61

Annex A - Graphs

A1 GNN - Different variants of recurrent operators

Table 11: Different variants of recurrent operators. Source [78]

page 62 Master’s Thesis

A2 TGNN - Models

Model Temporal Layer GNN Layer

DCRNN GRU DiffConv
GConvGRU GRU Chebyshev
GConvLSTM LSTM Chebyshev
GC-LSTM LSTM Chebyshev
DyGrAE LSTM GGCN
LRGCN LSTM RGCN
EGCN-H GRU GCN
EGCN-O LSTM GCN
T-GCN GRU GCN
A3T-GCN GRU GCN
AGCRN GRU Chebyshev
MPNN LSTM LSTM GCN
STGCN Attention Chebyshev
ASTGCN Attention Chebyshev
MSTGCN Attention Chebyshev
GMAN Attention Custom
MTGNN Attention Custom
AAGCN Attention Custom

Table 12: Common Spatiotemporal deep learning models based on the temporal and spatial
block. Source: [56]

Body Gestures recognition for Human Robot Interaction page 63

Annex B - Code
All the code developed for this thesis can be found below or in its GitHub repository [47].
Mainly, it has been organized in four different files:

• Model: The classifier object with all the layers.
• Main: The Main file which calls and uses all the others.
• Dataset: It’s the parser, which downloads data from GitHub and parses as needed.
• Tools: Contains generic functions that have been used over the project.

B1 Model.py

1 import torch
2 import torch.nn as nn
3 from torch_geometric_temporal import AAGCN
4
5
6 class Classifier(nn.Module):
7
8 def __init__(
9 self,

10 edge_index: torch.LongTensor,
11 in_channels: int = 4,
12 out_channels: int = 8,
13 num_nodes: int = 15,
14 num_subsets: int = 15,
15 device: str = 'cpu',
16):
17 super(Classifier, self).__init__()
18 self.initialAAGCN = AAGCN(in_channels, 64, edge_index, num_nodes,
19 stride=1, residual=True,
20 adaptive=True, attention=True, device=device)
21
22 self.middleAAGCN = nn.ModuleList()
23 for i in range(num_subsets):
24 self.middleAAGCN.append(AAGCN(64, 64, edge_index, num_nodes,
25 stride=1, residual=True,
26 adaptive=True, attention=True))
27
28 self.finalAAGCN = AAGCN(64, out_channels, edge_index,
29 num_nodes, stride=1, residual=True,
30 adaptive=True, attention=True)
31
32 self.linear = torch.nn.Linear(30 * 15, out_channels)
33
34 def forward(self, x):
35 # x = [batch_size, features_per_node, frames, number_nodes]
36 y = self.initialAAGCN(x) # y = [64, 64, 30, 15]
37
38 for i in range(len(self.middleAAGCN)):
39 y = self.middleAAGCN[i](y) # y = [64, 64, 30, 15]
40

page 64 Master’s Thesis

41 y = self.finalAAGCN(y) # y = [64, 8, 30, 15]
42 # Test Stride = 1 in final AAGCN
43
44 values, _ = torch.max(y.data, 1) # values = [64, 30, 15]
45 flatten_values = torch.flatten(values, 1)
46 y_pred = self.linear(flatten_values)
47 return y_pred

Body Gestures recognition for Human Robot Interaction page 65

B2 Main.py

1 import os
2 import random
3 import typing
4 from pathlib import Path
5
6 import sys
7
8 import torch
9 import torch.nn.functional

10 from torch.utils.tensorboard import SummaryWriter
11
12 import utils.tools as tools
13 from dataset.IRIDatasetTemporal import IRIGestureTemporal
14 from model.AAGCN import Classifier
15
16
17 def train(categories: typing.List[str], tensorboard_name: str):
18 step = 0
19 loss_list = []
20 acc_list = []
21 total_guesses = torch.zeros(0).to(DEVICE)
22 total_labels = torch.zeros(0).to(DEVICE)
23 for encoder_inputs, labels, paths_idx in train_loader:
24 total_labels = torch.cat((total_labels, labels))
25
26 optimizer.zero_grad()
27 y_hat = model(encoder_inputs) # Get model predictions
28 loss = loss_fn(y_hat.float(), labels.long())
29 loss.backward()
30
31 optimizer.step()
32 step = step + 1
33 loss_list.append(loss.item())
34
35 # Softmax is implicit in Loss but not in Acc
36 y_hat_softmax = torch.softmax(y_hat, dim=1)
37 guessed_list = torch.argmax(y_hat_softmax, dim=1)
38 total_guesses = torch.cat((total_guesses, guessed_list))
39 corrects = torch.flatten((guessed_list == labels).float())
40 acc = corrects.sum() / len(corrects)
41 acc_list.append(acc.item())
42
43 if step \% 5 == 0:
44 print("Loss = " + str(sum(loss_list) / len(loss_list)))
45 print("Acc = " + str(sum(acc_list) / len(acc_list)))
46 scheduler.step()
47 print("Epoch {} train CrossEntropyLoss:"
48 " {:.4f} Acc: {:.4f}".format(epoch,
49 sum(loss_list) / len(loss_list),
50 sum(acc_list) / len(acc_list)))
51
52 if epoch \% 100 == 0:

