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Abstract

Artificial intelligence has been a field of interest in the scientific community since the
20th century, inside this field is found deep learning. This discipline of Machine learning
focuses on the creation of artificial intelligence capable of reproducing human tasks by learn-
ing from raw data. In fact, the reason why deep learning has experienced a great increase in
attention and scientific articles in the last decades is the settlement of the digital era, which
has meant an exponential increase in stored data, and therefore has allowed algorithms to
achieve exceptional results.

Based on the growing need for trained professionals in this field, this final thesis is a study
of the fundamentals of deep learning and machine learning that aims to serve as a bridge to
more cutting-edge knowledge. The central pillar of the project are artificial neural networks
applied to classification, though other general Machine Learning concepts such as gradient
descent optimization methods and some regularization methods are also studied at the same
time.

The main objective of the project is to analyze the effectiveness of neural networks in
some databases, as well as to compare the impact of implementing different features in the
network. The programming of all the necessary codes from scratch without the use of sup-
port libraries has also been an important part of the project.

To address these objectives, extensive research has been carried out in the field, not only
on the theoretical knowledge but also on the mathematics behind it. In addition, a method-
ology based on object-oriented programming has been followed to create a clean, readable,
and easily extendable code.

The results obtained demonstrate the effectiveness of neural networks applied to the
classification of both data and images. They also highlight the effectiveness of some of the
above features over others. The next logical step after this project would be to further explore
the use of neural networks as autoencoders, and study the impact of the implementation of
the convolution operation for image classification.
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Resumen

La inteligencia artificial ha sido un campo de interés en el colectivo científico desde el
siglo XX, se trata de un campo muy extenso dentro del cual se halla el aprendizaje profundo.
Este se enfoca en la creación de inteligencias artificiales capaces de reproducir tareas hu-
manas aprendiendo a base de datos. De hecho, el motivo por el cual el aprendizaje profundo
ha experimentado un gran aumento de atención y de artículos científicos en las últimas dé-
cadas es el asentamiento de la era digital, la cual ha supuesto un incremento exponencial
en los datos almacenados, y por tanto ha permitido a los algoritmos conseguir resultados
excepcionales.

Basándose en la creciente necesidad de profesionales formados en este ámbito, este tra-
bajo de final de grado es un estudio de los fundamentos del aprendizaje profundo y "Machine
Learning" que pretende servir de puente hacia conocimientos más punteros. El pilar central
del proyecto son las redes neuronales artificiales aplicadas a la clasificación, aunque paralela-
mente también se estudian otros conceptos generales de "Machine Learning" como métodos
de optimización basados en el descenso del gradiente y algunos métodos de regularización.

El objetivo principal del proyecto es analizar la efectividad de las redes neuronales en
algunas bases de datos, así como comparar el impacto de implementar diferentes caracterís-
ticas en la red. Así mismo la programación de todos los códigos necesarios desde cero sin
utilizar librerías de apoyo ha tenido un peso importante en el proyecto.

Para abordar estos objetivos se ha llevado a cabo una investigación extensa del campo,
no solo del conocimiento teórico sinó también de las matemáticas que hay detrás. Además,
se ha seguido una metodología basada en la programación orientada a objeto para crear un
código limpio, legible y fácilmente extensible desde el principio.

Los resultados obtenidos demuestran la efectividad de las redes neuronales aplicadas a
la clasificación tanto de datos como imágenes. Además, resaltan la eficacia de algunas de
las anteriores características por encima de otras. El siguiente paso lógico tras este proyecto
consistiría en profundizar más en el uso de las redes neuronales como "autoencoders" y
estudiar el impacto de la implementación de la convolución para la clasificación de imágenes.
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Study of Efficient Numerical Tools for Machine Learning
Darder Bennassar Antonio

1 Introduction

1.1 Aims

The goal of this project is to create an in-house code containing the basic Deep
Learning tools currently used for classification and regression tasks. This code will be
built on the foundations of neural network algorithms, and it will be constantly improved
by adding features such as autodifferentiation, stochastic gradient or the kernel trick. The
clearance of the code will also be a vital part of the project as it will become increasingly
complicated and it will be a need to navigate easily through it. For this reason, another
pillar of this study will be object-oriented programming (OOP).

1.2 Requirements

The object of this study is to present in a clear way the most common algorithms in
the field of deep learning. Under this pretext it is also planned to implement a simple code
from scratch. The software used will be MATLAB and for the purpose of the project, the
basic functions and some more complex ones such as fmincon or dct will be used without
internal implementation.

Another requirement established for the project is that the code should be able to
be executed and inspected on any computer, easy to read and extendable. Databases will
also play an important role, thus it will be also required free external sources.

The requirements can be summarized into five main points:

• Developed in MATLAB software
• Open Access databases
• Code almost completely implemented from the standard MATLAB functionalities
• For any user and computer
• Easy to read and extendable

1
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1.3 Justification

Deep learning methods have drastically increased in interest in the recent years.
Although the mathematical concepts used in this technology were already known back in
the 1950s, it was not until 2005 when the internet became widely used and the computa-
tional power and size of the data grew dramatically (see Figure 1.1), that this technology
began to look promising. During these years the name of the field was shifted from
"conectionism" to "deep learning". [6]

Figure 1.1 Increase in the size of the datasets for training deep learning models from 1950 to
2015. Source [6]

In the last years several Artificial Intelligence (AI) have appeared demonstrating
better performance than humans at certain tasks, solving quotidian problems with ease.
Some examples of these are:

• Alphazero (from deep mind 2017) is an AI trained to play chess, learned from scratch
and eventually defeated the strongest computer (a non deep learning programm).

• GPT-3 (from openAI 2020) is an autoregressive language model capable of repro-
ducing human writing.

• Codex (from openAI 2021) it is capable of parsing natural language and generating
code in response.

Nowadays we live in the automation era, where AIs are starting to merge, and getting
into society making human life easier. It is a general believe that artificial intelligence will
become a big part of the picture in the coming years, contributing to some of the major
scientific challenges of our age [11]. Developing a project about its foundations is a great
way to start building knowledge towards much more complex and innovative algorithms
that are currently in use.

2
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1.4 Scope

The development of this project will include the study and implementation in an
in-house code of the following concepts:

• Feedforward Neural Networks (NN) or Multilayer Perceptrons (MLPs)
• Automatic Differentiation
• Stochastic Gradient Descent (SGD)
• Autoencoders
• Kernel Trick

All these will be enclosed and performed in:

• MATLAB language/environment
• OOP paradigm

The project will not include:

• Creation of databases
• Development of a constrained solver
• Discrete Cosine Transformation

High level deliverables:

• Project report
• Budget
• Code files

1.5 Planning

The first step in every project is to settle a planning. But before doing so, in order
to get the best possible organization, a work breakdown structure has been done. This
scheme is helpful to identify the tasks that will be developed, and break them into smaller
ones (see next page).

The main tasks are the five ones described in the scope of the project, jointly with
the project management. These six tasks have been subdivided into different subtasks.
This last level is the one that will be represented in the Gantt diagram.

3
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Figure 1.2 Gantt Diagram for this project. Source own

It is worth mentioning this Gantt diagram is planned for a regular TFE semester.
In spite, the project was started at the beginning of the previous semester and some
progress has been made. To set the context, tasks 1 and 2 have been developed almost
in their totality, and tasks 3 and 6 have already been started. This will leave more room
for maneuver in the last parts of the project.

4
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2 State of the art

In this section, the methodology process of this thesis will be briefly explained. It
includes a state of the art of the different parts of the project, starting from the outside
layers to more complex concepts. A more in depth study of the mathematics behind each
algorithm is shown at the beginning of its respective section.

Deep Learning

Deep Learning is a field in computation science which started almost in the 1950s
but it was not until 2005 when it really started to emerge thanks to globalization and the
start of the "data era". With higher amounts of data and higher computational power,
deep learning started to make its own way outstanding over other Machine Learning
algorithms.

Machine Learning refers to the study of computer algorithms which use mathemat-
ical models to represent a sample of data, expecting that new inputs will be correctly
predicted by the model. Inside Machine Learning is found representation learning, this
field differs from traditional ML as the features are not hand-designed but learned by the
computer itself. Finally inside representation learning is found deep learning, and as its
name suggests it is based on the addition of more layers to the model, this enhancing the
creation of more abstract features. Deep Learning is most of the times based on deep
neural network architectures or multilayer perceptrons (MLPs). (In Figure 2.1 a Venn
diagram of deep learning is shown)

Figure 2.1 Venn Diagram of the layers of Deep Learning. Source [6]

6
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Deep learning is one of the most used techniques in AI and it has a good outlook
for the coming years. It is expected to grow from $ 4,065.0 million in 2016 to $ 169,411.8
million in 2025. This means a compound annual growth rate of 55.6% in just 7 years
(2018-2025) [7]. According to another study the computational annual growth rate from
2019 to 2026 will be around 35.4% [9]. These values represent how strong the market
related to AI is becoming and how these new technologies are getting into people’s daily
lives. In figure 2.2 the growth of different artificial intelligence fields including ML is
shown for the next years.

On the other hand, figure 2.3 shows a survey done to Italian firms in 2020. Where
only 9% of them answered that they had no plan for AI implementation. However, a
stunning 71% of them answered that AI is already being used or in an experimental
phase in some of their business areas.