page 66 Master’s Thesis

53 writer.add_figure("TrainConfusionMatrix",
54 tools.create_confusion_matrix(
55 total_guesses, total_labels, categories,
56 f'Train-Epoch:{epoch}'), epoch)
57 writer.add_scalar('Loss/Train', sum(loss_list) / len(loss_list), epoch)
58 writer.add_scalar('Accuracy/Train', sum(acc_list) / len(acc_list), epoch)
59
60 if tensorboard_adv_mode:
61 for idx, p in enumerate(model.parameters()):
62 if p.grad is not None:
63 writer.add_scalar(f'TrainGradients/grad_{idx}',
64 p.grad.norm(), epoch)
65
66 writer.add_hparams({'lr': scheduler.get_last_lr()[0]},
67 {'accuracy': sum(acc_list) / len(acc_list),
68 'loss': sum(loss_list) / len(loss_list)})
69
70 if model_save:
71 torch.save(model.state_dict(),
72 os.path.join(Path().absolute(),
73 'checkpoints',
74 f'{tensorboard_name}_Checkpoints',
75 'Epoch_' + str(epoch) + '.pth'))
76
77
78 def test(dataset_videos_paths: typing.List[str],
79 categories: typing.List[str]):
80 model.eval()
81 batch = 0
82 # Store for analysis
83 total_loss = []
84 total_acc = []
85 total_guesses = torch.zeros(0).to(DEVICE)
86 total_labels = torch.zeros(0).to(DEVICE)
87 for encoder_inputs, labels, paths_idx in test_loader:
88 # Get model predictions
89 total_labels = torch.cat((total_labels, labels))
90 y_hat = model(encoder_inputs)
91 # Mean squared error
92 loss = loss_fn(y_hat.float(), labels.long())
93 total_loss.append(loss.item())
94
95 y_hat_softmax = torch.softmax(y_hat, dim=1)
96 guessed_list = torch.argmax(y_hat_softmax, dim=1)
97 total_guesses = torch.cat((total_guesses, guessed_list))
98 corrects_list = (guessed_list == labels).float()
99 corrects = torch.flatten(corrects_list)

100 acc = corrects.sum() / len(corrects)
101 total_acc.append(acc.item())
102
103 if tensorboard_adv_mode:
104 video_idx = random.choice(paths_idx.tolist())
105 idx = (paths_idx == video_idx).nonzero(as_tuple=True)[0]
106 video_path = dataset_videos_paths[video_idx]

Body Gestures recognition for Human Robot Interaction page 67

107 video_name = os.path.splitext(os.path.basename(video_path))[0]
108 video_label = categories[int(labels[idx])]
109 guessed_label = categories[int(guessed_list[idx])]
110
111 writer.add_video(f'{video_label}/{video_name}',
112 tools.read_video(video_path), batch)
113 writer.add_text(f'{video_label}/{video_name}',
114 f'Guessed {guessed_label}', batch)
115
116 batch += 1
117
118 print('Test CrossEntropyLoss: {:.4f} '
119 'Acc: {:.4f}'.format(sum(total_loss) / len(total_loss),
120 sum(total_acc) / len(total_acc)))
121
122 if tensorboard_adv_mode:
123 writer.add_figure("TestConfusionMatrix",
124 tools.create_confusion_matrix(
125 total_guesses,
126 total_labels, categories,
127 f'Test-Epoch:{epoch}'), epoch)
128 writer.add_scalar('Loss/Test',
129 sum(total_loss) / len(total_loss), epoch)
130 writer.add_scalar('Accuracy/Test',
131 sum(total_acc) / len(total_acc), epoch)
132
133
134 tools.seed_everything()
135
136 DEVICE = torch.device(sys.argv[1])
137 tensorboard_adv_mode = sys.argv[3] # True False
138 model_save = sys.argv[4] # True False
139 shuffle = True
140 batch_size = 128
141
142 run_name = f'{input("Add TensorBoard RUN Name")}'
143 loader = IRIGestureTemporal(os.path.join(Path().absolute(),
144 'dataset'),
145 dataTypes="All", token=sys.argv[2])
146 dataset = loader.get_all_dataset()
147 dataset.shuffle()
148 train_dataset, test_dataset = \
149 tools.temporal_dataset_split(dataset,
150 train_ratio=0.95)
151 print("Dataset type: ", dataset)
152 print("Number of samples / sequences: ", len(set(dataset)))
153
154 print("Number of train buckets: ", len(set(train_dataset)))
155 print("Number of test buckets: ", len(set(test_dataset)))
156
157 # Creating Data loaders
158 train_loader = tools.create_data_loaders(train_dataset,
159 batch_size,
160 shuffle,

page 68 Master’s Thesis

161 DEVICE)
162 test_loader = tools.create_data_loaders(test_dataset,
163 32, shuffle,
164 DEVICE)
165
166 # Create model and optimize
167 model = Classifier(
168 edge_index=train_dataset.get_static_edge_index().to(DEVICE),
169 out_channels=len(loader.categories),
170 device=DEVICE.type)
171 model.to(DEVICE)
172
173 optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
174 scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.95)
175 loss_fn = torch.nn.CrossEntropyLoss(
176 weight=dataset.get_classes_proportion_vector().float().to(DEVICE))
177
178 tools.clear_path(
179 os.path.join(Path().absolute(), 'checkpoints',
180 f'{run_name}_Checkpoints'))
181 writer = SummaryWriter(log_dir=os.path.join('tensorboard/runs',
182 run_name))
183
184 model.train()
185 epoch = 0
186 max_epochs = 3000
187 while True:
188 if epoch < max_epochs:
189 train(categories=loader.categories, tensorboard_name=run_name)
190 epoch += 1
191 if epoch \% 25 == 0:
192 test(dataset_videos_paths=test_dataset.videos_paths,
193 categories=loader.categories)
194 model.train()
195 elif input("Do you want to exit?") == 'Yes':
196 break
197 else:
198 max_epochs = int(input("Set new max number of epochs"))
199
200 writer.flush()
201 writer.close()

Body Gestures recognition for Human Robot Interaction page 69

B3 Dataset.py

1 import base64
2 import glob
3 import os
4 import re
5 import shutil
6 from typing import List, Union
7 from typing import Tuple
8
9 import cv2

10 import mediapipe as mp
11 import numpy as np
12 import torch
13 from github import Github
14 from github import GithubException
15 from torch import default_generator, randperm
16 from torch_geometric.data import (InMemoryDataset, Data)
17 from torch_geometric_temporal.signal import DynamicGraphTemporalSignal
18
19 import utils.tools as tools
20
21 Edge_Indices = List[Union[np.ndarray, None]]
22 Edge_Weights = List[Union[np.ndarray, None]]
23 Node_Features = List[Union[np.ndarray, None]]
24 Targets = List[Union[np.ndarray, None]]
25 Additional_Features = List[np.ndarray]
26 Videos_Path = List[Union[str, None]]
27
28
29 class CustomDynamicGraphTemporalSignal(DynamicGraphTemporalSignal):
30 def __init__(self,
31 videos_path: Videos_Path,
32 edge_indices: Edge_Indices,
33 edge_weights: Edge_Weights,
34 features: Node_Features,
35 targets: Targets,
36 **kwargs: Additional_Features):
37 self.videos_paths = videos_path
38 super(CustomDynamicGraphTemporalSignal,
39 self).__init__(edge_indices,
40 edge_weights,
41 features,
42 targets, **kwargs)
43
44 def shuffle(self):
45 indices = randperm(self.snapshot_count,
46 generator=default_generator).tolist()
47
48 self.videos_paths = tools.sort_list_by_indices(self.videos_paths,
49 indices)
50 self.edge_indices = tools.sort_list_by_indices(self.edge_indices,
51 indices)
52 self.edge_weights = tools.sort_list_by_indices(self.edge_weights,

page 70 Master’s Thesis

53 indices)
54 self.features = tools.sort_list_by_indices(self.features,
55 indices)
56 self.targets = tools.sort_list_by_indices(self.targets,
57 indices)
58
59 def get_static_edge_index(self):
60 return self.__get_item__(0).edge_index
61
62 def get_classes_proportion_vector(self):
63 proportion_vector = torch.zeros(len(self.targets[0]))
64 for e in self.targets:
65 proportion_vector += e
66 return proportion_vector
67
68
69 class IRIGestureTemporal(InMemoryDataset):
70 r"""The IRIGesture dataset
71 .. note::
72 TO DO
73 Args:
74 root (string): Root directory where the dataset should be saved.
75 would be returned.
76 testSubject (string): Subject to exclude from Dataset in order
77 to use as Test.
78 dataTypes (string): Use 'Dynamic' or 'Static'.
79 token (string, optional): GitHub token needed in order to download
80 IRIGesture dataset. (By default uses 'GITHUB_TOKEN' environment
81 variable)
82 categories (list, optional): List of categories to include in the
83 dataset. Can include the categories :obj:`"attention"`,
84 :obj:`"right"`, :obj:`"left"`, :obj:`"stop"`, :obj:`"yes"`,
85 :obj:`"shrug"`. If set to :obj:`None`, the dataset will
86 contain all categories. (default: :obj:`None`)
87 transform (callable, optional): A function/transform that takes in an
88 :obj:`torch_geometric.data.Data` object and returns a transformed
89 version. The data object will be transformed before every access.
90 (default: :obj:`None`)
91 pre_transform (callable, optional): A function/transform that takes in
92 an :obj:`torch_geometric.data.Data` object and returns a
93 transformed version. The data object will be transformed before
94 being saved to disk. (default: :obj:`None`)
95 pre_filter (callable, optional): A function that takes in an
96 :obj:`torch_geometric.data.Data` object and returns a boolean
97 value, indicating whether the data object should be included in
98 thefinal dataset. (default: :obj:`None`)
99 """

100 # We will use this information in order to access GitHub.
101 __owner = "RamonRL"
102 __repo = "GESTURE-PROJECT"
103 __serverPath = "dataset/BodyGestureDataset"
104
105 __categories = []
106 __categoriesStatic = ['attention', 'right', 'left',