Figure 2.2 Compound annual growth rate from 2018 to 2026 for different AIs. Source [9]

Figure 2.3 Italian firms intention in the implementation of AI techniques. Source [9]

7
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Feedforward Neural Networks

As Ian Goodfellow says in his book, neural networks are the basic and most spread
models currently in use: "Deep feedforward networks, also often called feedworward neural
networks or multilayer perceptrons (MLPs), are the quintessential deep learning models."
(Ian Goodfellow, et al. 2016 [6])

Neural networks hide a loosely connection to neuroscience. The name was firstly
inspired by the biological neural networks that constitute animal brains, which base their
functioning in electrical signals. Analogously MLPs are formed by multiple layers of
individual units (neurons) that receive inputs and compute an output in response (see
Figure 2.4). They are called feedforward as there are no backward connections, if they
are extended to incorporate feedbacks they are called recurrent neural networks.

Figure 2.4 The general architecture of a neural network. With its inputs, hidden layers and
outputs. Source own

Convolutional networks, autoencoders, and recurrent networks all use neural net-
works as their foundation. These are the most often utilized machine learning algorithms
in several fields like object/facial recognition, parsing human language or even modeling
key dynamic simulations in aerospace engineering.

Automatic differentiation

Optimization is one of the pillars that support deep learning. Usually the model
uses a scalar function f : Rn → R to represents the model error which is minimized using
gradient based algorithms, therefore derivatives are required. Most of the time computing
derivatives becomes a really demanding task, and automatic differentiation proposes a
heuristic and elegant way to sort the principal issues saving considerable amount of time.

8
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In computer science automatic differentiation (abbreviated autodiff) is a way to
evaluate the derivatives of functions. Besides autodiff, there are two other traditional
ways of computing derivatives, these three are: (i) Symbolic differentiation, (ii) Numerical
differentiation, (iii) Automatic differentiation

Symbolic differentiation is the "human" way of calculating derivatives, this approach
is difficult to apply for computers and frequently results in inefficient code. On the other
hand, numerical differentiation is the most basic and widely used methodology which is
performed using the finite difference method, but this method is usually prone to round-off
errors as well as extremely computationally expensive and in some cases unaffordable.

Both of these methods have problems addressing higher derivatives, where mistakes
grow, and are sluggish at computing partial derivatives, which is a characteristic feature
of machine learning.

Autodiff, a chain rule-based method, overcomes the majority of these issues by
breaking the problem into smaller pieces over and over until it reaches the simplest possible
derivative. The computational process follows a flow through the different simplest steps
broken before. In figure 2.5, this process is represented via a flow computational diagram.

Figure 2.5 Autodiff flow diagram for a per-example function (f(x) = x1 · e
1
2 (x2

1+x2
2)). Source

[17]
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Gradient Descent Optimization

The automatic differentiation process was justified on the premise that the solvers for
the optimization process usually need at least first derivatives. This is the case of gradient
descent methods. Optimization algorithms are often classified by different characteristics:
(i) First order - Second order, (ii) Batch - Minibatch Stochastic, (iii) With adaptive
learning rate (LR) - Without adaptive LR

Stochastic Gradient Descent or SGD is the most common method used in machine
learning. It is a first-order minibatch stochastic method that might or might not have an
adaptive learning rate. This means that: it only uses first derivatives, and it uses a small
batch of data to estimate the gradient. See further details in Section 6

These properties leave SGD optimization as a robust and easy to implement method,
and this makes it to be among the top solvers in deep learning techniques.

Autoencoders

These structures can be seen as a particular case of feedforward neural networks
which tries to learn when copying its input to its output. This may be understand as
a composition of two functions: the encoder h = f(x) and the decoder r = g(h). The
expectation is that the autoencoder does not learn to perfectly copy x, but it is forced to
learn to prioritize which information is useful.

There are several types of autoencoders but one of the simplest is the undercomplete
autoencoder which reduces the input dimension in the encoder and reconstructs it in the
decoder (see figure 2.6). Then in the last layer of the encoder, all the information has
been compressed to a much more dense state.

If the decoder is linear and the loss function is represented by the L2 norm the
undercomplete autoencoder learns to span the same subspace as PCA. One goal of this
project is to try to assemble this behavior and compare these results.

Figure 2.6 shows how the inner layers of an autoencoder can be used to compress
images. But more surprisingly this architecture allows to introduce "random" inputs at
the bottleneck in order to generate images.
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Figure 2.6 Example of undercomplete autoencoder and its latent space. Source [15]

The kernel method

The kernel method is a family of algorithms used for pattern analysis which is a
machine learning modality that tries to recognize similarities or relations in the datasets.

Kernel techniques get their name from the fact that they employ kernel functions
to work. These allow them to work in a high-dimensional implicit feature space without
ever computing the coordinates of the data in that space, instead computing the inner
products between all pairs of data in the feature space. This procedure is frequently less
computationally expensive than explicitly computing the coordinates. This approach is
called the "kernel trick".

This method can be applied wherever a dot product in the data is computed. It is
a really helpful tool that saves a good amount of computation time, but a critical thing
to keep in mind is that when converting data to higher dimensions there are chances of
overfitting the model.

It is common practice to use the kernel trick in support-vector machines (SVD) but
it is also used in many other algorithms such as the kernel perceptron, linear adaptive
filters, and principal component analysis.
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3 The classification problem

Classification has been a problem of interest in lots of fields for a long time, and the
possibility of creating a model capable of differentiating between several groups has been
studied since the 19th century. Few decades after the first linear regressions were studied
in 1805 by Legendre and Gauss, the logistic regression was born as a model of population
growth by Pierre François Verhulst.

Before entering the main part of this study which are neural networks for classifica-
tion. It is worth understanding the history and foundations in this field by studying the
concepts of logistic regression, and one vs all. These were the predecessors of the modern
algorithms that govern classification tasks nowadays.

3.1 Logistic Regression

The logistic regression is the name given to the model that first was used to attack the
classification problem for a dataset with only 2 classes. This model is founded on a linear
transformation and on a logistic unit; equations (1) and (2) show this transformations
where β are the model parameters, x are the inputs and z the outputs. The logistic
unit is introduced into the model to convert the outputs of the linear transformation to
probabilities. A (0,1) interval where 0 represents the first group and 1 represents the
second one. Then a 0.6 output would represent a 60% probability of belonging to group
1 and a 40% of probability of belonging to group 0.

z = β · x + β0 (1)

y = 1
1 + e−z

(2)

Equation 2 is the logistic unit (logit) which is usually called sigmoid due to the s
shape of the function. Sigmoid is a very important function in Machine Learning and it
will appear a lot in this study, in section 4.3 it will be studied along with other activation
functions.
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Small classification example

Bearing in mind all the information explained, it is easy to implement a logistic
regression algorithm using one of the optimizer functions that matlab offers. To test the
logistic regression the data selected is a Male/Female dataset with only 2 features: weight
and height. All the databases used in this project are gathered in appendix B where
basic information like number of features, groups or points is presented. In Figure 3.1 the
boundary line between the 2 groups found with the logistic regression is shown. Although
the dataset is kind of mixed up (for obvious reasons) there is a clear separation with
higher heights and weights for men which is correctly represented by the boundary line.
This line represents the 50-50 boundary. Regarding to the model, the points exactly on
the line have 50% probability of being man and 50% of being woman.

Figure 3.1 Logistic Regression for a Male/Female dataset. Source Own

3.2 Cost functions

Cost function is another name for the objective function that appear in the opti-
mization problem in machine learning. A wide variety of loss functions may be defined
depending on different interests. The importance of choosing the adequate one for the in-
volved task is enormous as the minimization process will be strongly correlated with it. In
particular, for linear regression tasks the cost usually chosen is the mean squared error or
MSE, whereas in logistic regression is usually preferred to use the negative log-likelihood
also called cross-entropy.
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The cost function is always composed by a loss function and a regularization term.
The loss is the function with which the error is strictly measured, while the regularization
term is sometimes added to introduce a penalty to the parameters in order to prevent
overfitting. In section 5 different regularization techniques are debated.

Equation 3 shows the cross entropy loss function, which is the most used in NN.

Equation 4 shows the MSE function, which is the most used in linear regressions.

Equation 5 shows the norm L∞, which is sometimes used in other models.

Negative log-likelihood has good properties in combination with neural networks.
The fact that it uses a logarithm makes it work really well with models using exponentials,
in addition the logarithm squishes the subspace to numbers with smaller computation time
for machines (ln(1 · 10−10) ≈ −23).

L(θ) = − 1
m

m∑
i

yi · log(ŷi) + (1− yi) · log(1− ŷi) (3)

L(θ) =
√√√√ m∑

i

[
(yi − ŷi)2

]
(4)

L(θ) = max
{
|y1 − ŷ1|, |y2 − ŷ2|, ..., |ym − ŷm|

}
(5)

3.3 Data augmentation

The model of logistic regression uses a linear model, therefore the boundaries ob-
tained between the classes can only be straight lines. This is not useful for most real
scenarios were the data will not be smoothly separated.

There exist some methods to bypass this problem. One of them is data augmentation
which is the method of adding non existing features using combinations of the ones that
are real. For example if there are features x1 and x2, it might be possible to add more
fictional features such as x2

1, x2
2, x1 ·x2, x3

1 ... This is similar to what is done in traditional
statistics with linear regression.

This technique offers the possibility to insert the first hyperparameter, the degree
of augmentation d. This parameter represents to which degree the data has been aug-
mented, d = 1 means no augmentation, d = 2 means to elevate to the power of 2 the data
and so on. Hyperparameters will appear often in the study, they are parameters which
can not be changed in the model but have a big impact on its performance.
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Small example of data augmentation

The problem of using a linear model will be shown using the microchip dataset
which is shown in Figure 3.2. These microchips before entering the market have to pass
two tests (variables x1 and x2) and are labeled as accepted or rejected (groups 0 and 1).
Figure 3.2 shows that for this dataset a quadratic boundary would fit way better than a
straight line.