Body Gestures recognition for Human Robot Interaction page 71

107 'stop', 'yes', 'shrug'] # , 'static', 'random']
108 __categoriesDynamic = ['greeting', 'continue',
109 'turnback', 'no', 'slowdown', 'come'] # , 'back']
110
111 __nodes_to_use = [0, # nose
112 # 1, # left_eye_inner
113 # 2, # left_eye
114 # 3, # left_eye_outer
115 # 4, # right_eye_inner
116 # 5, # right_eye
117 # 6, # right_eye_outer
118 # 7, # left_ear
119 # 8, # right_ear
120 # 9, # mouth_left
121 # 10, # mouth_right
122 11, # left_shoulder
123 12, # right_shoulder
124 13, # left_elbow
125 14, # right_elbow
126 15, # left_wrist
127 16, # right_wrist
128 17, # left_pinky
129 18, # right_pinky
130 19, # left_index
131 20, # right_index
132 21, # left_thumb
133 22, # right_thumb
134 23, # left_hip
135 24 # right_hip
136 # 25, # left_knee
137 # 26, # right_knee
138 # 27, # left_ankle
139 # 28, # right_ankle
140 # 29, # left_heel
141 # 30, # right_heel
142 # 31, # left_foot_index
143 # 32] # right_foot_index
144]
145
146 def __init__(self, root, dataTypes="All", testSubject="S2",
147 token=None, categories=None,
148 transform=None, pre_transform=None, pre_filter=None):
149
150 self.__processed = False
151
152 if dataTypes == "Dynamic":
153 self.StaticData = False
154 self.DynamicData = True
155 elif dataTypes == 'All':
156 self.StaticData = True
157 self.DynamicData = True
158 else:
159 self.StaticData = True
160 self.DynamicData = False

page 72 Master’s Thesis

161
162 self.dataTypes = dataTypes
163 self.__testSubject = testSubject
164 self.alsoDownloadVideos = True
165
166 self.__token = token
167
168 if categories is not None:
169 categories = [gestures.lower() for gestures in categories]
170 for gesture in categories:
171 if self.__categoriesStatic.__contains__(gesture) \
172 and self.StaticData or \
173 self.__categoriesDynamic.__contains__(gesture) \
174 and self.DynamicData:
175 self.__categories.append(gesture)
176 else:
177 if self.DynamicData and not self.StaticData:
178 self.__categories = self.__categoriesDynamic
179 elif self.StaticData and not self.DynamicData:
180 self.__categories = self.__categoriesStatic
181 else:
182 self.__categories.extend(self.__categoriesStatic)
183 self.__categories.extend(self.__categoriesDynamic)
184
185 self.number_targets = len(self.__categories)
186 self.number_nodes = len(self.__nodes_to_use)
187
188 # Video configurations
189 self.number_frames = 30
190 self.frames_gap = 3
191 self.frames_offset = 15 # 0,7 s at 22 fps
192
193 super().__init__(root, transform, pre_transform, pre_filter)
194 self.data, self.slices = torch.load(self.processed_paths[0])
195
196 if not self.__processed:
197 self.features = torch.load(
198 os.path.join(self.processed_dir,
199 f'{self.dataTypes[:3]}_feat.pt'))
200 self.targets = torch.load(
201 os.path.join(self.processed_dir,
202 f'{self.dataTypes[:3]}_trgs.pt'))
203 self.__test_features = torch.load(
204 os.path.join(self.processed_dir,
205 f'{self.dataTypes[:3]}_tsfeat.pt'))
206 self.__train_features = torch.load(
207 os.path.join(self.processed_dir,
208 f'{self.dataTypes[:3]}_trfeat.pt'))
209 self.__test_targets = torch.load(
210 os.path.join(self.processed_dir,
211 f'{self.dataTypes[:3]}_tstrgs.pt'))
212 self.__train_targets = torch.load(
213 os.path.join(self.processed_dir,
214 f'{self.dataTypes[:3]}_trtrgs.pt'))