In Figure 3.3 the boundaries for the previous dataset are shown with different values
of d. It can be seen that with growing values of d the boundary lines start to fit more
and more to the model until it will eventually overfit. In these figures it is obvious that a
polynomial degree of 2 is way better than the linear version, in fact the figure with d = 6
still looks really good.

Figure 3.2 Microchip dataset. Source Own

Data augmentation is a a useful technique which in general relates to the increase
of the number of features (rows in X). However, in image processing is common to talk
about data augmentation referring to the increment of raw data (rows in X). This is done
by applying transformations to the images like rotation, symmetris etc. giving more data
to the model.
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(a) d = 1 (b) d = 2

(c) d = 4 (d) d = 6

Figure 3.3 Logistic regression with different powers of d for the microchip dataset. Source own

3.4 One vs All

The one vs all example is the extension of the binary classification problem to n

classes. The idea is to extend the output of the logistic regression to a vector of n binary
states. In the end we are reducing the problem to n standard logistic regressions were
in each one we are trying to classify between the respective class and the "others". See
Figure 3.4

Now the target y, will be a matrix instead of a vector with columns equal to the
number of groups to classify. Then the loss function will take the sum over all groups
(shown in equation 6).
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Figure 3.4 The one vs all approach. Source[12]

L(θ) = 1
m

m∑
i

c∑
j

yj
i · log(yj

i ) + (1− yj
i ) · log(1− yj

i ) (6)

Small example of one vs all

To show the implementation of the one vs all task, the famous Iris dataset has been
selected. Iris is a dataset of 3 different flowers with 150 points and 4 features: sepal
width, sepal length, petal width, and petal length. In Figure 3.5 the boundary plot is
shown for this task. Again the three different classes seem to be well separated. As it can
be seen in the green boundary, data augmentation has been introduced (d = 2).

Figure 3.5 One vs all for the Iris dataset, each group has its own boundary line separating them
from the others. The green group has two lines which is possible thanks to data augmentation.
Source own
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4 Feedforward Neural Networks

As it was mentioned in section 2 neural networks are one of the pillars sustaining
deep learning. These structures are used in different ways and intentions but in our case,
they will be thought of as a tool for classification learning. For example, if there are two
types of dogs (Doberman and Border terrier) that have different body dimensions, the
objective of a NN could be to predict the dog’s breed only using their dimensions.

In the last example, some hints of the basic structure of a NN can be seen. The
"body dimensions" are the inputs for that specific neural network and are usually called
features. The "prediction" is the output of the NN and it can be understood as a binary
state (0 for one breed and 1 for the other) but it is rather preferred to use a continuous
interval I ∈ (0, 1) that symbolizes probability. Finally the operations that the network
does in order to get a prediction are called hidden layers. As it can be seen some of
these characteristics are the same as the ones in the logistic regression, thus it was helpful
to understand those first.

4.1 Architecture

Neural networks are composed by layers which in turn are made of neurons. The
first layer is called the input layer, the middle ones are called hidden layers and the last
one is the output layer.

The neuron

The neuron is the simplest unit of a NN. In Figure 4.1 its functioning is represented.
It receives an input and performs a linear transformation to produce the output.

y = W T · x + b (7)

The terms y and b are scalars (the output and the free term respectively), x is the vector
of inputs and W is the "weights" vector. Then the parameters of the neurons are W and
b and are usually enclosed in the term θ= {W, b}. Therefore the neuron performs the
transformation y = f(x; θ). The optimization must find the θ that minimizes the error of
the predictions.
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Figure 4.1 Representation of a neuron. Source Own

The layer

A layer is a collection of neurons that apply their transformation at the same level
of the model, they are acting in parallel (see Figure 4.2). For this reason a layer can also
be explained by itself as a linear transformation f : Rn → Rm with n given inputs and
m outputs (where m is also the number of neurons in the layer). Equation (7) can be
rescued where now y and b are the outputs of the neurons and their free terms respectively
(vectors with length m), x is the input vector (with length n) and W is the "weighted"
matrix (dimensions n×m).

Figure 4.2 Representation of a layer. Source Own
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Deepening the model

Once the structure of a layer is defined a multilayer NN is obtained by the concate-
nation of several layers. In the last examples, the final output was omitted, but it is an
important characteristic of a NN. The final purpose of the network is to classify data,
therefore the commonly used strategy is to have a final layer with m outputs where m

is equal to the number of classes. Then a binary state defines whether the data entry
belongs to that particular group or not. Figure 4.3 shows the representation of a neural
network with 2 hidden layers.

Figure 4.3 Representation of a neural network with depth L. Source Own

Until this moment everything that the NN does is to concatenate linear transfor-
mations, but this is in general a too simplified model for two reasons: (i) Concatenating
linear transformations is a linear transformation as well, (ii) The output can be any real
number, but as a classification tool it is expected a value between 0 and 1.

For this reason, one extra function is needed. The activation function introduces
non linearities to the system and transform the values to the (0,1) interval. Then if a
layer performs the linear transformation z = f(x; θ) the activation function performs the
transformation y = g(z) = g(f(x; θ)). It is interesting to mention that using sigmoid as
output function, and without adding any hidden layers the one vs all model is recovered.
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4.2 Propagation

In machine learning propagation is the word used to describe the computational
process of a NN. It can be either a forward propagation or a backward propagation.

The forward propagation is when the input x traverses the network to the output to
compute the predictions ŷ and the cost J(θ). On the other hand the backward propaga-
tion, goes from the cost of the output layer and flows backwards through the network, in
order to compute the gradient. From now on the notation used to represent the different
characteristics of a NN will be present everywhere, see appendix A for a resume of this
notation.

Forward propagation

The Forward propagation is the act of concatenating the transformations to the
input features until reaching the last layer output. From section 4.1, it is known that
each layer performs a linear transformation, more details and one last transformation
(the activation function) was required. Without entering in detail, this transformation
can be seen as a function g(h) : Rn → Rn, therefore a layer performs the transformation
of equation (8).

f (k) = g(W T
k · x + bk) (8)

Then if the network has depth l, the forward propagation is defined as a composition
of functions (9).

y = f (l)(f (l−1)(f (l−2)(...))) (9)

Notice that this composition has to be resolved from the inside to the outside which
means from the first layer to the last. In algorithm 1, we show a pseudo-code of how a
forward propagation algorithm looks. Where the function activation_function() is a non
linear transformation to the output h at every layer. In the following sections different
types of activation functions will be presented.

Remark1: in pseudo-codes the × symbol is used to represent matrix multiplication and
· symbol is used to represent element-wise multiplication.

Remark2: to understand the notation of the variables and the sizes of the vectors/ma-
trices refer to appendix A
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Algorithm 1 Forward propagation
Require:

nL number of layers
θ parameters
X matrix of data inputs
y matrix of labels related to X

Ensure:
J training error
o output at every layer

1: W, B ← extractWB(θ)
2: o1 ← X
3: i← 2
4: while i ≤ nL do
5: h← oi−1 ×Wi−1 + Bi−1
6: oi ← activation_function(h)
7: i← i + 1
8: J ← cost_function(o, y)

4.2.1 Backward propagation

Backward propagation or usually called "backprop" is a strategy to compute the
derivatives of a NN. This method is based on the application of the chain rule of calculus.

∂y

∂x
= ∂f (l)

∂f (l−1)
∂f (l−1)

∂f (l−2) · · ·
∂f (1)

∂x
(10)

A neural network with depth l computes forwardprop saving the linear transformations
h(k) and activation o(k) at each layer. Afterwards the gradient of the cost is obtained in a
reverse process applying equation (10). Starting in the last layer and applying the chain
rule, the gradient of the cost respect to θ is the following:

∇θJ = ∇ŷL(ŷ, y) · ∂ŷ

∂h(l)
∂h(l)

∂θ
(11)

Notice that ŷ is indeed the activation function of the last layer o(l) and its derivative
respect to θ is the derivative of the activation function times the derivative of the linear
function. The derivative of the linear function is one respect to the biases and h(l−1)

respect to the weights.
dh(l)

dθ
= (∂h(l)

∂b
,
∂h(l)

∂W
) = (1, h(l−1)) (12)

Equations (11) and (12) compute only the gradient of the last layer. In order to propagate
the error backwards the gradient of the cost respect to the activation function has to be
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multiplied by W (k). Then similarly to equation (11) we have

∇θ(k)J = ∇o(k)J ·
do(k)

dh(k)
dh(k)

dθ(k) where ∇o(k)J = W (k)T · ∇o(k+1)J (13)

This is the theory behind the backprop, the pseudo code of this method will help to make
a deeper understanding around this concept. One last thing to add is that in deep learning
these terms tend to be compressed into just two. One for the last derivative of the linear
transformation (θ), and one for derivative of the cost respect the activation function (δ).
We define δ as

δ(k) = ∇o(k)J = W (k)T · δ(k+1) · do(k)

dh(k) (14)

See Algorithm 2 for for full details of backward propagation. The function extractWB(),
decomposes all the parameters that are enclosed in θ to the weights and biases. On the
other hand the function reconstruct_grad() does the opposite, builds a gradient with the
same distribution as θ with W and B data structures given as inputs.