Body Gestures recognition for Human Robot Interaction page 73

215 self.__test_videos = torch.load(
216 os.path.join(self.processed_dir,
217 f'{self.dataTypes[:3]}_tsvids.pt'))
218 self.__train_videos = torch.load(
219 os.path.join(self.processed_dir,
220 f'{self.dataTypes[:3]}_trvids.pt'))
221 self.__videos = torch.load(
222 os.path.join(self.processed_dir,
223 f'{self.dataTypes[:3]}_vids.pt'))
224 self.CCO = torch.load(
225 os.path.join(self.processed_dir,
226 f'{self.dataTypes[:3]}_CCO.pt'))
227 self.__totalElements = torch.load(
228 os.path.join(self.processed_dir,
229 f'{self.dataTypes[:3]}_tels.pt'))
230
231 @property
232 def raw_file_names(self):
233 # We look for two random files in order to decide if dataset
234 # needs to be downloaded.
235 if self.StaticData and not self.DynamicData:
236 raw_file_names_list = ['S1_attention_1_1m_upper.npy',
237 'S6_stop_2_4m_full.npy']
238 if self.alsoDownloadVideos:
239 raw_file_names_list.append(
240 os.path.join('videos',
241 'S1_attention_1_1m_upper.avi'))
242 return raw_file_names_list
243 elif self.DynamicData and not self.StaticData:
244 raw_file_names_list = ['S1_continue_3_6m_full.npy',
245 'S10_turnback_1_1m_upper.npy']
246 if self.alsoDownloadVideos:
247 raw_file_names_list.append(
248 os.path.join('videos',
249 'S1_continue_3_6m_full.avi'))
250 return raw_file_names_list
251 else:
252 raw_file_names_list = ['S1_attention_1_1m_upper.npy',
253 'S10_turnback_1_1m_upper.npy']
254 if self.alsoDownloadVideos:
255 raw_file_names_list.append(
256 os.path.join('videos',
257 'S1_continue_3_6m_full.avi'))
258 raw_file_names_list.append(
259 os.path.join('videos',
260 'S1_attention_1_1m_upper.avi'))
261 return raw_file_names_list
262
263 @property
264 def processed_file_names(self):
265 # We generate a *.pt file with name composition of each gesture.
266 name = '_'.join([gesture[:2]
267 for gesture in self.__categories])
268 return f'{self.dataTypes[:3]}' \

page 74 Master’s Thesis

269 f'_{str(self.alsoDownloadVideos)[:1]}' \
270 f'_{name}.pt'
271
272 @property
273 def categories(self):
274 return self.__categories
275
276 def download(self):
277 git = Github(self.__token)
278 owner = git.get_user(self.__owner)
279 repository = owner.get_repo(self.__repo)
280 if os.path.exists(self.raw_dir):
281 shutil.rmtree(self.raw_dir)
282 os.makedirs(self.raw_dir)
283 if self.alsoDownloadVideos:
284 os.makedirs(os.path.join(self.raw_dir, "videos"))
285
286 self.__recursive_download(repository, self.__serverPath, self.raw_dir)
287
288 def __recursive_download(self, repository, server_path,
289 local_path, content_prefix=""):
290 contents = repository.get_contents(server_path)
291
292 for content in contents:
293 if content.type == 'dir':
294 # We use a RegEX to store subject folder recursively.
295 prefix = content.name if re.search(
296 "^S\d{0,}\$",
297 content.name) else content_prefix
298 self.__recursive_download(repository,
299 content.path, local_path, prefix)
300 elif content.type == 'file' and (
301 ".npy" in content.name or (
302 self.alsoDownloadVideos and ".avi" in content.name)):
303 try:
304 path = content.path
305 if self.__categories.__contains__(
306 content.name.split("_")[0]):
307 if (self.StaticData
308 and (("3Djoints" in path)
309 or ("videos" in path
310 and not ("dynamic_videos" in path)))) \
311 or (self.DynamicData and ("dynamic" in path)):
312 file_name = content_prefix + "_" + content.name
313 file_content = repository.get_contents(path)
314 file_data = base64.b64decode(file_content.content)
315 if ".avi" in content.name:
316 file_out = open(os.path.join(
317 local_path, "videos", file_name), "wb")
318 else:
319 file_out = open(os.path.join(
320 local_path, file_name), "wb")
321 file_out.write(file_data)
322 file_out.close()

Body Gestures recognition for Human Robot Interaction page 75

323
324 except (GithubException, IOError) as exc:
325 print('Error downloading \%s: \%s', content.path, exc)
326
327 def process(self):
328 if os.path.exists(self.processed_dir):
329 shutil.rmtree(self.processed_dir)
330 os.makedirs(self.processed_dir)
331 if self.alsoDownloadVideos:
332 os.makedirs(os.path.join(self.processed_dir, 'videos'))
333
334 data_list = []
335 self.features = []
336 self.targets = []
337 self.__test_features = []
338 self.__train_features = []
339 self.__test_targets = []
340 self.__train_targets = []
341 self.__test_videos = []
342 self.__train_videos = []
343 self.__videos = []
344
345 # We create an extremely connected graph.
346 self.CCO = np.swapaxes([[i, j] for i in range(0, self.number_nodes)
347 for j in range(0, self.number_nodes)], 0, 1)
348
349 for gesture in self.__categories:
350 paths = glob.glob(os.path.join(self.raw_dir, f'*{gesture}*.npy'))
351 paths = sorted(paths, key=lambda e: (len(e), e))
352
353 for path in paths:
354 is_test_subject = path.__contains__(self.__testSubject)
355 gesture_seq = np.load(path, allow_pickle=True)
356 number_of_sequences = ((gesture_seq.shape[
357 0] - self.frames_offset)
358 - self.number_frames)\
359 // self.frames_gap
360
361 video_name = None
362 input_video = None
363 if self.alsoDownloadVideos:
364 video_name = os.path.splitext(os.path.basename(path))[0]
365 input_video = cv2.VideoCapture(
366 f'{os.path.join(self.raw_dir, "videos", video_name)}'
367 f'.avi')
368
369 for seq in range(0, number_of_sequences):
370 x = np.empty([self.number_nodes, 4, 0])
371 init_frame = seq * self.frames_gap + self.frames_offset
372 end_frame = init_frame + self.number_frames
373
374 output_video = None
375 output_video_path = None
376 if self.alsoDownloadVideos:

page 76 Master’s Thesis

377 output_video_path = \
378 f'{os.path.join(self.processed_dir, "videos",

video_name)}' \↪→

379 f'_{init_frame}' \
380 f'_{end_frame}.avi'
381 output_video = cv2.VideoWriter(
382 output_video_path,
383 cv2.VideoWriter_fourcc(*'XVID'),
384 int(input_video.get(cv2.CAP_PROP_FPS)),
385 (int(input_video.get(cv2.CAP_PROP_FRAME_WIDTH)),
386 int(input_video.get(cv2.CAP_PROP_FRAME_HEIGHT))))
387
388 for frame in range(init_frame, end_frame):
389 pose = gesture_seq[frame,][0]
390 frame_landmark = np.empty([0, 4])
391
392 if self.alsoDownloadVideos:
393 input_video.set(cv2.CAP_PROP_POS_FRAMES, frame)
394 ret, video_frame = input_video.read()
395 if ret:
396 mp.solutions.drawing_utils.draw_landmarks(
397 video_frame,
398 pose,
399 mp.solutions.pose.POSE_CONNECTIONS)
400 output_video.write(video_frame)
401
402 # There's 33 landmarks in total.
403 for landmark in range(0, 33):
404 if self.__nodes_to_use.__contains__(landmark):
405 frame_landmark = np.append(
406 frame_landmark,
407 np.expand_dims(
408 [pose.landmark[landmark].x,
409 pose.landmark[landmark].y,
410 pose.landmark[landmark].z,
411 pose.landmark[landmark].visibility],
412 axis=0),
413 axis=0)
414
415 # x = [n° nodes, 4, number_of_frames]
416 x = np.append(x,
417 np.expand_dims(frame_landmark,
418 axis=2), axis=2)
419
420 if self.alsoDownloadVideos:
421 output_video.release()
422
423 x = np.swapaxes(x, 0, 1)
424 # [4, number_nodes, number_of_frames]
425 self.features.append(x)
426
427 if is_test_subject:
428 self.__test_features.append(x)
429 self.__test_videos.append(output_video_path)

Body Gestures recognition for Human Robot Interaction page 77

430 else:
431 self.__train_features.append(x)
432 self.__train_videos.append(output_video_path)
433
434 self.__videos.append(output_video_path)
435
436 x = np.swapaxes(x, 0, 2)
437 # [number_of_frames, number_nodes, 4]
438 x = torch.tensor(x, dtype=torch.float)
439
440 edge_index = torch.tensor(self.CCO) # [2, 1089]
441 y = self.__categories.index(gesture)
442
443 target = np.zeros(len(self.__categories))
444 target[y] = 1
445 self.targets.append(target)
446
447 if is_test_subject:
448 self.__test_targets.append(target)
449 else:
450 self.__train_targets.append(target)
451
452 y = torch.tensor(y) # [1]
453
454 data = Data(x=x, edge_index=edge_index,
455 edge_attr=None, y=y)
456 if self.pre_filter is not None\
457 and not self.pre_filter(data):
458 continue
459 if self.pre_transform is not None:
460 data = self.pre_transform(data)
461
462 data_list.append(data)
463
464 if self.alsoDownloadVideos:
465 input_video.release()
466
467 torch.save(self.collate(data_list), self.processed_paths[0])
468 torch.save(self.features, os.path.join(
469 self.processed_dir, f'{self.dataTypes[:3]}_feat.pt'))
470 torch.save(self.__test_features, os.path.join(
471 self.processed_dir, f'{self.dataTypes[:3]}_tsfeat.pt'))
472 torch.save(self.__train_features, os.path.join(
473 self.processed_dir, f'{self.dataTypes[:3]}_trfeat.pt'))
474 torch.save(self.targets, os.path.join(
475 self.processed_dir, f'{self.dataTypes[:3]}_trgs.pt'))
476 torch.save(self.__test_targets, os.path.join(
477 self.processed_dir, f'{self.dataTypes[:3]}_tstrgs.pt'))
478 torch.save(self.__train_targets, os.path.join(
479 self.processed_dir, f'{self.dataTypes[:3]}_trtrgs.pt'))
480 torch.save(self.__test_videos, os.path.join(
481 self.processed_dir, f'{self.dataTypes[:3]}_tsvids.pt'))
482 torch.save(self.__train_videos, os.path.join(
483 self.processed_dir, f'{self.dataTypes[:3]}_trvids.pt'))