The back propagation algorithm is a really useful tool to compute the gradient of
the cost function. Summarizing all the concepts developed through this section it is seen
that back propagation is in contrast to autodifferentiation, an explicit way to compute
the gradient.

Algorithm 2 Backward propagation
Require:

nL number of layers
θ parameters
X matrix of data inputs
y matrix of labels related to X
o outputs at each layer

Ensure:
grad gradient of the cost function

1: W, B ← extractWB(θ)
2: i← nL
3: while i ≥ 2 do
4: o′ ← activation_function_derivative(oi)
5: if i = nL then
6: aux← negLogLikelihood_derivative(y, oend)
7: δi ← aux · o′

8: else
9: δi ← (Wi−1 × δT

i−1)T · o′

10: gradWi−1 ← 1
nD oT

i−1 · δi

11: gradBi−1 ← 1
nD

∑
δi

12: i← i− 1
13: grad← reconstruct_grad(gradW, gradB)
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4.3 Activation functions

The activation function (sometimes abbreviated as AF) is used to introduce non-
linearity to the model. When these functions are applied to the main corpse of the network
they are called hidden units, and when they are used in the output layer they are called
output units. The latter are designed in a way their range is (0, 1).

The NN usuallly uses the same AF for all of its neurons. This is not necessary
always the case, sometimes different layers could be assigned different functions. There
are dozens of different functions implemented in the literature. In spite of this, in this
study only the most remarkable will be taken in to consideration.

The Sigmod function

The sigmoid function was introduced in the logistic regression and it is the activation
function more used in feedforward neural networks [10]. The sigmoid is a non-linear
and bounded differentiable AF, defined for any real input, and with positive derivatives
everywhere. It is given by the relationship:

f(x) = 1
1 + e−x

(15)

Sigmoid AF are really good for the output units of NN and in general for shallow
networks. Its major drawbacks are sharp damp gradients, gradient saturation, slow con-
vergence and bad behavior with small weights. For the sigmoid function the maximum
value of its derivative is 0.25 (see figure 4.5). When this value is passed through the net-
work it makes the gradient to become smaller and smaller, this is known as the vanishing
gradient problem.

4.3.1 The hyperbolic tangent function

The hyperbolic tangent AF has a similar response to he sigmoid function (both of
them are exponential functions). In Figure 4.4 this AF is represent along with the sigmoid
function. The function is defined as:

f(x) = ex − e−x

ex + e−x
(16)

The implementation of tanh function improves the training speed respect to sigmoid
as the gradient achieves higher values. Nevertheless, it has the same disadvantage as it
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only attains gradient of 1 when the input is 0 (see figure 4.5). This still produces some
dead neurons as a result of the vanishing gradient problem. This limitation pushed further
the research of AF and it birthed the rectified linear unit or ReLU. [10]

Tanh overrides others in recurrent neural networks and natural language processing.

Figure 4.4 Representation of Sigmoid and Tanh response. Source [10]

4.3.2 The ReLU function

The rectified linear unit has been the most widely used AF since it was first proposed
by Nair and Hinton in 2010 [2]. It offers better performance than sigmoid and tanh
activation functions. The ReLU is almost a linear function and therefore preserves the
property of easy optimization from linear models. It is defined as:

f(x) =
{

0 if x < 0
x if x ≥ 0 (17)

Equation (17) grants high computation speed avoiding exponentials and divisions.
Moreover it introduces sparsity as it squishes the values between zero to its maximum.
The downside of ReLU as AF is that it tends to overfit the model much more than sigmoid
or tanh. Nonetheless the "dropout" technique works really well to reduce overfitting (Read
[5] for more information on dropout regularization), but other regularization methods that
will be discussed in section 5 can be used as well. This activation function has been used
in a handful of NN architectures. It is used in the hidden units with another AF used
in the output layers. Typical examples of its application are classification and speech
recognition NN. In Figure 4.5 the three activation functions explored till this point are
showed and compared.
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(a) Activation functions (b) Derivatives

Figure 4.5 Comparison of ReLU, sigmoid and tanh AF. Source Own

4.3.3 The softmax function

The softmax function is a normalized exponential function. For this reason it is
normally only used in the output layer. It can be said that softmax is similar to both
tanh and sigmoid, with the first one shares a similar exponential response, and with
sigmoid shares the monopoly of being the 2 king output activation functions.

f(x) = exi∑
j

exj
(18)

Softmax is the regularized version of the non differentiable max function, figure 4.6 shows
these two funcions. The sofmatx outputs a vector of real numbers belonging to the interval
(0,1) where the sum of all of them is equal to 1. This is useful for classification tasks where
the data trying to be classified has clearly separated groups. With sigmoid it could be
possible to obtain a result where the NN gives a certain input more than 50% probability
for 2 different classes.

(a) Max (b) Softmax

Figure 4.6 Comparison of max and softmax for the 2D case. Softmax shows its first output, it
has the shame shape in each axis. Source Own
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4.3.4 Other activation functions

In the previous sections the most known and used AF have been resumed. This does
not mean that there are not other adequate activation functions for different tasks, but
that those are the most reliable in general terms and most used for some reasons. Other
well known AF are the Softsign, Softplus or ELU functions [10]. This study will limit the
implementation to the four stated in previous sections.

4.3.5 Output function selection

Regarding the selection of output AF there are two options, sigmoid and softmax. To
identify in which case is preferable to use one over the other it is necessary to understand
the difference between multi-class and multi-label classification.

Multi-class

This classification occurs when a dataset can be classified in different groups. For
example, if there are different images of cats, dogs and horses and the task is to classify
between them. In this scenario a cat image can be classified only as a cat, not as dog
neither as a horse.

Multi-label

On the other hand, multi-label classification occurs when the dataset contains differ-
ent groups but they are not clearly separated. Following the example of the cat/dog/horse
classification, now a picture could contain a cat and a dog, or a cat and a horse, or any
combination. In this case the image has to be classified with more than one group because
it contains both a cat and a dog.

Figure 4.7 Multi-class and Multi-label classification Source [8]
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Figure 4.7 shows an easy example of multi-class and multi-label classification. Un-
derstanding this difference it is seen that softmax is more suitable for multi-class and that
sigmoid is more suitable for multi-label. Although sigmoid is better in multi-label, it can
be used in multi-class as well, not like softmax which would be inadequate for multi-label.

4.3.6 Hidden function selection

To choose the hidden units, there are three critical characteristics of activation
functions to consider: Saturation, Zero-centering, Computational expense.

Saturation refers to the fact that for large values the function gets a 0 gradient.
Both sigmoid and tanh saturate for x → ±∞. However ReLU does not saturate in the
positive region.

Zero-Centered functions are those which are defined with both positive and neg-
ative gradients. Tanh is zero-centered, but sigmoid and ReLU are not. This means that
sigmoid and ReLU will always have a completely positive or completely negative ∇θ, nev-
ertheless tanh could have both positive and negative derivatives in different directions.

Computational expensive functions are those which contain exponentials, divi-
sions or other complex functions. Tanh and sigmoid can be considered computationally
expensive and ReLU is not [14, 13]. The table below shows a compact resume of these
three properties for the activation functions in study.

Saturation Zero-centered Comp. expense

sigmoid

tanh

ReLU

Table 1 General properties of the mentioned activation functions. Source Own

With this in mind there seems to be no reason in favour of using sigmoid. And
although ReLU is the one used nowadays, tanh can be casted in some specific cases.

4.4 The learning process

Once everything in the network is settled, is time to obtain the optimum parameters.
The learning process of a NN is based on the idea of the minimization of a cost function
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J(θ). This process is usually made in an iterative way; at first some random parameters
of θ are initialized, with those the cost is computed via forwardprop and the gradient via
backprop. With this information the θ is updated expecting a lower value of J . This
process is repeated till a local minimum is found.

There are several approaches in the literature on how to tackle the learning process,
differing ones from others in how the θ is updated. They are classified in first-order
optimization algorithms and second-order optimization algorithms

Although the second-order optimization algorithms use the hessian matrix to update
θ and are usually faster converging to a local minimum, they are far from ideal due to
their tendency on getting stuck near saddle points. This disadvantage is added to the
need of an inversion of the system of equations, which is very expensive, giving higher
computation cost. These properties make the first-order algorithms or just gradient
based methods more suitable for deep learning.

Minimization example

Before defining gradient based methods, and in order to make the implementation
easier, the function fminunc() from matlab will be used. Given a handle function F (θ)
and an initial point θ0, fminunc(F,θ0) will return the optimum set of parameters θopt. In
Figure 4.8 the fminunc has been used to minimize the rosenbrock function. From the
theory it is known this function has a global minimum at (a, a2).

Figure 4.8 Minimization of rosenbrock function using fminunc. Source Own
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Implementatino of feedforward neural networks

To help the comprehension of how a feedforward neural network can be implemented,
a pseudo-code of the implementation along with some graphs showing the results for simple
datasets is presented.

A NN is composed by all the algorithms explained throughout section 4, these are
forward propagation, backward propagation, and minimization. Unless otherwise specified
the cost function will be -loglikelihood (equation (3)), and the activation function can be
anyone from the ones in section 4.3.

Algorithm 3, shows how a general NN works; it uses the forwardprop() and the
backprop() functions (algorithms 1, 2). The minimization used is the fminunc function
from matlab for now. This will make the implementation of the NN will look a little
different in the future when the minimization is self-coded. To see how fminunc is used
relate to figure 4.8.