page 78 Master’s Thesis

484 torch.save(self.__videos, os.path.join(
485 self.processed_dir, f'{self.dataTypes[:3]}_vids.pt'))
486 torch.save(self.CCO, os.path.join(
487 self.processed_dir, f'{self.dataTypes[:3]}_CCO.pt'))
488
489 self.__totalElements = len(data_list)
490 torch.save(self.__totalElements, os.path.join(
491 self.processed_dir, f'{self.dataTypes[:3]}_tels.pt'))
492
493 self.__processed = True
494
495 def get_dataset(self) -> Tuple[CustomDynamicGraphTemporalSignal,
496 CustomDynamicGraphTemporalSignal]:
497 """Returning the IRIGesture data iterator.
498
499 Return types:
500 * **(train_dataset, test_dataset)**
501 *(tuple of DynamicGraphTemporalSignal)*
502 - The IRIGestureTemporalDataset.
503 """
504
505 test_dataset = CustomDynamicGraphTemporalSignal(
506 self.__test_videos,
507 # List of CCO [2, self.number_nodes**2]
508 self.__get_edges(number_elements=len(
509 self.__test_features)),
510 # List of ones (self.number_nodes**2,)
511 self.__get_edge_weights(number_elements=len(
512 self.__test_features)),
513 # List each item (4, self.number_nodes, frames)
514 self.__test_features,
515 # List each item (frames, gestures)
516 self.__test_targets
517)
518
519 train_dataset = CustomDynamicGraphTemporalSignal(
520 self.__train_videos,
521 # List of CCO [2, self.number_nodes**2]
522 self.__get_edges(number_elements=len(
523 self.__train_features)),
524 # List of ones (self.number_nodes**2,)
525 self.__get_edge_weights(number_elements=len(
526 self.__train_features)),
527 # List each item (4, self.number_nodes, frames)
528 self.__train_features,
529 # List each item (gestures)
530 self.__train_targets
531)
532
533 return train_dataset, test_dataset
534
535 def get_all_dataset(self) -> CustomDynamicGraphTemporalSignal:
536 """Returning the IRIGesture data iterator.
537

Body Gestures recognition for Human Robot Interaction page 79

538 Args types:
539 * **frames** *(int)* - The number of consecutive frames T,
540 default 16.
541 Return types:
542 * **dataset** *(DynamicGraphTemporalSignal)*
543 - The IRIGestureTemporal dataset.
544 """
545 dataset = CustomDynamicGraphTemporalSignal(
546 self.__videos,
547 # List of CCO [2, self.number_nodes**2]
548 self.__get_edges(),
549 # List of ones (self.number_nodes**2,)
550 self.__get_edge_weights(),
551 # List each item (4, self.number_nodes, frames)
552 self.features,
553 # List each item (gestures)
554 self.targets
555)
556 return dataset
557
558 def __get_edges(self, number_elements=None):
559 number_of_elements = self.__totalElements \
560 if number_elements is None else number_elements
561 edges = [self.CCO] * number_of_elements
562 return edges
563
564 def __get_edge_weights(self, number_elements=None):
565 number_of_elements = self.__totalElements \
566 if number_elements is None else number_elements
567 edge_weights = [np.ones((
568 self.number_nodes ** 2,))] * number_of_elements
569 return edge_weights
570
571 @property
572 def categories(self) -> List[str]:
573 return self.__categories

page 80 Master’s Thesis

B4 Tools.py

1 import os
2 import shutil
3 from typing import List, Tuple
4
5 import numpy as np
6 import pandas as pd
7 import seaborn as sn
8 import torch
9 import torchvision.io

10 from numpy import ndarray
11 from sklearn.metrics import confusion_matrix
12 from torch.backends import cudnn
13 from torch.utils.data import DataLoader, TensorDataset
14
15 from dataset.IRIDatasetTemporal import CustomDynamicGraphTemporalSignal
16
17
18 def seed_everything(seed: int = 1997):
19 np.random.seed(seed)
20 torch.manual_seed(seed)
21 torch.cuda.manual_seed(seed)
22 torch.backends.cudnn.deterministic = True
23 torch.backends.cudnn.benchmark = True
24
25
26 def read_video(video_path: str) -> torch.Tensor:
27 """
28 Read a video with 4D tensor dimensions [time(frame),
29 new_width, new_height, channel]
30 and converts it to a 5D tensor [batch-size, time(frame),
31 channel(color), height, width].
32 """
33 original_video = torchvision.io.read_video(video_path)
34 video = np.transpose(original_video[0].numpy()
35 [..., np.newaxis], (4, 0, 3, 1, 2))
36 return torch.from_numpy(video)
37
38
39 def create_confusion_matrix(y_pred, y_true, classes, title):
40 # Build confusion matrix
41 cf_matrix = confusion_matrix(y_true.cpu(), y_pred.cpu(),
42 labels=[*range(len(classes))],
43 normalize='true')
44 df_cm = pd.DataFrame(cf_matrix / np.sum(cf_matrix) * 10,
45 index=[i for i in classes],
46 columns=[i for i in classes])
47 if len(classes) > 8:
48 sn.set(rc={'figure.figsize': (12, 8)})
49 s = sn.heatmap(df_cm, annot=True)
50 s.set(title=title)
51 return s.get_figure()
52

Body Gestures recognition for Human Robot Interaction page 81

53
54 def sort_list_by_indices(original_list: List,
55 indices: List[int]) -> List[ndarray]:
56 return [i for _, i in sorted(zip(indices,
57 original_list))]
58
59
60 def create_data_loaders(dataset: CustomDynamicGraphTemporalSignal,
61 batch_size: int, shuffle: bool,
62 DEVICE: torch.device) -> DataLoader:
63 # Prepare features
64 features_array = np.array(dataset.features) # (L, F, N, T)
65 features_transposed = np.transpose(
66 features_array, (0, 1, 3, 2)) # (L, F, T, N)
67 features_tensor = torch.from_numpy(
68 features_transposed).type(
69 torch.FloatTensor).to(DEVICE) # (L, F, T, N)
70
71 # Prepare targets
72 target_array = np.array(dataset.targets) # (L, G)
73 targets_values = np.argmax(target_array, axis=1) # (L,)
74 target_tensor = torch.from_numpy(
75 targets_values).type(
76 torch.FloatTensor).to(DEVICE) # (L,)
77
78 # Prepare videos
79 videos_list = np.linspace(0, len(dataset.videos_paths),
80 len(dataset.videos_paths),
81 False) # (L,)
82 videos_tensor = torch.from_numpy(videos_list)\
83 .type(torch.IntTensor).to(DEVICE) # (L,)
84
85 new_dataset = TensorDataset(features_tensor,
86 target_tensor,
87 videos_tensor) # (L)
88 loader = DataLoader(new_dataset, batch_size=batch_size,
89 shuffle=shuffle, drop_last=True) # (L/B)
90
91 if len(loader) < 1:
92 raise AttributeError('Batch size is too big')
93 else:
94 return loader
95
96
97 def temporal_dataset_split(
98 data_iterator: CustomDynamicGraphTemporalSignal,
99 train_ratio: float = 0.8,

100) -> Tuple[CustomDynamicGraphTemporalSignal,
101 CustomDynamicGraphTemporalSignal]:
102 r"""Function to split a data iterator according to a fixed ratio.
103
104 Arg types:
105 * **data_iterator** *(Signal Iterator)* - Node features.
106 * **train_ratio** *(float)* - Graph edge indices.

page 82 Master’s Thesis

107
108 Return types: * **(train_iterator, test_iterator)**
109 *(tuple of CustomDynamicGraphTemporalSignal Iterators)* -
110 Train and test data iterators.
111 """
112 train_snapshots = int(train_ratio * data_iterator.snapshot_count)
113
114 if type(data_iterator) == CustomDynamicGraphTemporalSignal:
115 train_iterator = CustomDynamicGraphTemporalSignal(
116
117 data_iterator.videos_paths[0:train_snapshots],
118 data_iterator.edge_indices[0:train_snapshots],
119 data_iterator.edge_weights[0:train_snapshots],
120 data_iterator.features[0:train_snapshots],
121 data_iterator.targets[0:train_snapshots],
122)
123
124 test_iterator = CustomDynamicGraphTemporalSignal(
125 data_iterator.videos_paths[train_snapshots:],
126 data_iterator.edge_indices[train_snapshots:],
127 data_iterator.edge_weights[train_snapshots:],
128 data_iterator.features[train_snapshots:],
129 data_iterator.targets[train_snapshots:],
130)
131 else:
132 raise TypeError('Must be CustomDynamicGraphTemporalSignal')
133
134 return train_iterator, test_iterator
135
136
137 def clear_path(path: str):
138 if os.path.exists(path):
139 shutil.rmtree(path)
140 os.makedirs(path)

	ABSTRACT
	ACKNOWLEDGEMENTS
	ACRONYMS
	PREFACE
	Project origin and motivation

	INTRODUCTION
	Project Objectives
	Personal Objectives
	Non-Objectives
	Scope of the project

	STATE OF THE ART
	Human-Robot Interaction
	Bridging the gap between Machine Learning and HRI
	Body Gestures Recognition

	KEY THEORY CONCEPTS
	Artificial Intelligence and Machine Learning (Deep Learning)
	Neural Networks
	Logistic Regression
	Loss Function
	Gradient Descent Method
	Backward Propagation

	Shallow and Deep Neural Networks
	Vectorization
	Transformers
	Recurrent Neural Networks
	Attention

	Graph Networks
	Graphs Data Structures
	Graph Neural Networks
	Graph Convolutional Networks
	Graph Attention Networks
	Temporal Graph Neural Networks

	Neural Network Framework: PyTorch

	POSTURE MODEL: METHOD DEVELOPMENT
	System overview
	Landmarks extraction
	Body Gestures Dataset
	Data Augmentation
	Train-Test Split

	Body Gestures Recognition
	Key Nodes Selection
	Gestures Selection
	Key Frames Selection
	Class Imbalance
	Hidden Layers
	Key Edges Selection
	Neural Network Architecture

	EXPERIMENTATION AND RESULTS
	Model Experiments
	Model Results
	State-of-the-Art Results

	PROJECT PLAN
	Project Plan Methodology
	Project Gantt
	Trello

	TRAININGS
	Deep Learning Specialization
	PyTorch Basics
	PyTorch-Geometric & PyTorch-Geometric-Temporal

	RO-MAN CONFERENCE
	BUDGET
	ENVIRONMENTAL IMPACT
	CONCLUSIONS
	BIBLIOGRAPHY
	ANNEX A
	GNN - Different variants of recurrent operators
	TGNN - Models

	ANNEX B
	Model.py
	Main.py
	Dataset.py
	Tools.py