Algorithm 3 Feedforward Neural Network (fmin)
Require:

nL number of layers
θ0 initial parameters
X matrix of data inputs
y matrix of labels related to X

Ensure:
θOP T optimum parameters

1: F (θ)← Cost_Gradient(θ)
2: J, o← forwardprop(nL, θ, X, y)
3: grad← backprop(nL, θ, X, y, o)
4: θOP T ← fminunc(F, θ0)

5 Regularization

Regularization techniques are introduced in machine learning to prevent overfitting.
When there is few data or the model is deep enough, it is often the case that the model
is capable of memorizing all the training data and hypothetically reaching a loss function
of 0. This can be far from ideal as the model will not predict new outputs outside the
training set really well, in this case we say the model overfits. There exist a wide range
of regularization techniques, but the most used are: (i) Parameter penalties, (ii) Early
Stopping, (iii) Dropout.
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Figure 5.1 Example of overfitting in the microchip dataset. Source Own

5.1 Parameter penalties

The norm penalty regularization is based on limiting the capacity of the model by
adding to the loss function a regularization term. This term is multiplied by a constant
hyperparameter λ which weights the contribution of the term.

J(θ) = L(θ) + λ ·R(θ) (19)

The two most common penalties are L2 and L1:

R(θ) = λ

2 wT w (20)

R(θ) = λ||w||1 (21)

The first one is known as weight decay, it causes the weights to move closer to
the origin, this property scales inversely with the curvature of the loss function. In the
directions of minimum curvature the weights are pushed closer to the origin than in other
directions. The figure below tries to show how L2 regularization works in a function with
2 weights.
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Figure 5.2 The effect of L2 regularization. The dashed lines represent contours of L2 while
the continuous ones represent contour lines of the loss function. w∗ is the minimum of the loss
function but due to the influence of the L2 regularization w̃ is the final optimal. Source [6]

On the other hand the L1 regularization adds the same constant penalty to all the
weights in the model which surpass a certain boundary value while the rest are pushed to
0. This regularization results in a more sparse solution as some of the weights are turned
to 0. This sparsity has proved to be a useful property as a feature selection mechanism
in different AIs.

5.2 Early Stopping

Early stopping is a different regularization method which does not rely on the mod-
ification of the cost function. In fact, what it does is to check the test loss every epoch.
Although the training loss could get smaller, if after a certain number of epochs the test
loss has not been reduced the minimization is stopped. With this it is ensured that the
model does not continue minimizing the cost function with the training set at expense of
augmenting the test loss.

In this method the analogue hyperparameter to λ in the penalty strategy is the
optimum number of epochs/iterations before overfitting.

In figure 5.3 is clearly seen that is much better to stop the minimization before the
validation error starts to grow. This is done by storing the value of the parameters in the
lowest validation error point, and after few iterations of non improvement in validation
error rescue this value as the optimum found.
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Figure 5.3 Learning curves showing the optimum point to stop before overfitting. Source [6]

5.3 Dropout

The last technique is the dropout. This is relatively new technique (Srivastava et
al., 2014) compared to the others. It consists of training n different models with different
combinations of a "base" model. Suppressing neurons to see the impact on the performance
of the NN, in Figure 5.4 a scheme of all sub-networks that are constructed by removing
non-output units from a base network is shown. The implementation of this technique is
more complex and out of the scope of this study.

Figure 5.4 Sub-networks formed from a base network. Source [6]
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6 Optimization methods

Optimization is a branch of mathematics which focuses in the labour of finding
the best possible parameters in a function or model. In the simplest case, optimization
consists of maximizing or minimizing a mathematical function. The task of the NN is to
learn to classify between different groups using a set of inputs, this process is done by
modelling the error of the model using a cost function (for more information relate to 3.2)
and then trying to minimize this error respect to the parameters θ.

The cost function J(θ) is a scalar multi-variable function f : Rn −→ R, it depends
on a set of parameters θ1, θ2...θn and returns a real number that represents the error of
the predictions. This functions have one partial derivative for each parameter and these
are enclosed in the term named gradient ∇J(θ) = [ ∂J

∂θ1
, ∂J

∂θ2
, ...], therefore the gradient

is a vector that represents the ascending line in the maximum steep direction. First-
order optimization methods use this property to update the parameters in the optimal
direction from iteration to iteration. On the other hand, second-order methods apart from
the gradient use the hessian matrix (second order derivatives) to update the parameters
bearing in mind the curvature of the function.

Although it is possible to use second-order methods, in deep learning first-order
methods are more predominant, probably because the benefits of the second derivatives
are simply not worth the computation expense. First-order algorithms give faster results
using rough but good enough approximations.

6.1 Gradient descent

In section 2 descent methods were briefly introduced. The gradient descent is a
first-order algorithm really easy to implement. The idea behind it is to slowly update the
parameters of the function in the direction of the gradient (equation 22).

x′ = x− ϵ · ∇f(x) (22)

The negative sign comes from the intention to minimize f(x) (contrary to maximize
which would be the positive direction of the gradient). The other term in the equation
is the step size ϵ. In machine learning this is a hyper-parameter called learning rate.
The selection of an appropriate learning rate is crucial and will be strongly correlated to
the performance of the optimization process. There are two approaches when selecting
the LR, it is possible to either leave it static (usually small constant) or to change it over
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time. The latter is called adaptive learning rate. It is also possible to perform a line
search, evaluate few possible ϵ and choose the one that results in the smallest objective
function value.

Algorithm 4 shows how a general gradient descent looks like. It has a main While
loop with an arbitrary optimization criteria and it calls the lineSearch() function which
finds the best LR between a small sample. It could be possible to make the line-search
return always a small constant, therefore simplifying it to a static method. A typical
optimization criteria is to use the norm of the gradient, if it is close to 0 it means the
function at least reached a local minimum. Again the notation used is the same as the
one exposed in appendix A.

Algorithm 4 Gradient Descent applied to NN
Require:

ϵ0 initial learning rate
θ0 initial parameters

Ensure:
θOP T optimum parameters

1: θ ← θ0
2: while stopping criteria not met do
3: J, o← forwardprop(nL, θ, X, y)
4: grad← backprop(nL, θ, X, y, o)
5: ϵk ← lineSearch(args, ϵk)
6: θ ← θ − ϵ · grad

7: θOP T ← θ

6.2 Stochastic Gradient Descent

Stochastic Gradient Descent (abbreviated SGD) is a variation of the gradient de-
scent. The need to modify algorithm 4 comes from the fact that gradient descent algo-
rithms need to compute the derivative of the function every iteration. This might not be
problematic for a standard mathematical function, however, in deep learning the gradient
needs to take the sum over all the training points (in big models this can be thousands
or millions). This is a hindrance to obtain a practical and fast optimization.

The concept is simple, if you need to compute the gradient over millions of points
just take a few hundred as an estimation. According to Goodfellow, et al. [6] optimization
methods that update the parameters using only the gradient are robust and can handle
smaller batch sizes like 100, second-order methods typically require much larger batch
sizes like 10000.
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Algorithm 5 is a variation of algorithm 4, where the difference is in line 3. A function
called minibatch selects a small sample of points from the entire dataset. For consistency
the function minibatch should not repeat the points from the dataset until all of them
are used, one pass through all the points in the dataset is called epoch.

Algorithm 5 Stochastic Gradient Descent applied to NN
Require:

ϵ0 initial learning rate
θ0 initial parameters
I batch size

Ensure:
θOP T optimum parameters

1: θ ← θ0
2: while stopping criteria not met do
3: yb, Xb ← minibatch(y, X, I)
4: J, o← forwardprop(nL, θ, Xb, yb)
5: grad← backprop(nL, θ, Xb, yb, o)
6: ϵk ← lineSearch(args, ϵk)
7: θ ← θ − ϵ · grad

8: θOP T ← θ

6.3 Stochastic Gradient Descent with momentum

Stochastic Gradient Descent with momentum is a variation of the traditional SGD
trying to improve its performance. The novelty is the incorporation of a new hyperpa-
rameter α with the purpose to consider previous gradients. If after few iterations the
gradient keeps pointing in the same direction, the step size is reinforced and therefore the
optimization accelerated. In contrast if the gradient is different at each iteration the step
size stays the same or even decays.

It is called "momentum" because it has a simple analogy to the Newtonian momen-
tum theory, more precisely the Stokes law. It resembles a particle moving inside a fluid
with viscous drag. Applying the second law of Newton (equation 23) it is known that the
variation of the velocity of a particle depends on the external forces to the system. In our
analogy there would be 2 forces; the first one is proportional to the negative gradient of
the cost function (−∇J(θ)) and accelerates the particle, and the second one is the viscous
drag proportional to the velocity (−v), decelerating the particle. From the Stokes law
it is known that a system with this properties will accelerate until reaching a terminal
velocity. ∑

f = ∂2θ

∂t2 = ∂v

∂t
(23)
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Updating the parameters would look like the following:

v = α · v − ϵ · ∇J(θ),
θ = θ + v

(24)

The size of the step depends on the variation of the velocity which is related to the gradi-
ents pointing in the same direction successively. It is helpful to think of the momentum
hyperparameter as 1

1−α
, because if the gradient is always the same, the step size will

accelearte until reaching a terminal velocity of.

ϵ||grad||
1− α

(25)

Nesterov Momentum

In 2013 Sutskever et al. (2013)[4] introduced a modification to the momentum
algorithm. The update rules are the same as the momentum algorithm, the difference lies
in where the gradient is evaluated. In Nesterov momentum the update is evaluated after
the current velocity is applied. In the convex batch gradient case, Nesterov modification
reduces the rate of convergence to O(1/k2). Unfortunately, in the stochastic gradient case
it does not improve the rate of convergence.

Algorithm 6 shows the differences that the momentum algorithm introduces to the
typical SGD. Line 4, highlighted in blue, is the Nesterov variation which comptues an
interim update of θ before computing the gradient. Without this line the algorithm
would become a normal SGD with momentum.

Algorithm 6 SGD with momentum applied to NN
Require:

ϵ learning rate
α momentum parameter
v initial velocity
θ0 initial parameters
I batch size

Ensure:
θOP T optimum parameters

1: θ ← θ0
2: while stopping criteria not met do
3: yb, Xb ← minibatch(y, X, I)
4: θ̃ ← θ + α · v
5: J, o← forwardprop(nL, θ, Xb, yb)
6: grad← backprop(nL, θ, Xb, yb, o)
7: v ← α · v − ϵ · grad
8: θ ← θ + v

9: θOP T ← θ
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6.4 AdaGrad

All algorithms previously studied in this section had the same learning rate in all
of their directions. The family of algorithms with adaptive learning rates were born with
the idea to overcome the problem of setting the same learning rate in 2 directions with
very different steepness.

AdaGrad is yet one of the simplest but most used methods with adaptive learning
rate. This algorithm individually adapts the learning rate in every direction by scaling
them inversely proportional to the square root of the sum of the previous squared val-
ues. Hence, the parameters with steep gradients have smaller learning rates while the
parameters with flat gradients have bigger learning rates.

r = r +∇J(θ)2 (26)

θ = θ − ϵ

δ +
√

r
· ∇J(θ) (27)

Where δ is a small constant (usually 10−7) to prevent a division by 0, and r is the
cumulative sum of the squared gradients. All the operations are applied element-wise.

Algorithm 7 AdaGrad NN
Require:

ϵ learning rate
θ0 initial parameters
I batch size

Ensure:
θOP T optimum parameters

1: θ ← θ0
2: while stopping criteria not met do
3: yb, Xb ← minibatch(y, X, I)
4: J, o← forwardprop(nL, θ, Xb, yb)
5: grad← backprop(nL, θ, Xb, yb, o)
6: r ← r + grad2

7: θ ← θ + ϵ

δ+
√

(r)
· grad

8: θOP T ← θ
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RMSProp

The AdaGrad algorithm is designed to improve the regular SGD in the convex
problem. However, in a non convex problem taking into consideration gradients from past
convex bowls that are not at the global minima AdaGrad could make the learning rate too
small before arriving to the desired function value. RMSProp is a variation of AdaGrad
which introduces yet another hyperparameter ρ in order to discard previous gradients.
It uses an exponentially decaying average of the gradients instead of the original value.
Empirically RMSProp has been shown to be an effective algorithm and it is currently one
of the go-to methods [6].

Another thing that it has not been mentioned is that both AdaGrad and RMSProp
can be implemented with SGD or Momentum methods.

Algorithm 8 RMSProp NN
Require:

ϵ learning rate
θ0 initial parameters
I batch size

Ensure:
θOP T optimum parameters

1: θ ← θ0
2: while stopping criteria not met do
3: yb, Xb ← minibatch(y, X, I)
4: J, o← forwardprop(nL, θ, Xb, yb)
5: grad← backprop(nL, θ, Xb, yb, o)
6: r ← ρr + (1− ρ)grad2

7: θ ← θ + ϵ

δ+
√

(r)
· grad

8: θOP T ← θ

7 Validation example

In Figure 7.1 three simple datasets that will be used to validate the algorithms shown
are depicted. Their principal characteristics are shown in table 2, more information can be
found in appendix B. Then using algorithm 3, this procedure has been implemented (for
the whole development of the codes relate to ANNEX I). Using sigmoid in the output
and hidden units and a network structure of [4, 8, x] neurons the boundaries found by
the NN are presented in Figure 7.2.
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(a) Self-made daset "ConCricles" (b) Self-made dataset "4circles" (c) Iris datsets "Iris"

Figure 7.1 Three simple datasets used to train the feedforward neural network. Source Own

ConCircles 4circles Iris
Points 500 1000 150
Groups 2 4 3
Features 2 2 4

Table 2 Characteristics of ConCircles, 4circels and Iris. Source Own

(a) ConCircels boundary plot (b) 4circles boundary plot (c) Iris boundary plot

Figure 7.2 Boundaries found by the NN when trained with the data. Source Own

Different colours are used to represent different classes in the dataset. The task of
the NN is to separate them correctly and in order to see what the algorithm decides the
boundaries are plotted. All the 2D region is filled with the same but more transparent
colours, representing the regions that the model believes belong to the different groups.
The whiter sections are the boundaries between regions, where the model "thinks" the
point could belong to either group.

All the training sessions are performed with a 20% test ratio, which means that 20%
of the data is stored separately to test the error of the NN afterwards. This procedure
is commonly used in machine learning to ensure the model does not overfit to the points
it used for training. Another spread tool used is the confusion matrix which shows the
test error in a matrix with columns and rows representing real and predicted values
respectively. The confusion matrices for the three examples above are shown in Figure
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7.3.

(a) ConCircels (b) 4circles

(c) Iris

Figure 7.3 Confusion matrix for each of the previous examples. Source Own

Figures 7.2 and 7.3 show good results, the classification regions seem to be correctly
placed and the test error is 0% for the two custom datasets and only 6% for the iris one.
These results are satisfying for this section.
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8 Results

The final phase of this study is to analyze the performance of the different techniques
developed throughout this thesis. Four topics will be debated: the influence of different
activation functions, the performance of two regularization techniques, a batch size analy-
sis for different optimization algorithms, and the hyperparameters from the optimization
algorithms.

Up to this point, the datasets used have been relatively "small" with few features.
To make this part of the study more realistic a larger dataset has been selected. MNIST is
a world-known dataset containing 10,000 gray-scale images of 28x28 pixels (784 features)
representing hand-written digits (see figure 8.1). The advantage of choosing a "classic"
dataset is that lots of information can be found on the internet. The original MNIST
dataset is already separated in training-test and it consists of 60,000 images in the training
set and 10,000 in the test set, however, in this project the test set has been used as a
whole and has been divided 80/20. This has been done to reduce possible problems of
memory and time.

Lastly, after these 4 analysis are done, and using the best characteristics based on
the previous results the code developed will be put to test against the MNIST and the
Flower databases.

Figure 8.1 MNIST dataset. Source [16]
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8.1 Activation Function comparison

Although it is possible to use different activation functions for different layers, and
even for different neurons, the NN studied will only use 1 type of activation function for
all the hidden units and 1 for the output layer.

Hidden units

Using softmax output unit, which is the common activation function for multi-class
classification, and using the same general architecture and minimization method, three
networks will be trained using: sigmoid, tanh and ReLU AFs. The parameters that will
be tracked through the minimization are speed, training loss and test loss.

The general scheme of the network trained is shown in table 3:

Topology Optimization Regularization
ANN SGD Early stopping

Architecture: 784:500:150:10 Learning Rate: 0.01 L2 (lambda) None
Output units: Softmax Momentum param: None Early Stopping: 10 epoch
Hidden units: analysis Mini-batch: 200 Stopping criteria: ↑ ↑ ↑ ↑

Table 3 Network composition for the activation function analysis. Source Own

The architecture has been selected like this in order to be able to compare the results
with LeCun et al. 1998 [1]. In this article a NN of 500:150 hidden units is trained and it
eventually reached an accuracy of 97.05% in the test set.

time [s] funciton value Test error [%]

Sigmoid mean 242 0.5342 15.1
std 87.5 0.0771 0.0771

tanh mean 113 0.1965 8.3
std 28.7 0.0511 0.0040

ReLU mean 115 0.1412 7.2
std 31 0.0448 0.0056

Table 4 Hidden unit analysis (mean and standard deviation for 10 samples). Source Own

Table 4 show expected results. The sigmoid activation function performed clearly
worse than the other 2, both in computation time and accuracy. Regarding tanh and
ReLU the results are not conclusive as both have similar times and accuracy, though
ReLU performed slightly better in accuracy. These results are in line with the historical
tendency of NN, where sigmoid was the used function at first, then it was changed for
the tanh and finally ReLU appeared more or less in 2013. Since then ReLU is the most
common choice in the models built nowadays.
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Output units

On the other hand, using the previous AF ReLU, two networks with sigmoid and
softmax output functions will be compared. This change should not have the same impact
as the hidden activation function selection, though it could make the boundaries look quite
different. The networks have the same characteristics as the ones described in the table
3.

time [s] funciton value Test error [%]

Sigmoid mean 123 0.2811 6.7
std 23.5 0.0759 0.005

Softmax mean 115 0.1412 7.2
std 31 0.0448 0.0056

Table 5 Output unit analysis (mean and standard deviation for 10 samples). Source Own

Again, really similar results between the 2 networks. The sigmoid obtained 0.5
% less test error at the expense of some extra computation time. The results are not
conclusive, however, as it has been explained before, sigmoid does not make much sense
in multi-class classification. For this reason the softmax will be preferred in multi-class
classification.

8.2 Batch Size analysis

The next step is to put to test the performance of different NN using fminunc,
gradient descent, stochastic gradient descent, Nesterov momentum and RMSProp. Two
comparisons will be made, in one a fixed time of 120s will be given and the accuracy
reached will be the indicator, on the other all the algorithms will aim for a function value
of 0.01 and the time of computation will be tracked . Other factors that will be tracked
are: epochs, iterations, and test accuracy. It is important to understand the difference
between epochs and iterations; the first represents the number of passes through all the
dataset before stopping, and the second one represents the number of parameter updates
(iterations ≈ nData/batchSize · epochs).

The general scheme of the networks trained is shown in table 6:

Topology Optimization Regularization
ANN SGD/Nesterov/RMSProp None

Architecture: 784:500:150:10 Learning Rate: 0.01 L2 (lambda) None
Output units: Softmax Momentum param: 0.9 Early Stopping: None
Hidden units: ReLU Mini-batch: analysis Stopping criteria: 120s/0.01fv

Table 6 Network composition for the batch size analysis. Source Own
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(a) Function value vs batch size (b) Test error

Figure 8.2 Cost function and its test error for different batch sizes with a fixed minimization
time of 120s (mean and standard deviation with sample of 10 cases). Source Own

First of all, it is remarkable that fminunc crashed due to insufficient memory. The
algorithm demanded 2.2 TB of RAM which is obviously unrealistic and strengthens the
idea of using gradient descent algorithms.

Figure 8.2 shows the results with a fixed minimization time. Although the time was
fixed RMSProp did exit the minimization before the imposed time several occasions, this
was due to passing the optimalty tolerance (norm of the gradient) which was set to 10−10,
it is understood that past this point it does not make sense to continue minimizing the
cost function.

The results shown in Figure 8.2b point in the direction that Nesterov momentum
worked similarly to SGD but with greater performance, both had a peak in their results
between 10 to 100 points in the mini-batch. Differently, the RMSProp had worse results
for these batch sizes but surpassed the previous for larger sets. Interestingly RMSProp
did not drop its performance with big batch sizes, the comfort working zone is from 100 to
the whole 8,000 points. All in all, as the general literature recommends the best possible
configuration might be few hundreds of points to fortify the gradient against possible
outliers, as shown in Figure 8.2a the function value had really high standard deviations
for less than 10 points. Two hundred points is a reasonable amount without compromising
too much computation time that worked well for the 3 algorithms.
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(a) Time vs batch size (b) Test error

Figure 8.3 Computation time and its test error for different batch sizes with an objective
function value of 0.01 (mean and standard deviation with sample of 10 cases). Source Own

The results in Figure 8.3 show the same tendency as the ones obtained in Figure 8.2.
Looking at Figure 8.3a RMSProp performed the best by far with the least computation
time, Nesterov also performed better than SGD which only reached the 500 mini-batch
size before exiting by the limit time which was set to 1000s (approx 16 minutes). The
best point looking at this two graphs would be 200 epochs which has the best time just
after the 10 epochs but has better test performance. Ten epochs gives really unstable
exits when using a function value criteria. For this same reason the 1 and 5 sizes were
excluded from these graphs.

8.3 Optimization parameters analysis

The last analisys to the MNIST dataset will be the effect of the hyperparameters
from the optimization algorithms. The learning rate in the SGD, the momentum param-
eter in Nesterov, and the decay parameter in RMSProp.

Learning rate

The learning rate is a really important parameter that might give headaches when
choosing it. A too small learning rate can slow down the optimization and be a hindrance
to overcome local minimums. A too large learning rate might become unstable and never
reach a minimum at all.

Moreover the selection of learning rate is specific to every minimization scenario,
meaning this that the optimum learning rate for a certain network might be not the best
for other networks. For the case of the MNIST dataset and with the network described in
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table 7, the minimization of the cost function has been plotted against the passes through
the dataset.

Topology Optimization Regularization
ANN SGD/Nesterov/RMSProp None

Architecture: 784:500:150:10 Learning Rate: analysis L2 (lambda) None
Output units: Softmax Momentum param: analysis Early Stopping: None
Hidden units: ReLU Mini-batch: 200 Stopping criteria: 30 epochs

Table 7 Network composition for the optimization parameters analysis. Source Own

Figure 8.4 Different minimization curves of the cost function for different learning rates. Source
Own

In Figure 8.4 it is seen that the learning rates of 10−4 and 10−3 are too small in the
convergence. From 10−2 until 5·10−1 the algorithm showed stability and fast minimization.
Although the ϵ = 1 is shown in the graph being more or less stable, when the process was
repeated the algorithm broke most of the times. For the case presented the recommended
learning rate would be 0.1, as 0.5 was also a bit unstable.

Momentum parameter

The function of the momentum parameter is to accelerate the step size within con-
secutive gradients pointing in the same direction. This parameter allows to set a lower
learning rate giving more stability for the beginning of the minimization without compro-
mising computation time due to the acceleration.
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The choice of α is not as important as ϵ. The usual values are 0.5, 0.9 and 0.99,
using the the same dataset and network as the previous ones and with a learning rate of
0.01 and 0.5 the minimization of the function value is shown in the graph below.

(a) ϵ = 0.01 (b) ϵ = 0.5

Figure 8.5 Different minimization curves of the cost function for different momentum param-
eters. Source Own

From Figure 8.5a it seems that the minimization just keeps getting better with higher
α. On the other hand from Figure 8.5b a higher learning rate can cause the minimization
to fail with lower α.

Decay parameter

The parameter in the RMSProp algorithm is also not as important to choose as
learning rate. The most used value is 0.9, but other typical are 0.5 or 0.99. In the figure
below the inlfuence of ρ is depicted for the same NN and dataset with a learning rate of
0.01.

Figure 8.6 Different minimization curves of the cost function for different decay parameters.
Source Own
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The results suggest that 0.99 is too high giving unstability. Consequently 0.5 and
0.9 are the best possible parameters for the case, both showing good minimization curves.

8.4 Regularization performance

The regularization will be studied on a different dataset, because the NN in MNIST

did not overfit due to the immense amount of points. Therefore the microchip dataset is
used to show in a more academic way overfitting.

The effect of both parameter penalties and early stopping is shown in some examples
in this section. The idea is to show the importance of the λ hyperparameter for L2, and
the number of epochs for early stopping. Regarding parameter norm penalties, in this
section L2 will be studied but not L1 because the latter is typically used as a feature
selection technique rather than as a regularization method.

Parameter norm penalties

In figure 8.7 the boundary for the microchip dataset with a polynomial degree of 10
is shown for different values of λ. As it is clearly seen the introduction of lambda tends
to smooth this boundaries shrinking the values of θ in the less influential directions. The
value of λ = 10−3 looks like a good generalized approximation, it looks similar to what it
would look with a polynomial degree of 2.

In order to see if the introduction of the hyperparameter is really improving the
performance, in figure 8.8 the test error with different values of lambda has been tracked
for different test ratios. As it can be seen the hyperparameter is introducing a regular-
ization that penalizes the optimum solutions in the flattest directions the most, therefore
generalizing better to the test set. Confirming the previous assumption, the optimum
value of λ lies between 10−4 to 10−2 for this case.
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(a) λ = 0 (b) λ = 10−7

(c) λ = 10−5 (d) λ = 10−3

Figure 8.7 Boundaries for different values of λ on the microchip dataset. Source Own

Figure 8.8 Influence of hyperparameter λ on the performance in MNIST dataset with different
test ratios. Source Own
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Early stopping

The controllable parameter in early stopping is the number of epochs that the min-
imization will continue if there is not improvement in test accuracy before stopping. In
figure 8.9 the final boundary for different values of this parameter is shown. The early
stopping technique requires of a test set since the minimization criteria depends on the
test accuracy. In consequence the test ratio can be influential in the analysis. The ratio
used for this analysis is 30%.

(a) ES = 10 (b) ES = 100

(c) ES = 150 (d) ES = 200

Figure 8.9 Boundaries for different values of the early stopping parameter on the microchip
dataset. Source Own

As it can be seen in figure 8.10 around 10 epochs is the optimum parameter. The
test error reached with this regularization is around 20% which was the same obtained
with L2 regularization. When the parameter tends towards positive infinite epochs, the
test error should be the same to the obtained when there is no regularization, that is to
say the same for λ = 0 which is around 30%.

Both regularization methods showed the phenomena of overfitting for the microchip
dataset, improving the test accuracy respect to the results when regularization is not
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applied.

Figure 8.10 Influence of the early stopping hyperparameter on the performance in MNIST
dataset with different test ratios. Source Own

8.5 Final Results

MNIST

The final results for MNIST are shown in this section. After analyzing the most
important hyperparameters the network that performed the best is the following:

Topology Optimization Regularization
ANN RMSProp Early Sopping

Architecture: 784:500:150:10 Learning Rate: 0.01 L2 (lambda) None
Output units: Softmax Momentum param: 0.9 Early Stopping: 10 epochs
Hidden units: ReLU Mini-batch: 200 Stopping criteria: ↑ ↑ ↑ ↑

Table 8 Network composition for the MNIST dataset. Source Own

Lots of simulations have been carried on but the best result obtained in the training
set is an accuracy of 97.4%. Figure 8.11 shows the confusion matrix on the test set
for this scenario. This result is very similar but slightly higher than the one exposed by
LeCun in his article [1] where the network reached an accuracy of 97.05%.
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This is a really good score for this dataset, though using other deep learning tech-
niques like convolutional neural networks (CNN) it could be raised a little more. One of
the best results for this data is found in Dan C. Ciresan [3], where it reached a precision
of 99.65% using a long CNN.

Figure 8.11 Confusion matrix for the MNIST dataset. Source Own

Lastly it might be interesting to look up some of the images the network did not
classify correctly. Figures 8.12a, 8.12b, 8.12c and 8.12d show some of the digits that have
been wrongly classified. The first picture might clearly be an eight for any human being
but it has a little cut in the bottom that seems to mess up the NN. The mismatch in
figures 8.12b and 8.12c can be somewhat understood as the seven almost looks like a nine
with some pixels missing in the bottom left of the circle and the six is flattened to the
extreme that can be seen as the bottom part of a two. Lastly, figure 8.12d is a reasonable
error as most humans would choose a seven as well. In the end this digits are written by
humans and can be a bad example of good calligraphy.
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(a) Predicted 2
Target 8 (b) Predicted 9

Target 7 (c) Predicted 2
Target 6 (d) Predicted 7

Target 2

Figure 8.12 Mismatched digits using a ANN for the MNIST dataset. Source Own

Flowers

To push one step further the algorithms developed in this study one final NN will
be put to test against another image database. The flower database contains more than
3,000 real photos of 5 differents species: daisy, dandelion, roses, sunflowers and tulips (see
figure 8.13). All these images are in color (rgb) and have a broad variety of sizes (from
180 pixels in the shortest dimension to 300 in the largest), this equals to almost 100,000
features for the smallest image, much more than the 784 from the 28x28 gray scale images
from MNIST.

(a) 1 Daisy (b) 2 Dandelion

(c) 3 Roses (d) 4 Sunflowers (e) 5 Tulips

Figure 8.13 The 5 groups from the flower dataset. Source Own

This amount of features is unreasonable for the network under inspection. For this
reason some kind of preprocessing to the data is needed. The first idea is to use imresize()
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function from Matlab to rescale the images to 32x32 rgb images, this means 3,072 features.
As it will be seen the loss in information from this reduction led to poor results which
brought a second idea. This idea is to use the discrete cosine transformation (DCT) of
the images to select the most important information choosing the top left triangle of the
array in the frequency domain. In order to compare both results this triangle is set to
have around the same number of features as 32x32 image.

The preprocess of the second method is not trivial and it is explained in the following
steps:

i Resize

ii Discrete Cosine Transformation

iii Top left triangle selection

iv Scale every group by its maximum and minimum to 0-1 interval

v Scale all with the absolute maximum and minimum to 0-1 interval

Step 1: In order to apply the DCT all images must have the same size, otherwise the
modes of the transformation will not represent the same asset for two different images.
For this reason the first step is to resize all images to 180x180 pixels.

Step 2: Matlab offers a DCT for 2D arrays which serves perfectly for the duty
commended.

Step 3: In natural image processing the general procedure when applying Fourier
transformations is to pick the top left corner of the array after the transformation as
the most important numbers fall there. In figure 8.14 the new bases after applying the
transformation are shown, the idea is to select the red triangle (the top left corner of the
matrix) which for natural images usually has the highest weights.

Step 4: Scaling the inputs is important to avoid saturation for the ReLU units. For
this dataset, it has proved to be useful to first scale every group with its maximums.

Step 5: Finally scaling again to the absolute maximum of all groups which is the
commonly used data scaling.
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Figure 8.14 Top left triangle selection for natural image processing. Source [18]

In the figure below a random image from the database can be seen in its original
form and in its two reduced versions. The loss of resolution is big for both methods but
the technique that uses DCT is clearly better, the final number of features after applying
the proccess explained to the three channels rgb is 3,105.

(a) Original

(b) 32x32 (c) dct 3105

Figure 8.15 Sample of the flower database, on the top the original, on the left resized to 32x32,
and on the right with dct transformation 32x32 bits. Source Own
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Once the data is ready the next step is to define the network. The architecture
will be bigger to the one used in MNIST as the number of inputs is bigger, it has
been arbitrarily selected x:1000:500:150:10. The activation function will be softmax for
the ouput units and ReLU for the hidden ones. The optimization algorithm selected is
Nesterov as RMSProp was tried and performed weaker. There is no parameter penalty
applied and the network will minimize for 500 epochs.This data is resumed in the following
list:

Topology Optimization Regularization
ANN Nesterov None

Architecture: 3072:1000:500:150:5 Learning Rate: 0.01 L2 (lambda) None
Output units: Softmax Mom param: 0.5 Early Stopping: None
Hidden units: ReLU Mini-batch: 200 Stopping criteria: 500 epochs

Table 9 Network composition for the Flower dataset. Source Own

The training with the 32x32 rescaled images did not succeed. Although it achieved
an accuracy of 54% which is way better than a random prediction, this result is far from
reliable. The figure below shows the confusion matrix for this case. This result motivated
the idea to use the other preprocess technique for the data.

(a) 32x32 rescaled (b) 3105 dct

Figure 8.16 Confusion matrix for the NN trained with the two "compression" methods. Source
Own
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After the first failure, the network was trained with the data in the frequency domain
after applying a discrete cosine transformation. The result for this case was surprisingly
higher, with the network almost perfectly differentiating 3 groups. The accuracy reached
83.7%.

The confusion matrix shows how well the network learned to classify daisy, sunflow-
ers and tulips. But it was between dandelion and roses where it really failed. It is curious
as roses are very distinctive flowers for humans, in the figures below some of the images
that were wrongly identified are shown.

(a) Predicted Daisy, Target Dandelion (b) Predicted Dandelion, Target Rose

(c) Predicted Rose, Target Dandelion (d) Predicted Rose, Target Dandelion

Figure 8.17 Mismatched flowers using an ANN for the flower dataset. Source Own

The pictures in figure 8.17 do not clarify why the network does not classify between
Dandelion and Rose. For humans the difference is obvious as roses are mostly pink, but
it seems that the network did not find its way through this issue. Data augmentation
and a more consistent representation could be introduced to try to increase the network’s
performance.
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9 Conclusions

The aim of this thesis was to navigate and develop the foundations of deep learning.
Artificial neural networks have been the central pillar of the project, and the mathematics
behind them have been deeply analyzed. Alternatively, optimization methods have also
been detailed and developed. All of these have been developed while trying to present the
results obtained throughout the sections in the most rigorous way possible, using statistics
(mean and standard deviation) to diminish uneven results.

By analyzing the performance of NN in some of the most famous databases such as
iris and MNIST, this thesis has proved the utility of these architectures for classification
tasks. The influence of some key parameters like learning rate, momentum parameter
or test ratio has also been shown. Not only that, but for the MNIST dataset a set of
parameters have been proposed for a certain architecture as the best, with those, a higher
accuracy than the same network in LeCun [1] was obtained.

The test ratio has to be set as high as possible without compromising the training
performance, typical values are between 15% to 40%. Data augmentation enables the
model to be enriched with more information, but can also trigger overfitting dangerously.
There is no general procedure recommended, so trial and error is the way to go. Data
scaling has stood up as a crucial preprocess step to avoid saturation in the network.
Finally, regarding the optimization, the learning rate has proved to be, if not the most
important, one of the most important parameters in gradient descent algorithms. The
momentum parameter and the decay parameter for Nesterov and RMSProp have to be
set in accordance with learning rate.

The final results for MNIST and Flowers datasets were satisfactory. MNIST even-
tually reached a higher performance than in a renowned article. On the other hand, the
Flower dataset added an extra interesting preprocess step, which is feature selection. The
result obtained (83.7% accuracy) is good but not as high as desired.

All these objectives were successfully met. The codes used during this project have
been coded from scratch, building a robust and simple to use program. Nevertheless,
during the development of this thesis, the planning shifted directions, leaving the kernel
method and autoencoders out of the scope. Thanks to this, it has been possible to
deepen into optimization algorithms, letting in the momentum and adaptive learning rate
variations.

There are other basics in deep learning that have been left behind from the beginning
like support-vector machines, principal component analysis and many others. However,
the most useful and logical followings steps would be convolutional neural networks and
autoencoders. Consequently, as a continuation to this project it would be absorbing
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to explore CNN, applying them to image classification in order to compare the results
obtained with the ones obtained in this project using ANN. It would also be interesting
to study autoencoders which are specific constructions of traditional NN that try to learn
useful properties of the data.
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Appendices

Appendix A. Neural Network notation

Notation Explanation Dimension

Bi vector of biases at layer i RnSi

grad gradient vector (analogous to θ) Rk

hi outputs after the linear transformation at layer i M(nD, nSi)

k number of parameters to minimize in the NN N

nD number of data points N

nF number of features N

nG number of groups N

nL number of layers N

nS vector with the architecture of the NN NnL

oi outputs after the activation function at layer i M(nD, nSi)

Wi matrix of weights between layer i-1 and i M(nSi−1, nSi)

x matrix with different inputs in rows and features in
col

M(nD, nF )

y matrix with different inputs in rows and classes in
col

M(nD, nG)

δi reverse propagation of the gradient at layer i M(nD, nSi)

θ vector with all the parameters W,B Rk
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Appendix B. Databases used

Name Data points Features Classes Links

Gender 10,000 2 2 link

https://www.kaggle.com/code/pratiksatriani/gender-classification

Microchip 118 2 2 link

https://www.kaggle.com/datasets/johnjyjy/microchip-quality-control

ConCir-
cles

500 2 2 link

Artificially Created

4circles 100 2 4 link

Artificially Created

Iris 150 4 3 link

https://www.kaggle.com/datasets/uciml/iris

MNIST 10,000 748 10 link

https://ch.mathworks.com/help/deeplearning/ug/data-sets-for-deep-learning.html

Flowers 3451 ∼ 105 5 link

https://ch.mathworks.com/help/deeplearning/ug/data-sets-for-deep-learning.html
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